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ABSTRACT 
Ship operators typically depend on the visual method for draft reading, 

which may lead to errors or approximations, and it further introduces draft 

survey calculation errors and cannot provide continuous updates. Ensuring 

accurate real-time ship draft measurement becomes crucial for enhancing 

navigational safety, optimizing vessel performance, and achieving precise 

cargo and consumable measurements. With the current approach towards 

automation and remote operation of ships, the need to rely on the accuracy 

of the measurements provided by the sensors has increased. Although 

different sensor types are gradually being adopted for draft measurement, 

they encounter challenges in the demanding marine environment which 

may result in noisy and inaccurate readings. This paper aims to estimate the 

true draft of a ship in different conditions from noisy sensor measurements 

using the Kalman filter algorithm. The purpose of the algorithm is to reduce 

uncertainty in draft measurement that is generated from inaccuracies in the 

sensor or from the dynamic marine environment. The paper involves 

designing the Kalman Filter algorithm for draft measurement to work within 

the different conditions the ship may experience. Simulating different 

situations and analyzing the result, the application of the filter shows the 

advantage in real-time draft measurement in both static and dynamic 

conditions. 

1. INTRODUCTION
The maritime industry plays a pivotal role in global trade, transportation, and economic 
development. Vessels of various sizes navigate through vast oceans, rivers, and seas to 
transport goods, passengers, and resources. Ensuring the safe and efficient operation of these 
maritime vessels is paramount to avoid potential risks, accidents, and environmental hazards. 
One crucial aspect of ship operation that demands meticulous attention is draft reading [1]. 
The draft of a ship is the vertical distance between the present water line, which is the air-
water interface and the lowest point on its hull. Accurate draft readings are essential for 
maintaining vessel stability, optimizing cargo loading and unloading, and ensuring safe 
navigation through shallow waters and restricted channels [2]. Traditionally, the visual 
method has been the predominant approach for draft measurement [3]. This method often 
involves the visual observation of the ship's six draft marks (both port and starboard side, near 
its bow, stern and midships), employing brackets, and climbing ladders to achieve the most 
parallel angle of observation to the water surface. However, it is prone to errors that can lead. 
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to significant economic losses in shipping operations [4]. Factors like parallax errors, 
restricted visibility of the draft marks, and challenges posed by high waves during observation 
may contribute to such inaccuracies [5]. Therefore, improving the precision of draft 
measurement in real-time can not only enhance the safety of maritime operations but also 
benefit the interests of shippers and consignees. 

As the maritime industry embraces remote operation and autonomous shipping, the 
demand for real-time sensor-based draft monitoring systems becomes more important [6]. The 
integration of draft measuring sensors, such as optical fiber detection technology, RADAR, 
IR, and pressure sensors, on ships has enabled continuous and automated draft monitoring [4]. 
However, challenges arise as these sensors may introduce noise in readings, potentially 
compromising the accuracy of draft measurements. The noise can be attributed to the 
demanding marine environment or inherent electrical noise in the sensors. 

This paper seeks to address these challenges by employing the Kalman filter algorithm to 
estimate the true draft of a ship under various operational conditions. The primary objective 
of the Kalman filter is to reduce uncertainty in draft measurement stemming from sensor 
inaccuracies or the dynamic marine environment. Through simulations and analytical 
assessments, the study demonstrates the potential of the Kalman filter in enhancing draft 
estimation accuracy. 
 
2. IMPLICATIONS OF DRAFT CHANGES ON SHIP OPERATIONS 
Fluctuations in the draft can have wide-ranging implications that significantly impact various 
critical aspects of ship operations. This section explores the consequences of draft changes in 
some key areas. 
 
2.1. Under-Keel Clearance 
Navigating marine vessels in shallow waters poses unique challenges, and one critical aspect 
that demands the utmost attention is maintaining a safe under-keel clearance (UKC). The 
under-keel clearance refers to the vertical distance between the vessel's lowest point and the 
seabed. It is determined by subtracting the overall dynamic draft from the available water 
depth at different points of the transit [7]. Ensuring an adequate UKC is essential for the safety 
of voyages, preventing groundings, and facilitating seamless port and channel operations.  

