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Introduction

In most textbooks on dynamical systems focus is on continuous systems which lead to the
study of differential equations rather than on discrete systems which lead to the study of
maps or difference equations. This fact has in many respects an obvious historical back-
ground. Indeed, if we go back to the time of Newton, physical scientists were interested
in problems within celestial mechanics, especially problems concerning the computation
of planet motions, and the study of such kind of problems eventually lead to the study of
differential edua.tions. Later on, in other fields such as fluid mechanics, relativity, quan-
tum mechanics, but also in other scientific branches like ecology, biology and economy it
became clear that important problems could be formulated in an elegant and often sim-

ple way in terms of differential equations. However, to solve these (nonlinear) equations
proved to be very difficult. Thefefore, throughout the years, a rich and vast literature on
dynamical éystems has been established and the majority of the textbooks focuses on the
continuous case.

The story of discrete systems is not that old. One major breakthrough came by
Poincaré in the 1890’s when he introduced the Poincaré map as a powerful tool in his
qualitative approach towards the study of differential equations. Nearly fifty years later,
Lewis and Leslie independently developed matrix models (often referred to as Leslie matrix
models) in order to study populations with nonoverlapping age classes. These (mainly
linear) difference ‘equation models were almost forgotten in the years to come, but had
their renaissance in the 70’s and 80’s when nonlinearities were included in the models.
Examples of frequently quoted papers from that era are Guckenheimer et al. (1977) and
the striped bass fishery model by Levin and Goodyear (1980). Later, through the work by
Costantino, Cushing, Dennis and Desharnais (see Cushing (1998)) it became clear that
small difference equation models indeed were capable not to analyse only, but also to
predict nonstationary and chaotic behaviour in laboratory insect populations.

On the whole, there is a growing understanding in the biological and ecological com-

munities that species which exhibit birth pulse fertilities (species that reproduce in a short
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time interval during a year) should be modelled by use of difference equations rather than
differential equations, cf. the discussions in Cushing (1998) and Caswell (2001). Therefore,
there is now much more interest of discrete dynamical systems than earlier.

Another important aspect which we also want to stress is the fact that in case of
“low-dimensional problems” (problems with only one or two state variables) the possible
dynamics found in nonlinear discrete models is much richer than in their continuous
counterparts. Indeed, let us briefly illustrate this aspect through the following example:

Let N = N(t) be the size of a population at time ¢. In 1837 Verhulst suggested
that the change of N could be described by the differential equation (later known as the

N=rN (1 _ %) (1)

where the parameter 7 (r > 0) is the intrinsic growth rate at low densities and K is the

Verhulst equation)

carrying capacity. Now, define x = N/K. Then (I1) may be rewritten as
z =rz(l — 1) (12)

which (as (I1) too) is nothing but a separable equation. Hence, it is straightforward to

show that its solution becomes

z(t) = 1_—J—1__16—_7 (13)
Zo
where we also have used the initial condition z(0) = z,. From (I3) we conclude that
z(t) = 1 as t — oo which means that z* = 1 is a stable fixed point of (I2). Moreover,
regarding (I1) we have proved that the population N will settle at its carrying capacity
K.

Next, let us turn to the discrete analogue of (I2). From (I2) it follows that

X — X
_ﬁf = Tfl;t(]. — xt) (14)
which implies
At
Tey1 = Ty + Ttz — T‘At.’L‘? = (14 rAt)x; (1 = T-E-—T—Atzt) (15)
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and through the definition y = rA¢(1 + rAt) "'z we easily obtain

Yt+1 = ,U'yt(l - yt) (IG)

where p =1+ rAt.

The “sweet and innocent-looking” equation (I6) is often referred to as the quadratic or
the logistic equation. Its possible dynamical outcomes were presented by Sir Robert May
in an influential review article called “Simple mathematical models with very complicated
dynamics” in Nature (1976). There, he showed, depending on the value of the parameter
1, that the asymptotic behaviour of (I6) could be a stable fixed point (just as in (I2)), but
also periodic solutions of both even and odd periods as well as chaoic behaviour. Thus
the dynamic outcome of (I6) is richer and much more complicated than the behaviour of
the continuous counterpart (12).

In many respects, one of the major motivations for writing this text comes from the
findings presented above.

Consequently, in Part I, we will develop the necessary qualitative theory which will
enable us to understand the complex nature of first order nonlinear difference equations
(or maps). Definitions, theorems and proofs shall be given in a general context, but
most examples are taken from biology and ecology. Equation (I6) will on many occasions
serve as a running example throughout the text. In Part II the theory will be extended
to n-dimensional maps (or systems of difference equations). Here too, the theory will
be,:v illustrated and exemplified by use of population models from biology and ecology,
In particular, Leslie matrix models and their relatives, stage structured models, shall
frequently serve as examples. As a result of a request we have also included an introduction
to discrete dynamic optimization problems which is presented in Part III. Finally, we
want to repeat and stress that this is a Mathematics text so in order to be well prepared
the potential reader should also have a background from a calculus course and also a
prerequisite of topics from linear algebra, especially some knowledge of real and complex
eigenvalues and associated eigenvectors. Regarding section 2.5 where the Hopf bifurcation

is presented, the reader would also benefit from a somewhat deeper comprehension of
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complex numbers, This is all that is necessary really in order to establish the machinery

we need in order to study the fascinating behaviour of nonlinear maps.
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Part 1 |
One-dimensional maps

fTR=R 22— f(z)






1.1 Preliminaries and definitions

Let I C R and J C R be two intervals. If f is a map from I to J we will express that as
f:I—=J,z— f(z). Sometimes we will also express the map as a difference equation
Ti41 = f(z4). If the map f depends on a parameter u we write fu(z) and say that f is a
one-parameter family of maps.

For a given o, successive iterations of map f (or the difference equation x4 = f (x4))
give: 21 = f(z0), 22 = f(z1) = F(f(zo)) = f*(m0), 23 = fz2) = f(f(20)) = f3(zo) ...,
so after n iterations z,,, = f™(2o). Thus, the orbit of a map is a se(juence of points
{zo, f(z0), ..., f*(z0)} which we for simplicity will write as {f™(z0)}. This is in contrast
to the continuous case (differential equation) where the orbit is a curve.

Regarding differential equations it is a well-known fact that most classes of equations
may not be solved explicitly. The same is certainly true for maps. However, the map

z — f(x) = az + b where a and b are constants is solvable.

Theorem 1.1.1. The difference equation

Tiyr1 = QX + b (111)
has the solution
b b
t
= — 1.1.
Tt a(xo 1——a)+1—a’ gyl (1.1.2a)
ZT¢ = To + bt a=1 (1.1.2b)

where g is the initial value. -

Proof. From (1.1.1) we have z; = azg+ b => 2, = az, + b = a(azy +b)+b =
a’zo+ (a+1)b = 23 = aza + b= ... = a®zo + (a® + a + 1)b. Thus assume
Ty = a*zg + ("1 +a*2+.. .+ a+1)b. Then by induction: x4, = azy +b =
alafzy+ (a* 1+ b2+ . .. +a+ 1)b] +b = a*¥*lzg+ (a¥ +a*1+. . .+a+1)b.
Ifaz#1l:1+a+...+af = (1 -a’)(1-a)" so the solution becomes

—a

1-at ¢ b b
1—ab_a (wo—l—a>+1—a

Ty = a'zy +




Ka=1:14+a+...4+atl=t-1=t
Ty = 2o + bt

O

Regarding the asymptotic behaviour (long-time behaviour) we have from Theorem
1.1.1: If |a| < 1limiye0 2 = b/(1 — a). (If zp = b/(1 — a) this is true for any a # 1.) If
a > 1 and zy # b/(1 — a) the result is exponential growth or decay, and finally, if a < —1

divergent oscillations is the outcome.
Ifb=0, (1.1.1) becomes

=01, (1.1.3)

which we will refer to as the linear difference equation. The solution is
= a'zg (1.1.4)

Hence, whenever |a| < 1, z: — 0 asymptotically (as a convergent oscillation if —1 < a <

0). a>1 or a < —1 gives exponential growth or divergent oscillations respectively.

Exercise 1.1.1. Solve and describe the asymptotic behaviour of the equa-
tions:

a) Ty =234+ 4, - =1,

b) 3.’Et+1 =T+ 2, Ty = 28 O
Exercise 1.1.2. Denote z* = b/(1 — a) where a # 1 and describe the asymp-
totic behaviour of equation (1.1.1) in the following cases:

a) 0 <a<1and zy < z¥,

b) —1 <a <0 and ¢ < z*¥,

c) a>1and zq > z*. O



Equations of the form 2,1 + az; = f(t), for example z,,; — 21, = > + 1, may be regarded

as special cases of the more general situation

Ttin T O1Tt4n—1 + QoTppn—g + - - + Qpzp = o, o=

9 g aes

Such equations are treated in Section 2.1 (cf. Theorem 2.1.6, see also examples following

equation (2.1.6) and Exercise 2.1.5).

When the map z — f(z) is nonlinear (for example z — 2z(1 — z)) there are no

solution methods so information of the asymptotic behaviour must be obtained by use of

qualitative theory.

Definition 1.1.1. A fixed point z* for the map z — f(z) is a point which

satisfies the equation z* = f (z*). O

Fixed points are of great importance to us and the following theorem will be very useful.
Theorem 1.1.2.
a) Let I = [a,b] be an interval and let f 1 — I be continuous. Then f has
at least one fixed point in I.

b) Suppose in addition that |f'(z)| < 1 for all z € I. Then there exists a

unique fixed point for f in I, and moreover

[f(z) = F)l < |z — o

Proof.

a) Define g(z) = f(z)—z. Clearly, g(x) too is continuous. Suppose f(a) >a
and f(b) < b. Then g(a) > 0 and g(b) < 0 so the intermediate value
theorem from elementary calculus directly gives the existence of ¢ such
that g(c) = 0. Hence, c = f{(c).



b) From a) we know that there is at least one fixed point. Suppose that
both z and y (z # y) are fixed points. Then according to the mean value
theorem from elementary calculus there exists ¢ between z and y such
that f(z) = f(y) = f'(c) (= — y). This yields (since z = f(z), y = f(3))
that

f(e) = f(ffz:i(y) —1
This contradicts |f'(z)| < 1. Thus z = y so the fixed point is unique.

Further from the mean value theorem:

@) = f@ =1f() |z -y < |z~ y]

O

Definition 1.1.2. Consider the map £ — f(z). The point p is called a
periodic point of period n if p = J™(p). The least n > 0 for which p = f™(p)

is referred to as the prime period of .

Note that a fixed point may be regarded as a periodic point of period one. O

Exercise 1.1.3. Find the fixed points and the period two points of Tl =
O

Definition 1.1.3. If f'(c) = 0, ¢ is called a critical point of f. ¢ is nondegen-

erate if f”(c) # 0, degenerate if f”(c) = 0. ]

The derivative of the n-th iterate J"(z) is easy to compute by use of the chain rule.

