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SOME NEW MULTIDIMENSIONAL COCHRAN–LEE

AND HARDY TYPE INEQUALITIES

MARKOS FISSEHA YIMER, LARS ERIK PERSSON ∗ AND TSEGAYE GEDIF AYELE

(Communicated by S. Varošanec)

Abstract. A multidimensional Cochran-Lee operator is introduced and investigated in the frame
of Hardy-type inequalities with parameters 0 < p � q < ∞ . Moreover, for the case p = q
and power weights even the sharp constant is derived, thus generalizing the original Cochran-
Lee inequality to a multidimensional setting. As applications both several known but also new
inequalities are pointed out.

1. Introduction

In 1928, G. H. Hardy proved the following first weighted form of his famous
inequality from 1925 (the case α = 0, see [4]):

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

xα dx �
(

p
p−1−α

)p ∫ ∞

0
f p(x)xα dx, (1)

whenever p � 1 and α < p− 1. He also proved that the constant

(
p

p−1−α

)p

is

sharp (see [5]). After this, a lot of generalizations and complementary results have
been published see e.g. [13], [15], [18] and the references therein. For some early
contributions see also the classical book [6]. Recently, the discrete version of (1) with
α = 0 was discussed in [3]. Next we note that by replacing f (x) with ( f (x))1/p and
letting p → ∞ in (1), we obtain the following Pólya-Knopp’s weighted inequality

∫ ∞

0
exp

(
1
x

∫ x

0
log f (t)dt

)
xα dx � e(1+α)

∫ ∞

0
f (x)xα dx, (2)

for α > −1 and f is a positive and measurable function on (0,∞) . Moreover, the con-
stant e(1+α) is sharp. Concerning the name Pólya-Knopp’s inequality see our Remark
3.
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For the purpose of this paper we just mention the following generalization of (2)
by J. A. Cochran and C. S. Lee (see [2]):

∫ ∞

0
xa exp

[
βx−β

∫ x

0
tβ−1 log f (t)dt

]
dx � e(a+1)/β

∫ ∞

0
xa f (x)dx, (3)

where β > 0, a ∈ R and the constant e(a+1)/β is sharp. This means that the geometric
mean operator G , defined by

(Gf ) (x) := exp

(
1
x

∫ x

0
log f (t)dt

)

is replaced by the more general weighted geometric mean operator Gβ , defined by

(
Gβ f

)
(x) := exp

(
βx−β

∫ x

0
tβ−1 log f (t)dt

)

for any β > 0. Later on a number of results are proved concerning more general
weighted versions of (2):

(∫ ∞

0

[
exp

(
1
x

∫ x

0
log f (t)dt

)]q

u(x)dx

) 1
q

� C

(∫ ∞

0
f p(x)v(x)dx

) 1
p

for various parameters p and q , weights u(x),v(x) and some constant C > 0 (by a
weight we as usual mean a measurable and nonnegative function). See e.g. [1], [9],
[10], [11], [14] and the references therein.

Moreover, some results for the corresponding two-dimensional cases are also known,
see e.g. [7], [8], [19], [20] and the references therein. In particular, the following result
in [19] (see also [20]) is of special interest for this paper since also good estimates are
given of the sharp constant C in the inequality.

THEOREM 1. (See [19, Theorem 4.1]) Let 0 < p � q < ∞ , and let u,v and f be
positive functions on R

2
+ . If 0 < b1,b2 � ∞ , then

(∫ b1

0

∫ b2

0

[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
ln f (y1,y2)dy1dy2

)]q

u(x1,x2)dx1dx2

) 1
q

� C

(∫ b1

0

∫ b2

0
f p(x1,x2)v(x1,x2)dx1dx2

) 1
p

(4)

if and only if

DW (s1,s2, p,q) := sup
y1∈(0,b1)
y2∈(0,b2)

y
s1−1

p
1 y

s2−1
p

2

(∫ b1

y1

∫ b2

y2

x
− s1q

p
1 x

− s2q
p

2 w(x1,x2)dx1dx2

) 1
q

< ∞,

(5)
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where s1,s2 > 1 and

w(x1,x2) =
[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
lnv−1(t1,t2)dt1dt2

)] q
p

u(x1,x2),

and the best possible constant C in (4) can be estimated in the following way:

sup
s1,s2>1

(
es1(s1 −1)

es1(s1 −1)+1

) 1
p
(

es2(s2 −1)
es2(s2 −1)+1

) 1
p

DW (s1,s2, p,q)

� C � inf
s1,s2>1

e
s1+s2−2

p DW (s1,s2, p,q).

(6)

Concerning the general n -dimensional case (n ∈ Z+ ) the only published results
so far seems to be those in the recent paper by M. F. Yimer (see [21]).

In Section 2 of this paper we prove a generalization of Theorem 1 (see Theorem
2) general n -dimensional case (n ∈ Z+ ) but we do it in a more general frame where
the standard n-dimensional geometric operator is replaced by a more general geometric
mean operator Gβ (see (7)) so we can cover also the Cochran-Lee situation.

