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Introduction

In most textbooks on dynamical systems focus is on continuous systems which lead to the

study of differential equations rather than on discrete systems which lead to the study of

maps or difference equations. This fact has in many respects an obvious historical back

ground. Indeed, if we go back to the time of Newton, physical scientists were interested

in problems within celestial mechanics, especially problems concerning the computation

of planet motions, and the study of such kind of problems eventually lead to the study of

differential equations. Later on, in other fields such as fluid mechanics, relativity, quan

tum mechanics, but also in other scientific branches like ecology, biology and economy it

became clear that important problems could be formulated in an elegant and often sim

ple way in terms of differential equations. However, to solve these (nonlinear) equations

proved to be very difficult. Therefore, throughout the years, a rich and vast literature on

dynamical systems has been established and the majority of the textbooks focuses on the

continuous case.

The story of discrete systems is not that old. One major breakthrough came by

Poincaré in the 1890's when he introduced the Poincaré map as a powerful tool in his

qualitative approach towards the study of differential equations. Nearly fifty years later,

Lewis and Leslie independently developed matrix models (often referred to as Leslie matrix

models) in order to study populations with nonoverlapping age classes. These (mainly

linear) difference equation models were almost forgotten in the years to come, but had

their renaissance in the 70's and 80's when nonlinearities were included in the models.

Examples of frequently quoted papers from that era are Guckenheimer et al. (1977) and

the striped bass fishery model by Levin and Goodyear (1980). Later, through the work by

Costantino, Cushing, Dennis and Desharnais (see Cushing (1998)) it became clear that

small difference equation models indeed were capable not to analyse only, but also to

predict nonstationary and chaotic behaviour in laboratory insect populations.

On the whole, there is a growing understanding in the biological and ecological com

munities that spedes which exhibit birth pulse fertilities (species that reproduce in a short
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time interval during a year) should be modelled by use of difference equations rather than

differential equations, cf. the discussions in Cushing (1998) and Caswell (2001). Therefore,

there is now much more interest of discrete dynamical systems than earlier.

Another important aspect which we also want to stress is the fact that in case of

"low-dimensional problems" (problems with only one or two state variables) the possible

dynamics found in nonlinear discrete models is much richer than in their continuous

counterparts. Indeed, let us briefly illustrate this aspect through the following example:

Let N = N(t) be the size of a population at time t. In 1837 Verhulst suggested

that the change of N could be described by the differential equation (later known as the

Verhulst equation)

where the parameter r (r > 0) is the intrinsic growth rate at low densities and K is the

carrying capacity. Now, define x = N/K. Then (II) may be rewritten as

which (as (II) too) is nothing but a separable equation. Hence, it is straightforward to

show that its solution becomes

(13)

where we also have used the initial condition x(0) = xO . From (13) we conclude that

x(t) -> 1 as t —> oo which means that x* = 1 is a stable fixed point of (12). Moreover,

regarding (II) we have proved that the population N will settle at its carrying capacity

K.

Next, let us turn to the discrete analogue of (12). From (12) it follows that

(14)

which implies

(15)

*r=rN (l -j?) (n )

x = rx{\ - x) (12)

X(t) = :
W l _ XQ-l c-rf.

XQ

— = rxt (l - xt)

Xt+i = xt + rAtxt - rktx] = (1 + rAt)xt f 1 - xt l
\ I+rAt J
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and through the definition y = rAt(l + rAt)~lx we easily obtain

The "sweet and innocent-looking" equation (16) is often referred to as the quadratic or

the logistic equation. Its possible dynamical outcomes were presented by Sir Robert May

in an influential review article called "Simple mathematical models with very complicated

dynamics" in Nature (1976). There, he showed, depending on the value of the parameter

fi, that the asymptotic behaviour of (16) could be a stable fixed point (just as in (12)), but

also periodic solutions of both even and odd periods as well as chaoic behaviour. Thus

the dynamic outcome of (16) is richer and much more complicated than the behaviour of

the continuous counterpart (12).

In many respects, one of the major motivations for writing this text comes from the

findings presented above.

Consequently, in Part I, we will develop the necessary qualitative theory which will

enable us to understand the complex nature of first order nonlinear difference equations

(or maps). Definitions, theorems and proofs shall be given in a general context, but

most examples are taken from biology and ecology. Equation (16) will on many occasions

serve as a running example throughout the text. In Part II the theory will be extended

to n-dimensional maps (or systems of difTerence equations). Here too, the theory will

be illustrated and exemplified by use of population models from biology and ecology,

In particular, Leslie matrix models and their relatives, stage structured models, shall

frequently serve as examples. As a result of a request we have also included an introduction

to discrete dynamic optimization problems which is presented in Part 111. Finally, we

want to repeat and stress that this is a Mathematics text so in order to be well prepared

the potential reader should also have a background from a calculus course and also a

prerequisite of topics from linear algebra, especially some knowledge of real and complex

eigenvalues and associated eigenvectors. Regarding section 2.5 where the Hopf bifurcation

is presented, the reader would also benefit from a somewhat deeper comprehension of

yt+i = mO- - yt) (16)

where fi = 1 + rAt.
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complex numbers, This is all that is necessary really in order to establish the machinery

we need in order to study the fascinating behaviour of nonlinear maps.
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1.1 Preliminaries and definitions

Let / c R and /Cibe two intervals. If / is a map from / to J we will express that as

/ : i" -» J, x -> /(x). Sometimes we will also express the map as a difference equation

#t+i = lf the map / depends on a parameter uwe write /u (:c) and say that /is a

one-parameter family of maps.

For a given xO , successive iterations of map / (or the difference equation xt+i = f{xt))

give: x, = /(*„), x 2 = f(Xl ) = f(f(x0 )) = f2 (xo ) y x s = f(x2 ) = f(f 2 (x0)) = f(xo). . ,

so after n iterations xn+l = fn (xo ). Thus, the orbit of a map is a sequence of points

f(x 0) ,..., fn (xo)} which we for simplicity will write as {fn {xo )}. This is in contrast

to the continuous case (differential equation) where the orbit is a curve.

Regarding differential equations it is a well-known fact that most classes of equations

may not be solved explicitly. The same is certainly true for maps. However, the map

x -> f(x) = ax + b where a and 6 are constants is solvable.

Theorem 1.1.1. The difference equation

(l.i.i)

has the solution

where x 0 is the initial value. -

xt+ i = axt + b

ti b \ b
xt = a \xq - +

V 1- aj l- a
1 (1.1.2a)

(1.1.2b)%t = xo + bt, a=\

Proof. From (1.1.1) we have x x = ax0 +6=* x 2 = axx +6 = a(axo +b) + b =

a 2x0 +(a + 1)6 => xz = ax2 +b = ... = a 3x0 + {a2 +a + 1)6. Thus assume

xk = ak x0 + (a*" 1 + ak~2 + ... + a +l)6. Then by induction: xfc+l = axk +6 =

a [akxo + (a*- 1 + a*"2 + ... +a + I)6] +6 = ak+lx0 + (ak + ak- 1 +.. . + a+l)6.

If a 1: 1+ a + ... + afc =(1 - a*)(l - a)" 1 so the solution becomes

t 1- a* , / 6 \ b
1-a V 1-a/l-a
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If a= 1: 1-f a + ... + a*" 1 =i • 1 = t

Regarding the asymptotic behaviour (long-time behaviour) we have from Theorem

1.1.1: If \a\ < 1 xt = 6/(1 a). (If xq = 6/(1 —a) this is true for any a 1.) If

a> 1 and a; 0 6/(1 —a) the result is exponential growth or decay, and finally, if a< 1

divergent oscillations is the outcome.

(1.1.4)

Hence, whenever \a\ < 1, xt —> 0 asymptotically (as a convergent oscillation if 1 < a <

0). a> 1 or a < 1 gives exponential growth or divergent oscillations respectively.

Exercise 1.1.1. Solve and describe the asymptotic behaviour of the equa

tions:

Exercise 1.1.2. Denote x* = 6/(1 -a) where a 1 and describe the asymp

totic behaviour of equation (1.1.1) in the following cases:

a) 0 <a < 1 and x 0 < x*,

b) -1 < a < 0 and æ 0 < rc*,

c) a > 1 and Xq > x*.

xt = x 0 +bi

If 6 = 0, (1.1.1) becomes

xt+i = axt (1.1.3)

which we will refer to as the linear difference equation. The solution is

xt = alxQ

a) xt+l = 2xt +4, x 0 =l,

b) 3xt+x =x +2,xto = 2.
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Equations of the form xt+l + axt = f(t), for example xm -2xt =t?+ l, may be regarded
as special cases of the more general situation

Such equations are treated in Section 2.1 (cf. Theorem 2.1.6, see also examples following
equation (2.1.6) and Exercise 2.1.5).

When the map x -> /(x) is nonlinear (for example x -» 2x(l - x)) there are no

solution methods so information of the asymptotic behaviour must be obtained by use of
qualitative theory.

Definition 1.1.1. A fixed point rr* for the map x -> f(x) is a point which

satisfies the equation x* = f (x*). n

Fixed points are of great importance to us and the following theorem will be very useful

Theorem 1.1.2.

a) Let I = [a, b] be an interval and let / : / -> / be continuous. Then / has
at least one fixed point in L

b) Suppose in addition that |f(x) | < 1 for all x e I. Then there exists a

unique fixed point for / in /, and moreover

m-f(y)\<\x-y

Proof.

a) Denne g(x) = f(x)-x. Clearly, g(x) too is continuous. Suppose f (a) > a

and f(b) < b. Then g(a) > 0 and g(b) < 0 so the intermediate value

theorem from elementary calculus directly gives the existence of c such

xt+n + + a 2xt+n_ 2 4- -• • + anxt = f(t) , n = 1,2,

that g(c) = 0. Hence, c = f(c).



b) From a) we know that there is at least one fixed point. Suppose that

both x and y{x±y) are fixed points. Then according to the mean value

theorem from elementary calculus there exists c between x and y such

Definition 1.1.2. Consider the map x -> f(x). The point p is called a

periodic point of period nif p = fn (p). The least n> 0 for which p = /"(p)
is referred to as the prime period of p.

Note that a fixed point may be regarded as a periodic point of period one.  

Exercise 1.1.3. Find the fixed points and the period two points of f (x) = x 3.

Definition 1.1.3. If /'(c) =o,c is called a critical point of /. cis nondegen

erate if /"(c) 0, degenerate if f"(c) =O. D

The derivative of the n-th iterate f"(x) is easy to compute by use of the chain rule.

Observe that /•(*) = /(/-i(x)), /-!(«) = /(/-•(«))..., /»(,) = /(/W) . Conse
quently:

(1.1.5) enables us to compute the derivative of points on a periodic orbit in an elegant

way. Indeed, suppose the three cycle {poiPhP2} where Pl = /(p0), p 2 = /(Pl ) = /2 (po)
and /3 (p0 ) =p0 .... Then

(1.1.6)

that f(x) - f(y) = f(c)(x - y). This yields (since x = f (x), y = f(y))
that

/'(C) =W- M = ix-j/
This contradicts \f(x)\ < 1. Thus x = y so the fixed point is unique.
Further from the mean value theorem:

f(*)-f(v)\ = \f'(c)\\x-y\<\x- y

/-tø = nr-l{x)y'(r-\x) ) ... f(xy (115)

/3 '(Po) = /'(P2)/'(pi)/'(p„)

6
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Obviously, if we have n periodic points {p0 , ... ,pn-i} the corresponding formulae is

(Later on we shall use the derivative in order to decide whether a periodic orbit is stable

or not. (1.1.7) implies that all points on the orbit is stable (unstable) simultaneously.)

We will now proceed by introducing some maps (difference equations) that have been

frequently applied in population dynamcis. Examples that show how to compute fixed

points, periodic points, etc, will be taken from these maps. Some computations are

performed in the next section, others are postponed to Section 1.3.

1.2 One-parameter family of maps

Here we shall briefly present some one-parameter family of maps which have often been

applied in population dynamical studies. Since a: is supposed to be the size of a population,
x >O.

The map

is often referred to as the quadratic or the logistic map. The parameter fi is called the

intrinsic growth rate. Clearly x G [o,l], otherwise xt >1 => xt+l <o.lf \i e [o,4] any

iterate of /M will remain in [o,l]. Further we may notice that /M (0) = /M (l) = 0 and

x = c = 1/2 is the only critical point. Hence (1.2.1) is a unimodal map on the unit
interval.

The map

is called the Ricker map. Unlike the quadratic map, x e [O,-)-). The parameter r is

positive.

Exercise 1.2.1. Show that the fixed points of (1.2.2) are 0 and 1 and that

the critical point is l/r.  

/>o)=n/'fe) (1.1.7)z=o

X -* = fjix{l - x) (1.2.1)

x-> fr (x) = a;er(1 (1.2.2)
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(a) (b)

Figure 1: The graphs of the functions: (a) f (x) = 4a; (1 - x) (cf. (1.2.1)), and (b) the
tent function (cf. (1.2.4) where a = 2).

The property that x £ [O,-+) makes (1.2.2) much more preferable to biologists than
(1.2.1).

The map

(1.2.3)

where a > 1, b > 1 is a two-parameter family of maps and is called the Hassel family.

Exercise 1.2.2. Show that x = a}' b - 1 are the fixed points of

(1.2.3) and that c = 1/(6 - 1) is the critical point.  

The map

where a > 0 is called the tent map for obvious reasons. We will pay special attention to

the case a= 2. Note that /tt (x) attains its maximum at x = 1/2 but that /'(1/2) does
not exist.

All functions deflned in (1.2.1)-(1.2.4) are called one-humped functions for obvious

reasons. In Figure la we show the graph of the quadratic functions (1.2.1) (/x = 4) and

in Figure lb the "tent" function (1.2.4) (a = 2). In both figures we have also drawn the

line y = x and we have marked e fixed points of the maps with dots.

// \ U/Ju

(1 + x) b

r ax 0 < x < 1/2
x - /oW = < (1.2.4)

[ o(l -a?) 1/2 <3 < 1
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As we have seen, maps (1.2.1)-(1.2.4) share much of the same properties. Our next

goal is to explore this fact further.

Definition 1.2.1. Let / : U -» U and g : V -> V be two maps. If there

exists a homeomorphism h : U -¥ V such that h o g = g o h, then / and g are

said to be topological equivalent.  

Remark. A function h is a homeomorphism if it is one-to-one, onto and

continuous and that h~ l is also continuous.  

The important property of topological equivalent maps is that their dynamics is equiva

lent. Indeed, suppose that x = f (x). Then from the definition, h(f{x)) = h(x) = g(h(x)),

so if rc is a fixed point of /, h(x) is a fixed point for g. In a similar way, if p is

a periodic point of / of period n (i.e. fn (p) = p) we have from Definition 1.2.1 that

/ = h- l ogoh=> f 2 = (h- l ogoh)o(h- l ogoh) = h~ l og2 oh so clearly fn = h~ l ogn oh.

Consequently, h(fn (p)) = h(p) = gn (h(p)) so h(p) is a periodic point of period n for g.

Proposition 1.2.1. The quadratic map / : [o,l] -> [o,l] x f(x)

4a;(1 -x) is topological equivalent to the tent map

Proof. We must find a function /i such that h o f = To h. Note that this

implies that we also have / o h~ l = h~ l o T where /i-1 is the inverse of h.

Now, define h~ 1 (x) = sin2 (7ra;)/2. Then

( 2x 0 < x < 1/2
T : [o,l] -> [o,l] *->T(a;) =<{

[ 2(1-») 1/2 <a; < 1

, ,_i -/ . 2 nX \ Å . 1 Trø /w . o7TX\
foh = / (^sm 2 —J = 4sin2 - f 1 - sin2 J

= 4sin -ycos = (2sin cos—J = sin2 7rx

o<*<!

\<x<X

h~ l oT = h~l (2x) = sm2 >kx

h~ I oT = /r1 (2(1 - x)) = sin2 (7r - nx) = sin2 ttx
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Thus, foh l= h I oT which implies hof = Tohsof and T are topological

equivalent. D

1.3 Fixed points and periodic points of the quadratic
map

Most of the theory that we shall develop in the next sections will be illustrated by use

of the quadratic map (1.2.1). In many respects (1.2.1) will serve as a running example.

Therefore, in order to prepare the ground we are here going to list some main properties.

The fixed points are obtained from x = fix(l - x). Thus the fixed points are x* = 0

(the trivial fixed point) and x* = (jjl - l)/fj, (the nontrivial fixed point). Note that the

nontrivial fixed point is positive whenever \i > 1. Assuming that (1.2.1) has periodic

points of period two they must be found from p = f*(p) and since

the two nontrivial periodic points must satisfy the cubic equation

Clearly, p = (// - l)//j, is a solution of (1.3.1) so after polynomial division we arrive at

where \i > 3 is a necessary condition for real solutions.

Period three points are obtained from p = f*(p) and must be found by means of

numerical methods. (Newton's method works excellent.) (It is possible to show after

flip) = /Ow(i - p)) = 2p[i -tø + i)p -W - w 3]

M 3p3 - 2/x3p2 + /z2 tø + l)p +1 - /i2 = 0 (1.3.1)

/i2p2 - (fi2 + n)p +/i+ 1 = 0 (1.3.2)

Thus, the periodic points are

__ H + l±y/(M + l)(Jt -Z)
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a somewhat cumbersome calculation that the three periodic points do not exist unless
M > 1 + \/8.)

In general, it is a hopeless task to compute periodic points of period n for a given map

when n becomes large. However, considering (1.2.1) it is in fact possible in the special
case /i = 4 as we now will demonstrate.

Consider the dirTerence equation

(1.3.4)

Further:

and moreover:

Hence:

so

A;7r

2» ± 1

where k = m - L Consequently, the periodic points are given by

(1.3.5)

xt+i = 4xt (l ~ xt)

Let xt = sm 2 cpt . Then from (1.3.4):

sin2 (pt+l = 4 sin2 pt cos2 tpt = sin2 2tpt

sin2 cpt+2 = 4 sin2 <pt+l (1 - sin2 pt+l )

= 4 sin2 2<pt cos2 2cpt = sin2 2Vt
Thus, after n iterations

sin 2 cpt+n = sin 2 2n (pt

Cpt+n ± 2n (ft +fa

Now, if we have a period n orbit (xt+n = xt)

sin2 (pt+n = sin2 (pt

(pt+n = ±(pt + mir d=2 + /yr = ±cpt + m?r

(2* ± =(m -

Pi = siir
2»±l
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Example 1.3.1. Compute all the period 1, period 2 and period 3 points of

f (x) = 4æ(l x). The period 1 points (which of course are the same as the

fixed points) are

The period 2 points are the period 1 points (which do not have prime period

2) plus the prime period 2 points.

(The latter points may of course also be obtained from (1.3.3).)

There are six points of prime period 3. The points

are the periodic points in one 3-cycle, while the points

are the periodic points on another orbit. (The reason why it is one 2-cycle but

two 3-cycles is strongly related to how they are created.)  

Example 1.3.2. Use (1.3.5) to find all the period 4 points of f(x) = 4x(l-x).

How many periodic points are there?  

Since f(x) = 4rc(l x) is topological equivalent to the tent map we may use (1.3.5)

together with Proposition 1.2.1 to find the periodic points of the tent map. Indeed, since

h~l (x) = sin2 (7rx/2) =s h(x) = (2/tt) arcsin y/x (cf. the proof of Proposition 1.2.1) the

periodic points p of T(x) may be found from T(h(p)) = T((2/w) arcsin y/p). Thus the

fixed points of the tent map are

7T 7T
sin2 -- = 0 and sin2 = 0.75

2-1 2+l

sin2 - = 0.34549 and sin2 = 0.904508
5 5

sin2 - = 0.188255, sin2 = 0.611260 and sin2 = 0.950484

sin2 ~ = 0.116977, sin2 = 0.4131759 and sin2 = 0.9698469 9 9

T ( arcsin VO ) = arcsin 0 = 0

Tf - arcsin J- ]=2 ( 1 arcsin J- ) = 0.6666
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Exercise 1.3.1. Find the period 2 points of the tent map (a = 2).

We shall close this section by computing numerically some orbits of the quadratic map

for different values of the parameter ji:

Thus the orbit converges towards the point 0.4444 which is nothing but the fixed point

(A* - l)//x. In this case the fixed point is said to be locally asymptotic stable. (A precise

definition will be given in the next section.)

Thus in this case the orbit does not converge towards the fixed point. Instead we find

that the asymptotic behaviour is a stable periodic orbit of prime period 2. The points in

the two-cycle are given by (1.3.3).

Although care should be taken by drawing a conclusion after a few iterations only, the

last example suggests that there are no stable periodic orbit when p =4. (A formal proof
of this fact will be given later.)

Exercise 1.3.2. Use a calculator or a computer to repeat the calculations

above but use the initial values 0.6, 0.7 and 0.32 instead of 0.8, 0.6 and 0.3,

respectively. Establish the fact that the long-time behaviour of the map when

fj, = 1.8 or n = 3.2 is not sensitive to a slightly change of the initial conditions

but that there is a strong sensitivity in the last case.  

fj, = 1.8 and x 0 = 0.8 gives the orbit

{O.B 0.2880 0.3691 0.4192 0.4382 0.4431 0.4442 0.4444 0.4444 ...}

fi = 3.2 and x 0 = 0.6 gives:

{0.6 0.7680 0.5702 0.7842 0.5415 0.7945 0.5225 0.7984 0.5151

0.7993 0.5134 0.7994 0.5131 0.7995 0.5130 0.7995 0.5130 ...}

\i = 4.0 and x 0 = 0.30 gives

{0.30 0.84 0.5376 0.9943 0.02249 0.0879 0.3208 0.8716 0.4476 0.9890 ...}
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1.4 Stability

Referring to the last example of the previous section we found that the equation xt+i =

— xt ) apparently possessed a stable fixed point and that the equation xt+i =

— xt ) did not. Both these equations are special cases of the quadratic family

(1.2.1) so what the example suggests is that by increasing the parameter /j, in (1.2.1)

there exists a threshold value fio where the fixed point of (1.2.1) loses its stability.

Now, consider the general first order nonlinear equation

(1.4.1)

In order to study the system close to x* we write x x* + h and expand /A in its

Taylor series around x* taking only the linear term. Thus:

(1.4.2)

which gives

(1.4.3)

We call (1.4.3) the linearization of (1.4.1). The solution of (1.4.3) is given by (1.1.4).

Hence, if \{df/dx){x*)\ <l, limt h= 0 whcich means that xt will converge towards

the fixed point x*.

Now, we make the following definitions:

Definition 1.4.1. Let x* be a fixed point of equation (1.4.1). If |A| =

\(df/dx)(x*)\ 1 then x* is called a hyperbolic fixed point. Ais called the

eigenvalue.

Definition 1.4.2. Let x* be a hyperbolic fixed point. If |A| < 1 then x* is

called a locally asymptotic stable hyperbolic fixed point.  

Example 1.4.1. Assume that \i > 1 and find the parameter interval where

the fixed point x* = (ja l)//i of the quadratic map is stable.

xt+i = fu,(xt)

where \i is a parameter. The fixed point x* satisfies x* = f^(x*).

x* + ht+l » /„(«•) + £ (**)/>,

7 4f / *\l
714+1 = fe (x )Ai
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Solution: f„{x) = nx(l-x) impliesthat f(x) = /j(l-2a?) =4> |A| = \f{x*)\ =

|2 - fjt\. Hence from Definition 1.4.2, 1 < \i < 3 ensures that x* is a locally

asymptotic stable fixed point (which is consistent with our finding in the last

example in the previous section). D

It is clear from Definition 1.4.2 that x* is a locally stable fixed point. A formal argument

that there exists an open interval U around x* so that whenever |/'(æ*)| < 1 and x G U

and that fn (x) = x* goes like this:

By the continuity of / (/ is C) there exists an e > 0 such that |/'(a;)| < K < 1 for

x € [x* - £, x* + é\. Successive use of the mean value theorem then implies

Definition 1.4.3. Let x* be a hyperbolic fixed point. We define the local

stable and unstable manifolds ofre*, Wfoc (x*), W£c (x*) as

=ix € U/fn {x) ->x* as n-¥ -oo and fn {x) e U for all n< 0}

where t/ is a neighbourhood of the fixed point x*. I

The definition of a hyperbolic stable fixed point is easily extended to periodic points.

Definition 1.4.4. Let p be a periodic point of (prime) period n so that

\fn'(jp)\ < 1. Then p is called an attracting periodic point.  

Example 1.4.2. Show that the periodic points 0.5130 and 0.7995 of xt+ i =

5.2xt {l - xt) are stable and thereby proving that the difference equation has

a stable 2-periodic attractor.

/"(*) - x'\ = \r(x) - r(x-)\ = \f(r- l (x)) - /(r~V))
< K\p-\x) - r\x*)\ < K2 \r~\x) - /"-V)
< ... < Kn \x-x*\ <\x-x*\<e

so fn (x) -> x* as n -> co.

Motivated by the preceding argument we define:

wL(x*) = {xe U/fn {x) -*x* as n-> oo and fn (x) e U for all n> 0}
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Solution: Since f(x) = 3.2z(l - x) => f{x) = 3.2(1 - 2x) we have from

the chain rule (1.1.7) that /2, (0.5130) - /; (0.7995)/; (0.5130) = -0.0615.

Consequently, according to Deflnition 1.4.4, the periodic points are stable.  

Exercise 1.4.1. Use formulae (1.3.3) and compute the two-periodic points of

the quadratic map in case of \x = 3.8. Is the corresponding two-periodic orbit
stable or unstable? n

Exercise 1.4.2. When /x = 3.839 the quadratic map has two 3-cycles. One of

the cycles consists of the points 0.14989, 0.48917 and 0.9593 while the other

consists of the points 0.16904, 0.53925 and 0.95384. Show that one of the

3-cycles is stable and that the other one is unstable.  

Let us close this section by discussing the concept structural stability. Roughly speak

ing, a map / is said to be structurally stable if a map g which is obtained through a small

perturbation of / has essentially the same dynamics as /, so intuitively this means that

the distance between / and g and the distance between their derivatives should be small.

Deflnition 1.4.5. The Cl distance between a map / and another map g is
given by

bop(|/(*) - g(x)\, \f(x)-g'(x)\)xeR (1.4.4)

By use of Definition 1.4.5 we may now define structural stability in the following way:

Definition 1.4.6. The map / is said to be C 1 structurally stable on an

interval i" if there exists e > 0 such that whenever (1.4.4) < e on /, / is

topological equivalent to g.   

To prove that a given map is structurally stable may be difficult, especially in higher

dimensional systems. However, our main interest is to focus on cases where a map is not

structurally stable. In many respects maps with nonhyperbolic fixed points are standard

examples of such maps as we now will demonstrate.
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Example 1.4.3. When p, = 1 the quadratic map is not structurally stable.

