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Abstract: Aquatic animals are continually being exposed to stressors under farming conditions, in-
creasing risks to gut health that result in dysbiosis. Since restrictions are imposed on the frequent use
of antibiotics in aquaculture, there is emerging demand for economically viable, environmentally safe,
and sustainable alternatives for the intensive production of aquaculture species. The application of
beneficial microorganisms as probiotics has been suggested and widely practiced in recent times. Bac-
teria and fungi are ubiquitous microorganisms that can grow in various environments where organic
substrates are available. Being rich in nutrients, a fish’s aquatic environment and gastrointestinal tract
confer a favorable culture milieu for the microorganisms. However, the colonization and probiotic
potential of fungi and mycelial bacteria resembling fungi (actinobacteria), either in the culture envi-
ronment or within the gastrointestinal tracts of fish, have received less emphasis. Apart from bacilli
and lactic acid bacteria, as the most conventionally used probiotics in aquaculture, numerous studies
have focused on other promising alternatives. Diverse species of yeasts and molds belonging to the
kingdom ‘Fungi’ have been characterized for their prospective roles in nutrition, immunomodulation,
and disease prevention in fish. Bioactive compounds such as manno-oligosaccharides and β-glucans
are recognized as fungal postbiotics that improve innate immunity and disease resistance in fish.
Actinobacteria are known to possess different hydrolytic enzymes and novel secondary metabolites
representing their probiotic attributes. The application of these groups in water quality amelioration
has also been explored. Thus, this paper presents an overview of the present status of knowledge
pertaining to the effects of yeasts (Candida, Cryptococcus, Debaryomyces, Geotrichum, Leucosporidium,
Pichia, Rhodosporidium, Rhodotorula, Saccharomyces, Sporidiobolus, Sporobolomyces, Trichosporon and
Yarrowialipolytica), molds (Aspergillus spp.) and actinobacteria (Streptomyces) as probiotics in finfish
aquaculture, as well as their occurrence within the gastrointestinal tracts of finfish. Furthermore,
probiotic mechanisms, selection criteria, and future perspectives on using fungi and actinobacteria as
promising probiotics are discussed.

Keywords: probiotics; yeasts; mold; Streptomyces; non-LAB; non-bacilli

Key Contribution: The intensification of aquaculture and antibiotics usage has emphasized the need
for alternatives to antibiotics, for example, probiotics applications to make aquaculture more environ-
mentally sustainable and economically viable. The most frequently used probiotics in aquaculture
are either Bacillus spp. or lactic acid bacteria, but numerous studies have indicated the potentiality
of other organisms as probiotics. This paper summarizes the current knowledge of the prospects of
yeasts, molds and actinobacteria as alternatives to widely used conventional bacterial probiotics.
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1. Introduction

Aquaculture is expected to lead the global fish supply within the next decade. How-
ever, the intensification of aquatic production has led to a significant increase in infectious
diseases and growing inefficiency among the antibiotics used to treat these diseases. Several
options are available today, including probiotics, prebiotics, and postbiotics [1]. The use
of probiotics as an alternative approach to reduce the opportunity of pathogens to adhere
and colonize the larval, fry and juvenile intestine is to modulate the intestinal microbiota
with beneficial microorganisms that can be added either to the diet [2] or into the rear-
ing water [3] to facilitate the proportion of health-promoting microorganisms within the
gastrointestinal (GI) tract. The advantage of these administration methods is they can
easily be implemented during early development stages when vaccination via injection is
impractical. Numerous Gram-positive and Gram-negative bacteria are used as probiotics in
aquaculture [1,2,4–6]. Although the applications of bacilli and lactic acid bacteria (LAB) are
the most conventionally used probiotics, the search for new probiotic strains is essential to
combat the latest, emerging pathogens in aquaculture. As a consequence, a range of other
microorganisms, including yeasts [7–10], molds [11,12], bacteriophages, unicellular algae,
and some non-conventional bacteria [13], have been evaluated for their probiotic potential.

Yeasts are unicellular eukaryotic microorganisms taxonomically placed within the
phyla ‘Ascomycota’ and ‘Basidiomycota’ within the kingdom ’Fungi’ [14]. In their re-
view devoted to yeast as a sustainable feed resource for use in aquaculture, Øverland
and Skrede [15] presented information on chemical composition, digestibility in fish, how
processing affects digestibility, and effects on growth performance, nitrogen utilization,
carcass composition, and fish health. Gatesoupe, Navarrete and Tovar-Ramírez; Tan et al.;
Hayatgheib et al.; and Ceseña et al. [7–10,16] discussed information on yeast probiotics in
their review. To avoid duplicating with those findings presented in the above reviews, these
studies are only briefly mentioned in this review to allow a complete overview. Unlike
yeasts, molds are multicellular organisms classified under the kingdom ‘Fungi’. The genus
Aspergillus consists of common molds reported throughout the environment within soil,
water or vegetation and thrives as saprophytes. Aspergillus spp. are recognized as an es-
sential source of diverse enzymes, e.g., alpha-amylase, protease and glucoamylase [12,17],
and have been recommended for use as promising probiotic feed supplements for fish,
as well as poultry and livestock [18]. However, studies conducted on fungal probiotics
and their potential bioactive compounds are still inadequate, suggesting scope to look for
alternative probiotics for use in aquaculture. Morphologically, actinobacteria resemble
fungi because of their elongated cells that branch into hyphae. However, actinomycete
hyphae can be distinguished from fungal hyphae, as the size of actinomycete hyphae is
much smaller than that of fungal hyphae. Marine actinobacteria have long been desig-
nated as the chemical factory, and many chemical substances are reported from them [19].
Streptomyces, being the most widely studied actinobacteria, have been shown to possess
novel secondary metabolites that add a new dimension to microbial natural products [20].
Despite all the significant features of a good probiotic, actinobacteria have hardly been used
as probiotics in aquaculture. Recent reports on the efficacy of actinobacteria in realizing
multiple applications and their resemblance to the fungal hyphae tempted us to include
them in this review for their prospective role in aquaculture.

Understanding the contribution of fungi and actinobacteria as a part of the gut mi-
crobiome may improve fish health and nutrition management, as well as the production
performance of fish. Thus, the current review presents an overview of yeasts (Candida,
Cryptococcus, Debaryomyces, Geotrichum, Leucosporidium, Pichia, Rhodosporidium, Rhodotorula,
Saccharomyces, Sporidiobolus, Sporobolomyces, Trichosporon and Yarrowia lipolytica), molds
(Aspergillus spp.) and actinobacteria (Streptomyces) as probiotic supplements in aquacul-
ture, with a focus on growth performance, the modulation of the gut microbiota, the gut
histology, the effects on the immune system and disease resistance in finfish. However,
some reports on shrimp and other aquatic organisms are presented and discussed to give
information of vital interest. Furthermore, some general information is provided regarding
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selecting and validating the fungal and actinobacterial strains as potential probiotics for
their likely use in sustainable aquaculture.

2. Yeasts as Probiotics

Yeasts form a part of the normal microbiota in wild and farmed fish, and their role
in fish health and nutrition has also been addressed [8]. Saccharomyces cerevisiae and
the halotolerant Debaryomyces hansenii are two of the most popular and widely studied
yeast probiotics in fish [21,22]. Yeast probiotics, as whole-cell or sub-cellular components,
modulate the immune and antioxidant systems, enhance gut maturation, and improve the
survival, as well as the growth, of fish [8,23–26]. Even when accounting for less than 1%
of the total microbial isolates in the host, yeasts can represent a significant physiological
contribution beyond what has been observed for probiotic bacteria; yeast may have a
100-fold larger cell volume than bacteria [7].

The extensive metabolic potential of the yeasts has been reflected in their ability to
produce diverse enzymes. Polyamines secreted by the yeasts are known to be involved in
the maturation of the digestive tract of fish larvae [7]. Moreover, some yeast species and
their components, such as β-glucans and mannoproteins, were found to stimulate the host’s
immune response and antioxidant activity. Yeasts can utilize a broad spectrum of simple or
complex organic compounds compared to bacteria. Thus, understanding the contribution
of yeasts as a part of the gut microbiome may help to improve our knowledge of the
probiotic potential of diverse yeast species and the possibility of their use in sustainable
aquaculture. This section outlines the current knowledge regarding the use of yeasts as
probiotics in aquaculture systems. Table 1 reveals the beneficial effects of yeasts, along with
molds and actinobacteria, used as probiotics in aquaculture.

Table 1. Effects of fungi (yeast and mold) and actinobacteria on growth performance and disease
resistance in finfish.

Species Isolated from Doses and
Duration

Finfish Species
Investigated Parameters Investigated References

Saccharomyces
cerevisiae strain

NCYC Sc 47
(Biosaf_ Sc 47)

Commercial
strain

106 CFU g−1,
31 days

Rainbow trout, fry

↑ brush border enzymes, gut
microbiota (inclusive of
probiont colonization)
→ enzymes like alkaline

phosphatase (AP),
γ-glutamyl-transpeptidase

(GGT) and
leucine-amino-peptidase N

(LAP) activities

[27]

S. cerevisiae NI 1.0, 1.5 and 2.0%,
214 days

Egyptian African
catfish,

24.3 ± 1.4 g

↑ growth performance at
2% inclusion [28]

S. cerevisiae Commercial
strain

1 g kg−1,
8 weeks

Nile tilapia,
0.66 g

↑ growth performance,
microvilli length, hsp70

expression in intestine and
head kidney, intestinal

Lactococcus spp.
↓ gut alkaline phosphatase

[29]

S. cerevisiae Commercial
strain

1 g kg−1,
8 weeks

Nile tilapia,
~9.8 g

↑ growth performance,
microvilli length, hsp70

expression in intestine and
head kidney and resistance

towards A. hydrophila
Alleviates negative effects

induced via crowding stress
↓ gut alkaline phosphatase

[30]
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Table 1. Cont.

