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Abstract: In the digital and green transitions, rapidly growing renewable energies are
accumulating more and more data. Big data gives room to apply emerging data science to solve
challenges in the energy sector. Offshore wind power receives accelerating attention due to its
sufficient resources and cleanness. This paper uses data science, including statistical analysis
and machine learning, to systematically analyse three coastal wind sites in Norway. The results
show that although Norway possesses ample offshore resources, its development could be
improved by natural, technical, and economic challenges that can be addressed with the help of
data science. Technically, the statistical attributes and forecasting intricacy of offshore wind
resources differ across various regions of Norway.

1. Introduction

Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report delivered an updated
global assessment of climate change mitigation progress and pledges [1]. The twin transitions of green
and digital are two of the most critical challenges and opportunities for human society in the coming
years [2]. A concept emerging at the nexus of these two transitions is the so-called twin transitions. In
energy sectors, the digital transition can help energy utilization be smarter, greener, more sustainable,
and more resilient with the advances of data science and multisource information integration into the
energy physical system. More specifically, in one of the primary sources of renewable energy - wind
energy, data science has become an increasingly crucial tool in analyzing wind energy operations and
wind resource assessment [3].

The success of wind energy projects relies heavily on accurate wind energy-analysis, which requires
high-quality data. Before building a wind park, the developer must study the site’s wind resources to
determine the potential for wind power generation. This process involves collecting wind speed and
direction data over a while, typically a year or more. The data are then analyzed to determine the average
wind speed, wind direction frequencies, and other parameters critical to the wind turbine performance
[4].

Offshore wind power presents a promising source of renewable energy in Norway [5]. However, the
harsh weather conditions in the Nordic, including extreme temperatures and high winds, can damage
turbines and make maintenance challenging. The remote location of offshore wind turbines in the
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Norwegian fjords makes it challenging to operate and maintain offshore wind projects quickly,
increasing downtime and reducing overall project efficiency. Finally, the cost of offshore wind power
remains relatively high compared to other renewable energy sources [6], making it less competitive in
the energy market. To maximize the potential of offshore wind in Norway, the emerging data science
techniques can provide valuable insights into wind power project design, operational performance and
enable proactive maintenance strategies.

Data science is an interdisciplinary field that combines statistical analysis, machine learning, and
computer science techniques to extract patterns and insights from complex data sets [7]. In offshore
wind power, data science can analyze data collected from weather models, sensors, and other sources to
optimize wind turbine and power design, predict power generation and maintenance needs, and improve
offshore wind system efficiency.

This paper systematically uses data science to analyze Norwegian offshore wind power, primarily
focusing on wind resource assessment and power forecasting.

2. Norwegian Offshore Wind and Related Data Science

2.1. Offshore Wind Energy in Norway

Norway has vast natural sea resources and great offshore and onshore wind energy potential [8]. The
country has a long 83, 000 km coastline and exposure to both the North Sea and the Norwegian Sea and
complex mountainous terrain. Wind energy has become an essential part of Norway’s energy generation
mix, accounting for over 10% of the country’s total electricity production in 2020. The average wind
speeds along the coast vary from 5-10 m/s which is interesting for offshore wind turbines. According to
the Norwegian Energy Directorate (NVE), Norway’s potential capacity for offshore wind power
generation is estimated at 45 GW. This estimate is based on the technical potential of offshore wind,
which considers factors such as wind speed, water depth, and distance from shore.

Currently, Norway has one operational offshore wind park (a 2.3 MW Hywind Scotland project
located off the coast of Scotland) [9, 10]. However, several projects are in the planning phase, like the
Serlige Nordsje II project with a planned capacity of 1.5 GW and the 88 MW Havsul 1 project. The
Norwegian government has set a target of 4-6 TWh of electricity generated from offshore wind by 2025
and aims to become a leading exporter of offshore wind power technology [11]. Several projects are in
the planning phase, and with the proper regulatory framework and investment, offshore wind power
could play a significant role in achieving Norway’s energy goals.

2.2. Data Science in Wind Energy

With the growing data from meteorological stations, remote sensing, wind turbines, and other
measurements, there are huge potentials with data and information sciences to improve our
understanding of wind resources and patterns and optimize wind energy utilization design and operation.
Emerging data science, including advanced statistical analysis and machine learning, has become
increasingly important in analyzing wind energy.

One of the critical applications of data science in wind energy is wind resource assessment. Statistical
and machine learning methods are widely used in the topic. Analyzing data from various sources,
including meteorological stations, remote sensing instruments such as lidar or radar, and numerical
weather prediction models, can create a more comprehensive picture with statistics of the wind
conditions at a particular site. It allows us to make more accurate predictions about potential wind energy
generation and optimize wind turbines’ design and placement [12,13]. Machine learning algorithms are
also particularly useful, as they can analyze large amounts of data and identify hidden and complex
patterns that may not be apparent using traditional statistical methods [14]. Deep learning can identify
patterns in historical wind data and predict future wind conditions. At the same time, neural networks
can classify different wind patterns, such as gusts or turbulence [15]. Another essential data science
application in wind energy is power forecasting. Wind power forecasts are vital for ensuring a stable
and reliable power supply from wind turbines, as they allow grid operators to prepare for fluctuations in
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wind power output. Finally, the forecasts can help to optimize wind park operations and improve the
overall efficiency of energy systems by analyzing historical wind and meteorological data with machine
learning algorithms [16].