Indeed, consider x -> f(x) = x(l - x) and the perturbation x -> g(x) =

x(l-x)+e. Obviously, x* = ois the fixed point of / and since |A| = \f'(Q)\ = 1,

x* is a nonhyperbolic fixed point. Moreover, the Cl distance between / and g

is |4 Regarding g, the fixed points are easily found to be x = ±y£. Hence, for

e > 0 there are two fixed points and e < 0 gives no fixed points. Consequently,
/ is not structurally stable. n

Example 1.4.4. When // = 3 the quadratic map is not structurally stable.

Let x -» f(x) = 3s(l - x) and x -» ø(x) = 3a?(l - x) + e and again we

notice that their C 1 distance is e. Regarding /, the fixed points are x\ = 0

and x\ = 2/3. Further, \X,\ = |/'(0)| =3, |A 2 | = |/'(2/3)| =l. Thus x\ is a

repelling hyperbolic fixed point while x\ is nonhyperbolic. Considering g, the

fixed points are x x = (1/3)(1 - y/T+3e) and x 2 = (1/3)(1 + VTTm). Note

that e=o=» xi = a:}, x 2 = *•.) Further, |o-x | = tø'(*i)| =|i + 2VTT3i|

and |cr2 | = \g'(x2 )\ =|l - 2>/r+3e|. Whatever the sign of e, xt is clearly a

repelling fixed point (just as x\) since >l. Regarding x 2 it is stable in case
of e < 0 and unstable if e > 0.

and since xx and o:2 are solutions of (1.4.5) we may use polynomial division to
obtain

which has the solutions xl>2 = (2/3)(l ± y/Se). Thus there exists a two
periodic orbit in case of e > 0.

Moreover, cf. (1.1.7) g* = g'(x1 )g'(x2 ) = 9(1 - 2*0(1 - 2x2 ) =1 - 48e which

implies that the two-periodic orbit is stable in case of e > 0, s small. Con

sequently, when s > 0 there is a fundamental structurally difference between

The equation x = g 2 (x) may be expressed as

-27a:4 + 54a:3 + (18s - 36)x 2 +(8 - 18s)x +4e - 3e2 = 0 (1.4.5)

9a: 2 - 12a; -3e+ 4 = 0 (1.46)
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/ and g so f cannot be structurally stable. (Note that the problem is the

nonhyperbolic fixed point, not the hyperbolic one.) D

As suggested by the previous examples a major reason why a map may fail to be

structurally stable is the presence of the nonhyperbolic fixed point. Therefore it is in

many respects natural to introduce the following definition:

Definition 1.4.7. Let x* be a hyperbolic fixed point of a map / : R -» R. If

there exists a neighbourhood U around x* and an e > 0 such that a map g is

C 1 - e close to / on U and / is topological equivalent to g whenever (1.4.4)

<£on this neighbourhood, then / is said to be C 1 locally structurally stable.

There is a major general result on topological equivalent maps known under the nåme

Hartman and Grobman's theorem. The "one-dimensional" formulation of this theorem

(cf. Devaney, 1989) is:

Theorem 1.4.1. Let x* be a hyperbolic fixed point of a map / : R ->> R and

suppose that A= f(x*) such that |A| 0,1. Then there is a neighbourhood U

around x* and a neighbourhood V of 0 € R and a homeomorphism h : U -> R

which conjugates /onU to the linear map l(x) =Xxon V. D

For a proof, cf. Hartman (1964).

Example 1.4.5. Consider x -> f (x) = (5/2)z(l - x). The fixed point is

x* = 3/5 and is clearly hyperbolic since A = f(x*) = -1/2. Therefore,

accordingto Theorem 1.4.1, f (x) on a neighbourhood about 3/5 is topological

equivalent to l(x) = -(l/2)x on a neighbourhood about 0.  
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1.5 Bifurcations

As we have seen, the map x -> = fj,x(l x) has a stable hyperbolic fixed point

x* = (fj,— l)/fJ, provided 1 </x< 3. If /x =3, Å = f (x*) -1, hence x* is no longer

hyperbolic. If fj, = 3.2 we have shown that there exists a stable 2-periodic orbit. Thus

x* experiences a fundamental change of structure when it fails to be hyperbolic which

in our running example occurs when fi = 3. Such a point will from now on be referred

to as a bifurcation point. When Å = —l, as in our example, the bifurcation is called

a flip or a period doubling bifurcation. If A = 1 it is called a saddle-node bifurcation.

Generally, we will refer to a flip bifurcation as supercritical if the eigenvalue Å crosses

the value —1 outwards and that the 2-periodic orbit just beyond the bifurcation point is

stable. Otherwise the bifurcation is classified as subcritical.

Theorem 1.5.1. Let :R-»R, x -> be a one-parameter family

of maps and assume that there is a fixed point (x*,/i0 ) where the eigenvalue

equals —l. Assume

Then there is a smooth curve of fixed points of /M which is passing through

(x*, Hq) and which changes stability at (x*, (j,O ). There is also a curve consisting

of hyperbolic period-2 points passing through (ar*, /zo). If b > 0 the hyperbolic

period-2 points are stable, i.e. the bifurcation is supercritical.  

Proof. Through a coordinate transformation it suffices to consider /M so that

for jj, = po = 0 we have f(x*, 0) = x* and f(x*, 0) = —l.

First we show that one without loss of generality may assume that x* = 0. To

this end, define F{x,n) = f(x, fj) - x. Then F'(x*,ti) = and by use

of the implicit function theorem there exists a solution x(jj,) of F(x,/i) = 0.

and
'-(K»)' + i(&))"-<'->
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Next, define g(y,fj) = f(y + x(p),p) - x(fi). Clearly, ø(O,/x) = 0 for all /x.

Consequently, y = 0 is a fixed point so in the following it suffices to consider

x-> f (x) where x*(p) = 0 and /'(0,0) = -1.

where the parameter 77 has the same weight as £ 2 . The composite (g o #)(£)
may be expressed as

Thus, in order to have a system to study we must assume a, [3 0 which is

equivalent to

and we recognize the derivative formulaes as nothing but what is stated in the
theorem.

Next, consider the truncated map

f2 ->MO = f + ™7£ + #3

Clearly, the fixed points are

Further, h'(() =1 + a?? + 3/%2 so tffo) = 1 +a<o and /i'(?2)3 ) =1 - 2a??. Thus

we have the following configurations (see Figure 2), and we may conclude that

the stable period-2 orbits corresponds to 0 < 0, i.e.

The Taylor expansion around (x* y fj) = (0,0) is

+ KSs2+2^)nS f3+higherorder
=-f + ar] + 6£2 + + d£3 + higher order

9*(o = f + Qtf?f + Pt3 + higher order

 -H-->"('sfc«g-iS)"
»-^*>-(.-js«gs)>.

£l=°> ?2,3 = ±J--j7?

2 \dx2 J + 3 dx3
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<x > o, p < 0 a < 0, p > 0

Example 1.5.1. Show that the fixed point of the quadratic map undergoes

a supercritical flip bifurcation at the threshold (j, = 3.

Solution: From the previous section we know that x* = 2/3 and f(x*) = -1

when \i 3. We must show that the quantities a and 6 in Theorem 1.5.1

are different from zero and larger than zero respectively. By computing the

various derivatives at (æ*,/z0 ) = ( 2/3,3) we obtain:

a < 0, p < 0<x>o, p>o

Figure 2: The possible configurations of £2 -> h(£) =£ + a7?f + /3f3

a=~(~6) + and b = 2+|•o = 18 > 0

Thus the flip bifurcation is supercritical. When rc* fails to be stable, a stable

period-2 orbit is established.  

Exercise 1.5.1. Show that the Ricker map x -> xexp[r(l - ar)], cf. (1.2.2),

undergoes a supercritical flip bifurcation at (x*, r) = (1,2).  
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Figure 3: (a) The bifurcation diagram (saddle node) for the map x -> x + /i - x 2.
(b) The bifurcation diagram (transcritical) for the map x -» jj,x(l x).

As is clear from Definition 1.4.1 a fixed point wili aiso lose its hyperbolicity if the

eigenvalue A equals 1. The general case then is that x* will undergo a saddle-node bifur

cation at the threshold where hyperbolicity fails. We shall now describe the saddle-node

bifurcation.

Consider the map

whose fixed points are x\ 2 = ±y/J2. Hence, when // > 0 there are two fixed points

which equals when jj, = 0. If /j, < 0 there are no fixed points. In case of /i > 0, /x

small, we have = Jp) =1 - <l, hence x{ = is stable. On the other

hand: ffa*2 = -y/JI) = 1 + > 1, consequently x\ is unstable. Thus a saddle-node

bifurcation is characterized by that there is no fixed point when the parameter \i falls

below a certain threshold ij0 . When nis increase to /iO , A= 1, and two branches of fixed

points are born, one stable and one unstable as displayed in the bifurcation diagram, see

Figure 3a.

The other possibilities at A = 1 are the pitchfork and the transcritical bifurcations.

The various configurat ions for the pitchfork are given at the end of the proof of Theorem

x -> U{x) = x + fi-x2 (1.5.1)
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1.5.1 (see Figure 2). A typical configuration in the transcritical case is shown in Figure

3b as a result of considering the quadratic map at (x*,/i0 ) = (0,1).

Exercise 1.5.2. Do the necessary calculations which leads to Figure 3b.  

1.6 The flip bifurcation sequence

We shall now return to the flip bifurcation. First we consider the quadratic map. In the

previous section we used Theorem 1.5.1 to prove that the quadratic map x —> nx{l x)

undergoes a supercritical flip bifurcation at the threshold // = fio = 3. This means that

in case of /x > //0 ? \v> A*o| small, there exists a stable 2-periodic orbit and according to

our findings in Section 1.3 the periodic points are given by (1.3.3), namely

f(pi)f(p»)\ < i

cf. Section 1.4. Thus, in our example,

/x(l-2p1 )//(l-2p2)|<l

(1.6.1)

(1.6.2)

Since A = f 2' = /'(pi)/'(p2) =-1 when /j,x = 1 +\Æ there is a new flip bifurcation taking

place at \i\ which in turn leads to a 4-periodic orbit. We also notice that while the fixed

Pl ' 2

The period 2 orbit will remain stable as long as

i.e.

|l-(/i + l)(/i-3)|<l

from which we conclude that the 2-periodic orbit is stable as long as

3< fi< 1 + VE
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(b) CO

Figure 4: (a) The quadratic map in the cases \x 2.7 and \i = 3.4. (b) and (c) The
second iterate of the quadratic map in the cases fi = 2.7 and /x = 3.4, respectively,

point x* = (/i - l)/n is stable in the open interval / = (2,3), the length of the interval

where the 2-periodic orbit is stable is roughly (1/2)/.

In Figure 4a we show the graphs of the quadratic map in the cases jjl = 2.7 (curve a)

and \x = 3.4 (curve b) respectively, together with the straight line xt+ i = xt . \x = 2.7

gives a stable fixed point x* while /z = 3.4 gives an unstable fixed point. These facts are

emphasized in the figure by drawing the slopes (indicated by dashed lines). The steepness

of the slope at the fixed point of curve a is less than -45°, |A| < 1, while A < -1 at the

unstable fixed point located on curve b.

In general, if /A (x) is a single hump function (just as the quadratic map displayed in

Figure 4a) the second iterate f* (x) will be a two-hump function. In Figures 4b and 4c

we show the relation between rrt+2 and xt . Figure 4b corresponds to /i = 2.7, Figure 4c
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corresponds to \i = 3.4. Regarding 4b the steepness of the slope is still less than 45° so

the fixed point is stable. However, in 4c the slope at the fixed point is steeper than 45°,

the fixed point is unstable and we see two new solutions of period 2.

Let us now explore this mechanism analytically: Suppose that we have an n-periodic

orbit consisting of the points po»Pi • • -Pn-i sucn that

(1.6.3)

Then by the chain rule (cf. (1.1.7))

(1.6.4)

Hence, if |An (po )| < 1 the n-periodic orbit is stable, if |An (po )| > 1 the orbit is unstable.

Next, consider the 2n-periodic orbit

(1.6.5)

This allows us to conclude that if the n-point cycle is stable (i.e. |An | <1) then Å2n < 1

too. On the other hand, when the n-cycle becomes unstable (i.e. |An | >1) then A 2n > 1

too. So what this argument shows is that when a periodic point of prime period n becomes

unstable it bifurcates into two new points which are initially stable points of period 2n and

obviously there are ln such points. This is the situation displayed in Figure 4c. So what

the argument presented above really says is that as the parameter /x of the map x -¥

is increased periodic orbits of period 2,22 ,23 ,... and so on are created through successive

flip bifurcations. This is often referred to as the flip bifurcation sequence. Initially, all

the 2k cycles are stable but they become unstable as \i is further increased.

Pi = i;(Pi)

/r(po)=f[/;fe) = A"(po)t=o

Pi = J?(jh) = £(£(»))

By appealing once more to the chain rule we obtain

/,2"'(po)=fn/>.)) = a>°)
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As already mentioned, if is a single-hump function, then /?(#) is a two- hump

function. In the same way, ff&x) is a four-hump function and in general /£ will have 2p~l

humps. This means that the parameter range where the period 2P cycles are stable shrinks

through further increase of \x. Indeed, the \i values at successive bifurcation points act

more or less as terms in a geometric series. In fact, Feigenbaum (1978) demonstrated the

existence of a universal constant 5 (known as the Feigenbaum number or the Feigenbaum

geometric ratio) such that

where (j>ni fin+i and /in+2 are the parameter values at three consecutive flip bifurcations.

From this we may conclude that there must exist an accumulation value /i 0 where the

series of flip bifurcations converge. (Geometrically, this may happen as a "valley" of some

iterate of /M deepens and eventually touches the 45° line (cf. Figure 4c), then a saddle-node

bifurcation (Å = 1) will occur.)

Regarding our running example x -» fix(l -x) we have proved that the first flip

bifurcation occurs at jjl = 3 and the second at \i = 1 -f \/o\ The point of accumulation for

the flip bifurcations \xa is found to be \xa = 3.56994.

Exercise 1.6.1. Identify numerically the flip bifurcation sequence for the

Ricker map (1.2.2). D

In the next sections we will describe the dynamics beyond the point of accumulation

fjia for the flip bifurcations.

1.7 Period 3 implies chaos. SarkovskiFs theorem

Referring to our running example (1.2.1), x -> jj,x(l -x) we found in the previous section

that the point of accumulation for the flip bifurcation sequence /ja æ 3.56994. We urge

the reader to use a computer or a calculator to identify numerically some of the findings

presented below. fi e [/xa >4].

lim Mn+l g» = = 4.66920 (1.6.6)
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Figure 5: A 3-cycle generated by the quadratic map

When /x > //a , fi —fia small, there are periodic orbits of even period as well as aperiodic

orbits. Regarding the periodic orbits, the periods may be very large, sometimes several

thousands which make them indistinguishable from aperiodic orbits. Through further

increase of \i odd period cycles are detected too. The first odd cycle is established at

ll 3.6786. At first these cycles have long periods but eventually a cycle of period 3

appears. In case of (1.2.1) the period-3 cycle occurs for the first time at ll = 3.8284.

This is displayed in Figure 5. (The point marked with a cross is the initially fixed point

x* = (// - 1)/ll which became unstable at \i = 3. It is also clear from the figure that the

3-cycle is established as the third iterate of (1.2.1) undergoes a saddle-node bifurcation.

In the bifurcation diagram, Figure 6, we display the dynamics of the quadratic map

in the interval 2.9 < \i < 4. The stable fixed point {li < 3) as well as the flip bifurcation

sequence is clearly identified. Also the period-3 "window" is clearly visible. Our goal in

this and in the next sections is to give a thorough description of the dynamics beyond fxa .

Theorem 1.7.1.Let : R -> R, x -4 be continuous. Suppose that

has a periodic point of period 3. Then /M has periodic points of all other

periods.  

Remark: Theorem 1.7.1 was first proved in 1975 by Li and Yorke under

the title "Period three implies chaos". Since there is no unique definition of

the concept chaos many authors today prefer to use the concept "Li and Yorke
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1.0

/

0.5

0.0
2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6

Figure 6: The bifurcation diagram of the quadratic map in the parameter range 2.9 <
M<4.
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chaos" when they refer to Theorem 1.7.1. The essence of Theorem 1.7.1 is

that once a period-3 orbit is established it implies periodic orbits of all other

periods. Note, however, that Theorem 1.7.1 does not address the question of

stability. We shall deal with that in the next section.  

We will now prove Theorem 1.7.1. Our proof is based upon the proof in Devaney

(1989), not so much upon the original proof by Li and Yorke (1975).

Proof. First, note that (1): If i" and J are two compact intervals so that I C J

and J C ffa) then /M has a fixed point in L (2): Suppose that AOi Ai 1 ... 1 An

are closed intervals and that Ai+l c for i = 0,..., n- 1. Then there

is at least one subinterval J 0 of AQ which is mapped onto Ai. There is also

a similar subinterval in Ai which is mapped onto A 2 so consequently there is

aJiC J 0 so that f(J{) CAx and ffai) C A 2. Continuing is this fashion

we find a nested sequence of intervals which map into the various Ai in order.

Therefore there exists a point x £ A 0 such that ffa) £ A{ for each L We say

that ffi(Ai) covers Ai+X .

Now, let a, b and c <E R and suppose ffa) = 6, ffa) = c and ffa) = a.

We further assume that a < b < c. Let I 0 = [a, b] and h = [6,c], cf. Figure

5. Then from our assumptions Ix C /(70) and I 0 V h C f(h). The graph

of /M , cf. Figure 5, shows that there must be a fixed point of /M between b

and c. Similarly, /* must have fixed points between a and b and at least

one of them must have period 2. Therefore we let n > 2. Our goal is to

produce a periodic point of prime period n > 3. Inductively, we define a

nested sequence of intervals AO , Au .. ., An_2 Ch as follows. Let AQ = Ix .

Since i"x C /(/i) there is a subinterval Ai C AQ such that =Aq —lv

Then there is also a subinterval A 2 C Ax such that /M (^42 ) =Ax which implies

//x = ffafi(A2)) = =Ao = /i- Continuing in this way there exists

An-2 C An_3 such that /M (A„_2 ) = /M (An_ 3 ) so according to (2), if x € An_2

then ffa) Jfa), ..., € A 0 and indeed /^2 (An_2 ) =40 =J^
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Now, since I 0 C /M (ii) there exists a subinterval An-\ C -An-2 such that

= IQ , Finally, since A C /M (/0 ) we have A C f™{An-i) so that

f™(An_i) covers Ai-i- Therefore, according to (1) /* has a fixed point pin

An_i.

Finally, we claim that p has prime period n. Indeed, the first n— 2 interations

of pis in /x, the (n - l)st lies in 70 and the n-th is p again. If f"~l {p) Hes in

the interior of I 0 it follows that p has prime period n. If f^~ l {p) lies on the

boundary, then n = 2 or 3 and again we are done.  

Theorem 1.7.1 is a special case of Sarkovskii's theorem which came in 1964. However,

it was written in Russian and published in an Ukrainian mathematical journal so it was

not discovered and recognized in Western Europe and the U.S. prior to the work of Li

and Yorke. We now state Sarkovskii's theorem:

Theorem 1.7.2. We order the positive integers as follows:

Let ffj, : / -> / be a continuous map of the compact interval i" into itself. If

Ju has a periodic point of prime period p, then it also has periodic points for

any prime period q < p.  

Proof. Cf. Devaney (1989) or Katok and Hasselblatt (1995).

Clearly, Theorem 1.7.1 is a special case of Theorem 1.7.2. Also note that the first part

in the Sarkovskii ordering (1 <2< 22 ... < 2m) corresponds to the flip bifurcation sequence

as demonstrated through our treatment of the quadratic map. As the parameter u in

(1.2.1) is increased beyond the point of accumulation for the flip bifurcations. Sarkovskii's

theorem says that we approach a situation where there are an infinite number of periodic
orbits.

!<2<22 <...<3 2m <2*(2n+l)<!...<2fc -3<...2-3<2n-1<...<9<7<5<13
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1.8 The Schwarzian derivative

In the previous section we established through Theorems 1.7.1 and 1.7.2 that a map may

have an infinite number of periodic orbits. Our goal in this section is to prove that in fact

only a few of them are attracting (or stable) periodic orbits.

Definition 1.8.1. Let / : I -> Ibea C 3 function. The Schwarzian derivative

Sf of / is dermed as

(1.8.1)

Regarding = fix(l -x) we easily find that = -6/(1 - 2x) 2 . Note that

Sfn < 0 everywhere except at the critical point c = 1/2. (However, we may define

= -oo.)

Theorem 1.8.1. Lef / be a C 3 function with negative Schwarzian derivative.

Supp ose that / has one critical point c. Then / has at most three attracting

periodic orbits.  

Proof. The proof consists of three steps.

(1) First we prove that if / has negative Schwarzian derivative then all fn

iterates also have negative Schwarzian derivatives.

To this end, assume Sf < 0 and Sg < 0. Our goal is to show that S(fog) < 0

Successive use of the chain rule gives:

The main result in this section is the following theorem which is due to Singer (1978):

(/ o g)'(x) = f'(g(x))g'(x)

(/ ° <?)"(*) = f"{g{x)){g\x)f + f\g(x))g"(x)

(f o g)'"(x) = f'"(g(x))(g'(x)) 3 + 3f"(g(x))g'(x)g"(x) + f'(g(x))g'"(x)
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Then (omitting function arguments) Definition 1.8.1 gives

which after some rearrangements may be written as

(2) Next we show that if Sf < 0 then f(x) cannot have a positive local
minimum.

To this end, assume that d is a critical point of f(x). Then f"(d) = 0, and

since Sf < 0 it follows from Definition 1.8.1 that /'"//' < 0 so f"(d) and f'(d)

have opposite signs. Graphically, it is then obvious that f(x) cannot have a

positive local minimum, and in the same way it is also clear that f (x) cannot

have a negative local maximum. Consequently, between any two consecutive

critical points di and d 2 of /' there must be a critical point c of f such that

/'(c) = 0.

(3) By considering fn'{x) = 0 it follows directly from the chain rule that if

f {x) has a critical point then fn (x) will have a critical point too. Finally,

let p be a point of period k on the attracting orbit and let / = (a, b) be the

largest open interval around p where all points approach p asymptotically.

Then /(/) c / and f k (I) c/. Regarding the end points a and bwe have:

If f (a) = f(b) then of course there exists a critical point. If f (a) = a and

f(b) = b (i.e. that the end points are fixed points) it is easy to see graphically

that there exist points u and v such that a < u <p < v < b with properties

f'(u) = f (v) = 1. Then from (2) and the fact that f(p) < 1 there must be a

critical point in (u,v). In the last case f (a) = b and f(b) = a we arrive at the

same conclusion by considering the second iterate f 2.  

g(fo a) /'V + 3/"g'g" + /</'" 3 //"ff'2 + f'g"Y
f9' 2\ /'<?' )

(f" 3 / f"\ 2\ a'" S / a"\ 2

\F~2\f) ) g'2 + (tf) = 5/(SW)(S'W)2 + Sg(x)

Thus S(f o g)(x) < 0 which again implies Sfn <O.
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Example 1.8.1. Assume x e [O, lj and let us apply Theorem 1.8.1 on the

quadratic map x- = jix{l - z). For a fixed jjl €' (1,3) the fixed point

x* = (/i - l)//i is stable, and since /M (0) = /M (l) = 0 and the fact that 0

is repelling there is one periodic attractor, namely the period-1 attractor x*

which attracts the critical points c = 1/2.

When n e [3, 4] both x* and 0 are unstable fixed points. Thus according

to Theorem 1.8.1 there is at most one attracting periodic orbit in this case.

(Prior to \ia there is exactly one periodic attractor.) When \i 4 the critical

point is mapped on the origin through two iterations so there are no attracting
periodic orbits in the case. n

Example 1.8.2. Let us close this section by giving an example which shows

that Theorem 1.8.1 fails if the Schwarzian derivative is not negative. The

following example is due to Singer (1978). Consider the map

(1.8.2)

The map has one fixed point x* = 0.7263986, and by considering g2 (x) = x

there is also one 2-periodic orbit which consists of the points px = 0.3217591
and p 2 = 0.9309168.

Moreover: X x = gf(x*) = -0.8854 and a = g'{pi)g'{p2) = -0.06236. Thus

both the fixed point and the 2-periodic orbit are attracting.

The critical point of g is c = 0.3239799 and is attracted to the period-2 orbit

so it does not belong to W{Jx*) t cf. Definition 1.4.3. The reason that x* is

not attracting c is that Sg(x*) = 8.56 > 0 thus the assumption Sg (x) < 0 in

Theorem 1.8.1 is violated.  

Exercise 1.8.2. Show that Sf(x) < 0 when / is given by (1.2.2) (the Ricker
case). n

x -> g{x) = -13.30a:4 + 28.75x3 - 23.31a;2 + 7.86a:

Exercise 1.8.1. Compute the Schwarzian derivative when f (x) = xn .
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1.9 Symbolic dynamics I

Up to this point we have mainly been concerned with fixed points and periodic orbits.

The main goal of this section is to introduce a useful tool called symbolic dynamics which

will help us to describe and understand dynamics of other types than we have discussed

previously. To be more concrete, we shall in this section analyse the quadratic map

x-» nx(l -x) where /i >2 + y/E on the interval I = [o,l], and as it will become clear,

although almost all points in I eventually will escape 7, there exists an invariant set A of

points which will remain in I. We shall use symbolic dynamics to describe the behaviour

of these points.

First we need some definitions. Consider x -> f(x). Suppose that f(x) can take

its values on two disconnected intervals Ti and I 2 only. Define an infinite forward-going

sequence of'o's and l's {ak }kLo so that

(1.9.1a)

(1.9.1b)

Thus what we really do here is to represent an orbit of a map by an infinite sequence of
o's and l's.

Definition 1.9.1.

(1.9.2)

We shall refer to E 2 as the sequence space.

Definition 1.9.3. The itinerary of x is a sequence <j>(x) = ao ai. .. where ak

is given by (1.9.1).  

We now define one of the cornerstones of the theory of symbolic dynamics.

ak = 0 if fk (xo)eh

ak = 1 if fk (xo ) eI2

S 2 ={a = (ao aia2 .. .)/ak = 0 or 1}
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Defmition 1.9.4. The shift map er : E 2 —> E 2 is given by

(1.9.3)

Hence the shift map deletes the first entry in a sequence and moves all the other entries

one place to the left.

Example 1.9.1. a = (1i11...) repregents a fixed point under a since a(a) =

an (a) = (111...). Suppose a = (001, 001,001,...). Then a(a) = (010,010, 010,...),

a2 (a) = (100,100,100,...) and a3 (a) = (001,001,001,...) =a. Thus a =

(001,001,001,...) represents a periodic point of period 3 under the shift map.

The previous example may obviously be generalized. Indeed, if a =

(a,Qai. .. an_i, ao ai ... an_i,...) there are 2n periodic points of period n under the shift

map since each entry in the sequence may have two entries 0 or 1.