In 2022 alone, the Japan Transport Safety Board (JTSB) [8] reported 142 grounding 
incidents, underscoring the significance of addressing UKC-related concerns to enhance 
navigational safety (Fig. 1.).  

Floating vessels are exposed to hydrodynamic effects leading to dynamic change in their 
UKC. As part of passage planning before entering restricted waters, the ship's master should 
ensure an adequate safety margin by considering factors such as the vessel's dynamic change 
in the draft, potential inaccuracies in hydrographic data, and other relevant variables. To 
accomplish this, access to reliable real-time weather and tide forecasts, as well as an approved 
method for predicting the ship's motion and subsequent dynamic change in draft under various 
conditions, is crucial [9]. 
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Fig. 1. Marine Accident Statistics 2008-2022 [8]. 

 
2.2. Ship Stability and Performance 
Knowing the ship's draft is essential for maintaining a stable metacentric height (GM), which 
determines the ship's stability. GM is the distance between the center of gravity and the 
metacenter of the ship (Fig. 2.). A positive GM indicates stability, while a negative GM 
signifies instability and the risk of capsizing. This knowledge also aids in achieving a safe 
balance between the maximum cargo load that can be carried and its distribution while also 
preventing the ship from becoming unstable [10]. 

The fuel efficiency of a ship, affected by its design, hull form, machinery, and operational 
factors such as speed through water, mean draft, and trim (the difference between forward and 
aft draft), plays a crucial role in its energy consumption [11,12]. Trim, in particular, has a 
considerable impact on a vessel's performance and propulsion energy requirements. By 
maintaining an optimal trim relative to the draft, fuel consumption can be reduced [13]. 
Additionally, ships equipped with a bulbous bow to reduce drag are effective only within 
specific operational draft limits. Thus, it becomes essential to maintain a minimum operational 
draft to ensure propeller immersion, rudder effectiveness for maneuverability, and engine load 
considerations [14]. 
 
2.3. Cargo Mass 
The draft survey method is commonly used to determine the cargo mass onboard a ship [15]. 
Based on the observed values at different draft marks and taking its arithmetic mean, it is 
possible to calculate the present vessel displacement after accounting for corrections due to 
the distance of the draft marks from forward and aft perpendiculars, sagging or hogging and 
water density. Subsequently, by deducting the ship's dead weight and deductibles such as fuel 
and ballast, the cargo mass can be computed. However, it is important to note that this method 
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Fig. 2. Transverse stability of a ship. Abbreviations: Go - Centre of Gravity, Mo- 
Metacenter, Bo - Centre of Buoyancy, K - Keel, ɸ - Angle of heel, Bɸ - Centre of 
Buoyancy (after heel), Nɸ - False Metacenter, Mɸ - Actual metacenter when heel, 
GoZ - Righting Lever. 
 
is susceptible to specific systematic and accidental errors, primarily caused by incorrect draft 
readings [16]. Draft reading errors and subsequent survey miscalculations can lead to 
significant economic loss (Fig 3.). For instance, on a cape-size ship, an error of a one-
centimeter draft can result in a cargo capacity loss of up to 120 tons, equivalent to 24,000 
dollars for common coal priced at 200 dollars per ton [4]. 
 
2.4. Dynamic Positioning Vessel 
During the operation of a dynamic positioning (DP) vessel, the vessel model estimator 
algorithm is fed with the drag coefficient values [17]. The drag coefficient table varies with 
different drafts of the vessel, and the correct value is essential for the estimator to work 
accurately for thrust generation for station-keeping purposes. Often, manufacturers use an 
averaged draft value from different sensors located on the vessel. Failure of a sensor or 
providing false reading leads to the incorrect input value of drag, generating inaccurate 
estimation and may affect the operation [18]. 
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Fig.3. The observed error of tons per centimeter for the three primary ship types 
in the bulk market, corresponding to the quantity of goods under the summer load 
[4]. 