By using this result for the power weighted case (and p = q ) we prove in Section 3
a general new n -dimensional Cochran-Lee inequality with sharp constant (see Theorem
4). This result generalizes several results in the literature including one in [21].

Finally, in Section 4 we give some concluding remarks and applications, includ-
ing both well-known and new Hardy-type inequalities. In particular, we point out that
Theorem 2 and its proof can be used to formulate the first example where a multidi-
mensional Hardy-type inequality can be characterized not only by one condition but by
infinite many (equivalent) conditions, even by a scale of condition (see Theorem 5). For
the one-dimensional case this fairly new idea in the theory of Hardy-type inequalities
is described and applied in [13, Section 7.3].

2. A new multidimensional Hardy-type inequality of Cochran-Lee type

First we introduce the following multidimensional geometric mean operator Gβ :

(
Gβββββ f

)
(x) := exp

(
n

∏
i=1

βix
−βi
i

∫ x1

0
· · ·

∫ xn

0

n

∏
i=1

tβi−1
i ln f (t)dt

)
, (7)

for any nonnegative and measurable function f (t) on R
n
+ := (0,∞)n , where βi > 0

(i = 1, . . . ,n) , dt := dt1 · · ·dtn and t := (t1, . . . ,tn) .
We investigate the multidimensional weighted geometric mean inequality

(∫ b1

0
· · ·

∫ bn

0

[(
Gβββββ f

)
(x)

]q
u(x)dx

) 1
q

� C

(∫ b1

0
· · ·

∫ bn

0
f p(x)v(x)dx

) 1
p

, (8)

where u and v are weight functions, 0 < p � q < ∞ , 0 < bi � ∞ , βi > 0 (i = 1, . . . ,n) ,
and C is a positive constant independent of f .
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Here, and in the sequel we use the following notations in the respective variables
and parameters. For n � 2,

xt = (x1t1, . . . ,xntn), 1/t = (1/t1, . . . ,1/tn), x
1
βββββ = (x

1
β1
1 , . . . ,x

1
βn
n ),

Jn = {1, . . . ,n}, N0 = N∪{0}, y � x ⇔ yi � xi (i = 1, . . . ,n),

and

∫ bβββββ

yηηηηη
=

∫ b
β1
1

y
η1
1

· · ·
∫ bβn

n

yηn
n

,

∫
R

n
+

=
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n times

,

∫ x

0
=

∫ x1

0
· · ·

∫ xn

0
,

∫ 1

0
=

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n times

,

where 0 � yi < bi � ∞ (i = 1, . . . ,n) .

CONVENTION. Throughout this paper we assume that f is a positive and measur-
able function defined on R

n
+ and b = (b1, . . . ,bn) , n ∈ Z+ , 0 < bi � ∞ , i = 1, . . . ,n .

Our main theorem in this Section reads:

THEOREM 2. Let n ∈ Z+ , 0 < p � q < ∞ , βi > 0 (i = 1, . . . ,n) , and let u,v and
f be positive and measurable functions on R

n
+ . Then, the inequality (8) holds for some

finite constant C if and only if for any αi > 0 (i = 1, . . . ,n) ,

Aβββββ (ααααα) := sup
ti∈(0,bi)

i∈Jn

n

∏
i=1

t
αi+βi−1

p
i

(∫ b

t

n

∏
i=1

x
−(αi+βi)

q
p

i w(x)dx

) 1
q

< ∞, (9)

where

w(x) = u(x)
[
Gβββββ v−1(x)

] q
p . (10)

Moreover, if C is the best possible constant in (8), then

sup
αi>0
i∈Jn

n

∏
i=1

⎛
⎝ (βi + αi−1)exp

(
1+ αi

βi

)
1+(βi + αi−1)exp

(
1+ αi

βi

)
⎞
⎠

1
p

Aβββββ (ααααα) � C � inf
αi>0
i∈Jn

n

∏
i=1

(
βi exp

αi

βi

) 1
p

Aβββββ (ααααα).

(11)

Proof. Sufficiency. Let g(x) = f p(x)v(x) . Then the inequality (8) is equivalent to
the inequality

(∫ b

0

[(
Gβββββ g

)
(x)

] q
p w(x)dx

) 1
q

� C

(∫ b

0
g(x)dx

) 1
p

, (12)

where w(x) is defined by (10).
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Let ti = xiyi (i = 1, . . . ,n) . Then the inequality (12) becomes⎛
⎝∫ b

0

[
exp

(
n

∏
i=1

βi

∫ 1

0

n

∏
i=1

yβi−1
i lng(xy)dy

)] q
p

w(x)dx

⎞
⎠

1
q

� C

(∫ b

0
g(x)dx

) 1
p

.