Observe that f*(z) = f(f*Y(z)), f*}(2) = f(f*2())..., f(z) = f(f(z)). Conse-
quently:

M@ = F(F ) (). .. f () (1.1.5)
(1.1.5) enables us to compute the derivative of points on a periodic orbit in an elegant

way. Indeed, suppose the three cycle {py,pi,ps} where p; = f (o), P2 = f(p1) = F*(po)
and f3(pg) =py.... Then

£¥'(po) = f'(p2) £'(p1) ' (o) (1.1.6)
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Obviously, if we have n periodic points {py, ..., p,—1} the corresponding formulae is

f"(po) = ]_:[ f'(pi) (1.1.7)

(Later on we shall use the derivative in order to decide whether a periodic orbit is stable
or not. (1.1.7) implies that all points on the orbit is stable (unstable) simultaneously.)
We will now proceed by introducing some maps (difference equations) that have been
frequently applied in population dynamcis. Examples that show how to compute fixed
points, periodic points, etc., will be taken from these maps. Some computations are

performed in the next section, others are postponed to Section 1.3.

1.2 One-parameter family of maps

Here we shall briefly present some one-parameter family of maps which have often been
applied in population dynamical studies. Since z is supposed to be the size of a population,
z > 0.
The map

% fulr) = pz(l — z) (1.2.1)
is often referred to as the quadratic or the logistic map. The parameter y is called the
intrinsic growth rate. Clearly z € [0, 1], otherwise z; > 1 = z;4; < 0. If u € [0,4] any
iterate of f, will remain in [0,1]. Further we may notice that f,(0) = fu(1) = 0 and
x = ¢ = 1/2 is the only critical point. Hence (1.2.1) is a unimodal map on the unit
interval.

The map
T — fr(z) = 271 (1.2.2)

is called the Ricker map. Unlike the quadratic map, z € [0, —). The parameter 7 is

positive.

Exercise 1.2.1. Show that the fixed points of (1.2.2) are 0 and 1 and that

the critical point is 1/r. ]



(a) A o (b)

Figure 1: The graphs of the functions: (a) f(z) = 4z(1 — z) (cf. (1.2.1)), and (b) the
tent function (cf. (1.2.4) where a = 2).

The property that z € [0, —) makes (1.2.2) much more preferable to biologists than
(1.2.1).

The map
ax

(1+z)b
where a > 1, b > 1 is a two-parameter family of maps and is called the Hassel family.

(1.2.3)

T — fa,b(x) =

Exercise 1.2.2. Show that z = 0 and z = 4!/’ — 1 are the fixed points of
(1.2.3) and that ¢ =1/(b — 1) is the critical point. O
The map
azr OF=vraili /2
R A= (1.2.4)
a(l—z) 1/2<z<1
where a > 0 is called the tent map for obvious reasons. We will pay special attention to
the case a = 2. Note that fa(z) attains its maximum at z = 1/2 but that f/(1/2) does
not exist.
All functions defined in (1.2.1)=(1.2.4) are called one-humped functions for obvious
reasons. In Figure la we show the graph of the quadratic functions (1.2.1) (u = 4) and

in Fligure 1b the “tent” function (1.2.4) (a = 2). In both figures we have also drawn the

line y = z and we have marked e fixed points of the maps with dots.
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As we have seen, maps (1.2.1)—(1.2.4) share much of the same properties. Our next

goal is to explore this fact further.

Definition 1.2.1. Let f : U — U and g : V — V be two maps. If there
exists a homeomorphism A : U — V such that ho g = goh, then f and g are

said to be topological equivalent. a

Remark. A function % is a homeomorphism if it is one-to-one, onto and

continuous and that A~! is also continuous. O

The important property of topological equivalent maps is that their dynamics is equiva-
lent. Indeed, suppose that 2 = f(z). Then from the definition, h(f(z)) = h(z) = g(h(x)),
so if z is a fixed point of f, h(z) is a fixed point for g. In a similar way, if p is
a periodic point of f of period n (i.e. f*(p) = p) we have from Definition 1.2.1 that
f=h"ogoh= f>=(h"logoh)o(hlogoh) = h-log2ohso clearly f* = h-Log™oh.
Consequently, 2(f*(p)) = h(p) = g"(h(p)) so h(p) is a periodic point of period n for g.

Proposition 1.2.1. The quadratic map f : [0,1] — [0,1] z — f(z) =
4z(1 — z) is topological equivalent to the tent map

iy 0<z<1/2
T:[0,1] »[0,1] z—T(z)=
21-2) 1/2<z<1
O

Proof. We must find a function h such that ho f = T o h. Note that this

implies that we also have f o h™! = h~1 o T' where h~! is the inverse of .

Now, define h~!(z) = sin®(rz)/2. Then

fohl=Ff (sin2 E) = 4sin? ik (1 — it 7;—$)

2 2
2
= 4 sin? 2232 cos? 7;—3: = (2 sin %a: CoS %) =sin? 71z
1
R 'oT =h™1(2z) = sin®nz OS$S§
1
h™'oT =h71(2(1 - z)) = sin®(r — z) = sin 7z 5 <z< 1



Thus, foh™ = h='oT which implies ho f = T'oh so f and T are topological

equivalent. O

1.3 Fixed points and periodic points of the quadratic
map

Most of the theory that we shall develop in the next sections will be illustrated by use
of the quadratic map (1.2.1). In many respects (1.2.1) will serve as a running example.
Therefore, in order to prepare the ground we are here going to list some main properties.

The fixed points are obtained from z = pz(1 — z). Thus the fixed points are z* = 0
(the trivial fixed point) and z* = (i — 1)/u (the nontrivial fixed point). Note that the
nontrivial fixed point is positive whenever 4 > 1. Assuming that (1.2.1) has periodic

points of period two they must be found from p = fﬁ(p) and since
fu(e) = fup(1 —p)) = w’p[l — (1 + 1)p — 2pp® — p’
the two nontrivial periodic points must satisfy the cubic equation
K =200 + P (u+ )p+1—p? =0 (1.3.1)
Clearly, p = (4 — 1)/p is a solution of (1.3.1) so after polynomial division we arrive at
2,2 2 _
wp' =W+ pp+p+1=0 (1.3.2)

Thus, the periodic points are

p+1+£/(u+1)(u—3) (1.3.3)
24

P12 =

where 1 > 3 is a necessary condition for real solutions.
Period three points are obtained from p = fﬁ(p) and must be found by means of

numerical methods. (Newton’s method works excellent.) (It is possible to show after
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a somewhat cumbersome calculation that the three periodic points do not exist unless

p>14+/8)

In general, it is a hopeless task to compute periodic points of period n for a given map
when 1 becomes large. However, considering (1.2.1) it is in fact possible in the special
case i =4 as we now will demonstrate.

Consider the difference equation
Tt41 = 4wy (1 — x4) (1.3.4)
Let z; = sin? ;. Then from (1.3.4):
sin ;.1 = 4sin? 1 cos® p, = sin? 2,

Further:
sin? ;5 = 4 sin® Pe+1(1 — sin® pyy1)
= 4sin® 2, cos® 2 = sin® 22,
Thus, after n iterations
sin® g5, = sin® 2%,
and moreover:

Dtin + 2“()015 + lﬂ'

Now, if we have a period n orbit =1y

sin? Ppyn = sin? Ot

Hence:
Ptin = E£op + mm & 2% + 1 = +p + mn
& 2"t )pr=(m—Dr
so
_ km
AT
where k =m — . Consequently, the periodic points are given by
km
; — in2 135
pi = sin’ o= (1.3.5)

11



Example 1.3.1. Compute all the period 1, period 2 and period 3 points of
f(z) = 42(1 — z). The period 1 points (which of course are the same as the
fixed points) are

2i1=0 and sin22j_1

sin? = (0,75

The period 2 points are the period 1 points (which do not have prime period
2) plus the prime period 2 points.

9
sin2% =0.34549 and sin? ?ﬂ' — 0.904508

(The latter points may of course also be obtained from (1.3.3).)

There are six points of prime period 3. The points

p 4
sin2 g — 0.188255, sin® —,;3 — 0611260 and sin® 7” — 0.950484

are the periodic points in one 3-cycle, while the points
2 4
sin? % = 0.116977, sin? —971 —0.4131759 and  sin® —975 — 0.969846

are the periodic points on another orbit. (The reason why it is one 2-cycle but

two 3-cycles is strongly related to how they are created.) a

Example 1.3.2. Use (1.3.5) to find all the period 4 points of f(z) = 4z(1—x).

How many periodic points are there? O

Since f(z) = 4z(1 — ) is topological equivalent to the tent map we may use (1.3.5)
together with Proposition 1.2.1 to find the periodic points of the tent map. Indeed, since
h~Y(z) = sin’(rz/2) = h(z) = (2/7)arcsin/z (cf. the proof of Proposition 1.2.1) the
periodic points p of 7'(z) may be found from T'(h(p)) = T((2/m) arcsin,/p). Thus the

fixed points of the tent map are

2
T <; arcsin \/(_J> = é arcsin0 =0

T
2
T | — arcsin \/§ =2(1- z arcsin \/g = 0.6666
T 4 T 4

2



Exercise 1.3.1. Find the period 2 points of the tent map (@=12) o

We shall close this section by computing numerically some orbits of the quadratic map

for different values of the parameter L

p = 1.8 and zy = 0.8 gives the orbit
{Ov.8 0.2880 0.3691 0.4192 0.4382 0.4431 0.4442 0.4444 (.4444 !

Thus the orbit converges towards the point 0.4444 which is nothing but the fixed point
(e —1)/p. In this case the fixed point is said to be locally asymptotic stable. (A precise

definition will be given in the next section.)

p = 3.2 and zy = 0.6 gives:
{0.6 0.7680 0.5702 0.7842 0.5415 0.7945 0.5225 0.7984 0.5151
0.7993 0.5134 0.7994 0.5131 0.7995 0.5130 0.7995 0.5130 ..}

Thus in this case the orbit does not converge towards the fixed point. Instead we find
that the asymptotic behaviour is a stable periodic orbit of prime period 2. The points in

the two-cycle are given by (358

# = 4.0 and zy = 0.30 gives
{0.30 0.84 0.5376 0.9943 0.02249 0.0879 0.3208 0.8716 0.4476 0.9890 ...}

Although care should be taken by drawing a conclusion after a few iterations only, the
last example suggests that there are no stable periodic orbit when p = 4. (A formal proof

of this fact will be given later.)

Exercise 1.3.2. Use a calculator or a computer to repeat the calculations
above but use the initial values 0.6, 0.7 and 0.32 instead of 0.8, 0.6 and 0.3,
respectively. Establish the fact that the long-time behaviour of the map when
p = 1.8 or ;1 = 3.2 is not sensitive to a slightly change of the initial conditions

but that there is a strong sensitivity in the last case. a
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1.4 Stability

Referring to the last example of the previous section we found that the equation z;,; =
1.8z4(1 — z;) apparently possessed a stable fixed point and that the equation z;4; =
3.2z4(1 — z;) did not. Both- these equations are special cases of the quadratic family
(1.2.1) so what the example suggests is that by increasing the parameter p in (1.2.1)
there exists a threshold value 119 where the fixed point of (1.2.1) loses its stability.

