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Abstract

INTRODUCTION: Traditional Alzheimer’s disease (AD) andmild cognitive impairment

(MCI) screening lacks the sensitivity and timeliness required todetect subtle indicators

of cognitive decline. Multimodal artificial intelligence technologies using only speech

data promise improved detection of neurodegenerative disorders.

METHODS: Speech collected over the telephone from 91 older participants whowere

cognitively healthy (n = 29) or had diagnoses of AD (n = 30) or amnestic MCI (aMCI;

n = 32) was analyzed with multimodal natural language and speech processing meth-

ods. An explainable ensemble decision tree classifier for the multiclass prediction of

cognitive decline was created.

RESULTS: This approach was 75% accurate overall—an improvement over traditional

speech-based screening tools and a unimodal language-based model. We include a

dashboard for the examination of the results, allowing for novel ways of interpreting

such data.

DISCUSSION: This work provides a foundation for ameaningful change inmedicine as

clinical translation, scalability, and user friendliness were core to themethodologies.
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Highlights

∙ Remote assessments and artificial intelligence (AI) models allow greater access to

cognitive decline screening.

∙ Speech impairments differ significantly between mild AD, amnestic mild cognitive

impairment (aMCI), and healthy controls.

∙ AI predictions of cognitive decline are more accurate than experts and standard

tools.

∙ The AI model was 75% accurate in classifyingmild AD, aMCI, and healthy controls.
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1 BACKGROUND

Early detection of cognitive decline in neurodegenerative disorders

is urgently needed, with an estimated 153 million people worldwide

affected by 2050.1 Techniques requiring skilled medical professionals

and well-resourced centers enable early detection (e.g., positron emis-

sion tomography [PET] scans, cerebrospinal fluid [CSF] markers, and

structural magnetic resonance imaging [MRI]); however these meth-

ods are expensive, rarely available outside of large centers in wealthy

countries, and require in-person attendance. Indeed, expanding access

to diagnostics can ensure heightened equity in health care. A low-cost

and remote diagnostic assay based on everyday speech collected over

the telephone could provide a highly accessible screening method for

neurodegenerative disorders.

Speech expression and content reflect the functioning of numer-

ous cognitive processes including attention and memory.2 Verbal

communication involves various nuanced tasks: the formation of

ideas, translation of thoughts into language, and articulation of

utterances.3 Advances in computational linguistics, acoustic process-

ing, and machine learning (ML) enable the assessment of speech in

a precise and reproducible manner4–8 that may uncover new mech-

anistic knowledge regarding cognitive decline.9–11 Loss of discourse

complexity and connected speech are primary symptoms of cogni-

tive decline associated with Alzheimer’s disease (AD).12–16 Decreased

continuity of acoustic features, greater percentages of voiceless seg-

ments, and perturbations in speech amplitude are characteristic of

patients diagnosedwithAD.17–20 There are also differences in features

such as pause frequency, duration, and linguistic complexity between

patients with mild cognitive impairment (MCI) and healthy controls.21

More recently, the temporal integrationof acoustics and language from

spontaneous speech has been shown to be predictive of AD.22

Given the nuance of multimodal data, it was our goal to classify

cognitive decline with transparency and explainability—an important

aspect of AI in clinical settings.23 Modalities are characterized by

unique statistical properties, noise levels, and correlations to pre-

diction variables, which necessitate consideration when combined in

a model. It remains an open question which ML architectures can

best represent nuanced multimodal human behavioral data.24 One

approach is to model all modalities together as one input, but this

requires at least five training examples per feature dimension.25 Alter-

natively, modalities can be accounted for with separate models and

later combinedwith appropriate weightings.

This research aimed to pilot a remote and easily accessible

telephone-based interview that requires no specialized equipment, is

well-tolerated, and accessible at home,26 and build a multimodal ML

model for detecting early cognitivedecline.Cognitively healthy individ-

uals and those diagnosedwith amnesticMCI (aMCI;MCI that primarily

affects memory) or AD were administered short cognitive interviews,

and multimodal features were extracted from responses (acoustic and

languagemeasurements fromchildhoodmemory recollections andani-

mal fluency tasks). Improvingonour earlierwork,9 weutilized language

and acoustic processing methods and explainable ML models to create

an accurate multiclass cognitive decline classifier. We explored vari-

RESEARCH INCONTEXT

1. Systematic review: We reviewed traditional peer-

reviewed articles and meeting abstracts. Although

numerous studies have examined natural language pro-

cessing for predicting cognitive decline, most have been

conducted in highly controlled in-person environments,

focusing mainly on language. Many studies lack machine

learning model interpretability analyses or steps toward

clinical implementation. Relevant citations are cited.

