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ABSTRACT: We present a multiwavelet-based implementation of a quantum/classical
polarizable continuum model. The solvent model uses a diffuse solute−solvent boundary
and a position-dependent permittivity, lifting the sharp-boundary assumption underlying many
existing continuum solvation models. We are able to include both surface and volume
polarization effects in the quantum/classical coupling, with guaranteed precision, due to the
adaptive refinement strategies of our multiwavelet implementation. The model can account for
complex solvent environments and does not need a posteriori corrections for volume
polarization effects. We validate our results against a sharp-boundary continuum model and
find a very good correlation of the polarization energies computed for the Minnesota solvation
database.

1. INTRODUCTION
Continuum solvation models have been used in quantum
chemistry for half a century.1−4 Their use is motivated by the
need to simulate the effect of a large solvent environment on a
molecular solute, keeping at the same time the computational
cost to a minimum.
Several models and flavors have throughout the years been

developed. Common to essentially all such models are two
basic assumptions: 1) the solvent degrees of freedom can be
conveniently described in terms of a continuum, parametrized
using macroscopic properties of the solvent; 2) the quantum
system is confined inside a cavity and the solute−solvent
interaction is described in terms of functions (charge density/
potential) supported on the cavity surface. Whereas the former
assumption is a physical one, giving a prescription for the
underlying physical laws,5 the latter is a convenient
mathematical formulation, which reduces the computational
cost transforming a three-dimensional problem in the whole
space to a two-dimensional one on the boundary of the
molecular cavity. Despite the convenience, a sharp boundary
between neighboring molecules assumes that no electronic
density is present beyond the cavity surface. This is not
physically sound, because electronic densities of solute and
solvent in reality overlap. Initially, this issue has been dealt with
by simple renormalization procedures:3 more elaborate
corrections have later been proposed,6−8 and for the Integral
Equation Formalism (IEF) formulation of the polarizable
continuum model (PCM) it can be shown that a first-order
correction is already included in the model.9 A full account of
this issue is, however, not practical in terms of a surface model,

and the ever increasing basis sets employed in routine
calculations, including very diffuse functions, aggravate the
problem further by allowing more and more of the electron
density to “escape” the cavity.
Neglecting electronic charge overlap between solute and

solvent does not only impact the electrostatic energy:
excitation energies depend on the charge distribution in the
excited states, which is invariably more diffuse than in the
ground state, and other interaction terms, such as the repulsion
energy, depend explicitly on the overlap between solute and
solvent densities.10

The parametric description of the cavity surface also
presents challenges, not only from a formal point of view to
define the correct cavity boundary,2,3 but also from a technical
standpoint, especially for larger molecules. The development of
stable cavity generators is still an active area of research.11−20

In recent years, several real-space methods for quantum
chemistry have been developed,21−26 and with these, the
treatment of solvation as a three-dimensional problem has
become a feasible alternative. The advantage is a seamless
integration with the quantum mechanical implementation: the
electrostatic potential is no longer computed in a vacuum but
in the generalized dielectric medium with a position-dependent
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permittivity. Several real-space codes have so far adopted this
strategy.27−32 Another advantage of this approach is an
increased flexibility: no constraints are placed on the form of
the permittivity function, and complex environments consist-
ing of surfaces, droplets, membranes, can be treated without
the need of ad-hoc implementations, which are often limited to
a handful of special cases.33−35

In this contribution, we will present our implementation,
which makes use of a multiwavelet (MW) framework36−39 to
solve both the Kohn−Sham (KS) equations of density
functional theory (DFT)40,41 and the Generalized Poisson
Equation (GPE)27 for the solvent reaction potential. We will
also show a set of benchmark calculations to showcase the
implementation’s theoretical correctness, parametrization, and
flexibility. MWs constitute a basis that can give accurate results
up to a user-defined precision, thanks to an automatic adaptive
refinement.39 Our implementation is included in the open-
source MW computational chemistry software package
MRChem.26 The combination of MW-based KS-DFT and
GPE solver provides a methodology for the assessment of
solvent effects with controlled precision.

2. THEORY
In the theoretical framework adopted in this work, molecules
are described through quantum mechanics, whereas the solvent
is modeled as a classical entity, described by macroscopic
properties. The two subsystems are connected by the solute−
solvent interaction, which describes the mutual polarization of
the two subsystems.2,3 Such an interaction is described by
classical electrostatics. In almost all implementations, the
quantum and the classical problem are solved with very
different methods: the most widely used approach makes use
of Boundary Element Method (BEM)42 techniques to solve
the electrostatic problem (environment) and Gaussian Type
Orbital (GTO) bases43,44 to describe the quantum problem.
The use of Multiwavelets offers a unique opportunity to treat
both problems with the same tools and methods. We will here
recap the basic concepts of multiresolution analysis (MRA)
and how it is employed to solve the electrostatic and the
quantum problem.