Now, consider the general first order nonlinear equation

Tey1 = fu(Tt) (1.4.1)

where p is a parameter. The fixed point z* satisfies z* = f,(z*).
In order to study the system close to z* we write + = z* 4+ h and expand fu in its

Taylor series around z* taking only the linear term. Thus:

af

¥+ hepr = fu(z*) + e (") hy (1.4.2)
which gives
i = 4 (z*)h (1.4.3)
= o t 4.

We call (1.4.3) the linearization of (1.4.1). The solution of (1.4.3) is given by (1.1.4).
Hence, if [(df /dz)(z*)| < 1, limseo he = 0 wheich means that z; will converge towards
the fixed point z*.

Now, we make the following definitions:

Definition 1.4.1. Let z* be a fixed point of equation (1.4.1). If |\| =
|(df /dz)(z*)| # 1 then z* is called a hyperbolic fixed point. A is called the

eigenvalue. O

Definition 1.4.2. Let z* be a hyperbolic fixed point. If [A| < 1 then z* is
called a locally asymptotic stable hyperbolic fixed point. a

Example 1.4.1. Assume that x4 > 1 and find the parameter interval where

the fixed point 2* = (1 — 1)/u of the quadratic map is stable.
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Solution: f,(z) = pz(1—z) implies that f'(z) = pu(1—2z) = |A| = |f'(z*)| =
|2 — p|. Hence from Definition 1.4.2, 1 < p < 3 ensures that z* is a locally
asymptotic stable fixed point (which is consistent with our finding in the last

example in the previous section). O

It is clear from Definition 1.4.2 that z* is a locally stable fixed point. A formal argument
that there exists an open interval U around z* so that whenever |f'(z*)| <1 and z € U
and that lim,_, f"(z) = z* goes like this:

By the continuity of f (f is C’) there exists an & > 0 such that |f'(z)| < K < 1 for

T € [z* — &, 2" +¢]. Successive use of the mean value theorem then implies
@) =2 =) = @) = £ (@) = £ ()
< K|f"7N(z) = f27H(2")] < KX (2) — R ()
<...XK'z-zf|<|z—z*<e
so f*(z) = z* as n — oo.

Motivated by the preceding argument we define:

Definition 1.4.3. Let z* be a hyperbolic fixed point. We define the local

stable and unstable manifolds of z*, Wy _(z*), W

loc(x*) as

Wiee(z*) = {z € U/f"(z) = =* asn — oo and f*(x) € U for all n > 0}
Wie(z*) ={z € U/f"(z) = z* asn — —oo and f*(z) € U for all n < 0}

where U is a neighbourhood of the fixed point z*. a
"The definition of a hyperbolic stable fixed point is easily extended to periodic points.

Definition 1.4.4. Let p be a periodic point of (prime) period n so that
|f™(p)| <1. Then p is called an attracting periodic point. a

Example 1.4.2. Show that the periodic points 0.5130 and 0.7995 of z;;1 =
3.274(1 — x;) are stable and thereby proving that the difference equation has

a stable 2-periodic attractor.
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Solution: Since f(z) = 3.2z(1 — z) = f'(z) = 3.2(1 — 2z) we have from
the chain rule (1.1.7) that f>(0.5130) = f'(0.7995)f'(0.5130) = —0.0615.

Consequently, according to Definition 1.4.4, the periodic points are stable. O

Exercise 1.4.1. Use formulae (1.3.3) and compute the two-periodic points of
the quadratic map in case of ;1 = 3.8. Is the corresponding two-periodic orbit

stable or unstable? O

Exercise 1.4.2. When p = 3.839 the quadratic map has two 3-cycles. One of
the cycles consists of the points 0.14989, 0.48917 and 0.9593 while the other
consists of the points 0.16904, 0.53925 and 0.95384. Show that one of the

3-cycles is stable and that the other one is unstable. a

Let us close this section by discussing the concept structural stability. Roughly speak-
ing, a map f is said to be structurally stable if a map g which is obtained through a small
perturbation of f has essentially the same dynamics as f, so intuitively this means that

the distance between f and g and the distance between their derivatives should be small.

Definition 1.4.5. The C* distance between a map f and another map g is
given by
sg}g(lf (z) = 9(=)], |f'(z) — ¢'(x))) (1.4.4)

O
By use of Definition 1.4.5 we may now define structural stability in the following way:

Definition 1.4.6. The map f is said to be C! structurally stable on an
interval I if there exists ¢ > 0 such that whenever (144) <eon I, fis

topological equivalent to g. a

To prove that a given map is structurally stable may be difficult, especially in higher
dimensional systems. However, our main interest is to focus on cases where a map is not
structurally stable. In many respects maps with nonhyperbolic fixed points are standard

examples of such maps as we now will demonstrate.
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Example 1.4.3. When p =1 the quadratic map is not structurally stable.

Indeed, consider z — f(z) = z(1 — «) and the perturbation z — ClEN=
z(1—z)+e. Obviously, z* = 0 is the fixed point of f and since |A| = |f/(0)| = 1,
z* is a nonhyperbolic fixed point. Moreover, the C! distance between fandg
is |e]. Regarding g, the fixed points are easily found to be T = +./. Hence, for
€ > 0 there are two fixed points and & < 0 gives no fixed points. Consequently,

[ is not structurally stable. O

Example 1.4.4. When x = 3 the quadratic map is not structurally stable.

Let z — f(z) = 32(1 — ) and 2 — 9(z) = 3z(1 — z) + ¢ and again we
notice that their C! distance is «. Regarding f, the fixed points are 7 =0
and 3 = 2/3. Further, [\1| = |f'(0)| = 3, |Ao| = |f"(2/3)| = 1. Thus 2 is a
repelling hyperbolic fixed point while Z3 is nonhyperbolic. Considering g, the
fixed points are 7; = (1/3)(1 — v/1+ 3¢) and T, = (1/3)(1 4 /1 + 3¢). Note
that € = 0 = 7, = 2, T, = 23.) Further, || = 19'(@1)] = |1+ 24/ + 3¢
and |oy| = |¢'(Zo)| = |1 — 2/1 + 3¢|. Whatever the sign of €, Z; is clearly a
repelling fixed point (just as z7) since oy > 1. Regarding 7, it is stable in case

of € < 0 and unstable if £ > 0.

The equation z = g?(z) may be expressed as
—272" + 542° + (182 — 36)2% + (8 — 18¢)z + 4 — 362 = 0 (1.4.5)

and since Z; and Z, are solutions of (1.4.5) we may use polynomial division to
obtain

92° — 122 — 3e +4 =0 (1.4.6)
which has the solutions z;, = (2/3)(1 £ v/ 3¢). Thus there exists a two-

periodic orbit in case of € > 0.

Moreover, cf. (1.1.7) g% = 9'(21)g'(x2) = 9(1 — 221)(1 — 225) = 1 — 48¢ which
implies that the two-periodic orbit is stable in case of & > 0, € small. Con-

sequently, when £ > 0 there is a fundamental structurally difference between
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f and g so f cannot be structurally stable. (Note that the problem is the
nonhyperbolic fixed point, not the hyperbolic one.) a

As suggested by the previous examples a major reason why a map may fail to be

structurally stable is the presence of the nonhyperbolic fixed point. Therefore it is in

many respects natural to introduce the following definition:

Definition 1.4.7. Let z* be a hyperbolic fixed point of a map f: R — R. If
there exists a neighbourhood U around z* and an € > 0 such that a map g is
C' — ¢ close to f on U and f is topological equivalent to g whenever (1.4.4)
< ¢ on this neighbourhood, then f is said to be C! locally structurally stable.

O

There is a major general result on topological equivalent maps known under the name

Hartman and Grobman’s theorem. The “one-dimensional” formulation of this theorem

(cf. Devaney, 1989) is:

Theorem 1.4.1. Let 2* be a hyperbolic fixed point of a map f : R — R and
suppose that A = f’(z*) such that [A| # 0, 1. Then there is a neighbourhood U
around z* and a neighbourhood V of 0 € R and a homeomorphism A : U — R

which conjugates f on U to the linear map I(z) = Az on V. O
For a proof, cf. Hartman (1964).

Example 1.4.5. Consider z — f(z) = (5/2)z(1 — z). The fixed point is
z* = 3/5 and is clearly hyperbolic since A = f/(z*) = —1/2. Therefore,
according to Theorem 1.4.1, f(z) on a neighbourhood about 3/5 is topological
equivalent to /(x) = —(1/2)z on a neighbourhood about 0. O
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1.5 Bifurcations

As we have seen, the map = — f,(z) = pz(1 — z) has a stable hyperbolic fixed point
" = (u—1)/p provided 1 < p < 3. If p =3, A = f'(z*) = —1, hence z* is no longer
hyperbolic. If ;1 = 3.2 we have shown that there exists a stable 2-periodic orbit. Thus
z* experiences a fundamental change of structure when it fails to be hyperbolic which
in our running example occurs when y = 3. Such a point will from now on be referred
to as a bifurcation point. When A = —1, as in our example, the bifurcation is called
a flip or a period doubling bifurcation. If A\ = 1 it is called a saddle-node bifurcation.
Generally, we will refer to a flip bifurcation as supercritical if the eigenvalue A\ crosses
the value —1 outwards and that the 2-periodic orbit just beyond the bifurcation point is

stable. Otherwise the bifurcation is classified as subcritical.

Theorem 1.5.1. Let f, : R = R, z — f,(z) be a one-parameter family
of maps and assume that there is a fixed point (z*, 19) where the eigenvalue
equals —1. Assume

o= (afu 0% fu 49 82fu> _ Ofu 0 fu _(Ofu 1 0’ f
ou 0x? 0rdp op  Ox? oz Oxdu

52 2 3
o= (3 (52) +3 (52)) %0 = (e

Then there is a smooth curve of fixed points of f, which is passing through

#0 at (IB*,IU,())

and

(z*, o) and which changes stability at (z*, z9). There is also a curve consisting
of hyperbolic period-2 points passing through (z*, uo). If & > 0 the hyperbolic

period-2 points are stable; i.e. the bifurcation is supercritical. a
Proof. Through a coordinate transformation it suffices to consider f, so that
for 4 = po = 0 we have f(z*,0) = z* and f'(z*,0) = —1.

First we show that one without loss of generality may assume that z* = 0. To
this end, define F(z, ) = f(z,u) — z. Then F'(z*, u) = —2 # 0 and by use

of the implicit function theorem there exists a solution Z(u) of F(z,u) = 0.
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Next, define g(y, u) = f(y + Z(u), p) — T(u). Clearly, g(0, 1) = 0 for all p.
Consequently, y = 0 is a fixed point so in the following it suffices to consider
z — f(x) where z*(u) =0 and f'(0,0) = —1.