2. Interpretation: We demonstrate proof of principle that

speech captured in naturalistic settings can be subjected

to automated analyses and produce multimodal metrics

that are more accurate and interpretable than expert

humans and traditional dementia screening tests. The

creation of a dashboard for interpreting model predic-

tions promotes clinical translation.

3. Future directions: The current approach to collecting,

analyzing, and interpreting data can potentially reach

many more people at risk for cognitive decline than are

currently assessed. However, model generalizability to

demographically diverse populations and reliability of the

models over time remain to be tested.

ous approaches for detecting cognitive decline with multimodal data

and simple models. We designed a dashboard for researchers and clin-

icians to interpret the models and data, allowing new interpretations

of experimental speech analysis in a detailed, yet understandable and

meaningful manner.

2 METHODS

2.1 Data

Participants comprised 91 older individuals who were cognitively

unimpaired (n = 29, mean age = 72.48 [SD = 1.47], mean years

of education = 18.00 [SD = 0.37], 41% female) or diagnosed with

aMCI (n = 32, mean age = 74.03 [SD = 1.01], mean years of edu-

cation = 17.34 [SD = 0.30], 41% female) or mild AD (n = 30, mean

age= 74.93 [SD= 1.40], mean years of education= 16.68 [SD= 0.43],

52% female).9,26 The group demographics did not differ significantly

(p-values > 0.01). Clinical diagnoses followed established criteria

separate from data collection. Participants completed a telephone

interview, which included recalling a favorite childhood memory and

naming as many animals as possible in 1 minute (animal fluency). The

speech was audio-recorded and manually transcribed. The childhood

memory task resulted in an average of 326.76 words spoken per

participant (SD = 166.27, min = 44, max = 1110), and an average of

16.33words (SD= 7.44,min= 0,max= 36) for the animal fluency task.
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Participants also completed the Mini-Mental State Exam (MMSE27)

and themodified Telephone Interview forCognitive Status (TICS-M28).

The three diagnostic groups differed significantly on both the MMSE

and TICS-M, with the cognitively unimpaired participants performing

the best (MMSE mean = 29.56 [SD = 0.12]; TICS-M mean = 39.44

[SD = 0.63]), the AD participants performing the worst (MMSE

mean= 23.75 [SD= 0.51]; TICS-Mmean= 30.32 [SD= 1.31]), and the

aMCI participants performing intermediate between the other two

(MMSEmean= 28.22 [SD= 0.30]; TICS-Mmean= 36.03 [SD= 0.69]).

The study was approved by Marymount University and Georgetown

University institutional review boards (MU IRB #260).

2.2 Feature extraction

Lexeme-level featureswere first extracted from free speech responses.

Token and type counts measured poverty of speech. Part of speech

counts and frequencies; type token ratio (
count(word types)

count(word tokens)
) (moving

average type token ratio (averaged moving windows of (
count(word types)

count(word tokens)
);

Brunét’s index (count(wordtokens)
count(wordtypes)−0.165

); and content

density
count(verbs+nouns+adjectives+adverbs)

count(wordtokens)
measured poverty of content.

Assays of verbigeration (uncontrollable word repetition) such as

phrase- and word-level repetitions were counted. Counts of um’s, ah’s,

and filler words derived indices of language fluency. Next, syntactic

complexity features were computed, including statistics derived from

sentence parse trees and speech graphs. Finally, semantic features

were extracted. Measuring coherence, cosine distances between

adjacent text windows (size ∈
2,8; with LSA,29 word2vec,30 GloVe,31

USE,32 and BERT33 embeddings) were calculated. Tangentiality was

operationalized as the slope of cosine distances between the first and

consecutive text windows, with the same parameters. With measuring

of coherence, illogicality, and semantic paraphasia, a novel feature was

created and implemented: statistics derived from BERT word proba-

bilities in the context of a full response. Finally, sentence perplexities

were extracted fromBERT.