2.1. Multiresolution Analysis and Multiwavelets.
MRA is a mathematical framework that considers a space
spanned by a basis of functions with self-similarity and
regularity properties.45 In practice, all basis functions are
constructed by simple translation and dilation of a small set of
starting functions ϕ(x):

=x x l( ) 2 (2 )l
n n n/2

(1)

The core idea of MRA is that the space spanned by the basis
functions at a given scale n is a subspace of those at scale n + 1.
Such a ladder of spaces can be extended indefinitely, and its
limit is by construction dense in L2. Successive refinements
thus provide a systematic strategy to reach completeness, with
a handful of predefined functions. This is in stark contrast with
traditional GTO methods, where extending a basis requires a
complete reparametrization of the basis set, atom by atom. The
wavelet functions are obtained by taking the difference between
two consecutive scaling spaces, and they convey information
about the error incurred at each scale n due to neglecting the
refinement at scale n + 1, see Figure 1 for a 1-dimensional
illustration.
As long as the fundamental properties of self-similarity and

completeness are preserved, the choice of a specific basis set can
be guided by numerical considerations to obtain compact
representation of functions and efficient application of
operators.
Alpert’s Multiwavelets36 constitute a practical realization of

MRA by considering a set of polynomial functions (e.g.,
Legendre or Interpolating polynomials) defined on an interval.
The main advantages of Multiwavelets are the simplicity of the
original basis (a polynomial set) and the disjoint support (basis
functions are zero outside their support node).37 The latter
enables adaptive refinement of functions to minimize the
storage needs and the computational overhead. The extension
to three-dimensional functions is obtained by tensor-product
methods, and operators are efficiently applied in a separated
form.38

Multiwavelets are an ideal framework to deal with integral
operators, and this allows both the KS equations for the
quantum system40 and the Poisson equation for the solvent
polarization27 to be solved within the same formalism, once the
equations are converted from the conventional differential
form to the appropriate integral form. Functions are projected/
computed on an adaptive grid to guarantee the requested
precision. All operations (operator applications, algebraic
manipulations) are defined within the requested precision, in
such a way that the developer can easily implement new
algorithms with little effort46 and the end-user only needs to
specify the requested precision.26,47−49

For details about how to solve the KS equations within a
MW framework, we refer to the literature.39−41 Concerning the

Figure 1. Left panel: scaling functions of order k = 3 defined in the interval [0,1] are simple polynomials. Right panel: the corresponding wavelet
functions are piece-wise polynomials with four vanishing moments (orthogonal to polynomials up to the cubic one). Central panel: adaptive grids
are constructed on demand to minimize storage and meet precision requirements.
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GPE, we will expose the derivation and the implementation
details in the remainder of this section.

2.2. Electrostatics of Continuous Media. Any material is
a bound aggregate of nuclei and electrons: at microscopic level
these charged particles obey the microscopic Maxwell
equations. We are, however, interested in the macroscopic
behavior of the material in the presence of external sources of
charge ρ(r) and current j(r). Following Jackson,5 we can
perform a spatial average to arrive at the macroscopic Maxwell
equations:

· =

× =

× + =

· =

l

m

oooooooooooo

n

oooooooooooo

D

H j

E
B

B

c
D
t c

c t
t

4

1 4

1
0

0 (2)

These equations are expressed in terms of the usual electric
and magnetic fields, E and B, and additionally the displacement
D and magnetization H fields appear as a result of the spatial
averaging. In the quasistatic limit, the electric field has zero curl
and can thus be written in terms of a scalar potential function:
E = −∇V, where V is the electrostatic potential. To relate the
external sources to the potential it is first necessary to relate the
fields E and D with a constitutive relation,5,50 which is, in
general, a nonlinear and space-time nonlocal relationship
between the fields. For linear and local continuous media the
constitutive relation is

=D r E( ) (3)

where the permittivity ε(r) is a position-dependent, rank-3
symmetric tensor. Upon inserting the constitutive relation into
the first of Maxwell’s equations, we obtain the GPE:

·[ ] =r V( ) 4 (4)

In the following, we will further specialize to the isotropic case
ε(r) = ε(r)I, with I the rank-3 identity:

·[ ] =r V( ) 4 (5)

We remark that the permittivity is still position-dependent, in
contrast to the usual PCM treatment. The solution to eq 5 can
be partitioned as