3. Applied Data Science Methodologies
This section briefly describes the statistical and machine learning algorithms applied in the following
case study.

3.1. Statistical Methods
This paper employs descriptive statistics analysis, probabilistic modeling, and hypothesis testing to
analyze offshore wind.

Descriptive statistics are widely used in statistical analysis and can be found in [17]. The Probability
Density Function (PDF) describes the likelihood of a random variable occurring at a specific point
within each observation interval. This work uses the generalized extreme value distribution to model the
PDF of the wind speed as:

feet ke = Qo (- (1442 F) (1402 0

where k is a shape parameter, u is a location parameter, and ¢is a scale parameter.

Two important hypothesis tests (Augmented Dickey-Fuller test (ADF) [18] and Kolmogorov-
Smirnov test [19] (K-S test) [19]) are also employed to check the offshore wind data.

Stationarity Test: The Augmented Dickey-Fuller test (ADF) tests.

Hy: The data are non-stationary. H,: The data are stationary.

Goodness-of-fit Test: The two-sample Kolmogorov-Smirnov test (K-S test).

Hy: Two datasets have the same distribution. H,: They do not have the same distribution.

3.2. Machine Leaning Methods
Machine learning is an algorithm that allows computers to learn patterns and insights from data and
make predictions or decisions based on the learning. Machine learning is widely used in various fields,
such as image and speech recognition, natural language processing, fraud detection, and many others
[20] Machine learning algorithms for regression use statistical models to identify the relationship
between the input variables and the output variable in cases of continuous numeric values and then use
this model to predict the value of the output variable with new input values [21].

The forecasting of future wind speed is based on autoregression in the study, such as in Equation (2):

Xtgn = f(Xt,Xt—l,Xt—z, 'Xt—p) +¢€ ()

The autoregression can be recognized with machine learning algorithms. This investigation uses four
representative machine learning, including linear and different neural networks, to forecast offshore
wind speed. Linear Regression (LR), back propagation Neural Network (NN) with 12 hidden neurons,
CNN Convolutional Neural Networks (CNN), and LSTM Long Short-Term Memory (LSTM) are quite
mature machine learning algorithms, and their introduction can be found in [22] due to space reasons.

4. Case Study

This paper selects three sites along the Norwegian coastline for case studies on data science in offshore
wind energy. Namely, Torsvag Fyr (70.5882N, 19.2844E) in Northern Norway, Myken (66.7621N,
12.4809E) in Middle Norway, and Utsira Fyr (59.3102N, 4.8857E) in Southern Norway. The wind speed
data are extracted from the Norsk klimaservicesenter; they range from January 1, 2020, to December 31,
2022. The raw wind speed data are shown in Figure 1. Table 1 gives the descriptive statistics for these
wind speed data.
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Figure 1. Wind speed of three sites on Norway coast (Norsk klimaservicesenter)
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Table 1. Descriptive statistics of wind speed of three sites on Norway coast
Statistics Mean Median Stargda-rd Max Min .
(ms) (mis) Deviation (mis) (ms) Skewness | Kurtosis
Wind sites (m/s)
Torsvag Fyr | 6.0436 5.5 3.875 28.5 0 0.825 3.5492
Myken 8.3283 7.8 4.1467 27.1 0.2 0.6163 3.2163
Utsira Fyr 8.3948 7.8 4.3910 28.9 0.1 0.6549 3.0848

It can be seen that the Torsvag Fyr site in the North has a lower average wind speed, but it also has
a maximum wind speed of nearly 30 meters per second, indicating that the overall wind resources of the
site are not as good as the two sites to its south. This site has a large Skewness and Kurtosis, suggesting
that its wind speed distribution is relatively very concentrated in the low wind speed region and has a
longer high-speed tail. Myken site in the Middle and Utsira Fyr in the south have a similar historical
distribution of wind speeds but are more stationary compared to the Northern site. The estimated pdf for
each site is shown in Figure 1 with the scaled histogram resulting from the measured wind speed, and
Table 2 summarizes the resulting parameters. The pdf of Torsvag Fyr does match the high occurrence
of very low wind speeds in the range of 1-2 m/s (or the overestimation for 3-5 m/s), but it gives better
results for wind speeds higher than 6 m/s. It can also be observed that similar wind speeds at Myken and

Utsira Fyr.
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Figure 2. Generalized extreme value distribution modeling of wind speed of the three sites

Table 2. Generalized extreme value distribution modeling parameters

Generalized extreme value distribution Torsvag Fyr Myken Utsira Fyr
Distribution mean (m/s) 6.0339 8.3103 8.3696
Distribution Standard Deviation (m/s) 4.024 4.146 4.423
Shape parameter 0.0370 -0.0762 -0.0391
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Location parameter 4.2000 6.5186 6.4156
Scale parameter 2.9813 3.5360 3.6192

The K-S tests show that all three sites do not follow the same distribution, with all K-S tests p-values
significantly smaller than 0.05, as shown in Figure 1. Further, to perform the time series analysis of the
wind speed, it is necessary to test the series stationarity with the ADF test; the results are shown in Table
3. The p-values of the wind speed data for all three offshore wind sites are significantly less than 0.05,
indicating that all three-time series are stationary. No annual or quarterly division is required in the
analysis and forecasting.

