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ABSTRACT: Herein, we report the synthesis of highly reduced bipyridyl magnesium complexes and the first example of a stable
organic magnesium electride supported by quantum mechanical computations and X-ray diffraction. These complexes serve as
unconventional homogeneous reductants due to their high solubility, modular redox potentials, and formation of insoluble, non-
coordinating byproducts. The applicability of these reductants is showcased by accessing low-valent (bipy)2Ni(0) species that are
challenging to access otherwise.

■ INTRODUCTION
Bipyridine ligands have historic and prosperous relationships
with main group, transition metal, and materials chemistry.1

Cited as “the most widely used ligand”,2 the popularity of
bipyridines is ascribed to their robust synthesis, tunable steric
and electronic properties, modular σ-donation of the nitrogen
atoms, and π−accepting molecular orbitals. In addition, the
redox non-innocent character of the bipyridyl core3 and the
involvement of metal-to-ligand charge transfer events have
enabled new catalytic redox transformations of utmost
synthetic relevance for our chemical portfolio (Scheme 1).4

While significant efforts have been made in characterizing
ligand parameters within the context of Ni-catalyzed
reactions,5−8 the elucidation of the fundamental reactivity,
speciation, and redox non-innocence of bipyridine ligands still
remains the subject of considerable debate compared to their
redox-innocent PR3 and NHC analogues.9−11 This is
particularly the case for Ni-catalyzed reductive coupling
reactions involving redox manifolds where bipyridine ligands
play a critical, yet not fully understood role in both reactivity
and selectivity.12 A close inspection into the literature data
reveals an intriguing threshold in the reductants that are
compatible in Ni-catalyzed reductive cross-coupling reactions
(Scheme 2).12 While milder Mn or Zn reductants have become
routine in these processes, the utilization of stronger
reductants such as Mg has only found echo in Ni-catalyzed
reactions supported by redox-innocent NHC or PR3 ligands.13

Prompted by the mechanistic ambiguity surrounded by the use
of heterogeneous metal reductants and the perception that
single electron transfer might be turnover limiting in these
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Scheme 1. Inherent Interest of Bipyridine Scaffolds
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processes,14 we anticipated that further investigations might
uncover opportunities to explore inaccessible chemical spaces
while leading to new knowledge in the Ni-catalyzed reductive
coupling arena. Herein, we describe our efforts toward this
goal.

■ RESULTS AND DISCUSSION
We began our investigations by monitoring the stoichiometric
reduction of (L1)NiCl2 1 (L1 = 2,2′-bipyridine) with Mg
(Mg2+/0 = −2.61 V vs SCE) in THF-d8 with additional ligands
to stabilize unsaturated nickel species that might be generated
upon reduction. Interestingly, upfield signals (δ = 6.7−4.1
ppm) were observed by 1H NMR spectroscopy after 4 h, which
we tentatively attributed to reduced, anionic [(bipy)2Ni]−

entities. Such speciation is consistent with cyclic voltammetry
studies performed by ourselves15 and Bartak,16 where
reduction of (bipy)2Ni (2) occurs at ca −2.0 V to afford
reduced (bipy)Ni species.17 Workup of the reaction afforded a
temperature-stable purple powder, which upon crystallization
from THF/pentane at −36 °C led to the unambiguous
characterization of an intriguing tetranuclear/dinuclear 3-Mg4/
3-Mg2 couple [(THF)4Mg4(μ2-bipy)4][(THF)6Mg2(μ2-bipy)-
(Cl)] 3, which may be considered as two neutral entities or an
ion pair. The identity of 3 was confirmed by X-ray
crystallography, and reproducibly solved 16 times.15 Interest-
ingly, the 1H NMR signals of 3 overlayed to those observed in
situ upon stoichiometric reduction of (bipy)NiCl2 1 with Mg,
indicating that our tentative assignment of an anionic
[(bipy)2Ni]− complex was incorrect, with nickel likely forming
unligated Ni(0) that deposits as nickel black, which is filtered
off upon workup.18 This observation gains credence consid-
ering the poor adoption of strong reductants such as
magnesium in nickel-catalyzed reactions using redox-active
ligands.12 While [(bipy−1)(bipy)Ni] may initially form, we
anticipate that the electron-rich bipy1− would be a very poor
ligand for electron-rich Ni(0) and readily dissociate, resulting

in decomposition that ultimately results in the formation of Ni
black.