Defmition 1.9.5. Let U be a subset of a set S. U is dense in S if the closure

U = S. n

Defmition 1.9.6. If a set S is closed, contains no intervals and no isolated

points it is called a Cantor set.  

Proof. Leta = (aoaia2 ...) bein S 2 and suppose that b = (aQ ... an_i,a0 ... an-i ...)

represent the 2n periodic points. Our goal is to prove that b converges to a. By

use of the usual distance function in a sequence space, d[ay b] = S(|oj - bi \/2i )

we easily find that d[a,b] < l/2n . Hence b-> a. D

a(aoaia2 as .. .) = aia2 a3

Proposition 1.9.1. The number of periodic points PQt {a) =2n is dense in
n
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x

We now have the necessary machinery we need in order to analyse the quadratic map in

case of \x > 2 + y/5.

Let x -> /(z) = [ix(l - x) where /i > 2 + V5. From the equation fj,x(l -x) = 1

we find x = 1/2 + - 4/7- Hence in the intervals /i = [O,l/2 - - 4/xJ and

= [l/2+ 1/2VI -4/x], /< 1, cf. Figure 7. Moreover, |/'(x)| - |/*-2/xap| and whenever

li > 2 + y/E we find that |/'o)| > A > 1.

Denpte / = [o,l]. Then / n f~l (I) = h U I2 so ifx€/- (/ n /_1 (/)) we have /> 1

(cf. Figure 7) which implies /2 < 0 and consequently fn -+ -00. All the other points will

remain in / after one iteration. The second observation is that /(A) = f(I2 ) =I so there

must be a pair of open intervals, one in h and one in 72 , which is mapped into /- (h U/2 )

such that all points in these two intervals will leave I after two iterations. Continuing in

this way by removing pairs of open intervals (i.e. first the interval I - {lx U I2 ), then two

intervals, one in h (Jx ) and one in I 2 (J 2), then 22 open intervals, two from h- Ju tv/o

from 12-I2 -J2 ... and finally 2n intervals) from closed intervals we are left with a closed set

A which is I minus the union of all the 2n+l - 1 open sets. Hence A consists of the points

that remain in I after n iterations, AC In f~ l {I) and A consists of 2n+l closed intervals.

Now, associate to each z € A a symbol sequence {o<}g1 of o's and l's such that ak = 0

if fk {x) e h and ak =1 if fk (x) e 12.I2 .

Figure 7: The quadratic map in the case jjl > 2 + y/E. Note the subintervals Ix and I 2
where = fj,x(l - x) < 1.
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Next, define

(1.9.4)

as one of the 2n+l closed subintervals in A. Our first goal is to show that IaQ ...an is

non-empty when n -> 00. Indeed,

(1.9.5)

laiIai is nonempty. Then by induction Iai ...an is non-empty, and moreover, since

consists of two closed subintervals it follows that laoIao n f~l {lai ...an ) consists of one closed
interval. A final observation is that

Consequently, 7a0 ...an is non-empty. Clearly the length of all sets /00 ... an approaches zero

as n -» oo which allows us to conclude that the itinerary </>(x) = aQ ai ... is unique.

We now proceed by showing that A is a Cantor set. Assume that A contains an

interval [a, b] where a+ b. ForxG [a, b] we have \f{x)\ >A > 1 and by the chain rule

\fn'x)\ > Xn . Let nbe so large that An |6 -a\> 1. Then from the mean value theorem

\fn(b) - fn (a)\ > Xn \b -a\ > 1 which means that fn (b) or fn (a) (or both) are located

outside I. This is of course a contradiction so A contains no intervals.

To see that A contains no isolated points it suffices to note that any end point of the

2n+l - 1 open intervals eventually goes to 0 and since OgA these end points are in A too.

Now, if y e A is isolated all points in a neighbourhood of y eventually will leave / which

means that they must be elements of one of the 2n+l - 1 open sets which are removed

from i". Therefore, the only possibility such that y e A is that there is a sequence of end

points converging towards y so y cannot be isolated.

From the discussion above we conclude that the quadratic map where \i > 2 + -\/5

possesses an invariant set A, a Cantor set, of points that never leave / under iteration.

ho ...an ={xe I/x € JOO , f (X) elai ... r {X) € laJIaJ

h 0... = i«0 n r n... n rn {hn )

= 4„n/- 1 (/0l ...aJ

'«„...«„ =A. n... n /-t»-1) (/„_,) n /-"(/„„)

J ao ...an-i '! J \-Lan) <- 0 ...an-i
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A is a repelling set. Our final goal is to show that the shift map a defined on E 2 is

topological equivalent to / defined on A.

Further

so

Thus, / and er are topological equivalent maps.

1.10 Symbolic dynamics II

In Section 1.8 we proved that if a map f : I -+ I with negative Schwarzian derivative

possessed an attracting periodic orbit then there was a trajectory from the critical point

c to the periodic orbit. Our goal here is to extend the theory of symbolic dynamics by

assigning a symbol sequence to c or more precisely to f(c). We will assume that / is

unimodal. The theory will mainly be applied on periodic orbits.

Note, however, that the purpose of this section is somewhat difTerent than the others

so readers who are not too interested in symbolic dynamics may skip this section and

proceed directly to the next where chaos is treated.

Let / : A -> A, f(x) = - x), a : E 2 -» £2} ø-(00aia2 ...) = a1G2 ... and

ø:A -> E 2, (j){x) = aoaia2 .... We want to prove that øo/ = a o <j>.
Observe that

4>{x) = aoaia2 ... = f] laoaIaoai a2 ...an .
n>o

W.an = iao n rl {iai ) n... n rn (/aJ

/(W-.) = f(Im ) n (/.,) n... n /-"(/,.) =/„ n... n /-"+1 (/aJ = /„,..„„

This implies that
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Defimtion 1.10.1. Let x el. Define the itinerary oi x as <f>(x) = aoaia2
where

What is new here really is that we associate a symbol C to the critical point c. Also

note that we may define two intervals I 0 = [O, c) and h = (c, 1] such that / is increasing

on I 0 and decreasing on Ix .

Definition 1.10.2. The kneading sequence is defined as the itinerary of/(c),
i.e.

1) Suppose that x-> f (x) = 2æ(l -x). Then c = 1/2 and /(c) = 1/2, /2 (c) =

1/2... = 1/2 so the kneading sequence becomes K(f) = (C CC C ...)

which also may be written as (CCC.. .) where the bar refers to repetition.

An unimodal map may of course have several itineraries.

(00...0CCC...) (CCC.) (10...0CCC...) (000...) (1000...)

(The last two itineraries correspond to the orbits of x 0 = 0 and sei = 1

respectively. Note that the critical point is the same as the stable fixed point

x* in this example.

ro if p(x)< c
*j ={ 1 fj (x) > c (1.10.1)

[ C if fi(x) = c

K(f) = <t>{f{c)) (1.10.2)

Example 1.10.1.

2) Suppose that x -> f(x) = 4x(l-x). c = 1/2, f(c) = 1, /2 (c)... = fi(c) = 0
so#(/) = (10 0 0...). n

Example 1.10.2. By use of a calculator we easily find that the possible

itineraries of x —>• 2x (1 -x) are
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In case of x —v 3a: (1 -x) we obtain the sequences

(00...011i...) (C11T...)(111...)

(10...011i...) (000...) (1000...)

(OCHT...) (1C11T...)

where the last two itineraries correspond to the orbits of x 0 = (1/6) (3 - y/l)

and x 0 = (1/6) (3 4- y/l) respectively. D

The reader should also have in mind that periodic orbits with difTerent periods may share

the same itinerary.

Indeed, consider x -> 3.1ar(l - x). Then x* = 0.6774 > c = 1/2 so the itinerary of the

fixed point becomes <f>(x*) =(1 1i...). However, there is also a two-periodic orbit whose

periodic points are (cf. formulae (1.3.3)) pi = 0.7645, p 2 = 0.5581. Again we observe

that Pi >c so the itinerary of any of the two-periodic points is also (1 1T...). (When /i

becomes larger than 3.1 one of the periodic points eventually will become smaller than c

which results in the itinerary (1 010 1 0 ...) or (0 10 1 0 1...) .)

Our next goal is to establish an ordering principle of the possible itineraries of a given

map. Let a = (ao aia2 ...) and b = (&OM2 ...). If af =b{ for o<i < n and an bn we say

that the sequences have discrepancy n. Let Sn (a) be the number of l's among aQ ax ...an
and assume 0 < C < 1.

Definition 1.10.3. Suppose that a and b have discrepancy n. We say that
a -< b if

(1.10.3a)

(1.10.3b)

D

Example 1.10.3. Due to a) we have the following order:

(110. ..h (iic...)-< (111...)

sn_i(a)5n_i(a) is even and an <bn

sn_i(a)5n_i(a) is odd and an >bn
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Due to b) we have

(110...) (101...) -< (10 0...)

Also note that any two sequences with discrepancy 0 are ordered such that the sequence

which has 0 as the first entry is of lower order than the one with C or 1 as the first entry.
Thus:

Exercise 1.10.1. Let a = (0 11 0 11...) be a repeating sequence. Compute

a(a) and a2 (a) and verify the ordering a < a(a) -< a2 (a). a

The following theorem (due to Milner and Thurston) relates the ordering of two symbol

sequences to the values of two points in an interval.

Proof. Suppose that <j>(x) = (aoai a2 ...) and <f>(y) = (b0hb2 ...) and let nbe

the discrepancy of <j>(x) and <j){y). First, suppose n = 0. Then x < y since

0 < C < 1. Next, suppose that a) is true with discrepancy n - 1. Our goal

is to show that a) also is true with discrepancy n. By use of the shift we

have 0(/(ar)) = (aia2a, ...) and </>(f(y)) = tøtø, ...). Suppose a 0 =O. Then

*(/(*)) -< <l>{f{y)) since the number of l's before the discrepancy is as before.

Therefore f(x) < f(y) but since / is increasing on [O, c) it follows that x < y.

Next, assume a 0 = 1. Then <j>(f(x)) y <j>(f{y)) since the number of l's among

the o,'s (i > 1) has been reduced by one. Therefore f (x) > f(y) which implies

that x < y since / decreases on (c, I]. If a 0 = Cwe have x =y = c.

(01...)-< (C1...)-! (11...)

Theorem 1.10.1. Let x,y e I

a) If <f>(x) -< (/>(y) then x < y

b) If x< y then cf)(x) <f>(y)
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Regarding b) suppose x < y and assume that <j>{x) and <j>{y) has discrepancy

n. First, note that if x < c < y we have directly (p(x) < (f)(y). Otherwise (i.e.

x <y <c or c < x <y) note that f 1 is monotone in [x, y] for i < n. Since the

number of l's (cf. the chain rule) directly says if fn is increasing or decreasing

it is easily verifled that (j>{x) < (f)(y). D

Theorem 1.10.2. Let x = tp(a) = ao aia2 ... and suppose that x -> f(x)

unimodal. Then (j>(an(p(a)) K(f(c)) for n > 1. D

Proof. Since the maximum of/ is f(c) we have f(x) < f(c) and fn (x) < f(c).

Moreover, ax = cr(v{a)) = ata2 ... = p(f{x)) so inductively anx = (p{fn (x)).

Therefore, according to Theorem 1.10.1

The essence of Theorem 1.10.2 is that any sequence a such that <j>(x) = a has lower

order than the kneading sequence.

Now, consider periodic orbits. In order to simplify notation, repeating sequences

(corresponding to periodic points) of the form a = {aQ ax ...an a 0a x ...an aQ ax ...an ...) =

(ao ai. .. an aia[ ... an) will from now on be written as a = (aoai. .. an ).

Suppose that there exists a parameter value \i such that there are two periodic orbits

7i and 72 of the same prime period. We say that the orbit 71 is larger than the orbit 72 if

71 contains a point pm which is larger than all the points of 72. Note that, according to

Theorem 1.10.1, the itinerary of pm satisfies (f)(pi) <f>{pm) where p{ are any of the other

periodic points contained in 7^

Our main interest is the ordering of itineraries of periodic points p which satisfy:

(A) The periodic point p shall be the largest point contained in the orbit.

W<p(fi) i Hf(c)) = K{f(c))

We also define a sequence å = (a 0... Gn-iGn) where ån =lifa=n 0 or ån =0 if

on =l.lf 6 = (60 61 ...6 m), a- 6= (ooai ...an 606i. • .6rø)-
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(B) Every other periodic orbit of the same prime period must have a periodic point

which is larger than p.

Before we continue the discussion of (A) and (B) let us state a useful lemma.

Lemma 1.10.1. Given two symbol sequences a = (aoaia2 ...) and b

{bo bib2 -..).

Proof. Assume / even. Then the number of l's before the discrepancy is odd

and since bi > at Definition 1.10.3 gives that b -< a.

li l is odd the number of l's before the discrepancy is even and since at = 0 <

bi = 1, a -< b according to the definition.  

A consequence of this theorem is that sequences than begin with 1 0 are of larger order

than sequences which begin with 11. In the same way, a sequence which first entries are

1 0 0 is larger than one which begins with 101.

Now, consider the quadratic map x -> fj,x(l - x). Whenever \i > 2 the fixed point

x * =iM - l)/n >c = 1/2 so the (repeating) itinerary becomes <p(x*) = (1). When x*

bifurcates at the threshold \x =3, the largest point pl contained in the 2-cycle is always

larger than c, hence the itinerary of px starts with 1 in the first entry. Therefore, when

IX > 3, there may be two possible itineraries (10) and (11) and clearly (11) -< (10).

We are interested in (1 0). Considering the 4-cycle which is created through another

flip bifurcation the itinerary of the largest point contained in the cycle which we seek is

(1011) which is of larger order than the other alternatives.

Regarding odd periodic orbits, remember that they are established through saddle

node bifurcations, thus two periodic orbits, one stable and one unstable, are established

at the bifurcation. Considering the stable 3-cycle at /x = 3.839 (see Exercise 1.4.2 or

Suppose that a 0 = b 0 = 1 and ax =bx = 0. a 5 = b - = 1 for 2 < j < /, at =O,
6i = l-

If l is even then b -< a. li lis odd then a -< b.
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the bifurcation diagram, Figure 6) two of the points in the cycle 0.14989 and 0.48917 are

smaller than c while the third one 0.95943 is larger. Hence the itinerary of largest order of

0.95493 is (10 0). Referring to Exercise 1.4.2 the largest point contained in the unstable

3-cycle is 0.95384 and the other points are 0.16904 and 0.53392. Hence the itinerary of

0.95384 of largest order is (10 1) and according to (A) and (B) this is the itinerary we are

lookingfor, not the itinerary (10 0).

Therefore, the itineraries we seek are the ones that satisfy (A) and (B) and correspond

to periodic points which are established through flip or saddle-node bifurcations as the

parameter in the actual family is increased. (A final observation is that sequences which

contain the symbol C are out of interest since they violate (B).)

Now, cf. our previous discussion, define the repeating sequences:

and

Clearly, the sequence Sj has prime period 2j so it represents a periodic point with the

same prime period.

Another important property is that Sj has an odd number of l's. To see this, note that

So = (1) has an odd number of l's. Next, assume that Sk = (SO .. .Sk-i 1) has an odd

number of l's. Then Sk = (50 ... Sk-i0) has an even number of l's so the concatenation

Sk+i = Sk - Sk clearly has an odd number of l's. (If Sk has a 0 at entry Sk we arrive at

the same conclusion.) We have also that

(1.10.5)

Lemma 1.10.2. The sequences defined through (1.10.4) have the ordering

So = (l) 5! = (10) S 2 = (1011) S 3 = (10111010)

Sj+l = Sr Sj (1.10.4)

Sj+i Sj • Sj Sj

Indeed, suppose Sk = (50. .. s*). Then Sk+l =S•k Sk = (50 .. .5, 50 ... s*) so Sk+l =

(SQ .. . Sk 50 ... Sk) =Sk • Sf. = Sk .

So -< Si •< S 2 -< Ss  <
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Proof. Assume that Sj = (50 . .. Sj-iSj). If Sj = 1 there must be an even

number of l's among (50 . .. Sj_i) so according to Definition 1.10.3 a Sj -< %

If 5,- = 0 there is an odd number of l's among (50 ... 5'J _ 1 ) so according to

Definition 1.10.3 b Sj -< Sj also here. Therefore, by use of (1.10.5), we have

Sj Sj-i • Sj-i = Sj-i. n

Let us now turn to periodic orbits of odd period. The following lemma is due
Guckenheimer.

Lemma 1.10.3. The largest point pm in the smallest periodic orbit of odd

period n has itinerary (f)(pm) = a such that a{ =oif i = l(modn) and a{ = 1
otherwise. n

Example 1.10.4. If n= 3, 0(pro ) =(1 01 101 1 0 1...) =(10 1) which is in

accordance with our previous discussion of 3-cycles.  

Proof. Suppose that we have a sequence a and that there exists a number

k such that ak = 1 and ak+l = ak+2 =O. Then by applying the shift map

k times we arrive at ak (a) = (100...) which according to Lemma 1.10.1 has

larger order than any sequence with isolated o's. Hence the sequence ak (a)

violates (A) and (B).

Therefore, the argument above shows that the sequence we are looking for in

this lemma must satisfy that if ak = 0 then both a and ak+l must equal

1. Consequently there are blocks in a of even length where the first and last

entry of the blocks consist of 0 and the intermediate elements of l's. As a

consequence of Lemma 1.10.1 the longer these blocks are the smaller is the

order of the sequence. Note that the blocks in this lemma have maximum

length n + 1 for a periodic sequence of period n.  

Example 1.10.5. (1 (mg 11 01) is a 3-cycle where the length of the block
is 4.
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(1 01111 Q 1 11) is a 5-cycle where the length of the block is 6. Clearly, the

order of the 5-cycle is smaller than the order of the 3-cycle.  

Lemma 1.10.4. Let n > 1 be an odd number. Then there is a periodic orbit

of period n + 2 which is smaller than all periodic orbits of period rc.  

Proof. The lemma is an immediate consequence of how the itinerary in

Lemma 1.10.3 is defined combined with the results of Lemma 1.10.1.  

We now turn to orbits of even period where the period is 2n •ra where m > 1 is an

odd number. The fundamental observation regarding the associated symbol sequences is

that they may be written as SHISj ...Sj or SjSjSj ...Sj where the number of Sj blocks

following Sj+i (or Sj) ism-2. (See Guckenheimer (1977) for further details.)

Example 1.10.6. If n = 2 (cf. 1.10.4) and ra = 3 we have the sequence

(1 0 111 010 101 1) and if n= 1 and m=s we arrive at (1011101010).  

Lemma 1.10.5. Let P be a periodic orbit of odd period k. Then there exists

a periodic orbit of even period l = 2n -ra where ra > 1 is odd which is smaller

than any odd period orbit.  

Proof. From Lemma 1.10.4 we have that the longer the odd period is the

smaller is the ordering of the associated symbol sequence. From Lemma 1.10.3

it follows that such a symbol sequence may be written as (10111 ...1110111...).

Therefore by comparing an even period sequence with the odd one above it is

clear that the even period sequence has 0 as entry at the discrepancy. If the

even period is 2 it is two l's before the discrepancy. If the even period is larger

there are three consecutive l's just prior to the 0 and since the first entry of

the sequence is 1 there is an even number of l's before the discrepancy also

here and the result of the lemma follows. n

We need one more lemma which deals with periodic orbits of even period.
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Lemma 1.10.6. Let u= 2n  l,v = 2n  k and w= 2m • r where l, k and r are
odd numbers.

a) Provided 1 < k < l there are repeating symbol sequences of period u

which has smaller order than any repeating symbol sequence of period v.

b) Provided m > n there are repeating symbol sequences of period w which

has smaller order than any repeating symbol sequence of period v.  

Sketch of proof. Regarding a) consider Sj such that j is odd. Then by

carefully examining the various sequences we find that the discrepancy occurs

at entry 23 (k +2) in the repeating sequence of the 2n • k periodic point and it

happens as the last entry of the Sj block (which of course is 1 since j is odd)

differs from the same entry in the 2n • / sequence. Now, since SjSj has an odd

number of l's the number of l's before the discrepancy is even, so according

to Definition 1.10.3 a we have that sequences of period 2n • l are smaller than

any sequence of period 2n •k. (The case that j is even is left to the reader.)

Regarding b), scrutinizing sequences aof period 2m •kit is clear that all of

them have 1 011 as the first entries and that a* =lif i is even and a{ = 0

if i = l(mod4). Moreover, assuming k > r whenever m > n we find that

at discrepancy the sequence of period w has 1 as its element and in fact it is

the last lin 1 0 11. Now, since SjåjSj ...Sj has an even number of l's the

observation above implies that the sequence of period 2n • k must have an even

number of l's before the discrepancy so the result follows.  

Now at last, combining the results from Lemmas 1.10.1-1.10.6 we have established the

following ordering for the itineraries of periodic points that satisfy (A) and (B):

which is nothing but the ordering we find in Sarkovskii's theorem.

2-<2~<2 23 -< ... -< 2n -< 2n (2l +1) -« 2»(2Z -1) -< ... ~< 2" -5-<2"  3 -<

2-1 (2/ +1) -< ... 2»-1 .3 -< ...  < (2/ +1) -< (2/ - 1)...  « 5 3
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We do not claim that we actually have proved the theorem in all its details, our main

purpose here have been to show that symbolic dynamics is a powerful tool when dealing

with periodic orbits. For further reading, also of other aspects of symbolic dynamics

we refer to Guckenheimer and Holmes (1990), Devaney (1989) and Collet and Eckmann

(1980).

1.11 Chaos

As we have seen, the dynamics of x -> fix{l - x) differs substantially depending on the

value of the parameter //. For 2 < /j, < 3 there is a stable nontrivial fixed point, and in

case of larger values of fj, we have detected periodic orbits both of even and odd period.

If fi > 2 + y/5 the dynamics is aperiodic and irregular and occurs on a Cantor set A and

points x € (I \A) approaches -co. (/is the unit interval.)

In this section we shall deal with the concept chaos. Chaos may and has been defined

in several ways. We have already used the concept when we stated "Period three implies
chaos".

Referring to the examples and exercises at the end of Section 1.3 we found that when

ever the long-time behaviour of a system was a stable fixed point or a stable periodic

orbit there was no sensitive dependence on the initial condition xO . However, when

x~* f(x) =MI - we have proved that there is no stable periodic orbit and more

over, we found a strong sensitivity on the initial condition. Assuming x<E [o,l] and that

x 0 = 0.30 is one initial condition and xOO = 0.32 is another we have \xo - xoo \ = 0.02

but most terms \fk (x0 ) - fk {xoo)\ > 0.02 and for some k(k= 9) \fk (x0 ) - fk (xoo )\ «1"

which indeed shows a strong sensitivity.

Motivated by the example above, if an orbit of a map /:/->/ shall be denoted as

chaotic it is natural to include that / has sensitive dependence on the initial condition

in the definition. It is also natural to claim that there is no convergence to any periodic

orbit which is equivalent to, say, that periodic orbits must be dense in /. Our goal is
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to establish a precise definition of the concept chaos but before we do that let us first

illustrate what we have discussed above by two examples.

Example 1.11.1. This is a "standard" example which may be found in many

textbooks. Consider the map h : S' -+ £', 9 -> h(9) = 29. (h is a map from

the circle to the circle.) Clearly, h is sensitive to initial conditions since the

are length between nearby points is doubled under h. Regarding the dense

property, observe that hn (6) = 2n6 so any periodic points must be obtained

from the relation 2n 9 =9 + 2kn or 9 = 2kn/(2n -1) where the integer k

satisfies 0< k < 2n . Hence in any neighbourhood of a point in S there is a

periodic point so the periodic points are dense so h does not converge to any

stable periodic orbit. Consequently, h is chaotic on S'.  

Example 1.11.2. Consider x -> f(x) = /ix(l -x) where /i > 2 + y/E.

We claim that / is chaotic on the Cantor set A. In order to show sensitive

dependence on the initial condition let S be less than the distance between the

intervals I 0 and Ix (cf. Figure 7). Next, assume x,y € A where Then

the itineraries <f>(x) £ <j>(y) so after, say, k iterations fk (x) is in I 0 (Ix ) and

fk (y) is in Ix (70 ). Thus \fk (x) - fk (y)\ > S which establishes the sensitive

dependence.

Since / : A -> A is topological equivalent to the shift map a : S 2 -4- E 2 it

suffices to show that the periodic points of er are dense in E 2. Let a = (ai ... an )

be a repeating sequence of a periodic point and let b = (a1 a2 a3 ...) be the

sequence.of an arbitrary point and note that an (a) =a. By use of the distance

d between two symbol sequences one easily obtains d[a,b] < l/2n so in any

neighbourhood of an arbitrary sequence (point) there is a periodic sequence

(periodic point). Hence periodic points of / are dense (and unstable).  

In our work towards a definition of chaos we will now focus on the sensitive dependence
on the initial condition.
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If a map / : R -» R has a fixed point we know from Section 1.4 that if the eigenvalue

A of the linearized system satisfies -1 < A < 1 the fixed point is stable and not sensitive

to changes of the initial condition. If |A| > 1 one may measure the degree of sensitivity by

the size of |A|. We may use the same argument if we deal with periodic orbits of period k

except that we on this occasion consider the eigenvalue of every periodic point contained

on the orbit. If a system is chaotic it is natural to consider the case k -> co since we may

think of a chaotic orbit as one håving an infinite period. Therefore, define

(1.11.1)

where we have used the &'th root in order to avoid problems in order to obtain a well

defined limit. If x 0 is a fixed point A = \(df/dx)(x = xo )\. For a general orbit starting

at x 0 we may think of 77 as an average measure of sensitivity (or insensitivity) over the

whole orbit. Let L = ln 77, that is

The number L is called the Lyapunov exponent and if L > 0 (which is equivalent to

|A| > 1) we have sensitive dependence on the initial condition. By use of L we may now
define chaos.

Definition 1.11.1. The orbit of a map x -> f(x) is called chaotic if

1) It possesses a positive Lyapunov exponent, and

2) it does not converge to a periodic orbit (that is, there does not exist a

periodic orbit yt = yt+T such that limt-*» \xt -yt \=o.)  

Note that 2) is equivalent to, say, that periodic orbits are dense.

In most cases the Lyapunov exponent must be computed numerically and in cases

where L is slightly larger than zero such computations have to be performed by some

care due to accumulation efTects of round-off errors. Note, however, that there exists a

theorem saying that L is stable under small perturbations of an orbit.

d l/k
= ,lim r/W^ofc->oo dx

d 1/k 1 k ~ l

n=o
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Example 1.11.3. Compute L for the map h : 5" -» S", h{6) = 26. In this

case h' = 2 for all points on the orbit so

and since the periodic orbits are dense /i is chaotic.

