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ABSTRACT: A first DMRG/CASSCF−CASPT2 study of a series of paradigmatic
{FeNO}6, {FeNO}7, and {FeNO}8 heme−nitrosyl complexes has led to substantial
new insight as well as uncovered key shortcomings of the DFT approach. By virtue of
its balanced treatment of static and dynamic correlation, the calculations have
provided some of the most authoritative information available to date on the
energetics of low- versus high-spin states of different classes of heme−nitrosyl
complexes. Thus, the calculations indicate low doublet−quartet gaps of 1−4 kcal/mol
for {FeNO}7 complexes and high singlet−triplet gaps of ≳20 kcal/mol for both
{FeNO}6 and {FeNO}8 complexes. In contrast, DFT calculations yield widely
divergent spin state gaps as a function of the exchange−correlation functional.
DMRG−CASSCF calculations also help calibrate DFT spin densities for {FeNO}7
complexes, pointing to those obtained from classic pure functionals as the most
accurate. The general picture appears to be that nearly all the spin density of
Fe[P](NO) is localized on the Fe, while the axial ligand imidazole (ImH) in Fe[P](NO)(ImH) pushes a part of the spin density
onto the NO moiety. An analysis of the DMRG−CASSCF wave function in terms of localized orbitals and of the resulting
configuration state functions in terms of resonance forms with varying NO(π*) occupancies has allowed us to address the
longstanding question of local oxidation states in heme−nitrosyl complexes. The analysis indicates NO(neutral) resonance forms
[i.e., Fe(II)−NO0 and Fe(III)−NO0] as the major contributors to both {FeNO}6 and {FeNO}7 complexes. This finding is at
variance with the common formulation of {FeNO}6 hemes as Fe(II)−NO+ species but is consonant with an Fe L-edge XAS analysis
by Solomon and co-workers. For the {FeNO}8 complex {Fe[P](NO)}−, our analysis suggests a resonance hybrid description:
Fe(I)−NO0 ↔ Fe(II)−NO−, in agreement with earlier DFT studies. Vibrational analyses of the compounds studied indicate an
imperfect but fair correlation between the NO stretching frequency and NO(π*) occupancy, highlighting the usefulness of
vibrational data as a preliminary indicator of the NO oxidation state.

1. INTRODUCTION
The electronic structures of transition metal nitrosyls have long
been the subject of lively interest, debate, and controversy.1−3

The crux of the problem is that NO, as a paradigmatic
noninnocent ligand, does not allow a simple determination of
the oxidation state of a metal center it is attached to.4,5

According to current chemical nomenclature, oxidation states
are defined in terms of the ionic approximation (IA), whereby
the two electrons of a heteronuclear bond are both assigned to
the more electronegative side.6−8 For NO complexes, the
strongly covalent nature of metal(d)−NO(π*) interactions
often interferes with the application of the IA. Fifty years ago,
in a master stroke, Enemark and Feltham chose to sidestep the
problem of local oxidation states by assigning an effective d
electron count n to metal nitrosyls.9 Now known as the
Enemark−Feltham electron count, n refers to the number of
metal d electrons plus the number of NO π* electrons; thus,
“Fe(II) + NO•” corresponds to n = 6 + 1 = 7 and is denoted as
{FeNO}7. Despite the popularity of the notation, chemists
have retained a strong interest in the oxidation state problem
and have sought to assign oxidation states to both the metal

