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Abstract –We present an innovative method to reconstruct the characteristics of precipitated electrons in
auroral regions from optical measurements. This method is based on an optimization implemented between
numerical simulations of the Transsolo code and tomographic maps made from the Auroral Large Imaging
System (ALIS) network. We focus on the Volume Emission Rate (VER) of the blue line Nþ

2 1NG 427.8
nm, which is the most representative line of the energy deposition by electrons. The optimization is tested
with the ALIS measurements carried out on March 05, 2008, at 18:41:30 UT and 18:42:40 UT. The recon-
struction is performed by extracting the energy flux and the mean energy of the precipitating particles. Both
Maxwellian and quasi-monoenergetic energy distributions are considered. Calculations performed with a
Maxwellian energy distribution yielded a mean energy ranging from 1.8 to 5.2 keV with energy flux from
0.1 to 44.3 erg�cm�2�s�1 for 18:41:30 UT, and a mean energy from 2.2 to 9.5 keV with energy flux from
2.1 to 136.7 erg�cm�2�s�1 for 18:42:40 UT. Assuming a quasi-monoenergetic energy distribution, we find a
mean energy ranging from 4.2 to 11.8 keV with energy flux ranging from 0.1 to 45 erg�cm�2�s�1 for
18:41:30 UT, and 8 to 17.1 keV with energy flux ranging from 2.2 to 110.1 erg�cm�2�s�1 for 18:42:40
UT. Moreover, we show this method allows us to reconstruct the energy characteristic of the precipitating
electrons on a large region covering approximately 150 km � 150 km. This study also shows that some
VER profiles of the maps are better fitted by quasi mono-energetic distributions while some others corre-
spond to broadband distributions. It appears clearly that the energy flux is linked to the column integrated
intensity, the mean energy is linked with the peak altitude of the emission, and the width of the energy
distribution with the altitude thickness of the emissions.
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1 Introduction

The auroras are characterized by their visible emissions,
which are generated by the physical interactions between the
Sun, Earth’s magnetic field, and the upper atmosphere. By ana-
lyzing particle precipitation, we can gain a deeper understanding
of the Sun-Earth system, specifically in regard to the iono-
sphere, thermosphere, and magnetosphere. Particle precipitation
interacts with the molecules and atoms of the thermosphere and
ionosphere. This interaction results in the phenomenon of
fluorescence. Resulting visible emissions are a good indicator

of the environment composition and dynamics. Auroras
occur at altitudes between 90 km and 300 km, which is too
low for direct measurement by in-situ satellites and too high
for high- altitude balloons (Barthelemy et al., 2018). Although
rocket-based measurements are feasible, they are not capable of
providing continuous observations. Ground-based observations
with radar and/or optical instruments provide a complementary
way to monitor auroral emissions and retrieve precipitating
electron fluxes.

Several papers have already proposed methods for electron
precipitation reconstruction (Lanchester et al., 1994, 1997;
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Dahlgren et al., 2011; Simon Wedlund et al., 2013; Adachi
et al., 2017). In the work from Lanchester et al. (1994), the
European Incoherent SCATter Association (EISCAT) radar
data, photometer measurements, and a forward model of the
ionosphere were used to retrieve the energies of precipitating
electrons. Dahlgren et al. (2011) use Auroral Structure and
Kinetics (ASK) measurements, the Southampton ion chemistry,
and the electron transport model as described by Lanchester
et al. (1994) to compute the intensity ratio of Oþ

2 first negative
band at 562 nm, and O emission at 777.4 nm in order to retrieve
the mean energy of precipitating electrons in a small field of
view of 3.1� � 3.1�. They also use EISCAT data and Auroral
Large Imaging System (ALIS) measurements (Nþ

2 427.8 nm
line) with 4 stations to provide an independent method to obtain
the mean energy of the precipitating electrons. In Simon
Wedlund et al. (2013) study, they implement a two-step inver-
sion method to retrieve a two-dimensional (2D) map of precip-
itating electron fluxes using optical observations from 4 stations
of the ALIS network. The first inversion is a tomographic-like
inversion providing the 3D Volume Emission Rate (hereafter
VER) of the Nþ

2 1NG band at 427.8 nm. A second inversion
using an ionospheric model is then used to retrieve the electron
fluxes. EISCAT measurements are used to confirm the validity
of the reconstruction for one point along the radar beam directed
along the magnetic field.