(13)

For αi > 0 (i = 1, . . . ,n) , we trivially have that

exp

(
n

∑
i=1

αi

βi

)
exp

(
n

∏
i=1

βi

∫ 1

0

n

∏
i=1

yβi−1
i log

n

∏
i=1

yαi
i dy

)
= 1. (14)

By applying the identity (14) and then using Jensen’s inequality, we find that the left
hand side of (13) can be written and estimated as follows:

exp

(
n

∑
i=1

αi

pβi

)⎛
⎝∫ b

0

[
exp

(
n

∏
i=1

βi

∫ 1

0

n

∏
i=1

yβi−1
i logg(xy)

n

∏
i=1

yαi
i dy

)] q
p

w(x)dx

⎞
⎠

1
q

�
(

n

∏
i=1

βi exp
αi

βi

) 1
p
⎛
⎝∫ b

0

(∫ 1

0

n

∏
i=1

yβi+αi−1
i g(xy)dy

) q
p

w(x)dx

⎞
⎠

1
q

(15)

=

(
n

∏
i=1

βi exp
αi

βi

) 1
p
⎛
⎝∫ b

0

(∫ x

0
g(t)

n

∏
i=1

tβi+αi−1
i dt

) q
p n

∏
i=1

x
−(βi+αi)

q
p

i w(x)dx

⎞
⎠

1
q

:= I.

Therefore, by using Minkowski’s integral inequality when p < q or Fubini’s theorem
when p = q (c.f. [19, Remark 5.2]), we have that

I �
(

n

∏
i=1

βi exp
αi

βi

) 1
p

Aβββββ (ααααα)
(∫ b

0
g(t)dt

) 1
p

, (16)

where Aβ (α) is defined by (9)–(10).
By combining (15)–(16) we find that (13) and, thus, (12) holds. Moreover, since

(8) is equivalent to (12), we conclude that (8) holds and that the best constant C in (8)
satisfies

C � inf
αi>0
i∈Jn

n

∏
i=1

(
βi exp

αi

βi

) 1
p

Aβββββ (ααααα). (17)

Necessity. Assume that (8), or equivalently (13), holds. In order to prove that (13)
implies (9)–(10), we define the test function g by

g(x) :=
n

∏
i=1

(
t−1
i χ[0,ti](xi)+

tβi+αi−1
i

x(βi+αi)
i

exp

(
−βi + αi

βi

)
χ(ti,bi)(xi)

)
,
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for fixed ti , 0 < ti < bi (i = 1, . . . ,n) . Then∫ b

0
g(x)dx =

∫ b

0

n

∏
i=1

(
t−1
i χ[0,ti](xi)+

tβi+αi−1
i

x(βi+αi)
i

exp

(
−βi + αi

βi

)
χ(ti,bi)(xi)

)
dx

=
n

∏
i=1

(∫ ti

0
t−1
i dxi + exp

(
−βi + αi

βi

)
tβi+αi−1
i

∫ bi

ti
x−(βi+αi)
i dxi

)

=
n

∏
i=1

(
1+

1
βi + αi −1

exp

(
−βi + αi

βi

)(
1−

(
ti
bi

)βi+αi−1
))

�
n

∏
i=1

⎛
⎝1+(βi + αi−1)exp

(
βi+αi

βi

)
(βi + αi−1)exp

(
βi+αi

βi

)
⎞
⎠ .

This implies that

(∫ b

0
g(x)dx

) 1
p

�
n

∏
i=1

⎛
⎝1+(βi + αi −1)exp

(
βi+αi

βi

)
(βi + αi−1)exp

(
βi+αi

βi

)
⎞
⎠

1
p

. (18)

Trivially, for 0 � t < b , we have that(∫ b

t

[(
Gβββββ g

)
(x)

] q
p w(x)dx

) 1
q

�
(∫ b

0

[(
Gβββββ g

)
(x)

] q
p w(x)dx

) 1
q

. (19)

Moreover, for t � x < b , we find that∫ x

0

n

∏
j=1

y
β j−1
j lng(y)dy

=
n

∑
i=1

∫ x

0

n

∏
j=1

y
β j−1
j ln

(
t−1
i χ[0,ti](yi)+

tβi+αi−1
i

y(βi+αi)
i

exp

(
−βi + αi

βi

)
χ(ti,bi)(yi)

)
dy

=
n

∑
i=1

n

∏
j=1
j �=i

x
β j
j

β j

∫ xi

0
yβi−1
i ln

(
t−1
i χ[0,ti](yi)+

tβi+αi−1
i

y(βi+αi)
i

exp

(
−βi + αi

βi

)
χ(ti,bi)(yi)

)
dyi

=
n

∑
i=1

n

∏
j=1
j �=i

x
β j
j

β j

(
xβi
i

βi
ln
(
tβi+αi−1
i x−(βi+αi)

i

))

=

⎛
⎝ n

∏
j=1

x
β j
j

β j

⎞
⎠ n

∑
i=1

ln
(
tβi+αi−1
i x−(βi+αi)

i

)
,

and, hence,(∫ b

t

[(
Gβββββ g

)
(x)