 
3. SHIP DYNAMIC MOTION AFFECTING DRAFT 
When a ship is floating on the water, it experiences various hydrodynamic forces that act upon 
its hull. These forces can be influenced by factors such as wave action, currents, wind, and the 
ship's own motion. As a result of these hydrodynamic forces, the ship may undergo dynamic 
changes in its draft (Fig. 4.). 
 

 
Fig.4. Factors resulting in a change of ship’s draft. 
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3.1. Squat  
The relative motion of the ship's hull through the surrounding bulk of water leads to variation 
in hydrodynamic pressure along the vessel, associated with the Bernoulli effect. This causes 
a downward vertical force and a moment about the transverse axis leading to sinkage and/or 
trimming of the vessel; this phenomenon is called squat [19]. As this relative velocity between 
the vessel hull and the water flowing underneath increases due to restriction in shallow water, 
the squat effect increases, leading to a further decrease in UKC which may lead to grounding. 
The squat depends on multiple factors like the waterway the ship is in, its present speed 
through water, dimension and hull form, loading condition and the depth underneath the 
vessel's keel [10]. 

Commonly, most ship operators rely on empirical formulas to calculate squat, which 
provides approximations and may not give a correct result when generalized for different ships 
in different conditions. Barrass's empirical formula provides a straightforward and convenient 
method for estimating the maximum squat (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚) experienced by a vessel and can be applied 
to all channel configurations [20], which is expressed as: 

 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =   𝐾𝐾 𝐶𝐶𝑏𝑏 𝑣𝑣2

100
                                                         (1) 

 
where 𝐶𝐶𝑏𝑏 is the block coefficient, a dimensionless parameter representing the total volume of 
the hull to the volume of a rectangular block with the same overall dimensions, 𝑣𝑣 is the vessel's 
speed through the water (in knots or m/s), and 𝐾𝐾 is the blockage factor, accounting for the 
vessel's interaction with the confined water channel, is expressed as:  
 

𝐾𝐾 = 5.74 𝑆𝑆0.76                                                       (2) 
 
where 𝑆𝑆 is a parameter that depends on the extent of restriction in the water channel due to 
shallowness or confinement. 
 
3.2. Heel  
Ship heel refers to the angular inclination of a vessel along its longitudinal axis, causing it to 
tilt to one side. Due to wind moment and also while turning, the ship experiences heel, which 
in turn reduces the UKC near the bilge keel on the side the vessel is heeled [21]. For a box-
shaped ship at hydrostatic equilibrium due to heeling moment (M), the resultant angle of heel 
(ɸ) measured in radians is expressed as: 
 

ɸ =   M
mg  𝐺𝐺𝐺𝐺𝑇𝑇

                                                          (3) 

 
where 𝑚𝑚 is the mass of the ship (tons), 𝑔𝑔 is the acceleration due to gravity (~9.8 m/s2), and 
𝐺𝐺𝑀𝑀𝑇𝑇 is transverse metacentric height (m), which is a measure of the initial stability of the ship 
in the transverse direction. 
 

Additionally, the extra sinkage or increase (𝛥𝛥𝐷𝐷) (m) in draft due to the heel angle (ɸ) can 
be approximated using the following formula: 
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ΔD  ≈  ɸ × 1
2

× 𝑏𝑏                                                         (4) 
 
where 𝑏𝑏 is the measure of ship beam (m), which refers to the width of the ship at its widest 
point. 
 
3.3. Dynamic Bending  
Dynamic stresses can cause the ship's structure to bend due to hydrostatic forces induced by 
the sea [10]. This longitudinal bending can have an impact on the ship's dynamic draft. When 
the ship's ends are on a wave's crest, and the midship region is below a trough, it experiences 
sagging, which leads to an increase in the draft at the midship region. Conversely, when the 
ends are on wave troughs, the ship experiences hogging, resulting in an increase in the draft 
at both the forward and aft ends of the vessel. 
 