Traditionally, animal fluency is scored by counting the unique

animals produced, ignoring significant structural and temporal infor-

mation. Moving beyond this, objective quantifications of relationships

between exemplars and categories of exemplars were explored. Troyer

et al. proposed two metrics for measuring components of this task—

clustering (producingwords within one category, like safari or pets) and

switching (changing between clusters).34 This was implemented with

hand-coded categories (supplied by the authors) and semantic word

embedding distances. The semantic approach entails computing cosine

distances of one animal’s embedding to thenext, and setting thresholds

to determinewhether the next animal belongs to a newcategory (when

it falls below the threshold). The following is a segment of a response

showing the Troyer categories (square brackets) and word embedding

categories (BERT embeddings, threshold= 0.80; parentheses):

[(dog cat)] [(giraffes elephants lions tigers) (chimpanzees)]

Both approaches place dog and cat into one category (Pets; cosine

distance > 0.8). The Troyer approach considers the subsequent ani-

mals all within theAfrican category; however, the embedding approach

splits chimpanzees into a new category as the cosine distance between

tigersand chimpanzees falls below the threshold (0.52; theothershaving

distances > 0.8). Finally, animal embedding magnitudes were com-

puted, a measurement of typical word usage/familiarity (uncommon

animals have larger magnitudes than common animals).

Acoustic features were extracted from both speech tasks. The

Compare 2016 acoustic feature set35—including the Geneva Mini-

malistic Acoustic Parameter Set (GeMAPS36)—was computed using

openSMILE.37 The Compare 2016 feature set aggregates frame-level

acoustic properties over the entire file. Because there is reason to

analyze acoustics at a frame-level (to measure how acoustics change

with each other or with language), the files were segmented and

acoustic features were computed for individual frames using a Pratt38

script. Aggregate statistics, moving window averages, and feature

correlations were computed over all frames.

Finally, cross-modal features were extracted from only the ani-

mal fluency task (due to poor automated word segmentation in free

speech). Relationships between language and acoustics were com-

puted to uncover interactions between these processes. One approach

involved time-aligning modalities and correlating acoustic and lan-

guage features. Another investigated frame acoustics for repeated

versus non-repeated animals, and animals that begin new categories

versuswithin-categories, motivated by exploring fluctuations in acous-

tics when important cognitive processes are occurring. We computed

absolute differences of features binned by their cosine distance being

greater thanor less than a threshold.Moving averages and correlations

were also computed.

2.3 Multimodal modeling

Three approaches were explored for modeling multimodal, multitask

data (Approaches A, B, C). We used Decision Tree Classifiers to

retain simplicity and explainability. All models utilized only significant

features (p values < 0.01) as computed by the F-statistic, a valuable

univariate feature selection approach for small data sets that assesses

the statistical significance of features in explaining class variability.

This selectionwas carried out using thePython library sklearn, employ-

ing the feature_selection.SelectKBest and feature_selection.f_classif

methods. Approach A involved creating multiple base models, each

consisting of features from one modality and task (e.g., free speech

language and acoustics, and animal fluency language, acoustics, and

crossmodal), and using simple ensemble methods like voting, most

confidence, and summation (Figure 1). Voting uses the majority vote of

contributing model predictions. Most confidence uses the prediction

of the base model with the highest probability (i.e., confidence).

Summation sums the class probabilities among the base models, and

uses the class with the largest summation. Approach B was similar, but

with a meta-learner to learn weights for the submodels’ predictions

and generate the final prediction accordingly. Finaly, Approach C

included all features in one input vector and used one model for

prediction.
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F IGURE 1 A visual representation of the ensemblemodel for cognitive decline. Five basemodels are created on unitask, unimodal data and
the predictions from the five basemodels are combinedwith simple ensembling techniques.

3 RESULTS

Highly predictive features for cognitive decline detection are provided.

We examined whether acoustics would improve language-based cog-

nitive declinemodels, sowe present language-onlymodels and explore

approaches to creating explainable, multimodal models. Finally, we

present an interface for interpreting the output.

3.1 Animal fluency and free speech features

Language, acoustic, and crossmodal animal fluency features, and lan-

guage and acoustic free speech features were predictive of diagnosis,

with varied levels of discriminability. Table 1 lists the top features

from each modality based on the F-statistic for differentiating classes.

The highest-ranked animal fluency language features were variations

of the maximum number of animals per category created with BERT

embeddings. From free speech, the Mel Frequency Cepstral Coeffi-

cient (MFCC) acoustic features, BERT and USE coherence measures,

and individual word probabilities from BERT were highly predictive.

Principal component analysis (PCA)was used to reduce the set ofmost

significant (p < 0.01) features from each modality per task for visual-

ization purposes (Figure 2). From animal fluency, language separated

healthy controls from cognitive decline in general, but was less suited

to separate aMCI from AD. Acoustic differences were observed, with

healthy participants distributing evenly over the peaks of the AD and

aMCI classes. Crossmodal features differentiated the three classes

well, with an expected ordering of healthy controls, aMCI, and AD.

The free speech language modality differentiated the classes well with

an expected ordering of healthy, aMCI, then AD. Acoustics show the

three classes aligning, with a long tail extending out from the AD class

distribution.