Species Isolated from Doses and
Duration

Finfish Species
Investigated Parameters Investigated References

S. cerevisiae

Commercial
strain donated
by Jastbolaget

AB, Sollentuna,
Sweden

~log 8 of yeast
per g,

6 weeks

Rainbow trout,
~130 g

Yeast-fed fish revealed similar
bacterial diversity and lower

abundances of
Leuconostocaceae and

Photobacterium compared to
fish-fed fish meal

[31]

S. cerevisiae Commercial
strain

250 g ton−1,
30 days

Nile tilapia,
50 ± 5 g

↑ growth performance, white
blood cell counts and

histopathology
[32]

S. cerevisiae Commercial
strain

4, 6 or 8 g kg−1,
30 days

Pirarucu,
9.8 ± 1.4 g

↑ growth performance
↓ cholesterol [33]

S. cerevisiae

Commercial
strain, Idun

industry,
Norway

300 g kg−1,
21 days

Atlantic salmon,
114 g

↑ nutrient digestibility and
immune responses [34]

S. cerevisiae NI
0, 1, 2 or
4 g kg−1,
90 days

Rohu,
5.69 ± 0.02 g

↑ growth performance, feed
utilization and

hematobiochemical indices
Variations in intestinal

microbiota (total viable and
LAB counts) and intestinal

morphology

[35]

S. cerevisiae NI
0, 1, 2 (SC2) or
4 (SC4) g kg−1,

16 weeks

Sea bream,
31.23 ± 1.2 g

↑ growth performance
parameters via SC2 and SC4

feeding and intestinal
morphology

SC4 feeding boosted innate
immune response

[36]

S. cerevisiae
fermentation

product
(DVAQUA)

Commercial
fermentation

product

0.5 g kg−1,
16 weeks

Hybrid tilapia,
~47 g

↑ non-specific immunity and
increased intestinal bacterial
count and bacterial diversity

[37]

Lyophilized whole
yeast,

S. cerevisiae

Commercial
strain

1, 5 or 10 g kg−1,
4 weeks

Gilthead seabream,
166 ± 16 g

↑ phagocytic activity,
respiratory burst activity,
complement activity and
myeloperoxidase activity

[38]

S. cerevisiae,
nucleotides NI

0.5, 1.5, and
2.5 g kg−1,

30 days

Nile tilapia,
42.9 ± 0.14 g

↑ blood proteins, leukocytes,
antioxidant activity,

non-specific immunity,
cytokine gene expression and

disease resistance against
Aeromonas sobria

[39]

S. cerevisiae,
nucleotides NI 500 mg kg−1,

80 days
European sea bass,

14.33 ± 0.18 g

↑ growth performance, lipid
efficiency and

anti-inflammatory TGF-b
Promoted beneficial lactic acid

bacteria Weissella and
Leuconostoc

[40]
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Table 1. Cont.

Species Isolated from Doses and
Duration

Finfish Species
Investigated Parameters Investigated References

S. cerevisae-
orginated free

nucleotides

Commercial
product

170, 320 or
470 ppm,
60 days

Nile tilapia,
~7.8 g

↑ complement hemolytic
activity

Serum lysozyme
concentration, intestinal villi

height and density and
survival toward A. hydrophila

via N470 feeding
→ growth performance

[41]

S. cerevisiae,
hydrolysate

Commercial
hydrolysate

(Sintun
Aquatic

Technology
Co., Ltd.)

0.1 and 0.2%,
8 weeks

Large mouth bass,
34 g

→ growth performance,
hepatosomic index and organ

coefficient
Modulation of gut microbiota
↓ Fusobacteria, Cyanobacteria,

Tenericutes and
Actinobacteria via

0.2% inclusion

[42]

Debaryomyces
hansenii 97 Fish intestine

5 × 106

CFU mL−1,
3 days

Zebrafish larvae

↑ survival against Vibrio
anguillarum and the

modulation of gut microbiota
and metabolic pathways

[43]

D. hansenii NI

1.1% of
D. hansenii

(1.7 × 106 CFU),
70 days

Gilthead seabream

↑ of somatic growth and
improvement in feed

conversion
Modulation of gut microbiota,
characterized by reduction in

abundances of several
Proteobacteria, especially

opportunistic bacteria

[44]

Geotrichum
candidum

Fermented
milk

109 CFU L−1,
70 days

Rohu larvae

↑ growth performance,
protease, amylase and
cellulase activities and

survival after Staphylococcus
aureus challenge

[45]

Geotrichum
candidum

QAUGC01

Commercial
dairy product

yogurt

109 CFU g−1,
un-encapsulated

and
encapsulated,

11 weeks

Rohu,
20 ± 2.34 g

↑ growth rate, protease,
amylase, cellulase, RBCs, Hb,

HCT, WBCs, MCHC,
respiratory bursts and

phagocytic activity, total
protein, lysozyme and IgM
Upregulation of heat shock
protein 70 gene in muscle,

intestine and liver
↓ serum AST and ALT

activities, total cholesterol and
triglyceride

Encapsulated diet revealed
best results

[46]

Local
fermented milk
product of curd

109 CFU g−1,
90 days

Rohu fingerings

↑ growth performance,
hematological profile and

digestive enzymes
Modulated the gut microbiota

[47]
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Table 1. Cont.

Species Isolated from Doses and
Duration

Finfish Species
Investigated Parameters Investigated References

Grapes from
Hubei Center
for Industrial

Culture
Collection and

Research

C: 0, T1:106,
T2:107, T3:108,
T4:109, T5:1010,

T6:1011

CFU kg−1,
60 days

Gibel carp

↑ feed utilization; α-amylase
activity immunity; expression

of immune related genes;
il-1β, tnf-α, hsp70 and tlr-2 in
liver; and disease resistance
against Aeromonas hydrophila

Modulation of the
gut microbiota

[48]

Sporidiobolus
pararoseus

By-product of
the biodiesel
production

process

T1 (control), T2
(5), T3 (10), and
T4 (20) g kg−1,

90 days

Nile tilapia

↑ growth performance (T3
and T4 diets). All treatments
improved immune response
and disease response against

S. agalactiae.

[49]

Cyberlindnera
jadinii NI 10% inclusion,

42 days
Atlantic salmon,

136 ± 0.25g
↓ inflammation and
enterocyte histology [50]

Torula yeast
(Cyberlindnera

jadinii)

Commersial
product,

Arbiom Inc.
(Durham,
NC, USA)

Inclusion level (0,
10 and 20%),

35 days

Atlantic salmon,
1.14 g

→ growth performance
(20% inclusion)

Modulated the gut microbiota
(decreasing Tepidmicrobium

and Lactobacillus, but a slight
increase in Weisella was noted
with increasing torula levels)

[51]

Yarrowia lipolytica Fish intestine 5 × 106 mL−1,
3 days

Zebrafish larvae

↑ survival against V.
anguillarum and the

modulation of the gut
microbiota and

metabolic pathways

[43]

Aspergillus oryzae

No further
information
was given,

Bio’c company,
Uchida, Japan

1 g kg−1,
60 days

Nile tilapia

↑ growth performance,
antioxidative enzymes, GPX

and immunity
Modulation of hematocrit,

hemoglobin, red blood cells,
white blood cells, total protein,

and digestive enzymes

[11]

Aspergillus niger

Laboratory
strain, no

further
information
was given

0, 103,
106 CFU g−1,

60 days
Common carp

↑ Growth performance,
protein efficiency ratio and

lipid efficiency ratio, plasma
levels of lysozyme and total
immunoglobulin, red blood

cell counts, haemoglobin
concentrations, mean

corpuscular haemoglobin,
mean corpuscular volume

values and lymphocyte counts

[12]

Streptomyces sp. Catlaintestine Dose not given,
15 days

Swordtail,
0.4 g ↑ growth and food conversion [52]

Streptomyces sp. Sediment
Dose not
specified,
15 days

Common platy,
0.4 g.

↑ food conversion rate, food
conversion efficiency

and growth
[53]
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Table 1. Cont.

Species Isolated from Doses and
Duration

Finfish Species
Investigated Parameters Investigated References

Streptomyces
chartreusis Soil ecosystem

Control (0), 105

(S1), 106 (S2), and
107 (S3) CFU g−1,

2 months

Common carp,
~14 g

↑ growth performance
parameters, regardless of

inclusion levels
Different doses of S.

chartreusis increased serum
total Ig and lysozyme activity

compared to those fed the
control diet

→ serum antioxidant enzyme
activity (CAT, SOD and GPx)

[54]

Streptomyces griseus Field sites

Exposed to
102–106 spores
mL−1 for up to

96 h.

Fish gill pathology,
with bream and
rainbow trout

being more
sensitive than carp,
trench and roach

Elicits pathological changes to
the gills

These changes include
hyperplasia, leading to the

fusion of the secondary
lamellae and loss of

microridging on the filament
epithelium of the
primary lamellae

[55]

Anisomycin (Ani),
a metabolite
produced by
Streptomyces

griseolus

NI Dose NI,
7 days

Zebrafish,
3.20 ± 0.15 cm

Ani showed strong anti-SVCV
activity in vivo, as indicated

by inhibiting viral gene
expression and the increased

survival of zebrafish

[56]

Streptomyces fradiae
and

Streptomyces sp.

