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Abstract
In this paper, we derive the maximal subspace of natural numbers {nk : k ≥ 0} , such
that the restricted maximal operator, defined by supk∈N

∣
∣σnk F

∣
∣ on this subspace of

Fejér means of Walsh–Fourier series is bounded from the martingale Hardy space
H1/2 to the Lebesgue space L1/2. The sharpness of this result is also proved.
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1 Introduction

All symbols used in this introduction can be found in Sect. 2.
In the one-dimensional case, the weak (1,1)-type inequality for the maximal

operator σ ∗ of Fejér means σn with respect to the Walsh system, defined by

σ ∗ f := sup
n∈N

|σn f |

was investigated in Schipp [11] and Pál and Simon [7]. Fujii [1] and Simon [13]
proved that σ ∗ is bounded from H1 to L1. Weisz [19] generalized this result and
proved boundedness of σ ∗ from the martingale space Hp to the Lebesgue space L p

for p > 1/2. Simon [12] gave a counterexample, which shows that boundedness does
not hold for 0 < p < 1/2.A counterexample for p = 1/2 was given by Goginava [3].
Moreover, in [4], he proved that there exists a martingale F ∈ Hp (0 < p ≤ 1/2) ,

such that

sup
n∈N

‖σn F‖p = +∞.

Weisz [22] proved that the maximal operator σ ∗ of the Fejér means is bounded
from the Hardy space H1/2 to the space weak-L1/2.

To study convergence of subsequences of Fejér means and their restricted maximal
operators on the martingale Hardy spaces Hp(G) for 0 < p ≤ 1/2, the central role
is played by the fact that any natural number n ∈ N can be uniquely expression as
n = ∑∞

k=0 n j2 j , n j ∈ Z2 ( j ∈ N), where only a finite numbers of n j differ from
zero and their important characters [n] , |n| , ρ (n) and V (n) are defined by

[n] := min{ j ∈ N, n j �= 0}, |n| := max{ j ∈ N, n j �= 0}, ρ (n) = |n| − [n]

and

V (n) := n0 +
∞
∑

k=1

|nk − nk−1| , for all n ∈ N.

Weisz [21] (see also [20]) also proved that for any F ∈ Hp(G) (p > 0), themaximal
operator supn∈N |σ2n F | is bounded from the Hardy space Hp to the Lebesgue space
L p. Furthermore, in [8] was generalized this result and it proved that if 0 < p ≤ 1/2
and {nk : k ≥ 0} is a sequence of positive numbers, such that

sup
k∈N

ρ (nk) ≤ c < ∞, (1.1)

then the maximal operator σ̃ ∗,∇ , defined by

σ̃ ∗,∇F = sup
k∈N

∣
∣σnk F

∣
∣ ,
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is bounded from the Hardy space Hp to the Lebesgue space L p.Moreover, if 0 < p <

1/2 and {nk : k ≥ 0} is a sequence of positive numbers, such that supk∈N ρ (nk) = ∞,

then there exists a martingale F ∈ Hp such that

sup
k∈N

∥
∥σnk F

∥
∥
p = ∞.

From this fact, it follows that if 0 < p < 1/2, f ∈ Hp and {nk : k ≥ 0} is any sequence
of positive numbers, then σnk f are uniformly bounded from the Hardy space Hp to the
Lebesgue space L p if and only if the condition (1.1) is fulfilled. Moreover, condition
(1.1) is necessary and sufficient condition for the boundedness of subsequence σnk f
from the Hardy space Hp to the Hardy space Hp.

In [18], it was proved some results which in particular, implies that if f ∈ H1/2
and {nk : k ≥ 0} is any sequence of positive numbers, then σnk f are bounded from
the Hardy space H1/2 to the space H1/2 if and only if, for some c,

sup
k∈N

V (nk) < c < ∞.

In this paper, we complement the reported research above by investigating the limit
case p = 1/2. In particular, we derive the maximal subspace of natural numbers
{nk : k ≥ 0} , such that restricted maximal operator, defined by supk∈N

∣
∣σnk F

∣
∣ on this

subspace of Fejér means of Walsh–Fourier series is bounded from the martingale
Hardy space H1/2 to the Lebesgue space L1/2.

This paper is organized as follows: some definitions and notations are presented in
Sect. 2. The main result (Theorem 3.1) and some of its consequences can be found in
Sect. 3. For the proof of the main result, we need some auxiliary statements, some of
them are new and of independent interest. These results are presented in Sect. 4. The
detailed proof of Theorem 3.1 is given in Sect. 5.

2 Definitions and notations

Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Denote by Z2 the
discrete cyclic group of order 2, that is Z2 := {0, 1}, where the group operation is the
modulo 2 addition and every subset is open. The Haar measure on Z2 is given so that
the measure of a singleton is 1/2.