The Taylor expansion around (z*, 1) = (0,0) is

of Of o ., Of °f .3
gn(f):—§+5/;n+ (626 88;1,677 +683§ + higher order
= —& + an + b€% + cné + d€® + higher order
where the parameter 7 has the same weight as 2. The composite (g o g)(&)

may be expressed as
gﬁ({) = & + ané + BE® + higher order

Thus, in order to have a system to study we must assume a, B # 0 which is

equivalent to

a:—(2c+2ab)=—<2izf—+2af 1 82f) £0

0xdu du 2 0z2

3 2
B =—(2d+2b%) = (2 %g{:me%}—;—))#o

and we recognize the derivative formulaes as nothing but what is stated in the

theorem.

Next, consider the truncated map

& = h(€) = £+ ang + B€°

Clearly, the fixed points are

2120, 22,3::}: —%77

Further, '(€) = 1+an+3B¢>so h'(€;) = 1+an and K'(€,5) = 1—20m. Thus
we have the following configurations (see Figure 2), and we may conclude that
the stable period-2 orbits corresponds to 4 < 0, i.e.

o2 f 1 8%f
(axz) T3 558 0
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Figure 2: The possible configurations of £2 — h(€) = £ + ané + BE°.

Example 1.5.1. Show that the fixed point of the quadratic map undergoes
a supercritical flip bifurcation at the threshold yu = 3.

Solution: From the previous section we know that z* = 2/3 and f'(z*) = -1
when 1 = 3. We must show that the quantities a and b in Theorem 1.5.1
are different from zero and larger than zero respectively. By computing the

various derivatives at (z*, po) = (2/3, 3) we obtain:

_2 1) _ _leeslo=
a-—g( 6)+2( 3>— 2#0 and b_Z( 6)+3 0=18>0

Thus the flip bifurcation is supercritical. When z* fails to be stable, a stable
period-2 orbit is established. a

Exercise 1.5.1. Show that the Ricker map z — zexp[r(l — z)], cf. (1.2.2),

undergoes a supercritical flip bifurcation at (z*,7) = (1, 2). O
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Figure 3: (a) The bifurcation diagram (saddle node) for the map T — z + p — z°
(b) The bifurcation diagram (transcritical) for the map z — pz(1 — z).

As is clear from Definition 1.4.1 a fixed point will also lose its hyperbolicity if the
eigenvalue A equals 1. The general case then is that z* will undergo a saddle-node bifur-
cation at the threshold where hyperbolicity fails. We shall now describe the saddle-node
bifurcation.

Consider the map

'z fu(z) =z + p—2? (1.5.1)

whose fixed points are z}, = +,/z. Hence, when y > 0 there are two fixed points
which equals when 4 = 0. If 4 < 0 there are no fixed points. In case of w >0, p
small, we have fu(zi = /i) =1 -2,/ < 1, hence z} = /i is stable. On the other
hand: f/(z; = —v/#) = 1+2,/11 > 1, consequently z} is unstable. Thus a saddle-node
bifurcation is characterized by that there is no fixed point when the parameter p falls
below a certain threshold pg. When p is increase to Lo, A =1, and two branches of fixed
points are bdrn, one stable and one unstable as displayed in the bifurcation diagram, see
Figure 3a.

The other possibilities at A = 1 are the pitchfork and the transcritical bifurcations.

The various configurations for the pitchfork are given at the end of the proof of Theorem
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1.5.1 (see Figure 2). A typical configuration in the transcritical case is shown in Figure

3b as a result of considering the quadratic map at (z*, up) = (0, 1).

Exercise 1.5.2. Do the necessary calculations which leads to Figure 3b. O

1.6 The flip bifurcation sequence

We shall now return to the flip bifurcation. First we consider the quadratic map. In the
previous section we used Theorem 1.5.1 to prove that the quadratic map z — pz(1 — z)
undergoes a supercritical flip bifurcation at the threshold y = pg.= 3. This means that
in case of > g, [ — po| small, there exists a stable 2-periodic orbit and according to
our findings in Section 1.3 the periodic points are given by (1.3.3), namely

_pt1Ey/(p+1)(p-3)
2

P12
The period 2 orbit will remain stable as long as
|f'(p1) f'(p2)] < 1
cf. Section 1.4. Thus, in our example,
|u(1 = 2p1)pu(1l - 2p,)| < 1

ie.

1= (u+1)(u—3)| <1 (1.6.1)

from which we conclude that the 2-periodic orbit is stable as long as

3<pu<1+V6 (1.6.2)

Since A = ¥ = f'(p,) f'(p2) = —1 when p; = 14+/6 there is a new flip bifurcation taking

place at p; which in turn leads to a 4-periodic orbit. We also notice that while the fixed
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Figure 4: (a) The quadratic map in the cases p = 2.7 and p = 3.4. (b) and (c) The
second iterate of the quadratic map in the cases u = 2.7 and y = 3.4, respectively.

point z* = (1 — 1)/ is stable in the open interval I = (2, 3), the length of the interval
where the 2-periodic orbit is stable is roughly (1/2)1.

In Figure 4a we show the graphs of the quadratic map in the cases u = 2.7 (curve a)
and p = 3.4 (curve b) respectively, together with the straight line z;., = z;. p=27
gives a stable fixed point z* while u = 3.4 gives an unstable fixed point. These facts are
emphasized in the figure by drawing the slopes (indicated by dashed lines). The steepness
of the slope at the fixed point of curve a is less than —45°, || < 1, while A < —1 at the
unstable fixed point located on curve b.

In generai, if f.(z) is a single hump function (just as the quadratic map displayed in
Figure 4a) the second iterate f2(z) will be a two-hump function. In Figures 4b and 4c

we show the relation between z;y, and z;. Figure 4b corresponds to u = 2.7, Figure 4c
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corresponds to x4 = 3.4. Regarding 4b the steepness of the slope is still less than 45° so
the fixed point is stable. However, in 4c the slope at the fixed point is steeper than 45°,
the fixed point is unstable and we see two new solutions of period 2.

Let us now explore this mechanism analytically: Suppose that we have an n-periodic

orbit consisting of the points pg,p; . ..p,_1 such that
= f1(p:) (1.6.3)

Then by the chain rule (cf. (1.1.7))
n—1
(o) = [[ £um) = X" (o) (1.6.4)
i=0

Hence, if |A\"(po)| < 1 the n-periodic orbit is stable, if [\"(pg)| > 1 the orbit is unstable.

Next, consider the 2n-periodic orbit
= o) = [ F ()

By appealing once more to the chain rule we obtain

72 (30) (Hf p,) = X"(po) (1.6.5)

This allows us to conclude that if the n-point cycle is stable (i.e. [\*| < 1) then \** < 1
too. On the other hand, when the n-cycle becomes unstable (i.e. [A\"| > 1) then A\** > 1
too. So what this argument shows is that when a periodic point of prime period n becomes
unstable it bifurcates into two new points which are initially stable points of period 2n and
obviously there are 2n such points. This is the situation displayed in Figure 4c. So what
the argument presented above really says is that as the parameter x of the map z — f,(z)
is increased periodic orbits of period 2,22, 2%, ... and so on are created through successive
flip bifurcations. This is often referred to as the flip bifurcation sequence. Initially, all

the 2% cycles are stable but they become unstable as 1 is further increased.
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As already mentioned, if f,(x) is a single-hump function, then f2(x) is a two- hump
function. In the same way, fﬁ (z) is a four-hump function and in general fF will have 2pr—1
humps. This means that the parameter range where the period 2° cycles are stable shrinks
through further increase of y. Indeed, the u values at successive bifurcation points act
more or less as terms in a geometric series. In fact, Feigenbaum (1978) demonstrated the
existence of a universal constant ¢ (known as the Feigenbaum number or the Feigenbaum

geometric ratio) such that

lim £t En 5 466920 (1.6.6)
=00 [Unt2 — Hnitl

where pin, finy1 and pi,4o are the parameter values at three consecutive flip bifurcations.
From this we may conclude that there must exist an accumulation value p, where the
series of flip bifurcations converge. (Geometrically, this may happen as a “valley” of some
iterate of f, deepens and eventually touches the 45° line (cf. Figure 4c), then a saddle-node
bifurcation (A = 1) will occur.)

Regarding our running example z — pz(1 — z) we have proved that the first flip
bifurcation occurs at 4 = 3 and the second at 4 = 1+ +/6. The point of accumulation for

the flip bifurcations p, is found to be u, = 3.56994.

Exercise 1.6.1. Identify numerically the flip bifurcation sequence for the

Ricker map (1.2.2). O

In the next sections we will describe the dynamics beyond the point of accumulation

Wq for the flip bifurcations.

1.7 Period 3 implies chaos. Sarkovskii’s theorem

Referring to our running example (1.2.1), z — uz(1 —z) we found in the previous section
that the point of accumulation for the flip bifurcation sequence p, ~ 3.56994. We urge
the reader to use a computer or a calculator to identify numerically some of the findings

presented below. u € [uq, 4].
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Figure 5: A 3-cycle generated by the quadratic map.

When p > 14, pt— 1 small, there are periodic orbits of even period as well as aperiodic
orbits. Regarding the periodic orbits, the periods may be very large, sometimes several
thousands which make them indistinguishable from aperiodic orbits. Through further
increase of p odd period cycles are detected too. The first odd cycle is established at
u = 3.6786. At first these cycles have long periods but eventually a cycle of period 3
appears. In case of (1.2.1) the period-3 cycle occurs for the first time at y = 3.8284.
This is displayed in Figure 5. (The point marked with a cross is the initially fixed point
z* = (u — 1)/p which became unstable at u = 3. It is also clear from the figure that the
3-cycle is established as the third iterate of (1.2.1) undergoes a saddle-node bifurcation.

In the bifurcation diagram, Figure 6, we display the dynamics of the quadratic map
in the interval 2.9 < u < 4. The stable fixed point (u < 3) as well as the flip bifurcation
sequence is clearly identified. Also the period-3 “window” is clearly visible. Our goal in

this and in the next sections is to give a thorough description of the dynamics beyond p,.

Theorem 1.7.1.Let f, : R = R, z — f,(z) be continuous. Suppose that
fu has a periodic point of period 3. Then f, has periodic points of all other

periods. : O

Remark: Theorem 1.7.1 was first proved in 1975 by Li and Yorke under
the title “Period three implies chaos”. Since there is no unique definition of

the concept chaos many authors today prefer to use the concept “Li and Yorke
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chaos” when they refer to Theorem 1.7.1. The essence of Theorem 1.7.1 is
that once a period-3 orbit is established it implies periodic orbits of all other
periods. Note, however, that Theorem 1.7.1 does not address the question of

stability. We shall deal with that in the next section. a

We will now prove Theorem 1.7.1. Our proof is based upon the proof in Devaney

(1989), not so much upon the original proof by Li and Yorke (1975).

Proof. First, note that (1): If I and J are two compact intervals so that I C J
and J C f,(I) then f, has a fixed point in I. (2): Suppose that Ay, 41, ..., A
are closed intervals and that A;y; C f,(A;) fori =0,...,n — 1. Then there
is at least one subinterval Jy of Ay which is mapped onto A;. There is also
a similar subinterval in A; which is mapped onto A, so consequently there is
a Jy C Jo so that f(J;) C A; and f2(J;) C A,. Continuing is this fashion
we find a nested sequence of intervals which map into the various A; in order.
Therefore there exists a point € Ay such that fi(z) € A4; for each i. We say
that f,(A;) covers A;y;.