Marine sponges,
Callyspongia

diffusa, Mycale
mytilorum,

Tedaniaanhelans
and

Dysidea fragilis

Dose NI,
50 days

Swordtail,
~0.6 g ↑ growth [57]

NI—no information given. ↑—increase;→ no effect; ↓—decrease. Rainbow trout (Salmo gairdneri); catla (Catla
catla); European sea bass (Dicentrarchus labrax); swordtail (Xiphophorus hellerii); common platy (Xiphophorus
maculatus); hybrid tilapia (Oreochromis niloticus ♀× O. aureus ♂); Egyptian African catfish (Clarias gariepinus); Nile
tilapia (Oreochromis niloticus); pirarucu (Arapaima gigas); Atlantic salmon (Salmo salar): gilthead seabream (Sparus
aurata); zebrafish (Danio rerio).

2.1. Saccharomyces

Saccharomyces cerevisiae, known as baker’s yeast, is a unicellular and well-established
model system for understanding fundamental cellular processes relevant to higher eu-
karyotic organisms [58]. The species is commonly used in fermentation and has been
instrumental in winemaking, baking and/or brewing since ancient times. S. cerevisiae was
the first eukaryotic organism whose genome was sequenced. As it is easy to grow and
genetically manipulate, it has always been at the forefront of biotechnological advances.
Although yeast cells are primarily reported on ripe fruits, Saccharomyces and some other
yeast genera are reported in the GI tracts of finfish [7,59–61]. Most published studies involv-
ing yeasts as probiotics have demonstrated the beneficial effects of dietary-administered
S. cerevisiae in fish. Studies involving S. cerevisiae and its cellular components (β-glucan,
oligosaccharides, enzymes) could improve growth and physiological activities in fish or
other aquatic organisms, suggesting their prospective applications as functional feed addi-
tives like probiotics, prebiotics, synbiotics, postbiotics and parabiotics/paraprobiotics [62].
The administration of Saccharomyces is commonly carried out in aquaculture [10], and to
avoid overlaps, only the studies discussed in this review are presented in Table 1.
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Noh et al. [63] studied the effect of supplementing S. cerevisiae with Streptococcus
faecium in the diet of Israeli carp (Cyprinus carpio nudus). They revealed improved growth
response and nutrient utilization in fish fed probiotic-supplemented diets vs. diets without
probiotic supplementation. Later, Lara-Flores et al. [64] evaluated a probiotic mix con-
sisting of S. faecium, Lactobacillus acidophilus and S. cerevisiae as growth promoters in Nile
tilapia (Oreochromis niloticus) fry and revealed that diet supplemented with S. cerevisiae
improved growth performance and feed efficiency, suggesting that yeast might be consid-
ered to be an appropriate growth-stimulating additive in tilapia cultivation. Subsequently,
S. cerevisiae has been reported to enhance growth performance, immune responses and dis-
ease resistance in various finfish, such as rainbow trout (Oncorhynchus mykiss), [27] common
carp (Cyprinus carpio) [65], grouper (Epinephelus coioides) [66], Nile tilapia [67], olive flounder
(Paralichthys olivaceus) [68], and hybrid striped bass (Morone chrysops ×M. saxatilis) [69–71],
as well as and in carp culture [72,73].

Yeasts have been found to show protective effects against a broad range of pathogens,
including parasites, bacteria and viruses. Grouper fed a diet containing S. cerevisiae P13 iso-
lated from fermented peaches revealed significantly higher survival rates than the control
diet after challenges with Streptococcus sp. and an iridovirus, respectively [66]. A significant
increase in lysozyme activity (p < 0.05) was observed in Nile tilapia fed diets containing
S. cerevisiae at 10 g kg−1 (Biosal®, KW Alternative Feeds, Leeds, UK) for 21 days [74].
Feeding with Lactobacillus plantarum, L. acidophilus and S. cerevisiae in combination im-
proved growth, feed efficiency, blood biochemistry, survival rate and non-specific immune
responses in ciliate parasite (Uronema marinum)-infected olive flounder [68]. The study
revealed enhanced superoxide anion production and increased serum aspartate aminotrans-
ferase and alanine aminotransferase levels when fed the S. cerevisiae-supplemented diet.
A diet supplemented with S. cerevisiae treated with β-mercaptoethanol improved the im-
mune response and growth of juvenile rainbow trout challenged with Yersinia ruckeri more
effectively than whole-cell yeast and n-3 highly unsaturated fatty acid (HUFA)-enriched
yeast [75]. Similarly, channel catfish (Ictalurus punctatus) juveniles fed diets supplemented
with whole cells of S. cerevisiae (Levucell SB20®) or yeast sub-components, e.g., commercial
preparations of β-glucan (MacroGard® and Betagard-A®) revealed significantly higher
survival rates after being challenged with Edwardsiella ictaluri than catfish fed the controlled
diet [76]. The inclusion of dietary β-glucan (0.5–1.0%) produced from S. cerevisiae was effi-
cient at improving thermal tolerance, immunity, and disease resistance in golden mahseer
(Tor putitora) fry [77].

The inclusion of baker’s yeast in the feed was reported to improve the growth rates
of Nile tilapia [67], rohu (Labeo rohita) [78] and African sharp-tooth catfish (Clarias gariepi-
nus) [79]. Further, live baker’s yeast supplementation increased carcass protein deposition
in Nile tilapia and improved protection against Aeromonas hydrophila [67,80]. Pooramini
et al. [81] reported the positive effects of S. cerevisiae on growth parameters, survival and
carcass quality in rainbow trout fry. While evaluating the interactive effects of dietary
protein (35% or 45% crude protein) and yeast levels (0.0, 0.50, 1.0, 2.0, or 5.0 kg−1 diet)
for Nile tilapia fry and their challenge with A. hydrophila, 2.0 g yeast kg−1 diet with 45%
CP was determined to be the most suitable for maximum growth and resistance against
A. hydrophila infection [82]. However, at higher inclusion levels, 20, 30 and 40% of S. cere-
visiae resulted in a decrease in growth performance and nutrient utilization efficiency in
Nile tilapia [83]. In a study of rainbow trout fry fed 0, 1, 5 and 10% yeast supplements, a
decline in growth performance with supplementation at 10% was recorded in the rainbow
trout fry [84]. Further, the study noticed decreased protein and increased ash content in
the carcasses with increased yeast supplementation. However, the dietary administration
of S. cerevisiae var. elipsoidous enhanced the resistance against salinity stress in rainbow
trout fry. Although the specific reasons for the poor performance associated with higher
inclusion levels are not properly discussed, the overstimulation of the immune system and
consequent misuse of resources may give an explanation.
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Caruffo et al. [85] evaluated the probiotic properties of 15 yeast strains (isolated from
the gut of diverse fish species) for the protection of zebrafish (Danio rerio) larvae following
a Vibrio anguillarum challenge. The results indicated that 13 yeast strains, including a
strain of S. cerevisiae (Sc86) isolated from yellowtail (Seriola lalandi), significantly increased
survival rates with regard to V. anguillarum. Mohammadi et al. [26] evaluated the dietary
inclusion of S. cerevisiae (0, 0.5%, 1% and 2% levels) and recorded a significantly improved
growth performance of convict cichlid (Amatitlania nigrofasciata) at a 2% inclusion level,
but no significant difference was detected in whole-body protein content. However, an
inclusion level of 2% S. cerevisiae significantly improved growth, as did an increase in
the carcass protein content in three-spot cichlids (Cichlasoma trimaculatum) [86], while the
supplementation of S. cerevisiae at a 3 g kg−1 feed improved the growth performance and
feed utilization of Java barb (Barbonymus gonionotus) fingerlings [87].

A yeast-based commercial probiotic (Aqualase®) consisting of S. cerevisiae and Saccha-
romyces elipsoedas improved growth, as well as the modulation of immunity and intestinal
microbiota in rainbow trout [21]. The study revealed an increase in intestinal LAB popula-
tion, elevated lysozyme activity, and the pathogen inhibitory potential of skin mucus in
all yeast-fed groups. Moreover, serum lysozyme activity, IgM levels, and the respiratory
burst activity of blood leukocytes were elevated, suggesting that the dietary administra-
tion of yeasts influenced humoral and cellular immune parameters. An improvement
in intestinal microbiota following the addition of S. cerevisiae in the diet (0.6%) was also
reported for GIFT tilapia (Oreochromis mossambicus) [88]. However, analyses of the gut
bacterial community were carried out via the culture-dependent method, followed by
physiological and biochemical characterization. Previously lyophilized S. cerevisiae was
found to enhance cellular innate immune response, e.g., myeloperoxidase, phagocytic,
respiratory burst, and cytotoxic activities, of head-kidney leucocytes in gilthead seabream
(Sparus aurata); however, the humoral response was not influenced [38]. Such immune-
modulatory features could be linked to the cellular components of yeasts, principally
the β-glucan, which is one of the most well-documented immune stimulants in fish [89].
In addition, yeasts’ nucleic acids and mannan oligosaccharides may be associated with
immune-stimulatory effects [38]. Accordingly, Li et al. [90] revealed that dietary supplemen-
tation of an oligonucleotide product (Ascogen P) prepared from brewer’s yeast positively
influenced the immune responses to and resistance of juvenile hybrid striped bass against
S. iniae infection. Abu-Elala et al. [91] evaluated the role of dietary S. cerevisiae as a probiotic
(BGY-35®), its extract as a prebiotic (mannan–oligosaccharide, Bio-MOS®) and the mixture
of BGY-35® and Bio-MOS® in Nile tilapia. Significant improvement in growth performance
and the activation of non-specific cellular, as well as humoral immunological, responses
were recorded. Furthermore, increased resistances in probiotic-, prebiotic- and synbiotic
fed fish challenged with the pathogenic strains of A. hydrophila, P. fluorescens and Flavobac-
terium columnare were displayed. Based on their results, the authors suggested using
S. cerevisiae in synbiotic form as functional feed additives for Nile tilapia. Furthermore, the
groups administrated with S. cerevisiae noticed the colonization of yeast cells in conjunction
with the increased length and density of the intestinal villi, facilitating the digestion and
absorption of food. Similar results were previously reported by Gatesoupe [7], showing
that the intestinal colonization of S. Cerevisiae accelerates the maturation of the digestive
system in fish fry, while growth and metabolism were revealed in older fish.