The previous studies illustrate the usefulness of forward
models and inversion methods in determining the energy char-
acteristics of precipitated electrons when combining ionospheric
models with optical or radar measurements. In our study, we
explore a new approach using an optimization method to
compare simulations obtained with the Transsolo ionospheric
transport code and VER resulting from ALIS optical observa-
tions enabling us to reconstruct electron precipitation char-
acteristics over a large geographical region, approximately
150 km � 150 km in size. This approach complements the pre-
vious work of Simon Wedlund et al. (2013) in which a direct
inversion of the VER is performed using a forward model of
the ionosphere based on a 1D kinetic Monte Carlo model
(Sergienko & Ivanov, 1993). Here we use a different transport
code (Transsolo) and an optimization procedure to fit the out-
puts of the code to the observed VER. To compare the validity
and accuracy of our method, we use the same data set as in
Simon Wedlund et al. (2013), obtained on March 5th, 2008 at
18:41:30 UT and 18:42:40 UT. The goal is first, to test the capa-
bilities of the Transsolo code to reconstruct the precipitation
without any other simulations and thus give more consistency
to the calculation by using only one kind of approach, and sec-
ond, to test the differences between the Monte Carlo forward
model and the kinetic simulations.

In the upcoming sections, we will introduce the physical
model and the optical data, explain the optimization method,
and then present and interpret the results of our study with an
analysis of the reliability of our approach.

2 Physical model and optical data

In this section, we aim to provide a comprehensive over-
view of both the kinetic model Transsolo and the optical data
utilized in the optimization process. First, we explain the Trans-
solo kinetic model, discussing its inputs, operation, and outputs.

Then, we introduce the ALIS data, which have been used by
Simon Wedlund et al. (2013) to calculate the VER using the
tomographic-like method outlined in Gustavsson (2000).

In this section, we present the adjustments made in the con-
text of our study in order to provide a clearer picture of the deci-
sions that were taken to ensure an efficient optimization as
shown in the next section.

2.1 Transsolo code

The description of Transsolo, as outlined in Figure 1, is as
follows: Transsolo is a 1D multi-beam kinetic code that solves
the non-conservative Boltzmann equation for suprathermal elec-
trons (Lummerzheim & Lilensten, 1994; Lilensten & Blelly,
2002). It calculates the transport of these particles along mag-
netic field lines using the DISORT routine, which stands for
Discrete Ordinates Radiative Transfer Program for a Multi-
Layered Plane-Parallel Medium (Stamnes et al., 1988). The
code calculates the interactions of these precipitated particles
with atmospheric components and simulates the resultant
VER, as described by Vialatte (2017).

Inputs from the user in Transsolo are the following:

� Datetime.
� Geomagnetic index Ap.
� Solar index F10.7.
� Geographic coordinates (latitude, longitude).
� Energetic characteristics of the electron precipitation:
energy flux (Etot) in erg�cm�2�s�1, mean energy (Em) in
eV and type of distribution (among Maxwellian, Gaussian
or quasi-monoenergetic1). To calculate the energy distri-
bution, we consider an exponential grid of 100 energy
values (E) ranging from 0.1 eV to 55 keV.

� The angular distribution of the particle precipitation pop-
ulation at the top of the atmosphere is considered as Gaus-
sian. This means that we applied Gaussian weights (Davis
et al., 2014) to the flux for the different angular sectors.
We consider 32 angles sectors: 16 downward and 16
upward.

To compute the thermospheric components, Transsolo uses the
neutral atmospheric NRLMSISE 2000 model (Picone et al.,
2002) while the ionospheric components are computed from
the IRI model (Bilitza & Reinisch, 2008). These models take
as inputs the parameters mentioned above, except for the energy
characteristics and angular distribution of the electron precipita-
tion which are used for the calculation of the kinetic transport.
NRLMSISE00 considers the following species (and IRI the
same corresponding singly charged ions:

� Hydrogen (H),
� Oxygen (O),
� Dioxygen (O2),
� Nitrogen (N),
� Dinitrogen (N2).

1 Mathematically, we consider quasi-monoenergetic distribution
defined by Etot � d(E � Em). Practically, the quasi-monoenergetic
distribution means that all the precipitated particles are considered
to be concentrated in a unique energy grid step (or box) which
contains the mean energy Em.
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The Transsolo code produces auroral volume emission rate
profiles for these species present in the upper atmosphere, cov-
ering an altitude range from 80 km to 520 km, with 100 layers
distributed in thickness to ensure equal optical depth per layer
(see “TRANSSOLO simulations” in Fig. 5). The VER unit is
photons�cm�3�s�1.