Now, let a, b and ¢ € R and suppose f,(a) = b, fu(b) = c and f,(c) = a.
We further assume that a < b < c. Let Iy = [a,b] and I; = [b, ], cf. Figure
5. Then from our assumptions Iy C f(Iy) and Iy V I, C f(I). The graph
of fy, cf. Figure 5, shows that there must be a fixed point of f. between b
and c. Similarly, fZ must have fixed points between a and b and at least
one of them must have period 2. Therefore we let n > 2. Our goal is to
produce a periodic point of prime period n > 3. Inductively, we define a
nested sequence of intervals Ao, A;,...,A,_y C I as follows. Let Ay = I;.
Since It C f(I1) there is a subinterval A; C A, such that f,(4;) = 4 = L.
Then there is also a subinterval A, C A; such that fu(A2) = A; which implies
f2(A2) = fu(fu(As2)) = fu(A1) = Ay = I,. Continuing in this way there exists
An—o C Ap—3 such that f,(As—2) = f.(As—3) so according to (2), if z € An_s
then f,(z), f2(2),..., 2"} (z) € Ao and indeed [ 2(Ans) = Ag = L.
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Now, since Iy C f,(I1) there exists a subinterval A, C A,_» such that
f;“l(An_l) = Io. Finally, since I; C fu(ly) we have I; C f}}(An-1) so that
f(An_1) covers An_;. Therefore, according to (1) fi has a fixed point p in

Ap_1.

Finally, we claim that p has prime period n. Indeed, the first n — 2 interations
of p is in I3, the (n — 1)st lies in Iy and the n-th is p again. If f;“l(p) lies in
the interior of Iy it follows that p has prime period n. If f2~'(p) lies on the

boundary, then n =2 or 3 and again we are done. o

Theorem 1.7.1 is a special case of Sarkovskii’s theorem which came in 1964. However,
it was written in Russian and published in an Ukrainian mathematical journal so it was
not discovered and recognized in Western Europe and the U.S. prior to the work of Li

and Yorke. We now state Sarkovskii’s theorem:
Theorem 1.7.2. We order the positive integers as follows:
142<9229...<42m <128 (2n4+1) 9...<2%-34...2-3492n—14...<4947<45<3

Let f, : I — I be a continuous map of the compact interval I into itself. If
fu has a periodic point of prime period p, then it also has periodic points for

any prime period q < p. O
Proof. Cf. Devaney (1989) or Katok and Hasselblatt (1995). a

Clearly, Theorem 1.7.1 is a special case of Theorem 1.7.2. Also note that the first part
in the Sarkovskii ordering (1<12<12%...<12™) corresponds to the flip bifurcation sequence
as demonstrated through our treatment of the quadratic map. As the pararneter u in
(1.2.1) is increased beyond the point of accumulation for the flip bifurcations. Sarkovskii’s
theorem says that we approach a situation where there are an infinite number of periodic

orbits.
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1.8 The Schwarzian derivative

In the previous section we established through Theorems 1.7.1 and 1.7.2 that a map may
have an infinite number of periodic orbits. Our goal in this section is to prove that in fact

only a few of them are attracting (or stable) periodic orbits.

Definition 1.8.1. Let f : I — I be a C3 function. The Schwarzian derivative
Sf of f is defined as

3 f’"(x) _§ f”(x) 2
st =T -3 () (-83)

O

Regardihg fu(x) = px(1 — z) we easily find that Sf,(z) = —6/(1 — 2z). Note that
Sfu < 0 everywhere except at the critical point ¢ = 1/2. (However, we may define

Sfu(1/2) = —o0.)

The main result in this section is the following theorem which is due to Singer (1978):

Theorem 1.8.1. Lef f be a C® function with negative Schwarzian derivative.
Suppose that f has one critical point ¢. Then f has at most three attracting

periodic orbits. O

Proof. The proof consists of three steps.

(1) First we prove that if f has negative Schwarzian derivative then all f"

iterates also have negative Schwarzian derivatives.

To this end, assume Sf < 0 and Sg < 0. Our goal is to show that S(fog) < 0.

Successive use of the chain rule gives:
(f o 9)(z) = f(9(z))g'(z)
(f09)"(z) = f"(9(2))(g'(z)) + f'(9(x))g" ()
(£ 2.9)"(2) = (9@ @) +3f"(9(x))d ()9 (@) + F(9(2)) 9" (2)
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Then (omitting function arguments) Definition 1.8.1 gives

S(f . ) _ f//lgls +3f”g/gn+ fg'” ~ § w 9
? flg, 2 flg/

which after some rearrangements may be written as

(ff— 2 (’}—)) s+l (-f]—) = S1(9(@))(¢'(=))? + Sq(2)

Thus S(f o g)(z) < 0 which again implies Sf" < 0.

(2) Next we show that if Sf < 0 then f'(z) cannot have a positive local

minimum.

To this end, assume that d is a critical point of f/(z). Then f”(d) = 0, and
since Sf < 0 it follows from Definition 1.8.1 that f”/f’ < 0so f"(d) and f'(d)
have opposite signs. Graphically, it is then obvious that f’ (z) cannot have a
positive local minimum, and in the same way it is also clear that f'(z) cannot
have a negative local maximum. Consequently, between any two consecutive
critical points d; and d, of f’ there must be a critical point ¢ of f such that
f'(e) =0.

(3) By considering f™(z) = 0 it follows directly from the chain rule that if
f(z) has a critical point then f™(z) will have a critical point too. Finally,
let p be a point of period k on the attracting orbit and let I = (a,b) be the
largest open interval around p where all points approach p asymptotically.
Then f(I) C I and f*(I) C I. Regarding the end points a and b we have:
If f(a) = f(b) then of course there exists a critical point. If f(a) = a and
f(b) = b (i.e. that the end points are fixed points) it is easy to see graphically
that there exist points u and v such that a < u < p < v < b with properties
f'(u) = f'(v) = 1. Then from (2) and the fact that f'(p) < 1 there must be a
critical point in (u,v). In the last case f(a) = b and f(b) = a we arrive at the

same conclusion by considering the second iterate f2. a
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Example 1.8.1. Assume z € [0,1] and let us apply Theorem 1.8.1 on the
quadratic map = — fy(z) = pz(1 — ). For a fixed u € (1,3) the fixed point
z* = (u — 1)/u is stable, and since £,(0) = f,(1) = 0 and the fact that 0
is repelling there is one periodic attractor, namely the period-1 attractor z*

which attracts the critical points ¢ = 1/2.

When p € [3,4] both z* and 0 are unstable fixed points. Thus according
to Theorem 1.8.1 there is at most one attracting periodic orbit in this case.
(Prior to p, there is exactly one periodic attractor.) When p = 4 the critical
point is mapped on the origin through two iterations so there are no attracting

periodic orbits in the case. o

Example 1.8.2. Let us close this section by giving an example which shows
that Theorem 1.8.1 fails if the Schwarzian derivative is not negative. The

following example is due to Singer (1978). Consider the map
z — g(z) = —13.30z* + 28.75z° — 23.3122 + 7.862 (1.8.2)

The map has one fixed point z* = 0.7263986, and by considering ¢*(z) = x
there is also one 2-periodic orbit which consists of the points p; = 0.3217591
and p, = 0.9309168.

Moreover: A1 = g'(z*) = —0.8854 and o = ¢'(p1)g'(ps) = —0.06236. Thus

both the fixed point and the 2-periodic orbit are attracting.

The critical point of g is ¢ = 0.3239799 and is attracted to the period-2 orbit

so it does not belong to Wy (z*), cf. Definition 1.4.3. The reason that z* is

loc

not attracting c is that Sg(z*) = 8.56 > 0 thus the assumption Sg(z) <0in

Theorem 1.8.1 is violated. O
Exercise 1.8.1. Compute the Schwarzian derivative when f (=i O

Exercise 1.8.2. Show that Sf(z) < 0 when f is given by (1.2.2) (the Ricker

case). O
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1.9 Symbolic dynamics I

Up to this point we have mainly been concerned with fixed points and periodic orbits.
The main goal of this section is to introduce a useful tool called symbolic dynamics which
will help us to describe and understand dynamics of other types than we have discussed
previously. To be more concrete, we shall in this section analyse the quadratic map
z — pz(l — z) where 1 > 2+ +/5 on the interval I = [0,1], and as it will become clear,
although almost all points in I eventually will escape I, there exists an invariant set A of
points which will remain in I. We shall use symbolic dynamics to describe the behaviour
of these points.

First we need some definitions. Consider z — f(z). Suppose that f(z) can take
1ts values on two discoﬁnected intervals I; and I, only. Define an infinite forward-going

sequence of 0’s and 1’s {ax}2, so that

s =T fk(IL'o) el (191&)
el G E (1.9.1b)

Thus what we really do here is to represent an orbit of a map by an infinite sequence of

0’s and 1’s.
Definition 1.9.1.

Yy ={@ = (apa10s...)/ar =0 or 1} (1.9.2)

We shall refer to 5 as the sequence space.

Definition 1.9.3. The itinerary of z is a sequence #(z) = apay ... where ay

~ is given by (1.9.1). O

We now define one of the cornerstones of the theory of symbolic dynamics.
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Definition 1.9.4. The shift map o : ¥3 — ¥, is given by
a(agalagag, o0 ) = Qa1asag ... (193)

O

Hence the shift map deletes the first entry in a sequence and moves all the other entries

one place to the left.

Example 1.9.1. @ = (1111...) repregents a fixed point under ¢ since o(a@) =
o™(@) = (111...). Suppose@ = (001,001,001, ...). Then o(a) = (010, 010, 010, . ..),
o*(@) = (100,100,100,...) and o3(a) = (001,001,001,...) = @. Thus @ =
(001,001,001, . ..) represents a periodic point of period 3 under the shift map.

O

The previous example may obviously be generalized. Indeed, if @ =
(@oay...an_1,000; . ..0p_1,.. .) there are 2™ periodic points of period n under the shift

map since each entry in the sequence may have two entries 0 or 1.

Definition 1.9.5. Let U be a subset of a set S. U is dense in S if the closure
U=238. O

Definition 1.9.6. If a set S is closed, contains no intervals and no isolated

points it is called a Cantor set. a

Proposition 1.9.1. The number of periodic points P,.(c) = 2" is dense in

Y. O

Proof. Let@ = (apai1as...) bein T, and suppose that b = (ao...Gp—1,00...Gp—1-..)
represent the 2" periodic points. Our goal is to prove that b converges to @. By
use of the usual distance function in a sequence space, d[@,b] = £(|a; — b;|/2%)

we easily find that d[a, b] < 1/2". Hence b — @. o
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Figure 7: The quadratic map in the case u > 2+ /5. Note the subintervals I; and I,
where f,(z) = pz(1 —z) < 1. '

We now have the necessary machinery we need in order to analyse the quadratic map in
case of p > 2+ /5. .