3.4. Combined effect of Heave, Pitch and Roll  
A ship usually encounters three types of displacement motions - surge, sway, and heave and 
three angular motions - roll, pitch, and yaw. In this study, we are only concerned with the 
heave, pitch, and roll motion, which affects the ship's dynamic draft. When a ship is excited 
by a sinusoidal force (due to regular wave motion) (Fig.5.) of 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶(𝜔𝜔𝑒𝑒𝑡𝑡), where 𝐴𝐴 is the 
amplitude and 𝜔𝜔𝑒𝑒 is the angular frequency of the applied force at time 𝑡𝑡. 

The resultant change in vertical height (ℎ) at any point (𝑋𝑋𝑚𝑚, 𝑌𝑌𝑏𝑏) on the ship can expressed 
as, 

ℎ(𝜔𝜔𝑒𝑒 , 𝑡𝑡) =  𝑍𝑍(𝑡𝑡)  − 𝑋𝑋𝑚𝑚Ɵ(𝑡𝑡) + 𝑌𝑌𝑏𝑏ɸ(𝑡𝑡)                                         (5) 
 
where 𝑍𝑍(𝑡𝑡) is the heave motion of the ship at time 𝑡𝑡, Ɵ(𝑡𝑡) is the pitch motion of the ship at 
time 𝑡𝑡,ɸ(𝑡𝑡) is the roll motion of the ship at time 𝑡𝑡, 𝑋𝑋𝑚𝑚 is the distance of the point 𝑋𝑋𝑚𝑚 ,𝑌𝑌𝑏𝑏  from 
the ship's longitudinal axis, and 𝑌𝑌𝑏𝑏 is the distance of the point 𝑋𝑋𝑚𝑚 ,𝑌𝑌𝑏𝑏 from the ship's transverse 
axis. 
 

The function representing a sinusoidal motion in the vertical height (ℎ) at a specific point 
on the ship due to the action of a harmonic force with angular frequency 𝜔𝜔𝑒𝑒, is expressed as: 

 
ℎ(𝜔𝜔𝑒𝑒 , 𝑡𝑡) =  ℎ𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶(𝜔𝜔𝑒𝑒𝑡𝑡 + Ɛℎ)                                                (6) 

 
where ℎ𝑚𝑚 is the amplitude of the sinusoidal motion, which determines the maximum 
displacement or height variation from the mean position and Ɛℎ is the phase angle, 
representing the initial phase of the motion. 
 

When a regular sinusoidal force encounters the ship, the resultant response motion is also 
sinusoidal [21]; hence the change in the draft due to a combination of heave, pitch and roll at 
any point on the vessel will likewise become a sinusoidal function. 
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Fig.5. Combined effect on vertical displacement from heave, pitch and roll in a 
regular wave. 
 
4. DRAFT SENSORS  
Though the traditional method for draft measurement is to make visual observations from the 
vessel draft mark, there has been a transition where vessels are being fitted with sensors for 
that purpose to receive a real-time update [4]. Usually, six draft sensors are positioned on the 
six draft marks (fig.6.), located at the port and starboard of the fore, aft, and midship of the 
ship. These draft sensors operate by converting the dynamic water level into electrical signals, 
which are then transformed into digital information. This section explores some popular 
methods employed for real-time draft measurement. 
 

 
Fig.6. Draft sensors placed at the draft marks. 
 
4.1. Ultrasonic draft sensor 
The ultrasonic draft sensor operates by transmitting a package of ultrasonic signals, which 
helps measure the distance between the sensor level and the air-water interface. By calculating 
the time taken for the emitted signal to be received back after reflection, the device determines 
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the draft of the vessel [22]. However, these sensors are prone to errors due to the impact of 
temperature and humidity changes. Variations in temperature and humidity can affect the 
speed of sound in the air, leading to inaccuracies in the draft measurement [5]. 
 
4.2. Pressure Sensor 
Hydrostatic pressure sensors’ function based on the principle of a transducer with a predefined 
pressure range, which generates a signal output corresponding to the pressure variations at 
different water levels [2]. However, accurately measuring the ship's draft using pressure 
sensors is hindered by the change in water density. In order to ensure accuracy, density 
compensation is important in the measurement process. During voyages, draft detection using 
pressure sensors becomes more complex due to the influence of sea conditions and dynamic 
vessel motions, which cause constant pressure fluctuations. 
 