Comparison of the interpyridyl Cpy−Cpy bonds of 3 with
bipyridine radical anions (bipy1−, 1.429 Å)20 or free ligand
(bipy, 1.494 Å)21 reveals that 3 contains particularly
contracted Cpy−Cpy linkages ranging from 1.369(5) to
1.382(5) Å (avg 1.376 Å). These interpyridyl Cpy−Cpy bond
lengths of 3 are comparable to bipy2− complexes of alkali
metals19,20 (Figure 1) with bond lengths similar to [bipy2−]-
[Na+(dme)]2 Na-1, [bipy2−][Na+(pmdta)]2 Na-2 and its
[bipy2−][Rb+(en)]2 Rb-1 analogue. This drastic contraction
reports directly on the localization of the electron density,
suggesting electron occupation of the π*-antibonding orbital
and increased bonding character between the in-phase Cpy−
Cpy bonds, which results in an antiaromatic bipyridine ring
system on the basis of the ring current analysis (ring current
strength: −2.6 n.A.T−1; see computational methods in the
Supporting Information).19,20,22,23 The rare, symmetric bind-
ing mode of bipyridine ligands in 3 indicates that two bonding
interactions are available from the σ-N p orbital lone pair and
highest occupied molecular orbital (HOMO) π* orbital to
magnesium, further advocating the notion that a bipy2− entity
is generated upon reduction of the bipyridyl core. The
symmetric macrostructure and unique bond angles found in
3, with Mg−bipy−Mg bond angles of 103° for the edges in 3-
Mg4 and 109° for the binuclear moiety 3-Mg2 are among the
few examples bearing symmetrically bridging μ2-bipy ligands
such as (Na-1 and Na-2) or trinuclear species (Yb(μ2-
bipy)(THF)2)3

22 with no similar tetranuclear structures
reported before. While no Mg−bipy2− complexes have been
reported to compare the Mg−N bond distances of 3 to which
range from 2.189(3) to 2.244(3) Å (avg 2.216 Å), a
comparison between bipy2− alkali metals Na-1, Na-2, and
Rb-1 reveals that 3 contains the shortest M−N bond, followed
by Na-1 (2.37 and 2.40 Å). We suspect the short N−Mg bond
is due to the absence of chelated electron-donating ligands

Scheme 2. Reductant Compatibility in Nickel Catalysis

Figure 1. Alkali and Alkali Earth Metal−Bipy Complexes.19,20
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such as dme, en, or pmdta, which results in the Mg center of 3
being more Lewis-acidic, thus shortening the Mg−bipy2−

bond.
UV−vis absorption and IR data corroborated the desig-

nation of a bipyridine dianion in 3.15 In addition, variable-
temperature, DOSY & EXSY 1H NMR spectroscopic experi-
ments suggested that the multiple 1H NMR signals observed at
room temperature (Figure 2, bottom) originate from fluxional
lower-order and higher-order aggregates that readily inter-
change, and coalesced to the major signals upon warming (ca.
55 °C). Quantitative X-band electron paramagnetic resonance
(EPR) measurements in tetrahydrofuran (THF) of 3 also
revealed the presence of a single electron at g = 2.00365

(Figure 2, bottom right), which was consistent with analysis by
Evan’s method, which determined an effective magnetic
moment (μeff) of 1.80 μB. Taking all of these observations
into consideration, we initially assumed the electronic structure
of 3 as a neutral 3-Mg4 and radical 3-Mg2 unit with mixed
valency Mg(I)−Cl and Mg(II) centers. However, density
functional theory (DFT, PBE0-D3BJ/6-31+G(d,p)-
[IEFPCM:THF])15 calculations showed that the optimized
geometries of the neutral 3-Mg4/3-Mg2 couple deviated
significantly from the experimental X-ray structure. Further
computation revealed that an ion pair of singlet [3-Mg2]+ and
radical [3-Mg4]− is 11.7 kcal/mol more stable than the neutral

Figure 2. Synthesis, crystal structure, characterization, and DFT orbital analysis of 3-Mg4 and 3-Mg2. X-ray structures are shown with thermal
ellipsoids drawn at the 50% probability level (see the Supporting Information for details and labeled structures). Selected distances (Å): Cpy−Cpy;
C5B−C6B 1.374(5), C5A−C6A 1.382(5) Example Mg−Mg distance; Mg1B−Mg2B 2.8246(16). HOMO, lowest unoccupied molecular orbital
(LUMO), and singly occupied molecular orbital (SOMO) (HOMO-4) orbitals for 3-Mg4 and 3-Mg2 (PBE0-D3BJ/6-31+G(d,p)-
[IEFPCM:THF]). Cyclic voltammogram performed in THF with 0.1 M NBu4PF6.1H NMR (400 MHz) in THF-d8. X-band EPR spectrum
(THF, 293 K).
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structure and exhibits bond distances closely matching our
experimental data.