Investigating the importance of viable yeast cells and their secretory metabolites, Ran
et al. [29] indicated the advantages of using live yeast as a dietary supplement for Nile
tilapia, as evidenced by the improved gut microvilli morphology, reduced hsp70 expression
level and reduced intestinal inflammation, suggesting the beneficial role of yeast secretory
metabolites. However, secretory metabolites might not play a significant role in growth
promotion and disease resistance, as both live and inactivated yeast provide protection
against A. hydrophila infection. In contradiction to other reports [21,88], yeast supplementa-
tion did not significantly influence the diversity of the autochthonous microbiota evaluated
via 16S rRNA gene pyrosequencing and gut microbiome analysis [29]. In another study, the
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supplementation of S. boulardii in diets was revealed to stimulate the growth, feed efficiency
and survival rates of common carp fingerlings [92]. Rotifers are important zooplankton that
supply trace minerals for finfish larvae in commercial hatcheries. Nematzadeh et al. [93]
revealed that using rotifer (Brachionus plicatilis) grown with zinc-enriched S. cerevisiae im-
proved the growth, reproduction and body composition of the rotifer culture. The dietary
supplementation of S. cerevisiae enhanced innate immunity, lowered pathogenic bacteria
load in fish muscle and modulated the gut microbiota in Nile tilapia reared in low-input
ponds, demonstrating that S. cerevisiae was more effective as a probiotic compared to Bacillus
subtilis [94,95]. The administration of commercially produced S. cerevisiae as a feed additive
improved growth, feed utilization and resistance against P. fluorescens in freshwater catfish
(Mystus cavasius) [96].

Hansen et al. [44] adopted the laboratory-scale downstream processing of S. cerevisiae
through direct inactivation via spray-drying, autolysis and cell crushing. The post biotics
produced via down-stream processing were evaluated for their nutritional value and health
effects in the diets of Atlantic salmon (Salmo salar), and the increased solubility of protein
and β-glucan resulted in increased protein digestibility and immune stimulatory effects [44].
In a 60-day study, MajharulIslam et al. [97] reported that S. cerevisiae administration to
Nile tilapia significantly improved growth performance, feed utilization, villus structure
and the number of goblet cells present when the fish were fed a diet supplemented with
4 g kg−1 S. cerevisiae. Further, adding methionized yeast (methionine @ 50 g kg−1 feed) to
the diet positively affected growth and nutrient utilization in the hybrid African catfish
Clarias gariepinus × male Heterobranchus longifilis. In a recent study used to evaluate the
biochemical and molecular properties of four yeast cell-wall extracts from S. cerevisiae,
Rawling et al. [98] revealed that extracts varying in structure and composition differently
affected the innate mucosal tissue responses and the innate immunity of zebrafish intestine.

2.2. Candida

Candida belongs to the class Saccharomycetes. Past evaluations of the intestines of
diverse fish species have revealed gut-associated Candida, such as Candida albicans within
the GI tract of rainbow trout [99]. Further, Candida sp., along with some other yeast
species, was described as forming a dominant part of the gut microbiota in some samples of
rainbow trout [7]. Later, the tannin-degrading ability of the autochthonous Candida tropicalis
(GU911469) and Candida parapsilosis (GU939630) were reported from the GI tracts of tilapia
(Oreochromis mossambicus) and rohu, respectively [59]. The phytase-producing ability of
C. tropicalis (JX532154) isolated from climbing perch (Anabas testudineus) and C. tropicalis
(JX532155) isolated from silver carp (Hypophthalmichthys molitrix) were also documented [61].
The authors opined that the tannin- or phytate-degrading microbiota might provide an
ecological advantage to the fish by enabling them to conquer the anti-nutritional effects
of dietary tannins and phytates. Recently, Siangpro et al. [100] isolated 176 acid-tolerant
yeasts from the GI tracts of diverse fish species, of which 15 yeast isolates representing
antagonism against pathogenic bacteria of Nile tilapia were characterized for probiotic
properties (adhesion potential, biofilm formation, and resistance to acid/bile). Among
all yeast isolates, a strain of C. Tropicalis (LC735681) exhibited maximum antipathogenic
activity, suggesting its prospective application as an alternative to antibiotics for sustainable
fish farming [100]. Regardless, there is no information regarding the use of Candida sp. as a
probiotic supplement in finfish aquaculture, but some information is available regarding
the use of Candida in shrimp aquaculture [16].

2.3. Cryptococcus

Cryptococcus is often referred to as ‘the sugar yeast’ due to the thick coating of polysac-
charides surrounding its cell. Cryptococcus is a genus within the family Cryptococcaceae.
It is reported in the GI tracts of several fish species [7,47], but to our knowledge, no
information is available regarding its use as a probiotic supplement in aquaculture.
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2.4. Debaryomyces

Debaryomyces hansenii is a hemi-ascomycetous yeast commonly reported in natural
substrates like soil and food, although it is also reported in the GI tract of rainbow trout [31].
The probiotic and nutritional effects of Debaryomyces in fish were presented in a compre-
hensive review by Angulo et al. [22], and to avoid overlaps, we recommend that interested
readers have a closer look at the papers published before 2020 and discussed in this re-
view, as mentioned above. In the study of Vargas et al. [43], the authors revealed that
Debaryomyces hansenii supplemented with a zebrafish diet improved survival against V.
anguillarum; modulated the gut microbiota; affected carbohydrate, lipid and amino acid
metabolism; and prevented increase of Ensifer (nitrogen-fixing bacteria) and Vogesella (Gram-
negative bacteria) unfavorable for larval survival. In another study, Sanahuja et al. [44]
reported that D. hansenii administration in a gilthead seabream diet increased growth and
improved feed conversion, modulating the gut microbiota without affecting the intestinal
cell organization, even though D. hansenii supplementation modified the composition of
lectin in the mucinous content of goblet cells. The modulation of gut microbiota was
characterized by a reduction in the abundance of the genera Anaerococcus, Ascidiaceihabitans,
Hydrogenophaga and Variovora. In a more recent study, Debaryomyces nepalensis and three
other autochthonous yeast strains (viz., Cutaneotrichosporon jirovecii, Blastobotrys proliferans
and Diutina catenulata) with potential probiotic properties were recorded from the intestine
of the goldfish Carassius auratus [101]. The documented strains were noticed to interact
with several fish-associated bacterial pathogens, namely A. hydrophila, Lactococcus garvieae,
V. anguillarum, Vagococcus salmoninarum and Yruckeri.

2.5. Geotrichum

Geotrichum candidum is a filamentous fungus used in the dairy industry for cheese
ripening and flavoring. Still, four recent studies have used G. candidum as probiotic supple-
ments for rohu [45–47] and gibel carp [48]. Sanahuja et al. [45] showed that G. candidum
supplemented with the rearing water of rohu larvae increased growth performance; di-
gestive enzyme, protease, amylase and cellulase activities; and crude protein in muscle
and improved the survival of larvae in response to challenge by Staphylococcus aureus.
Ibrar et al. [46] evaluated the application of 109 CFU g−1 of un-encapsulated (free) and
encapsulated G. candidum QAUGC01 in rohu diet through an 11-week study and revealed
improved growth performance, enzyme activities (protease, amylase and cellulase) and
immunity and an upregulated heat shock protein gene in rohu. However, encapsula-
tion had the most profound effect, suggesting its application as a feed additive in practi-
cal/commercial semi-intensive earthen pond culture systems.