and the NO fragments in nitrosyl complexes. Unfortunately,
density functional theory, the major theoretical tool for such
studies,10−15 suffers from several pitfalls. To start with, the
DFT description generally does not correspond to a pure spin
state but incorporates contamination from multiple states. In
addition, different exchange−correlation functionals provide
disturbingly divergent descriptions of metal−ligand covalence
and of spin-state energetics.16,17 In the face of these challenges,
chemists have increasingly resorted to a so-called spectroscopi-
cally calibrated approach, i.e., a combination of several
spectroscopic methods and DFT calculations, to come up
with local oxidation states in nitrosyl complexes.18−23 Modern
multiconfigurational methods and orbital localization schemes
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provide an elegant alternative to these somewhat ad hoc
approaches, as we illustrated recently in a study of transition
metal corroles.24 Here we present a state-of-the-art DMRG/
CASSCF−CASPT2 study of seven paradigmatic FeNO
porphyrin derivatives spanning the {FeNO}6−8 electron counts
(Scheme 1). Two {FeNO}7 systems were examined (see
relevant experimental papers25−31): Fe[P](NO), i.e., a five-
coordinate nitrosylheme, and its six-coordinate analogue
Fe[P](NO)(ImH), where P is an unsubstituted porphyrin,
and ImH is imidazole, a model for the amino acid histidine.
Four oxidized {FeNO}6 systems, so-called met-heme nitrosyl
derivatives, were examined (see relevant experimental
papers32−39): (iii) {Fe[P](NO)}+, (iv) {Fe[P](NO)(ImH)}+,
Fe[P](NO)(NO2), and Fe[P](NO)(SMe). Finally, one
reduced {FeNO}8 system, a heme−nitroxide derivative, was

examined (see relevant experimental papers40−47): {Fe[P]-
(NO)}−. The present calculations provide a definitive
resolution of several longstanding questions, including (i) the
spin state energetics of the major classes of FeNO porphyrins,
(ii) their spin density profiles (where applicable),16,17 and (iii)
the local oxidation states of the Fe and the NO, as one
transitions among Enemark−Feltham counts 6−8.

2. METHODS
All structures, including excited states, were optimized with density
functional theory employing the BP86 functional and def2-TZVP
basis sets,48−50 with D3 dispersion corrections51 and Becke−Johnson
damping.52 This method has been widely shown to yield realistic
geometric structures for transition metal nitrosyls, such as in works by
Conradie et al.11 and Monsch and Klüfers.15 Single-point calculations
were carried out on these optimized geometries with a wide variety of

Scheme 1. Molecules Studied in This Work

Table 1. Formal Electron Configuration of The Complexes Studied in This Work

electron configurationa complex active spaceb

[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)↑ (dx2−y2)↑ (dz2)↑
4{Fe[P](NO)}

19 in 234{Fe[P](ImH)(NO)}

[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)2 (dx2−y2)0 (dz2)↑
2{Fe[P](NO)}

19 in 222{Fe[P](ImH)(NO)}
[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)2 (dx2−y2)0 (dz2)↑ (Pπ)↑ 3{Fe[P](NO)}− 22 in 23
[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)2 (dx2−y2)0 (dz2)2 (Pπ)0 1{Fe[P](NO)}− 22 in 23

[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)↑ (dx2−y2)0 (dz2)↑
3{Fe[P](NO)}+ 18 in 22
3{Fe[P] (NO)(ImH)}+ 20 in 23

[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)2 (dx2−y2)0 (dz2)0
1{Fe[P](NO)}+ 18 in 21
1{Fe[P](NO)(ImH)}+ 20 in 22

[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)↑ (dx2−y2)0 (dz2)↑
3{Fe[P](NO)(NO2)} 20 in 233{Fe[P](NO)(SMe)}

[dxz + π*(NO)]2 [dyz + π*(NO)]2 (dxy)2 (dx2−y2)0 (dz2)0
1{Fe[P](NO)(NO2)} 20 in 221{Fe[P](NO)(SMe)}

aExcept for the case of linear FeNO, there is no clear distinction between dxz and dz2 orbitals.
bWe used the notation “ne in na” to denote an active

space of ne electrons in na active orbitals.
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exchange−correlation functionals (with different percentages of exact
exchange shown in parentheses): PBE (0%), B97-D3 (0%), TPSS
(0%), TPSSh (15%), B3LYP (20%), PBE0 (25%), BHLYP (25%),
M06-L (0%), M06 (27%), and M06-2X (54%).