= + =
| |

+r
r r

rV V V V
( )

dR R3 (6)

where Vρ is the electrostatic potential in a vacuum and VR is
the reaction potential. The polarization energy is then defined as

= [ ]r r rU V
1
2

d ( ) ( )pol R (7)

We write the reaction potential as a functional of the charge
density: the functional dependence is linear.9

2.3. The Quantum-Classical Coupling. Our quantum
mechanical treatment of the system will be based on KS-DFT.
For an N-electron system coupled with a classical polarizable
continuum environment, the KS-DFT f ree energy2 func-
tional51,52 reads:
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(8)

The molecular charge density is separated into electronic and
nuclear components:

= +r r r RZ( ) ( ) ( )
N

e

nuclei

(9)

Exc[ρe, ∇ρe] is a GGA exchange-correlation functional, and the
nuclear-electron potential is defined as

=
| |=

r
R r

V
Z

( )
N

Ne
1

nuclei

(10)

ζ is a scalar factor influencing the portion of exact exchange
included in the energy. The 1-body reduced density matrix
(RDM) and electronic density function appear in the energy
expression:

= *
=

r r r r r r r( , ) ( ) ( ), ( ) ( , )
i

N

i i1
1

e 1
(11)

The minimum is found by constrained optimization, to
enforce idempotency and normalization of the RDM:

[ ]
=
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l
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r N
min such that
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(12)

and leads to the variational condition:51,53

[ ] =F , 0e (13)

where the effective one-electron Fock operator appears:
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2.4. Solving the Generalized Poisson Equation. The
solution to the GPE is a function supported on the entire space
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3. Apparent surface charge formulations of continuum
solvation models do not solve eq 5 directly, but rather
reformulate it as a boundary integral equation and solve it by
boundary-element discretization. The apparent surface charge,
supported on the closed solute−solvent boundary, is the
sought-after quantity to compute the polarization energy.9

Such a procedure is generally based on two underlying
assumptions: (1) the charge density is entirely contained inside
the cavity boundary, and (2) the permittivity is unitary inside
the cavity and constant outside the cavity, with a jump
condition that defines the electrostatic potential and field
across the cavity boundary. With a real-space approach both
assumptions can be relaxed and the equation can be solved
directly. We recap here the procedure outlined by Fosso-
Tande and Harrison.27

We rewrite eq 5 in terms of the Laplacian of the potential V:

= ·
r

r
r

V
V4

( )
( )

( )
2

(15)

The second term on the right-hand side contains both the
gradient of the permittivity and the gradient of the potential.
When the permittivity is not constant, the equation cannot be
solved in one step by inversion of the Laplacian, i.e., by
convolution of the right-hand side with the Laplacian’s Green’s
function. An iterative strategy must be employed instead.
Let us then define the effective charge:

=eff (16)

and the polarization function:

= · =
·V V1

4
log

4 (17)

such that eq 15 becomes

= +V 4 ( )2
eff (18)

We can now formally solve eq 15 in terms of the Laplacian’s
Green’s function:

=
+

| |
=

| |
* +r r

r r

r r r r
V( ) d

( ) ( ) 1
( )eff

eff (19)

However, both the polarization energy in eq 7 and the solute−
solvent interaction term in the Fock operator are expressed in
terms of the reaction potential, rather than the total
electrostatic potential. By making use of the partition of V in
eq 6 and recalling that ∇2Vρ = −4πρ one obtains
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which can be formally inverted using the Poisson kernel:

=
| |
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We stress that γ is a function of V = Vρ + VR and eq 21 must
therefore be solved iteratively.

3. IMPLEMENTATION
In this section we present details about our specific choice of
parametrization for the permittivity and how we compute the
electrostatic potential between solute and solvent. We also

show how we couple this to a standard self-consistent field
(SCF) optimization procedure.

3.1. The Permittivity Function Parametrization. We
partition space into two regions: a cavity containing the solute,
and the remainder. The cavity surface is defined as the union
set of a collection of interlocking spheres centered on the
nuclei. Their radii are parametrized by using the corresponding
van der Waals radii times a factor. This factor is often set to
either 1.1 or 1.2,2 but it might vary, e.g., depending on the
charge of the solute. For standard continuum models the cavity
boundary is the support of the electrostatic problem for the
solute−solvent interaction. In the current model it serves as a
support to define the parametrization of the position-
dependent ε(r). In Section 4 the appropriate parametrization
of the cavity for the present model will be discussed.
Following Fosso-Tande and Harrison, we write the

permittivity as a function of the molecular cavity function:27
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r rC( ) exp log (1 ( ))in

out

in (22)