Example 1.11.4. Compute L for the two periodic orbit of x -> f (x) =

Hx(l - x) where 3 < fj, < 1 -f y/6. Referring to formulae (1.3.3) the periodic
points are

Thus,

it follows that L = (1/2) ln |1 - (/i+l)(/*-3)| and as expected L < 0 whenever

3 < /i < 1 + y/E. (Note that if /z > 1+ \Æ then L > 0 but the map is of course

not chaotic since there in this case (provided \p - (1+ y/E)\ small) exists a

stable 4-periodic orbit with negative L.)  

Solution: From Proposition 1.2.1 we know that f (x) is topological equivalent

to the tent map T(x). The "nice" property of T(x) which we shall use is

L = lim ->Jln|/i'(a; = a:n)| = lim --A;ln2 =ln2 > 0
n=o

M+l±y/Qu + l)(M-3)
Pl '2

= {ln = -+- ln = -i- in = x )| -+-... h- in |yr = 2 )|>

= ii^H5 ln|/' (l = Pl)l + f ln|/' (a;=P2)l }
= lln\f'(x = pl)f(x = p2 )\

Since

/'(* = Pi) f{x = Pa) =MI ~ 2pi)/i(l - 2p2) =1 - (// + i)tø -3)

Example 1.11.5. Show that the Lyapunov exponents of almost all orbits of

the map / : [o,l] -> [o,l], x- f (x) = 4a; (1 -x)isln 2.
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that T'(x) = 2 for all x c = 1/2. Moreover, hof= T o h implies that

h'(f{x))f'(x) = T'(h(x))h'(x) so

We are now ready to compute the Lyapunov exponent:

which is equal to zero for almost all orbits. Thus, for almost all orbits:

For comparison reasons we have also computed L numerically with initial value x 0 =

0.30 in the example above. Denoting the Lyapunov exponent of 77 iterations for Ln we

find LlOO = 0.67547, LlOOO = 0.69227 and L5O0o = 0.69308 so in this example we do not

need too many terms in order to show that L > 0.

A final comment is that since we have proved earlier (cf. Example 1.8.1) that the

quadratic map does not possess any stable orbits in case of \i = 4, Definition 1.11.1

directly gives that almost all orbits of the map are chaotic.

_ T'(h(x))h'{x)
nX] ~ h'(f(x))

1 n—l

L= lim > \n\f'(x =xA
n-foo n *—*

i=o

-. n—l 1 n—l
lim -s>|T'(Afø))l+ lim - ]T {ln|fc'(*,)| - ln |ft'(/(*i))|}i=o z'=o

Since X{+\ = f(xi) the latter sum may be written as

lim-{ln|/i, (o:o)|-ln|/i, (a;n )|}n—>oo Tl

In_l1 n_1 1
L= lim - > \n\T'(h(xi))\ = lim --n ln 2=ln 2n-400 n ' n-+oo ni=o
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1.12 Superstable orbits and a summary of the dynam
ics of the quadratic map

The quadratic map has two fixed points. One is the trivial one x* = 0 which is stable if

/i < 1 and unstable if /i >l.lf/x > 1 the nontrivial fixed point is x* = (fj, - 1)/// and

as we have shown this fixed point is stable whenever I</x < 3. Whenever \i > 2 the

fixed point is larger than the critical point c. At \i = 3 the map undergoes a supercritical

flip bifurcation and in the interval 3<\i < 1 + y/B the quadratic map possesses a stable

period-2 orbit which has a negative Lyapunov exponent. The periodic points are given

by formulae (1.3.3).

At the threshold fj, = I+y/Q there is a new (supercritical) flip bifurcation which creates

a stable orbit of period 22 and through further increase of /i stable orbits of period 2k

are established. However, the parameter intervals where the period 2k cycles are stable

shrinks as \i is enlarged so the \i values at the bifurcation points act more or less as terms

in a geometric series. By use of the Feigenbaum geometric ratio one can argue that there

exists an accumulation value fia for the series of flip bifurcations. Regarding the quadratic

map, fia = 3.56994. In the parameter interval /x 0 < /i < 4we have seen that the dynamics
is much more complicated.

Still considering periodic orbits, Sarkovskii's theorem tells us that periodic orbits occur

in a definite order so beyond fia there are periodic orbits of periods given by Theorem

1.7.2 (see also Section 1.10). Even in cases where such orbits are stable they may be

difficult to distinguish from non-periodic orbits due to the long period. In many respects

the ultimate event occurs at the threshold \i = 1 + y/E where a 3-periodic orbit is created

because period 3 implies orbits of all other periods which is the content both in Li and

Yorke and in Sarkovskii's theorem.

Chaotic orbits may be captured by use of Lyapunov exponents. In Figure 8 we show

the value of the Lyapunov exponent L for /i € [/ifl} 4]. L < 0 corresponds to stable

periodic orbits, L > 0 corresponds to chaotic orbits. (Figure 8 should be compared to

the bifurcation diagram, Figure 6.) The regions where we have periodic orbits are often



54

Figure 8: The value of the Lyapunov exponent for /i (E [/xo) 4]. L < 0 corresponds to
stable periodic orbits. L > 0 corresponds to chaotic orbits.

referred to as windows. The largest window found in Figure 6 (or 8) is the period 3

window. The periodic orbits in the interval 3 < /i < //a are created through a series of flip

bifurcations. However, the period-3 orbit is created through a saddle-node bifurcation. In

fact, every window of periodic orbits beyond fia is created in this way so just beyond the

bifurcation value there is one stable and one unstable orbit of the same period. (If \x is

slightly larger than 1 + there is one stable and one unstable orbit of period 3.) Within

a window there may be flip bifurcations before chaos is established again, cf. Figure 6.

Since.the quadratic map has negative Schwarzian derivative there is at most one stable

periodic orbit for each value of \i.

There is a way to locate the periodic windows. The vital observation is that at the

critical point c, f'(c) = 0, so accordingly ln|/'(c)| = -oo which implies L < 0 and

consequently a stable periodic orbit. Also, confer Singer's theorem (Theorem 1.8.1).
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Definition 1.12.1. Given a map f : I -+ I with one critical point c. Any

periodic orbit n passing through c is called a superstable orbit.  

Hence, by searching for superstable orbits one may obtain a representative value of

the location of a periodic window. Indeed, any superstable orbit of period n must satisfy

the equation

Example 1.12.1. Consider the quadratic map and let us find the value of \i

such that f1(1/2) = 1/2.

We have

(1.12.2)

By inspection, \i = 2 is a solution of (1.12.2) so after dividing by /x - 2 we
arrive at

This equation may be solved numerically by use of Newton's method and

if we do that we find that the only solution in the interval /x 0 < /j, < 4 is

fi = 3.83187. Therefore, there is only one period-3 window and the location

clearly agrees both with the bifurcation diagram, Figure 6 and Figure 8. In

the same way, by solving /4 (l/2) = 1/2 one finds that the only solution which

satisfies /z a < jj, <4is \i = 3.963 which shows that there is also only one period

-4 window. However, if one solves /*(l/2) = 1/2 one obtains three values which

means that there exists three period-5 windows. The first one occurs around

Mi = 3.739 and is visible in the bifurcation diagram, Figure 6. The others

/» = c (1.12.1)

Hence, the equation /j(l/2) = 1/2 becomes

// - 8/i6 + 16// + 16// - 64// + 128 = 0

// - 6/x5 + 4/i4 + 24/z3 - 16/i2 - 32/ i -64 = 0 (1.12.3)
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have almost no widths, the values that correspond to the superstable orbits

are \i2 = 3.9057 and /x 3 = 3.9903. D

Referring to the numerical examples given at the end of Section 1.3 where y, < (j,a

we observed a rapid convergence towards the 2-period orbit independent on the choice

of initial value. Within a periodic window in the interval [/io »4] the dynamics may be

much more complicated. Indeed, still considering the period-3 window, we have according

to the Li and Yorke theorem that there are also periodic orbits of any period, although

invisible to a computer. (The latter is a consequence of Singer's theorem.) If we consider

an initial point which is not on the 3-periodic orbit we may see that it behaves irregularly

through lots of iterations before it starts to converge, and moreover, if we change the initial

point somewhat it may happen that it is necessary to perform an even larger amount of

iterations before we are able to detect any convergence towards the 3-cycle. Hence, the

dynamics within a periodic window in the interval [/zOJ 4] is in general much more compiex

than in the case of periodic orbits in the interval [3, fj,a] due to the presence of an (infinite)

number of unstable periodic points.

By carefully scrutinizing the periodic windows one may find numerically that the sum

of the widths of all the windows is roughly 10% of the length of the interval [//0 , 4]. In

the remaining part of the interval the dynamics is chaotic. If we want to give a thorough

description of chaotic orbits we may use symbolic dynamics in much of a similar way as

we did in Sections 1.9 and 1.10. Here we shall give a more heuristic approach only. If

fi is not close to a periodic window, orbits are irregular and there is almost no sign of

periodicity. However, if /z is close to a window, for example, if /x is smaller but close to

1 + (the threshold value for the period-3 window) one finds that an orbit seems to

consist of two parts, one part with appears to be almost 3-periodic and another irregular

part where the point x may take almost any value in (0,1). The almost 3-periodic part of

the orbit is established when the orbit becomes close to the diagonal line xt+l = xt . Then,

since (j, is close to 1 + V 8 the orbit may stay close to the diagonal for several iterations

before it moves away. Therefore, a typical orbit close to a periodic window consists of an
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irregular part which after a finite number of iterations becomes almost periodic and again

turns irregular in a repeating fashion.
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Part II
n-dimensional maps

/: Rn -» Rn x-> /(x)
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2.1 Higher order difference equations

Consider the second order difference equation

(2.1.1)

If /(£) 0, (2.1.1) is called a nonhomogeneous difference equation. If f(t) —O, that is

(2.1.2)

we have the associated homogeneous equation.

Theorem 2.1.1. The homogeneous equation (2.1.2) has the general solution

Proof. Let xt = Cx ut + C 2vt . Then xt+l = Cx ut+ i + C 2vt+l and xt+2

CiUt+2 + and if we substitute into (2.1.2) we obtain

which clearly is correct since wt and vt are linear independent solutions.  

Regarding (2.1.1) we obviously have:

Theorem 2.1.2. The nonhomogeneous equation (2.1.1) has the general solu

tion

xt = C\Ut + C 2vt + u*t

where C\Ut + C 2vt is the general solution of the associated homogeneous equa

tion (2.1.2) and is any particular solution of (2.1.1).

xt+2 + atxt+i + btxt = f(t)

xt+2 + <kxt+i + hxt = 0

Xt = C\Ut + C 2vt

where ut and vt are two linear independent solutions and C\,C<z arbitrary

constants.

Ci(ut+2 + dtut+i + btut ) + C 2( + atVt+i + btvt ) = 0
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Just as in case of differential equations there is no general method of how to find

two linear independent solutions of a second order difTerence equation. However, if the

coefßcients at and bt are constants then it is possible.

Indeed, consider

where a and b are constants. Suppose that there exists a solution of the form xt = m*

where m 0. Then xt+i = mt+l = mm* and xt+2 = m2m* so (2.1.3) may be expressed as

which again implies that

(2.1.4)

(2.1.4) is called the characteristic equation and its solution is easily found to be

(2.1.5)

Now we have the following result regarding the solution of (2.1.3) which we state as a
theorem:

Theorem 2.1.3.

1) If (a2/4) —b> 0, the characteristic equation have two real solutions m\

and m 2. Moreover, m\ and m\ are linear independent so according to

Theorem 2.1.1 the general solution of (2.1.3) is

2) The case (a2 /4) -b = 0 implies that m = -a/2. Then m* and tmt are two

linear independent solutions of (2.1.3) so the general solution becomes:

(In order to see that tm* really is a solution of (2.1.3) note that if a 2/4 =b,

then (2.1.3) may be expressed as (*) xt+2 + axt+i + {a2 /A)xt =O. Now,

xt+2 + axt+i + bxt = Q (2.1.3)

(m2 +am + 6)m* = 0

ro2 +am-f 6 = 0

ala2

xt = Cim\ + C2 m 2 where mi)2 =— ± y bZ V 4

xt = Cim* + C<1tmt = (Ci + C2t)mt where m = -a/2
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assuming that xt = t(-a/2)* we have xt+i = -(a/2)(t + l)(-a/2)*,

xt+2 = (a2/4)(£ + 2)(-a/2)t and by inserting into (*) we obtain (a2/4)[t +

2 2(t + 1) + i](—a/2)* = 0 which proves what we want.)

From the theory of complex numbers we know that

and

where we have used Moivre's formulae in the last step. Since the real

and imaginary parts of m* are linear independent functions we express

the general solution of (2.1.3) as

Example 2.1.1. Find the general solution of the following equations:

a) xt+2 - 7xt+l 4- \2xt =O,

3) Finally, if (a2/4) -b< 0 we have

m=- | ± y/-(b-(a2/4) =- | ± - («2 /4) i=a + Øi

a + (3i = r(cos 6 + i sin 6)

where

r = 2+P2 = \/(-G/2) 2 + yÆ~ (g2 /4)2 =Vb

a ~ a/2 a Jh - (a2 /4)
Vb Vb

which implies that

ra* = [r(cos 6+ i sin o)]* = r*(cos 9+ i sin 0)' = r*(cos 0< + i sin 0t)

xt =Ci r* cos 91 + C2r* sin 0 t

b) xt+2 - 6xt+l + 9xt =O,

c) xt+2 - xt+i +xt =O.
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Solutions:

a) Assuming xt = m* the characteristic equation becomes ra2 7ra + 12 =

0 mi =4, ra2 =3 so according to Theorem 2.1.3 the general solution

is xt = Ci •4*+ C 2 • 3*.

c) The characteristic equation becomes ra2 m + 1 = 0 4=2> m = (1 =b

y/=S)/2 = \±\y/%i.

Further

Thus

Exercise 2.1.1. Find the general solution of the homogeneous equations:

a) xt+2 - 12xt+i + 36xt =O,

Exercise 2.1.2. Prove Moivre's formulae: (cos 0+ i sin 0)* = cos 0 1 -f i sin oi.

(Hint: Use induction and trigonometric identities.)  

Definition 2.1.1. The equation xt+2 + axt+i 4- bxt =0 is said to be globally

asymptotic stable if the solution Xt satisfies xt = 0.  

b) The characteristic equation is m 2 —6m + 9 = 0 <s> mi = m 2 = 3. Thus

xt =d• 3* + C2t •3* = (Ci 4- C2i)3*.

12 12 3

 jr nr yr -yr
xt = Ci 1* cos —t + sin —t = Ci cos —£+ C 2 sin £o o o o

b) xt+2 +x=t 0,

c) xt+2 + 6rrt+l - 16xt =O.



Referring to Example 2.1.1 it is clear that none of the equations considered there are

globally asymptotic stable. The solutions of the equations (a) and (b) tend to infinity as

t —v oo and the solution of (c) does not tend to zero either.

However, consider the equation xt+2 (l/6)xt+i - (l/6)xt =O. The characteristic

equation is ra2 - (l/6)m - (l/6)ra = 0 <£ mi = 1/2, m 2 = -(1/3) so the general solution

becomes xt = Ci(l/2)* + C2 (-l/3)*.

Theorem 2.1.4. The equation xt+2 4- a>Xt+i + bxt = 0 with associated char

acteristic equation ra2 4- am + 6 = 0 is globally asymptotic stable if and only

if all the roots of the characteristic equation have moduli strictly less than 1.

and the results of Theorem 2.1.4 follows.

We close this section by considering the nonhomogeneous equation

xt+2 + axt+i + bxt = f(t)

65

(2.1.6)

Here, we obviously have = 0 so according to Definition 1.2.1 the equation

xt+2 + (l/6)xt+i - (l/6)xt =0 is globally asymptotic stable.

Proof. Referringto Theorem 2.1.3, the cases (1) and (3) are clear (remember

\m\ = r in (3)).

Considering (2): If \m\ < 1

lim im* = lim
t—>-oo t—too S

where s = l/m and s > 1. Then by L'hopital's rule

lim = hm > 0
t-5-oo Sl t->oo s{ ln 5

As we shall see later on, Theorem 2.1.4 will be useful for us when we discuss stability

of nonlinear systems.
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According to Theorem 2.1.2 the general solution of (2.1.6) is the sum of the general

solution of the homogeneous equation (2.1.3) and a particular solution u*t of (2.1.6).

If f(t) is a polynomial, say f(t) = 2t2 -f 4* it is natural to assume a particular solution

of the form u*t = At2 +Bt+ C.

If f(t) is a trigonometric function, for example f(t) = cos ut we assume that u*t =

A cos u t + B sin ut.

If St = c*, assume wj = ,4c* (but see the comment following (2.1.7)).

Example 2.1.2. Solve the following equations:

a) The characteristic equation of the homogeneous equation becomes m 2 -

m-2 = o<=>mi = 2 and m 2 = -1 so the general solution of the

homogeneous equation is xt = Cv2t+C2 {-l)t . Assume ut = At2 +Bt+C.

Then u*t+l = A(t + l) 2 + B(t +l)+ C, u|+2 = A(t + 2) 2 + B(t +2) + C

which inserted into the original equation gives

<=>

and by equating terms of equal powers of twe have (1) -2A =l, (2)

2A - 2B = 0, and (3) SA + B - 2C = 0 from which we easily obtain

A = -1/2, B = -1/2 and C = -1. Thus uj = -(1/2)*2 - (1/2)* -1

and the general solution is xt = Ci 2* + C2 (-l)* - (1/2)*2 - (1/2)* -1.

b) The solution of the characteristic equation becomes rai =m2 = 1 => ho

mogeneous solution (Ci +C2*)l* =Ci +C2 t. Assume u% = Acos(7r/2)t +

Bsm(<ir/2)t. Then, u*t+l = Acos[(7r/2){t + 1)] + Bsin[(7r/2)(* + 1)] =

a) xt+2 + xt+i + 2xt - t 2,

b) xt+2 - 2xt+i +#t = 2sin(7r/2)t,

Solutions:

A{t+2) 2+B{t+2)+C-[A(t + l) 2 + B(t +1) + C}-2 [At2 +Bt + C}=t2

-2At2 + (2A - 2B)t +(3 A + B-2C)=t2 +ot + 0
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A[cos(7r/2)tcos(7r/2) - sin(7r/2)£sin(7r/2)] + £[sin(7r/2)*cos(7r/2)+

sin(7r/2) cos(7r/2)] = —Asm(7r/2)t+Bcos(ir/2)t. In the same way, u^+2 =

—Acos(7r/2)£ Bsm(7r/2)t so after inserting nJ"+2 , u^+l and u\ into the

original equation we arrive at

Finally, if Æt+2 + + fec* =c* we assume a particular solution of the form uj = Ac*.

Then uj+1 = Acc* and tøJ+2 = Ac2é which inserted into the original equation yields

(2.1.7)

Note, however, that if c is a simple root of the characteristic equation, i.e. c 2 +ac + b = 0,

then we try a solution of the form uj = Bté and if c is a double root, assume u\ = Dt2é.

a) The characteristic equation is m 2 4 = 0 <=s rai = 2, ra2 = 2 thus

the homogeneous solution is Ci 2* + C2 (-2)*. Since 3is not a root of

m 2 - 4 = 0 we have directly from (2.1.7) that u*t = (1/5)3* so the general

solution becomes xt = Ci2* + C2 (-2)* + (1/5)3*.

-25 cos -i 4- 2A sm ~i = 0 cos -t + 2 sin -i
/j Zj Zj £

Thus -2B = 0 and 2A = 2 & A = 1 and B = 0 so u*t = cos(?r/2)t.

Hence, the general solution is æt =Ci + C2t + cos(7r/2)t  

A(c2 +ac + b)ct = ct

Thus, whenever c 2 +ac -f- 6 0 the particuiar solution becomes

cl + ac + b

Example 2.1.3. Solve the equations:

a) xt+2 - Axt = 3*,

b) xt+2 - 4xt = 2*,

Solutions:
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b) The homogeneous solution is of course Ci 2* + C2 (-2)* but since 2 is

a simple root of m 2 - 4 = 0 we try a particular solution of the form

which gives B = 1/8. Thus xt = Cx 2* + C2 (-2)* + (1/8)* • 2*.

Exercise 2.1.3. Solve the problems:

(Hint: Assume a particular solution of the form (At 4- B) • 2*.)

Exercise 2.1.4. Consider the equation xt+2 = xt+l +xt with initial conditions

Xq = 0, X\ = 1.

a) Solve the equation.

Let us now turn to equations of order n, i.e. equations of the form

xt+n + flirøzt+n-i + a2 (t)a:t+n_2 +•• • + a„_i(<)a;t+i +an = f(t) (2 1.8)

In the homogeneous case we have the following result:

Theorem 2.1.5. Assuming an (t) 0, the general solution of

(2.1.9)

u* = Bt2t . Then w*+2 = 4:B(t + 2)2* and by inserting into the original

equation we arrive at

4B(t + 2)2* - 4Bt • 2* = 2*

a) xt+2 + 2xt+i - 3xt =2t+ 5,

b) xt+2 - 10a;t+i + 25xt = s*, c) xt+2 - xt+l +x=t 2\

d) xt+2 + 9xt = 2*, e) xt+2 - 5xt+i - 6xt =t- 2*.

b) Use a) and induction to prove that xt • xt+2 - x2t+l = (-l) t+l , t

0,1,2,....

xt+n -f ai(t)xt+n-i H h an (t)xt = 0
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is Xf = C\Ui tt H h Cnunj where u\^ ... unj are linear independent solutions

of the equation and C\...Cn arbitrary constants.  

Proof. Easy extension of the proof of Theorem 2.1.1. We leave the details to

the reader.  

Regarding the nonhomogeneous equation (2.1.8) we have

Theorem 2.1.6. The solution of the nonhomogeneous equation (2.1.8) is

where wj is a particular solution of (2.1.8) and Ciuu -\ + Cnunj is the

general solution of (2.1.9).  

(2.1.10)

and as in the second order case we may assume a solution xt = ra* of the homogeneous

equation. This yields the n-th order characteristic equation

(2.1.11)

Appealing to the fundamental theorem of algebra we know that (2.1.11) has n roots. If a

root is real with multiplicity 1 or complex we form linear independent solutions in exactly

the same way as explained in Theorem 2.1.3. In case of real roots with multiplicity p,

linear independent solutions are ...,tp_l rat .

Example 2.1.4. Solve the equations:

Xt = CiUij H h + uj"

If ai(t) = ais ... } an (t) =an constants we arrive at

Xt+n + a,iXt+n-i H (- anxt = /(*)

mn + aimn * H h an-\m +an = 0

a) xt+3 - 2xt+2 + xt+i - 2xt =lt- 4,

b) xt+3 - 6xt+2 + 12xt+i - 8xt =O.
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Solutions:

a) The characteristic equation is ra3 - 2ra2 +ra - 2 = 0. Clearly, m 1 = 2

is a solution and ra3 - 2ra2 -f ra - 2 = (ra -2) (ra2 +1) = 0. Hence

the other.roots are complex, ra2 ,3 = ±t\ Following Theorem 2.1.3 r =

V02 +l2 = 1, cosØ = 0/1 = 0, sinØ = 1/1 = 1 =* 0 = tt/2 which

implies the homogeneous solution Ci • 2* + C 2 cos(7r/2)t + C 3 sin(?r/2)t

Assuming a particular solution u*t = At + B we find after inserting into

the original equation, -2At - 2B = 2t - 4 so A = -1 and £ = 2.

Consequently, according to Theorem 2.1.6, the general solution is xt =

Ci • 2* + C 2 cos(tt/2)* -f- C 3 sin(?r/2)i - t + 2.

b) The characteristic equation becomes ra3 - 6ra2 + 12ra-8 = 04=>(ra-

2) 3 = 0. Hence, there is only one root, ra = 2, with multiplicity 3.

n

Exercise 2.1.5. Find the general solution of the equations:

Definition 2.1.2. The equation xt+n + aia;t+n_i +•• • + an£t =0 is said to

be globally asymptotic stable if the solution xt satisfies limt xt =O.  

Theorem 2.1.7. The equation xt+n + aixt+n-i +•  + ana:t =0 is globally

asymptotic stable ifall solutions of the characteristic equation (2.1.11) have
moduli less than 1. nn

It may be a difficult task to decide whether all roots of a given polynomial equation have

moduli less than unity or not. However, there are methods and one of the most frequently
used is the Jury criteria which we now describe.

Consequently, xt = Cl -2t + C2t •2* + C 3t2 • 2*.

a) xt+3 - 2xt+2 - 5zHi -f 6xt = 0 c) xt+l -2xt =l+ t 2

b) xt+4 -xt =2t d) xt+l - 2xt =2*+ 3*
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Let

(2- 1.12)

be a polynomial with real coefficients ax ...an . Define

Theorem 2.1.8 (The Jury criteria). All roots of the polynomial equation

P(x) = 0 where P(x) is defined through (2.1.12) have moduli less than 1

provided:

Remark. Instead of saying that all roots have moduli less than 1, an alter

native formulation is to say that all roots are located inside the unit circle in

the complex plane.  

Regarding the second order equation

P{x) =xn + aixn- 1 + a 2xn~2 +••• + an

bn 1 an , 6n_i —ai an an_i, •• • bn-j = — an a b\ = an_i ana\

°n-K-bi, Cn-i bnbn-i - 6162, •• • cn-j = bnbn-j - Mj+i, c 2 = bnb2 - &i&n-i

—C 2—Cn , • • • dn_j Cn Cn_j C2 Cj+2 ... cfe = cn c3 C2Cn_i

and so on.

_ 2 2
Wn~Vn - Vn_3 , Wn-x = VnV - Wn_ 3 Vn_2 , Wn-2 = VnVn-2 ~ Vn-3 Vn-i

P(l) > 0 (-lfP(-i) > o

«nI <ljIM > |&l|, \cn \ > |c2 |, |dn| > |d3 |, •• \wn \ > |W„_2

13)

14)
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If we have a polynomial equation of order 3

(2.1.15)

the Jury criteria may be east in the form

1 a3 | |a2 a3ai| > 0

Evidently, the higher the order of the equation is, the more complicated are the Jury

criteria. Therefore, unless the coefficients are very simple or on a special form the method

does to work is the order of the polynomial becomes large.

Later, when we shall focus on stability problems of nonlinear maps (which involves

the study of polynomial equations), we will also face the fact that the coefficients ai...an

do not consist of numbers only but a mixture of numbers and parameters. In such cases,

even (2.1.16) may be difficult to apply.

However, let us give one simple example of how the Jury criteria works.

Example 2.1.5. Show that xt+3 - (2/3)xt+2 + (l/4)sÉ+l - (l/6)xt =0 is

globally asymptotic stable.

Solution: According to Theorem 2.1.7 we must show that the roots of the

associated characteristic equation ra3 - (2/3)ra2 + (l/4)m - (1/6) = 0 are

located inside the unit circle. Defining ai = -(2/3), a 2 = 1/4, a 3 = -(1/6) the

four left-hand sides of (2.1.16) become 1/12, 25/12, 5/6 and 5/6, respectively.

Consequently, all the roots are located inside the unit circle so the difference

equation is globally asymptotic stable.