Define the groupG as the complete direct product of the group Z2,with the product
of the discrete topologies of Z2. The elements of G are represented by sequences
x := (x0, x1, . . . , x j , . . .), where xk = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G :

I0 (x) := G, In(x) := {y ∈ G : y0 = x0, . . . , yn−1 = xn−1} (n ∈ N).
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Denote In := In (0) , In := G \ In and en := (0, . . . , 0, xn = 1, 0, . . .) ∈ G, for
n ∈ N. Then, it is easy to prove that

IM =
M−1
⋃

i=0

Ii\Ii+1 =
(
M−2
⋃

k=0

M−1
⋃

l=k+1

Il+1 (ek + el)

)
⋃
(
M−1
⋃

k=0

IM (ek)

)

. (2.1)

If n ∈ N, then every n can be uniquely expressed as n = ∑∞
j=0 n j2 j , where

n j ∈ Z2 ( j ∈ N) and only a finite numbers of n j differ from zero.
Every n ∈ N can be also represented as

n =
r
∑

i=1

2ni , n1 > n2 > · · · nr ≥ 0.

For such a representation of n ∈ N, we denote numbers

n(i) = 2ni+1 + · · · + 2nr , i = 1, . . . , r .

Let 2s ≤ ns1 ≤ ns2 ≤ · · · ≤ nsr ≤ 2s+1, s ∈ N. For such ns j ,which can be written
as

ns j =
rs j
∑

i=1

t
s j
i∑

k=l
s j
i

2k,

where 0 ≤ l
s j
1 ≤ t

s j
1 ≤ l

s j
2 − 2 < l

s j
2 ≤ t

s j
2 ≤ · · · ≤ l

s j
r j − 2 < l

s j
rs j

≤ t
s j
rs j

, we define

As :=
r
⋃

j=1

{

l
s j
1 , t

s j
1 , l

s j
2 , t

s j
2 , . . . , l

s j
rs j

, t
s j
rs j

}

=
{

ls1, l
s
2, . . . , l

s
r1s

}⋃{

t s1 , t
s
2 , . . . , t

s
r2s

}

=
{

us1, u
s
2, . . . , u

s
r3s

}

, (2.2)

where us1 < us2 < · · · < us
r3s

. We note that t
s j
rs j

= s ∈ As, for j = 1, 2, . . . , r .

We denote the cardinality of the set As by |As |, that is

card(As) := |As |.

By this definition, we can conclude that |As | = r3s ≤ r1s + r2s .

It is evident that sups∈N |As | < ∞ if and only if the sets {ns1 , ns2 , . . . , nsr } are
uniformly finite for all s ∈ N+ and each ns j has bounded variation

V (ns j ) < c < ∞, for each j = 1, 2, . . . , r . (2.3)
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The norms (or quasi-norm) of the spaces L p(G) and L p,∞ (G) , (0 < p < ∞) are,
respectively, defined by

‖ f ‖p
p :=

∫

G
| f |p dμ and ‖ f ‖p

L p,∞(G) := sup
λ>0

λpμ ( f > λ) < +∞.

The k-th Rademacher function is defined by

rk (x) := (−1)xk (x ∈ G, k ∈ N) .

Now, define the Walsh system w := (wn : n ∈ N) on G as

wn(x) := ∞
�
k=0

rnkk (x) = r|n| (x) (−1)

|n|−1∑

k=0
nk xk

(n ∈ N) .

The Walsh system is orthonormal and complete in L2 (G) (see [10]).
If f ∈ L1 (G) , then we can define the Fourier coefficients, partial sums of Fourier

series, Fejér means, Dirichlet and Fejér kernels in the usual manner:

f̂ (n) :=
∫

G
f wndμ, (n ∈ N) ,

Sn f :=
n−1
∑

k=0

f̂ (k) wk, (n ∈ N+, S0 f := 0) ,

σn f := 1

n

n
∑

k=1

Sk f ,

Dn :=
n−1
∑

k=0

wk,

Kn := 1

n

n
∑

k=1

Dk, (n ∈ N+) .

Recall that (see [10])

D2n (x) =
{

2n if x ∈ In
0 if x /∈ In .

(2.4)

Let n =∑r
i=1 2

ni , n1 > n2 > · · · > nr ≥ 0. Then, (see [6, 10])

nKn =
r
∑

A=1

⎛

⎝

A−1
∏

j=1

w2n j

⎞

⎠

(

2nA K2nA + n(A)D2nA

)

. (2.5)
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The σ -algebra, generated by the intervals {In (x) : x ∈ G} will be denoted by ζn
(n ∈ N) . Denote by F = (Fn, n ∈ N) a martingale with respect to ζn (n ∈ N) (for
details see, e.g., [20]). The maximal function F∗ of a martingale F is defined by

F∗ := sup
n∈N

|Fn| .