The exponential parametrization proves convenient in light of
the definition of γ in eq 17, which lets us define its gradient
using the cavity function, C(r), only.
The molecular cavity function is constructed as follows. For

each sphere α centered at rα with radius Rα, we can measure
the signed normal distance of any point in space as

= | |r r rs R( ) (23)

Given sα(r), we define a smoothed boundary of the sphere as

= +
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1
2

1 erf
( )

(24)

where σ is a user-defined smoothing parameter: Cα approaches
the Heaviside step function as σ → 0. The molecular cavity
function is then a product of all N spheres:

=
=

r rC C( ) 1 (1 ( ))
N

1

sph

(25)

see Figure 2 for an example.
The log-derivative of the permittivity in eq 17 is then:

=
i
k
jjjjj

y
{
zzzzzr rClog ( ) log ( )in

out (26)

requiring evaluation of the gradient of the cavity function. For
interlocking-spheres cavities, a closed-form analytical expres-
sion is available, see Appendix A, and is implemented in our
code. Note, however, that, in a real-space, multiwavelet
framework, we can compute this gradient by direct application
of the derivative operator,54 which allows one to use more
complex or even numerical definitions of the boundary, e.g., as
isodensity surfaces.

3.2. The Self-Consistent Reaction Field. The self-
consistent reaction field (SCRF) is the iterative procedure to
solve the GPE for any given molecular density. At convergence,
the iterations produce the reaction potential VR, which can be
directly employed in the solution of the KS-DFT equations.
Algorithm 1 shows the iterative procedure implemented to

solve the GPE within the SCF iterations. The input parameters
at iteration n are the charge density ρ[n], the permittivity ε(r), a

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01098
J. Chem. Theory Comput. 2023, 19, 1986−1997

1989

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


guess for the reaction potential [ ]V n
R

,0 , and a threshold
parameter δ. Before iterating, the effective density [ ]n

eff and

the potential [ ]V n are computed. At each microiteration i, the

reaction potential [ ]V n i
R

, is computed in four steps as outlined
in lines 5−8 of Algorithm 1, and convergence in the norm of
the reaction potential is checked against the threshold δ. At the
first SCF iteration, the starting guess for the reaction potential
is set to zero =[ ]V( 0)R

0,0 . At all subsequent iterations, the
starting guess is set to the converged reaction potential from
the previous iteration: =[ ] [ ]V Vn n

R
,0

R
1 .

A straightforward implementation of the microiterations
suffers from slow convergence of the reaction potential, thus
adding a significant prefactor to each SCF iteration. We use the
Krylov-accelerated inexact Newton (KAIN) method,41 which
is a convergence acceleration technique, similar to Pulay’s
DIIS55 and Anderson’s mixing.56 At each microiteration i, the
updated reaction potential [ + ]V i

R
1 is constructed as a linear

combination, with constraints, of N previous iterates. The
KAIN history length N impacts both convergence and
memory: N = 5 is generally a good compromise between
fast convergence (fewer iterations) and acceptable memory
footprint.
The KAIN acceleration is combined with an adaptive

threshold to improve the convergence rate of the micro-
iterations: instead of converging the reaction potential to the
same predefined threshold ϵ used for the orbitals, we make use
of a threshold, δ, chosen to be the norm of the orbital update

in the parent SCF macroiteration. δ is thus updated during the
SCF procedure. There are two parameters that affect the
convergence pattern of the reaction potential, VR:

1. The guess for VR at the start of the microiterations:

(A) =[ ]V 0n
R

,0 , or (B) =[ ] [ ]V Vn n
R

,0
R

1 (and zero for the
first microiteration embedded in the first macroiteration).

2. The convergence threshold for the microiterations: (C)
fixed threshold δ, or (D) dynamic threshold δ[n] =
|Δρ[n]|.

These lead to four possible convergence regimes: AC, BC, AD,
BD; the latter being our default.
Figure 3 illustrates how the number of microiterations

evolves. A dynamic precision threshold D reduces the number

of microiterations in the beginning of the SCF procedure,
simply because the threshold for convergence is looser. Using
the converged VR from the previous macroiteration B helps
close to SCF convergence, because the orbitals do not change
much and the starting guess for the microiterations is also
better. Combining those two choices results in the optimal
convergence pattern: the convergence threshold is progres-
sively tighter, while at the same time the starting guess for the
reaction potential improves. The opposite choice (AC instead
of BD) requires a large number of microiterations throughout,
whereas the intermediate choices (AD and BC) result in a
large number of iterations at the beginning (BC) or at the end
(AD). We underline that all four choices converge to the same
result for the example in Figure 3, but we can envisage cases

Figure 2. Cross-section in the xy plane of the cavity function C(r) for
the water molecule. Atom positions are indicated by their symbol.
Coordinates are in atomic units. We can observe the smooth
boundary of the cavity function.