Let ¢ — f(z) = pz(l — z) where u > 2 + /5. From the equation pz(l — ) = 1
we find z = 1/2 4+ 1/2y/T—4u. Hence in the intervals I; = [0,1/2 — 1/2,/T— 4z and
I, =[1/2+1/2\/T = 4], f <1, cf. Figure 7. Moreover, |f'(z)| = | — 2pz| and whenever
1> 2++/5 we find that [f'(z)| > A > 1.

Denote I =[0,1]. Then I'N f~'(I) =L UL soifx € I — (I N f~}(I)) we have f > 1
(cf. Figure 7) which implies f2 < 0 and consequently f™ — —oco. All the other points will
remain in [ after one iteration. The second observation is that f(I;) = f(I,) = I so there
must be a pair of open intervals, one in I; and one in I>, which is mapped into I — (I; Ul,)
such that all points in these two intervals will leave I after two iterations. Continuing in
this way by removing pairs of open intervals (i.e. first the interval I — (I; U I,), then two
intervals, one in I; (J;) and one in I, (J2), then 22 open intervals, two from I; — J1, two
from I, — J,. .. and_ﬁnally 2™ intervals) from closed intervals we are left with a closed set
A which is I minus the union of all the 27+! — 1 open sets. Hence A consists of the points
that remain in I after n iterations, A C TN f~1(I) and A consists of 2"+ closed intervals.

Now, associate to each z € A a symbol sequence {a;}%; of 0’s and 1’s such that a = 0

if f*(z) € I and ag = 1if f*(z) € L.
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Next, define
Iao...an — {IL' 6 I/x e Iao; f(x) E Ia1 cee fn<$) e Ian} (194)

as one of the 2"*! closed subintervals in A. Our first goal is to show that I,, ,, is

non-empty when n — oco. Indeed,

Iogan = Tog N fH(I) N0 f7(1L,)
= Ia.g N f_l(Ial...an) (195)

I, is nonempty. Then by induction I,, _,, is non-empty, and moreover, since (1, 4,)
consists of two closed subintervals it follows that I,, N f ~1(I4,..4,) consists of one closed
interval. A final observation is that
Tog.an =1Tag N ...0 f7D(L, )N f7M(T,,)
= lag..any N7 (Lan) C Iag...an-
Consequently, I,, ,,. is non-empty. Clearly the length of all sets Ioy...q, approaches zero
as n — 0o which allows us to conclude that the itinerary #(z) = apay . .. is unique.

We now proceed by showing that A is a Cantor set. Assume that A contains an
interval [a, b] where a # b. For z € [a,b] we have |f'(z)] > A > 1 and by the chain rule
|f™z)] > A". Let n be so large that A"[b — a| > 1. Then from the mean value theorem
[f™(b) — f™(a)| > A"|b — a| > 1 which means that f™(b) or f™(a) (or both) are located
outside I. This is of course a contradiction so A contains no intervals.

To see that A contains no isolated points it suffices to note that any end point of the
2™*+1 1 open intervals eventually goes to 0 and since 0 € A these end points are in A too.
Now, if y € A is isolated all points in a neighbourhood of y eventually will leave I which
means that they must be elements of one of the 2"*! — 1 open sets which are removed
from I. Therefore, the only possibility such that y € A is that there is a sequence of end
points converging towards y so y cannot be isolated.

From the discussion above we conclude that the quadratic map where y > 2 + /5

possesses an invariant set A, a Cantor set, of points that never leave I under iteration.
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A is a repelling set. Our final goal is to show that the shift map o defined on ¥, is
topological equivalent to f defined on A.
Let f: A= A f(z) = pz(1 —2), 0 : 8y = 5y, o(aparas...) = ajay... and
¢ : A — Xy, §(x) = agaias.... We want to prove that go f = o o P.
Observe that
¢(z) = aparas... = ﬂ Toga10...0n...

n>0
Further
Iaoal...an = Iao N f-l(Ial) I f—n(Ian)

SO
Flager.an) = FTag) N (L) N0 YL ) = Ty 0o (I, ) = 1, a0

This implies that

¢(f(z)) =¢ (f (ﬂ Iao...an>) =¢ (ﬂ Ia1...an> = o(¢(z))

n>0 n>1

Thus, f and o are topological equivalent maps.

1.10 Symbolic dynamics II

In Section 1.8 we proved that if a map f : I — I with negative Schwarzian derivative
possessed an attracting periodic orbit then there was a trajectory from the critical point
c to the periodic orbit. Our goal here is to extend the theory of symbolic dynamics by
assigning a symbol sequence to ¢ or more precisely to f(c). We will assume that f is
unimodal. The theory will mainly be applied on periodic orbits.

Note, however, that the purpose of this section is somewhat different than the others
so readers who are not too interested in symbolic dynamics may skip this section and

proceed directly to the next where chaos is treated.
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Definition 1.10.1. Let z € I. Define the itinerary of z as ¢(z) = agaias. . .

where .
0 if fi(z)<e
aj=4q 1 if fi(z)>c (1.10.1)
C if fi(z)=c

g

What is new here really is that we associate a symbol C to the critical point c. Also
note that we may define two intervals Iy = [0, ¢) and I, = (c, 1] such that f is increasing

on Iy and decreasing on I.

Definition 1.10.2. The kneading sequence is defined as the itinerary of f(c),
le.
K(f) = ¢(f(c)) (1.10.2)

0O

Example 1.10.1.

1) Suppose that 2 — f(z) = 22(1—2). Then ¢ = 1/2 and f(c) = 1/2, e =
1/2...f7(c) = 1/2 so the kneading sequence becomes K(fy=(CcCccc..)

which also may be written as (C'C'C'...) where the bar refers to repetition.

2) Suppose that z — f(z) = 4z(1-z). ¢ =1/2, f(c) =1, f2(c) ... = JlE=
so K(f)=1(1000...). O

An unimodal map may of course have several itineraries.

Example 1.10.2. By use of a calculator we easily find that the possible

itineraries of z — 2z(1 — x) are
(00...0¢CC...) (CCT..) (10...00CT...) (000...) (1000...)

(The last two itineraries correspond to the orbits of 1o = 0 and z; = 1
respectively. Note that the critical point is the same as the stable fixed point

x* in this example.
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In case of z — 3z(1 — z) we obtain the sequences
(00...011T...) (C11T...)117...)
(10...011T...) (000...) (1000...)
(0C111...) (1C111..))

where the last two itineraries correspond to the orbits of zo = (1/6)(3 — v/3)
and o = (1/6)(3 + v/3) respectively. O

The reader should also have in mind that periodic orbits with different periods may share
the same itinerary.

Indeed, consider z — 3.1z(1 — z). Then z* = 0.6774 > ¢ = 1/2 so the itinerary of the
fixed point becomes ¢(z*) = (11T...). However, there is also a two-periodic orbit whose
periodic points are (cf. formulae (1.3.3)) p; = 0.7645, p, = 0.5581. Again we observe
that p; > c so the itinerary of any of the two-periodic points is also (111...). (When p
becomes larger than 3.1 one of the periodic points eventually will become smaller than ¢
which results in the itinerary (101010...) or (010101...).)

Our next goal is to establish an ordering principle of the possible itineraries of a given
map. Let @ = (apaiay...) and b = (bobiby...). If a; = b; for 0 < i < n and a, # b, we say
that the sequences have discrepancy n. Let Sn(a@) be the number of 1’s among aga; . . . a,

and assume 0 < C' < 1.

Definition 1.10.3. Suppose that @ and b have discrepancy n. We say that

a=<bif
Sn—1(@) is even and a, < b, (1.10.3a)
Sp-1(@) is odd and a, > b, (1.10.3b)
O

Example 1.10.3. Due to a) we have the following order:

(110..) < (11C..) < (111..))
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Due to b) we have
(110...)<(101...) < (100...)

O

Also note that any two sequences with discrepancy 0 are ordered such that the sequence
which has 0 as the first entry is of lower order than the one with C or 1 as the first entry.

Thus:

Exercise 1.10.1. Let a = (011011 .) be a repeating sequence. Compute

o(@) and 0*(a@) and verify the ordering @ < o(a) < o?(a). ]

The following theorem (due to Milner and Thurston) relates the ordering of two symbol

sequences to the values of two points in an interval.

Theorem 1.10.1. Let z,y € T
a) If ¢(z) < @(y) then z < y

b) If z < y then ¢(z) < ¢(y)
O

Proof. Suppose that ¢(z) = (aoaras ...) and #(y) = (bobids...) and let n be
the discrepancy of ¢(z) and #(y). First, suppose n = 0. Then z < y since
0 < C < 1. Next, suppose that a) is true with discrepancy n — 1. Our goal
is to show that a) also is true with discrepancy n. By use of the shift we
have ¢(f(z)) = (a1a203...) and (f(y)) = (bybobs . . .)- Suppose ag = 0. Then
#(f(z)) < ¢(f(y)) since the number of 1’s before the discrepancy is as before.
Therefore f(z) < f(y) but since f is increasing on [0, ¢) it follows that z < y.

Next, assume ag = 1. Then ¢(f(z)) > ¢(f(y)) since the number of 1’s among
the a;’s (1 > 1) has been reduced by one. Therefore f(z) > f(y) which implies

that z < y since f decreases on (c,1]. If ag = C we have z = =1c
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Regarding b) suppose z < y and assume that ¢(z) and ¢(y) has discrepancy
n. First, note that if z < ¢ < y we have directly ¢(z) < ¢(y). Otherwise (i.e.
T <y<corc<z<y)note that f*is monotone in [z,y] for i < n. Since the
number of 1’s (cf. the chain rule) directly says if f™ is increasing or decreasing

it is easily verified that ¢(z) < ¢(y). o

Theorem 1.10.2. Let z = (@) = apaias ... and suppose that z — f(z)
unimodal. Then ¢(0"p(a)) <X K(f(c)) for n > 1. O

Proof. Since the maximum of f is f(c) we have f(z) < f(c) and f*(z) < f(c).
Moreover, 0z = 0(¢(a)) = a1az ... = ¢(f(z)) so inductively o™z = p(f"(z)).

Therefore, according to Theorem 1.10.1

¢(0"p(@)) = 8(f(c)) = K(f(c))

O

The essence of Theorem 1.10.2 is that any sequence @ such that ¢(z) = @ has lower
order than the kneading sequence.

Now, consider periodic orbits. In order to simplify notation, repeating sequences
(corresponding to periodic points) of the form @ = (@oay ...an 4001 ...Qpa0a1 .. .0y ...) =
(a0a; . ..a, @a;---a,;) will from now on be written as @ = (agay ... ap).

We also define a sequence a = (ap .. .Qp-18,) where a4, = 1 if a, = 0 or &, = 0 if
Gn = 1. I b= (boby...by), - b= (agay - .. Gy boby - . . byy).

Suppose that there exists a parameter value x such that there are two periodic orbits
71 and 7, of the same prime period. We say that the orbit +; is larger than the orbit ¥o if
71 contains a point pn,, which is larger than all the points of v,. Note that, according to
Theorem 1.10.1, the itinerary of p,, satisfies ¢(p;) < ¢(p,,) where p; are any of the other
periodic points contained in ;.