In the case f ∈ L1 (G) , the maximal functions f ∗ are also given by

f ∗ (x) := sup
n∈N

(
1

μ (In (x))

∣
∣
∣
∣

∫

In(x)
f (u) dμ (u)

∣
∣
∣
∣

)

.

For 0 < p < ∞, the Hardy martingale spaces Hp (G) consist of all martingales,
for which

‖F‖Hp
:= ∥∥F∗∥∥

p < ∞.

A bounded measurable function a is a p-atom, if there exists an interval I , such
that

supp (a) ⊂ I ,
∫

I
adμ = 0, ‖a‖∞ ≤ μ (I )−1/p .

It is easy to check that for every martingale F = (Fn, n ∈ N) and every k ∈ N the
limit

F̂ (k) := lim
n→∞

∫

G
Fn (x) wk (x) dμ (x)

exists and it is called the k-th Walsh–Fourier coefficients of F .

The Walsh–Fourier coefficients of f ∈ L1 (G) are the same as those of the
martingale (S2n f , n ∈ N) obtained from f .

3 Themain result and its consequences

Our main result reads:

Theorem 3.1 (a) Let f ∈ H1/2 (G) and {nk : k ≥ 0} be a sequence of positive num-
bers and let

{

nsi : 1 ≤ i ≤ r
} ⊂ {nk : k ≥ 0} be numbers such that 2s ≤ ns1 ≤

ns2 ≤ · · · ≤ nsr ≤ 2s+1, s ∈ N. If the sets As, defined by (2.2), are uniformly
finite for all s ∈ N, that is the cardinality of the sets As are uniformly finite:

sups∈N|As | < c < ∞,

then the restricted maximal operator σ̃ ∗,∇ , defined by

σ̃ ∗,∇F = sup
k∈N

∣
∣σnk F

∣
∣ , (3.1)
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is bounded from the Hardy space H1/2 to the Lebesgue space L1/2.

(b) (Sharpness) Let

sups∈N|As | = ∞. (3.2)

Then, there exists a martingale f ∈ H1/2 (G) , such that the maximal operator,
defined by (3.1), is not bounded from the Hardy space H1/2 to the Lebesgue space
L1/2.

In particular, Theorem 3.1 implies the following optimal characterization:

Corollary 3.2 Let F ∈ H1/2 (G) and {nk : k ≥ 0} be a sequence of positive numbers.
Then, the restricted maximal operator σ̃ ∗,∇ , defined by (3.1), is bounded from the
Hardy space H1/2 to the Lebesgue space L1/2 if and only if any sequence of positive
numbers {nk : k ≥ 0} which satisfies nk ∈ [2s, 2s+1), is uniformly finite for each
s ∈ N+ and each {nk : k ≥ 0} has bounded variation, i.e.,

sup
k∈N

V (nk) < c < ∞.

In order to be able to compare with some other results in the literature (see
Remark 3.4), we also state the following:

Corollary 3.3 Let F ∈ H1/2 (G) . Then, the restricted maximal operators σ̃
∗,∇
i , i =

1, 2, 3, defined by

σ̃
∗,∇
1 F = sup

k∈N

∣
∣σ2k F

∣
∣ , (3.3)

σ̃
∗,∇
2 F = sup

k∈N

∣
∣σ2k+1F

∣
∣ , (3.4)

σ̃
∗,∇
3 F = sup

k∈N

∣
∣σ2k+2[k/2]F

∣
∣ , (3.5)

where [n] denotes the integer part of n, are all bounded from the Hardy space H1/2
to the Lebesgue space L1/2.

Remark 3.4 In [8], it was proved that if 0 < p < 1/2, then the restricted maximal
operators σ̃

∗,∇
2 and σ̃

∗,∇
3 , defined by (3.4) and (3.5), are not bounded from the Hardy

space Hp to the Lebesgue space weak − L p.

On the other hand, Weisz [20] (see also [8]) proved that if 0 < p ≤ 1/2, then the
restricted maximal operator σ̃

∗,∇
1 , defined by (3.3) is bounded from the Hardy space

Hp to the Lebesgue space L p.

4 Auxiliary lemmas and propositions

Lemma 4.1 (Weisz [21] (see also Simon [14])) A martingale F = (Fn, n ∈ N) is in
Hp (0 < p ≤ 1) if and only if there exists a sequence (ak, k ∈ N) of p-atoms and a
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sequence (μk, k ∈ N) of a real numbers, such that for every n ∈ N,

∞
∑

k=0

μk S2n ak = Fn,
∞
∑

k=0

|μk |p < ∞. (4.1)

Moreover, ‖F‖Hp ∼ inf
(∑∞

k=0 |μk |p
)1/p

, where the infimum is taken over all
decomposition of F of the form (4.1).