DMRG−CASSCF/CASPT2 calculations53−61,81,96 were performed
with the OpenMolcas62,63 package interfaced with the CheMPS2
library.64 We used the aug-cc-pwCV5Z-DK basis set for Fe,65 cc-
pVTZ-DK for H, and aug-cc-pVTZ-DK for the other ligand
atoms,66,67 as we found that this combination gives the best
agreement to the complete basis set limit due to error cancellations.68

Cholesky decomposition of the two-electron integrals with a
threshold of 10−6 au was used.69 A second-order Douglas−Kroll−
Hess (DKH) Hamiltonian70−72 was used to account for scalar
relativistic effects. Similar to our previous works,24,73 the DMRG−
CASSCF calculations made use of Fiedler orbital ordering,74 residual
norm threshold of 10−5 for the Davidson algorithm, and perturbative
noise with a prefactor of 0.05.75 We chose a value of 1000 for the
number of renormalized states m, as it gave almost converged results
in other studies on FeNO porphyrinoids.76 The ionization-potential/
electron-affinity (IPEA) shift77 of 0.25 au and an imaginary shift78 of
0.1 au were used in the CASPT2 calculations. All core and semicore
electrons of Fe (3s and 3p) were kept frozen in the CASPT2
treatment, as they make only a slight contribution to the CASPT2
relative energies in iron−nitrosyl complexes.73 Point group symmetry
was employed, as appropriate.

The active spaces of the complexes are summarized in Table 1 and
are similar to our previous work on nitrosyl complexes.24 The active
spaces consist of all five Fe(3d) orbitals, all (possible) five Fe(4d)
orbitals to account for the double-shell effect,26 all (possible) Fe-
ligand σ orbitals, and a set of ten NO-based orbitals. The latter set
includes two NO(π) and the correlating two NO(π*) orbitals; the
NO(σ) orbital and the correlating NO(σ*) orbital, two NO(π′)
orbitals to account for the radial correlation of the NO(π*) orbitals,
one nitrogen 2s orbital, and the correlating orbital. The four
Gouterman π orbitals (denoted Pπ) were also included, to allow for
a noninnocent porphyrin in certain states (see Table 1). The natural
active orbitals are shown in Figures S1−S4.

The DMRG−CASSCF wavefunctions were analyzed in terms of
localized orbitals.24,31,73,79 All DMRG−CASSCF natural orbitals were
first localized into ligand-based and Fe-based orbitals. We then used
BLOCK2 to decompose the wave function into configuration state
functions (CSFs).80 The CSFs were further classified into four
resonance structures, Fe−NO+, Fe−NO0, Fe−NO−, and Fe−NO2−,
allowing us to determine the oxidation state of Fe. We also examined
the Mulliken spin populations calculated at the DMRG−CASSCF
level of theory (see Supporting Information). As the DMRG−
CASSCF interface in OpenMolcas lacks this functionality, the spin
populations were calculated with the ORZ program package81 in

combination with the def2-TZVP basis set.50 The formal electronic
configurations of all complexes are shown in Table 1.

3. RESULTS AND DISCUSSION
3.1. Spin State Energetics. Ever since density functional

theory gained a widespread following among chemists,
especially experimental chemists, the question of spin state
energetics of transition metal complexes has been a vexing
one.82−87 In early studies, we (as well as others) showed that
classic pure functionals often exhibit an undue preference for
lower-spin states, while hybrid functionals err in the opposite
direction, favoring higher-spin states. In particular, we found
the spin-crossover complex and nitrosylheme analogue Fe-
(sa len)(NO)16 (sa len = N ,N ′ -b i s(sa l i cy l idene)-
ethylenediamine; as well as other spin-crossover com-
plexes88−92) to serve as a particularly useful test case for a
functional’s performance vis-a-̀vis spin state energetics.