] q
p w(x)dx

) 1
q

=
n

∏
i=1

t
βi+αi−1

p
i

(∫ b

t

n

∏
i=1

x
−(βi+αi)

q
p

i w(x)dx

) 1
q

. (20)
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It follows from (13) and (18)–(20) that

Aβββββ (ααααα) = sup
ti∈(0,bi)

i∈Jn

n

∏
i=1

t
βi+αi−1

p
i

(∫ b

t

n

∏
i=1

x
−(βi+αi)

q
p

i w(x)dx

) 1
q

� C
n

∏
i=1

⎛
⎝1+(βi + αi−1)exp

(
βi+αi

βi

)
(βi + αi−1)exp

(
βi+αi

βi

)
⎞
⎠

1
p

.

Thus, since C < ∞ , we conclude that indeed (9)–(10) holds and that the left hand side
inequality of (11) holds. Thus, also the necessity part is proved. The proof is complete
including the fact that (11) holds. The proof is complete. �

REMARK 1. Note that for the case n = 2, βi = 1, αi = si − 1, (i = 1,2) , we
obtain Theorem 1 so in particular, we can conclude that Theorem 1 holds also in a
general n -dimensional setting (n ∈ Z+ ).

As in the classical situation, by doing suitable substitutions, we can also derive a
dual version of Theorem 2 (where integrals

∫ t
0 are replaced by

∫ ∞
t ).

THEOREM 3. Let 0 < p � q < ∞ , βi > 0 (i = 1, . . . ,n) , and let u,v and f be
positive and measurable functions on R

n
+ . Then, for n = 2,3, . . . ,

(∫
Rn

+

[
exp

(
n

∏
i=1

βix
βi
i

∫ ∞

x

n

∏
i=1

t−(βi+1)
i ln f (t)dt

)]q

u(x)dx

) 1
q

� C

(∫
Rn

+

f p(x)v(x)dx
) 1

p

(21)

holds for some finite C if and only if for any αi > 0 (i = 1, . . . ,n) ,

Bβββββ (ααααα) := sup
ti>0
i∈Jn

n

∏
i=1

t
βi+αi−1

p
i

(∫ ∞

t

n

∏
i=1

x
−(βi+αi)

q
p

i W (x)dx

) 1
q

< ∞, (22)

where

W (x) = U(x)
[
GβββββV−1(x)

] q
p , (23)

and

U(x) = u(1/x)
n

∏
i=1

x−2
i and V (x) = v(1/x)

n

∏
i=1

x−2
i . (24)
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Moreover, if C is the best possible constant in (21), then

sup
αi>0
i∈Jn

n

∏
i=1

⎛
⎝ (βi + αi−1)exp

(
1+ αi

βi

)
1+(βi + αi−1)exp

(
1+ αi

βi

)
⎞
⎠

1
p

Bβββββ (ααααα) � C � inf
αi>0
i∈Jn

n

∏
i=1

(
βi exp

αi

βi

) 1
p

Bβββββ (ααααα).

(25)

Proof. First we note that by using the substitutions first yi = 1/ti , and then zi =
1/xi (i = 1, . . . ,n) and g(t) = f (1/t) , elementary calculations show that (21) is equiv-
alent to the inequality

(∫
R

n
+

[
exp

(
n

∏
i=1

βiz
−βi
i

∫ z

0

n

∏
i=1

tβi−1
i lng(t)dt

)]q

U(z)dz

) 1
q

� C

(∫
R

n
+

gp(z)V (z)dz
) 1

p

,

(26)

where U(x) and V (x) are defined by (24).
In view of Theorem 2, the inequality (26) holds for some finite C if and only if for

any αi > 0 (i = 1, . . . ,n) ,

Bβββββ (ααααα) = sup
ti>0
i∈Jn

n

∏
i=1

t
βi+αi−1

p
i

(∫ ∞

t

n

∏
i=1

x
−(βi+αi)

q
p

i W (x)dx

) 1
q

< ∞,

where

W (x) = U(x)
[(

GβββββV−1)(x)
] q

p ,

with U(x) and V (x) are defined by (24).
Since the inequality (8) is equivalent to (21) with U(x) and V (x) are defined by

(24), we can, by Theorem 2, conclude that (21) holds if and only if (22)–(24) holds.
Moreover, for the sharp constant in (21) we have the estimates (25). The proof is
complete. �

3. Multidimensional Cochran-Lee inequalities with sharp constants

First we note that Theorem 2 implies the following inequality for power weights:

PROPOSITION 1. Let 0 < p � q < ∞ , and let βi > 0, ηi,γi > −1 (i = 1, . . . ,n) .
Then, the inequality

(∫ b

0

[(
Gβββββ f

)
(x)

]q n

∏
i=1

xηi
i dx

) 1
q

� C

(∫ b

0
f p(x)

n

∏
i=1

xγi
i dx

) 1
p

(27)
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holds if and only if

1+ ηi

q
=

1+ γi

p
, (28)

for all i = 1, . . . ,n .