Lemma 4.2 (Weisz [20]) Suppose that an operator T is σ -linear and

∫

I

|Ta|p dμ ≤ cp < ∞, (0 < p ≤ 1)

for every p-atom a, where I denote the support of the atom. If T is bounded from L∞
to L∞, then

‖T F‖p ≤ cp ‖F‖Hp
.

Lemma 4.3 (See, e.g., [2]) Let t, n ∈ N. Then,

K2n (x) =
⎧

⎨

⎩

2t−1, if x ∈ In (et ) , n > t, x ∈ It\It+1,

(2n + 1) /2, if x ∈ In,
0, otherwise.

Lemma 4.4 (See, e.g., [5, 16]) Let n ≥ 2M and x ∈ I k,lM , k = 0, . . . , M − 1,
l = k + 1, . . . , M . Then,

∫

IM
|Kn (x + t)| dμ (t) ≤ cn2k+l−M .

Lemma 4.5 (See [17]) Let

n =
s
∑

i=1

ti∑

k=li

2k, where t1 ≥ l1 > l1 − 2 ≥ t2 ≥ l2 > l2 − 2 > · · · > ts ≥ ls ≥ 0.

Then, for any i = 1, 2, . . . , s,

n |Kn (x)| ≥ 22li−4, for x ∈ Eli := Ili+1
(

eli−1 + eli
)

,

where I1 (e−1 + e0) = I2 (e0 + e1) .

We also need the following new statement of independent interest:
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Proposition 4.6 Let

n =
s
∑

i=1

ti∑

k=li

2k, where t1 ≥ l1 > l1 − 2 ≥ t2 ≥ l2 > l2 − 2 > · · · > ts ≥ ls ≥ 0.

Then, for any i = 1, 2, . . . , s,

n |Kn (x)| ≥ 22ti−2, for x ∈ Eti := Iti+3
(

eti+1 + eti+2
)

.

Proof It is evident that we always have that ti + 2 ≤ li−1. If ti + 2 = li−1, then Eti =
Iti+3

(

eti+1 + eti+2
) = Ili−1+1

(

eli−1−1 + eli−1

) = Eli−1 and if we apply Lemma 4.5,
we find that

n |Kn (x)| ≥ 22li−1−4 = 22ti , for x ∈ Eli−1 = Eti .

Let ti + 2 < li−1. By combining (2.4) and Lemma 4.3, for any n ≥ ti + 3, we get
that

D2n (x) = K2n (x) = 0, for x ∈ Eti .

From (2.5), for x ∈ Eti , we can conclude that

nKn =
s
∑

r=1

tr∑

k=lr

⎛

⎝

s
∏

j=i+1

t j
∏

q=l j

w2q

ti∏

j=k+1

w2 j

⎞

⎠

⎛

⎝2k K2k +
⎛

⎝

s
∑

j=i+1

t j
∑

q=l j

2q +
k−1
∑

q=li

2q

⎞

⎠ D2k

⎞

⎠

=
s
∑

r=i

tr∑

k=lr

⎛

⎝

s
∏

j=i+1

t j
∏

q=l j

w2q

ti∏

j=k+1

w2 j

⎞

⎠

⎛

⎝2k K2k +
⎛

⎝

s
∑

j=i+1

t j
∑

q=l j

2q +
k−1
∑

q=li

2q

⎞

⎠ D2k

⎞

⎠ .

(4.2)

Suppose that li < ti . Since

s
∑

j=i+1

t j
∑

q=l j

2q +
ti−1
∑

q=li

2q ≥ 2ti−1

for x ∈ Eti , we find that

n |Kn| ≥
∣
∣
∣2ti K2ti + 2ti−1D2ti

∣
∣
∣−

ti−1
∑

k=0

∣
∣
∣2k K2k

∣
∣
∣−

ti−1
∑

k=0

∣
∣
∣2k D2k

∣
∣
∣

:= I1 − I2 − I3. (4.3)
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Moreover, by combining (2.4) and Lemma 4.3, we get that

I1 = 2ti K2ti (x) + 2ti−1D2ti = 22ti

2
+ 2ti−1 + 22ti

2
= 22ti + 2ti−1. (4.4)

For I2, we have that

I2 ≤
ti−1
∑

k=0

2k
(

2k + 1
)

2
= 1

2

22ti − 1

4 − 1
+ 1

2

2ti − 1

2 − 1
≤ 22ti

6
+ 2ti−1. (4.5)

Moreover, I3 can be estimated as follows:

I3 ≤
li−1
∑

k=0

4k = 22ti

3
. (4.6)

