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REFINEMENTS OF BENNETT TYPE INEQUALITIES

J. A. OGUNTUASE ∗ , L.-E. PERSSON AND E. O. ADELEKE

(Communicated by I. Perić)

Abstract. In this paper we discuss, complement and improve some Bennett type inequalities.In
particular, we prove a new refinement of a Bennett type inequality using superquadracity argu-
ment.

1. Introduction

In a note [5] published in 1920, Hardy announced, and then proved, in [6] the
following famous important classical integral inequality

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p∫ ∞

0
f p(x)dx, (1)

so-called Hardy’s inequality, where p > 1 and f ∈ Lp(0,∞) is a nonnegative function.
In 1927, Hardy [7] obtained a weighted generalization of (1) as follows:

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

xadx �
(

p
p−1−a

)p ∫ ∞

0
f pxadx, (2)

where f is a nonnegative measurable function on (0,∞) , p > 1, a < p− 1 and the
constant

( p
p−1−a

)p
is sharp.

Since Hardy discovered inequalities (1) and (2), several researchers have either
reproved them using various techniques or obtained its variants, extensions in many
directions. For instance, the readers may consult [8, 9, 10, 11] and the references cited
therein. Bennett [4] in 1973 derived the following results as an important tool when
describing the intermediate spaces between L and L log+ L :

THEOREM 1. Let α > 0 , 1 � p � ∞, and f be a nonnegative and measurable
function on [0,1]. Then

∫ 1

0

[
log

e
x

]α p−1
(∫ x

0
f (y)dy

)p dx
x

� α−p
∫ 1

0
xp
[
log

e
x

](1+α)p−1
f p(x)

dx
x

(3)

Mathematics subject classification (2020): 26D10, 26D15.
Keywords and phrases: Inequalities, Jensen’s inequality, Bennett’s inequality, refinements, Hardy-type

inequalities.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-26-14

183

http://dx.doi.org/10.7153/mia-2023-26-14


184 J. A. OGUNTUASE, L.-E. PERSSON AND E. O. ADELEKE

and ∫ 1

0

[
log

e
x

]−α p−1
(∫ 1

x
f (y)dy

)p dx
x

� α−p
∫ 1

0
xp
[
log

e
x

](1−α)p−1
f p(x)

dx
x

(4)

with the usual modification if p = ∞.

REMARK 1. Note that (2) is without sense for the limit case but by involving
logarithms and working with finite interval we can obtain the similar result (3) for this
limit case.

REMARK 2. The constants α−p in both (3) and (4) are sharp. This observation
was not pointed out by Bennett [4] but was later proved in Barza et al. [3].

In 2014, Barza et al. [3] obtained some refinements and extensions of inequality
(3). In particular, the following inequality was derived and proved:

α p−1
(∫ 1

0
f (x)dx

)p

+α p
∫ 1

0

[
log

e
x

]α p−1
(∫ x

0
f (y)dy

)p dx
x

�
∫ 1

0
xp
[
log

e
x

](1+α)p−1
f p(x)

dx
x

,

(5)

where p � 1 and f is a nonnegative measurable function on [0,1] . Both constants
α p−1 and α p in (5) are sharp.

REMARK 3. In the paper [3] it was also proved that inequality (5) holds in the
reversed direction when 0 < p � 1 and both constants α p−1 and α p are sharp in this
case too. In particular, we have equality for p = 1.

In 2017, Oguntuase et al. [13] used mainly the concept of superquadracity intro-
duced by Abramovich et al. [1] to prove some results that show that if the “turning
point” is p = 2 instead of p = 1, that it is possible to add, yet, another refinement term
to the left hand side of inequality (4). In particular, the following result was obtained:

THEOREM 2. Let α > 0 , p > 1 and f a nonnegative and measurable function
on [0,1] .

(1) If p � 2 , then

α p−1
(∫ 1

0
f (x)dx

)p

+ α p
∫ 1

0

[
log

e
x

]α p−1
(∫ x

0
f (y)dy

)p dx
x

+
∫ 1

0

∣∣∣∣x log
e
x

f (x)−α
∫ x

0
f (y)dy

∣∣∣∣
p(

log
e
x

)α p−1 dx
x

�
∫ 1

0
xp
[
log

e
x

](1+α)p−1
f p(x)

dx
x

.

(6)

All constants α p−1,α p and 1 in front of the integrals on the left-hand side in (6) are
sharp.
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(2) If 1 < p � 2, then (6) holds in the reverse direction and the constants on the
inequality are sharp.