3.2 Unimodal machine learning modeling

Wepreviously presented five unimodal language-basedprediction sce-

narios: (1) cognitively healthy versus aMCI versus AD, (2) cognitively

healthy versus cognitive decline (aMCI and AD combined), (3) cog-

nitively healthy versus aMCI, (4) cognitively healthy versus AD, and

(5) aMCI versus AD.3 The comparable scenario to the current study

(Scenario 1) achieved 62%accuracy on our data set, compared to tradi-

tional screening tools TICS-MandMMSE (utilizing the best performing

thresholds to differentiate groups39–40 and scaling for education),

which achieved 45% and 55% accuracy, respectively. Table 2 shows the

confusion matrices for the ML model, TICS-M, and MMSE, with the

ML approach showing an even spread of predictions compared to the

overwhelming classification of healthy controls by TICS-M andMMSE.
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6 of 13 CHANDLER ET AL.

F IGURE 2 Density plots of the significant features (p values< 0.01) reducedwith PCA reductions. Top row: language (left), acoustics (middle),
and crossmodal (right) modalities from animal fluency. Bottom row: language (left) and acoustic (right) modalities from free speech. PCA, principal
component analysis.

TABLE 2 Confusionmatrix of the (1) unimodal machine learning-based classifier, (2) TICS-M test, and (3)MMSE test for classifications of
cognitively healthy, aMCI, and AD participants.

True

AD (n= 30) aMCI (n= 32) Healthy (n= 29)

Unimodal machine learning classifier

Predicted AD 13 4 3

aMCI 5 21 4

Healthy 12 7 22

TICS-MTest

Predicted AD 10 0 0

aMCI 8 2 0

Healthy 12 30 29

MMSE Test

Predicted AD 15 1 0

aMCI 10 6 0

Healthy 5 25 29

Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic Mild Cognitive Impairment; MMSE, Mini-Mental State Exam; TICS-M, Telephone Interview for

Cognitive Status.

3.3 Multimodal machine learning modeling

Five Decision Tree Classifiers were created using the most diagnosti-

cally salient features from language, acoustics, and crossmodal animal

fluency modalities, and language and acoustics free speech modalities.

Parameters were learned using leave-one-out cross-validation due to

limited data set size. Animal fluency models achieved accuracies of

58% (language), 65% (acoustics), and#dad212516-tbl-0003.tab 61%

(cross-modal), whereas free speechmodels achieved accuracies of 56%

(language) and 63% (acoustics). Precision, recall, and F1 scores for each
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CHANDLER ET AL. 7 of 13

TABLE 3 (1) Precision, recall, and F1score broken down by participant class andmacro averaged (computes the statistic individually per class
and then averages the three together) and (2) confusionmatrix for the best unimodal unitask ensemblemodel with voting (Approach A).

Classificationmetrics

Precision Recall F1 score Support

Healthy 0.74 0.79 0.77 n= 29

aMCI 0.69 0.75 0.72 n= 32

AD 0.84 0.70 0.76 n= 30

Macro avg 0.76 0.75 0.75 N= 91

Confusionmatrix

True

AD (n= 30) aMCI (n= 32) Healthy (n= 29)

Predicted AD 21 3 1

aMCI 6 24 5

Healthy 3 5 23

model are supplied in Appendix A (Tables A1–A5). Results indicated

that acoustics were more predictive than language. Different tech-

niques for base model creation and their implications for accuracy are

also detailed in Appendix A (e.g., creating the base models, aggregat-

ing by mode, then ensembling [Table A6]; and creating base models,

aggregating by task, then ensembling [Table A7]).

Within each task, agreement betweenmodality-specific predictions

was assessed. Larger variations motivate an ensemble approach

as each mode contributes different information. Had all models

correlated highly with one another, limited gains would arise from

ensembling (vs using one). For animal fluency, predictions for the

healthy participants had moderate correlations across the three

modes: language and acoustic (Pearson’s r = 0.28, p < 0.01), language

and crossmodal (r = 0.39, p < 0.01), acoustic and crossmodal (r = 0.25,

p = 0.01). Correlations were higher within the AD class: language

and acoustic (r = 0.43, p < 0.01), language and crossmodal (r = 0.57,

p < 0.01), and acoustic and cross-modal (r = 0.43, p < 0.01). This was

not the case for the aMCI class where there was no correlation in

some cases: language and acoustic (r = −0.02, p = 0.84), language and

crossmodal (r = 0.09, p = 0.37), acoustic and crossmodal (r = 0.32,

p < 0.01). Higher correlations were expected with the crossmodal

modality as it captures aspects of both acoustics and language. In

free speech, correlations between acoustic and language modalities

were lowest in the healthy class (r = 0.25, p = 0.01), higher in the

aMCI class (r = 0.35, p < 0.01), and highest in the AD class (r = 0.42,

p < 0.01). Model ensembling was motivated due to variance in

predictions.