2.2 The ALIS network

The Auroral Large Imaging System (ALIS) is a network of
six stations located in Northern Sweden and Norway at the fol-
lowing sites: Kiruna, Skibotn, Abisko, Silkkimuotka, Meras-
järvi, and Tjautjas. A map of the ALIS optical network can
be found in Figure 1 from Simon Wedlund et al. (2013). Sta-
tions are equipped with high-resolution CCD cameras of
1024 � 1024 pixels with an average field of view of 70�. Cam-
eras are equipped with narrowband interference filters of 4 nm
to measure the intensity of the following auroral lines2:

� Nþ
2 1NG ðB2Rþ

u � X2Rþ
u Þ 427.8 nm corresponding to the

blue emission,
� O I(1S –

1D) 557.7 nm corresponding to the green line,
� O I(1D –

1P) 630.0 nm corresponding to the red line,
� O I(3p3P – 3s3S) 844.6 nm corresponding to the IR line.

The ALIS network datasets consist of pictures taken every 5 s at
each station with a spatial resolution of 100 m. More details
about the ALIS network can be found in the PhD thesis of
Brändström (2003).

By pointing all cameras at the same region of the sky, a
tomographic-like reconstruction of the VER in pho-
tons�cm�3�s�1 can be made from ALIS images. ALIS VER
ranges typically from 80 km to 260 km altitude with a spatial

resolution of 2.5 km. This tomographic-like reconstruction
method was developed by Gustavsson (2000). As already men-
tioned, the tomographic maps studied here come from the work
of Simon Wedlund et al.(2013) courtesy of the Royal Belgian
Institute for Space Aeronomy (BIRA-IASB). The tomographic
reconstruction maps generated are oriented along the local mag-
netic field line rather than stacked vertically in altitude. They are
displayed as a function of the East-to-West distance in km from
the Skibotn station (X), the South-to-North distance in km from
Skibotn (Y) and the altitude (Z), i.e. an overall grid size of
100 � 100 � 74 pixels.

The visualization of dataset 1 and dataset 2 is respectively
given in Figure 3 and 4. The datasets are further described in
the next section.

2.3 Our case study

On March 5th, 2008 a magnetic substorm was recorded by
the Norwegian magnetometer stations (see Fig. 2). The expan-
sion phase of the substorm, which is characterized by the neg-
ative values in the horizontal component of the magnetic field
(H), took place at 18:55 UT. We noticed that the southern
and westernmost magnetometer stations (TRO and SOR) were
located within the eastward electrojet prior to the onset of the
substorm. The strongest disturbance caused by the substorm
was observed in the two northernmost magnetometers (NOR
and BJN), suggesting that the study area is located slightly to
the south of the main activity. The magnetic disturbances
recorded were moderate, with amplitudes of around 200 nT,
during and after the time frame of our interest.

Our study is based on VER maps located at Skibotn
69.35�N, 20.36�E on March 5th, 2008 at 18:41:30 UT (referred
to as Dataset 1) and 18:42:40 UT (Dataset 2), and reconstructed
using only Skibotn, Abisko, Silkkimuotka, and Tjaujas stations.
The datasets were obtained during the growth phase and prior to
the onset of the substorm (see dashed vertical lines in Fig. 2).

Figure 1. Schematic view of the Transsolo code operation. Inputs are represented in blue box and outputs in red box. The yellow boxes are the
kinetic transport and photoionisation calculation modules. From Barthelemy et al. (2018).

2 The reader can refer to the textbook of Valence Jones 1994 for
more details about the aurora optical transition.
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2.3.1 Transsolo inputs

The overall objective is to retrieve the energy characteristics
of the electron precipitation population at the time of this sub-
storm. To do this, we perform the optimization described in
Section 3 by executing several runs of the Transsolo code. Here,
we describe the different inputs used.

At the relevant date and time of our data, the values for Ap
and F10.7 were recorded as 7 and 68.2 solar flux units, respec-
tively. However, it should be noted that the Ap index is a global
and daily index and may not accurately reflect local geomag-
netic activity at the time of data. To account for this, we arbitrar-
ily increased the Ap value to 40, which corresponds to a Kp
value of between 3 and 4, and is considered reasonable for this
type of substorm (as shown in Fig. 2). This adjustment allows
us to take into account the potentially higher intensity of local
geomagnetic activity during the event and its effects on the
upper atmosphere.