Our main interest is the ordering of itineraries of periodic points p which satisfy:
(A) The periodic point p shall be the largest point contained in the orbit.
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(B) Every other periodic orbit of the same prime period must have a periodic point

which is larger than p.

Before we continue the discussion of (A) and (B) let us state a useful lemma.

Lemma 1.10.1. Given two symbol sequences @ = (agaiay...) and b =

(bobibs . . .).

Suppose that ap = by = 1 and ay = b; = 0. aj=bj=1for2<j;<Il,a,=0,
b=

If [ is even then b < @. If [ is odd then @ < b. : a

Proof. Assume [ even. Then the number of 1’s before the discrepancy is odd

and since b; > a; Definition 1.10.3 gives that b < a@.

If [ is odd the number of 1’s before the discrepancy is even and since ¢; = 0 <

by =1, @ < b according to the definition. a

A consequence of this theorem is that sequences than begin with 10 are of larger order
than sequences which begin with 11. In the same way, a sequence which first entries are
100 is larger than one which begins with 101.

Now, consider the quadratic map z — pz(l — z). Whenever 4 > 2 the fixed point
z* = (u— 1)/ > ¢ = 1/2 so the (repeating) itinerary becomes ¢(z*) = (1). When z*
bifurcates at the threshold p = 3, the largest point p; contained in the 2-cycle is always
larger than c, hence the itinerary of p; starts with 1 in the first entry. Therefore, when
# > 3, there may be two possible itineraries (10) and (11) and clearly (11) < (10).
We are interested in (10). Considering the 4-cycle which is created through another
flip bifurcation the itinerary of the largest point contained in the cycle which we seek is
(1011) which is of larger order than the other alternatives.

Regarding odd periodic orbits, remember that they are established through saddle-
node bifurcations, thus two periodic orbits, one stable and one unstable, are established

at the bifurcation. Considering the stable 3-cycle at p = 3.839 (see Exercise 1.4.2 or
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the bifurcation diagram, Figure 6) two of the points in the cycle 0.14989 and 0.48917 are
smaller than ¢ while the third one 0.95943 is larger. Hence the itinerary of largest order of
0.95493 is (100). Referring to Exercise 1.4.2 the largest point contained in the unstable
3-cycle is 0.95384 and the other points are 0.16904 and 0.53392. Hence the itinerary of
0.95384 of largest order is (10 1) and according to (A) and (B) this is the itinerary we are
looking for, not the itinerary (100).

Therefore, the itineraries we seek are the ones that satisfy (A) and (B) and correspond
to periodic points which are established through flip or saddle-node bifurcations as the
parameter in the actual family is increased. (A final observation is that sequences which
contain the symbol C' are out of interest since they violate (B).)

Now, cf. our previous discussion, define the repeating sequences:
So=(1) Si=(10) S=(1011) S3=(10111010)
and
Sj+1=8; - §; (1.10.4)

Clearly, the sequence S; has prime period 27 so it represents a periodic point with the
same prime period.

Another important property is that S; has an odd number of 1’s. To see this, note that
So = (1) has an odd number of 1’s. Next, assume that Sy = (Sp...Sp_1 1) has an odd
number of 1’s. Then S; = (So...Sk—10) has an even number of 1’s so the concatenation
5’k+1 =S - S clearly has an odd number of 1’s. (If Sy has a 0 at entry S, we arrive at

the same conclusion.) We have also that
Sit1=8;-8;=8; (1.10.5)

Indeed, suppose Sy = (Sp...Sk). Then Sgpy = Si- S = (So...Sk Sp. Sk) S0 5’k+1 =
(So...SkSo...S) = Sk- S = Sk

Lemma 1.10.2. The sequences defined through (1.10.4) have the ordering

SQ'<51'<SQ‘<53-<...
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O

Proof. Assume that Sj = (Sp...S;_15;). If S; = 1 there must be an even
number of 1’s among (5o ... Sj-1) so according to Definition 1.10.3a S; < Sj.
If S; = 0 there is an odd number of 1’s amongr (Sp...Sj-1) so according to
Definition 1.10.3b S; < S; also here. Therefore, by use of (1.10.5), we have
Sj=8;=8j_1-Sj_1=8;_1. O

Let us now turn to periodic orbits of odd period. The following lemma is due to

Guckenheimer.

Lemma 1.10.3. The largest point p,, in the smallest periodic orbit of odd
period n has itinerary ¢(p,) = @ such that a; = 0 if i = 1(mod n)-and q; = 1

otherwise. O

Example 1.10.4. Ifn = 3, ¢(p,,) = (101 101101...) = (101) which is in

accordance with our previous discussion of 3-cycles. O

Proof. Suppose that we have a sequence @ and that there exists a number
k such that a; = 1 and azy; = ar+2 = 0. Then by applying the shift map
k times we arrive at o¥(@) = (100...) which according to Lemma 1.10.1 has
larger order than any sequence with isolated 0’s. Hence the sequence o* (@)
violates (A) and (B).

Therefore, the argument above shows that the sequence we are looking for in
this lemma must satisfy that if a, = 0 then both ag—1 and agy1 must equal
1. Consequently there are blocks in @ of even length where the first and last
entry of the blocks consist of 0 and the intermediate elements of 1’s. As a
consequence of Lemma 1.10.1 the longer these blocks are the smaller is the
order of the sequence. Note that the blocks in this lemma have maximum

length n 4 1 for a periodic sequence of period n. O

Example 1.10.5. (101101101) is a 3-cycle where the length of the block
is 4.
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(1011110111) is a 5-cycle where the length of the block is 6. Clearly, the

order of the 5-cycle is smaller than the order of the 3-cycle. a

Lemma 1.10.4. Let n > 1 be an odd number. Then there is a periodic orbit

of period n + 2 which is smaller than all periodic orbits of period n. a

Proof. The lemma is an immediate consequence of how the itinerary in

Lemma 1.10.3 is defined combined with the results of Lemma 1.10.1. O

We now turn to orbits of even period where the period is 2" - m where m > 1 is an
odd number. The fundamental observation regarding the associated symbol sequences is
that they may be written as 5 IS RS o SjS'ij ... Sj where the number of S; blocks
following S;41 (or S;) is m — 2. (See Guckenheimer (1977) for further details.)

Example 1.10.6. If n = 2 (cf. 1.10.4) and m = 3 we have the sequence
(101110101011) and ifn = 1 and m = 5 we arrive at (1011101010). O

Lemma 1.10.5. Let P be a periodic orbit of odd period k. Then there exists
a periodic orbit of even period = 2" -m where m > 1 is odd which is smaller

than any odd period orbit. O

Proof. From Lemma 1.10.4 we have that the longer the odd period is the
smaller is the ordering of the associated symbol sequence. From Lemma 1.10.3
it follows that such a symbol sequence may be written as (10111...1110111...).
Therefore by comparing an even period sequence with the odd one above it is
clear that the even period sequence has 0 as entry at the discrepancy. If the
even period is 2 it is two 1’s before the discrepancy. If the even period is larger
there are three consecutive 1’s just prior to the 0 and since the first entry of
the sequence is 1 there is an even number of 1’s before the discrepancy also

here and the result of the lemma follows. a

We need one more lemma which deals with periodic orbits of even period.
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Lemma 1.10.6. Let u =2"-], v = 2" -k and w = 2™ - r where l, k and r are

odd numbers.

a) Provided 1 < k < [ there are repeating symbol sequences of period u

which has smaller order than any repeating symbol sequence of period v.

b) Provided m > n there are repeating symbol sequences of period w which

has smaller order than any repeating symbol sequence of period v. O

Sketch of proof. Regarding a) consider S; such that j is odd. Then by
carefully examining the various sequences we find that the discrepancy occurs
at entry 2/(k +2) in the repeating sequence of the 2" - k periodic point and it
happens as the last entry of the 5’,- block (which of course is 1 since j is odd)
differs from the same entry in the 2" - | sequence. Now, since Sij has an odd
number of 1’s the number of 1’s before the discrepancy is even, so according
to Definition 1.10.3a we have that sequences of period 2" - [ are smaller than

any sequence of period 2" - k. (The case that j is even is left to the reader.)

Regarding b), scrutinizing sequences @ of period 2™ - k it is clear that all of
them have 1011 as the first entries and that a; = 1 if 5 is even and @ ="
if 7 = 1(mod 4). Moreover, assuming k > r whenever m > n we find that
at discrepancy the sequence of period w has 1 as its element and in fact it is
the last 1 in 1011. Now, since SijSj ...S; has an even number of 1’s the
observation above implies that the sequence of period 2" k must have an even

number of 1’s before the discrepancy so the result follows. a

Now at last, combining the results from Lemmas 1.10.1~1.10.6 we have established the

following ordering for the itineraries of periodic points that satisfy (A) and (B):

22 <P <. <2 <M2A+1) < ?2A—-1)<...<2"-5<27.3 <
AT < <23 < (A1) < (2—1)... <5 <3

which is nothing but the ordering we find in Sarkovskii’s theorem.
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We do not claim that we actually have proved the theorem in all its details, our main
purpose here have been to show that symbolic dynamics is a powerful tool when dealing
with periodic orbits. For further reading, also of other aspects of symbolic dynamics
we refer to Guckenheimer and Holmes (1990), Devaney (1989) and Collet and Eckmann
(1980).

1.11 Chaos

As we have seen, the dynamics of z — px(l — ) differs substantially depending on the
value of the parameter p. For 2 < u < 3 there is a stable nontrivial fixed point, and in
case of larger values of u we have detected periodic orbits both of even and odd period.
If u > 2 + /5 the dynamics is aperiodic and irregular and occurs on a Cantor set A and
points z € (I \ A) approaches —oo. (I is the unit interval.)

In this section we shall deal with the concept chaos. Chaos may and has been defined
in several ways. We have already used the concept when we stated “Period three implies
chaos”.

Referring to the examples and exercises at the end of Section 1.3 we found that when-
ever the long-time behaviour of a system was a stable fixed point or a stable periodic
orbit there was no sensitive dependence on the initial condition zo. However, when
x — f(z) = 4z(1 — =) we have proved that there is no stable periodic orbit and more-
over, we found a strong sensitivity on the initial condition. Assuming z € [0, 1] and that
zo = 0.30 is one initial condition and zyp, = 0.32 is another we have |zo — zgo| = 0.02
but most terms | f*(zo) — f*(zo)| > 0.02 and for some & (k = 9) | f*(z,) — F¥(zoo)| = 1~
which indeéd shows a strong sensitivity.

Motivated by the example above, if an orbit of a map f : I — I shall be denoted as
chaotic it is natural to include that f has sensitive dependence on the initial condition
in the definition. It is also natural to claim that there is no convergence to any periodic

orbit which is equivalent to, say, that periodic orbits must be dense in I. Our goal is
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to establish a precise definition of the concept chaos but before we do that let us first

illustrate what we have discussed above by two examples.