4.3. Optical Fiber Technology 
An optical fiber-based method for draft measurement involves directing a light source into an 
optical fiber installed along the ship's draft mark. When the light reaches the submerged 
portion of the cable, total internal reflection occurs within the fiber and the surrounding liquid 
cladding, resulting in minimal light loss compared to the non-immersed section. By calibrating 
the gauge for different draft levels and reading the corresponding signal from the detector, the 
draft of the ship can be accurately measured [16]. However, the installation and maintenance 
of photoelectric sensors, which are used in this method, can be challenging, making their 
widespread adoption on ships limited [5]. 
 
4.4. RADAR or IR technology 
A distance measurement method, which can utilize either Infrared (IR) technology using lasers 
or RADAR technology employing radio waves, is employed to determine the ship's draft. This 
method involves measuring the distance from the deck surface to the water surface 
simultaneously at multiple points along the ship's sides on both the port and starboard sides. 
However, signal variations resulting from density and temperature changes can impact 
accuracy and need to be accounted for [4]. 
 
5. KALMAN FILTER 
The presence of uncertainty and noise in the sensor signal during their use for draft 
measurement makes it essential to apply an efficient and dependable method for optimizing 
the sensor signal. Also, gradually with the goal of lesser human involvement with the 
advancement of ship automation and remote parameter observation, more reliable draft 
sensors will be desirable. 

The Kalman filter [23] is a collection of mathematical equations that offers an efficient 
recursive approach to estimate the state of a process while minimizing the mean squared error. 
Its strength lies in its ability to provide estimations for past, present, and even future states, 
even in situations where the exact nature of the modeled system is uncertain [24]. Kalman 
filter has a continuous-time version and various discrete-time versions (which can be readily 
executed in a computer program), out of which the predictor-corrector discrete-time version 
is the most popular [25].  
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The recursive Kalman Filter algorithm optimally estimates a process state at a given time 

by balancing the mathematical model with sensor measurements, taking into account their 
respective inaccuracies and Gaussian errors, enabling accurate estimation of the next state and 
correction of the estimated state with actual measurements (Fig. 7.). 

System modeled in state-space is expressed as: 
 

𝑥𝑥𝑘𝑘 =  𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝐵𝐵𝐵𝐵𝑘𝑘 + 𝑤𝑤𝑘𝑘−1 
 
And the measurement model is expressed as: 
 

𝑌𝑌𝑘𝑘 =  𝐶𝐶𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 
 
where 𝑥𝑥𝑘𝑘 is the state vector in time step 𝐾𝐾, 𝐴𝐴 is the state matrix, 𝐵𝐵 is the control matrix, 𝐵𝐵𝑘𝑘 is 
the input vector in time step 𝐾𝐾, 𝑌𝑌𝑘𝑘 is the measurement of the state 𝑥𝑥𝑘𝑘 in time step 𝐾𝐾, and 𝐶𝐶 is 
the matrix which relates the actual state with the measurement 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 state and 
measurement white noise with known covariance matrices 𝑄𝑄 and 𝑅𝑅. 
 

The Kalman Filter has undergone extensive research and application in diverse domains, 
proving successful in solving a wide range of problems, including signal processing, due to 
its ability to extract valuable information from noisy sensor readings with minimal 
computational demands [24]. The Kalman Filter has a storied history of successful application 
in various operational settings, initially gaining prominence in the Apollo program during the 
1960s [26]. Its pivotal role in navigating spacecraft to the moon showcased its effectiveness 
in space exploration. Since then, the filter has become a cornerstone for advanced estimation 
and prediction in numerous domains. In the realm of autonomous vehicles, it is integrated to 
process data from cameras, LiDAR, and radar sensors, enhancing vehicle perception and 
contributing to advancements in self-driving technology [27]. Global Navigation Satellite 
System (GNSS) receivers employ Kalman Filters to mitigate signal interference and multipath 
effects, ensuring accurate positioning [28]. In maritime applications, most vessels use Kalman 
filters to enhance navigation accuracy and optimize performance, by estimating crucial 
parameters like velocity, and heading, and position contributing to safer and efficient maritime 
operations [29]. These real-world case studies exemplify the Kalman Filter's adaptability and 
effectiveness in a wide array of operational contexts across industries. 