Regarding the energy inputs, Transsolo needs mean energy
and energy flux values and a distribution type (see Sect. 1). We
prepared different mean energies of the electron distribution,
ranging from 3 eV to 35 keV, using a logarithmic grid with
60 values and different flux values from 0.1 erg�cm�2�s�1 to
1000 erg�cm�2�s�1, also based on a logarithmic grid with 60
values. The choice of the size of the vectors is a compromise
between a reasonable computation time (in our case 10 h) and
a significant sampling. Two hypotheses were made regarding
the shape of the distribution: Maxwellian or quasi-
monoenergetic.

As explained in Section 1, the Transsolo code produces
auroral volume emission rate profiles for each species and
excited energy levels. In our case, the output consists of two sets
of the VER intensity cubes, showing the intensity of auroral
emission as a function of mean energy (eV), energy flux
erg�cm�2�s�1, and altitude (km). Each cube has dimensions of
60 (eV) � 60 (erg�cm�2�s�1) � 100 (km). However, in
this study, we focus on the blue line emission of Nþ

2 1NG
427.8 nm, as it provides information about the energy deposited
in the upper atmosphere, according to the research of Simon
Wedlund et al. (2013). The blue line emission is exclusively
produced by electron impacts on nitrogen molecules, while
other complex processes such as photodissociation and recom-
bination also contribute to the emission of the red and green
lines (Witasse, 2000).

2.3.2 ALIS datasets

The datasets used for this case study are shown in
Figures 3 and 4 with a) a VER map at an altitude of 100 km
for dataset 1 and at an altitude of 95 km for the dataset 2 (the
X-axis/Y-axis corresponds to the West-East/South-North
distance from Skibotn (in km)); b) a 3D representation of
VER as a function of altitude (Z) oriented along the local
magnetic field line; and c) an example of a VER field-aligned
profile as a function of altitude at a given pixel in the map.
We chose to limit the size of the VER map data to
81 � 81 � 74 pixel to avoid uncertainties related to the pixels
on the edge of the map.

Figure 2. Geomagnetic activity on March 5th, 2008 recorded by the Tromsø Geophysical Observatory’s magnetometers at Bear Island (BJN),
Nordkapp (NOR), Sørøya (SOR) and Tromsø (TRO). Time is along the horizontal axis, while the measured variation in the horizontal
component, as well as geomagnetic latitude, is along the vertical axis, a scale indicating 200 nT is in the bottom left corner. The vertical blue
dashed line represents the two datasets used for the study at 18:41:30 UT and 18:42:40 UT.
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In addition, we chose altitudes between 100 km and
237.5 km for dataset 1, and between 95 km and 237.5 km for
dataset 2, because the accuracy of the tomographic data is less
reliable beyond 240 km. Indeed this problem lies in the fact that
at too high altitude, the signal strength is weaker and therefore
the signal-to-noise is weaker. The lower limit is chosen because
of the number of points needed for optimization which must
take into account a sufficient part of the emission peak and
avoid the part with a low signal-to-noise ratio.

For the sake of clarity, not all maps are shown here. Only
maps of the VER measurements with maximum emission are
shown in Appendix A. For dataset 1, theVER is greatest between
102.5 km and 117.5 km altitude with a maximum emission in the
southwest. An auroral arc of moderate intensity is visible to the
north of the map. For dataset 2, themaximum emission is located

between 100 km and 117.5 km altitude with auroral arc extend-
ing fromWest to East in the north of themap. This arc is assumed
to be the same arc as that of dataset 1, but it has intensified.

We can observe some localized artefacts on both VER
maps, corresponding to pixels of constant intensity at all alti-
tudes as we can see on the VER measurements of dataset 1
(Fig. 3), where a vertical line is observed at X = 0 on all maps.
Other such pixels are visible in dataset 1 and also in dataset 2
(Fig. 4). These artefacts are due to imperfections in the tomo-
graphic inversion, caused in particular by the projection of
one of the fields of view into the common volume. Neverthe-
less, they are not a problem for this case study, but they must
be taken into account when interpreting the results.

In the next section, we describe the optimization method
implemented between the dataset and the Transsolo simulations.

Figure 3. Visualization of VER on March 5th, 2008, at 18:41:30 UT for the Nþ
2 1NG line at 427.8 nm. (a) 2D projection at 100 km altitude

centred on Skibotn corresponding to X = 0 km and Y = 0 km location (see the red point), (b) 3D mapping from 100 km to 240 km altitude,
(c) VER field-aligned profile at different altitudes for a given location in the map (here X = �24.1 km and Y = 6.6 km at 100 km altitude).