In the gibel carp study of Noor-Ul et al. [48] seven inclusion levels of G. candidum
(0, 106, 107, 108, 109, 1010 and 1011 CFU) revealed that G. candidum displayed higher
intestinal α-amylase activity, but no difference was demonstrated for lipase and trypsin
activities and those of the control. Gut microbiota were modulated as the relative abundance
of the phylum proteobacteria, actinobacteria, firmicutes and bacteroidetes noted in fish-fed
filamentous fungi. At the same time, in control-fed fish, a higher percentage of pathogenic
bacteria belonging to the order Aeromonadales and Vibrionales were displayed. After
the challenge with A. hydrophila, significantly higher respiratory burst activity, IgM levels
and aspartate transaminase, lysozyme and alanine transaminase activities were noted
in fish fed 106 and 108 CFU of G. candidum. The expression of immune-related genes,
namely il-1β, tnf-α, hsp70 and tlr-2, in the fishes’ livers were significantly affected by the
administration of G. candidum after the A. hydrophila challenge. This study showed that
G. candidum could be a potential probiotic, as productive results can be achieved using the
lower doses, in particular 106–108 CFU kg−1. Ghori et al. [47] investigated the effects of
G. candidum supplementation on rohu fingerlings and revealed improvements in the growth
performance, hematological profile and amylase and cellulase activities and modulated
the gut microbiota through the absence of Staphylococcus saprophyticus and Sporobolomyces
lactosus, along with the relative abundances of Trichosporon and Cryptococcus.
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2.6. Leucosporidium

Leucosporidium is a genus of psychorphilic or asporogenous yeasts and belongs to the
family Leucosporidiaceae, order Leucosporidiales, which includes five species, namely
L. antarcticum, L. fasciculatum, L. fellii, L. golubevii and L. scottii [102]. All species grew well
at subzero temperatures (−1 ◦C) to the maximum temperature of 18–20 ◦C, with glucose
being the substrate [103]. Although Leucosporidium sp. is frequently reported in rainbow
trout intestine, information regarding fish gut-associated Leucosporidium from other fish
species is scant [104].

The physiological properties and enzymatic potential of the strains under this genus
suggest their likely application for low-temperature and marine water aqua-farming. For
example, L. scottii is the only species able to grow richly on marine substrates at mesic
temperatures [105] with a heterobasidiomycetous life cycle that is morphologically as-
comycetous in nature; like Saccharomyces cerevisiae. L. antarcticum is a widespread, en-
demic Antarctic marine yeast found in cold marine waters, and it was reported to be
used to produce intracellular β-fructofuranosidase, as well as intra- and extracellular glu-
cosidases [106]. A novel extracellular subtilase was reported by L. antarcticum isolated
from water from Admiralty Bay [107]. In addition, Leucosporidium spp. was found to
produce some other enzymes, like cold-adapted extracellular serine proteinase [108], inver-
tase, α-glucosidase [106], extracellular lipase [109], amylase laccase, pectinases [110] and
β-fructofuranosidase [111]. The effects of live yeast and/or the incorporation of exogenous
enzymes into diets to improve fish growth and digestive enzyme activity were discussed
in previous studies [7,112–114].

2.7. Pichia

Pichia is a genus of yeasts in the family Pichiaceae with spherical, elliptical, hat-shaped,
hemispherical or round ascospores and oblong acuminate cells. The methylotrophic yeast
Pichia pastoris utilizes glucose, glycerol and methanol as a carbon and energy source and is
widely used in the biochemical research and biotech industries to manufacture enzymes
and pharmaceuticals [115,116]. Since yeast has generally been recognized as safe (GRAS) by
the US Food and Drug Administration (FDA), Pichia has been cultivated on a commercial
scale and sold directly as protein-containing animal feed [117]. In addition, it can utilize a
wide range of sources of nitrogen and phosphorus, making it a potential factor in reducing
environmental pollution caused by organic wastes from agriculture [118].

Fish gut-associated Pichia spp. and their probiotic attributes were indicated in some
previous reports. The tannase-producing ability of P. kudriavzevii (GU939629) was identified
in the GI tract of common carp [59]. In another study, P. kudriavzevii (KT582009) isolated
from the gut of Nile tilapia displayed an ability to produce diverse exo-enzymes and
antagonism against fish pathogenic A. hydrophila [119]. Acosta et al. [120] demonstrated
that the immersion of fish into the growth hormone (GH)-rich recombinant Pichia pastoris
preparation could be the most efficient and convenient method for GH administration
to promote growth in tilapia. The recombinant P. pastoris strain could synthesize mature
peptide of crucian carp (Carassius auratus) c-type lysozyme with antibacterial activity and
good stability [121]. The dietary application of non-modified P. pastoris at 109 CFU g−1 of
feed did not improve the growth performance of jundiá (Rhamdia quelen) larvae, as growth
performance was similar to that of the control diet [122]. More recently, the application
of the plant endophytic yeasts Pichia fermentans and Meyerozyma caribbica significantly
improved the growth, nutrient composition, minerals, hematological parameters, length of
intestinal villi and kidney function of the carp Barbonymus gonionotus [123], and P. fermentans
at 0.94 × 108 CFU kg−1 feed gave the maximum positive effects of B. gonionotus, indicating
its probiotic potential for aquaculture applications. The bioprocessing of oil-cake [124] and
aquatic weed [125] through solid-state fermentation (SSF) by the tannase-producing yeast
P. kudriavzevii (GU939629) was identified as an effective strategy for the deactivation of
anti-nutritional factors and value addition of the plant feedstuffs for their likely utilization
in formulated fish feed.
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Sealey et al. [126] reported that diets supplemented with P. guilliermondii at 0.3% or
0.6% for juvenile rainbow trout improved growth, food conversion efficiency, feed intake,
protein retention efficiency and disease resistance against Yersinia ruckeri and Flavobacterium
pyschrophilum through a 16-week study in a recirculating aquaculture system. No effect
of Pichia supplementation on mortality was observed. Further, the cell-surface phytase of
P. pastoris was highlighted as being a potential feed supplement [127]. P. fermentans im-
proved the growth, hematological–biochemical composition, and morphology of internal
organs in Barbonymus gonionotus [123]. P. kudriavzevii had the ability to produce phytase
that could, ideally, be useful in the feed and animal industries [128].

2.8. Rhodosporidium

Rhodosporidium is a type of red basidiomycete that accumulates carotenoids, neutral
lipids and enzymes relevant to the chemical and pharmaceutical industries. They me-
tabolize all major components of lignocellulosic biomass (cellulose, hemicellulose and
lignin) and are potential hosts for metabolic engineering to produce terpenes and fatty
acids. In fish, a strain of Rhodosporidium babjevae was only isolated from the reared croaker
(Cilus gilberti) intestine, whereas Rhodosporidium sphaerocarpum was only isolated from wild
croaker intestine [129]. Both R. babjevae and R. sphaerocarpum have previously been identi-
fied in marine environments, which also can explain their presence in the fish gut [130,131].
Rhodosporidium spp., as a carotenoid-rich red yeast, has been reported to accumulate intra-
cellular lipids as high as 60% of its cell dry weight using glucose as the carbon source [132].
It has been successfully used as a dietary supplement in aquaculture to reduce oxidative
stress in aquatic animals [133].

2.9. Rhodotorula

Rhodotorula spp. belong to the phylum ‘Basidiomycota’, family ‘Cryptococcaceae’,
class ‘Microbotryomycetes’, and order ‘Sporidiobolales’, which are pigmented basidiomyce-
teous yeasts (fungi) commonly reported in different unfavorable ecosystems, as well as
in fish [31]. Biomass of Rhodotorula glutinis strains could be used as the natural sources of
α-L-arabinofuranosidase, lipases, invertase, pectinases, invertase and tannin acyl hydrolase,
particularly phenylalanine ammonia lyase (PAL) [134,135]. More importantly, carotenoids,
lipids and industrial enzymes synthesized by R. glutinis strains have advantages, mainly
due to their higher biotransformation rates independent of climate and low costs [136,137].
Rhodotorula can metabolize avidly short-chain fatty acids, such as acetic, propionic and
butyric acids, essential for the gut epithelium and other physiological functions [138,139].
Rhodotorula spp. secrete various enzymes, such as xylanase, cellulase and amylase [140],
contributing to the degradation of the viscosity-generating soluble fibers in foods, and
they are considered nutritionally advantageous [141]. Rhodotorula protease has been re-
ported to degrade bacterial toxins [142]. Furthermore, Rhodotorula produces folates, lipids,
carotenoids and proteins that are essential nutrients for all living organisms [141,143,144].
Dietary Rhodotorula supplementation “as an alternative to antibiotics” improved growth
and disease resistance in juvenile Japanese spiky sea cucumbers [145].

Rhodotorula supplementation was reported in juvenile Nile tilapia (Oreochromis niloti-
cus) to improve growth performance, antioxidant capacity, histomorphology and immune
responses [146]. Dietary R. mucilaginosa enhanced the growth performance, immune re-
sponses and disease resistance of the juvenile golden pompano Trachinotus ovatus [147].
Carotenogenic Rhodotorula paludigena VA 242 served as a pigment-enhancing feed ad-
ditive for the ornamental fish koi carp, and improved growth and survival rates were
also recorded [148]. Feed supplements with a Rhodotorula cell mass have been proven
safe and non-toxic in animals [149–151]. The dietary supplementation of Rhodotorula sp.
C11 at 105 and 106 CFU g−1 improved growth and resistance against Vibrio splendidus
infection in juvenile sea cucumber (Apostichopus japonicas) [145]. Pacific white shrimp fed
dietary yeast (Rhodotorula sp.) enhanced intestinal health, growth, disease resistance and
immune responses [152,153]. Yeasts are often applied to aquaculture as live probiotics or
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feed ingredients [154]. Dietary hydrolyzed R. mucilaginosa can influence intestinal health,
immune response, and the ammonia resistance in Pacific white shrimp (Litopenaeus van-
namei) [155]. Red yeast has excellent industrial potential and has piqued the interest of
the food, pharmaceutical, cosmetics and feed industries [156]. Microbial carotenoids have
received scholarly attention [157], and Maldonade et al. [158] reported that a maximum of
745 µg L−1 carotenoid can be produced by R. mucilaginosa. R. mucilaginosa, which is one of
the most promising pigment-producing yeasts, can be fermented using cheap industrial
by-products and wastes as nutrient sources [159–161].