By combining (4.4)–(4.6) and putting them into (4.3), we obtain that

n |Kn (x)| ≥ I1 − I2 − I3 ≥ 22li

2
. (4.7)

If ti = li , we get that ti+1 ≤ li − 2 = ti − 2. Hence, using (4.2), we find that

n |Kn| ≥ ∣∣2ti K2ti
∣
∣−

ti−2
∑

k=0

∣
∣
∣2k K2k

∣
∣
∣−

ti−2
∑

k=0

∣
∣
∣2k D2k

∣
∣
∣ := I1 − I2 − I3. (4.8)

By simple calculations, we get that

I1 ≥ 2ti K2ti (x) = 22ti

2
+ 2ti

2
, (4.9)

I2 ≤
ti−2
∑

k=0

2k
(

2k + 1
)

2
≤ 1

2

22ti−2 − 1

4 − 1
+ 1

2

2ti−1 − 1

2 − 1
≤ 22ti

24
+ 2ti−2 (4.10)

and

I3 ≤
li−2
∑

k=0

4k = 22ti

12
. (4.11)

We insert (4.9)–(4.11) into (4.8) and find that

n |Kn (x)| ≥ I1 − I2 − I3 ≥ 22li

4
. (4.12)

The proof is complete by just combining the estimates (4.7) and (4.12). ��
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Corollary 4.7 Let

n =
s
∑

i=1

ti∑

k=li

2k, where t1 ≥ l1 > l1 − 2 ≥ t2 ≥ l2 > l2 − 2 > · · · > ts ≥ ls ≥ 0.

Then, for any i = 1, 2, . . . , s,

n |Kn (x)| ≥ 22ti−5, for x ∈ Eti := Iti+1
(

eti+1 + eti+2
)

.

and

n |Kn (x)| ≥ 22li−5, for x ∈ Eli := Ili+1
(

eli−1 + eli
)

,

where I1 (e−1 + e0) = I2 (e0 + e1) .

Our second auxiliary result of independent interest is the following:

Proposition 4.8 Let

n =
s
∑

i=1

ti∑

k=li

2k, where t1 ≥ l1 > l1 − 2 ≥ t2 ≥ l2 > l2 − 2 > · · · > ts ≥ ls ≥ 0.

Then,

|nKn| ≤ c
s
∑

A=1

⎛

⎝2lA K2lA + 2tA K2tA + 2lA
tA∑

k=lA

D2k

⎞

⎠ .

Proof A proof of the corresponding result in [15] was also here so we omit the details.
��

5 Proof of Theorem 3.1

Proof Since σn is bounded from L∞ to L∞, by Lemma 4.2, the proof of Theorem 3.1
will be complete, if we prove that

∫

IM

(

sup
sk∈N

∣
∣
∣σnsk a (x)

∣
∣
∣

)1/2

dμ (x) ≤ c < ∞, (5.1)

for every 1/2-atom a. Wemay assume that a is an arbitrary 1/2-atom, with support I ,
μ (I ) = 2−M and I = IM . It is easy to see that σn (a) = 0, when n < 2M . Therefore,
we can suppose that nsk ≥ 2M .
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Let x ∈ IM and 2s ≤ nsk < 2s+1 for some nsk ≥ 2M . Since ‖a‖∞ ≤ 22M , we
obtain that

∣
∣
∣σnsk a (x)

∣
∣
∣ ≤

∫

IM
|a (t)|

∣
∣
∣Knsk

(x + t)
∣
∣
∣ dμ (t)

≤ ‖a‖∞
∫

IM

∣
∣
∣Knsk

(x + t)
∣
∣
∣ dμ (t)

≤ 22M
∫

IM

∣
∣
∣Knsk

(x + t)
∣
∣
∣ dμ (t) . (5.2)

Using Proposition 4.8 and (2.2), we get that

∣
∣
∣Knsk

∣
∣
∣ ≤ c

nsk

s
∑

A=1

⎛

⎜
⎝2l

sk
A K

2l
sk
A

+ 2t
sk
A K

2t
sk
A

+ 2l
sk
A

∞
∑

k=l
sk
A

D2k

⎞

⎟
⎠

≤ c

2s

s
∑

A=1

⎛

⎝2lA K2lA + 2tA K2tA + 2lA
∞
∑

k=lA

D2k

⎞

⎠

and

∣
∣
∣σnsk a (x)

∣
∣
∣ ≤ 2M

2s

⎛

⎝2M
r1s∑

A=1

∫

IM
2l

s
A K

2l
s
A

(x + t) dμ (t)

⎞

⎠

+2M

2s

⎛

⎝2M
r2s∑

A=1

∫

IM
2t

s
A K

2t
s
A

(x + t) dμ (t)

⎞

⎠

+2M

2s

⎛

⎝2M
r1s∑

A=1

∫

IM
2l

s
A

∞
∑

k=lsA

D2k (x + t) dμ (t)

⎞

⎠ .