Figure 4. Visualization of VER on March 5th, 2008, at 18:42:40 UT (70 seconds later than dataset 1) for the Nþ
2 1NG line at 427.8 nm. (a) 2D

projection at 95 km altitude centred on Skibotn corresponding to X = 0 km and Y = 0 km location (see the red point), (b) 3D mapping from 95
km to 240 km altitude, (c) VER field-aligned profile at different altitudes for a given location in the map (here X = �54.6 km and Y = 3.8 km at
95 km altitude).
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3 Optimization method

3.1 Method

This study aims to determine the energy properties of the
particle precipitation population using VER measurements and
the Transsolo code. To accomplish this, the study employs a
weighted cost function that computes the difference between
the experimental measurements (ALIS) and simulated outputs
from Transsolo. By minimizing this function, the study aims
to identify the Transsolo inputs that provide outputs that are
as close as possible to the ALIS measurements, thereby obtain-
ing the energy characteristics of the precipitated electrons. It is
noteworthy that, according to the results of Simon Wedlund
et al. (2013), multiple energy distributions are needed to prop-
erly reconstruct the blue VER field-aligned profiles. Indeed,
the VER observed in the upper atmosphere may be attributed
to the interaction between different electron populations of vary-
ing energy distributions. Since the equation is linear, it would be
possible to sum the contribution of each distribution and to fit
the output to ALIS measurements (hence having multiple Trans-
solo run to recover ALIS measures). However, in this study, we
used only the lowest peak in the profile which corresponds to
the distribution with the highest mean energy. An upper bound-
ary needs to be set to avoid reaching the contributions of other
peaks and to optimize the results effectively. However, setting
these boundaries is not always straightforward, as it may corre-
spond to a local minimum in some cases but not in others.

To prevent any mistakes, we set the boundaries manually.
The lower boundary is 100 km for dataset 1 and 95 km for data-
set 2. For dataset 1, the upper boundary matrix then ranges from
105 km3 to 160 km across the entire map, while for dataset 2, it
ranges from 105 km to 110 km. It is worth noting that the
boundaries for the two datasets have been defined differently
to balance accuracy and processing time. The lower and upper
boundaries for dataset 1 were carefully determined on a pixel-
by-pixel basis, while for dataset 2, a first upper boundary value
was applied, and then it was adjusted only at the locations
where the optimization resulted in extreme values.

The simplified algorithmic process is depicted in Figure 5
and can be summarized as follows:

� We utilize a rectangular parallelepiped of VER measure-
ments with dimensions X (West-East distance from Ski-
botn) � Y (South-North distance from Skibotn) � Z
(altitude). Additionally, a cube of the VER simulations
is generated using the Transsolo code with dimensions
mean energy � energy flux � altitude.

� The cost function between the VER field-aligned profile
and the VER simulated by the Transsolo code is mini-
mized for each geographical position (i.e., VER field-
aligned profile).

Figure 5. Simplified diagram of the optimization method. INPUTS – (top) Example of few Transsolo runs for mean energies of 9.5 eV, 102
eV, 497 eV, 3.3 keV, 10 keV, 22 keV and 30 keV, and energy flux set at 10.8 erg�cm�2�s�1, with a Maxwellian distribution; (bottom) Example
of an VER field-aligned profile for a given location in the map of the dataset 1 (X = �46.6 km and Y = �13.4 km at 100 km altitude).
MINIMIZATION – Cost function from the least-square method to minimize the difference between the VER measurements and the VER
simulations. OUTPUTS – Result of the minimization. For this example, only one energy distribution is needed to find the best fit: a mean
energy of 1.9 keV and an energy flux of 8.6 erg�cm�2�s�1.

3 These points should be taken with caution, however, they are very
uncommon and mainly located on the edge of the map. The most
common boundary is 130 km.
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� We determine the optimal pair of mean energy and energy
flux of the VER profile by selecting the best fit of the
VER field-aligned profile.

� This procedure is performed for the two distinct distribu-
tions separately, which are subsequently compared.

The cost function to minimize is calculated using the least
squares method:

C zð Þ ¼
X

W zð Þ � VERTranssolo zð Þ � VERALIS zð Þ
VERALIS zð Þ

� �2

; ð1Þ

with z corresponding to the altitude ranging from 95 km/
100 km to 240 km, and the weight W of each measurement
being:

W zð Þ ¼ VERALIS zð ÞP
VERALIS zð Þð Þ : ð2Þ

The weighting W is performed on the relative emission rate
of each point of the considered profile and allows us to
give more importance to the emissions close to the emission
peak.