Proof. By applying Theorem 2 with these power weights we easily obtain the
proof since in this case Aβ (α) (see (9)) is of the form

Aβββββ (ααααα) = exp

(
n

∑
i=1

γi

pβi

)
sup

ti∈(0,bi)
i∈Jn

n

∏
i=1

t
1+ηi

q − 1+γi
p

i

⎡
⎢⎢⎢⎣

1−
(

ti
bi

)(αi+γi+βi)
q
p−(1+ηi)

(αi + γi + βi)
q
p − (1+ ηi)

⎤
⎥⎥⎥⎦

1
q

� exp

(
n

∑
i=1

γi

pβi

)
sup

ti∈(0,bi)
i∈Jn

n

∏
i=1

t
1+ηi

q − 1+γi
p

i[
(αi + γi + βi) q

p − (1+ ηi)
] 1

q

,

provided that βi >
p
q (1+ ηi)− (αi + γi) (i = 1, . . . ,n) . We omit the details. �

REMARK 2. For the case p < q we judge that it is a difficult and open question
to find the sharp constant C in (27). See Remark 5. However, in our next main theorem
we will derive the sharp constant for the case p = q and thus obtain a genuine gener-
alization of the Cochran-Lee inequality to a multidimensional setting. Moreover, since(
Gβ f p

)
(x) =

[(
Gβ f

)
(x)

]p it is sufficient to prove this fact for the case p = q = 1.
See also Remark 4.

THEOREM 4. Let βi > 0 , ηi > −1 (i = 1, . . . ,n) , and let f be a positive and
measurable function defined on R

n
+ , n ∈ Z+ . Then the inequality

∫
Rn

+

(
Gβββββ f

)
(x)

n

∏
i=1

xηi
i dx � exp

(
n

∑
i=1

1+ ηi

βi

)∫
Rn

+

f (x)
n

∏
i=1

xηi
i dx (29)

holds and the constant exp

(
n
∑
i=1

1+ ηi

βi

)
is sharp.

Proof. In view of Proposition 1, the inequality (29) holds with exp

(
n
∑
i=1

1+ ηi

βi

)
replaced by some finite C > 0. Now, we prove that the best constant C=exp

(
n
∑
i=1

1+ηi

βi

)
.

From (11) in Theorem 2, it follows that the best constant C satisfies

C � exp

(
n

∑
i=1

ηi

βi

)
inf

αi>0
i∈Jn

⎛
⎝ n

∏
i=1

exp
(

αi
βi

)
(

βi+αi−1
βi

)
⎞
⎠ .
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The infimum in the above inequality is attained at αi = 1 (i = 1, . . . ,n) . Hence, we find
that

C � exp

(
n

∑
i=1

1+ ηi

βi

)
. (30)

It only remains to prove that the inequality (30) holds also in the reversed direction.
Consider the test function

f (x) =
n

∏
i=1

(
χ

[0,e
1
βi ]

(xi)+ x−γi
i χ

(e
1
βi ,∞)

(xi)
)

,

where γi > 1+ ηi (i = 1, . . . ,n) . Next we note that then the integral part on the right
hand side of (29) becomes

∫
R

n
+

f (x)
n

∏
i=1

xηi
i dx =

n

∏
i=1

∫
R+

xηi
i

(
χ

[0,e
1
βi ]

(xi)+ x−γi
i χ

(e
1
βi ,∞)

(xi)
)

dxi

=
n

∏
i=1

exp

(
1+ ηi

βi

)⎛
⎝ 1

1+ ηi
+

exp
(
− γi

βi

)
γi − (1+ ηi)

⎞
⎠ . (31)

Moreover, the left hand side of (29) is equal to

n

∏
i=1

∫
R+

xηi
i exp

(
βix

−βi
i

∫ xi

0
tβi−1
i ln

(
χ

[0,e
1
βi ]

(ti)+ t−γi
i χ

(e
1
βi ,∞)

(ti)
)

dti

)
dxi

=
n

∏
i=1

exp

(
1+ ηi

βi

)(
γi

(1+ ηi)(γi − (1+ ηi))

)
(32)

It follows from (29) with best constant C , (31) and (32) that

n

∏
i=1

exp
(

γi
βi

)
(

1+ηi
γi

+
(
1− 1+ηi

γi

)
exp

(
γi
βi

)) � C.