If we define

II1αs
A
(x) := 2M

∫

IM
2αs

A K
2αsA

(x + t) dμ (t) , α = l, or α = t

II2lsA
(x) := 2M

∫

IM
2l

s
A

∞
∑

k=lsA

D2k (x + t) dμ (t) ,

then, from (5.2), we can conclude that

∣
∣
∣σnsk a (x)

∣
∣
∣ ≤ 2M

2s

⎛

⎝

r1s∑

A=1

II1lsA
(x) +

r2s∑

A=1

II1tsA
(x) +

r1s∑

A=1

II2lsA
(x)

⎞

⎠
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and

sup
2s≤nsk<2s+1

∣
∣
∣σnsk a (x)

∣
∣
∣ ≤ 2M

2s

⎛

⎝

r1s∑

A=1

II1lsA
(x) +

r2s∑

A=1

II1tsA
(x) +

r1s∑

A=1

II2lsA
(x)

⎞

⎠ .

Hence,

∫

IM

⎛

⎝ sup
2s≤nsk<2s+1

∣
∣
∣σnsk a (x)

∣
∣
∣

⎞

⎠

1/2

dμ

≤ 2M/2

2s/2

⎛

⎝

r1s∑

A=1

∫

IM

∣
∣
∣II1lsA

(x)
∣
∣
∣

1/2
dμ +

r2s∑

A=1

∫

IM

∣
∣
∣II1t sA

∣
∣
∣

1/2
dμ

+
r1s∑

A=1

∫

IM

∣
∣
∣II2lsA

(x)
∣
∣
∣

1/2
dμ

⎞

⎠ . (5.3)

Since sups∈N r1s < r < ∞, sups∈N r2s < r < ∞, we obtain that (5.1) holds so
that Theorem 3.1(a) is proved if we can prove that

∫

IM

∣
∣
∣II2lsA

(x)
∣
∣
∣

1/2
dμ ≤ c < ∞, A = 1, . . . , r1s (5.4)

and

∫

IM

∣
∣
∣II1αs

A
(x)
∣
∣
∣

1/2
dμ ≤ c < ∞, (5.5)

for all αs
A = lsA, A = 1, . . . , r1s and αs

A = t sA, A = 1, . . . , r2s . Indeed, if (5.4) and
(5.5) hold, from (5.3), we get that

∫

IM

⎛

⎝ sup
nsk≥2M

∣
∣
∣σnsk a (x)

∣
∣
∣

⎞

⎠

1/2

dμ

≤
∞
∑

s=M

∫

IM

⎛

⎝ sup
2s≤nsk<2s+1

∣
∣
∣σnsk a (x)

∣
∣
∣

⎞

⎠

1/2

dμ ≤
∞
∑

s=M

c2M/2

2s/2
< C < ∞.

It remains to prove (5.4) and (5.5). Let

t ∈ IM and x ∈ Il+1 (ek + el) .
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If 0 ≤ k < l < αs
A ≤ M or 0 ≤ k < l < M < αs

A, then x + t ∈ Il+1 (ek + el) and
if we apply Lemma 4.3, we obtain that

K
2αsA

(x + t) = 0 and II1αs
A
(x) = 0. (5.6)

Let 0 ≤ k < αs
A ≤ l < M . Then, x + t ∈ Il+1 (ek + el) and if we use Lemma 4.3,

we get that

2αs
A K

2αsA
(x + t) ≤ 2αs

A+k

so that

II1αs
A
(x) ≤ 2αs

A+k . (5.7)

Analogously to (5.7), we can prove that if 0 ≤ αs
A ≤ k < l < M, then

2αs
A K

2αsA
(x + t) ≤ 22α

s
A , t ∈ IM , x ∈ Il+1 (ek + el)

so that

II1αs
A
(x) ≤ 22α

s
A , t ∈ IM , x ∈ Il+1 (ek + el) . (5.8)

Let

t ∈ IM and x ∈ IM (ek).