The Kalman Filter, while a potent tool for state estimation and prediction in numerous 
domains, may not be the optimal choice in certain situations. Its effectiveness relies on key 
assumptions, such as Gaussian noise, linearity in system dynamics, and the availability of 
adequate sensor data [30]. In instances where the system exhibits non-Gaussian noise 
characteristics or highly nonlinear dynamics, the Kalman Filter may not perform optimally, 
necessitating the exploration of alternative estimation techniques like Particle Filters or 
Unscented Kalman Filters [31]. Similarly, when dealing with complex, high-dimensional state 
spaces or situations where the system lacks a well-defined model, the Kalman Filter's utility 
might be diminished, prompting the consideration of different approaches [32]. Therefore, 
evaluating the suitability of the Kalman Filter is essential within the specific context of the 
system and application under consideration, taking into account its strengths and limitations. 
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In the subsequent sections, we will explore the application and utility of the Kalman Filter 
for estimating a ship's draft under various conditions, from uncertain or noisy sensor readings. 
 

 
Fig.7. Recursive Kalman Filter predictor-corrector algorithm. 

 
6. DRAFT MEASUREMENT PROBLEM MODELLING  
(i) The ship’s draft will remain static when its displacement is constant and floating in calm 
water, i.e., no motion: 
 

�̇�𝐷 = 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑡𝑡) = 0                                                          (7) 

 
where �̇�𝐷 represents the time derivative of the draft 𝐷𝐷 with respect to time 𝑡𝑡. 
 
(ii) The draft is increasing or decreasing, due to variation in the ship’s displacement such as 
due to cargo loading/discharging, fuel consumption, etc. or due to squat varying with its speed: 
 

�̇�𝐷 = 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑡𝑡) = 𝑟𝑟                                                          (8) 

 
where 𝑟𝑟 is the rate of change in draft.                      
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(iii) The draft changing as a sinusoidal function of time due to sinusoidal ship motion in 
response to the regular hydrodynamic force acting: 
 

𝐷𝐷(𝑡𝑡) = ℎ𝑚𝑚  𝐶𝐶𝑠𝑠𝑠𝑠(𝜔𝜔𝑒𝑒𝑡𝑡 + Ɛℎ)                                                (9) 
 

�̇�𝐷 = 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑡𝑡) = ℎ𝑚𝑚 𝜔𝜔𝑒𝑒 𝑐𝑐𝐶𝐶𝐶𝐶(𝜔𝜔𝑒𝑒𝑡𝑡 + Ɛℎ)                                      (10) 

 
where ℎ𝑚𝑚 is the amplitude, 𝜔𝜔𝑒𝑒  is the angular frequency, 𝑡𝑡 is the time variable and Ɛℎ represents 
the phase shift of the sinusoidal component of motion. 
 
Hence, the estimated state has three components: 
 
Component 1:  x�s 
 
where x�s represents the present draft. 
 
Component 2: x�v   ≡  d x�s

dt
 

 
where x�v represents the rate of varying draft. 
 
Component 3: x�m   ≡  Cs (constant) 
 
where x�m magnitude (amplitude) of a sinusoidal component of motion. In this case, the 
constant Cs determines how far the waveform extends from its central position (the amplitude) 
and remains the same throughout the entire oscillation. 
 