The [3-Mg2]+/[3-Mg4]− ion-pair formation likely originates
from the significant instability of Mg(I) atoms,24 which rapidly
lose an electron to form the [3-Mg4]−/[3-Mg2]+ couple.
Quantum theory of atoms in molecules (QTAIM) analysis25

shows high atomic charges (1.75 and 1.68 for [3-Mg2]+ and
[3-Mg4]−, respectively) and QTAIM localization indices
λ(Mg) close to 10, suggesting that all Mg atoms in 3 are
Mg(II).26 It is worth noting that for an electropositive atom,
the magnitude of the QTAIM localization index represents the
“formal charge after ionic approximation” that is allocating all
shared electrons to the more electronegative atoms, which is
consistent with the IUPAC definition of oxidation state. While
3 contains short Mg−Mg distances that average 2.8533(17) Å,
comparable to those reported in Jones’s Mg(I)−Mg(I) dimer
of 2.8457(8) Å,27 no chemical bond between Mg(II) atoms is
expected as they possess no valence electron to form a bond.
This observation was supported by QTAIM analysis on [3-
Mg4]−.15 QTAIM analysis does not recover any (3,-1) critical
point between the magnesium nuclei. Nevertheless, the
absence or presence of (3,-1) critical points does not imply
the absence or presence of chemical bonds.28,29 The
delocalization index�a QTAIM-based direct measure of
covalency�was computed between magnesium atoms to be
merely 0.005, thus confirming the absence of Mg−Mg
bonding. For comparison, the computed delocalization index
between metals in a recently synthesized Th3 complex with
2e−3c bonding is computed to be 0.245.30,31 Therefore, we
attribute the short Mg−Mg distances to the bipyridine ligands
templating the Mg atoms.32

With all Mg centers and bipy ligands of 3 assigned to Mg(II)
and bipy2−, respectively, we wondered where the radical
electron of [3-Mg4]− was located. Reevaluating the EPR data
of 3 (Figure 2) reveals no observed 14N or 25Mg hyperfine
coupling, which suggests that the electron is not located on
either the bipyridine ligands or magnesium atoms in 3.33

Interestingly, the crystallographic data showed a residual
electron density of 1.9 e/Å3 at the center of the 3-Mg4 core
(Figure 3).34 While the residual electron density from X-ray
crystallography is not quantitatively determined, this observa-
tion was used as a qualitative guide to more closely inspect the
center of the 3-Mg4 core. While one may suggest that a hydride
might be located in the center of [3-Mg4]−, our EPR
experiments are inconsistent with a diamagnetic hydride

formulation, which reveal a signal that does not contain any
hyperfine coupling.35 Furthermore, quantitative EPR analysis
of 3 supported the presence of a single electron, thus arguing
against the presence of paramagnetic impurities. Given that a
hydride might necessarily arise from THF as a hydrogen atom
donor, we repeated the synthesis of 3 in THF-d8 as a source to
form a deuteride instead of a hydride. A close inspection into
the 1H NMR spectra of 3 obtained in THF or THF-d8 showed
the exact same signals, thus indirectly arguing against 3
containing a hydride. Furthermore, a potential hydride should
contain a proton that has no coupling with other protons as it
is isolated in the center of the complex. We did not find such a
proton in the 1H NMR spectra. Thus, we conclude that [3-
Mg4]− is unlikely to be a hydride; instead, the residual electron
density observed in the middle of the cavity suggests the
intriguing possibility of [3-Mg4]− being an electride. Electrides
are materials that hold a free electron in a cavity formed by
cations.25,36 Inorganic electrides such as [Ca24Al28O64]4+4e−