(3) If p = 2 we have equality in (6) for any measurable function f and any α > 0.

In a recent paper, Kwon [12], generalized inequality (3) with weights. Specifically,
the following results was stated and proved:

THEOREM 3. Let 1 � p < ∞ and a < b < ∞. Let H be an increasing function
having continuous derivative on [a,b]. Then the following inequality is valid for all
nonnegative measurable functions f on [a,b]:

pe−H(b)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ x

a
f (t)dt

)p ∣∣∣∣(e−H(x)
)′ ∣∣∣∣dx

� pp
∫ b

a
f p(x)

∣∣∣∣(e−H(x)
)′ ∣∣∣∣ ∣∣∣H ′

(x)
∣∣∣−p

dx.

(7)

In Section 2 of this paper, we discuss, complement and sharpen Theorem 3. How-
ever, our most important new contribution is that we obtain some results that show that
if the “turning point” is p = 2, instead of p = 1 in (7), that it is possible to add, yet,
another refinement term to the left hand side of the inequality; thereby obtained its re-
finement. Moreover, the method of proof employed in this paper is elementary as well
as different from those in [12] and [13]. In Section 3, we give some definitions and re-
sults needed to prove our main result (Theorem 8) which is stated, proved and applied
in Section 4. In particular, it gives some new refined Bennett-type inequalities, which
provide generalizations of the inequalities (5) and (6).

2. Some Remarks, complements and sharpenings of Theorem 3

REMARK 4. It was claimed but not proved in [12] that (7) implies (5). For the
readers convenience and for later purposes (see Example 2) we include a proof.

Proof. Let a = 0,b = 1, p � 1, α > 0 and e−H(x) = 1
α p

(
log e

x

)α p
. Then

e−H(1) =
1

α p
, (e−H(x))′ = −1

x

(
log

e
x

)α p−1

and

H(x) = − log
1

α p
−α p log

(
log

e
x

)
so that

H ′(x) = α p
(
log

e
x

)−1 1
x
.

Hence, (
H ′(x)

)−p = (α p)−p
(
log

e
x

)p
xp.
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Substitute into (7) and we get that

p
α p

(∫ 1

0
f (t)dt

)p

+
∫ 1

0

(∫ x

0
f (t)dt

)p(
log

e
x

)α p−1 dx
x

� pp
∫ 1

0
f p(x)

(
log

e
x

)α p−1
(α p)−p

(
log

e
x

)p
xp dx

x
.

i.e. that

α p−1
(∫ 1

0
f (t)dt

)p

+ α p
∫ 1

0

(∫ x

0
f (t)dt

)p(
log

e
x

)α p−1 dx
x

�
∫ 1

0
f p(x)

(
log

e
x

)(α+1)p−1
xp dx

x
. �

REMARK 5. Kwon [12] did not discuss the sharpness at all of (7) but by using
also the sharpness in (5) (proved in [3] cf. Remark 2) we can state the following more
sharp version of Theorem 3.

THEOREM 4. Let 1 � p < ∞ , 0 � a < b � ∞ and let H be an increasing function
having continuous derivatives on [a,b].

1. For all nonnegative measurable functions f on [a,b), it yields that

pe−H(b)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ x

a
f (t)dt

)p ∣∣∣∣(e−H(x)
)′ ∣∣∣∣dx

� pp
∫ b

a
f p(x)

∣∣∣∣(e−H(x)
)′ ∣∣∣∣
∣∣∣H ′

(x)
∣∣∣−p

dx.

(8)

2. The inequality (2.1) is sharp in the sense that it does not hold for all increasing
functions H(x) on [a,b) with any of the constants pe−H(b) or pp replaced by
some smaller number.

Proof. (1). The statement follows from Theorem 3 for any b < ∞ but it follows
also for b = ∞ by an obvious limit argument.

(2). This follows from the fact that if we choose

H(x) = − log
1

α p

(
log

e
x

)α p
,

then according to the proof above, (8) coincides with (5) and both constants in this
inequality are sharp so that also both constants in (8) are sharp for this function and
when [a,b] = [0,1]. The same holds for the case [a,b] for any 0 � b < ∞, which can
be seen by just making a variable substitution and in the case b = ∞ we just complement
with a limit argument. �
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REMARK 6. In the same paper [12] it was also stated that under the assumptions
in Theorem 3 but with H(x) decreasing the following inequality holds:

pe−H(a)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ b

x
f (t)dt

)p ∣∣∣∣(e−H(x)
)′ ∣∣∣∣dx

� pp
∫ b

a
f p(x)

∣∣∣∣(e−H(x)
)′ ∣∣∣∣ ∣∣∣H ′

(x)
∣∣∣−p

dx.