Let 0 ≤ k < αs
A ≤ M or 0 ≤ k < M ≤ αs

A. Since x + t ∈ x ∈ IM (ek) and if we
apply Lemma 4.3, we obtain that

2αs
A K

2αsA
(x + t) ≤ 2αs

A+k

and

II1αs
A
(x) ≤ 2αs

A+k . (5.9)

Let 0 ≤ αs
A ≤ k < M . Since x + t ∈ x ∈ IM (ek) and if we apply Lemma 4.3, then

we find that

2αs
A K

2αsA
(x + t) ≤ 22α

s
A

and

II1αs
A
(x) ≤ 22α

s
A . (5.10)
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Let 0 ≤ αs
A < M . By combining (2.1) with (5.6)–(5.10) for any A = 1, . . . , s we

have that
∫

IM

∣
∣
∣II1αs

A
(x)
∣
∣
∣

1/2
dμ

=
M−2
∑

k=0

M−1
∑

l=k+1

∫

Il+1(ek+el )

∣
∣
∣II1αs

A
(x)
∣
∣
∣

1/2
dμ +

M−1
∑

k=0

∫

IM (ek )

∣
∣
∣II1αs

A
(x)
∣
∣
∣

1/2
dμ

≤ c

αs
A−1
∑

k=0

M−1
∑

l=αs
A

∫

Il+1(ek+el )
2(α

s
A+k)/2dμ + c

M−2
∑

k=αs
A

M−1
∑

l=k+1

∫

Il+1(ek+el )
2αs

Adμ

+c

αs
A−1
∑

k=0

∫

IM (ek)
2(α

s
A+k)/2dμ + c

M−1
∑

k=αs
A

∫

IM (ek )
2αs

Adμ

≤ c

αs
A−1
∑

k=0

M−1
∑

l=αs
A+1

2(α
s
A+k)/2

2l
+ c

M−2
∑

k=αs
A

M−1
∑

l=k+1

2αs
A

2l

+c

αs
A−1
∑

k=0

2(α
s
A+k)/2

2M
+ c

M−1
∑

k=αs
A

2αs
A

2M
≤ C < ∞.

Analogously we can prove that (5.5) holds also for the case αs
A ≥ M . Hence, (5.5)

holds and it remains to prove (5.4).
Let t ∈ IM and x ∈ Ii\Ii+1. If i ≤ lsA − 1, since x + t ∈ Ii\Ii+1, using (2.4), we

have that

II2lsA
(x) = 0. (5.11)

If lsA ≤ i < M, then using (2.4), we obtain that

II2lsA
(x) ≤ 2M

∫

IM
2l

s
A

i
∑

k=lsA

D2k (x + t) dμ (t) ≤ c2l
s
A+i . (5.12)

Let 0 ≤ lsA < M . By combining (2.1), (5.11) and (5.12), we get that

∫

IM

∣
∣
∣II2lsA

(x)
∣
∣
∣

1/2
dμ

=
⎛

⎝

lsA−1
∑

i=0

+
M−1
∑

i=lsA+1

⎞

⎠

∫

Ii\Ii+1

∣
∣
∣II2lsA

(x)
∣
∣
∣

1/2
dμ

≤ c
M−1
∑

i=lsA

∫

Ii\Ii+1

2(l
s
A+i)/2dμ (x) ≤ c

M−1
∑

i=lsA

2(l
s
A+i)/2 1

2i
≤ C < ∞. (5.13)
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If M ≤ lsA, then i < M ≤ lsA and apply (5.11), we get that

∫

IM

∣
∣
∣II2lsA

(x)
∣
∣
∣

1/2
dμ = 0, (5.14)

and also (5.4) is proved by just combining (5.13) and (5.14) so part (a) is complete
and we turn to the proof of (b).

Under condition (3.2), there exists an increasing sequence {αk : k ≥ 0} ⊂
{nk : k ≥ 0} of positive integers, such that

∞
∑

k=1

1/|A2|αk | ≤ c < ∞. (5.15)

Let

FA :=
∑

{k;|αk |<A}
λkak,

where

λk := 1
∣
∣A|αk |

∣
∣

and ak := 2|αk | (D2|αk |+1 − D2|αk |
)

.

Since supp(ak) = I|αk |, ‖ak‖∞ ≤ 22|αk | = μ(supp ak)−2 and

S2Aak =
{

ak |αk | < A,

0 |αk | ≥ A,

if we apply Lemma 4.1 and (5.15), we can conclude that F = (F1, F2, . . .) ∈ H1/2.

It is easy to prove that

F̂( j) =
⎧

⎨

⎩

2|αk |/
∣
∣A|αk |

∣
∣ , j ∈ {2|αk |, . . . , 2|αk |+1 − 1

}

, k = 0, 1, . . .