have been shown to be room-temperature-stable and possess
intriguing electronic properties such as high conductivity, and
have even demonstrated applications as aqueous compatible
reductants.36−38 However, to the best of our knowledge, only
eight organic electrides have been synthesized, of which only
one is room-temperature-stable.39,40 Remarkably, QTAIM
reveals the presence of a non-nuclear attractor (NNA) with
a charge of -0.48 in the center of [3-Mg4]−, thus strongly
advocating the notion that the latter is an electride.41 The
electride electron is topologically encaged by the interaction of
6,6′-hydrogen atoms of the bipyridine core within a capsule of
an approximate length of 0.4 nm (Figure 3), similar to
previously known organic electrides.32 The NNA appears only
in the α-electron density and coincides with both the
maximum spin density and the orbital HOMO-4, which we
identify to be the SOMO of [3-Mg4]−, thus indicating
SOMO−HOMO inversion.15,42 Evidence in favor of the true
electride nature of [3-Mg4]− is the negligible electron
delocalization between the NNA and the nitrogen or
magnesium atoms that is less than 0.05. A low delocalization
index between the NNA and the surrounding atoms signifies
the dominance of electrostatic interactions between the free
electron and the positive Mg(II) centers akin to the ionic
compounds.43

Taking all of these observations into consideration, we
believe our available X-ray, EPR, DFT, and QTAIM data
provide compelling evidence that [3-Mg4]− is a room-

Figure 3. Topology of the electron density of [3-Mg4]− containing an electride. a: Ortep-plot drawing (50%) of the X-ray structure showing
residual electron density localized in the center of [3-Mg4]−, b: QTAIM contour plots of the Laplacian of the electron density, c: spin density with
an isosurface of 0.05 atomic units (au, 1 au = 1 electron), and d: the atomic basin of the non-nuclear attractor that coincides with the free electron
of the electride enclosed by interatomic zero-flux surfaces. The atomic basin of the non-nuclear attractor is oblong, along the C4 axis of the
molecule; see Figures S41−S43 for side views.
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temperature-stable electride composed of [3-Mg4] with a
genuine free electron captured at its center. An inspection into
the literature data indicates that many organic electrides have
taken inspiration from pioneering work by Dye,40,44 which
have found tremendous success by reacting chelating oxygen or
nitrogen-donor ligands such as aza-crown ethers with alkali
metals to access a range of organic electrides such as
K+(c r yp t and[2 . 2 . 2 ] )e− , C s + (18 - c rown -6) 2e− or
Na+(TriPip222)e−.45 However, these alkali cation−nitrogen
systems form relatively weak bonds, implying that most known
organic electrides decompose at or below room temperature.32

In sharp contrast, [3-Mg4]− has strong Mg(II)−(bipy2−)
linkages and four Mg(II)−e− interactions that stabilize the
structure. To the best of our knowledge, [3-Mg4]− is the first
experimentally characterized Mg electride46 as well as the first
known example employing bipyridine as a stabilizing ligand in
an electride core.36 The alternative possibility of [3-Mg4]−

existing as an aromatic tetranuclear core was also raised in
analogy with the aforementioned Th3 complex.30,31 However,
we believe the absence of Mg−Mg bonds and the fact that the
molecule has only one electron does not follow the 4n + 2
Hückel rule, which argue against a possible aromaticity of [3-
Mg4]−.

In light of these results, we believe 3 complements existing
reports of bipyridine dianions with highly reducing alkali
metals,19,20 while offering (a) access to a new room-
temperature-stable electride, (b) new considerations into the
redox chemistry of bipyridine ligands, (c) potential new
applications of 3 as a mild, homogeneous reductant, and (d)
the formation of macrostructures that group 1 analogues are
not suited to.47 In addition, the identification of 3 from the
direct reduction of bipyridine-ligated nickel species demon-
strates their susceptibility to participate in electron transfer
processes. This observation is particularly important, tacitly
suggesting that care should be taken when generalizing existing
reactivity found in the Ni-catalyzed arena, particularly within
the context of catalytic reductive couplings that utilize either
strong metallic reductants or homogeneous photocata-
lysts.3,4,12

Taking into consideration the influence exerted by sterically
encumbered 2,2-bipyridine ligands on reactivity,48 we turned
our attention to investigating the generality of accessing
reduced polypyridine-Mg species other than 3, as it might pave
the way for future synthetic applications. To this end, an
otherwise similar route to that shown for 3 was followed with
more sterically encumbered L2 (6,6′-dimethyl-4,4′-diphenyl-
2,2′-bipyridine), using (L2)NiBr2 (4) as a precursor (Figure
4). Gratifyingly, we were able to isolate a moisture- and
oxygen-sensitive black powder, which was unequivocally
characterized by X-ray diffraction as the monomeric structure
5·THF. The divergent structure of bis-ligated, monomeric
magnesium complex 5, compared to 3, reinforces the
modularity exerted by polypyridine ligands, the generality of
ligand reduction, and the unique reactivity of 3 to stabilize a
free electron within its molecular structure. A comparison of
the Cpy−Cpy bond length of L249 and 5·THF reveals a small
contraction in the latter (1.496(3) vs 1.443(3) Å), suggesting
that each of the two bipyridine ligands in 5 bears one electron
as a radical anion, bound to a Mg(II) center. This
interpretation gains credence by observing an EPR signal at
g = 2.00296, with DFT calculations supporting a biradical
electronic state, with one unpaired electron on each bipyridine
unit (Figure 4). While the preferred electronic state for 5 is a
triplet, our calculations indicate that the open-shell singlet is
only slightly higher in energy,15 suggesting that 5 may behave
as a spin crossover complex.