The highest accuracy model was both the voting ensemble

(Approach A) and the Decision Tree Classifier meta-learner (Approach

B), with 75% accuracy overall. However, the voting method was

preferred as it avoids unnecessary overfitting to small data sets

(Table 3).

Finally, one multimodal multitask cognitive decline model was

explored (Approach C). ML models necessitate large data sets to learn

the complexities of multidimensional data, and a sample size of 91

participants may be insufficient. Furthermore, the density plot of the

multimodal, multitask data set reduced with PCA showed that the dis-

tribution resembled the animal fluency language modality and thus

explained much of the variability in the data set, potentially over-

whelmingothermodalities in onemodel. Feature importance extracted

from the classifier showed that four of the top five features were

from animal fluency language and one was from animal fluency acous-

tics. The accuracy of the classifier evaluated on the entire data set

with leave-one-out cross-validation was 66%. Appendix A (Table A8)

supplies precision, recall, and F1 scores.

Ensembling five unimodal unitask base models with voting gener-

ated themost accurate and explainable predictions. This approachwas

built from different data sources and harnessed the knowledge of mul-

tiple expert learners. Decision trees provided feature importances, and

voting identified which modalities contributed to the prediction and

how strongly they agreed. Model disagreement entails less algorith-

mic certainty, which is critical knowledge in clinical implementation

as this may warrant human review. In terms of sensitivity, specificity,

positive predictive value (PPV), and negative predictive value (NPV),41

the voting classifier (AD sensitivity = 87.50%, specificity = 95.83%,

PPV = 95.46%, NPV = 88.46%; aMCI sensitivity = 82.76%, speci-

ficity= 85.71%, PPV= 82.76%, NPV= 85.71%) had significantly more

balanced outcomes overall than the TICS-M (AD sensitivity = 45.45%,

specificity = 100%, PPV = 100%, NPV = 29.27%; aMCI sensitiv-

ity = 6.25%, specificity = 100%, PPV = 100%, NPV = 49.15%) and

MMSE (AD sensitivity = 75%, specificity = 100%, PPV = 100%,

NPV = 85.29%; aMCI sensitivity = 19.36%, specificity = 100%,

PPV= 100%, NPV= 53.70%).

3.4 Explainability

We created an interpretable user interface (Figure 3) for displaying

model outputs, incorporating AI explainability, information visu-

alization theory, and human-centered computing. The top section
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8 of 13 CHANDLER ET AL.

F IGURE 3 Machine learning interface displaying the selection of an individual with AD. The selected participant falls at the peak for free
speech acoustics and animal fluency crossmodal (i.e., typical of those with AD), and at the extreme of the AD plot in the other modes (i.e., typical of
the AD class and atypical of the others). Themodels were generally confident that the selected individual belonged to the AD class, with less
confidence in the twomodes where the participant was closer to the other classes. AD, Alzheimer’s disease.

contains density and scatter plots of the first component of the full

PCA-reduced data set. Hovering over points displays Participant’s

IDs. Selecting a point populates the interface with information

from that individual. The selected point remains opaque, while

others become transparent, allowing users to view an individual

compared to the other participants and classes. Next are animal

fluency and free speech sections with density plots and an indicator

of where the selected participant falls compared to others within

that task and modality. Values of the top features as determined

by feature importance are shown, along with a stacked bar chart

of the probabilities the model gave for each of the classes. Wider

bars imply higher confidence. Explanations as multiclass probabil-

ities were shown to be a superior technique for AI-based clinical

decision-making support.42 Finally, a breakdown of the model votes
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CHANDLER ET AL. 9 of 13

is given. Five votes for one class implies higher certainty than an even

spread.

This interface harnesses several interaction categories from infor-

mation visualization theory43: Select (clicking data in the scatterplot),

Reconfigure (multiple view of data), Elaborate (showing more details,

e.g., Participant ID, feature values, ML results), Filter (emphasizing

selected individuals and filling graphs with corresponding data), and

Connect (interactions with one plot affect others). This interface avoids

the desert fog issue (zooming and panning causing the context to be

unclear) by keeping non-selected data in scope to understand context.