Figure 3. Convergence regimes for the SCRF algorithm. MW
calculations with global precision 10−5 for acetamide (C2H5NO,
identifier 0233ethb from the Minnesota Solvent Descriptor
Database). Four possible convergence scenarios are presented: static
(A) or dynamic (B) precision threshold for the microiterations; zero
initial guess (C) or guess from previous macroiteration (D). A
dynamic threshold (green and red curves) reduces the number of
microiterations at the beginning of the SCF procedure. A starting
guess from the previous SCF macroiteration (green and blue curves)
is effective close to convergence. Combining the two (green curve) is
the optimal strategy. The dip observed for the blue and green curves
at macroiteration 1 is due to the fact that the macroiteration 0 is a
preliminary step and the orbital are not changed progressing from
macroiteration 0 to macroiteration 1, but the convergence threshold is
tightened. This results in an almost converged reaction potential as a
starting guess for the microiterations nested in macroiteration 1.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01098
J. Chem. Theory Comput. 2023, 19, 1986−1997

1990

https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=sec3.2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=sec3.2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01098?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where convergence could potentially be prevented by choices
A and C.

4. RESULTS
For all systems, the solvation energies have been computed
with both Gaussian1657 and MRChem. Gaussian16 features
the Integral Equation Formalism PCM (IEFPCM)58 with a
sharp cavity boundary. MRChem features the solvation model
described in the previous sections.

Two sets of calculations have been performed. The aim of
the first set was to determine a good parametrization for the
cavity surface in terms of the atomic radii and the cavity surface
thickness. Once a satisfactory parametrization was achieved, an
extensive benchmark of solvation energies was performed, by
considering the Minnesota Solvent Descriptor Database
(MSDD) of Marenich et al.59

All calculations reported are KS-DFT using the PBE0
functional.60 Gaussian16 results are obtained with the Def2-
TZVP,61−63 basis set, except where otherwise stated. MRChem

Figure 4. Results for the cavity parametrization. Left column: α = 1.1. Right column: α = 1.2. On each row a different permittivity is used: from top
to bottom: ε = 2.0, 4.0, 80.0. For each plot there are four sets of data, corresponding to β = 0.0, 0.5, 1.0, 1.5. Each point on the set represents a
molecule. x-Axis: the reaction energy calculated using Gaussian16. y-Axis: the reaction energy calculated using MRChem. Values are in Hartree.
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results are obtained setting the global precision parameter to
10−5. In other words, the obtained absolute energy is correct
with at least five digits with respect to the complete basis set
(CBS) limit.47 This is not to be confused with the convergence
threshold of a SCF calculation performed with an atomic basis
set, which will guarantee the “exact” result within the chosen
basis, but where the precision compared to the CBS is limited
by the choice of basis.

4.1. Cavity Parametrization. For the parametrization
calculations, 4 molecules of different levels of polarity were
chosen: water, ethanol, formaldehyde, and ethyne (geometries
taken from the MSDD,59 file names 0217wat, 0045eth,
0069met, and 0030eth). No geometry optimization was
performed. They were chosen to give a minimal set of neutral
(polar and apolar) systems, to allow for a reliable yet simple
data set to identify a good choice of the parameters defining
the cavity.
In Gaussian16, the external iteration procedure64,65 was used

to extract the reaction energy from the total energy.a The
spheres used for the cavities were atom-centered and used the
atoms’ Bondi radii66 scaled by a factor of 1.1, as is standard for

Gaussian16. Three different permittivities have been em-
ployed: 2.0, 4.0, and 80.0.
In MRChem, the cavity is also built from atom-centered

spheres, with each radius Ri parametrized as

= +R Ri i i i i
vdW

(27)

where Ri
vdW is the Bondi radius66,67 of the i-th atom, σi is the

width of the cavity boundary, and αi and βi are adjustable
parameters. We allowed for granular, sphere-by-sphere
flexibility in our implementation of the cavity function. By
default, one value is used for each parameter (α, β, σ) for all
spheres. The combination α = 1.1 and β = 0.0 would yield
matching radii between MRChem and Gaussian16. In the
following, we explored results when α values were 1.0, 1.1, 1.2,
1.3 and for β values of 0.0, 0.5, 1.0, 1.5. In all MRChem
calculations the width parameter was fixed to σ = 0.2 au.
The aim of the parametrization is to see how the cavity

width σ affects the results of our calculations, compared to a
sharp-boundary method, and to choose the combination of α
and β coefficients that provides a good correlation between our
method and a sharp boundary implementation. The goal is not
to replicate results from Gaussian16 implementation: our