Example 1.11.1. This is a “standard” example which may be found in many
textbooks. Consider the map h : S — S, 6 — h(f) = 26. (h is a map from
the circle to the circle.) Clearly, h is sensitive to initial conditions since the
arc length between nearby points is doubled under h. Regarding the dense
property, observe that A"(f) = 2"6 so any periodic points must be obtained
from the relation 2"0 = 6 + 2k or 6 = 2kn /(2" — 1) where the integer k
satisfies 0 < £ < 2™. Hence in any neighbourhood of a point in S there is a
periodic point so the periodic points are dense so A does not converge to any

stable periodic orbit. Consequently, & is chaotic on S’. O

Example 1.11.2. Consider z — f(z) = pz(l — z) where g > 2 + /5.
We claim that f is chaotic on the Cantor set A. In order to show sensitive
dependence on the initial condition let § be less than the distance between the
intervals /o and I, (cf. Figure 7). Next, assume z,y € A where z # y. Then
the itineraries ¢(z) # @(y) so after, say, k iterations f¥(z) is in Iy (I;) and
f¥(y) is in I (Ip). Thus |f*(z) — f*(y)| > & which establishes the sensitive

dependence.

Since f : A — A is topological equivalent to the shift map o : Yo — X, it
suffices to show that the periodic points of o are dense in ¥,. Let @ = (@,
be a repeating sequence of a periodic point and let b = (ayasas...) be the
sequence of an arbitrary point and note that o™ (@) = @. By use of the distance
d between two symbol sequences one easily obtains d[a@,b] < 1/2" so in any
neighbourhood of an arbitrary sequence (point) there is a periodic sequence

(periodic point). Hence periodic points of f are dense (and unstable). O

In our work towards a definition of chaos we will now focus on the sensitive dependence

on the initial condition.
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If a map f: R — R has a fixed pbint we know from Section 1.4 that if the eigenvalue
A of the linéarized system satisfies —1 < A < 1 the fixed point is stable and not sensitive
to changes of the initial condition. If [A| > 1 one may measure the degree of sensitivity by
the size of |A\|. We may use the same argument if we deal with periodic orbits of period k
except that we on this occasion consider the eigenvalue of every periodic point contained
on the orbit. If a system is chaotic it is natural to consider the case k — 0o since we may

think of a chaotic orbit as one having an infinite period. Therefore, define

d 1/k

- (1.11.1)
i

fk (2) 2=

= lim
K k—o0

where we have used the k’th root in order to avoid problems in order to obtain a well
defined limit. If o is a fixed point A = |(df /dz)(z = z,)|. For a general orbit starting
at o we may think of n as an average measure of sensitivity (or insensitivity) over the
whole orbit. Let L = Inn, that is

1/k

= lim
k—o0

L = lim In
k—o0

x| =

d .
‘(Ef ($o)

k-1
> In|f'(z = z,)| (1.11.2)
n=0

The number L is called the Lyapunov exponent and if L > 0 (which is equivalent to
|A| > 1) we have sensitive dependence on the initial condition. By use of L we may now

define chaos.
Definition 1.11.1. The orbit of a map z — f(z) is called chaotic if

1) It possesses a positive Lyapunov exponent, and

2) it does not converge to a periodic orbit (that is, there does not exist a

periodic orbit y; = y;y7 such that limseo |7; — 75| = 0.) O

Note that 2) is equivalent to, say, that periodic orbits are dense.

In most cases the Lyapunov exponent must be computed numerically and in cases
where L is slightly larger than zero such computations have to be performed by some
care due to accumulation effects of round-off errors. Note, however, that there exists a

theorem saying that L is stable under small perturbations of an orbit.
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Example 1.11.3. Compute L for the map h : S’ — S’, h(f) = 2. In this

case h' = 2 for all points on the orbit so

1
= al = —-kln2=In2>0
= lbr{:ok E (A=t ) = hmk kln2=1In2 >
and since the periodic orbits are dense A is chaotic. O

Example 1.11.4. Compute L for the two periodic orbit of z — f (z) =
px(l — z) where 3 < < 1+ /6. Referring to formulae (1.3.3) the periodic

points are

p+1E/(u+1)(u—3)
24

P12 =
Thus,
L= lim % {In|f'(z = p)l+In|f'(z = po)| +In|f'(z = p1)| +... + In|f'(z = p2)}
s llrg) l {gln|f’(x =pm)|+ glnlf’(a: :p2)l}
= 517 (@ = p)f(@ = )
Since
f@=p1)f'(z =ps) = p(1 — 2p1)p(l — 2pp) =1 — (u+ 1) (s — 3)

it follows that L = (1/2)In|1— (u+1)(u—3)| and as expected I < 0 whenever
3<u<1++/6. (Note that if x > 1++/6 then L > 0 but the map is of course
not chaotic since there in this case (provided |u — (1 4 v/6)| small) exists a
stable 4-periodic orbit with negative L.) O

Example 1.11.5. Show that the Lyapunov exponents of almost all orbits of
the map f:[0,1] — [0,1], z — f(z) = 4a(1 — z) is In 2.

Solution: From Proposition 1.2.1 we know that f (z) is topological equivalent

to the tent map T'(z). The “nice” property of T'(z) which we shall use is

ol




that 7'(z) = 2 for all x # ¢ = 1/2. Moreover, ho f = T o h implies that
W(f(@))f'(x) = T'(h(z))H' (z) so

T (h(z))h (z
f(a) = TP@HE)
W(f(z))
We are now ready to compute the Lyapunov exponent:
Il n—1
L=lim =) In|f'(z =)
n—00 7 e
n—1
1 T'(h(z:))h' (z:)
= lim — In
s W (f(z:))

n—1

n—1
1
= lim > T (a0 + fim 3 nlAe)] ~ W ()
Since z;41 = f(z;) the latter sum may be written as

iy % {In W (zo)| — In [} (z4)[}

n—ro0

which is equal to zero for almost all orbits. Thus, for almost all orbits:
= 1
L = lim — % In|T'(h(z;))] = lim —-nln2=1n2
n—o0

n—o0 1, £ n
=0

a

For comparison reasons we have also computed L numerically with initial value zq =
0.30 in the example above. Denoting the Lyapunov exponent of n iterations for L, we
ﬁnd Ligo = 0.67547, Lyggp = 0.69227 and Lspeo = 0.69308 so in this example we do not
need too many terms in order to show that L > 0.

A final comment is that since we have proved earlier (cf. Example 1.8.1) that the
quadfatic map does not possess any stable orbits in case of y = 4, Definition 1.11.1

directly gives that almost all orbits of the map are chaotic.
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1.12  Superstable orbits and a summary of the dynam-
ics of the quadratic map

The quadratic map has two fixed points. One is the trivial one z* = 0 which is stable if
# < 1 and unstable if 4 > 1. If 4 > 1 the nontrivial fixed point is z* = (u—1)/p and
as we have shown this fixed point is stable whenever 1 < y < 3. Whenever @ > 2 the
fixed point is larger than the critical point c. At i = 3 the map undergoes a supercritical
flip bifurcation and in the interval 3 < p < 1++/6 the quadratic map possesses a, stable
period-2 orbit which has a negative Lyapunov exponent. The periodic points are given
by formulae (1.3.3).

At the threshold y = 1++/6 there is a new (supercritical) flip bifurcation which creates
a stable orbit of period 22 and through further increase of w stable orbits of period 2F
are established. However, the parameter intervals where the period 2% cycles are stable
shrinks as y is enlarged so the p values at the bifurcation points act more or less as terms
in a geometric series. By use of the Feigenbaum geomefric ratio one can argue that there
exists an accumulation value i, for the series of flip bifurcations. Regarding the quadratic
map, f, = 3.56994. In the parameter interval p, < p < 4 we have seen that the dynamics
is much more complicated.

Still considering periodic orbits, Sarkovskii’s theorem tells us that periodic orbits occur
in a definite order so beyond y, there are periodic orbits of periods given by Theorem
1.7.2 (see also Section 1.10). Even in cases where such orbits are stable they may be
difficult to distinguish from non-periodic orbits due to the long period. In many respects
the ultimate event occurs at the threshold p =1+ +/8 where a 3-periodic orbit is created
because period 3 implies orbits of all other periods which is the content both in Li and
Yorke and in Sarkovskii’s theorem.

Chaotic orbits may be captured by use of Lyapunov exponents. In Figure 8 we show
the value of the Lyapunov exponent L for y € [ta,4]. L < 0 corresponds to stable
periodic orbits, L > 0 corresponds to chaotic orbits. (Figure 8 should be compared to

the bifurcation diagram, Figure 6.) The regions where we have periodic orbits are often
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Figure 8: The value of the Lyapunov exponent for p € [Ka,4]. L < 0 corresponds to
stable periodic orbits. L > 0 corresponds to chaotic orbits.

referred to as windows. The largest window found in Figure 6 (or 8) is the period 3
window. The periodic orbits in‘the interval 3 < p < o are created through a series of flip
bifurcations. However, the period-3 orbit is created through a saddle-node bifurcation. In
fact, every window of periodic orbits beyond f, is created in this way so just beyond the
bifurcation value there is one stable and one unstable orbit of the same period. (If p is
slightly larger than 1+ +/8 there is one stable and one unstable orbit of period 3.) Within
a window there may be flip bifurcations before chaos is established again, cf. Figure 6.
Since the quadratic map has negative Schwarzian derivative there is at most one stable
periodic orbit for edch value of L.

There is a way to locate the periodic windows. The vital observation is that at the
critical point ¢, f'(c) = 0, so accordingly In|f'(c)] = —oo which implies L < 0 and

consequently a stable periodic orbit. Also, confer Singer’s theorem (Theorem 1.8.1).
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Definition 1.12.1. Given a map f : [ — I with one critical point c. Any

periodic orbit 7 passing through c is called a superstable orbit. O

Hence, by searching for superstable orbits one may obtain a representative value of
the location of a periodic window. Indeed, any superstable orbit of period n must satisfy

the equation

fMe) =c (1.12.1)

Example 1.12.1. Consider the quadratic map and let us find the value of 7
such that f3(1/2) = 1/2.

We have

1 1 1

1 2 2 3
ngﬁfu(c)zzﬂifu(c)zzﬂ “‘13/1

1 1 { 1 1
Sy = (23— 2 Y1 (Lp_ L 3
= fu(c) <4u 16#) \ (4u T
Hence, the equation f3(1/2) = 1/2 becomes

p' —8ub 4+ 164° + 16u* — 6443 + 128 = 0 (1.12.2)

By inspection, p = 2 is a solution of (1.12.2) so after dividing by u — 2 we
arrive at

P8 —6u° +4p* + 24u — 164 — 324 — 64 = 0 (1.12.3)

This equation may be solved numerically by use of Newton’s method and
if we do that we find that the only solution in the interval e = b= 4is
p = 3.83187. Therefore, there is only one period-3 window and the location
clearly agrees both with the bifurcation diagram, Figure 6 and Figure 8. In
the same way, by solving f,;(1/2) = 1/2 one finds that the only solution which
satisfies p1, < p < 4is p = 3.963 which shows that there is also only one period-
4 window. However, if one solves f3(1/2) = 1/2 one obtains three values which
means that there exists three period-5 windows. The first one occurs around
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