2.10. Sporidiobolus pararoseus

The red yeast Sporidiobolus pararoseus is a single-cell microorganism in the class Ba-
sidiomycota. In a recent study, Srinual et al. [162] suggested that red yeast (S. pararoseus)
supplementation effectively alleviated the toxicity induced by mycotoxins and could be
applied as a novel feed additive in the broiler industry. In aquaculture, mycotoxin-related
issues are increasing, and in this regard, it is of interest to note that Van Doan et al. [49]
investigated the effects of red yeast, a by-product of the biodiesel production process, on
the growth, immunity and resistance of Nile tilapia with regard to Streptococcus agalactiae.
Fish were fed four different concentrations of dried red yeast, namely T1 (control; T1),
T2 (5), T3 (10), and T4 (20) g kg−1 diets for 90 days, and the results revealed the significantly
improved growth performance of fish fed with the T3 and T4 compared to the control. A
significant increase was observed in total carotenoid content, liver superoxide dismutase
activity, serum lysozyme and albumin and disease resistance against S. agalactiae in fish
fed with red yeast. The highest bactericidal activity was revealed in the T4 group, but no
significant differences were displayed in hematology, blood chemical, malondialdehyde,
body chemical composition, organosomatic indices and myeloperoxidase in all treatment
groups. Based on their results, the authors concluded that the T4 diet was most promising
and could be used to supplement Nile tilapia. Owing to mycotoxin-binding capacity,
S. pararoseus has been recognized as a potential feed additive for animals [163].

2.11. Sporobolomyces

Anamorphic basidiomycetous yeasts of the Sporobolomyces taxa are known for their
bright red, orange or pink appearances and belong to the order ‘Sporidiobolales’. The
main carotenoids produced by the Sporobolomyces yeasts are β-carotene, torulene and
torularhodin [164,165]. Some strains of Sporobolomyces yeasts can degrade patuline, a myco-
toxin with mutagenic, genotoxic, immunotoxic, teratogenic and cytotoxic properties [166].
Sporobolomyces spp. has shown a potential application in shrimp aquaculture [167–169].

2.12. Trichosporon

Trichosporon belongs to the phylum ‘Basidiomycota’, class ‘Hymenomycetes’ and order
‘Trichosporonales’. Industrial interest has focused on the ability of the Trichosporon species
to utilize a wide range of substrates, particularly aromatic compounds, aliphatic lipids, amines
and complex nitrogenous compounds, as its sole sources of carbon and energy, including
uric acid, ethylamine, hydroxyproline, tyramine and l-phenylamine [170]. Trichosporon cells or
enzymes might metabolize pollutants and xenobiotics in bioremediation processes [171–173].
Furthermore, Trichosporon asahii strains were reported to produce lipase [174], aspartic-type
peptidase [175] and antioxidant molecules [176], which could have critical applications
in animal farming systems, including aquaculture. Trichosporon cutaneum is commonly
reported in the intestines of fish and known to accelerate the development of the digestive
system of fish [7]. Previous studies revealed that T. asahii has antioxidant enzymatic
activities [176,177].
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2.13. Yarrowia lipolytica

Yarrowia lipolytica is one of the “non-conventional” yeast species capable of synthesiz-
ing a broad group of valuable metabolites, in particular lipases and other hydrolytic enzymes,
microbial oil, citric acid, erythritol and γ-decalactone. In a recent study, Vargas et al. [43]
revealed that Y. lipolytica supplemented with a zebrafish diet improved survival against
V. anguillarum; modulated the gut microbiota; affected the carbohydrate, lipid and amino
acid metabolism; and prevented the increase in Ensifer and Vogesella.

3. Mold (Aspergillus spp.) as Probiotics

Apart from the production of digestive/degradation enzymes, some of the well-
recognized functions of Aspergillus are the synthesis of antibacterial substances, the re-
duction in blood cholesterol levels, the inhibition of bacterial infections, the modulation
of immunity and the reconstruction of the gut microbiota [178]. Further, the potential
effects of Aspergillus on the mitigation of hypoxia and salinity stress in fish have been
indicated [18,179]. Most studies on fish associated with Aspergillus spp. were directed
towards the pathophysiological effects of the fungi in numerous fish species [180,181]. Al-
though some molds can produce mycotoxins [182], Aspergillus niger and Aspergillus oryzae
are reported to be the predominant species under the genus Aspergillus, conferring health
benefits to aquatic animals.

3.1. Aspergillus niger

A. niger is the most common fungi of the genus Aspergillus that can be easily cultivated
in laboratory conditions. Diverse strains of A. niger are sources of several enzymes (pro-
teases, α-amylase, cellulase, xylanase, phytase and tannase) and bioactive compounds (cit-
ric acid, gluconic acid and itaconic acid); therefore, they are extensively used in the poultry
industry [183]. However, reports on the application of A. niger in fish are scant. The dietary
supplementation of autochthonous A. niger, along with S. cerevisiae (6 × 106 cells g−1),
improved the growth, survivability, immune parameters and ammonia excretion in the
juvenile beluga sturgeon Huso huso [184].

In a recent study of common carp, diets containing A. niger (103, T1 and 106, T2)
were fed for 60 days [12]. The authors revealed significantly improved effects on growth
performance, plasma levels of lysozyme, total immunoglobulin, red blood cell counts,
hemoglobin concentrations, mean corpuscular hemoglobin, mean corpuscular volume
and lymphocyte counts via the administration of both T1 and T2. The activities of the
digestive enzymes (protease, trypsin, amylase, lipase and alkaline phosphatase) and ap-
parent digestibility parameters were significantly improved via the supplementation of
106 of A. niger into the diet (T2). White blood cells, hematocrit values and a number of
neutrophils were also higher in treatment T2. Very few strains of A. niger are known to
produce ochratoxin A [185]. Thus, the screening of the A. niger strains intended for use in
probiotics applications should be conducted with the utmost care.

3.2. Aspergillus oryzae

The supplemental effects of dietary A. oryzae on fish are documented in several studies
of Nile tilapia. The dietary supplementation of A. oryzae potentially improved the im-
mune status and disease resistance [186], along with growth performance and intestinal
histomorphometry [187], in Nile tilapia. Dawood et al. [188] conducted a 60-day feeding
trial with Nile tilapia to determine the effect of dietary A. oryzae (at 106 and 108 CFU g−1

levels). They showed a significant increase in the growth performance and modulation of
blood hematocrit, hemoglobin, red blood cells, white blood cells, total protein and diges-
tive enzymes, villi length and the activity of antioxidative enzymes. However, decreased
blood triglyceride and the oxidative enzyme (MDA) were reported in the A. oryzae group.
Supplementation enhanced nitro blue tetrazolium (NBT), IgM, lysozyme, bactericidal and
phagocytosis, indicating the improved immunity of tilapia. Further, the fish were subjected



Fishes 2023, 8, 575 16 of 32

to a hypoxia challenge, and the addition of A. oryzae to diets significantly improved the
defense against hypoxia stress in Nile tilapia.

In addition, the combined application of A. oryzae and β-glucan as synbiotics signifi-
cantly (p < 0.05) improved the growth, feed efficiency, hematological parameters, digestive
enzymes, immunity (NBT, IgM, lysozyme, bactericidal and phagocytosis) and antioxidative
capacity of Nile tilapia [11]. Fermented A. oryzae could enhance the growth and hematologi-
cal parameters of common carp [189]. In another study, Nile tilapia juveniles were fed diets
supplemented with A. oryzae (1 g kg−1 diet) for 12 weeks, and after that, they were exposed
to different salinity levels for 15 days [18]. Significant increases (p < 0.05) in blood protein
levels (albumin, globulin and total protein), non-specific immune responses (lysozyme
and phagocytic activities) and antioxidant enzymes (glutathione peroxidase, catalase and
superoxide dismutase), along with a significant decrease (p < 0.05) in the values of hemato-
biochemical indices (e.g., glucose, cortisol, alanine transaminase, aspartate transaminase
and malondialdehyde), were recorded. Moreover, biochemical and gene expression studies
support the efficacy of dietary A. oryzae in alleviating salinity stress [18].

4. Actinobacteria as Probiotics

Actinobacteria are Gram-positive filamentous bacteria with high guanine and cytosine
(G + C) contents in their genomes. Actinobacteria usually inhabit soil and aquatic ecosys-
tems and are known to have significant functions in biogeochemical cycles, bioremediation
and the production of bacteriocins and other potent bioactive compounds, e.g., novel
enzymes and antibiotics [190]. These unique and diverse features made actinobacteria a
competent candidate for use in the aquaculture industry [191]. The potent actinobacterial
genera are Streptomyces, Micromonospora and a later described genus known as Salinis-
pora [19], but Streptomycetes are the most extensively studied among them.