The CCSD(T) method has traditionally provided the gold
standard for calculations of the spin state energetics of
transition metal complexes. The DMRG−CASSCF/CASPT2
method employed here is slightly less accurate (with errors
typically about 0.1−0.2 eV),93−99 but unlike CCSD(T) has the
great advantage of applying to substantially multiconfigura-
tional systems. For such systems, the DMRG−CASSCF/
CASPT2 results can be calibrated by high-level multireference
methods such as MR-ACPF and MR-ACQC.100−104 The latter
methods are only applicable to small systems with only a few
atoms, but these calculations afford reassuring calibration of
CASPT2 energetics. Once again, the errors in the CASPT2
energetics are rarely worse than 0.1−0.2 eV. In the present
study, we have tacitly assumed similar errors for adiabatic low-
high spin-state gaps for a series of archetypal {FeNO}6−8

complexes. While worse than chemical accuracy, it is worth
emphasizing that the scatter with different DFT functionals is
about an order of magnitude higher. As of today, comparably
accurate results are only available for Fe[P](NO)31 and
Fe[C](NO),24,73 where P and C refer to unsubstituted
porphine and corrole, respectively. Our main findings are as
follows.

For the two {FeNO}7 complexes Fe[P](NO) and Fe[P]-
(NO)(ImH), the DMRG−CASSCF/CASPT2 calculations
predict a doublet ground state, as experimentally observed,
and small doublet−quartet gaps (ΔEDQ = Equartet − Edoublet) of
1−4 kcal/mol (Table 2). For comparison, common exchange−

Table 2. Singlet−Triplet Gaps in {FeNO}6 and {FeNO}8 Porphyrins and the Doublet−Quartet Gaps in {FeNO}7 Porphyrins,
Calculated with Various Functionals (Augmented with D3BJ Dispersion Corrections) and DMRG−CASPT2a

{FeNO}6 {FeNO}7 {FeNO}8

{Fe[P]NO}+ Fe[P](NO2)(NO) {Fe[P](ImH)(NO)}+ Fe[P](SMe)NO Fe[P]NO Fe[P](ImH)(NO) {Fe[P](NO)}−

BP86 12.7 20.8 22.2 15.4 18.4 18.4 6.4
PBE 13.0 21.0 23.3 15.7 17.9 19.7 6.3
B3LYP 8.1 9.2 20.2 3.5 0.1 3.8 3.8
TPSSh 10.6 13.7 _b 7.8 9.3 14.3 3.3
TPSS 12.9 18.9 23.8 13.4 18.7 21.4 5.7
BHLYP 7.7 −1.3 7.8 −8.9 −21.0 −18.8 3.3
PBE0 4.8 8.6 20.9 2.8 −5.5 −0.7 2.6
B97-D 9.8 19.1 15.6 14.1 5.8 3.5 6.6
M06 2.3 13.4 18.1 8.0 −12.3 −11.2 2.7
M06-L 8.5 17.2 21.5 12.9 −1.3 3.3 4.1
M06-2X −2.8 −0.9 5.6 −7.6 −24.4 −25.0 3.7
DMRG−CASPT2 20.9 33.6 30.4 31.2 1.0 3.6 20.7

aAll values are in kcal/mol. bCalculation did not converge to the correct state.
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correlation functionals predict dramatic variations in ΔEDQ
values over a range spanning >40 kcal/mol. As expected, classic
pure functionals greatly overstabilize the doublet state, whereas
hybrid functionals with larger amounts of exact exchange
incorrectly favor a quartet ground state by a wide margin. The
popular hybrid functional B3LYP actually does rather well,
yielding ΔEDQ values in surprisingly good agreement with the
DMRG−CASSCF/CASPT2 theory.

Somewhat to our surprise, DMRG−CASSCF/CASPT2
calculations predict surprisingly large singlet−triplet gaps of
>30 kcal/mol for the three {FeNO}6 complexes {Fe[P](NO)-
(ImH)}+, Fe[P](NO)(NO2) and Fe[P](NO)(SMe). This gap
also appears to be relatively independent of the axial ligand.
The latter observation is surprising in that the axial thiolate and
nitrite ligands are both readily oxidized as independent species
and, naively speaking, a low-energy, antiferromagnetically
coupled {FeNO}7−L• ligand radical state might have been
expected (as was indeed speculated by Walker34), in stark
contrast to the DMRG−CASSCF/CASPT2 results. For these
complexes, most of the exchange−correlation functionals
perform qualitatively well, correctly indicating singlet ground
states but generally underestimating the singlet−triplet gap
(ΔEST = Etriplet − Esinglet). Once again, the functionals with the
highest proportions of exact exchange fail to identify the
correct ground state, i.e., incorrectly predict a triplet ground
state.