Figure 5. Correlation plots of reaction energies computed with Gaussian16 and MRChem for all neutral species in the MSDD59 for ε = 2.0, 4.0,
80.0. All cavities are atom-centered, with Bondi radii.66,67 Radii are scaled by 1.1. in Gaussian 16. For the MRChem calculations, we used default
values: α = 1.1, β = 0.5, σ = 0.2 au Linear regression line shown in black. Outlier species are marked in blue and red when containing bromine and
iodine, respectively. The labels refer to A. 5-bromouracil, H3C4N2O2Br (n203); B. 5-bromo-3-s-butyl-6-methyl-uracil, H13C9N2O2Br
(test1013); C. 2-bromoanisole, H7C7OBr (test5008); D. Bromobenzene, H5C6Br (0186bro); E. 4-bromopyridine, H4C5NBr
(0573bro); F. 1-bromo-2-chloroethane, H4C2ClBr (0202bro); G. 5-iodouracil, H3C4N2O2I (test2018); H. iodomethane, H3CI
(test4003); I. iodobenzene, H5C6I (test4001); J. 1,4-dichlorobenzene, H4C6Cl2 (0176pdi); K. 3-bromoanisole, H7C7OBr
(test5009).
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method has a diffuse cavity layer, whereas the cavity of
IEFPCM is a 2-dimensional boundary. This will lead to
contributions and errors that are not equivalent.
Figure 4 shows the results for the cavity parametrization for

α = 1.1 and α = 1.2. Results for α = 1.0 and α = 1.3 are not
shown, because they largely overestimate (α = 1.0) or
underestimate (α = 1.3) solvation energies, but they are
available in the data package available online on DataVerse.68

We conclude that a cavity parametrization with α = 1.1 and
β = 0.5 provides a good correlation with sharp-boundary
IEFPCM for all reasonable values of the permittivity and
default value of cavity width. This choice of α and β with σ =
0.2 au is the current default in MRChem.

4.2. Model Benchmarking against the Minnesota
Solvent Descriptor Database. The geometries from the
MSDD were used to compile a comprehensive benchmark of
our model against a sharp-boundary cavity implementation.
MSDD holds solvation-related quantities, for a wide variety of
solvents and solutes.59 From the conclusions in the previous
section, all MRChem results reported in this section employ
the cavity parameters α = 1.1, β = 0.5, and σ = 0.2 au.
Figures 5 and 6 summarize our results, for neutral and

charged species, respectively. As for the results in Section 4.1,
the figures visualize the correlation between the reaction

energies computed with Gaussian16 (x-axis) and MRChem (y-
axis).
For low permittivity (ε = 2.0), Figure 5.1 shows that for

neutral species our data is quite close to the main diagonal for
small energies, but has a slight systematic deviation for more
negative reaction energies (bottom left corner). For ions,
Figure 6.1 shows a systematic overestimation with respect to
Gaussian16, and a clear distinction between cations and
anions. For ε = 4.0 (Figure 5.2 and 6.2), we see a similar trend,
although most data points appear to be closer to the diagonal.
For high permittivity ε = 80, Figure 5.3 for neutral species and
Figure 6.3 for ionic ones show that the values are now mostly
below the diagonal, that is, solvation energies are under-
estimated compared to Gaussian16. In Figure 5, we can see a
set of outlying point with respect to the rest of the data. These
points have been identified as species containing bromineb or
iodine,c with only one outlier containing chlorine instead.d59

There may be multiple, concomitant reasons for these
discrepancies: (a) Bromine and iodine are the only atoms
from the fourth and fifth period of the periodic table present in
the set; (b) the radii used in the definition of the cavities for
these elements might not be appropriate; (c) the different
treatment of volume polarization in the two implementations
(full account in our model and implicit first-order correction in

Figure 6. Correlation plots of reaction energies computed with Gaussian16 and MRChem for all positive (red) and negative (blue) ions in the
MSDD59 for ε = 2.0, 4.0, 80.0. All cavities are atom-centered, with Bondi radii.66,67 Radii are scaled by 1.1. in Gaussian 16. For the MRChem
calculations, we used default values: α = 1.1, β = 0.5, σ = 0.2 au linear regression lines are shown in red (blue) for positive (negative) ions,
respectively.
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the IEFPCM model8,9) might affect the description of these
molecules, where a more delocalized electronic density is
expected. It would be interesting to disentangle the effects of
surface and volume polarization, but it is not straightforward to
do so and it goes beyond the scope of the present work.
The fact that molecules are quite close to the line, especially

as the reaction energy becomes small (top right corner), is not
surprising. We chose the cavity parameters from a limited set
of small molecules. On the other hand, the observed deviations
for larger solvation energy are to a large degree systematic,
which shows that they could be accounted for, with a more
refined parametrization.
Cations tend to have less diffuse density than anions.