By letting γi → (1+ ηi)+ (i = 1, . . . ,n) , we find that

n

∏
i=1

exp
1+ ηi

βi
= exp

(
n

∑
i=1

1+ ηi

βi

)
� C. (33)

Therefore, the sharpness of the constant in (29) is proved by just combining (30) and
(33). The proof is complete. �

Next we consider the special case βi = a and ηi = c (i = 1, . . . ,n) . First we point
out the following immediate consequence of Theorem 4:
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COROLLARY 1. Let n ∈ Z+ , let a > 0 , c > −1 , and let f be positive and mea-
surable function defined on R

n
+ . Then, the inequality

∫
R

n
+

exp

(
an

n

∏
i=1

x−a
i

∫ x

0

n

∏
i=1

ta−1
i ln f (t)dt

)
n

∏
i=1

xc
i dx � exp

(
n
1+ c

a

)∫
R

n
+

f (x)
n

∏
i=1

xc
i dx

holds and the constant exp

(
n
1+ c

a

)
is sharp.

But Theorem 4 also implies the following less obvious weighted multidimensional
generalization of the Cochran-Lee inequality:

COROLLARY 2. Let n ∈ Z+ , let a > 0 , c ∈ R and k ∈ N such that ck > −1 , and
let f be a positive and measurable function defined on R

n
+ . Then, the inequality

∫
R

n
+

exp

(
an

n

∏
i=1

x−a
i

∫ x

0

n

∏
i=1

ta−1
i ln f (t)dt

)(
n

∑
i=1

xc
i

)k

dx

� exp

(
n+ ck

a

)∫
R

n
+

f (x)

(
n

∑
i=1

xc
i

)k

dx

(34)

holds and the constant exp

(
n+ ck

a

)
is sharp.

Proof. In view of Theorem 4 and by applying the multinomial theorem twice, we
have that∫

R
n
+

exp

(
an

n

∏
i=1

x−a
i

∫ x

0

n

∏
i=1

ta−1
i ln f (t)dt

)(
n

∑
i=1

xc
i

)k

dx

= ∑
m1+···+mn=k

mi∈N0

(
k

m1, . . . ,mn

)∫
R

n
+

exp

(
an

n

∏
i=1

x−a
i

∫ x

0

n

∏
i=1

ta−1
i ln f (t)dt

)
n

∏
i=1

xcmi
i dx

� ∑
m1+···+mn=k

mi∈N0

(
k

m1, . . . ,mn

)
exp

(
n

∑
i=1

1+ cmi

a

)∫
Rn

+

f (x)
n

∏
i=1

xcmi
i dx

= exp

(
n+ ck

a

)∫
R

n
+

f (x) ∑
m1+···+mn=k

mi∈N0

(
k

m1, . . . ,mn

) n

∏
i=1

xcmi
i dx

= exp

(
n+ ck

a

)∫
R

n
+

f (x)

(
n

∑
i=1

xc
i

)k

dx,

where (
k

m1, . . . ,mn

)
=

k!
m1! · · ·mn!
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is a multinomial coefficient. Since the constant in Theorem 4 is sharp, then the sharp-

ness of the constant exp

(
n+ ck

a

)
in (34) is guaranteed so the proof is complete. �

We conclude this Section by pointing out that the fact that Theorem 4 also im-
plies the following multidimensional Cochran-Lee type inequality, which, in particular,
generalizes a result in [11] (see Example 1 and Remark 7):

COROLLARY 3. Let n ∈ Z+ , let βi > 0 (i = 1, . . . ,n) , let f be positive and
measurable functions on R

n
+ and let the weights u(x) and v(x) be related by u(x) =(

Gβ v
)
(x) . Then, the inequality

∫
R

n
+

[(
Gβββββ f

)
(x)

]
u(x)dx � exp

(
n

∑
i=1

1
βi

)∫
R

n
+

f (x)v(x)dx (35)

holds and the constant exp

(
n
∑
i=1

1
βi

)
is sharp.

Proof. Let g(x) = f (x)v(x) . Then, the inequality (35) is equivalent to

∫
Rn

+

[(
Gβββββ g

)
(x)

]
dx � exp

(
n

∑
i=1

1
βi

)∫
Rn

+

g(x)dx. (36)

In view of Theorem 4 with ηi = 0 (i = 1, . . . ,n) , we have that indeed the inequality

(36) holds and the constant exp

(
n
∑
i=1

1
βi

)
is sharp. Therefore, from the equivalence of

(35) and (36), we can conclude that (35) holds and the constant exp

(
n
∑
i=1

1
βi

)
is sharp.

The proof is complete. �

4. Concluding Remarks and results

REMARK 3. Some authors referred early to the inequality (2) with α = 0 as
Knopp’s inequality with reference to [12] but it was later on discovered that G. H.
Hardy in his famous 1925 paper [4] mentioned that his friend G. Pólya had pointed out
to him that this inequality is just a limit case of his original inequality. By applying our
results in Sections 2 and 3 with βi = 1, i = 1, . . . ,n , we obtain as special cases most of
us known multidimensional Pólya-Knopp’s inequalities, and especially all concerning
sharp constants, see especially the recent paper [21], and the references therein.