For the {FeNO}8 complex {Fe[Por](NO)}−, DMRG−
CASSCF/CASPT2 calculations predict an unambiguous
singlet ground state and a high singlet−triplet gap of >20
kcal/mol, qualitatively mirroring the scenario obtained for the
{FeNO}6 complexes. For {Fe[Por](NO)}−, however, all

exchange−correlation functionals correctly predict a singlet
ground state, but with much smaller ΔEST’s relative to the
DMRG−CASSCF/CASPT2 theory.
3.2. Spin Density Profiles. DMRG−CASSCF calculations

predict that nearly the entire spin density in Fe[Por](NO) is
localized on the Fe with only a trace on the NO. In
Fe[Por](NO)(ImH), the Fe carries about four-fifths of the
spin density, with most of the remaining fifth on the NO,
reflecting the effect of the antibonding Fe(dz2)−ImH
antibonding interaction. As shown in Figures 1 and 2, pure
functionals largely capture the essence of the DMRG spin
density profile, whereas hybrid functionals lead to much
greater spatial separation of the majority and minority
(alternatively, up and down) spin densities. For the singlet
{FeNO}6 and {FeNO}8 species, DMRG−CASSCF calcula-
tions “by definition” indicate zero spin density at every point,
in contrast to DFT, which results in various degrees of spin
symmetry-breaking, from negligible for classic pure functionals
to pronounced for hybrid functionals. The fact that the large
Fe spin density in the {FeNO}7 state is neutralized in the
{FeNO}6 and {FeNO}8 states may be naively regarded as
indicative of essentially metal-centered oxidation and reduc-
tion, respectively. It is worth recalling that early UV−vis
spectroelectrochemical studies of simple {FeNO}7 porphyrins
by Kadish and co-workers also reached similar conclusions, i.e.,
FeNO-centered redox processes.40 Below we shall see that an
analysis of the DMRG wave function adds considerable detail
to these qualitative arguments.
3.3. DMRG−CASSCF Resonance Structures and

Implications for Oxidation States. As explained above in
Methods Section, we decomposed the DMRG−CASSCF wave

Figure 1. DMRG−CASSCF and DFT spin density plots of 2Fe[P](NO), with majority and minority spin densities colored blue and yellow,
respectively.
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function into “resonance forms” in which the total NO π*-
occupancy varies from 0 to 4; the results are shown in Figure 3.
Note that this analysis does not directly yield an oxidation state
for the Fe or NO, but identifies resonance forms in order of
importance. It is the latter that provides the basis for a
discussion of oxidation states. One drawback of this approach
is that the localization procedure may fail for certain species, as
it did for the {FeNO}6 complexes {Fe[P](NO)(ImH)}+ and
Fe[P](NO)(NO2). Fortunately, the method worked satisfac-
torily for the other two {FeNO}6 complexes studied, allowing
for a comparative discussion of all three Enemark−Feltham
electron counts of interest in this study.

For both of the {FeNO}7 complexes examined, Fe[P](NO)
and Fe[P](NO)(ImH), approximately two-thirds of the wave
function is made up of [π*(NO)]1 configurations, with the
remaining third made up of a mix of [π*(NO)]0 and
[π*(NO)]2 configurations. The axial imidazole ligand

decreases the proportion of [π*(NO)]0 configurations and
increases that of [π*(NO)]2 configurations, while leaving the
proportions of [π*(NO)}1 configurations relatively unaffected.
This finding mirrors the impact of the imidazole ligand on the
spin density profile of Fe[P](NO). Thus, in spite of the minor
difference, both complexes can, to a first approximation, be
described as Fe(II)−NO0. It is worth stressing that this
analysis does not imply that the NO ligand in these two
complexes carries a large or even significant amount of
electronic spin density.