(9)

EXAMPLE 1. By applying (9) with a = 0, b = 1 and

e−H(x) =
1

α p

(
log

e
x

)−α p

we can step by step calculate as in Remark 4 and arrive at the inequality

α p
∫ 1

0

(
log

e
x

)α p−1
(∫ 1

x
f (y)dy

)p dx
x

�
∫ 1

0
xp
(
log

e
x

)(1−α)p−1
f p(x)

dx
x

,

which coincides with (4). The crutial observation here is that e−H(0) = 0.

Our next goal is to prove that the two statements: Theorem 2.1 in paper [12] are in
fact equivalent.

THEOREM 5. The statements in Theorem 3 and Remark 4 are in fact equivalent.

Proof. We first assume that H is decreasing and apply (7) on the increasing func-
tion H1(x) = H( 1

x ) on the interval ( 1
b , 1

a ) where 0 < a < b and with a function g we
define later on. We have that

∫ 1
a

1
b

g(s)ds =
[
s =

1
t

]
=
∫ b

a
g
(1

t

)
t−2dt (10)

Now we define f (t) = g( 1
t )t

−2. Moreover

∫ 1
a

1
b

(∫ y

1
b

g(s)
)p ∣∣∣(e−H( 1

y )
)′ ∣∣∣dy

=
∫ 1

a

1
b

(∫ y

1
b

g(s)ds

)p ∣∣∣(eH( 1
y )
)∣∣∣∣∣∣H ′

(1
y

)∣∣∣dy
y2

=
[
s =

1
t

]
=
∫ 1

a

1
b

(∫ b

1
y

g
(1

t

)
t−2dt

)p ∣∣e−H( 1
y )∣∣∣∣∣H ′

(1
y

)∣∣∣dy
y2

=
[
x =

1
y

]
=
∫ b

a

(∫ b

x
f (t)dt

)p ∣∣∣(e−H(x)
)′ ∣∣∣dx

(11)
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and ∫ 1
a

1
b

gp(y)
∣∣∣(e−H( 1

y )
)′ ∣∣∣∣∣∣(eH( 1

y )
)′ ∣∣∣−p

dy

=
∫ 1

a

1
b

gp(y)
∣∣∣(e−H( 1

y )
)∣∣∣∣∣∣(eH( 1

y )
)′ ∣∣∣−p+1 dy

y2

=
∫ 1

a

1
b

(
g(y)y2)p ∣∣e−H( 1

y )∣∣∣∣∣(H ′
(1

y

)∣∣∣ 1
y2

)−p dy
y2

=
[1
y

= x
]

=
∫ b

a

(
g
(1

x

)
x−2
)p ∣∣∣(e−H(x)

)′ ∣∣∣ | (H ′(x)) |−p dx

=
∫ b

a
f p(x)

∣∣∣(e−H(x)
)′ ∣∣∣ | H ′(x)) |−p dx. �

(12)

Since also H1( 1
a ) = H(a) we find, by combining (10)–(12), that (9) holds with

the decreasing function H. The implication in the reversed direction follows in the
same way by just doing the calculations “backwards”. In particular, Theorem 5 means
that our Theorem 4 can be reformulated in the following equivalent way and then, in
particular we get also an improvement of the second inequality in Theorem 2.1 of the
paper [12] (c.f. Remark 4).

THEOREM 6. Let 1 � p < ∞ and 0 � a < b � ∞. Let H be a decreasing function
having continuous derivative on [a,b].

(a). For each nonnegative measurable function f on [a,b] we have that

pe−H(a)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ b

x
f (t)dt

)p ∣∣(e−H(x)
)′ ∣∣dx

= pp
∫ b

a
f p(x) |

(
e−H(x)

)′ || H ′(x) |−p dx.

(13)

(b). The inequality (13) is sharp in the sence that it does not hold for all decreas-
ing functions H(x) on [a,b] with any of the constants pe−H(a) or pp replaced by some
smaller number.

3. Preliminaries

In this Section, we present some basic definitions and results on superquadratic
and subquadratic functions needed in the proof of our main result in the next Section.

DEFINITION 1. ([1]) A function ϕ : [0,∞) → R is said to be superquadratic pro-
vided for each x � 0 there exists a constant Cx ∈ R such that

ϕ(y)−ϕ(x)−ϕ(|y− x|)−Cx(y− x) � 0 (14)

for all y ∈ [0,∞) . ϕ is subquadratic if −ϕ is superquadratic.
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LEMMA 1. ([1]) Let Let φ : [0,∞) → R be a superquadratic function with Cx as
in Definition 1. Then

1. φ(0) � 0.