Another theorem (from complex function theory) that may be useful and which applies

not to polynomial equations only is Rouche's theorem. (In the theorem below, z = a+ pi

is a complex number.)

x 3 -f- aix2 + a2x -f a 3 = 0

I+ai + a 2 4- a 3 > 0

1 -a1 + a 2-a3 > 0 (2.1.16)

1 - \a3 \ > 0



73

Theorem 2.1.9 (Rouche's theorem). If f(z) and g(z) are analytic inside

and on a simple closed curve C and if \g{z)\ < \f{z)\ on C then f(z) + g(z)

and f(z) and the same number of zeros inside C. D

Remark. If we take the simple closed curve C to be the unit circle \z\ = 1,

then we may use Theorem 2.1.9 in order to decide if all the roots of a given

equation have moduli less than one or not.  

Example 2.1.6. Suppose that a > e and show that the equation azn -ez = 0

has n roots located inside the unit circle \z\ = 1.

Solution: Denne f(z) = azn , g(z) = -ez and consider f(z) + g(z) =O.

Clearly, the equation f(z) = 0 has n roots located inside the unit circle. On

the boundary of the unit circle we have \g(z)\ = \-ez \ <e<a= \f(z)\. Thus,

according to Theorem 2.1.9, f(z) and f(z) + g(z) have the same number of

zeros inside the unit circle, i.e. n zeros.  

2.2 Systems of linear difFerence equations. Linear maps
from W 1 to Rn

In this section our purpose is to analyse linear systems. There are several alternatives

when one tries to find the general solution of such systems. One possible method is to

transform a system into one higher order equation and use the theory that we developed

in the previous section. Other methods are based upon topics from linear algebra, and of

particular relevance is the theory of eigenvalues and eigenvectors. Later when we turn to

nonlinear systems and stability problems it will be useful for us to have a broad knowledge

of linear systems so therefore we shall deal with several possible solution methods in this
section.
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Consider the system

(2.2.1)

Here, all coefficients au ...ann are constants and if bt(t) = 0 for all I<i< n we call

(2.2.1) a linear autonomous system.

It is often convenient to express (2.2.1) in terms of vectors and matrices. Indeed, let

x = (xu ...,xn)T , b = (&i,...,6n )r and

(2.2.2)

Then, (2.2.1) may be written as

(2.2.3)

or in map notation

First, let us show how one may solve a system by use of the theory from the previous
section.

Example 2.2.1. Solve the system

£l,t+l = CliiXij + 0,12X2$ + h ainXn)t + &l(t)

#n,t+l = <b%l%l tt +an H h + &nrø

fan -•• ain
a2i •• • a2n

A =

\ ani ••  ann ]

xt+i = Axt +bi

x -* Ax + b (2.2.4)

(l)xt+l =2yt + t

(2) yt+l =xt +yt

Replacing t by t + 1 in (1) gives

xt+2 = 2yt+l + 1 +1 == 2fø + tø) +1 +1 = 2xt + 2fe + 1 + 1(2)



75

Further, from (1): 2yt = xt+ i -t. Hence

Thus, we have transformed a system to two first order equations into one

second order equation, and by use of the theory from the previous section the

general solution of the latter equation is easily found to be

yt may be obtained from (1):

The constants Ci and C 2 may be determined if we know the initial values x 0

and yO . For example, if xQ =yQ =1 we have from the general solution above

that

which implies that Ci = 4/3 and C 2 = 1/6 so the solution becomes

Exercise 2.2.1. Find the general solution of the systems

xt+2 - xt+i - 2xt = 1

xt = Cl -2t + C2 {-l)t -l/2

yt = j(«m.i -1) = | (^i2t+l + c2(-i)H 1 - 1 -*)

= Ci2*-ic2(-l)*--*--2vy 2 4

1 = Ci +C2 - 1/2

1 = Ci - |C2 - 1/4

H^s^-H

a) xt4i =2yt + t b) xt+l =xt + 2yt

?/i+ i = -xt + 3?/t yt+l = 3xt
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Another way to find the solution of a system is to use the matrix formulation (2.2.3)

Indeed, suppose that the initial vector x 0 is known. Then:

x 2 = Aki + b(l) = A(AxO + 6(0)) + b(l) = A 2x0 + Ab(0) + b(l)

and by induction (we leave the details to the reader)

x* = A*x0 + + 2b(l) +•. - + b(t -1)

In the important special case b = 0 we have the result:

(2.2.5)

(2.2.6)

where A° is equal to the identity matrix /.

Exercise 2.2.2. Consider the matrix

Hi-n
a) Compute A 2 and A 3.

b) Let t be a positive integer and use induction to find a formulae for A*.

c) Let x = (xu x2 ) T and solve the difference equation xt+l = Axt where

Our next goal is to solve the linear system

(2.2.7)

in terms of eigenvalues and eigenvectors. Thus, consider (2.2.7) and assume a solution of

the form xt = A*u. Then

<^ (2.2.8)

xi - Ak0 + b(0)

xt+l = Axt <£> xt = A*x0

x 0 = (a, b) T .  

xt+i = Axt

Ai+lu - AA*u = 0

(A - AJ)u = 0
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so A is nothing but an eigenvalue belonging to A and u is the associated eigenvector. As

is well known, the eigenvalues may be computed from the relation

(2.2.9)

There are two cases to consider.

(A) If the n x n matrix A is diagonalizable over the complex numbers, then A has n

distinct eigenvalues Ai,..., An and moreover, the associated eigenvectors Ui,..., un are

linear independent. Consequently, the general solution of the linear system (2.2.7)

may be east in the form

(2.2.10)

(B) If Ais not diagonalizable (i.e. A has multiple eigenvalues) we may proceed in much of

the same way as in the corresponding theory for continuous systems, see Grimshaw

(1990). Suppose that A is an eigenvalue with multiplicity ra and let U!,...,up be

a basis for the eigenspace of A if p < ra. Then we seek a solution of the form

xt = A*(v + tu) where uis one of the uVs.

Then from (2.2.7) one easily obtains

(2.2.11a)

(2.2.11b)

and after multiplying (2.2.11a) with (A - XI) from the left we arrive at

(2.2.12)

Now suppose that we can find v1 },.., such that Vi,\..,v„ Ui,...,up are linear

independent. Let = {A- A/)vi3 j = 1,..., q. We claim that u1 3..., uq are linear

independent. Indeed, suppose the opposite. Then diiii H h dquq = 0 where not

all constants dx ...dn =O. This implies (see (2.2.11a)) that dxVi H f- dqvq = u

A-A/1 = 0

Xt = CiX{ui + C 2A2U2 + •• • + CnX^Un

{A - A/)v = u

(A - A/)u = 0

(A - A/) 2v = 0
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which contradicts the assumption that v1 ?..., vg , m, ...,up are linear independent.

Now, if p+ q = m we are done. If p+ q < m we continue in the same fashion

by seeking a solution of the form xt = Å*(w +tv + (l/2)t2u). In this case (2.2.7)

implies

which again leads to

and we proceed in the same way as before. Either we are done or we keep on seeking

solutions where cubic terms of t are included. Sooner or later we will obtain the

necessary number of iinear independent eigenvectors.  

Let us now illustrate the theory presented above through three examples. In Example 2.2.2

we deal with the easiest case where the coefficient matrix A has distinct real eigenvalues.

In Example 2.2.3 we consider eigenvalues with multiplicity larger than one, and finally,

in Example 2.2.4, we analyse the case where the eigenvalues are complex conjugated.

Example 2.2.2. Let

-(-»;)

The eigenvector Ui = (uu u2 )T belonging to Ai = 5 satisfies (cf. (2.2.8))

V -3 6-sj(u2 7 V O /

{A - Xl)w =A[ v + J (2.2.13a)

{A - A/)v = u (2.2.13b)

(A - AJ)u = 0 (2.2.13c)

(A-A7)3w = 0 (2.2.14)

x= (xu x2 )T

and solve xt+l = Ax.t .

Assuming x = Å*u the eigenvalue equation (2.2.9) becomes

2_3A 6-A = ° A* ~ l5+BA = ° A i = A>5 2 = 3
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In the same way, the eigenvector u 2 = («i, u 2) T belonging to A 2 = 3 satisfies

Thus u 2 = f j. Therefore, according to (2.2.10), the general solution is

so we conclude that A = 1 is the only eigenvalue and that it has multiplicity

3. Therefore, according to (B) the general solution of the problem is

where A = 1 and u, v and w must be found from (2.2.13a,b,c). Let u =

(ui,w2,w3 )r , v = {vl ,v2 ,v3 ) T and w = (wu w2,ws)T . (2.2.13c) implies

Hence, we choose Ui = ( )

V-3 3J( 2 ) {0 )

-C;),= c' s'U) + «'G)
Example 2.2.3. Let

/i i i\
x = (x1 ,i2 ,a;3) :r , 4=o 1 2

\0 0 1/
and solve xi+l = Axt .

Assuming xt = A*u, we arrive at the eigenvalue equation

1-A 1 1

0 1-A 2 = 0<^(1-Å)3 = 0
0 0 1-A

xt = CxA*u + C 2Af (v - ta) + C3 A* (w +tv + -t2u)

(Hi)(»)-(s)»^»°
so u 3 = 0 u2 = 0 and Ui is arbitrary so let u\ =l. Therefore u = (1,0,0)T .

(2.2.13b) implies

(iiDØ-O)-^-' 1
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thus, =o,v2 = 1 and v\ may be chosen arbitrary so we let v\ =O. This

yields v= (0,1,0)T .

Finally, from (2.2.13a):

Hence, w 3 = 1/2, w 2 = 0 and we may choose u>i = 0 so w = (0, 0,1/2)T .

Consequently, the general solution may be written as

Example 2.2.4. Let

The eigenvector u = (mi, w 2) T corresponding to Ai may be found from

(::i)(:H"W-(!)--iv'

+Ci ((i) +i (iH"(s))

x=(xu x2 ) T , A=( 1 _2 j

and solve xt+i = Axt .

Suppose xt = A*v. (2.2.9) implies

~ 2_ l X _2 l-x =o<^a2 ++4A 5 = o

<=> Ai = —2+ i, X 2 = —2 i (distinct complex eigenvalues).

Further: |Ai| = vV2) 2 +=l2 V 5 cosØ = {-2)/VE sinØ = l/y/E so Xl =

\/E(cosO + zsinØ).

V -1 -2 - (-2 +i) ) \ u 2 ) " \ 0 ) ** -tn - zu2 = 0
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as eigenvector. Therefore (by use of Moivre's formulae), the solution in com

plex form becomes

Two linear independent real solutions are found by taking the real and imag

inary parts respectively:

Exercise 2.2.3. Let x - (xu x2f , =f * * V B= ( 2 -1 )
and find the general solution of

Let u 2 ~tUi=—y it so I lj= t f 1, so we choose ( *1 = ( 1

Æ*/ a* ,• • • a»\ /~* / a/5 {—i cos 0£ + sin #£} \xt =vs (cosOt + ism6t)\ . = _*
V 1 ) \ + /

Real part fx" ) = ( *n %)

Imaginary part (*»= V? ( )

Thus, the general solution may be written as

xt = ( Xl } =d f Xlr \ +c ( Xli \ - ( t{c'l sirl6,* -Ci cos tø}
\X2 J t ~ : V *2r ) t 2 V X2i ) t ' y V£{C^OsOt+ C2 Sm6t} )

a) xt+i = Axt ,

b) xt+i = Bxt ,

c) Let x = (xi,x2 ,Xz)T and find the general solution of xt+l = Cxt where

/ -3 1 -1 \
C= -7 5 -1

V -6 6 -2 /

We close this section by a definition and an important theorem about stability of linear

systems.
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Definition 2.2.1. The linear system (2.2.7) is globally asymptotic stable if

xt = 0.  

Theorem 2.2.1. The linear system (2.2.7) is globally asymptotic stable if

and only if all the eigenvalues A of A are located inside the unit circle \z\ = 1

in the complex plane.

Proof: In case of distinct eigenvalues the result follows immediately from

(2.2.10).

Eigenvalues with multiplicity m lead according to our previous discussion to

terms in the solution of form t? A* where q<m 1.

Now, if |A| < 1, let |A| = l/s where s > 1. Then by L'Hopital's rule:

limt_>00 (^/st ) = 0 so the result follows here too.  

2.3 The Leslie matrix

In Part I of this book we illustrated many aspects of the theory which we established by

use of the quadratic map. Here in Part II we will use Leslie matrix models in a similar

fashion.

Leslie matrix models are age-structured population models. They were independently

developed in the 1940's by Bernardelli (1941), Lewis (1942) and Leslie (1945, 1948) but

were not widely adopted by human demographers until the late 1960's and by ecologists

until the 1970'5. The ultimate book on matrix population models which we refer to is

"Matrix population models" by Hal Caswell (2001). Here we will deal with only a limited

number of aspects of these models.

Let xt (æ0,t,..., xn,t ) T be a population with n+l nonoverlapping age classes at time

t. x=xq H hxn is the total population.



83

Next, introduce the Leslie matrix

(2.3.1)

The meaning of the entries in (2.3.1) is as follows: fa is the average fecundity (the average

number of daughters born per female) of a member located in the i'th age class. pi may

be interpreted as the survival probability from age class ito age class i 4-1 and clearly

0 < Pi < 1« The relation between x at two consecutive time steps (years) may then be

expressed as

(2.3.2)

or in map notation

Depending on the species under consideration, nonlinearities may show up on different

entries in the matrix. For example, in fishery models it is often assumed that density

effects occur mainly through the first year of life so one may assume fi = f{ (x). It is

also customary to write f(x) as a product of a density independent part F and a density

dependent part f (x) so f (x) = Ff(x). Frequently used fecundity functions are:

f(x)=Fe~ax (2.3.4)

which is often referred to as the overcompensatory Ricker relation and

Instead of assuming / = f (x) one may alternatively suppose / = f(y) where y

ao xo H h o:nxn is the weighted sum of the age classes. If only one age class, say x^

contributes to density effects one writes f = f(xi). In the case where an age class Xi is

not fertile we simply write F{ = 0. (Species where most age classes are fertile are called

JO fl '" fTI
Po 0 ... 0

A= 0

0 ••• Pn-1 0

xt+i = Axt

/ : Rn+l -> Rn+l , x-> Ax (2.3.3)

/(*) = TT- ( 2 - 3 - 5 )1 + ax v '

the compensatory Beverton and Holt relation.
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iteroparous. Spedes where fecundity is restricted to the last age class only are called

semelparous.)

The survival probabilities may of course also be density dependent so in such cases

we adopt the same strategy as in the fecundity case and write p(-) = Pp(-) where P is a

constant.

A final but important comment is that one in most biological relevant situations sup

poses p'{-) < 0 and /'(•) < 0. The standard counter example is when the Allé efTect is

modelled. Then one may use f{x) > 0 and/or p'{x) > 0 in case of small populations x.

(Allé effects will not be considered here.)

In the subsequent sections we shall analyse nonlinear maps and as already mentioned

the theory will be illustrated by use of (2.3.2), (2.3.3). However, if both f 4 = F{ and

Pi = Pi the Leslie matrix is linear and we let

(2.3.6)

We close this section by a study of the linear case

(2.3.7)

Exercise 2.3.1.

b) Suppose that M is 3 x 3 and show that the eigenvalue equation becomes

(FQ    Fn \
Po 0 -•• 0

M= 0

\ o ••• 0 Pn_! 0 /

/ : Rn+l -> Rn+l , x-)Mx

The eigenvalues of M may be obtained from \M - A7l =O.

a) Assume that Misa 2 x 2 matrix. Show that \M - Xl \ =OO Å2 - Fo\

P 0Fl =O.

A 3 - F 0A 2 - - POPiF2 = 0
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c) Generalize and show that if M is a (n -f 1) x (n + 1) matrix then the

eigenvalue equation may be written

Next, we need some definitions:

Definition 2.3.1. A matrix A is nonnegative ifall its elements are greater or

equal to zero. It is positive if all elements are positive.

Clearly, the Leslie matrix is nonnegative.

Definition 2.3.2. A nonnegative matrix A and its associated life cycle graph

is irreducible if its life cycle graph is strongly connected (i.e. if between every

pair of distinct nodes Ni, Nj in the graph there is a directed path of finite

length that begins at N{ and ends at Nj).  

Definition 2.3.3. A reducible life cycle graph contains at least one age group

that cannot contribute by any developmental path to some other age group.
 

Examples of two irreducible Leslie matrices and one reducible one with associated

cycle graphs are given in Figure 9.

Definition 2.3.4. An irreducible matrix A is said to be primitive if it becomes

(cyclic) with index of imprimity equal to the greatest common divisor of the

loop lengths in the life cycle graph.  

matrix in Figure 9 is primitive and that the second one is imprimitive (cyclic)

with index of imprimity equal to 3.  

A-+i _ F 0Xn - PoF^-1 PQPt •• • Pn_!Fn = 0 (2.3.8)

positive when raised to sufficiently high powers. Otherwise A is imprimitive

Exercise 2.3.2. Show by direct calculation that the first irreducible Leslie
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Fl

Figure 9: Two irreducible and one reducible matrices with corresponding life cycle
graphs.

Regarding nonnegative matrices the main results may be summarized in the following

theorem which is often referred to as the Perron-Frobenius theorem.

Theorem 2.3.1 (Perron-Frobenius).

1) li A is positive or nonnegative and primitive, then there exists a real

eigenvalue Ao > 0 which is a simple root of the characteristic equation

\A Xl\ =O. Moreover, the eigenvalue is strictly greater than the mag

nitude of any other eigenvalue, A 0 > \\\ for i / 0. The eigenvector u 0

corresponding to A 0 is real and strictly positive. Ao may not be the only

positive eigenvalue but if there are others they do not have nonnegative

eigenvectors.

£©—iP(i)—TT*®
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2) If A is irreducible but imprimitive (cyclic) with index of imprivity d+l

there exists a real eigenvalue Ao > 0 which is a simple root of \A— Xl\ = 0

with associated eigenvector u 0 > 0. The eigenvalues Å; satisfy Å0 > |Aj|

for i 0 but there are d complex eigenvalues equal in magnitude to Ao

For a general proof of Theorem 2.3.1 we refer to the literature. See for example

Horn and Johnson (1985).

Concerning the Leslie matrix M (2.3.6) we are particularly interested in two

cases: (I) the case where all fecundities F{ > 0, and (II) the semelparous case

where Ft =O, i = 0,..., n- 1 but Fn >O. In both cases it is assumed that

0 < Pi < 1 for all i.

Let us prove Theorem 2.3.1 assuming (I):

(2.3.9)

Clearly, limA_+ 0 /(A) = 00, limA_^ 00 /(A) = 0, and since f (X) < 0 for A > 0

it follows that there exists a unique positive A 0 which satisfies /(A0 ) =l.

Therefore, assume Aq 1 =e 1 and rewrite (2.3.9) as

(2.3.10)

Next, let A" 1 = exp(a + j3i) = ea (cos /3 + i sin/3) for j = 1,..., n and assume /3

real and positive and j 3 2/c7r, k = 1,2,.... Then Xjp = eap (cosp/3 + i sin p/3)

which inserted into /(A), considering the real part only, gives

Now, since there are at least two consecutive positive fecundity values Fj and

Fj+i it follows that cos j/3 and cos(j -f l)/3 cannot both be equal to unity

whose values are A 0 exp(2k7ri/(d + 1)), k = 1,2,..., d.

Since Fn > 0 and 0 < P{ < 1 it follows directly from (2.3.8) that A = 0 is

impossible. Therefore, we may divide (2.3.8) by An+l to obtain

fW-•% + -#- +— + = 0

/(A) - + Po^ie27 +•• • + PQ Pi •• • Pn-iFn = 1

FQ ea cos P + PO Fie2a cos 2/3 -f •• • + PO Pi •• • Pn_iFn en<* cos n/3 = 1 (2.3.11)
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since /3 2kir. Consequently, by comparing (2.3.10) and (2.3.11), we have

ea >e7 <s> |Aj |< A 0 for j = 1,..., n.

Finally, in order to see that the eigenvector Uo corresponding to Ao has only

positive elements, recall that u 0 must be computed from Mu0 = A 0u0 , and

in order to avoid u 0 = 0 we must choose one of the components of Uo =

(uoo, •••,^no)r free, so let uoo =l. Then from Mu0 = A 0u0 : P 0  1 = A0tøio,

PiUio = A 0w 20, ..., Pn-iun-io = A 0un 0 which implies

which proves what we want.

(This proof is based upon Prauenthal (1986).) The proof of Theorem 2.3.1 under the

assumption (II) is left to the reader.

Let us now turn to the asymptotic behaviour of the linear map (2.3.7) in light of the

results of Theorem 2.3.1.

In the case where all J*J > 0 we may express the solution of (2.3.7) (cf. (2.2.10)) as

where Aj (real or complex, A 0 real) are the eigenvalues of M numbered in order of de

creasing magnitude and u; are the corresponding eigenvectors. Further,

(2.3.13)

Ao A 0 Xq Aft

Xt = Co AqUO + CiA*Ui + • • • + (2.3.12)

i =couo+ci (S) Ui+ "" +c"(é) Un
and since Åq > |A,|, i 0

hm = c 0u0
É-+OO Aq
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Consequently, ifM is nonnegative and primitive, the longterm dynamics of the population

are described by the growth rate Å0 and the stable population structure uo- Thus A 0 > 1

implies an exponential increasing population, 0 < A 0 < 1 an exponential decreasing

population, where we in all cases have the stable age distribution uq.

If Mis irreducible but imprimitive with index of imprimity d+ l it follows from part 2

of the Perron-Frobenius theorem that the limit (2.3.13) may be expressed as

(2.3.14)

As opposed to the dynamical consequences of 1) in the Perron-Frobenius theorem we now

conclude from (2.3.14) that u 0 is not stable in the sense that an initial population not

proportional to u 0 will converge to it. Instead, the limit (2.3.14) is periodic with period

d + 1.

d
lim £ = CoUo +

Example 2.3.1 (Bernardelli 1941). The first paper where the matrix M

was considered came in 1941. There, Bernardelli considered a hypothetic

beetle population obeying the equation

/ 0 0 6 \

xt+i = £xt where B= ( 1/2 0 Ol
V 0 1/3 0/

Clearly, B is irreducible and imprimitive with index of imprimity equal to 3

(cf. Exercise 2.3.2). Moreover, the eigenvalues of B are easily found to be

Xi = 1 and A2 = exp(±27ri/3) and it is straightforward to show that B 3 = I

so each initial age distribution will repeat itself in a regular manner every

third year as predicted by (2.3.14). In Figure 10 we show the total hypothetic

beetle population together with the three age classes as function of time, and

clearly there is no stable age distribution.  
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Figure 10: The hypothetical "beetle" population of Bernardelli as function of time. A
is the total population.  , -f and O correspond to the zeroth, first and second age classes
respectively. Clearly, there is no stable age distribution.

2.4 Fixed points and stability of nonlinear systems

In this section we turn to the nonlinear case x -> /(x) which in difference equation

notation may be east in the form

(2.4.1)

Xl-t+i = fi(xit,~.,xn,t)

#n,t+l — j^rijt)

Definition 2.4.1. A point x* = (#!,...,£*) which satisfies x* = /(x*) is

called a fixed point for (2.4.1). D



Exercise 2.4.1. Assume that F 0 + POFi >l,x=xo + Xi and find the

nontrivial fixed point (xq,x*) of the two-dimensional Leslie matrix model (the

Ricker model)

,(:)-(YT).(:) <* «>
According to Definition 2.4.1 the fixed point satisfies

and if we insert (2.4.3b) into (2.4.3a) we obtain 1 = e~x* (FQ + Po-*7!), hence

the total equilibrium population becomes x* = ln(F0 + PqFi). Further, since

x* = xl + x\ and rc* = PqxJ we easily find

(2.4.4)

(Note that Po +PoPi > 1 is necessary in order to obtain a biological acceptable

solution.)  

Exercise 2.4.1. Still assuming P 0 + PoPi > 1, show that the fixed point

(xq,x{) of the two-dimensional Beverton and Holt model

(2.4.5)

becomes

(2.4.6)

x*0 = Fo e~x*x*0 + Fie~x*xl (2.4.3a)

x\ = Pox*0 (2.4.3b)

«•^-(iTi^låH

\*i J \Po 0 ) \ XI )

«••a-Gr^iåH
whererr* =FO + P 0F1 -1.

Example 2.4.2. Find the nontrivial fixed point of the general Ricker model:

/ Fo e~x • • • Fne~x \

\ i -+ :- i I (2.4.7)

V o ••• o pn_! o /

91
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The fixed point x (4,...,<) obeys

x*0 = e-*'(Fox*o + -- + Fnx*n )

x{ = Po x*0

From the last n equations we have x{ = PoXq, x*2 = P\x\ = PoPiXq, x*n

Po • • • Pn-iXQ which inserted into the first equation give

Again, 0 > 1 is required in order to have an acceptable biological

equilibrium.  

Exercise 2.4.2. Generalize Exercise 2.4.1 in the same way as in Example 2.4.2

and obtain a formulae for the fixed point of the n + 1 dimensional Beverton

and Holt model.  

In order to reveal the stability properties of the fixed point x* of (2.4.1) we follow the

same pattern as we did in Section 1.4. Let x = x* + £, then expand /»(x) in its Taylor

series about x*, taking the linear terms only in order to obtain

xn -*n-l^n-l

1 = e~x (F 0 + PoF, + POPiF2 +•••+ Po  •  Pn-iFn ) (2.4.8)

Hence,

x* = \n(FO + PoFl + --. + PO ---Pn_ lFn ) = \n [J^ifø]

where L{ = PO -Pi • • •-P;-i and by convention L 0 =l. From ]T)#! = a;* and

x{ = POXq = LiXq, x*2 = PqPiXq = L2x*Q and x\ L{x% we obtain

tø,..., <) = (~-x* ,• • • =£— *•,.... =#— x-) (2.4.9)

<m + ?m+i « /<«) + f£ «w + • • • + §£- 6m

Xn,t+l + ?n,t+l ~ frifot) +o— fl,t H 1" 7j £n,t
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where all derivatives are evaluated at x*. Moreover, x^t+l = /»(xj). Consequently, the

linearized map (or linearization) of (2.4.1) becomes

(2.4.10)

If the fixed point x* of (2.4.1) shall be locally asymptotic stable we clearly must have

(2.4.11)

and according to Theorem 2.2.1 this is equivalent to say:

Theorem 2.4.1. The fixed point x* of the nonlinear system (2.4.1) is locally

asymptotic stable if and only if all the eigenvalues A of the Jacobian matrix

are located inside the unit circle \z\ = 1 in the complex plane.  