Colors were selected to be discernible to those with color blindness

using the Coloring for Colorblindness tool.44 A human-centered co-

design process45 brought together clinicians, neurocognitive assess-

ment experts, and AI researchers, satisfying diverse expectations and

constraints from clinical and AI perspectives.

4 DISCUSSION

A speech-basedAImodelmay bemore sensitive than traditional cogni-

tive screeners to early dementia detection, yet an estimation of cost

efficacy is crucial to promote uptake in clinical settings. Such anal-

yses are complicated, and the resulting economic value frameworks

will be dependent upon relevant jurisdictions. Previous studies suggest

that AI-based cognitive impairment diagnostic tools can be cost saving

(e.g., estimated net monetary benefits per person to the UK National

Health Service of £154/$193USD in primary care and £281/$352USD

in memory clinic settings46). To assess the viability and impact of

the proposed speech-based assessment tool, our future work under-

scores the need for a cost-effectiveness analysis, which is essential for

informed decision-making and integration into clinical practice.

Speech-based biomarkers will contribute to the early detection

of neurodegenerative diseases, complementing established diagnostic

methods (e.g., blood-based, brain scans), with the added advantage of

more accessible, widespread, and remote administrations. Early diag-

nosis confers important benefits to diagnosed individuals, caregivers,

loved ones, and society. In addition to providing significant medical,

emotional, and social benefits and facilitating participation in clinical

trials, early diagnosis enables individuals to prepare legal, financial, and

end-of-life plans while they are still cognitively able to make decisions

and share their wishes.

In this research, clinical relevance of model features was a priority.

To maximize language output, our interviewer elicited more speech in

the event of short responses. Thus word count was not a highly pre-

dictive indicator of cognitive decline (as it often is47,48). Rather than

considering this a confound, collecting speech in this manner allowed

features like coherence to be indicators of cognitive decline without

being impacted byword count.49 For fluency tasks, neurodegenerative

disorders can impair the amount, usualness, manner, and ordering of

items retrieved.50 Thus our animal fluency language features sought to

measure these aspects of retrieval.

Acoustic findings aligned with literature, showing greater similar-

ity between the healthy and aMCI classes than with AD. Healthy and

aMCI classes had largerMFCCranges andhighermaximumamplitudes

compared to the AD class, indicating less restriction in speech power.

Correlations between F0 slope and maximum intensity were approxi-

mately zero for the healthy and aMCI classes, but positive for the AD

class, revealing unique speech patterns within the AD class. Despite

imperfect audio recordings, our research was successful in extracting

meaningful signals (detailed inAppendix B). Although acoustic features

can be influenced by demographics, medications, and medical condi-

tions, researchhas shown that certain acoustic featuresmaygeneralize

beyond these factors and thus were retained as part of our framework.

This researchwas limitedbya small andhomogenousdata set,which

increases the risk of overfitting, given the inability to evaluate using a

separate data set. Mitigation efforts included adopting simple model

architectures that promote balanced and generalized predictions. For

instance, harnessing a decision tree (as opposed to voting) as a meta-

learner involves hyperparameter choices and learnedweights, possibly

resulting in overfitting and capturing irrelevant noise. Despite these

limitations, we demonstrated improvements in constrained prediction

scenarios through thoughtful multimodal feature aggregation. With a

small data set, we found little difference between varied ML archi-

tectures. This is beneficial—showing that features were impervious to

modeling choices and were themselves predictive independent of par-

ticular algorithms, and a weakness—as various architectures aremore

well suited for different data types; however, this variation could not be

utilized. Further testing on larger, more diverse data sets is necessary

to test for generalization.
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APPENDIX A: DETAILED MULTIMODAL MODELING

RESULTS

The animal fluency language model was 58% accurate overall. Preci-

sion, recall, and F1-score by class are given in Table A1.

TABLE A1 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
animal fluency language basemodel.

Precision Recall F1 score Support

Healthy 0.61 0.76 0.68 N= 29

aMCI 0.51 0.56 0.54 N= 32

AD 0.63 0.41 0.50 N= 29*

Macro avg 0.59 0.58 0.57 N= 90

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

The animal fluency acoustic model was 65% accurate overall. Preci-

sion, recall, and F1-score by class are given in Table A2.

TABLE A2 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
animal fluency acoustic basemodel.