2. If φ(0) = φ ′
(0) = 0 , then Cx = φ ′

(x) whenever φ is differentiable at x > 0 .

3. If φ � 0 , then φ is convex and φ(0) = φ ′
(0) = 0 .

Next we present the refined Jensen’s inequality for superquadratic and subquadratic
functions.

THEOREM 7. ([1]) Let (Ω,Σ,μ) be a probability measure space.
Then the inequality

ϕ
(∫

Ω
f (x)dμ(x)

)
�
∫

Ω

[
ϕ ( f (x))−ϕ

(∣∣∣∣ f (x)−
∫

Ω
f (y)dμ(y)

∣∣∣∣
)]

dμ(x) (15)

holds for all probability measures μ and all non-negative μ -integrable functions f
if and only if ϕ : [0,∞) → R is superquadratic. Moreover, (15) holds in the reversed
direction if and only if ϕ is subquadratic.

PROPOSITION 1. ([13]) Let φ : [0,∞) → R be differentiable function such that
φ(0) = φ ′

(0) . Then

φ(y)−φ(1)−φ
′
(1)(y−1)−φ(| y−1 |)

{
� 0 if φ is superquadratic,

� 0 if φ is subquadratic,
(16)

holds for all y � 0 . If φ(x) = xp , then equality in (16) holds for all y if and only if
p = 2 .

A direct consequence of Proposition 1 or Theorem 7 yields the following refine-
ment of the well-known Bernoulli’s inequality, which plays a central role in the proof
of our main result.

LEMMA 2. ([13]) Let h > 0 then,

hp− p(h−1)−1−|h−1|p
{

� 0 if p � 2,

� 0 if 1 < p � 2.

Equality holds for all h > 0 if and only if p = 2 and also when p �= 2 if and only if
h = 1 .
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4. The main result

Our main result reads as follows:

THEOREM 8. Let 1 � p < ∞ , 0 � a < b � ∞ and f be nonnegative and measur-
able functions on [a,b] . Assume that H is a nonnegative function having continuous
derivative on [a,b]. If p � 2, and H is increasing, then

pe−H(b)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ x

a
f (t)dt

)p ∣∣∣∣(e−H(x)
)′ ∣∣∣∣dx

+
∫ b

a

∣∣∣∣(e−H(x)
)′ ∣∣∣∣
∣∣∣∣ p f (x)
H ′(x)

−
∫ x

a
f (t)dt

∣∣∣∣
p

dx

� pp
∫ b

a
f p(x)

∣∣∣∣(e−H(x)
)′ ∣∣∣∣
∣∣∣H ′

(x)
∣∣∣−p

dx;

(17)

However, if 1 < p � 2 , then (17) holds in the reverse direction.

Proof. Let b < ∞ , p � 2 and η = exp(−H). By the hypothesis, (−η ′
(x)) is

nonnegative. Suppose that f is a continuous and nonnegative function on [a,b], then
define for x ∈ [a,b] the function G by

G(x;α, p) :=
pp

p
[η(x)]p [−η

′
(x)]−p+1 f p(x)+

[
−η

′
(x)
](∫ x

a
f (t)dt

)p

− p f (x) [η(x)]
(∫ x

a
f (t)dt

)p−1

− 1
p

[
−η

′
(x)
](∫ x

a
f (t)dt

)p

− 1
p
[−η

′
(x)]

∣∣∣∣ pη(x) f (x)
−η ′(x)

−
∫ x

a
f (t)dt

∣∣∣∣
p

(18)

and, by rewriting the terms in (18), we find that

G(x;α, p) =
1
p

[
−η

′
(x)
](∫ x

a
f (t)dt

)p

×
[(

pη(x) f (x)
−η ′(x)

∫ x
a f (t)dt

)p

− p

(
pη(x) f (x)

−η ′(x)
∫ x
a f (t)dt

−1

)
−1

]

− 1
p

[
−η

′
(x)
](∫ x

a
f (t)dt

)p ∣∣∣∣ pη(x) f (x)
−η ′(x)

∫ x
a f (t)dt

−1

∣∣∣∣
p

.