Example 2.4.3.

a) Denne Fx = FQ x*0 + Fix{ and show that the fixed point (2.4.4) of the

Ricker map (2.4.2) is locally asymptotic stable provided

(2.4.13c)

linearized map (or linearization) of (2.4.1) becomes

where the matrix is called the Jacobian.

lim £t -> 0t—>-oo

Fx(l + PQ ) >0 (2.4.12a)

2F0 + Fx(PO - 1) > 0 (2.4.12b)

2P0 F1 +FO - PqFx > 0 (2.4.12c)

b) Assume that F 0 = Fx = F (same fecundity in both age classes) and show

that (2.4.12b), (2.4.12c) may be expressed as

F< _l 2/(l-Po)
I+Po

(2.4.13b)

1 + Po
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Solution:

a) Rewrite (2.4.2) as

Then the Jacobian becomes

(2.4.14)

and the eigenvalue equation | J Xl\ = 0 may be east in the form

(2.4.15)

(2.4.15) is a second order polynomial and |Å| < 1 if the corresponding

Jury criteria (2.1.14) are satisfied. Therefore, by defining

we easily obtain from (2.1.14) that the fixed point is locally asymptotic

stable provided the inequalities (2.4.12a)-(2.4.12c) hold.

Remark: Scrutinizing the criteria, it is obvious that (2.4.12a) holds

for any (positive) equilibrium population x*. It is also clear that in

case of Fx sufficiently small the same is true for both (2.4.12b,c) as

well which allow us to conclude that (arg, a;J) is stable in case of "small"

equilibrium population x*. However, if Fx becomes large, both (2.4.12b)

and (2.4.12c) contain a large negative term so evidently there are regions

in parameter space where (2.4.12b) or (2.4.12c) or both are violated and

consequently regions where (xq,x*) is no longer stable.

(2.4.16)

xo -» h(xo,Xi) = Foe xxo + Fie xXi

r _ ( z~x " (Fo ~ Fx) <rx ' {F, - Fx) \
\ Po 0 )

2 FO -F£ f,-Ps

where we have used e~x * = (F 0 + PqF^1 .

Fp-Fx F\ - Fx
ai ~~F0 + PoFl °2 - "Po F 0 + PoF,

b) If F 0 = Fi = F, then Fx = Fx*, thus (2.4.15) may be expressed as

_ Iz£l A _ Po Lill = o1 + Po 1 + Po



95

and the criteria (2.4.12b), (2.4.12c) simplify to

(2.4.13b) and {2.4.13c) are now established by use of x* = ln[F(l +Pa)].

A final but important observation is that whenever 0 < P 0 < 1/2,

(2.4.13b) will be violated prior to (2.4.13c) if F is increased. On the

other hand, if 1/2 < P 0 < 1, (2.4.13c) wili be violated first through an

increase of F. (As we shall see later, this fact has a crucial impact of the

possible dynamics in the unstable parameter region.)  

Example 2.4.4 (Example 2.4.2 continued). Let the fecundities be equal

(i.e. F 0 = •- • = Fn F) in the general n+ 1 dimensional Ricker model that

we considered in Example 2.4.2. Then, x* = In(FD), D = Y%=o Li and the

fixed point x* may be written as x* = (x*o , ...,£*, ...,£*) where x\ = {Li/D)x*.

Our goal is to show that the fixed point x* is locally asymptotic stable when

ever x* < 2 (i.e. that all the eigenvalues A of (2.4.17) are located inside the

unit circle.)

In contrast to Example 2.4.3, Theorem 2.1.8 obviously does not work here so

instead we appeal to Theorem 2.1.9 (Rouché's theorem). Therefore, assume

\l-x*\ <l, let /(A) = Xn+\ g{\) = -(l/D)(l-s*) £2Lo^An-* and rewirite

(2.4.17) as /(A) + #(A) = 0. Clearly, / and g are analytic functions on and

inside the unit circle C and the equation /(A) = 0 has n 4-1 roots inside C.

2 + x*(PO -l) >0

2P0 + 1 - Px* > 0

The eigenvalue equation (cf. (2.4.16)) may be east in the form

1 n
An+l - -(1 - x*) Y,^71' 1 = ° (2-4-17)i=o
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On the boundary we have

Thus, according to Theorem 2.1.9, /(A)+#(A) and /(A) have the same number

of zeros inside C, hence (2.4.17) has n + 1 zeros inside the unit circle which

proves that x* < 2 is sufficient to guarantee a stable fixed point.  

Exercise 2.4.2 (Exercise 2.4.1 continued).

a) Corisider the two-dimensional Beverton and Holt model (see Exercise

2.4.1) and show that the fixed point (arj, a;J) is always stable. (F 0 = F\ =

Exercise 2.4.3: Assume P 0 < 1 and consider the two-dimensional semel

parous Ricker model:

a) Compute the nontrivial fixed point (xj,a;*).

b) Show that the eigenvalue equation may be written as

and use the Jury criteria to conclude that is always unstable.

c) Show that

. uuunucu. v wc nave

<\l-x'\<\f(X)\

b) Generalize to n + 1 age classes. (F 0 = • • • = Fn = F.)

*o,m = Fl e~xt x1 (2.4.18)

xi,t+i PqXq

\2 + = 0

*o,t+2 = (2.4.19)

Xl,t+2 = xtxht
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d) Assume that there exists a two-cycle where the points in the cycle are

on the form (A, 0), (0, B) and show that the cycle is ((1/P0 ) ln(PO Pi), 0),

(O,In(POJFi)).

e) Show that the two cycle in d) is stable provided 0 < PO Pi < e 2.

Next, consider the general system (2.4.1) and its linearization (2.4.10) and let A be the

eigenvalues of the Jacobian. We now define the following decompositions of Rn .

Definition 2.4.2.

Es is the subspace which is generated by the (generalized) eigenvectors whose

eigenvalues satisfy |Å| < 1.

Ec is the subspace which is generated by the (generalized) eigenvectors whose

Eu is the subspace which is generated by the (generalized) eigenvectors whose

corresponding eigenvalues satisfy |A| > 1.

Rn =Es eEc øEu and the subspaces E\ Ec and Eu are called the stable,

the center and the unstable subspace respectively.  

By use of the definition above, the stability result stated in Theorem 2.4.1 may be refor
mulated as follows:

x* = (sg, ...,«£) is called a hyperbolic fixed point if Ec = {o} (cf. Section 1.4). (x* is

attracting if |A| < 1, repelling if |A| > 1.)

We close this section by stating two general theorems which link the nonlinear be

haviour close to a fixed point to the linear behaviour.

eigenvalues satisfy |Å| = 1.

x* = fø, ...,<) is locally asymptotic stable if Eu = {o} and Ec = {o}.

x* is unstable if Eu {o}.
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Theorem 2.4.2 (Hartman-Grobman). Let / : R7l -> Rn be a C diffeo

morphism where x* is a hyperbolic fixed point and let Df be the linearization.

Then there exists a homeomorphism h defined in a domain U about x* such

that

(2.4.20)

for (eU.

Theorem 2.4.3. There exists a stable manifold Wfoc (-x.*) and an unstable

manifold W£c(x*) which are a) invariant, and b) is tangent to Es and Eu at

x* and have the same dimension as Es and Eu . D

2.5 The Hopf bifurcation

There are three ways in which the fixed point x* = (æj, of a nonlinear map, /p :

Rn -> Rn may fail to be hyperbolic. One way is that an eigenvalue Åof the linearization

crosses the unit circle (sphere) through 1. Then asaddle-node bifurcation occurs. Another

possibility is that Å crosses the unit circle at -1 which in turn leads to a flip bifurcation.

(In section 1.5 we analysed the generic properties of both the saddle node and the flip.)

The third possibility is that a pair of complex eigenvalues A, Å cross the unit circle. In this

case the fixed point will undergo a Hopf bifurcation which we will now describe. Note that

the saddle-node and the flip bifurcations may occur in one-dimensional maps, /M : R—> R

The Hopf bifurcation may take place when the dimension n of the map is equal or larger

than two. In this section we will restrict the analysis to the case n = 2 only. Later on in

section 2.6 we will show how both the flip and the Hopf bifurcation may be analysed in
case of n > 2.

Theorem 2.5.1 (Hopf). Let /M : R 2 -> R 2 be a two-dimensional one

parameter family of maps whose fixed point is x* = (xj, a:J). Moreover, assume

(hof)(t) = Df(x')oh(Q
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that the eigenvalues A(/z), Å (/x) of the linearization are complex conjugates.

Suppose that

(2.5.1)

and

Then, there exists a series of near identity transformations h such that hf^h' 1

in polar coordinates may be written as

Moreover, if a 0 there is an e> 0 and a closed curve of the form r =

for 0 < fi < e which is invariant under /M. D

is also called normal form calculations. Hence, formulae (2.5.3) is nothing but

the original map written in normal form.

Remark 2. If d > 0 (cf. (2.5.2)) then the complex conjugated eigenvalues

cross the unit circle outwards which of course means that {xl,x\) loses its

stability at bifurcation threshold fi = /iO . If d< 0 the eigenvalues move inside

the unit circle. n

Remark 3. A(/i0 ) =1 or A 2(/ = 1 (cf. 2.5.1)) correspond to the well known

saddle-node or flip bifurcations respectively. A 3(/ = 1 and A 4(/ = 1 are

special and are referred to as the strong resonant cases. If A is third or fourth

root of unity there will be additional resonant terms in formulae (2.5.3).  

Remark 4. As is well known, if a saddle node bifurcation occurs at \x = /jLq

it means that in case of /x < /x 0 there are no fixed points but when \x passes

\(/jlq )\ = 1 but for i = 1,2,3,4

= d#o (2.5.2)dy,

hfph I (r,cp) = ((1 + dfj,)r + ar3 , <p +c+ br2 ) + higher order terms (2.5.3)

Before we prove the theorem let us give a few remarks.

Remark 1. Performing near identity transformations as stated in the theorem
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through two branches of fixed points are born, one branch of stable points,

one branch of unstable points.

If the fixed point undergoes a flip bifurcation at \x = //o we have (in the

supercritical case) that the fixed point loses its stability at /i = (jlo and that a

stable period 2 orbit is created.

Theorem 2.5.1 says that when (xq,x\) undergoes a Hopf bifurcation at /i = (j,o

a closed invariant curve surrounding is established whenever jj, > /iO ,

|/i /io| small.  

Proof of Theorem 2.5.1. Let (rcj,rcj) be the fixed point of the two-dimensional

map x -» /(x) (x = (xO ,Xi)T) and assume that the eigenvalues of the Ja

cobian Df(xl,x{) are A, A=ax + a2 i. Next, define the 2x2 matrix T

which columns are the real and imaginary parts of the eigenvectors corre

sponding to the eigenvalues at the bifurcation. Then, after expanding the

right-hand side of the map in a Taylor series, applying the change of coordi

nates (xo ,xi) = (x 0 Xq,X\ x\) (in order to bring the bifurcation to the

origin) together with the transformations

our original map may be east into standard form at the bifurcation as

/x \ f cæ2no \/ x \ ( Ri(x,y)) \ , .
\y ) \

Our next goal is to simplify the higher order terms Ri and R 2. This will be

done by use of normal form calculations (near identity transformations). The

calculations are simplified if they first are complexified. Thus we introduce

(S)-*C) (:)- r4 (i)

x' = cos 2tt6x sin 2-nQy + Ri(x} y)

y' = sin 2tt9x 4- cos 27r9y + R2 (x, y)

z=x + yi z' =x' + y'i R=R1 + R2 i



and rewrite (2.5.4) as

(2.5.5)

where the remainder is on the form

(2.5.6)

Then

(2.5.7)

(2.5.8)

(2.5.9)

and claim that

(2.5.10)

This is nothing but a consequence of (2.5.9). Indeed we have

/:C-> C, z-> /(*) = e 27r + Æ(s)

R(z) = R(k\z) + o{\z\k+l )

Here, fl<*> = r[k) zk + +•• • + r&z*.

Next, define

z = Z(w) w = W{z) = Z~ l {z)

J = f(z))f(Z(w))

which in turn implies

w' = f(w) = Z-\zl) = (Z-1 o/ o Z)(w)

Now, we introduce the near identity transformation

z=Z(w)=w + P(k) {w)

w= z- pW(z) + o(\z\k+l ) = W(z)

w = z- pW(w) = z- P{k) (W(z))

=w + P{k\w) - P{-k\w + pW(w))

= w + terms of order higher than k

Thus, we may now by use of the relations

f{z) = e27rdi z + + h.o.

Z(w) = w + P{k\w)

Z-1 (zf ) = z'-PW{z')+h.o.

101
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(where h.o. means higher order) compute f (w). This is done in two steps.

First,

Then

(2.5.11)

Next, we want to choose constants in order to remove as many terms in R(k\w)

as possible. To this end let Hk be the space of polynomials of degree fe and

consider the map

K:Hk ->Hk K(P) = e2*9iP(w) - P(e2ir9iw) (2.5.12)

Clearly, w lwk~ l is a basis for Hk and we have

_ re2*di _ e2nØi(2l-k)l wlyjk-l

From this we conclude that terms in of the form wlwk~ l such that

A(0, fe, /) = 0 cannot be removed by near identity transformations. There are

two cases to consider: (A) 9 irrational, and (B) 0 rational.

(A) Assume 0 irrational. Then \ = o<=>2l = k + l thus k is an odd number.

Here k = 1 corresponds to the linear term and the next unremoval terms are

proportional to w2w and w\w\ 4 (i.e. third and fifth order terms).

(B) Supppose 6 = \ijr rational, /i, r € N, fi/r. Then A = 0 <3> (21 - (k +

l))/x/r = m where m e Z. This implies (21 - (k + l))/i = mr. Therefore r

must be a factor in (21 - (k + 1)). Thus the smallest fe (Z = 0), equals r - 1

which means that the first unremoval terms are proportional to W~l . When

z' = {fo Z)(w) = e2neiw + e2*eipW(w) + + ...)

f(w) = (Z- 1 ofoZ)(w) = z'- pW(zf) + h.o. p

= e2lxHw + e27r + + •••) - P{k) {e2neiw) + h.o.

K(wlwk~ l ) = e^Qi wlwk ~ l - e2n9il w l e~^^-t)^-i

= Xwl wk l

where k = 2,3,4,..., 0 <l<k.
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r = 2 the flip occurs. The cases r = 3,4 which corresponds to eigenvalues

of third and fourth root of unity repectively are special (cf. Remark 3 after

Theorem 2.5.1.)

Now, considering the generic case, 6 irrational, we may through normal form

calculations remove all terms in Rtø except from those which are proportional

to w2w and w\w\ 4 , hence (2.5.5) may be east into normal form as

where a and /3 are given complex numbers. Now introducing polar coordinates

(r, (p), (2.5.13) may be expressed as

<p' = cp + c + br2 (2.5.14b)

which is nothing but formulae (2.5.3) in the theorem.

Finally, observe that the fixed point r* of (2.5.14a) is

Considering the case where the eigenvalues A, A leave the unit circle at bifurca

tion threshold as /z is increased (i.e. d > 0, /x > 0), a < 0 is necessary in order

for r* to exist. The eigenvalue of the linearization of (2.5.14a) is a = 1 2d/i,

hence r* is stable whenever d\i small. (Another way to see that a < 0 is

necessary for r* to be an attractor is simply to solve (2.5.14a) by graphical

analysis.) Therefore we conclude that (a < 0,/ z > 0, d > 0) the outcome

of a supercritical Hopf bifurcation is an invariant attracting circle (curve) as

displayed in Figure 11.  

Referring to section 1.5 where we treated the flip bifurcation we stated and proved

a theorem (Theorem 1.5.1) where we gave conditions for the flip to be supercritical.

Regarding the Hopf bifurcation there exists a similar theorem which was first proved by

Wan (1978).

z' = f(z) = e2"eiz{l + a/i + s\z\ 2 ) (2.5.13)

r' = r(l + dfj, + ar2 ) (2.5.14a)

= V™ (2-5.15)
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Figure 11: The outcome of a supercritical Hopf bifurcation. A point close to the
unstable fixed point x moves away from x and approaches the attracting curve (indicated
by a solid line). In the same way an initial point located outside the curve is also
attracted.

Theorern 2.5.2 (Wan). Consider the map K :R2 -> R 2 on standard form

/a;\ /cosØ -sinØ \/ x \ I f(x,y) \ (2 5 16)
\y J \ sinØ cos<9 J\ y ) \ g{x,y) ) V• • )

with eigenvalues A, A = e±ld . Then the Hopf bifurcation is supercritical when

ever the quantity d (cf. (2.5.2)) in Theorem 2.5.2 is positive and the quantity

a (cf. (2.5.14a)) is negative, a may be expressed as

(2.5.17)

where

a=-Re (1 - AA)A fcfa) -I|?ll |2_|?o2 p + ile(A?2l)

6o = g [(fxx ~ fyy + 2#xy) + i(pxx - gyy - 2/xy)]
1

fil = 4 [(/xx + /j/y) + %*s + Stø)]

&2 = - [(/xx - fyy - 2gXy) + %xz ~ Qyy "f 2/xy)]

S2l T7T 11/xxx T /xyj/  9xxy "T H~ 1 i7zyy /xiy /yyyJJ
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For a formal proof we refer to Wan's original paper (Wan, 1978).

(The idea of the proof is simple enough: we start with the original map, write it on

standard form (i.e. (2.5.16)) and for each of the near identity transformations we then

perform we express the new variables in terms of the original ones, thereby obtaining a in

(2.5.14a) expressed in terms of the original quantities. The problem of course is that the

calculations involved are indeed cumbersome and time-consuming as formulae (2.5.17)

suggests.)

Example 2.5.1. Consider the stage-structured cod model proposed by Wikan

and Eide (2004).

Here the cod stock x is split into one immature part x\ and one mature

part x 2. Fis the density independent fecundity of the mature part while p

measures the "strength" of cannibalism from the mature population upon the

immature population. P is the survival probability from the immature stage

to the mature stage and /Ai,tø are natural death rates. We further assume:

o<P< 1, 0 < /xi, fø <l,o>o, F > 0 and FP >pu fi2 .

Assuming x\ X\j+\ = x^t and x 2 = a?2,t+i = #2, t the fixed point of (2.5.18)
is found to be

The eigenvalue equation of the linearized map becomes (we urge the reader to

work through the details)

Now, defining ax = -(2 - - ju2), a 2 =(1 - //i)(l - /x 2) - //i/x2 (l - /3x*2 ) and

appealing to the Jury criteria (2.1.14) it is straightforward to show that the

a>i,t+i = Fe-px^x2 ,t + (1 - /ii)a?i,t (2.5.18)

X2,t+l = PXitt +(1 - fJ-2)X2,t

\to , fFP\ 1. f FP\ (2.5.19)

A 2 -(2 - /X! - (i2 )X +(1 - Ml)(l - /i 2) - MlAl3 (l - OXJ) = 0 (2.5.20)
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fixed point is stable as long as the inequalities

(2.5.21a)

(2.5.21b)

(2.5.21c)

hold. Clearly, (2.5.21a) and (2.5.21b) hold for any positive x*2 . Thus, there

will never be a transfer from stability to instability through a saddle-node or

a flip bifurcation. (2.5.21c) is valid in case of x\ sufficiently small. Hence,

the fixed point is stable in case of small equilibrium populations. However, if

x 2 is increased, as a result of increasing F which we from now on will use as

our bifurcation parameter, it is clear that (xl,x%) will lose its stability at the
threshold

xl = (2.5.22a)

or alternatively when

Consequently, the fixed point will undergo a Hopf bifurcation at instability

threshold and the complex modulus 1 eigenvalues become

(2.5.23)

In order to show that the Hopf bifurcation is supercriticai we have to compute

d (defined through (2.5.2)) and a (defined through (2.5.17)) and verify that
d > 0 and a < 0.

By first computing A from (2.5.20) we find

(2.5.24)

which implies

Pfiiføxl > 0

2(2 - /ii - /i 2) + /Zi/i2 > °

Ml + tø ~ Pfa V*X\ > 0

F = (2.5.22b)

T 2-fa - fa b .A, A = ~ ±-l2 2

where b = s/MjJki + /x 2) - tøi + /^) 2 -

A| = y/(l - - /ia) - - px *2 )

dF 2v,(1-//i)(l-//2 F
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and since the square root is equal to 1 at bifurcation and F is given by (2.5.22b)
we obtain

which proves that the eigenvalues leave the unit circle through an enlargement

of the bifurcation parameter F.

In order to compute a we first have to express (2.5.18) on standard form

(2.5.16). At bifurcation the Jacobian may be written as

(2.5.26)

so by use of standard techniques the eigenvector {ZU Z2 )T belonging to A is
found to be

and the transformation matrix T and its inverse may be east in the form

(2.5.28)

The next step is to expand f(x2 ) = Fe-^2 up to third order. Then (2.5.18)
becomes

and by introducing the change of coordinates (xu x2) = {xi - x\,x2 - x 2), in

order to bring the bifurcation to the origin, the result is

(2.5.29b)

|A| = i =d>o (2.5.25)

7_.( 1 ~ /*1 ?[(W/*2 - + tts)] A

(zi,z2 ) T = + ±i, 1 + oA (2.5.27)

T— ( 2P 2P l t_l I ® * i

*w = yte) + f'te)(^,t - *i) + \f"te)(x2,t - A?

+\f"(x'2){xu - x'2 Axv +(1 - W)*i,t
*2,t+l = Px ,t +(1 - fJ-l)x2,t

£i,t+i =(1 - Mi)£i,t + p MiMa(l - jfø;)x2 ,t - fl -|xj J x£t

+ p 2"6 XV **•* (2.5.29a)

#2,i+l = + (1 - V2)X2tt
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where all terms of higher order than three have been neglected.

Finally, by applying the transformations

(2.5.30)

we obtain after some algebra that the original map (2.5.18) may be east into
standard form as

(2.5.31)

where

t f, P *\ 2 2P2 fl l? t\ ,
g(u, v) =— w 2 --*5 1 " - -y- MiM2 (g~f xa ) w

Now at last, we are ready to compute the terms in formulae (2.5.17)

so finally, by computing |fu | 2 = |£o2| 2 = Re(X(2 I)

(l/32)bguuu and inserting into (2.5.17) we eventually arrive at

(2.5.32)

which is negative for all 0 < tø, tø < 1. Consequently, the fixed point (2.5.19)

undergoes a supercritical Hopf bifurcation at the threshold (2.5.22a,b) (i.e.

when {x{,x2 ) fails to be stable through an increase of F, a closed invariant

attracting curve surrounding {x\,x*2 ) is established).  

(i)-'(0 (O-^tt)

2 - /xi - /i 2 b
Ut+i = ut - -vt

b 2 /ii fx2 , .
ut+i = 2 Ut + 2 v* + 9{Uh vt)

4/? 12/5 2 _

where A= l- (0/2)x*2 , B = (1/2) - ((3/6)x*2 . This yields:

t- X  c 1  c 1  t 1 •
£2O g iQuu Kw 2 l9uu £°2 = g l9uu 21 =l6 uuu

and

J(1-2A)A2 1 gl

[3(mi + to) [(2 -«i- u 2) 2 - b 2} - 2(2 - fi± - to)b2]

ff
a= - 16(/il +—} {(W2)2 + (fil + /X2) [(2/ii/i2 - (/ii + /z 2) - MlM2] }
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In the next example, which we will mainly present as an exercise, most of the cumbersome

and time-consuming calculations we had to perform in Example 1.5.1 are avoided.

Example 2.5.2. Assume that the parameter jjl > 1 and consider the map

(2.5.33)

a) Show that the nontrivial fixed point

b) Compute the Jacobian and show that the eigenvalue equation may be

expressed as

c) Use the Jury criteria (2.1.14) and show that the fixed point is stable

whenever 1 < \i < 2 and that a Hopf bifurcation occurs at the threshold

/j, = 2.

d) Show that |A| = >/M - 1 and moreover that

T» w^>0
which proves that the eigenvalues leave the unit circle at bifurcation

threshold.

e) Assuming /j, = 2, apply the change of coordinates (x, y) = (x - (1/2), y -

(1/2)) together with the transformations

(verify that the columns in T are the real and imaginary parts of the

eigenvectors belonging to the eigenvalues of the Jacobian respectively)

\y ) \ rø(l -x) )

Å 2 -Å + /i-l = 0

(;)-'(:) C)—(J)
where

/ 1 JÆ \
T= 2 2

\1 0 )
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and show that (2.5.33) may be written on standard form at bifurcation

threshold as

(2.5.34)

f) Referring to Theorem 2.5.2 show that the quantity a defined in (2.5.17)

is negative, hence that in case of /z > 2, \/i - 2| small, there exists an

attracting curve surrounding the unstable fixed point (x*,y*).

Exercise 2.5.1 (Strong resonant case I). Consider the two-age structured

population model

b) Show that the eigenvalue equation may be east in the form \2 +x{ -1 = 0

and further that a Hopf bifurcation takes place at the threshold x\ = 2

(or equivalently when F 2 = (l/P) exp(2)).

c) Show that A equals fourth root of unity at bifurcation threshold.

Note that the result obtained in c) violates assumption (2.5.1) in Theorem 2.5.1

which of course means that neither Theorem 2.5.1 nor Theorem 2.5.2 applies

on map (2.5.35). We urge the reader to perform numerical experiments where

F 2 > (1/P)exp(2) in order to show that when fails to be stable,

an exact 4-periodic orbit with small amplitude is established. (For further

reading, cf. Wikan (1997.)  

\»/~* \ k ]l ") + ( 9(%l) )
where f(u, v) = -u2 - and g(u, v) = (l/^/S)u2 + uv.

(xu x2 ) -> {F2x2 ,Pe-xl x 1 ) (2.5.35)

where 0 < P < 1, F 2 > 0 and PF2 > 1.

a) Show that the fixed point (x\,x*2 ) = (In(PF2 ), (l/F2 )In(PF2 ))-
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Exercise 2.5.2 (Strong resonant case II). Repeat the analysis from the

previous exercise on the map

(2.5.36)

Hint: A equals third root of unity at bifurcation threshold.

We close this section by once again emphasizing that the outcome of a supercritical

Hopf bifurcation is that when the fixed point fails to be stable an attracting invariant

curve which surrounds the fixed point is established. In section 2.7 we shall focus on the

nonstationary dynamics on such a curve as well as possible routes to chaos. However,

before we turn to those questions we shall in the next section present the center manifold

theorem which plays a key role in order to analyse the nature of bifurcations in higher

dimensional problems.

Recall that in our treatment of the flip bifurcation (cf. section 1.5) we considered one

dimensional maps of the form / : R -* R and when we studied the Hopf bifurcation in the

previous section the main theorems were stated for two-dimensional maps / : R 2 ->• R 2.

Let us now turn to higher-dimensional maps, /: Rn -> Rn . Of course, |A| =1 at

bifurcation in these cases too but how do we determine the nature of the bifurcation

involved when the fixed point fails to be hyperbolic?

The main conclusion is that there exists a method which applied to a map on the form

/ : Rn -> Rn reduces the bifurcation problem to a study of a map g :R2 -> R 2 (Hopf), or

g : R -» R (flip). The cornerstone in the theory which allows this conclusion is the center

manifold theorem for maps which we now state.