The genus Streptomyces belongs to the phylum ‘actinobacteria’ and constitutes soil-
living bacteria with a characterized branching filamentous morphology [9,192,193]. It is
an excellent antibiotic producer and produces extracts that inhibit biofilm formation [194].
Members of the genus Streptomyces can produce different hydrolytic enzymes, e.g., amy-
lase, protease and lipase, making them able to break down complex insoluble organic
materials [195] and bacteriocin-like substances [196]. These unique physiological features
of Streptomyces are believed to make them potential probiotics, as the secretion of exo-
enzymes could facilitate feed utilization and digestion in aquaculture animals once they
have colonized the host intestine. Diverse strains of Streptomyces isolated from varied
sources exhibited different probiotic properties, making them important candidates for
application in the aquaculture sector. Potential probiotic attributes of Streptomyces include
tolerance to gut conditions, antimicrobial activity against fish pathogens, inducing immune
responses in fishes, growth-enhancing effects and water quality amelioration [197]. Thus,
despite the production of common semi-volatile terpenoid compounds, e.g., geosmin and
2-methylisoborneol, the genus Streptomyces has been recognized as a prospective probiotic
for aquaculture [9]. Although most studies of the probiotic application of Streptomyces
strains in aquaculture have been conducted in shrimps [198–200], numerous studies are
also available in fish, but some limitations to their use as probiotics in aquaculture are
reported, producing several compounds with unpleasant odors and tastes, lateral gene
transfer and biotoxicity in Artemia salina nauplii [193].

In a study of marine actinobacteria, the potential of Streptomyces strains isolated from
sponges revealed the improved growth of an ornamental fish (Xiphophorus hellerii) [56],
and the administration of Streptomyces as single cell protein resulted in improved growth
of the ornamental fish Southern platy fish (Xiphophorus maculatus) [36]. The potential of
Streptomyces as a probiotic in aquaculture was reviewed by Tan et al. [9], and to avoid
overlaps, only studies published post-2016 and studies not reported in the review of
Tan et al. [9] are discussed in this section. Several strains of the genus Streptomyces were
noted to produce bioactive compounds and exhibited antagonistic activities against dif-
ferent fish pathogenic strains, based on which findings, their likely applications in finfish
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aquaculture could be understood. Sheeja et al. [201] reported that Streptomyces strains iso-
lated from the gut of marine ornamental fishes, viz. red tail butterfly (Chaetodon collare) and
orange-lined cardinal (Archamia fucata), produced potential bioactive metabolites against
Vibrio cholera. Streptomyces ruber EKH2 isolated from sediments of Bardawil Lake, Egypt,
produced phthalate, a non-toxic bioactive dibasic acid that inhibited the fish pathogenic
A. hydrophila, Edwardsiella tarda, Pseudomonas aeruginosa and Vibrio ordalli [202]. Phthalate
activities were superior to commonly known standard antibiotics used in fish therapy, thus
suggesting that it is a promising candidate for treating septicemic fish diseases. Marine
Streptomyces rubrolavendulae in the form of biogranules was found to inhibit Vibrio alginolyti-
cus, V. fluvialis, V. harveyi and V. parahaemolyticus in an in vitro co-culture experiment [199].
The extensive antibacterial activity of Streptomyces carpaticus MK-01 isolated from seawater
collected from Daejeong, Jeju Island, was demonstrated against the Gram-positive fish
pathogenic bacteria S. iniae and S. parauberis [203]. The authors recommended the use of
the S. carpaticus-MK01 strain, as well as its antioxidant and antimicrobial compounds, as
prophylactic measures in aquaculture industries.

A marine isolate (Streptomyces sp. S073) exhibited strong antagonism against the patho-
genic V. parahaemolyticus. The isolate S073 could produce non-proteinaceous and thermostable
siderophores that created lethal iron-limiting conditions to inhibit the pathogens [204].
Thus, the protective effects of the marine Streptomyces strains indicated their probiotic
potential for aquaculture. A similar kind of observation was recorded with Streptomyces
sp. SH5 isolated from marine sediment could enhance resistance against A. hydrophila
infection in zebrafish [205]. The presence of SH5 in the rearing water strongly prevented
colonization by A. hydrophila. Enhanced expression of the immune response genes (tlr3,
lysozyme and nos2α) and reduced expression of the inflammatory genes (il-1β, il-6 and
myd88) were recorded in zebrafish larvae, indicating the potential application of the strain
to prevent pathogen infection [205]. Further, Streptomyces strains isolated from the gut of
estuarine milkfish (Chanos chanos) produced antibacterial peptides that exhibited broad-
spectrum antibacterial activity against S. aureus, B. cereus, P. aeruginosa and E. coli [206]. In
another study, Kumaran et al. [207] recorded Streptomyces enissocaesilis SSASC10, a brown
pigment-producing isolate that produced bioactive metabolites against fish pathogens
(e.g., Pseudomonas sp., V. anguillarum, A. hydrophila, V. parahaemolyticus and V. harveyi),
highlighting their potential use as probiotics for treating infectious fish diseases. A recent
study established the probiotic potential of Streptomyces antibioticus EW1 (isolated from the
digestive tract of earthworm Eisenia fetida) in juvenile catfish Heteropneustes fossilis [208].
In this study, S. antibioticus exhibited antimicrobial activity against two fish pathogens:
Aeromonas veronii (MN602971) and Stenotrophomonas maltophilia (MN602972). Further, diets
supplemented with S. antibioticus enhanced the growth, digestibility, muscle protein and
survivability of H. fossilis [208].

5. Combined Application of Yeasts or Actinobacteria along with Other Probiotics

The probiotic organisms that are widely used in aquaculture, either as water additives
or feed supplements, might include diverse strains of bacteria, bacteriophages, microalgae
and yeasts [13]. It is widely accepted that the major benefits associated with applying
probiotics in aquaculture are improvement in growth performance, the modulation of
immunity, pathogen exclusions and disease resistance [209–211]. Regarding yeasts used
as probiotics, a recent study by [212] reported that the yeasts had a high survival rate in
the GI tract, an exciting finding that needs to be included and confirmed in future yeast
studies. Interestingly, most of the reports available on the application of probiotics in
fish or shellfish used single-strain probiotics. However, multi-strain probiotics are more
effective than a single strain, as reported in a good number of studies during the last two
decades [213]. Still, the evaluation of the combined administration of probiotics seemed
inadequate in aquaculture compared to single-strain administration [214–216]. When
compared to single-strain application, applying probiotics as multi-strain or multi-species
dietary supplements could create improved benefits, as a combination of probiotics might
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allow the incorporation of different mechanisms of probiotic action at once [217]. The
present section primarily includes the reports in which different strains of bacteria are used
in combination with yeasts/actinobacteria.

Commercial diets supplemented with Streptococcus faecium and a mixture of bacteria
and yeast have been shown to improve growth and food conversion efficiency in catla (Catla
catla) [218] and common carp [219]. Feeding probiotics (L. plantarum and L. acidophilus),
along with S. cerevisiae in combination for 4–8 weeks, enhanced superoxide anion produc-
tion in olive flounder [68]. The study concluded that L. plantarum-, L. acidophilus- and S.
cerevisiae-supplemented diets might act as immunostimulants, improving the growth, feed
efficiency, blood biochemistry, survival rate and non-specific immune response in Uronema
marinum-infected olive flounder [68]. Diets supplemented with two species of bacteria
(L. lactis and B. subtilis) and S. cerevisiae in equal proportion at a feed concentration of
1011 CFU kg−1 improved growth and feed efficiency in rohu fingerlings, indicating that
the combination of more probiotic organisms in the diet resulted in improved growth
performance and nutrient utilization [214]. However, combinations of heat-inactivated
probiotics in the diet failed to create positive effects, suggesting that the live probiotic
microorganisms could be preferred while formulating the cost-effective nutritionally bal-
anced carp diet [214]. In contrast, the likely application of paraprobiotics (inactivated
probiotics) as a component of functional feed additives has received significant interest
in recent times [62,220,221]. According to Tran et al. [221], dietary supplementation of the
cell structural components as paraprobiotics can trigger anti-biofilm effects and improve
growth performance, stress tolerance, immunity and defense against pathogens. Possible
utilization of the yeast cells as paraprobiotics in aquaculture has very recently been indi-
cated [62]. In an in vitro evaluation of the effects of single- and multi-strain probiotics on
pathogen inhibition, Chapman et al. [222] suggested that the use of a probiotic mixture
might be more effective at reducing infections and creating a combination using species
with different effects against different pathogens may have a broader spectrum of action
than that provided by a single strain. A synergistic effect of the probiotics’ mixture contain-
ing B. subtilis E20, Lac. pentosus BD6, S. cerevisiae P13 and Lac. fermentum LW2 was recorded,
depicting improved growth performance, immune response and disease resistance in Asian
seabass (Lates calcarifer) against Aeromonas hydrophila [213]. In a more recent observation, the
combined dietary application of probiotic yeast, S. cerevisiae (1%) and L. casei (1%) improved
growth, immunity and gut health in juvenile Asian seabass [223]. The co-supplementation
of S. cerevisiae and L. casei resulted in the upregulation of immune-responsive genes (il-10
and tnf-α), a greater number of goblet cells in the gut mucosa and increased microvilli
length. The analysis of the gut microbiome revealed decreased abundances of pathogenic
Corynebacterium and Staphylococcus [223]. The combined dietary administration of B. subtilis,
A. oryzae and S. cerevisiae improved growth, hemato-immunological parameters, innate
immune response and disease resistance in Nile tilapia [186]. In contrast to the above
reports, a diet with 50% Lactobacillus mixtures and 50% S. cerevisiae did not improve growth
and survivability in African catfish (Clarias gariepinus) larvae [224].