The continuous time process model for the estimated state components x�m, x�v and , x�s is 
expressed as: 

 

𝑝𝑝 (𝑤𝑤𝑚𝑚)~𝑁𝑁(0, 𝑞𝑞𝑚𝑚) → �𝑥𝑥�𝑚𝑚�⎯� 𝐶𝐶𝑠𝑠 →  𝜔𝜔𝑒𝑒 𝑐𝑐𝐶𝐶𝐶𝐶(𝜔𝜔𝑒𝑒𝑡𝑡 + Ɛℎ) 
(11) 

𝑝𝑝 (𝑤𝑤𝑣𝑣)~𝑁𝑁(0, 𝑞𝑞𝑣𝑣) → �
𝑥𝑥�𝑣𝑣
��� → 𝑥𝑥�𝑠𝑠 

 
where wm  and wv represents the sinusoidal motion variable which follows a normal 
(Gaussian) distribution with a mean of 0 and a variance of qm and qv. The probabilistic 
distributions p(wm) and p(wv) capture the uncertainties or noise associated with the 
estimates. 
 

The state form (x�) estimate of the system is expressed as,  

x� = �
x�s
x�v
x�m
�                                                               (12) 
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The new state estimate at time t + dt is expressed as, 
 

x�s (t + dt)  =  x�s (t)  +  dt x�v (t) + x�m (t)ωecos(ωet + Ɛh)                (13) 
 

x�v (t + dt)  =  x�v (t)                                                (14) 
 

x�m (t + dt)  =  x�m (t)                                               (15) 
 

The continuous time state matrix (A) is expressed as, 
 

A = �
0 0 ωe cos(ωet + Ɛh)
0 0 0
0 0 0

�                                          (16) 

 
The continuous time process error covariance matrix (Q) is expressed as, 
 

Q = �
0 0 0
0 qv 0
0 0 qm

�                                                    (17) 

 
The discrete-time state matrix (A(dt)) is expressed as, 
 

A(dt)  =  ℒ−1 [(sI − A)−1] |t = dt                                      (18) 
 

where ℒ−1 represents the inverse Laplace transform, s represents the complex frequency 
variable used in the Laplace domain, and I is the identity matrix. 
 

A(dt) = �
1 dt ωe dt cos(ωet + Ɛh)
0 1 0
0 0 1

�                                      (19) 

 
B = 0                                                              (20) 

 
where, B is the input matrix. 
 

If y represents the noisy sensor signal corresponding to the draft measurement. In other 
words, it is the measurement obtained from a sensor, and it may be subject to random noise 
or inaccuracies, then the estimated or predicted value of the draft measurement (y�) is expressed 
as: 

y� = Cx�                                                            (21) 
 

C = [1 0 0]                                                      (22) 
 

where C is the observation matrix, and x� represents the state estimate of the system. 
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The discrete-time covariance matrix Q(dt) is, 
 

Q(dt) =  ∫ eAτdt
0 QeATτdτ from continuous A and Q                           (23) 

 
Then, Q (t, dt) is expressed as, 
 

Q (t, dt) =

⎣
⎢
⎢
⎢
⎡
dt�3t2 + 3t dt + dt2�(qv + qm(ωecos(ωet))2

3
qvdt(2t+dt)

2
qmdt(2t+dt)ωecos(ωet)

2
qv dt(2t+dt)

2
qv dt 0

qmdt(2t+dt)ωecos(ωet)
2

0 qm dt ⎦
⎥
⎥
⎥
⎤
       (24) 

 
The results are the discrete-time covariance matrices representing the propagated 

uncertainty or variance of the state variables in the system. 
 
7. SIMULATION RESULT 
The above model is used in MATLAB® to simulate different probable conditions for the 
ship's draft reading at a draft mark and analyze the noisy measurement sensor signal and 
estimated result using the Kalman filter algorithm in graphical form.  
 
7.1 The First Scenario 
The ship is in calm water with no vessel motion or changes in its displacement, with a constant 
draft of 10 m (Fig. 8.). The value of 𝑞𝑞𝑣𝑣 = 1𝑒𝑒−3 𝑎𝑎𝑠𝑠𝑎𝑎 𝑞𝑞𝑚𝑚  = 1𝑒𝑒−3 for the process noise 
covariance matrix 𝑄𝑄. Sensor measurement frequency of 100 Hz and a noise covariance 𝑅𝑅 =
100. 
 