Table 3. ADF test p-values and statistics

Wind sites Torsvag Fyr Myken Utsira Fyr
ADF p-values 0.0001 0.0001 0.0001
ADF Statistics -22.0376 -14.1959 -11.9411

Finally, the four machine learning algorithms mentioned above are used to predict three sites’ wind
speeds from 1 to 3 hours ahead, where the inputs are the wind speeds recorded in the previous six hours

from the current. Root Mean Square Error (RMSE) (RMSE = \/ % Y, () — ¥y(1))?) and correlation

coefficient between predicted speeds and the ground-truth speed values are employed to show the
forecasting performance, which is displayed in Table 4. As the forecast time lengthens, the wind speed
forecast performance decreases significantly. The correlation for T+1, 2, and 3 gives essential
information about autocorrelation. Overall, LSTM networks have the best prediction performance. This
may be because they greatly capture the time dependence in the wind data so that the algorithms can be
selected for further optimization in offshore wind prediction. Despite their complex network structure,
CNNs perform much worse in making univariate wind speed predictions than image recognition. It is
worth noting that the relatively simple linear regression performs almost as well as the neural network.
This may be due to the short forecasting time; wind speed is linear in the period. Notably, NN performs
nearly as well as LSTM in onshore wind prediction [23], but LSTM delivers better forecasts in offshore
cases. This may reflect the complexity of offshore wind data, which is more time dependent. Further,
the Torsvéag Fyr site in the North has worse forecasting performance than the two sites to its south, which
shows that it is more challenging to predict the highly volatile Arctic offshore winds.

Table 4. Wind speed forecasting of three sites on the Norway coast

RMSE Correlation coefficient

Torsvag Fyr | T+1 T+2 T+3 Torsvag Fyr | T+1 T+2 T+3

LR 1.8505 | 2.2193 | 2.4966 | LR 0.8812 | 0.8239 | 0.7719
NN 1.8460 | 2.2121 | 2.4915 | NN 0.8818 | 0.8251 | 0.7730
CNN 1.8462 | 2.2176 | 2.4962 | CNN 0.8817 | 0.8242 | 0.7720
LSTM 1.7805 | 2.1518 | 2.4097 | LSTM 0.9005 | 0.8367 | 0.7831
Myken T+1 T+2 T+3 Myken T+1 T+2 T+3

LR 1.5751 1.9930 | 2.3210 | LR 0.9224 | 0.8745 | 0.8242
NN 1.5703 | 1.9735 | 2.3022 | NN 0.9229 | 0.8771 | 0.8273
CNN 1.5774 | 19927 | 2.3186 | CNN 0.9222 | 0.8746 | 0.8246
LSTM 1.5537 | 1.9630 | 2.2578 | LSTM 0.9431 | 0.8917 | 0.8425
Utsira Fyr T+1 T+2 T+3 Utsira Fyr T+1 T+2 T+3

LR 1.3350 | 1.7384 | 2.1044 | LR 0.9542 | 0.9202 | 0.8832
NN 1.3313 | 1.7178 | 2.0637 | NN 0.9545 | 0.9222 | 0.8880
CNN 1.3367 | 1.7329 | 2.0923 | CNN 0.9541 | 0.9207 | 0.8847
LSTM 1.3219 | 1.6910 | 2.0397 | LSTM 0.9724 | 0.9375 | 0.8981




ASMA-2023 IOP Publishing
Journal of Physics: Conference Series 2638(2023) 012013  doi:10.1088/1742-6596/2638/1/012013

5. Conclusion

This paper discusses the Norwegian offshore wind resources and development and the data science
applied to wind energy. Statistical and machine learning analyses of wind speed data from three sites in
northern, central, and southern Norway are also presented as a case study. The case study shows the
potential of offshore wind in some Norwegian coastal areas and how machine learning methods can be
used in univariate forecasting of wind speeds. As per the study’s results, the following conclusions can
be drawn: 1. Norway has good offshore resources, but there are still difficulties in developing them due
to natural, technical, and economic reasons, where data science can contribute to tackling these
difficulties. 2. Offshore wind resources in different parts of Norway vary in their statistical
characteristics and forecasting complexity (the Arctic region is more difficult to predict, and there are
more abnormal events). Developing methodologies for coordinating these offshore wind analyses is the
next research priority.
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