(19)

Hence, by putting

h(x,α) :=
pη(x) f (x)

−η ′(x)
∫ x
a f (t)dt

in view of Lemma 2, we obtain that

G(x;α, p) =
1
p
[−η

′
(x)
(∫ x

a
f (t)dt

)p

[hp(x,α)− p(h(x,α)−1)−1− | h(x,α)−1 |p]
� 0. (20)
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Now, by using a (20), integrate and rearrange the terms, we obtain that

p
∫ b

a
f (x) [η(x)]

(∫ x

a
f (t)dt

)p−1

dx+
1
p

∫ b

a
[−η

′
(x)]

∣∣∣∣ pη(x) f (x)
−η ′(x)

−
∫ x

a
f (t)dt

∣∣∣∣
p

dx

� p−1
p

∫ b

a

(
−η

′
(x)
(∫ x

a
f (t)dt

)p)
dx+

pp

p

∫ b

a
[η(x)]p [−η

′
(x)]−p+1 f p(x)dx.

(21)
Further, by virtue of integration by parts, we have that∫ b

a

(
−η

′
(x)
(∫ x

a
f (t)dt

)p)
dx = −η(b)

(∫ b

a
f (t)dt

)p

+ p
∫ b

a
f (x) [η(x)]

(∫ x

a
f (t)dt

)p−1

dx.

(22)

Hence, by substituting (22) into (21) we obtain after simple calculation, that

η(b)
(∫ b

a
f (t)dt

)p

+
1
p

∫ b

a

(
−η

′
(x)
(∫ x

a
f (t)dt

)p)
dx

+
1
p

∫ b

a
[−η

′
(x)]

∣∣∣∣ pη(x) f (x)
−η ′(x)

−
∫ x

a
f (t)dt

∣∣∣∣
p

dx

� − pp

p

∫ b

a
f p(x)η

′
(x)

[(
log

1
η(x)

)′]−p

dx.

(23)

Multiply by p and after substituting H = − logη into (23) we obtain that

pe−H(b)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ x

a
f (t)dt

)p ∣∣∣∣(e−H(x)
)′ ∣∣∣∣dx

+
∫ b

a

∣∣∣∣(e−H(x)
)′ ∣∣∣∣
∣∣∣∣ p f (x)
H ′(x)

−
∫ x

a
f (t)dt

∣∣∣∣
p

dx

� pp
∫ b

a
f p(x)

∣∣∣∣(e−H(x)
)′ ∣∣∣∣
∣∣∣H ′

(x)
∣∣∣−p

dx.

(24)

The proof of the case b < ∞ is complete. The proof of the case b = ∞ is obtained
by letting b → ∞ in what we just proved. The proof of the case 1 < p � 2 is similar
to the proof above except that the signs of the inequalities are reversed. The proof is
complete. �

REMARK 7. Put

I1 = pe−H(b)
(∫ b

a
f (t)dt

)p

+
∫ b

a

(∫ x

a
f (t)dt

)p ∣∣∣∣(e−H(x)
)′ ∣∣∣∣dx

I2 =
∫ b

a

∣∣∣∣(e−H(x)
)′ ∣∣∣∣
∣∣∣∣ p f (x)
H ′(x)

−
∫ x

a
f (t)dt

∣∣∣∣
p

dx

and I3 = pp
∫ b

a
f p(x)

∣∣∣∣(e−H(x)
)′ ∣∣∣∣ ∣∣∣H ′

(x)
∣∣∣−p

dx;

(25)
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in (17), then it shows that the generalized Bennett’s inequality (7), i.e.,

I1 � I3,

can be refined to
I1 + I2 � I3

for p � 2 while for 1 < p � 2 we have the following two-sided estimate

I1 � I3 � I1 + I2.

Hence, our Theorem 8 gives some essential refinements of (7).

EXAMPLE 2. Assume that α > 0, p � 2, a= 0, b = 1 and e−H(x) = 1
α p

(
log e

x

)α p

in (17). Then, we have the following inequality

α p−1
(∫ 1

0
f (x)dx

)p

+ α p
∫ 1

0

[
log

e
x

]α p−1
(∫ x

0
f (y)dy

)p dx
x

+
∫ 1

0

∣∣∣∣x log
e
x

f (x)−α
∫ x

0
f (y)dy

∣∣∣∣
p(

log
e
x

)α p−1 dx
x

�
∫ 1

0
xp
[
log

e
x

](1+α)p−1
f p(x)

dx
x

,

which coincides with (6). The proof of this fact can be performed step by step as in our
Remark 4 so we leave out the details.

REMARK 8. By making step by step calculations as in the proof of Theorem 5,
we can write our Theorem 8 in an equivalent form for decreasing functions H and thus,
in particular, obtain a further refinement of also the second inequality in Theorem 2.1
in [12].
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