For the two {FeNO}6 complexes analyzed, [π*(NO)]1
configurations also account for approximately two-thirds of
the wave function, with the remaining third made up of a
roughly even mix of [π*(NO)]0 and [π*(NO)]2 config-
urations. Given that the porphyrin is thought to be innocent
with a formal charge of −2 in all the complexes, we may,
accordingly, at least to a first approximation, describe the two

Figure 2. DMRG−CASSCF and DFT spin density plots of 2Fe[P](NO)(ImH), with majority and minority spin densities colored blue and yellow,
respectively.
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complexes as Fe(III)−NO0. Such a description is at variance
with from the popular view of low-spin, square-pyramidal or
octahedral {FeNO}6 complexes as Fe(II)−NO+,2,19 but is
consonant with Solomon21 and co-workers’ L-edge X-ray
absorption study of an octahedral nonheme {FeNO}6 complex
with “heme-like” coordination.105 Another study by DeBeer,
Meyer, and co-workers20 has also reached a similar conclusion.

In {Fe[P](NO)}−, the contribution of [π*(NO)}1 config-
urations is dramatically lower, with that of the [π*(NO)}2
configurations correspondingly higher. Accordingly, to a first
approximation, {Fe[P](NO)}− appears best described as a
resonance hybrid: Fe(I)−NO0 ↔ Fe(II)−NO−. Going from
{FeNO}7 to {FeNO}8, the reduction thus is not entirely metal-
centered, as speculated above, but also significantly on the NO.
Such a description is largely in accord with earlier theoretical
studies on low-spin {FeNO}8 species,42,45 including one by
one of us.43

3.4. Insights from NO Bond Distances and Vibra-
tional Frequencies. Given that the NO bond distance and
vibrational frequency are known to vary as a function of the
NO π* occupancy, we looked into the possibility of a
semiquantitative correlation. Toward that end, we optimized
and determined the vibrational frequency of NO as an isolated
diatomic, with the π* occupation varying from 0 to 2 (i.e.,
from NO+ to NO−). Fractional orbital occupations were also
employed in this exercise. An essentially linear relationship was
found to exist among the N−O distance, vibrational frequency,
and π* occupancy. As hoped for, the N−O distances and
vibrational frequencies of the FeNO porphyrins studied also
appeared to follow the same relationship, allowing an empirical
readout of NO π* occupancies in the different molecules
(Figure 3). Note that the couplings between the NO vibration
and other vibrational modes are small. In all complexes, the
NO bond distance ranges from 1.153 to 1.203 Å, but never
exceeds the value of 1.213 Å corresponding to NO−0.5 [or the
occupancy of 1.5 of the NO(π*) orbitals]. Similarly, the NO
vibrational frequency ranges from 1529 to 1945 cm−1,
corresponding to somewhat under NO−0.5 (1635 cm−1) to
somewhat over NO0 (1889 cm−1). Overall, the results indicate
that the vast majority of the complexes, regardless of their spin
state, are best described as metal−NO0 as opposed to metal−
NO− or metal−NO+.

Using the calibration curve, one can also estimate the π*
occupancies of the complexes, although the results should be
viewed qualitatively, as we found a significant downshift of the

data points from the calibration curve. This behavior is also
found in other nonheme complexes but to a smaller extent
(unpublished results). Based on the NO vibrational frequency,
the occupancies should be 0.95, 1.35, and 1.7 for {Fe[P]-
(NO)}+, Fe[P](NO), and {Fe[P](NO)}−, respectively.
However, based on the NO bond distance, the occupancies
are 0.90, 1.15, and 1.4, respectively. These results are in
moderate agreement with those obtained via the DMRG−
CASSCF-based resonance form analysis outlined above. The
analysis suggests that the NOs in both {Fe[P](NO)}+ and
Fe[P](NO) are best approximated as NO0, while the one in
{Fe[P](NO)}− is around NO−0.5. On the other hand, this
analysis is inconsistent with the result that both {Fe[P](NO)}+

and Fe[P](NO) exhibit a nearly identical NO resonance form
composition, as shown in Figure 3. From the point of view of
oxidation state assignment, we view resonance form analysis as
the clearly superior method. The diatomic model that forms
the basis of Figure 4 is clearly a gross oversimplification of the
dynamics of the FeNO group.