Precision Recall F1 score Support

Healthy 0.68 0.68 0.68 N= 29

aMCI 0.55 0.66 0.60 N= 32

AD 0.78 0.62 0.69 N= 29*

Macro avg 0.67 0.65 0.66 N= 90

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

 23528729, 2023, 4, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/dad2.12516 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [11/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.21437/Interspeech.2016-129
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1159/000255464
https://doi.org/10.1186/s13195-016-0176-z
https://doi.org/10.3389/fpubh.2017.00307
https://doi.org/10.3389/fpubh.2017.00307
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1109/TVCG.2007.70515
https://davidmathlogic.com/colorblind
https://doi.org/10.3389/fpubh.2023.1240901
https://doi.org/10.1177/0891988720933358
https://doi.org/10.1177/0891988720933358
https://doi.org/10.1016/j.neuropsychologia.2004.02.001
https://doi.org/10.1016/j.neuropsychologia.2004.02.001
https://doi.org/10.5281/zenodo.5284054
https://doi.org/10.5281/zenodo.5284054
https://doi.org/10.1002/dad2.12516


12 of 13 CHANDLER ET AL.

The animal fluency crossmodal model was 61% accurate overall.

Precision, recall, and F1 score by class are given in Table A3.

TABLE A3 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
animal fluency crossmodal basemodel.

Precision Recall F1-score Support

Healthy 0.61 0.61 0.61 N= 29

aMCI 0.53 0.59 0.56 N= 32

AD 0.72 0.62 0.67 N= 29*

Macro avg 0.62 0.61 0.61 N= 90

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

* A participant from the AD class did not produce any animals in the animal

fluency task and thus was excluded from this portion of the analyses.

The free speech language model was 56% accurate overall. Preci-

sion, recall, and F1 score by class are given in Table A4.

TABLE A4 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
free speech language basemodel.

Precision Recall F1 score Support

Healthy 0.62 0.69 0.66 N= 29

aMCI 0.50 0.44 0.47 N= 32

AD 0.55 0.57 0.56 N= 30

Macro avg 0.56 0.56 0.56 N= 91

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

The free speech acousticmodelwas 63%accurate overall. Precision,

recall, and F1 score by class are given in Table A5.

TABLE A5 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
free speech acoustic basemodel.

Precision Recall F1 score Support

Healthy 0.53 0.55 0.54 N= 29

aMCI 0.68 0.72 0.70 N= 32

AD 0.67 0.60 0.63 N= 30

Macro avg 0.63 0.62 0.62 N= 91

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

Details on the multimodal unitask split of the base models are

given here. This technique is first explored with a three-tiered ensem-

ble approach. First, a multimodal animal fluency ensemble model

and a multimodal free-speech ensemble model were created by har-

nessing the aforementioned base models. The best animal fluency

model was 66% accurate overall using the voting mechanism with

the three unimodal base models, and the best free-speech model

was 65% accurate overall using a scaled (by overall class accuracy)

summation mechanism. Alternatively, one could build one multimodal

base model for the animal fluency task and one multimodal base

model for the free speech task (without first learning within modal-

ities) and combine them. Similar results occurred in these variations

of the unitask models. The animal fluency model was the same at

66% accurate overall and the free-speech model was 66% overall.

The best final prediction model based on two multimodal unitask

models was 66% accurate overall ensemble with the summation tech-

nique (with no additional scaling for accuracy). Surprisingly, there was

no boost in accuracy when combining models in this manner. Pre-

cision, recall, and F1 score by class for each model are supplied in

Table A6.

Themultimodal unitask ensemblemodelwas 66%overall. Precision,

recall, and F1-score by class are given in Table A6.

TABLE A6 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
multimodal unitask ensemblemodel.

Precision Recall F1 score Support

Healthy 0.59 0.68 0.63 N= 29

aMCI 0.64 0.66 0.65 N= 32

AD 0.79 0.66 0.72 N= 30

Macro avg 0.67 0.66 0.67 N= 91

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

In building a unimodal multitask ensemble model, all features from

each modality, regardless of the task they were extracted from were

first combined into a single model and the three base models were

ensembled. As in the last scenario, two approaches can be taken. The

first approach is by harnessing the unimodal unitask models to first

create the base ensemble models. The language model ensembled the

animal fluency language model and the free-speech language model,

the acoustic model ensembled the animal fluency acoustic model and

the free-speech acousticmodel, and the crossmodalmodel remains the

same regardless of approach as this modality only exists for the ani-

mal fluency data. Ensembling the three models created in this manner

results in a best overall accuracy of 65% using summation (both scaled

by overall accuracy and non-scaled) and voting. The second approach is

to build three basemodels directly from the features: a languagemodel

that combines all language features from both tasks, an acousticmodel

that combines all acoustic features from both tasks, and finally the

crossmodalmodel. Ensembling the threemodels created in thismanner

results in a best overall accuracy of 65% again using summation (both

scaled by overall accuracy and non-scaled) and voting. As this approach

could be deemed as more explainable, since there is not an obscuring

with an additional round of ensembling, only this model’s results are

supplied in Table A7.
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The unimodalmultitask ensemblemodelwas 65%overall. Precision,

recall, and F1nscore by class are given in Table A7.