REMARK 4. Let 0 < p � q < ∞ . If the condition (28) in Proposition 1 holds, then
the best possible constant C in (27) satisfies

C � exp

(
n
q
− n

p

) n

∏
i=1

β
1
p− 1

q
i exp

(
1+ γi

pβi

)
. (37)
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In particular, if p = q , 0 < p < ∞ , and bi = ∞ (i = 1, . . . ,n) , then by replacing f (x)
by f p(x) in Theorem 4, we obtain that the inequality

(∫
R

n
+

[
(
Gβββββ f

)
(x)]p

n

∏
i=1

xηi
i dx

) 1
p

� C

(∫
R

n
+

f p(x)
n

∏
i=1

xηi
i dx

) 1
p

, (38)

holds with the sharp constant C =
n
∏
i=1

exp

(
1+ γi

pβi

)
. Hence, (38) is a formal general-

ization of (29) which is the case p = 1.

OPEN QUESTION. Find the sharp constant in the inequality (27) for the case 0 <
p < q < ∞ .

REMARK 5. We believe that this open question is not so easy to solve. Our moti-
vation for that is that the corresponding question in the theory of Hardy-type inequalities
(with our geometric mean operator Gβ replaced by the corresponding Hardy arithmetic
mean operator H ) was an especially long lasting question even in the one dimensional
case. It was finally solved only in 2015 in the paper [16] by L. E. Persson and S. Samko.

REMARK 6. For β = 1 an one dimensional analogue of the estimate (27) in
Proposition 1 was stated in [17, Example on page 744]. However, the inequality (37)
gives a better estimate of the sharp constant than that in [17].

The next result follows from Theorem 4 and, in particular, it generalizes the result
in [14, Theorem C]:

COROLLARY 4. Let βi > 0 , ηi < −1 (i = 1, . . . ,n) , and let f be a positive mea-
surable function defined on R

n
+ . Then, the inequality

∫
R

n
+

exp

(
n

∏
i=1

βix
βi
i

∫ ∞

x

n

∏
i=1

t−(βi+1)
i ln f (t)dt

)
n

∏
i=1

xηi
i dx � C

∫
R

n
+

f (x)
n

∏
i=1

xηi
i dx (39)

holds for some finite C > 0 and the constant C = exp

(
n
∑
i=1

−(1+ ηi)
βi

)
is sharp.

Proof. By using the substitutions first yi = 1/ti , and then zi = 1/xi (i = 1, . . . ,n)
and g(t)= f (1/t) , elementary calculations show that (39) is equivalent to the inequality

∫
Rn

+

exp

(
n

∏
i=1

βiz
−βi
i

∫ z

0

n

∏
i=1

y(βi−1)
i lng(y)dy

)
n

∏
i=1

z−ηi−2
i dz � C

∫
Rn

+

g(z)
n

∏
i=1

z−ηi−2
i dz.

(40)

In view of Theorem4, the inequality 40 holds with sharp constant C=exp

(
n
∑
i=1

−(1+ηi)
βi

)
.

Therefore, from the equivalence of (39) and (40), we can conclude that (39) holds for
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some finite C > 0 and the constant C = exp

(
n
∑
i=1

−(1+ ηi)
βi

)
is sharp. The proof is

complete. �

In order to relate our results to another result in the literature (see Remark 7) we
present the following consequence of Corollary 3:

EXAMPLE 1. Let n ∈ Z+ , let βi > 0, and let ηi and γi be real numbers such that
βi + γi > 0 (i = 1, . . . ,n) . Then, the inequality

∫
R

n
+

[(
Gβββββ f

)
(x)

]
exp

(
n

∑
i=1

βiηi

βi + γi
xγi
i

)
dx � exp

(
n

∑
i=1

1
βi

)∫
R

n
+

f (x)exp

(
n

∑
i=1

ηix
γi
i

)
dx

(41)

holds and the constant exp

(
n
∑
i=1

1
βi

)
is sharp.

REMARK 7. The one-dimensional analogue of Example 1 was discussed in [11,
Corollary 1.6] for the case βi = γi = 1 (i = 1, . . . ,n) but without the estimate of the
sharp constant.

Next we note that it is possible to derive also reversed Cochran-Lee type inequal-
ities on the cone of non-increasing functions. This fact follows from the following
elementary fact:

If a function f , defined on R
n
+ , is nonnegative and nonincreasing in all the vari-

ables, then

n

∏
i=1

βix
−βi
i

∫ x

0

n

∏
i=1

tβi−1
i f (t)dt � f (x), (42)

where βi > 0 (i = 1, . . . ,n) .

REMARK 8. Several of the results in this paper can be given also in the reversed
direction on the cone of nondecreasing functions but in this case it is not always clear
that is the constant 1 is sharp. Next, we present such a reversed Cochran-Lee inequality
where indeed the constant is sharp.