To keep the calculation time reasonable we set the (Em (eV),
Etot erg�cm�2�s�1) grid to 60 � 60 values. In order to improve
the precision of the results we perform an interpolation into the
grid. A 2D spline method is used for interpolation4.

This optimization method is performed on all VER field-
aligned profiles of each dataset. The results are presented as a
map shown in Section 4 (Figs. 7–10).

3.2 Shape of VER field-aligned altitude profiles

In Figure 6, we show an example of the optimization
method performed with both Maxwellian (left) and quasi-mono-
energetic (right) energy distributions for dataset 1.

The VER altitude profiles in Figure 6 (blue curves on the
left and right) exhibit both narrow and wide shapes depending
on their location. As a result, two types of energy distribution
are tested in the optimization process to identify the most appro-
priate energy distribution for the VER field-aligned profile. It is
expected that narrow VER profiles are associated with quasi-
monoenergetic distributions, while wider VER profiles are asso-
ciated with wider distributions corresponding to Maxwellian
distributions.

4 Result and discussion

The optimization method is applied to the datasets described
in Section 2.3. First, we discuss the results of the optimization
method, based on Maxwellian and quasi-monoenergetic energy
distributions. Next, we analyze the correlation between the VER
field-aligned profile’s emission altitude peak and the mean
energy. Finally, we present the relative error in mean energy
and energy flux associated with the optimization calculation

Figure 6. Comparison of the optimization results with (left) a Maxwellian (top)/Quasi-monoenergetic (bottom) energy distribution at location
1 (X; Y) = (�72.9; �126.1), and (right) a Maxwellian (top)/Quasi-monoenergetic (bottom) energy distribution at location 2 (X; Y) = (�46.6;
�13.4), for the dataset 1. The blue curve corresponds to the VER field-aligned profile, and the red curve to the volume emission rate of the blue
line Nþ

2 1NG 427.8 nm simulated by the Transsolo code.

4 The method used uses the interp2 function from MATLAB.
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Figure 7. (Left) Mean energy map (in eV) and (right) energy flux map (in erg�cm�2�s�1), resulting from the optimization method applied to the
VER measurements for dataset 1, with a Maxwellian energy distribution. The white pixels correspond to the areas where the optimization is not
feasible because the energy flux is less than 0.1 erg�cm�2�s�1. The geographic coordinates here correspond, arbitrarily, to the ones at a 100 km
altitude.

Figure 8. (Left) Mean energy map (in eV) and (right) energy flux map (in erg�cm�2�s�1), resulting from the optimization method applied to the
VER measurements for dataset 2, with a Maxwellian energy distribution. The geographic coordinates here correspond, arbitrarily, to the ones at
a 100 km altitude.

Figure 9. (Left) Mean energy map (in eV) and (right) energy flux map (in erg�cm�2�s�1), resulting from the optimization method applied to the
VER measurements for dataset 1, with a quasi-monoenergetic energy distribution. The white pixels correspond to the areas where the
optimization is not feasible because the energy flux is less than 0.1 erg�cm�2�s�1. The geographic coordinates here correspond, arbitrarily, to
the ones at a 100 km altitude.
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and compare our results obtained with a Maxwellian distribu-
tion to the work of Simon Wedlund et al. (2013).

4.1 Maxwellian energy distribution

Figure 7 represents the mean energy and energy flux results
for dataset 1 when considering aMaxwellian energy distribution.
These maps present the final Em and Etot for each pixel and are
arbitrarily plotted on the geographical reference frame of 100 km.

The left image in Figure 7 shows the mean energy map with
a range of 1.8–5.2 keV, while the right image represents the
energy flux map with a range of 0.1–44.3 erg�cm�2�s�1. The
colorbars are logarithmically scaled, and the maps can be com-
pared to those in dataset 2. The white pixels on the map corre-
spond to areas where the energy flux is too low for the
optimization to be effective (less than 0.1 erg�cm�2�s�1).

Regarding dataset 2, results are shown in Figure 8: the mean
energy ranges from 2.2 to 9.5 keV, while the energy flux ranges
from 2.1 to 136.7 erg�cm�2�s�1.