TABLE A7 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
unimodal multitask ensemblemodel.

Precision Recall F1 score Support

Healthy 0.68 0.61 0.64 N= 29

aMCI 0.63 0.65 0.64 N= 32

AD 0.65 0.69 0.67 N= 30

Macro avg 0.65 0.65 0.65 N= 91

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

The multimodal model with no special architectural considerations

was 66% overall. Precision recall, and F1 score by class are given in

Table A8.

TABLE A8 Precision, recall, and F1 score broken down by
participant class andmacro averaged (computes the statistic
individually per class and then averages the three together) for the
multimodal model with no special architectural considerations.

Precision Recall F1 score Support

Healthy 0.61 0.76 0.68 N= 29

aMCI 0.61 0.53 0.47 N= 32

AD 0.70 0.63 0.67 N= 30

Macro avg 0.65 0.65 0.65 N= 91

Abbreviations: AD, Alzheimer’s Disease; aMCI, amnestic Mild Cognitive

Impairment.

APPENDIX B: ACOUSTIC QUALITY

An impressive aspect of this work is that predictive acoustic infor-

mation could be extracted given the recording quality. As many

TABLE B1 Comparison of the audio quality of the current dataset with the DementiaBank data set.

Free speech (current data set) Cookie theft (DementiaBank data set)

Average tone-to-noise ratio Average prominence ratio Average tone-to-noise ratio Average prominence ratio

Avg: 10.30 dB Avg: 12.83 dB Avg: 11.19 dB* Avg: 15.01 dB*

Min: 8.38 dB Min: 9.21 dB Min: 10.42 dB* Min: 10.31 dB*

Max: 12.71 dB* Max: 20.54 dB Max: 12.00 dB Max: 21.02 dB*

SD: 3.47 dB* SD: 3.01 dB SD: 0.63 dB SD: 3.47 dB*

Animal fluency (current data set) Animal fluency (DementiaBank data set)

Average tone-to-noise ratio Average prominence ratio Average tone-to-noise ratio Average prominence ratio

Avg: 8.38 dB Avg: 13.02 dB Avg: 8.60 dB* Avg: 16.34 dB*

Min: 7.56 dB* Min: 9.59 dB Min: 7.30 dB Min: 10.34 dB*

Max: 9.46 dB Max: 18.20 dB Max: 10.01 dB* Max: 24.25 dB*

SD: 0.73 dB SD: 2.85 dB SD: 1.03 dB* SD: 4.09 dB*

Notes: See references [51, 52].
*denotes the greatest value per comparison.

dementia studies harness the DementiaBank speech data set [B1], we

regarded this as baseline audio quality and sought to determine how

the current data set—collected out of the laboratory and over the

telephone—compared. We compared our recordings to a demograph-

ically matched subset of the relatively older DementiaBank data set

using the MOSQITO sound quality software [B2]. The DementiaBank

cookie theft task was matched to our free speech task: 30 individuals

with AD, 11 with MCI, and 28 healthy individuals from DementiaBank

were age-matched within 4 years (with three exceptions from 89+-

year-old participants) and on gender and ethnicity. The DementiaBank

animal fluency task was matched in the same manner resulting in 28

individuals with AD, 12 with MCI, and 3 healthy individuals. For the

free speech comparison, random 10-second segments of fluid speech

were extracted from each file. All animal fluency audio was analyzed in

both data sets. Average Tone-to-Noise Ratios and Prominence Ratios

were computed for each sample and the average, minimum, maximum,

and variance of these measures were compared. These metrics mea-

sure the level of tone relative to background sound level to determine

how prominent the tone is to listeners. It has been shown that for

Tone-to-Noise Ratio, the tone must be at least 8 dB above the level

of noise to be audible, and discrete tones are said to be prominent if

it is greater than or equal to 9 dB. Results of the audio quality analy-

sis are given in Table B1.51,52 In general, DementiaBank recordings had

higher averages, minimums, maximums, and standard deviations than

our data, implying that the audio quality of our data set was lower than

that of a commonly analyzed data set in dementia research. Neverthe-

less, we found that meaningful acoustic features could be extracted

from imperfect recordings, implying that elderly people can harness

easily-available and low-cost equipment from home to generate sen-

sitive predictions of cognitive decline rather than needing to visit a

facility for assessment.
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