Theorem 2.6.1 (Center manifold theorem). Let / :Rn -> Rn be a C*,

k>2 map and assume that the Jacobian Df(0) has a modulus 1 eigenvalue

(xu x2)->(Fe-^+x*\xl +x2 ),xl )

2.6 The center manifold theorem
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and, moreover, that all eigenvalues of Df(0) splits into two parts ac , as such

that

1 \< 1 lf A€ as

Further, let Ec be the (géneralized) eigenspace of ac , dim£c =d < od. Then

there exists a domain V about 0 in Rn and a Ck submanifold W of V of

dimension d passing through 0 which is tangent to Ec at 0 which satisfies:

I) lf x € W and f (x) € V then f(x) e W.

II) lf fW(x) e V for all n = 0,1,2,... then the distance from to W

approaches zero as n —> co.  

For a proof of Theorem 2.6.1, cf. Marsden and McCracken (1976, p. 28-43).

Concerning Hopf bifurcation problems, the essence of Theorem 2.6.1 is that there

exists an invariant manifold of dimension 2 cW1 which has the eigenspace belonging to

the complex eigenvalues as tangent space at the bifurcating nonhyperbolic fixed points.

In case of flip bifurcation problems, dim W = 1. Thus close to the bifurcation, our goal

is to restrict the original map to the invariant center manifold W and then proceed with

the analysis by using the results in Theorems 2.5.1 and 2.5.2 in case of Hopf bifurcation

problems and Theorem 1.5.1 in the flip case.

Let us now in general terms describe how such a restriction may be carried out. To

this end, consider our discrete system written in the form

(2.6.1)

where all the eigenvalues of A are on the boundary of the unit circle and those of B within

the unit circle. (If the system we want to study is not on the form as in (2.6.1) we first

apply the procedure in Example 2.5.1, see also the proof of Theorem 2.5.1.)

xi+i = Axt + F(xt , yt )

yw =Byt + G(xt,yt)
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Now, since the center manifold Wis tangent to the (generalized) eigenspace Ec , we

may represent it as a local graph

(2.6.2)

An explicit expression of h(x) is out of reach in most cases, but one can approximate h

by its Taylor series at the bifurcation as

(2.6.4)

where the coefficients a, b are determined through (2.6.3), and finally the restricted map

is obtained by inserting the series of h into (2.6.1).

Example 2.6.1. Consider the Leslie matrix model

(2.6.5) is often referred to as the Deriso-Schnute population model. Note that if 7 -> 0,

(2.6.5) is nothing but the Ricker model (see (2.3.4) and Examples 2.4.1 and 2.4.3). If

7 = -1 we are left with the Beverton and Holt model (see (2.3.5) and Exercise 2.4.1).

We urge the reader to verify the following properties:

(2.6.6)

W = {(x, y)/y = h(x)} h(0) = Dh(Q) = 0

and by substituting (2.6.2) into (2.6.1) we have

yt+i = h(xt+i) = h(Axt + F(xÉ , h{xt)) = £/i(xt ) + G(xt , /ifø))

or equivalently

h(Ax + F(x, h(x))) - Bh(x) - G(x, h(x)) = 0 (2.6.3)

h(x) = ax2 + bxz + 0{xA )

' *-* (£)-(*'V"* F(1 7"'")(S) <M'5»
where x= x\ +x2 is the total population.

Our goal is to show that under the assumptions F(l +P)>l, 0 < P < 1/2, 7 >

-(! _ -P)/2 tne fixed point of (2.6.5) will undergo a supercritical flip bifurcation

at instability threshold.

(i:' is)= (tTp i'tTp l')
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where x* = (1/7)[l -(P + PF)~f]. Defining f (x) = F(l - 73;) 1/7 the Jacobian becomes

Show by use of the Jury criteria (2.1.14) that whenever 0 < P < 1/2, 7 > -(1 -P)/2

the fixed point (2.6.6) will undergo a flip bifurcation when fx* = -2/(1 - P 2) and that

the Jacobian at bifurcation threshold equals

(~t t) (2.6.7)

and moreover, that the eigenvalues of (2.6.7) are Ai = -1 and A 2 = -P/(l -P)

Now, in order to show that the flip bifurcation is of supercritical nature we must appeal

to Theorem 1.5.1 but since that theorem deals with one-dimensional maps, we first have

to express (2.6.5) on the appropriate form (2.6.1) and then perform a center manifold

restriction as explained through (2.6.2)-(2.6.4).

The form (2.6.1) is achieved by performing the same kind of calculations as in Example

2.5.1. The eigenvectors belonging to Ai and A 2 are easily found to be (-1/P, 1) T and

(~V(1 - P), 1) T respectively so the transformation matrix T and its inverse become

(2.6.8)

Further, by expanding / up to third order, i.e.

and applying the change of coordinates (xu x2) = (x 1 - x{,x2 - x*2 ), using the fact that

fx* = -2/(1 - P 2) at bifurcation threshold gives

(2.6.9)

(f'x* + f f'x* +f\

where / = f(x*) = 1/(1 + P) and /' = f(x*).

/ -i- L_ \ / p(i-p) \
T— \ P I~ P I T~l I 2P-1 2P-1

VI 1 \ p(l~p) --!=£ 
V 7 \ 2P-1 2P-1 /

/(*) w /(*•) + f'(x*)(x - x") + lf"(x'){x - x'f + \f'"{x*){x - x'fl 0

«wi = - yzp *w - rrp *** + w* + rø**
X2,É+l = PÆljt



where all terms of higher order than 3 have been neglected and {l} and {2} are defined

through

(SM:) (°)- r'(i)

ut+l = -ut + g(ut ,Vt)

Vt+i = - YZTp Vt ~ 9 (u*> u*)

where gfa v) = A[(l - P) 2 u + P2v} 2 + B[(l - P) 2 + P2u] 3

1 1

" P(2P - 1)(1 -P) {l} B= " P2(2P-1)(1-P)2 {2>

(2.6.10)

and we observe that (2.6.10) is nothing but the original map (2.6.5) written on the desired

form (2.6.1).

By use of (2.6.3) we now have

which is

{l}=/' + i/V {2} = i/" + i/'V

Now, performing the transformations

on (2.6.9) we arrive at

The next step is to restrict (2.6.10) to the center manifold. Thus, assume

v = i(u) = Ku2 + Lu3 (2.6.11)

p
i(-ut + g(uu vt)) + *(M*) + 9(v*i »(«**)) = 0

equivalent to

PK
K+ T + (\-pyA u 2+

PL
-j—p - 2KA(I -P)A -L + 2AP2 {l - P) 2K + B{\ -Pfu3 = 0

from which we obtain

K = -(1 - P) 5 A L=(l - P) 7 [£ + 2v42 (l - P)(l - 2P)]

115
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Finally, by inserting v = Ku2 + Lu3 into the first component of (2.6.10) the restricted

map may be east in the form

(2.6r12)

Since u -> /i(w) is a one-dimensional map we may now proceed by using Theorem 1.5.1

in order to show that the flip bifurcation is supercritical. A time-consuming but straight

forward calculation now yields that the quantity b dermed in Theorem 1.5.1 becomes

= .Æp +l] 2P) { (p - 7)2 +(1 - 7)(47 - 3P+ *>} ( 2 - 6 - 13 )

at bifurcation. Here we may observe that W[i) = { } attains its minimum when j =

(9/4) P - 3/4 and that W((9/4)P - 3/4) > 0 whenever 0 < P < 1/2. Hence b > 0.

Regarding the nondegeneracy condition a defined in Theorem 1.5.1, it may be ex

pressed as

Now, since the bifurcation is transformed to the origin it follows that dh/du = -1 and

dh/dF = 0. Therefore the condition simplifies to

where

tåt+i = h(ut) = -ut + i4(l - P)\2

+-(1~ Pf[B - 2A2P2{l - P)]u\ + 0(n4 )

2 \du2 ) + 3 du5

dh d2 h (dh \ d2h

—ot-"—w"
since in general dh/du =Å. From the Jacobian:

Å=— ( w —Vw 2 + 4:PW]

w = f'x' +f = j±1;{-±.[(F +FPy -l] +l\
it follows that

d\ _dw 1 / dw jAp dw\
dF "dF 2Vw* + 4Pw \ dF + dF)

dw [ 1
= l-—===(w + 2P)
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At bifurcation, w = —(1 —P) l which inserted into the expression above gives

(2.6.14)

and clearly, (2.6.14) is nonzero whenever 0 < P < 1/2. Consequently, the flip bifurcation

is supercritical, which means that when the fixed point fails to be stable, a stable two

periodic orbit is established.

We close this section by showing the dynamics beyond the flip bifurcation threshold

for the Ricker map

(2.6.15)

which is a special case of map (2.6.5) (the case j ->- 0). Assuming F(l +P) > 1 the

nontrivial fixed point of (2.6.15) is

and whenever 0 < P < 1/2 we have according to the preceding example that the fixed

point undergoes a supercritical flip bifurcation at the threshold F = (1/(1+P)) exp(2/(l-

P)).

Now, consider the value P = 0.2. Under this choice the fixed point is stable in the F

interval 0.834 < F < 10.152 and in Figure 12 we have plotted the bifurcation diagram of

(2.6.15) in the range 5 < F < 80. We clearly identify the supercritical flip at the threshold

F = 10.152 and beyond that stable periodic orbits of period 2k are established through

further increase of F so what we recognize is essentially the same kind of dynamical

behaviour as we found when we considered one-dimensional maps. Beyond the point of

accumulation for the flip bifurcation sequence the dynamics becomes chaotic as displayed

in Figure 13. Note that the chaotic attractor consists of 4 disjoint subsets (branches) that

are visited once every fourth iteration so a certain kind of four periodicity is preserved in

the chaotic regime. In case of higher F values the branches merge together.

dF~ l [\-p +l\ 1-2P

(xoi xi) -» (Fe x (xq + xi),Pxq)

(«S. «0 = i 3)), ln(F(l + P)))
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Figure 12: The bifurcation diagram of map (2.6.14) in the case P = 0.2. For small
F values we see the stable fixed point of (2.6.14) which undergoes a supercritical flip
bifurcation when F = 10.152. Through further increase of F stable orbits of period 2 k
are created until an accumulation value Fa for the flip bifurcations is reached. Beyond
Fa the dynamics is chaotic.

Figure 13: The chaotic attractor consisting of four separate branches just beyond the
point of accumulation for the flip bifurcations in the case P = 0.2, F = 58.5. The
dynamics goes in the direction A —> B —> C -> D.
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2.7 Beyond the Hopf bifurcation, possible routes to
chaos

As we proved in section 2.5, the outcome of a supercritical Hopf bifurcation is that when

the fixed point of a disGrete-map fails to be stable, an attracting invariant curve whkh

surrounds the fixed point is created. Our goal in this section is to describe the dynamics on

such an invariant curve. We will also discuss possible routes to chaos and as it will become

clear, the dynamics may be much richer than in the one-dimensional cases discussed in

Part I.

In general terms, the dynamics on an invariant curve (circle) created by a Hopf bifur

cation may be analysed by use of equation (2.5.14b). Indeed, if we substitute the fixed

point r* of (2.5.14a) into (2.5.14b) we arrive at

where c = arg A. Also recall that when we derived (2.5.14a,b) we first transformed the

bifurcation to the origin. If the Hopf bifurcation occurs at a threshold fio ± 0, a(/i) =

Now, the essential feature is that successive iterations of (2.7.1) simply "move" or

rotate points from one location to another on the invariant curve. Hence, the original

map /M : R -» R 2 may be regarded as being topological equivalent to a circle map

g : S' -» Sr once the invariant curve is established. Moreover, considering g, one may

define its rotation number as the average amount that points are rotated by an iteration

of the map. Therefore, we may (to leading order, recall that (2.7.1) is a truncated map)

regard (2.7.1) as a circle map with rotation number <r(/z).

Remark 1. A more precise definition of the rotation number may be achieved

along the following line: Given a circle map g : S -» S we first "lift" g to the

real line R by use of ir : R -» S, ir {x) = cos(27rz) + isin(27r:c) and then define

the lift FasF:R -» R, noF = goir. Next, let aO {F) = Fn {x)/x and

finally define the rotation number of g i a(g) i as the unique number in [0,1)

+ c n=ip + cr(u) (2.7.1)
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such that cr0 (F) - a(g) is an integer. In Devaney's book there is an excellent

introduction to circle maps. D

Returning to map (2.7.1) the rotation number may be irrational or rational. In the

former case this means that as the number of iterations of the map tends to infinity, the

invariant curve wili be filled with points. Whenever a irrational, an orbit of a point is

often referred to as a quasistationary orbit. If a = l/n, rational, the dynamic outcome is

an n-period orbit. It is of great importance to realize that whenever the rotation number is

rational for a given parameter value yu = /zr , it follows from the implicit function theorem

that there exists an open interval about \iT where the periodicity is maintained. This

phenomenon is known as frequency locking of periodic orbits. Consequently, periodic

dynamics will occur in parameter regions, not at isolated parameter values only. As we

shall see, such regions (or intervals) may in fact be large. So in order to summarize:

beyond the Hopf bifurcation (and outside the strongly resonant cases where A is third

or fourth root of unity) there are quasistationary orbits restricted to an invariant curve

and there may also be orbits of finite period established through frequency locking as the

value of the parameter // in the model is increased.

Our next goal is by way of examples to study in more detail the interplay between

these cases as well as studying possible routes to chaos.

Example 2.7.1. First, consider the two-age class population model

(2.7.2)

which is a semelparous species model where the fecundity F is constant while

the survival probability p(x) = Pexp(-ax) is density dependent. a is a

positive number (scaling constant) and we assume that PF > 1.

It is easy to verify that (2.7.2) possesses the following properties: The fixed

point may be expressed as

(2.7.3)

(xo ,xi)->(Fx,Pe-axxo )

<*-0 = (tTF*-.TT7*)
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where x* = x$ + x\ = a 1 ln(PF). Moreover, the eigenvalue equation may be

east in the form

and from the Jury criteria one obtains that the fixed point is stable in case of

PF small but undergoes a Hopf bifurcation at the threshold

Note that a drops out of (2.7.4), (2.7.5) which simply means that stability

properties are independent of a. At bifurcation threshold (2.7.5) the solution

of the eigenvalue equation becomes

(2.7.6)

A final observation is that by rewriting (2.7.2) on standard form (as in Example

2.5.1) and then apply Theorem 2.5.2, it is possible to prove that the bifurcation

is supercritical.

Now, let us scrutinize a numerical example somewhat closer. Assume P = 0.6.

Then from (2.7.5) the F value at bifurcation threshold is numerically found to

be F= Fc = 14.1805. We want to investigate the dynamics when F > Fc . In

Figure 14 we show the dynamics just beyond the instability threshold in the

case (a,P,F) = (0.02,0.6,15). From an initial state (xmi xlo) 500 iterations

have been computed and the last 20 together with the (unstable!) fixed point

are plotted. The invariant curve is indicated by the dashed line so clearly the

original map (2.7.2) does nothing but rotate points around that curve, i.e.

(2.7.2) acts as a circle map.

Moreover, Figure 14 demonstrates a clear tendency towards 4-periodic dynam

ics. This is as expected due to the location of the eigenvalues. Indeed, when

Fc = 14.1805 it follows from (2.7.6) that the eigenvalues are located very close

to the imaginary axis (Ai |2 = -0.0750 ± V0.9975i), and since the rotation

, 2 In(PF) , F lalPF) , „ ,

P = Pc = i e2 < 1+F>/F (2.7.5)

a —^iA-S*
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Figure 14: The dynamics of map (2.7.2) (a quasistationary orbit), just beyond the Hopf
bifurcation threshold

number (up to leading order!) has the form a(F) = c- (bd/a)(Fc - F) where

c = arg Å it follows that a must be close to 1/4 in case of F close to Fc .

If we increase F beyond 15 we observe (due to frequency locking!) that an

exact 4-periodic orbit is established. This is shown in Figure 15 in the case

(a, P, F) = (0.02, 0.6, 20) and further, it is possible to verify numerically that

the exact 4-periodicity is maintained as long as F does not superceede the

value 21.190.

At F = 21.190 the fourth iterate of (2.7.2) undergoes a flip bifurcation, thus

an 8-periodic orbit is established, and through further enlargement of F we

find that new flip bifurcations take place at the parameter values 24.232 and

24.883 which again result in orbits of period 16 and 32 respectively. Hence we

oberve nothing but the flip bifurcation sequence which we discussed in Part I.

The point of accumulation for the flip bifurcation is found to be Fa « 25.07

and in case of F > Fa the dynamics becomes chaotic.
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Figure 15: A 4-periodic orbit generated by map (2.7.2).

Figure 16: An 8-periodic orbit generated by map (2.7.2).
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x 1

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

x 0 (1000)

Figure 17: A 32-periodic orbit generated by map (2.7.2)

Figure 18: Map (2.7.2) in the chaotic regime.
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These findings are shown in Figures 16, 17 and 18. In Figures 16 and 17

periodic orbits of period 8 and 32 are displayed. In Figure 18 we show the

chaotic attractor. Note that the attractor is divided in 4 disjoint subsets and

that each of the subsets are visited once every fourth iteration so there is a

kind of 4-periodicity preserved, even in the chaotic regime.  

Example 2.7.2. The next example is basically the same as the previous

one but the dimension of the map has been extended by 1 and we consider a

general survival probability p(x), 0 < p(x) < 1, p'(x) < 0, instead of p(x) =

Pexp(—x). Hence we consider the problem

(xu x2i x3 ) -> (F3x3 ,p(x)xu p(x)x2 ) (2.7.7)

Skipping computational details (which are much more cumbersome here than

in our previous example) we find that the nontrivial fixed point is

(2.7.8)

Moreover, by first computing the Jacobian and then use the Jury criteria, it

is possible to show that (2.7.8) is stable as long as

(2.7.9)

(2.7.8) becomes unstable when F 3 is increased to a level Fm where (2.7.9)

becomes an equality. At that level a (supercritical) Hopf bifurcation occurs

and the complex modulus 1 eigenvalues may be expressed as

(2.7.10)

(^,*D=(f,p(**)§,pV)f)
where K = £t=iPi_V) and x* = p^J^"-1*). {p~ l denotes the inverse

ofp.)

K (1 +p(x*))(l p2 (x*))

a - pV) i r p4 (*-) .
1,2 ~ i+pm v (i+p^*))2 *
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Now, for comparison reasons, assume that p(x) = Pexp(-x) just as in Ex

ample 2.7.1. Then it easily follows that F 3 is a "large" number at bifurcation

threshold Fm and further that p(x*) <l. Consequently, Ai,2 are located

very close to the imaginary axis, in fact even closer than the eigenvalues from

Example 2.7.1. When we increase F 3 beyond FHI we observe the following

dynamics: In case of F 3 - FHi small we find an almost 4-periodic orbit re

stricted on an invariant curve and through further enlargement of F 3 we once

again find (through frequency locking) that an exact 4-periodic orbit is the

outcome. Thus the dynamics is qualitatively similar to what we found in

Example 2.7.1. However, if we continue to increase F 3 we do not experience

the flip bifurcation sequence. Instead we find that the fourth iterate of map

(2.7.7) undergoes a (supercritical) Hopf bifurcation at a threshold F 3 = FH2 .

Therefore, beyond that threshold, and in case of F 3 - FH2 small, the dynamics

is restricted on 4 disjoint invariant attracting curves which are visited once

every fourth iteration. This is displayed in Figure 19. At an even higher value,

F 3 = FSI map (2.7.7) undergoes a subcritical bifurcation which implies that

whenever F 3 > Fs there is no attractor at all so in this part of parameter space

we simply find that points (xu x2l x 3) are randomly distributed in state space.

So far we have demonstrated that although the dynamics is a quasistationary orbit just

beyond the original Hopf bifurcation threshold, the dynamical outcome may be a periodic

orbit as we penetrate deeper into the unstable parameter region. Such a phenomenon

may happen when | arg A| is close to 7r/4 at bifurcation threshold (4-periodicity). Another

possibility (among others!) is that | argA| is close to 2tt/3 (3-periocidity).

Note, however, that if arg A is close to a "critical" value, say 7r/2, at bifurcation it

does not necessarily imply that a periodic orbit is created when we continue to increase

the bifurcation parameter. In fact, when the parameter is enlarged the location of the

eigenvalues may move away from the imaginary axis, hence the periodicity will be less pro-



nounced as the bifurcation parameter growths. In our next example there is no periodicity
at all.

Example 2.7.3. Consider two-dimensional population map

Hence, only the second age class x 2 contributes to density effects. As before,

F > 0, 0 < P < 1 and F(l + P) > 1.

Figure 19: Map (2.7.7) after the secondary Hopf bifurcation

(xu x2 ) -> {Fe~X2 xl +Fe-X2x2 ,Pxl ) (2.7.11)

We urge the reader to verify that the fixed point {x\,x*2 ) may be written as

W. *8 = (p *S. I»[(l + P)-F)) (2.7.12)
and further that a (supercritical) Hopf bifurcation occurs at the threshold

F=F* = 1 P ( 1+2p)/(1
H l+ P (2.7.13)

127
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Figur.e 20: Dynamics generates by map (2.7.11). Parameter values: (a) (P,F)
(0.6,2.5); (b)(P,F) = (0.6,5.0).

and finally that the solution of the eigenvalue equation at threshold (2.7.13)
becomes

Now, assume that P is not close to zero. Then, the location of A clearly

suggests that frequency locking into an orbit of finite period will not take

place. In Figure 20a we show the invariant curve just beyond the bifurcation

threshold (P, F) = (0.6,2.5) and on that curve we find no tendency towards

periodic dynamics.

As we continue to increase F (P fixed) the "radius" of the invariant curve

A = 20TP) { l± V/4(1 + .P) 2 -I*} (2.7.14)
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becomes larger. Eventually, the invariant curve becomes kinked and signals

that the attractor is not topological equivalent to a circle anymore and finally

the curve breaks up and a chaotic attractor is born. This is exemplified in

Figure 20b.  

In our final example all bifurcations that we have previously discussed are present.

Example 2.7.4. Referringto section 2.4, Examples 2.4.1 and 2.4.3 we showed

that the fixed point of map (2.4.2), i.e.

is stable in case of small equilibrium populations x* = Xq + x\ but eventually

will undergo a supercritical Hopf bifurcation at the threshold

provided 1/2 < P 0 < 1 and equal fecundities F 0 = Fx = F. In Figure 21 we

have generated the bifurcation of the map in the case P 0 = 0.9, a = 0.01. The

bifurcation parameter F is along the horizontal axis, the total population x

along the vertical. Omitting computational details (which may be obtained in

Wikan and Mjølhus (1996)) we shall now use Figure 21 in order to reveal the

dynamics of (2.4.2).

In case of 5.263 < F < 10.036 there is one attractor, namely the stable

fixed point (xq,x*). (The lower limit 5.263 is a result of the requirement

F(l +P) > 1.) At the threshold Fs = 10.036 a 3-cyclic attractor with large

amplitude is created. Thus beyond Fs there exists a parameter (F) interval

where there are two coexisting attractors and the ultimate fate of an orbit

depends on the initial condition. It is a well known fact that multiple attractors

indeed may occur in nonlinear systems. What happens in our case is that the

third iterate of the original map (2.4.2) undergoes a saddle-node bifurcation at

{xo ,xi)->(Fo e axxQ + Fie axxu P0xQ )

\ (l+2PO )/Po
1 + Po
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Figure 21: The bifurcation diagram generated by map (2.4.2)

Fs . This may be verified numerically by computing the Jacobian of the third

iterate and show that the dominant eigenvalue of the Jacobian equals unity.

Moreover (referring to section 1.5, see also Exercise 1.4.2 in section 1.4), a

3-cycle consisting of unstable points is also created through the saddle node

at threshold Fs . This repelling 3-cycle is of course invisible to the computer.

In the interval 10.036 < F < 11.81 the large amplitude 3-cycle and the fixed

point are coexisting attractors. At FH = 11.81 the fixed point undergoes a

supercritical Hopf bifurcation (for a proof, cf. Wikan and Mjølhus (1996)),

thus in case of F > FH , F-FH small, there is coexistence between the 3-cylic

attractor and a quasistationary orbit restricted to an invariant curve. The

coexistence takes place in the interval 11.81 < F < 12.20. In somewhat more

detail we also flnd that since arg A (where A is the eigenvalue of the Jacobian

of (2.4.2)) is close to 27r/3 at FH there is a clear tendency towards 3-periodic
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dynamics on the invariant curve but there is no frequency locking into an exact

3-periodic orbit.

At FK = 12.20 the invariant curve disappears. Consequently, in case of F >

FK, there is again only one attractor, namely the attracting 3-cycle. The

reason that the invariant curve disappears at threshold FK is that it is "hit"

by the three branches of the repelling 3-cycle. This phenomenon is somewhat

akin to what is called a crisis in the chaos literature.

As we continue to increase F successive flip bifurcations occur, creating orbits

of period 3 • 2*, k= 1, 2,..., in much of the same way as we have seen in earlier

examples. Eventually an accumulation value Fa for the flip bifurcations is

reached, and beyond that value the dynamics becomes chaotic. At first the

chaotic attractor consists of three separate branches which are visited once

every third iteration. When F is even more increased the branches merge

together.  

Through our previous examples, which all share the common feature that the original

(first) bifurcation is a Hopf bifurcation, we have experienced that the nonstationary dy

namics beyond the instability threshold may indeed be different from map to map. In the

following exercises even more possible dynamical outcomes are demonstrated.

Exercise 2.7.1. Consider the map

a) Compute the nontrivial fixed point (xj,^).

b) Assume that 7> yc = -(F1 /2(l + Fx ) and show that the fixed point

undergoes a Hopf bifurcation at the threshold

{xoi xi) -> (Fian,fl>(l - -ypx) lhxo)

where /3 > 0, 7 < 0.

p- 1 U , M±M\lh
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c) Assume that 7 > yc but 7- % small Investigate numerically the dynam

ical outcomes when P 0 is fixed and F\ is increased beyond the bifurcation

threshold.

d) (difficult!) Show that the Hopf bifurcation is supercritical.

Exercise 2.7.2. Consider the semelparous population model

b) Compute the Jacobian and show that the eigenvalue equation may be

east in the form

c) Use the Jury criteria (2.1.16) and show that the fixed point is stable
whenever

where

d) Use the result in c) and show that the fixed point is stable provided

e) The results from c) and d) are special in the sense that they imply that

the fixed point is unstable in case of x* (or F 2) small, becomes stable

f xQ \ / 0 0 F2 e~x \fxo \
\xi ) - Po 0 0 an
\*2/ m \0 Pi 0 ) \x2 ) t

a) Show that the fixed point is

«•* »" (TTK^F^TT^Kx''TTßp^xt)
where x* = InfåP^).

A 3 + sX2 + Poe\ + PqPX€ -I=o

where e = x*/(l +PO + PO Pi).