As reports on combined applications in finfish aquaculture are limited, some pertinent
facts from the shrimp and other aquatic organisms may be discussed because of their
impact on the aquatic environment and productivity, apart from the benefit created for
the host. The combined application of Streptomyces strains and Bacillus improved growth,
immune response and resistance against V. parahaemolyticus in Pacific white shrimp culture,
along with modulation of the water microbiota [200]. Application of the dietary hydrolyzed
R. mucilaginosa along with B. licheniformis as the synbiotics could improve intestinal mor-
phology and immune response in Pacific white shrimp more than the hydrolyzed yeast or
B. licheniformis alone [155]. Liu et al. [225] demonstrated the effect of a commercial microbial
agent (consisting of more than ten species of microorganisms, e.g., spore-forming bacteria,
LAB, photosynthetic bacteria, actinomycete, etc.) in Pacific white shrimp. The study noted
an increased temporal turnover rate among the bacterioplankton community in the culture
water and a greater relative abundance of Rhodobacteraceae in shrimp intestine, suggesting
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that the microbial mixture could accelerate bacterioplankton community turnover and shift
intestinal bacterial community in aquatic organisms. However, the commercial microbial
combination did not significantly improve the shrimp’s growth rate or survival. Combined
oral administration of Rhodotorula sp. H26 and Bacillus sp. BC26 improved digestive en-
zyme activity (e.g., trypsin and amylase) and innate immune responses (phagocytic activity
and lysozyme activity) in the juvenile sea cucumber Apostichopus japonicas [226].

6. Mode of Actions of Probiotic Fungi and Actinobacteria

Yeasts are an excellent source of β-glucan, which is well known for its role in im-
munostimulation in fish [227]. Yeasts are single-cell protein-rich organisms that can pro-
vide several essential vitamins (e.g., Vitamin B and folic acid), essential sulfur-containing
amino acids (lysine) and diverse exo-enzymes for the degradation of complex food mate-
rials [228]. Along with bacteria and yeasts or other fungi, Actinomycetes are considered
to be significant contributors to the breakdown and recycling of organic compounds [19].
Actinomycetes are known to produce many hydrolytic enzymes. Thus, the ecological role of
actinobacteria as probiotics in aquaculture cannot be ignored. Like other probiotic microor-
ganisms, actinobacteria were also reported with multiple functions, viz. improved water
quality, immunity and growth in aquatic organisms [191]. Further, >50% of the microbial
antibiotics are produced by Actinomycetes, of which Streptomyces and Micromonospora are
by far the most common [229]. Although the specific modes of action of these microorgan-
isms are inadequately described, like their limited applications in aquaculture, beneficial
attributes documented for commonly used probiotics are expected to become applicable.

The modes of action of probiotics are well discussed in previous probiotic reviews,
and several hypotheses have been suggested, which are summarized by Ringø et al. [1].
The recommended modes of action are as follows: (a) the competitive adhesion of pro-
biotic microorganisms to epithelial receptors may prevent the attachment of pathogenic
bacteria, (b) aggregation of probiotics and pathogenic bacteria preventing growth of the
pathogenic organisms, (c) competition for nutrients between probiotic and undesired bacte-
ria, (d) increased synthesis of lactic acid and the reduction in intestinal pH, (e) boost the
production of specific antibacterial substances, (f) reduced production of toxic amines and
decrease in the level of ammonia in the GI tract, (g) have beneficial effects on the intestinal
immune system, (h) interference with quorum sensing, (i) act as a bioremediator, (j) enable
improved defense against bacterial and viral infections, (k) alleviate adverse effects induced
by crowding stress, and (l) improve antioxidant properties.

The suggested modes of action of the probiotic potential of fungi and actinobacteria
likely to be effective in aquaculture are depicted in Figure 1.Fishes 2023, 8, x FOR PEER REVIEW 21 of 33 
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7. Selection of Fungi and Actinobacteria as Probiotics

As proposed for bacterial probiotics [230], the selection criteria for the fungi or acti-
nobacteria as putative probiotic organisms should consider functional and safety properties.
Along with functionality, the colonization ability and viability of the primarily selected
organisms should be considered. Indigenous or fish-gut-associated microorganisms have
a better opportunity to colonize the host gut to exhibit probiotic effects. Thus, preference
should be given to the autochthonous strains to search for probiotic fungi or actinobacteria,
as the commensal organisms are believed to be well adapted to the anticipated ecological
niche [231]. In addition, the habitat of the intended fish species can be considered a probable
source of the beneficial microorganisms.

Yeast or other fungal strains can be isolated on YPD (1% yeast extract, 2% peptone,
2% dextrose) culture medium supplemented with antibiotics (chloramphenicol, 150 mg L−1;
tetracycline, 150 mg L−1). As chloramphenicol and tetracycline typically inhibit the growth
of Gram-positive and Gram-negative bacteria, the isolates that grew on the YPD media were
likely fungi [111]. Fungal strains can be identified through 5.8S-ITS gene sequencing [232].
Alternatively, 18S rDNA gene sequence analysis may be followed [119]. The ‘Internal
Transcribed Spacer’ (ITS) region in the 18S rDNA fragment can be amplified using ITS1
(5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-30′) as
the forward and reverse primers.

To isolate actinobacteria, starch casein agar, Kuster’s agar or actinomycete isolation
agar medium may be used [233]. The supplementation of nalicidic acid (20 µg mL−1)
and nystatin/cycloheximide (100 µg mL−1) will help to inhibit the growth of both Gram-
negative bacteria and fungi [234]. Otherwise, the medium may be supplemented with strep-
tomycin (25 µg mL−1) to inhibit bacterial contamination. Actinobacteria may be identified
through 16S rRNA gene sequence analyses. The gene encoding 16S rRNA may be amplified
using 27f (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492r (5′-GGTTACCTTGTTACGACTT-
3′) universal primers. The purified, amplified products may be sequenced, edited, aligned
and analyzed to identify the closest homolog using the National Centre for Biotechnology
Information (NCBI) GenBank database.

The assessment criteria for the selection of probiotic fungi [232] and actinobacte-
ria [235] were demonstrated by considering the functional and safety properties, which
are briefly presented in Figure 2. The following steps should be followed to select the
probiotic strains:

(a) Influence of temperature, pH and salt concentration (sodium chloride, NaCl) on growth;
(b) Functional characterization, e.g., analyses of exo-enzyme production, antagonism

against pathogenic bacteria, antioxidant activity, the production of short-chain fatty
acids (SCFA) and vitamins, etc.;

(c) Evaluation of growth and strain survivability against gut pH, pepsin, bile, and
gut mucus;

(d) Evaluation of colonization potential (co-cultivation with pathogens to test strain dom-
inance and co-cultivation with other gut microorganisms to test strain compatibility,
hydrophobicity, hydrophilicity and auto-aggregation assays);

(e) Evaluation of safety assessment of strains through an antibiotic sensitivity test and
hemolytic activity;

(f) In vivo evaluation of the putative probiotic strains on the host via intra-periton-
eal injection.

Further, it should be assured that the selected strains possess the following properties:
(1) being non-pathogenic to the host; (2) being administrable through feed; (3) being effective
in vivo; and (4) being non-virulent or possessing antibiotic resistance genes [230,236].
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8. Conclusions and Further Directions

Probiotic applications may be extended in aquaculture via the use of exo-enzyme-
producing strains in the bioprocessing of the complex feed ingredients and diverse micro-
bial bio-active compounds and/or metabolites (e.g., antimicrobial compounds, quorum
quenching enzymes, SCFA) as functional feed additives. Further, apart from S. cerevisiae,
gut-associated yeast strains of the genera Candida, Pichia, Debaryomyces, Leucosporidium,
Rhodotorula, Cryptococcus, Sporobolomyces and Trichosporon have been described in several
studies and need to be explored to determine their full potential. The vast diversity of
marine actinobacteria and their novel metabolites were reported. Future research should
be directed toward fish-gut-associated actinobacteria from freshwater and brackish water
fish species to develop novel probiotics. Likely novel bioactive molecules from the diverse
actinobacteria resources should also be considered. Apart from the antibacterial potential
exhibited by the fungal and actinobacterial strains, their quorum quenching potential
can be utilized to mitigate multidrug-resistant pathogens in aquaculture systems in an
environmentally friendly way. Along with probiotic potential, studies should be directed
to develop the probiotic products as synbiotics or postbiotics, and their efficacy in culture
conditions must be evaluated. The development of paraprobiotics has not been widely
considered with regard to fungi and actinobacteria, and this topic merits investigation,
as paraprobiotics could represent safe and novel alternatives to the viable cells related to
biofilm diseases. Studies addressing the impacts of putative probiotics on the gut micro-
biome and gut health are other developing areas that require appraisal of their efficacy.
Moreover, efforts should be made to establish probiotic consortia comprising efficient and
compatible bacteria–yeast–actinobacteria groups to address varied impediments in aqua-
culture systems. Available reports on probiotics’ applications in diverse aquatic species
suggest that the effects of probiotic candidates could be species specific in nature. Thus,
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exploring the probiotic potential of the microbial candidates for the native commercial
fish or other aquatic species in each region and deciphering this issue in feed and feeding
technology are worth mentioning. Even though probiotics’ inclusion in diet is the most
frequently used administration method, studies need to be conducted to explore the poten-
tial of the water administration method. A simple question can be asked regarding fungi
and other microorganisms in the fish GI tract: which species are present, and what do they
do? Even though numerous probiotic studies of aquatic animals have been conducted,
scientists must always ask this question.
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