PROPOSITION 2. Let n ∈ Z+ , let βi > 0 and ηi > −1 (i = 1, . . . ,n) . Then, the
inequality

∫
R

n
+

exp

(
n

∏
i=1

βix
−βi
i

∫ x

0

n

∏
i=1

tβi−1
i ln f (t)dt

)
n

∏
i=1

xηi
i dx � 1 ·

∫
R

n
+

f (x)
n

∏
i=1

xηi
i dx (43)

holds for all nonnegative and non-increasing functions f defined on R
n
+ and the con-

stant 1 is sharp.
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Proof. Clearly, (42) implies (43). The sharpness follows by considering the test
function fδδδδδ , defined as

fδδδδδ (x) =
n

∏
i=1

(
χ[0,1](xi)+ e

− δi
βi x−δi

i χ(1,∞)(xi)
)

,

where δi > 1 and letting δi → ∞ (i = 1, . . . ,n) . We omit the details. �

REMARK 9. The one and two-dimensional analogues of inequality (43) with βi =
1 (i = 1, . . . ,n) are given in [9, Example 5.1] and [8], respectively.

Next, we prove that inequalities (8) and inequality (10) in [21] are equivalent.
This equivalence in one and two dimensions were proved in [9] and [8], respectively.

PROPOSITION 3. Let 0 < p � q < ∞ , 0 < bi � ∞ , βi > 0 (i = 1, . . . ,n) , and let
u,v and f be positive functions on R

n
+ . Then, the inequality(∫ b

0

[
exp

(
n

∏
i=1

βix
−βi
i

∫ x

0

n

∏
i=1

tβi−1
i ln f (t)dt

)]q

u(x)dx

) 1
q

� C

(∫ b

0
f p(x)v(x)dx

) 1
p

(44)

is equivalent to the inequality(∫ bβββββ

0

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
lng(t)dt

)]q

uβββββ (x)dx

) 1
q

� C

(∫ bβββββ

0
gp(x)vβββββ (x)dx

) 1
p

,

(45)

where C is a finite constant,

uβββββ (x) = u(x
1
βββββ )

n

∏
i=1

x
1−βi

βi
i

βi
, vβββββ (x) = v(x

1
βββββ )

n

∏
i=1

x
1−βi

βi
i

βi
,

and

g(x) = f (x
1
βββββ ).

Proof. By making the substitution zi = xβi
i (i = 1, . . . ,n) , we find that the inequal-

ity (44) is equivalent to⎛
⎜⎝∫ bβββββ

0

⎡
⎢⎣exp

⎛
⎜⎝ n

∏
i=1

βiz
−1
i

∫ z
1
βββββ

0

n

∏
i=1

tβi−1
i ln f (t)dt

⎞
⎟⎠
⎤
⎥⎦

q

u(z
1
βββββ )

n

∏
i=1

z
1−βi

βi
i

βi
dz

⎞
⎟⎠

1
q

� C

⎛
⎜⎝∫ bβββββ

0
f p(z

1
βββββ )v(z

1
βββββ )

n

∏
i=1

z
1−βi

βi
i

βi
dz

⎞
⎟⎠

1
p

.

(46)
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Moreover, by making the variable transformation ti = y1/βi
i , (i = 1, . . . ,n) in (46) we

can conclude that (44) is equivalent to (45). The proof is complete. �

Our final remark is related to a fairly new development in the theory of Hardy-type
inequalities, namely the following: In the classical situation a Hardy-type inequality
was usually characterized by using one condition (e.g. the famous Muckenhoupt con-
dition for the case 1 < p � q < ∞). However, it was discovered that this condition is
not unique and can be replaced by infinite many equivalent conditions, even by scales
of conditions. See Section 7.3 of the book [13]. However, for multidimensional Hardy-
type inequalities no such scales of characterizing conditions are known. But correctly
interpreted our proof of Theorem 2 shows that we indeed have such scale of conditions
to characterize the multidimensional limit Hardy-type inequality (8). Indeed, Theorem
2 can be reformulated as follows:

THEOREM 5. Let n ∈ Z+ , let 0 < p � q < ∞ , βi > 0 (i = 1, . . . ,n) and let u,v
and f be positive and measurable functions. Then the inequality (8) holds if and only
if any condition on the scale of conditions (0 < αi < ∞) (i = 1, . . . ,n)

Aβββββ (ααααα) := sup
ti∈(0,bi)

i∈Jn

n

∏
i=1

t
αi+βi−1

p
i

(∫ b

t

n

∏
i=1

x
−(αi+βi)

q
p

i w(x)dx

) 1
q

< ∞,

holds. Moreover, the sharp constant in (8) can be estimated as follows:

sup
αi>0
i∈Jn

n

∏
i=1

⎛
⎝ (βi + αi−1)exp

(
1+ αi

βi

)
1+(βi + αi−1)exp

(
1+ αi

βi

)
⎞
⎠

1
p

Aβββββ (ααααα) � C � inf
αi>0
i∈Jn

n

∏
i=1

(
βi exp

αi

βi

) 1
p

Aβββββ (ααααα).
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