0, j /∈
∞⋃
k=0

{

2|αk | , . . . , 2|αk |+1 − 1
}

.
(5.16)

Let 2|αk | < j < αk . Using (5.16), we get that

S j F = S2|αk |F +
j−1
∑

v=2
|αk |

F̂(v)wv = S2|αk |F +
(

Dj − D2|αk |
)

2|αk |
∣
∣A|αk |

∣
∣

. (5.17)

Let 2|αk | ≤ αsn ≤ 2|αk |+1. Then, using (5.17), we find that
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σαsn
F = 1

αsn

2|αk |
∑

j=1

S j F + 1

αsn

αsn∑

j=2|αk |+1

S j F

= σ2|αk |F
αsn

+
(

αk − 2|αk |) S2|αk |F
αsn

+ 2|αk |
∣
∣A|αk |

∣
∣αsn

αsn∑

j=2|αk |+1

(

Dj − D2|αk |
)

:= III1 + III2 + III3. (5.18)

Since

Dj+2m = D2m + w2m D j , when j < 2m,

we obtain that

|III3| = 2|αk |
∣
∣A|αk |

∣
∣αsn

∣
∣
∣
∣
∣
∣

αsn−2|αk |
∑

j=1

(

Dj+2|αk | − D2|αk |
)

∣
∣
∣
∣
∣
∣

= 2|αk |
∣
∣A|αk |

∣
∣αsn

∣
∣
∣
∣
∣
∣

αsn−2|αk |
∑

j=1

Dj

∣
∣
∣
∣
∣
∣

= 2|αk |
∣
∣A|αk |

∣
∣αsn

(

αsn − 2|αk |
) ∣
∣
∣Kαsn−2|αk |

∣
∣
∣

≥ 1

2
∣
∣A|αk |

∣
∣

(

αsn − 2|αk |
) ∣
∣
∣Kαsn−2|αk |

∣
∣
∣ . (5.19)

By combining the well-known estimates (see [9])

∥
∥S2k F

∥
∥
H1/2

≤ c1 ‖F‖H1/2 and
∥
∥σ2k F

∥
∥
H1/2

≤ c2 ‖F‖H1/2 , k ∈ N,

we obtain that

‖III1‖1/2 ≤ C and ‖III2‖1/2 ≤ C .

Let 2|αk | ≤ αs1 ≤ αs2 ≤ · · · ≤ αsr ≤ 2|αk |+1 be natural numbers which generates
the set

A|αk | =
{

l |αk |1 , l |αk |2 , . . . , l |αk |
r1|αk |

}
⋃
{

t |αk |1 , t |αk |2 , . . . , t |αk |
r2|αk |

}

and choose number αsn =∑rn
i=1

∑tni
k=lni

2k, where

t |αk |1 ≥ l |αk |1 > l |αk |1 − 2 ≥ t |αk |2 ≥ l |αk |2 > l |αk |2 − 2 ≥ · · · ≥ t |αk ||αk | ≥ l |αk ||αk | ≥ 0,
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for some 1 ≤ n ≤ r , such that l |αk |u = li , for some 1 ≤ u ≤ r1|αk |, 1 ≤ i ≤ r1|αk |.
Since μ

{

Eli

} ≥ 1/2li+1, using Corollary 4.7, we get that

∫

Eli

∣
∣
∣̃σ

∗,∇F
∣
∣
∣

1/2
dμ ≥

∫

Eli

∣
∣σαsn

F(x)
∣
∣1/2 dμ

≥ 2(2li−6)/2

√
2
(∣
∣A|αk |

∣
∣
)1/2

1

2li+1 ≥ 1

25
(∣
∣A|αk |

∣
∣
)1/2 . (5.20)

On the other hand, we can also choose number αsn , for some 1 ≤ n ≤ r , such
that t |αk |u = ti , for some 1 ≤ u ≤ r2|αk |, 1 ≤ i ≤ r2|αk |. According to the fact that

μ
{

Eti

} ≥ 1/2ti+3, using again Corollary 4.7 for some αk and 1 ≤ i ≤ r2s , we also
get that

∫

Eti

∣
∣
∣̃σ

∗,∇F
∣
∣
∣

1/2
dμ ≥

∫

Eti

∣
∣σαsn

F(x)
∣
∣1/2 dμ

≥ 1√
2
(∣
∣A|αk |

∣
∣
)1/2 2

(2ti−6)/2 1

2ti+3

≥ 1

27
(∣
∣A|αk |

∣
∣
)1/2 . (5.21)

By combining (5.18)–(5.21) with Proposition 4.6 for sufficiently big αk , we get that

∫

G

∣
∣
∣̃σ

∗,∇F
∣
∣
∣

1/2
dμ

≥ ‖III3‖1/21/2 − ‖III2‖1/21/2 − ‖III1‖1/21/2

≥
r1|αk |−1
∑

i=1

∫

Eli

∣
∣
∣̃σ

∗,∇F
∣
∣
∣

1/2
dμ +

r2|αk |−1
∑

i=1

∫

Eti

∣
∣
∣̃σ

∗,∇F
∣
∣
∣

1/2
dμ − 2C

≥ 1

27
(∣
∣A|αk |

∣
∣
)1/2 (r1|αk | + r2|αk |) − 2C ≥

(∣
∣A|αk |

∣
∣
)1/2

28
→ ∞, as k → ∞,

so also part (b) is proved and the proof is complete. ��
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