£4 < £ < €2

1 + Pp- 2PO Pi 2
— t-> r-> s and £o =

PoPi{l-PqPi) 2 1-Po + PoPi

2 ° 3P0
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for larger values of x* (or F 2) and then becomes unstable again through

further enlargement of x* (or F 2). Note that £4 and e 2 are Hopf and flip

bifurcation thresholds respectively. Investigate (numerically the dynam

ics in case of e < £4 (i-e. x* small) and e < e 2 (i.e. x* large). (Hint: cf.

Exercise 2.4.3.)  
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3.1 The fundamental equation of discrete dynamic pro-
grammmg

In this section and in the next we shall give a brief introduction to discrete dynamic

optimization. When one wants to solve problems within this held there are mainly two

methods (together with several numerical alternatives which we will not treat here) avail

able. Here, in section 3.1, we shall state and prove the fundamental equation of discrete

dynamic programming which perhaps is the most frequently used method. In section 3.2

we shall solve optimization problems by use of a discrete version of the maximum principle.

Dynamic optimization is widely used within several scientific branches like economy,

physics and biology. As an introduction to the kind of problems that we want to study,

let us consider the following example:

Example 3.1.1. Let xt be the size of a population at time t. Further, assume

that xis a species of commercial interest so let ht € [o,l] be the fraction of

the population that we harvest at each time. Therefore, instead of expressing

the relation between xat two consecutive time steps as xt+i = f(xt) or (if the

system is nonautonomous) xt+i = f(t,xt), we shall from now on assume that

If the function / is the quadratic or the Ricker function which we studied in

Part I, (3.1.1) may be written as

or

respectively. In case of an age-structured population model (cf. the various

xt+i = f(t i xti ht) (3.1.1)

xt+i = r(l - ht)xt [l -(1 - ht)xt] (3.1.2)

xt+i = (1 - ht)xt exp[r(l - (1 - ht)xt )} (3.1.3)
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examples treated in part II) the equation xt+i = f(t,xt,ht) may be expressed
as

(3.1,4)

(For simplicity, it is often assumed that ht = h and hijt =h{ which means that

the population or the age classes are exposed to harvest with constant harvest

rate(s).)

Now, returning to equation (3.1.1), assume that irt = fo {t,xt ,ht) is the profit

we can make of the harvested part of the population at time t. Our ultimate

goal is to maximize the profit over a time period from t = 0 to t T, i.e. we

want to maximize the sum of the profits at times t = 0,1,..., T. This leads to

the problem

subject to equation (3.1.1) given the initial condition x 0 and ht G [o,l].

To be somewhat more precise, we have arrived at the following situation:

Suppose that we at time t= 0 apply the harvest rate hO . Then, according

to (3.1.1) xi = /(0,rc0,/io) is known at time t = 1. Further, assume that we

at time i= 1 choose the harvest hx . Then x 2 = /(l,zi,/ii) is known and

continuing in this fashion, applying (different) harvest rates ht at each time

we also know the value of xt at each time. Consequently, we also know the

profit 7rt = fo(t,xti ht) at each time. As stated in (3.1.5) our goal is to choose

h0,hi,...,hr m such a way that Y%=o /o& xtl ht) is maximized. D

Let us now formulate the situation described in Example 3.1.1 in a more general con

text. Suppose that the state variable x evolves according to the equation xt+l = f(t, xt , ut )

where x 0 is known. At each time t the path that x follows depends on discrete control

xi tt+i = Fie-Xt - hht ) + F2e-X'x2,t(l - hij)

x2 = Pxi-tt(l - h2)t)

r

maximizeV/o (£,:rt ,/it ) (3.1.5)h0,hi,...,hT *~"t=o
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variables ito, tøi,...,i*r. (In Example 3.1.1 we used harvest rates as control variables.) We

assume that ut eU where Uis called the control region. The sum YIJ-o /o(*> xt, ut) where

/o is the quantity we wish to maximize is called the objective function.

Definition 3.1.1. Suppose that xs = x. Then we define the value function

as

(3.1.6)

Hence, a more general formulation of the problem we considered in Example 3.1.1 is:

maximize Js (x) subject to xt+i = f(t,xt ,ut), xs x and ut eU.

We now turn to the question of how to solve the problem.

Suppose that we know the optimal control (optimal with respect to maximizing (3.1.6))

u* at s = 0. Then, according to the findings presented in Example 3.1.1, we find the

corresponding x\ as x{ = f(o,XQ y ul(xo)) and if we succeed in finding the optimal control

ul(xl) at time£ =1 we have x\ = /(l,rc*, wj(xj)) and so on. Thus, suppose that xs =x at

time t = s, how shall we choose us in the best optimal way? Clearly, ifwe choose us = uas

the optimal control we achieve the immediate benefit fo (s, x, u) and also xs+i = /(s, x, u).

This consideration simply means that the highest total benefit which is possible to get

from time s+ 1 to T is Js+i(xs+ i) = Js+l (/(5,x, u)). Hence, the best choice of us = s at

time sis the one that maximizes /0 (s, æ, u) + Js+i(/(s,a;, u)). Consequently, we have the

following theorem:

Theorem 3.1.1. Let Js (x) defined through (3.1.6) be the value function for

the problem

T

T

Js (x) = maximize } /0 (i, xty ut )
t=s

maximize }] /0(t, xt, Ut) subject to xt+i = }{t,xt,ut)U ' 't=o

where ut £ U and xQ are given. Then

J9 (x)=mæ[fo {s,x,u) + Js+l (f(s,x,u))] , 5 = 0,1,...,T-1 (3.1.7)
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Jt{x) = max/o (T, x, u)u£U (3.1.8)

Theorem 3.1.1 is often referred to as the fundamental equation(s) of dynamical program

ming and serves as one of the basic tools for solving the kind of problems that we consid

ered in Example 3.1.1. As we shall demonstrate through several examples, the theorem

works "backwards" in the sense that we start to find and Jt{x) from (3.1.8). Then

we use (3.1.7) in order to find JT-i(x) together with and so on. Hence, all value

functions and optimal controls are found recursively.

Example 3.1.2.

Solution: From (3.1.8), JT (x) = maxu (x +u) so clearly, the optimal value of

uisu = 1. Hence at time t= T, JT (x) =x + 1 and u*T (x) =l.

Further, from (3.1.7): JT-i(x) = maxu [x +u + JT {x - 2u)} = maxu [x +u +

(x -2u + 1)] = maxu [2o; -u + I]. Consequently, u=o is the optimal choice,

thus at t = T - 1 we have JT-i(x) = 2x + 1 and = 0.

This implies: JT-2{x) = m&xu [x +u + JT-\{x'- 2u)} = maxu [3x -3u+l] so

again u=o is the best choice and JT-2(x) =Sx + 1 and u^_ 2 (x) =O.

From the findings above it is natural to suspect that in general

The formulae is obviously correct in case of k = 1 and by induction we have

from (3.1.7) that

T

maximize y](xt + ut) subject to xt+i =xt - 2ut , ut e [o,l], x 0 given

JT-k(x) =(* + l)x +l, u*T_k {x) =O, fe = 1,2,...,T

JT-(k+i) = max[a; + u + Jr-k{x - 2u))u

- maxfo: + u + (k + l)(x - 2u) + 1] = max[(fc + 2)x - 2(k + \)u + 1]

=(& + 2)rr +1 = \{k +1) + I]* + 1



hence the formulae is correct at time T - (fe + 1) as well. Therefore

Example 3.1.3.

T

maximize2j(-^+wt-xt) subject to xi+l = rrt+wt , wt € (-00, oo), x 0 given
t=o

Solution: From (3.1.8), JT(x) = maxtx (-w2 -x +u) and since the function

h{u) = -w2 -x + « clearly is concave in u the optimal choice of u must be

the solution of h'(u) =O, i.e. u = 1/2. Hence, at time t= T, u*T (x) = 1/2 and

Jr(x) = -(1/4) -x + (1/2) =-x + (1/4).

Further, (3.1.7) gives JT-i(x) = m^u[-u2 -x+ u +JT{x + u)} = maxu [-u2 -

X+w-(x + u) + (1/4)] = maxtt [-M2 - 2a: + (1/4)] and again since h x {u) =

-u2 - 2x + (1/4) is concave in u we find that u = 0 is the optimal choice.

Thus JT-i(x) = -2x + (1/4) and = 0.

Proceeding in the same way (we urge the reader to work through the details)

we find that JT-2 (x) = -3x + (1/2), u*T_ 2 {x) = -(1/2) and JT-s(x) = -4x +

(3/2), u*T_z {x) = -1.

Therefore, it is natural to suppose that

Jr-* (a?) =(* + l)a? +l, =o, Jb = 1,2,...,T

Jt{x) = x + 1 Ut(x) = 1

JT-k{x) = -{k + l)x + bk

where b 0 = 1/4 and u*T_k (x) = - *=l, k = 1,2,..., T. The formulae is obviously

correct when fe = 0 and by induction

Jr-ik+i) max[-M2 4- u- x + Jr-k{x + u)]

= max[-(fc + 2)x -u2 - ku + bk ]

141
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Again, we observe that the function inside the bracket is concave in u so its

maximum occurs at u = —(k/2) which means that the corresponding value

function becomes

It remains to find bk - The equation bk+i —bk = k 2/4 has the homogeneous

solution C \ k = C. Referring to the remark following Example 3.1.4 we

assume a particular solution of the form pk = (A +Bk + Dk2 )k. Hence, after

inserting into the equation and equating terms of equal power of k we find

that A = 1/24, B -(1/8) and D = 1/12 so the general solution becomes

bk =C + (1/24)* - (l/8)k2 + [l/12)k\ Finally, using the fact that b 0 = 1/4

which implies that C = 1/4, we obtain

Example 3.1.4 (Exam exercise, UiO).

Solution: JT (x) = maxu (a: - u). Clearly, u=o is the optimal choice so

JT {x) = x and =o, JT-i(x) = ma,xu [x-u+JT(ux)] = max„[x+(x-l)u].

Thus, if x > 1 we choose u = 2 and if x < 1 we choose u = 0. Consequently,

J () ={ * +(x-1)2 = 3a;-2 if z> 1 and t4_a (x) = 2
T~IW "" \a; + (a;-1)0 =a; if x< 1 and uj_1 (x)=0

(Note that Jr-i(a;) is a convex function which is continuous at x = 1.)

In order to compute </t-2(æ) we must consider the cases JT-i{x) = 3z 2 and

Jt-i (x) = x separately.

JT-(*+i)(ar) = .-r[(* +.l) + l]x +bk + k2 /A = -[{k +1) + l]x +bh+i

Jr-k(x) = -(* + l)x + —(6 +k - 3*2 + 2A:3 ) and *4_fc (a;) = - -—-

T

- v*) subject to xt+i = utxt , ut € [O, 2], x 0 given

Assuraing JT-\{x) = Sx 2 we obtain

Jt-2(x) = max[x -u + Sux -2] = maxtø + (Sx l)u 2]tx u



Jt-j(x)

x

Figure 22: Jt-2(x) possibilities

so whenever a; > 1, u = 2 and if x < 1 our best choice is w = 0.

Hence, the possibilities are

In Figure 22 we have drawn the graphs of the h{ functions in their respective

domains. The point of intersection between hi(x) and hA (x) is x = 2/3 so

clearly, if x > 2/3, hx (x) is the largest function. If x < 2/3, h4(x) is the

largest function.

j (x\ _/ 4~7x if x > 2/3 and u*T_2 {x) = 2
T"2l ''" 1 x if æ < 2/3 and u*T_2 \x) = 0

so if x > 1/3 our optimal choice is u = 2 and if x < 1/3 we choose u = 0

In the same way, using JT_ 1 (a:) = rc, we find

Jt-2{x) = maxfo; u -f ux] = maxfa; + (x l)u]U U

s, the possibilities are

(x+ (3x -1)-2 - 2 = /ixOr) =7x - 4 if z > 1/3

a; + (3z -1)-0 - 2 = /i2 (x) =x - 2 if x < 1/3
a+{x-1) • 2 = fr3 (s) =3x - 2 if x> 1
a? + (a;-l)-0 = /i4(a;)=a? if rc < 1

Consequently, we conclude that
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and again we notice that Jt-2 (#) is a convex function which is continuous at

x = 2/3.

Now at last, let us try to find the general expression JT_k (x). The formulaes

for JT_x and Jt-2 suggest that our best assumption is

fe = 1,2,..., T and that uT_k (x) =2if x > c and tør_fc (z) =oifæ < c.

The formulae is certainly correct in case of k = 1. Further, by using the same

kind of considerations as in the computation of JTr. 2 (x) and induction there

are two separate cases.

This yields (just as in the Jt-2 (a:) case) the following

and we recognize that the forms of gx {x) and g4 (x) are in accordance with

our assumption and moreover that the point of intersection between gx {x) and

g4 (x) is bk (l afc ) _1 which also is consistent with the assumption.

Further, ak obeys the difference equation afe+l = 2ak +l. Therefore, the

general solution is ak = D 2k - 1 and since a: = 3 => D = 2 we have

ak = 2k+l -1. In the same way, bk+i =bk - 2 (see the remark following this

example, see also (1.1.2b)) has the general solution bk = K - 2k and since

h = -2 => K = 0 we obtain bk = -2k.

Jr-kix) = < V1*\ x x < = c

JT~(k+i)(x) = max[x —u + ak ux + bk] = maodx + (akx - l)u + bk ]U u

Hence x > l/ak => u= 2 and x < l/ak =>- u= 0, and

Jr-(fc+i)(a;) = max[i - u + ux] = max[rr + (x l)u]U U

Thus x>l=>u = 2 and x < 1 => it = 0.

no jiciuo guat <%a m tuie JT-2\X) U.&SV) Ille lUilOWing

!(2ak + l)x + bk -2 = ak+ix + bk+l = gi (x) x > l/ak

x+ bk = g2 (x) x<\lak
3a; - 2 = 5-3(0;) rr > 1
x = 9a{x) x < 1
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Finally, since (1) gi(l) > g3 (l) and ak+l >3. (2) gA (x) > g2 (x) and (3)

gi(x) > g±{x) when x > bk+ i(l - a^+i) -1 (recall that ak+l >3) we obtain the

general solution

Remark: Referring to section 2.1, Exercise 2.1.3, the difference equation

rrt+2-sa:t+i-6a;f = i-2* has the homogeneous solution d(-l)*+Cf 26t and since

the exponential function 2* on the right-hand side of the equation is different

from both exponential functions contained in the homogeneous solution it

suffices to assume a particular solution of the form {At + B)2t in this case. In

Example 3.1.3 we had to solve an equation of the form xt+i -xt = at2 . The

homogeneous solution is C•l* = C but since at2 = at2 • 1* we have the same

exponential function on both sides of the equation. Therefore, we must in this

case assume a particular solution of the form (A +Bt + Dt2 )t. In the same

way, if xt+i -x=btt we assume a particular solution (A + Bt)t and finally, in

the case xt+i -x=t K, assume a particular solution A+ Bt (cf. (1.1.2b)).  

Exercise 3.1.1. Let a be a positive constant and solve the problem

Exercise 3.1.2. Solve the problem (Exam Exercise, UiO):

(Hint: Use the remark following Example 3.1.4.)  

JT-k (x)^i (2"+1 ~ l)x ~ 2k X Ui-k = 2L X X<. 2 fc_i uT-k =

T

ma,xy^(xt + ut ) subject to xt+l =xt - aut , ut G [o,l], x 0 given

T

m^x Yl^Xt ~ w*) subJ ect to xt+i =xt + ut, Ut € [o,l], x 0 given
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Exercise 3.1.3. Solve the problem:

3.2 The maximum principle (Discrete version)

When t is a continuous variable, most optimization problems are formulated and solved

by use of the maximum principle which was developed by Russian mathematicians about

60 years ago. There is also a great variety of numerical methods within this field. The

maximum principle, sometimes referred to as Pontryagin's maximum principle, is the

cornerstone in the discipline called optimal control theory which may be regarded as an

extension of the classical calculus of variation. An excellent treatment of various aspects

of control theory may be found in Seierstad and Sydsæter (1987), see also Sydsæter et al.

(2005). In this section we shall briefly discuss a discrete version of the maximum principle

which offers an alternative way of dealing with the kind of problems presented in section
3.1.

Consider the problem

T

maximize Y f 0 (i, xu ut ) , ut GU , U convex (3.2.1)

together with one of the following terminal conditions

(3.2.2)

Thus, the problem that we consider here is somewhat more general than the one presented

in section 3.1 due to the terminal conditions (3.2.2b,c).

T

m^x sÅx* +*) subJ ect to xt+i = utxt , ut £ [o,l], x 0 givent=o

t=0

subject to xt+i = f(t,xu ut), t = 0,1, ...,T -1, x 0 given.

a) xT free, b) xT > XT , c) xT =XT
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Next, define the Hamiltonian by

(3.2.3)

where p is called the adjoint function.

Then we have the following:

Theorem 3.2.1 (The maximum principle, dicrete version). Suppose

that (a?£,tø£) is an optimal sequence for problem (3.2.1), (3.2.2). Then there

are numbers pO , • -,Pt such that

Moreover,

and to each of the terminal conditions (3.2.2) we have the following transversal

conditions

Theorem 3.2.1 gives necessary conditions for optimality. Regarding sufficient conditions
we have:

Theorem 3.2.2. Suppose that (æj, itj) satisfies all the conditions in Theorem

3.2.1 and in addition that H(t } x,u,p) is concave in (x,u) for every t. Then

(xl,ul) is optimal.  

Proof. Our goal is to show that

TJh * „„\ - / M*' x > ") + Pf(*> x > u*> t<T
(t ' X' U' P> ~\Mt,x,u) t-T

u\ maximizes H'u {t^x*t^ul,pt)u for u GU (3.2.4)

Vt-x = H'x (t,xlu*t ,pt) , t = 1, .„,T- 1 (3.2.5a)

Vt-i = /i,(T, x*T , uT) +pT (3.2.5b)

a) pT =O.

b) Pt> 0 (=OifxT >XT ).

c) pT no condition.

T T
K= J 2 f*fc xt* O- Yl /o(*. **, ut) > 0t=o t=o
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Introducing the notation /0 = /0 (i, x, u), /0* = fo(t, x% u*) and so on, it follows

from (3.2.3) that

Now, since His concave in (x, u) we also have that H-H* < H'x *(x - x*) -f

H'u*(u-u*). Thus

r r t-1

Due to (3.2.4) and the concavity of H the first of the three sums above are

equal or larger than zero. Indeed, suppose ut £ [uo ,ui]. If u*t e (uQ,Ui) then

H'u* =O. If v* = mO , then H'u * < 0 and u*t -ut < 0 and finally, if w* = wl}

iJi* > 0 and wj -u>t 0, hence in all cases H'u *(u*t - ut ) >O.

Regarding the second and the third sum they may by use of (3.2.5a), (3.2.5b)

and (3.2.1) be written as

r-i r_i

Next, assume xT free. Then from (3.2.6a), pT = 0 which implies Kl =O. If

#r > XT , (3.2.6b) gives pT > 0 and since 2T >XT we must have Kl > 0

if a£ = Xp. If a;*, > XT , pT =O, thus in either case Kl >O. Finally, if

xT = Xt, Kl =O. Therefore, whatever terminal condition (3.2.2), Kl > 0

which implies if > 0 so we are done.  

Example 3.2.1. Solve the problem given in Example 3.1.2 by use of Theorems
3.2.1 and 3.2.2.

Solution: From (3.2.3) it follows

T T

t=o t=o

k > ekw - «*)+E ff*v; - *o+Em/* - /«*)*=o t=o t=o

- xt) + (pt-i - Vt)(x*t - xT) + t (xt+l - x*H 1)
t=o t=o
= Pt{xt - %t) = K^

H(t,x,u,p)=l x +U + P^- t<TV ' F/ \ x + u t = T
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Consequently, whenever t < T, Hx = 1+ p and H'u - -2p and if t = T,

H'x = H'u = !•

By use of the results above, (3.2.5a,b) gives

The equation pt_ x = l+pt may be rewritten as pt+l -pt =-1 and its general

solution is easily found to be pt =C- t. Further, since PT-i =1 it follows

that 1 = C - (T -1). Thus C = T so pt = T - t and we observe that pt > 0

for every t < T.

From the preceding findings, (3.2.4) may be formulated as

Accordingly, we make the following choices: If t = T, choose wj, = 1. If £ < T

(recall that 2(T —t) < 0), choose u*t 0 for every <fc. Hence, we have arrived

at the same conclusion as we did in Example 3.1.2.

A final observation is that the Hamiltonian is linear in (x,u) so H is also

concave in (x, u). Consequently, {x*u u*t ) solves the problem fø is found at

each t from the equation rcj+1 = x*t - 2u*t and x 0 is given).  

Example 3.2.2. Solve the problem

Pt-i = l+Pt t<T, Pt-i-I+Pt

and since xT is free, (3.2.6a) implies that pT =0 so pT_ x =l.

u= ul shall maximize -2(T - t)u t<T
u= u? shall maximize lu t= T

T

maximize 2_J(a;t - ut ) subject to Xt+\ =xt +ut

xQ =1} xT = XTi l<XT <T + l,ut e[ol l].

Solution:

tt(. N (x-u + p(x +u) t<T
H(t,x,u,p) = | x _ u t = T

Therefore, whenever t < T, H'x = 1 +p, H'u = -1 + p and if t = T, H'x = 1
and iTi = -1.
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Further, (3.2.5b) gives pT-i =l+ pr and (3.2.5a) gives pt_i =l+pt if

i < T. Clearly (cf. our previous example), the latter difference equation has

the general solution pt = C - t so pt is a decreasing sequence of points.

From (3.2.4) it follows

Thus at t = T the optimal control is u*T = 0. In the case t <T we have that

if -1> 0, then u=uj = 1 and if pt -I<o, we choose u*t =O.

First, assume pt -1 > 0 for all t< T. Then uj = 1 and x*t+l =aj + 1 which

has the general solution x*t = K +t. x*Q = 1 =>- K = 1, which means that

arj = t+ 1. This implies that aj = T + 1 but this is a contradiction since

XT <T-f 1. Next, assume pt - 1 < 0 for all * < T. Then u*t = 0. Thus,

Æt+i =#J which has the constant solution x*t =M. Again we have reached a

contradiction since 1 < XT .

Finally, let us suppose that there exists a time tc such that whenever t < tc ,

then pt - 1 > 0 and in case of £c < £ <T, pt - 1 < 0.

First, consider the case t < tc . Then x*t+l == aj +lsoaj=iT -f t. x 0 =1 =»

if =l, hence aj = * +l. If t> tc we have aj+1 = aj. Hence, aj is a constant,

say aj =M, and since aj =Xr it follows that aj = XT .

Thus,

It remains to determine tc and the constant C. At time tCi C- tc -1= 0 so

C=tc + l. Therefore, pt = tc - t. Further, from xtc+l = xtc + Utc we obtain

Xt =tc +1 + 1 so tc =Xr -2. Consequently, by use of the conditions in the

maximum principle we have arrived at

u= wj shall maximize (—1 +pt)u t<T
u= uj shall maximize —lii £= T

t < tc , pÉ -l = C-t-l>o x*t =t+l uj = 1
*>te,Pt-I=C- t - 1 < 0 x\ = XT u*t =o

x*t =t+l v* = 1 Q<t <XT -2
x*t =XT uj = 0 XT -2< * < T
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and pt =XT —2 - £ for every t. Finally, since His linear and concave in (x, u)

it follows from Theorem 3.2.2 that we have obtained the solution.  

We close this section by looking at one extension only.

If we have a problem which involves several state variables x^...,xn and several Con

trols Ui, ...,um we may organize them in vectors, say x = (#l, ...,#n), u = (ni, ...,um) and

reformulate problem (3.2.1), (3.2.2) as

(3.2.7)

subject to xt+i = f(t, xt , x0 given, ut £U, and terminal conditions on the form

(3.2.8)

The associated Hamiltonian may in case of so-called "normal" problems be defined as

(3.2.9)

Then we may formulate necessary and sufficiently conditions for an optimal solution

in the same way as we did in the one-dimensional case.

Theorem 3.2.3. Suppose that is an optimal sequence for problem

(3.2.7), (3.2.8) with Hamiltonian defined as in (3.2.9). Then there exists p

such that

Moreover

(3.2.11a)

(3.2.11b)

and

T

maximize t ,ut)

a) xiiT free, b) x^T > Xi%Ti c) xi%T = Xi>T

ff(t,x) u,p)=( {f X.«)+Er *<TL /oftx,u) i = T
where p = (pi, ...,Pn) is the adjoint function.

VL = u*t maximizes q7"(*j xt> uh PtjUi (3.2.10)

2>M-i = Ki^^hPt) , t= 1, ...,T - 1

_ vJO fm * *\ .
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a) Pi,T = 0 if the terminal condition is (3.2.9a).

(3.2.12)

c) pitT free if condition (3,2,9c) applies.

Finally, if F is concave in (x, u) for each t then (x£, us) solves problem (3.2.7),

(3.2.8). dD

As usual, we end with an example.

Example 3.2.3. Solve the problem

Solution: Denoting the adjoint functions by p and g respectively, the Hamil
tonian becomes

which implies

Then, from (3.2.11a) it follows that pt_ x = -2, qt_ x = (l/2)pt +qt and since

xT,yT is free, (3.2.12a) implies pT = qT = 0. Thus (3.2.11b) reduces to

Pr-i = —2 and qT-\ = 0.

Consequently, p* = -2 for each t and if we insert this result into the difTerence

equation for q we easily obtain the general solution qt = C+ t. Moreover,

since qT_ x =0 it follows that 0= C + T-lsoC = l-T which means that

qt = t-T+l.

b) Pi,T>o(=OifxlT >XiiT)

if the condition is (3.2.9b).

T

max - 2xt ) subject to xt+i =-yt , Vt+i =u +t yt
t=o z

x 0 =2, 2/0 =l, ut e IR, xT free, yT free.

H(t, X,y,u>P, q + "Py + q{U +V) Ut

H'x =-2 H'y =\p + q H'u = -2u + q t<T
H'x = -2 = 0 H'u = -2u t = T
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Now, since the control region is open, it follows from (3.2.10) that H'u * =O,

thus -2u*t + qt = 0 if t < T and 2u*T = 0 whenever t T. Hence at time

t = T, t 4 = 0 and in case of i < T, uj = (l/2)gt = l/2(t - T + 1).

Therefore, the problem is in many respects already solved. Indeed, yf* is now

uniquely determined from the relation y%+1 = u*t + ?/t* (recall that y 0 =1) and

x* is subsequently found from x*t+l = (l/2)yt*. We leave the details to the
reader.

Finally, observe that the Hesse determinant of H (t < T) may be written as

0 0 0
0 0 0
0 0-2

so clearly >o, (-1) 2 A2 =O, (-1) 3 A3 = 0 where A{ is all possible

principal minors of order i respectively. Consequently H is concave in (x, y, u).

(At time t = T the result is clear.)   

Exercise 3.2.1. Solve Exercises 3.1.2 and 3.1.3 by use of the maximum

principle.   
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