The rapid, reliable, and ease of synthesis of 3 and 5, together
with the wide range of redox potentials that could be accessed
by fine-tuning the substituents on the bipyridyl core augurs
well for their utilization as homogeneous reductants.50 Aimed
at unraveling the potential of these complexes, we bench-
marked their ease of handling and tunable reactivity by
accessing low-valent (bipy)2Ni(0) complexes, compounds of
utmost mechanistic relevance in Ni-catalyzed reactions.3,4,12,51

Unlike their ortho-substituted 2,2′-bipyridyl analogues,52 the
synthesis of (bipy)2Ni(0) (2) requires challenging experimen-
tal setups such as metal vapor synthesis,16 or heterogeneous
reductants such as Li metal,5 which suffer from competing

Figure 4. Reduction of sterically encumbered ligand. Synthesis, DFT spin density, and X-ray structure of 5 with thermal ellipsoids drawn at the 50%
probability level. Selected distances (Å) Cpy−Cpy; C5−C6 1.443(3), C29−C30 1.442(3).
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overreduction, poor scalability, and irreproducibility.27,50

While one might argue that the means to access (bipy)2Ni(0)
does not offer a clear advantage compared to the utilization of
Li metal, we believe that the use of 3 may offer preparative
advantages such as the ability to be stored in a glovebox, being
a readily weighed powder, and being highly soluble in common
organic solvents such as THF. In addition, the utilization of 3
likely forms insoluble Mg salts post oxidation, which would all
aid in reaction setup and workup. Attempting to access 2 from
ligand exchange or the use of other less reducing
heterogeneous reductants were unsuccessful with traces, if
any, of 2 being observed by exposing Ni(COD)2 to bipy53 or
by reaction of 1 with Mn, Zn, or Mg (Scheme 4, left).15 Such
lack of reactivity can tentatively be attributed to both slow
electron transfer rates14 and the deleterious impact that
inorganic salts formed by post-reduction (MCl2; M = Mn,
Zn, Mg) might have on the reaction outcome.

Gratifyingly, the utilization of 3 as homogeneous reductant
cleanly delivered (bipy)2Ni(0) in 65% yield after 1 h reaction
time, together with the formation of insoluble (bipy)-
MgCl2(THF)2 (6), the structure of which was confirmed by
X-ray diffraction (Scheme 3).15,54 It is worth noting that this
reaction proceeds in <1 h, thus representing an added value
compared to the utilization of heterogeneous Li metal to access

(bipy)2Ni that requires 24 h. Notably, ligands other than bipy
could be employed with equal ease, as 7 or 8 was easily within
reach from NiCl2(glyme) and L3 or L4 (L3 = bathocuproine,
L4 = neocuproine) with 3.55 Our hypothesis that MgCl2 salts
formed using heterogeneous Mg as a reductant would be
deleterious was indirectly confirmed by reacting 2 with MgCl2,
leading to rapid decomposition of the former and formation of
6 (Scheme 4, right). These findings highlight the importance
of forming highly coordinated and insoluble Mg complexes of
type 6 en route to low-valent Ni(0) complexes, thus avoiding
parasitic ligand sequestering events.

■ CONCLUSIONS
In summary, we have synthesized and isolated unorthodox Mg
complexes that do not only represent the first example of
group 2 metal reduction to bipyridine dianions and an
unprecedented room-temperature-stable electride stabilized
by neighboring magnesium cores but also offer new
opportunities for accessing elusive metal intermediates that
were otherwise inaccessible by operationally simple techniques.
We have additionally demonstrated the importance of ligand
sequestering events in decomposition pathways, and solutions
to overcome these limitations.

Scheme 3. Homoleptic Ni(0) Polypyridine Complexes

Scheme 4. Failed Routes toward 2 and Ligand Sequestering
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