By comparing the VER maps of the datasets (see
Appendix A) with the reconstructed maps such as the mean
energy and energy flux maps (Figs. 7 and 8), we observe that:

� There is no clear link between the column-integrated
intensity maps and the mean energy. An arc in the north-
ern part of the maps shows lower mean energies than in
more diffuse regions. This observation seems to be coun-
terintuitive. As we can see in Figure A1 of dataset 1, an
emission intensity maximum is observable in the south-
west region of the VER map, while we have low values
of the order of 2–3 keV in this same region on the mean
energy map. The same observation can be made on data-
set 2 where we have an intensity maximum located in the
North and from West to East (see Figs. A3 and A4), while
the mean energy in this area is still on the order of 2–3
keV again (see Fig. 8).

� On the contrary, the column integrated intensity is clearly
linked to the energy flux. It is also interesting to note that
the arc in the north of the map intensifies between the two
datasets, indicating higher energy fluxes. The areas of
higher fluxes correspond well to the areas of higher inten-
sity emission, and this observation is visible for both data-
sets 1 and 2.

� The optimization does not work well for narrow emission
altitude profiles when using a Maxwellian distribution.

4.2 Quasi-monoenergetic energy distribution

Concerning the mean energy and energy flux maps from the
simulations with a quasi-monoenergetic energy distribution,
results are shown in Figure 9 for dataset 1 and in Figure 10
for dataset 2. The first observation is that the average energies
are globally higher than those of a Maxwellian distribution.
The mean energy ranges from 4.2 to 11.8 keV for dataset 1,
and from 8 to 17.1 keV for dataset 2. Thus, the assumption
of a quasi-monoenergetic energy distribution gives higher aver-
age energies. It is also clear that the optimization performed
with a quasi-monoenergetic distribution works much better on
narrow VER field-aligned altitude profiles (see Fig. 6).

Despite the differences in the datasets and the use of a dif-
ferent energy distribution than the previous case, the conclu-
sions remain consistent:

� The column integrated intensity is clearly not linked to the
mean energy of the distribution. It can be observed that
these mean energies appear smaller in the arc than in dif-
fuse regions.

� The column integrated intensity is however strongly
linked with the energy flux. The values of the energy flux
range from 0.1 to 45 erg�cm�2�s�1 for dataset 1, and from
2.2 to 110.1 erg�cm�2�s�1 for dataset 2. These values are
of the same order of magnitude as those obtained in the
case of a Maxwellian distribution suggesting that the inte-
gral of the VER profiles changes little with the choice of a
Maxwellian or quasi-monoenergetic energy distribution,
in contrast to the mean energy which is more sensitive
to this input assumption. Moreover, we still find a global
good fit between the compiled energy flux values and the
experimental VER measurements.

4.3 Peak emission altitude of VER field-aligned profile:
a proxy for mean energy ?

Kosch et al. (2001), after many authors, suggest that there
exists a link between the monoenergetic electron precipitations

Figure 10. (Left) Mean energy map (in eV) and (right) energy flux map (in erg�cm�2�s�1), resulting from the optimization method applied to
the VER measurements for dataset 2, with a quasi-monoenergetic energy distribution. The geographic coordinates here correspond, arbitrarily,
to the ones at a 100 km altitude.
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and energy deposition altitudes. Based on the formula of
Del Pozo et al. (1997), the study mentions that “the effective
deposition altitude for precipitating electrons can be related to
their mean energy E by:

E Hð Þ ¼ 4� 105e�0:101H keVð Þ; ð3Þ
where H is altitude in kilometers”.

This function is consistent with the mean energy calculated
by the optimization with a quasi-monoenergetic distribution,
but, as expected, it does not hold for the Maxwellian case. How-
ever, if less evident in the Maxwellian case, we are still able to
find a link between the altitudes of the peak and themean energy.

4.4 Comparison of the optimization results obtained
with a Maxwellian energy distribution and a quasi-
monoenergetic energy distribution

In this section, we compare the optimization results obtained
with a Maxwellian energy distribution on the one hand and a
quasi-monoenergetic energy distribution on the other. As men-
tioned in Section 3.2, the “altitude thickness” of the emission
profile can vary and needs different types of energy distribution
functions to allow accurate fits. This clearly appears in Figure 6.

The two VER field-aligned profiles in Figure 6 correspond to
two different geographic locations taken arbitrarily, around the
(0, 0) point corresponding to Skibotn station. Specifically,
the left figures correspond to a location at (�72.9 km,
�126.1 km), and the right figure corresponds to a location at
(�46.6 km, �13.4 km). The top two figures correspond to the
optimization performed with a Maxwellian distribution, while
the bottom two figures correspond to a quasi-monoenergetic
distribution.