Figure 3. Weights (in percentage) of dominant configurations based on (NO−π*)n (n = 0, 1, 2, 3) in DMRG−CASSCF wave functions, indicated
in different colors. The localization procedure fails to localize the NO−π orbitals and σ orbital between Fe and the axial ligand in
{Fe[P](NO)(ImH)}+ and Fe[P](NO)(NO2).

Figure 4. Correlation between the NO bond distance and vibrational
frequency, obtained with the BP86-D3(BJ)/def2-TZVP method. The
open-circles correspond to the results of isolated NO with fractional
orbital occupations.
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4. CONCLUSIONS
High-level ab initio DMRG−CASSCF/CASPT2 calculations
on archetypal {FeNO}6, {FeNO}7, and {FeNO}8 heme−
nitrosyl complexes have yielded a number of new insights as
well as underscored significant deficiencies of DFT methods.
The key results are enumerated as follows.
(a) As a result of the balanced treatment of static and

dynamic correlation, DMRG−CASSCF/CASPT2 calcu-
lations have provided some of the most authoritative
results available to date on the spin state energetics of
heme−nitrosyl complexes. DFT calculations, in contrast,
yield widely divergent results on spin state energetics as
a function of the exchange−correlation functional, even
though the various functionals correctly identify the
ground states of transition metal complexes for the great
majority of transition metal complexes. As far as spin
state energetics is concerned, DMRG−CASSCF/
CASPT2 calculations indicate that (a) {FeNO}7

complexes, represented by Fe[P](NO) and Fe[P]-
(ImH)(NO), exhibit small doublet−quartet gaps,
typically ≲4 kcal/mol, and (b) both {FeNO}6 and
{FeNO}8 complexes exhibit large singlet−triplet gaps of
≳20 kcal/mol. In other words, the Fe−NO bonding in
the latter two classes of complexes is strongly covalent
and should not be described as antiferromagnetic
coupling.

(b) DMRG−CASSCF spin densities have provided valuable
benchmarks for those obtained with DFT. Thus,
DMRG−CASSCF calculations predict nearly the entire
spin density of Fe[P](NO) localized on the iron,
whereas, in the case of Fe[P](NO)(ImH), the sixth
ligand pushes approximately a fifth of that spin density
out on to the NO. These spin density patterns are
similar to those obtained with pure functionals, but quite
different from those obtained with hybrid functionals.
The latter exhibit with much greater separation of
majority and minority spin densities, reflecting con-
tamination from the S = 3/2 state.

(c) An analysis of the DMRG−CASSCF wave function in
terms of localized orbitals has permitted a quantitative
assessment of the contributions of resonance forms with
different NO(π*) occupancies, i.e., especially the metal−
NO+, metal−NO0, metal−NO−, and metal−NO2−

resonance forms. For the {FeNO}7 and {FeNO}6
complexes studied, the wave function in each case
indicated a dominant NO0 resonance form. For the
{FeNO}8 complex {Fe[P](NO)}−, a similar exercise
indicated a resonance hybrid, Fe(I)−NO0 ↔ Fe(II)−
NO−, with both resonance forms making comparable
contributions of 44 ± 6%. These findings contradict a
number of common formulations for nitrosyl complexes,
most notably Fe(II)−NO+ for {FeNO}6 heme−nitrosyl
systems, but are consonant with an L-edge XAS study of
an octahedral low-spin nonheme {FeNO}6 complex,
which the authors formulated as Fe(III)−NO0. To what
extent the present conclusions are transferable to high-
spin nonheme iron nitrosyls remains a fascinating
question at this point.

We wish to conclude by reaffirming our continued support
and admiration for the 50-year-old Enemark−Feltham formal-
ism. Far from being a “cop-out” in terms of ducking the
question of local oxidation states, it is a much-needed reminder

of the complex multiconfigurational character of transition
metal nitrosyls.
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