Therefore, the size of the cavity with respect to the spatial
extent of the electronic density is larger for cations than for
anions. According to the simple Born model, solvation energy
of ions is inversely proportional to the radius of the cavity,
which explains the better correlation observed for cations:
when the charge distribution is better confined inside the
cavity, the difference between a sharp interface formally not
accounting for volume polarization and a diffuse one including
it, becomes smaller.

4.3. Performance. The current code is a prototype, and we
have therefore not yet dedicated attention to improving its
performance in terms of computational time and memory
footprint. A few general considerations can however be made.
The solution of the GPE is technically similar to that of the
Helmholtz equation, which we employ to solve the SCF
equations.40,69 It should therefore be possible to achieve linear
scaling with respect to the system size once the code is fully
optimized.70 This is a feature of MRA,37 which is designed to
decouple the long- and short-range interactions automatically
thanks to the adaptive refinement scheme coupled with the use
of the nonstandard form of operators.38 In this sense, the
algorithm should be competitive with implementations of
sharp-cavity models that employ the fast multipole method
(FMM) to accelerate the matrix-free solution of the PCM
equations.71

A qualitative comparison with the domain decomposition
(DD) family of algorithms9,72,73 is also in order. DD
approaches to implicit solvation are, by construction, linear
scaling. Furthermore, they are easily recast in a matrix-free
form that both reduces the memory footprint and lends itself
to further performance boosting via the FMM.74 However, in
our understanding of the algorithm, these advantages of the
method are not straightforwardly extended to cavities with
diffuse boundaries. Furthermore, when dealing with quantum
mechanical source densities, the quantum-classical coupling
must rely on volume integrations, e.g., using a DFT grid, to
correctly represent the escaped charge.75

Our algorithm achieves formal simplicity and, in principle,
algorithmic efficiency. Real-space methods for the reaction
potential can be coupled with GTO methods for the
electronic-structure problem,76 thus making our method of
interest beyond multiwavelet-based quantum chemistry.
Currently the main bottleneck is constituted by the memory
footprint of the functions describing the cavity and the solvent
reaction potential, since they extend throughout the whole
computational domain. Work is currently in progress to deal
with such functions in an efficient way.

5. CONCLUSIONS
We have implemented, parametrized, and benchmarked a
continuum solvation model based on a position dependent
permittivity ε(r).27 Our algorithm performs microiterations,
nested within each SCF cycle, to obtain the solvent reaction
potential. We overcome convergence issues using KAIN
convergence acceleration and an adaptive convergence thresh-
old. Our implementation is robust and introduces only a
modest computational overhead.
With a simple parametrization, we have obtained a good

correlation with respect to the IEFPCM implemented in
Gaussian16, for an extensive library of geometries and a wide
range of permittivities. Some systematic deviations have been
observed, suggesting that a more sophisticated cavity para-
metrization could yield even better agreement. An alternative
option, which is often challenging for standard solvation
models, is to parametrize the permittivity by making use of an
isodensity cavity as support. This choice would forego the
radius parametrization altogether, but it might pose other
challenges, because the cavity gradient must be computed
numerically, and the coupling with the density functional must
be taken into account.
The performance and stability might be further improved, by

considering a different approach to the SCRF microiterations:
a square-root parametrization of the electrostatic potential, as
suggested by Fisicaro et al., might prove useful.30

The flexibility of the method will allow for several additional
developments, such as the inclusion of charged particles
outside the cavity, as well as other contributions to the
solvation energy, such as cavitation, dispersion, and repulsion.