 
Fig.8. Filter performance for the first scenario. 
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7.2. The second scenario  
The ship is floating with regular vessel motion with an amplitude of 0.2 m and period of 12 s, 
oscillating around a mean draft of 10 m (Fig. 9.). The value of 𝑞𝑞𝑣𝑣 = 1𝑒𝑒−3 𝑎𝑎𝑠𝑠𝑎𝑎 𝑞𝑞𝑚𝑚  = 1𝑒𝑒−3 for 
the process noise covariance matrix 𝑄𝑄. Sensor measurement frequency of 100 Hz and a noise 
covariance 𝑅𝑅 = 100. 
 

 
Fig. 9. Filter performance for the second scenario. 

 
7.3. The third scenario 
The ship is floating with regular vessel motion with an amplitude of 0.4 m and a period of  
12 s and discharging cargo resulting in a change in a draft from 14 m to 10 m (Fig. 10.). 
 

 
Fig. 10. Filter performance for the third scenario. 

 
The value of 𝑞𝑞𝑣𝑣 = 1𝑒𝑒−3 𝑎𝑎𝑠𝑠𝑎𝑎 𝑞𝑞𝑚𝑚  = 1𝑒𝑒−3  for the process noise covariance matrix 𝑄𝑄. 

Sensor measurement frequency of 100 Hz and a noise covariance 𝑅𝑅 = 100. 
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7.4 The fourth scenario   
The ship of block coefficient (𝐶𝐶𝑏𝑏) 0.8 is underway in restricted water with regular vessel 
motion with an amplitude of 0.4 m and a period of 10 s and moving at a constant speed of 10 
knots up to the first 50 s then increases speed from 10 knots to 15 knots in the next 2 min (Fig. 
12.). 

The ship experiences squat when underway, using Barrass’s empirical correlation 
(Equation 1) for calculating the change in the draft (Fig. 11.). With an increase in speed from 
10-15 knots, the ship’s draft increases from 11.6 m to 13.6 m. 

 

 
Fig.11. Draft change due to squat for the fourth scenario. 
 

The value of 𝑞𝑞𝑣𝑣 = 1𝑒𝑒−3 𝑎𝑎𝑠𝑠𝑎𝑎 𝑞𝑞𝑚𝑚  = 1𝑒𝑒−3 for the process noise covariance matrix 𝑄𝑄 Sensor 
measurement frequency of 100 Hz and a noise covariance 𝑅𝑅 = 100. 

The performance evaluation of the Kalman filter algorithm indicates that it works 
satisfactorily in the above simulated scenarios to estimate the true draft of the ship from the 
noisy sensor reading. After the first few iterations, it can be observed that the residuals 
consistently drop and converge, which demonstrates the filter's ability to effectively reduce 
sensor noise and provide accurate state estimations. The estimated state closely aligns with 
the actual state of the system, indicating the filter's proficiency in tracking system dynamics 
accurately. Additionally, the filter maintains stability throughout the estimation process, 
ensuring reliable and robust performance under different conditions. 
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Fig. 12. Filter performance for the fourth scenario. 

 
8. CONCLUSION 
Accurate real-time draft readings hold significant value for ensuring overall ship safety and 
can be utilized by subsequent systems, such as the Electronic Chart Display and Information 
System (ECDIS) or cargo loading computers, to assess navigational safety, hull stress, cargo 
safety, and ship performance. However, the challenging marine environment poses obstacles 
to reliable sensor utilization, necessitating the application of filtering and smoothening 
techniques to improve sensor measurements. 

This paper highlights the implementation of the Kalman Filter as a viable solution to 
enhance and extract useful draft readings from uncertain or distorted draft sensor data, 
ensuring robustness in real-time draft measurement. Throughout various simulated conditions, 
the Kalman Filter effectively attenuated sensor noise and accurately converged to the true 
draft value. Nevertheless, it is crucial to acknowledge that the assumption of vessel sinusoidal 
motion may not fully represent actual sea conditions, and the model may not provide an 
optimal estimate when encountering irregular waves or other forces leading to irregular ship 
motion and draft changes. Addressing this challenge will be the focus of future work, with an 
expansion of the model to analyze nonlinear functions and improve accuracy under such 
scenarios. 
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