■ APPENDIX A: ANALYTICAL DERIVATIVES OF THE
PERMITTIVITY AND CAVITY FUNCTIONS

A.1: The gradient
The gradient of the permittivity function can be determined
analytically. Differentiating eq 22:
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which only requires to compute the analytical gradient of the
interlocking sphere cavity function C(r).
The analytical gradient of the interlocking sphere cavity is as

defined by Fosso-Tande and Harrison:27
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The gradient of a single sphere cavity function Cα is
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and finally the gradient of the signed normal distance is
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In the implementation, we use a cutoff of 10−12 for the
denominator, in order to avoid numerical discontinuities.
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■ ADDITIONAL NOTES
aWe later learned that the, undocumented, keyword
PrintResultsTable achieves the same purpose. We
used this for one molecule in the benchmark set, the singly
charged negative peroxide ion O2

− (identifier: i091), where
the external iteration procedure failed to terminate.
bMolecules and corresponding filenames in the database: A. 5-
bromouracil, H3C4N2O2Br (n203); B. 5-bromo-3-s-butyl-6-
methyl-uracil, H13C9N2O2Br (test1013); C. 2-bromoani-
sole, H7C7OBr (test5008); D. Bromobenzene, H5C6Br
(0186bro); E. 4-bromopyridine, H4C5NBr (0573bro); F.
1-bromo-2-chloroethane, H4C2ClBr (0202bro); K. 3-
bromoanisole, H7C7OBr (test5009).
cMolecules and corresponding filenames in the database: G. 5-
iodouracil, H3C4N2O2I (test2018); H. Iodomethane, H3CI
(test4003); I. Iodobenzene, H5C6I (test4001).
dMolecule and corresponding filename in the database: J. 1,4-
dichlorobenzene, H4C6Cl2 (0176pdi).
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(12) Silla, E.; Tuñón, I.; Pascual-Ahuir, J. L. GEPOL: An improved
description of molecular surfaces II. Computing the molecular area
and volume. Journal Of Computational Chemistry 1991, 12, 1077−
1088.
(13) Pascual-Ahuir, J. L.; Silla, E. GEPOL: An improved description
of molecular surfaces. I. Building the spherical surface set. Journal Of
Computational Chemistry 1990, 11, 1047−1060.
(14) Pomelli, C. S.; Tomasi, J. DefPol: New procedure to build
molecular surfaces and its use in continuum solvation methods.
Journal Of Computational Chemistry 1998, 19, 1758−1776.
(15) Pomelli, C. S.; Tomasi, J.; Cossi, M.; Barone, V. Effective
generation of molecular cavities in polarizable continuum model by
DefPol procedure. Journal Of Computational Chemistry 1999, 20,
1693−1701.
(16) Connolly, M. L. Analytical molecular surface calculation. J.
Appl. Crystallogr. 1983, 16, 548−558.
(17) Connolly, M. L. The molecular surface package. J. Mol.
Graphics 1993, 11, 139−141.
(18) Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.;
Frisch, M. J. Solvent Effects. 5. Influence of Cavity Shape, Truncation
of Electrostatics, and Electron Correlation on ab Initio Reaction Field
Calculations. Journal Of Physical Chemistry 1996, 100, 16098−16104.
(19) Quan, C.; Stamm, B. Mathematical analysis and calculation of
molecular surfaces. J. Comput. Phys. 2016, 322, 760−782.
(20) Quan, C.; Stamm, B. Meshing molecular surfaces based on
analytical implicit representation. J. Mol. Graph. Model. 2017, 71,
200−210.
(21) Losilla, S. A.; Sundholm, D.; Jusélius, J. The direct approach to
gravitation and electrostatics method for periodic systems. J. Chem.
Phys. 2010, 132, 024102.
(22) Genovese, L.; Videau, B.; Ospici, M.; Deutsch, T.; Goedecker,
S.; Mehaut, J.-F. Daubechies wavelets for high performance electronic
structure calculations: The BigDFT project. Comptes Rendus
Mecanique 2011, 339, 149−164.
(23) Andrade, X.; Strubbe, D.; De Giovannini, U.; Larsen, A. H.;
Oliveira, M. J. T.; Alberdi-Rodriguez, J.; Varas, A.; Theophilou, I.;
Helbig, N.; Verstraete, M. J.; Stella, L.; Nogueira, F.; Aspuru-Guzik,
A.; Castro, A.; Marques, M. A. L.; Rubio, A. Real-space grids and the
Octopus code as tools for the development of new simulation
approaches for electronic systems. Phys. Chem. Chem. Phys. 2015, 17,
31371−31396.
(24) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.;
Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric
atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175−
2196.
(25) Harrison, R. J.; Beylkin, G.; Bischoff, F. A.; Calvin, J. A.; Fann,
G. I.; Fosso-Tande, J.; Galindo, D.; Hammond, J. R.; Hartman-Baker,
R.; Hill, J. C.; Jia, J.; Kottmann, J. S.; Yvonne Ou, M.-J.; Pei, J.;
Ratcliff, L. E.; Reuter, M. G.; Richie-Halford, A. C.; Romero, N. A.;
Sekino, H.; Shelton, W. A.; Sundahl, B. E.; Thornton, W. S.; Valeev, E.
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