On the left figures, it is evident that a narrow VER field-
aligned profile is better fitted using a quasi-monoenergetic
energy distribution, whereas the fit obtained using a Maxwellian
distribution is unsatisfactory. On the right, a Maxwellian distri-
bution is more effective in fitting a wide VER field-aligned pro-
file, while the quasi-monoenergetic distribution is not suitable.
These findings are consistent across other geographic coordi-
nates in the map.

To assess the accuracy of the fit obtained through the opti-
mization method using the two energy distributions, we calcu-
late the relative percentage error of the measured and

simulated altitude of the emission peak, and the relative percent-
age error of the measured and simulated integrated VER in
order to obtain an indication of the error on the mean energy
and on the energy flux. We then compare the integrals of the
ALIS VER field-aligned profiles (IntALIS) and the correspond-
ing values calculated using Transsolo simulations (IntTranssolo)
at each geographical location to get an estimation of the relative
error on the energy flux. Similarly, we compare the peak
emission altitude of the ALIS VER field-aligned profiles
(AltALIS) and the value obtained through Transsolo simulations
(AltTranssolo) for each location. The consequences of the estima-
tion of the mean energy are discussed below.

The relative error in the altitude of the emission peak
REAltitude and the relative error REIntegral in the integrated
VER is calculated by the following expressions:

REAltitude ¼ AltTranssolo � AltALIS
AltALIS

� �
� 100; ð4Þ

REIntegral ¼ IntTranssolo � IntALIS
IntALIS

� �
� 100: ð5Þ

Maps, Figures 11 and 12, show the relative error in altitude of
the emission peak, using Maxwellian or quasi-monoenergetic
distribution (respectively left and right), for the two data sets.
Identically, Figures 13 and 14 show the relative error in the inte-
gral value. Tables 1 and 2 quantify the trends, i.e. whether the
result is considered correct or whether it is overestimated or
underestimated. In the particular case of the integrated intensity,
we consider the optimization result to be satisfactory to within
±30% of its experimental value. This assumption is based on
the fact that the cross-sections are defined with an uncertainty
that can easily reach 25%. Concerning the altitude of the emis-
sion peak, we consider that the simulated result is correct when
the value of the emission peak altitude is equal to the value
given by the ALIS measurements with a precision lower than
the VER altitude resolution (2.5 km).

Dataset 1 – Maxwellian distribution (Fig. 11):

� (Table 1) Overall, the altitude of the emission peak is cor-
rectly estimated for 79.2% of the map, and its value is
overestimated/underestimated by ±6% at most. Note that

Figure 11. Relative error on measured and simulated altitude of the emission peak (in %) with respect to the VER field-aligned profiles for
dataset 1, with an optimization calculation based on (left) a Maxwellian energy distribution, and (right) a quasi-monoenergetic energy
distribution. The white pixels correspond to the areas where the relative error is not calculable.
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the 4% of the maps that are underestimated are mainly
located in the low mean energy area.

� (Table 2) Similarly, the total intensity is correctly esti-
mated for 86.4% of the map i.e. within ±30% of the
experimental intensity, 1.4% of the map is underesti-
mated, and finally, 12.2% of the map is overestimated
mainly in the central-southeast area of the map. 3.4% of
the map corresponds to an integral relative error of +70
to +250% mainly in the same region. It appears clearly
that the distribution shape does not fit for these cases.

Dataset 1 – Quasi-monoenergetic distribution (Fig. 13):

� (Table 1) The altitude of the emission peak is correctly
estimated for 70.7% of the map. The altitude is underes-
timated up to �6% of the measured value for 1% of the
map in the low mean energy area. In the other part of
the map, the altitude is overestimated of up to +10%.

� (Table 2) For the column integrated intensity, the estimate
is assumed to be correct over the most part of the map
(83.4%), with an underestimation in the northern arc
(from West to East). Very few cases result in an overesti-
mation of the intensity (0.1%). It appears clearly that
in the arc area, the Maxwellian distribution is more

appropriate to reproduce the measurements. However,
the use of the quasi-monoenergetic distribution limits
the number of aberrant intensity values on the map.

For this dataset, the optimization works quite well for both the
column integrated intensity and the altitude of the emission
peak, whether we use a Maxwellian or a quasi-monoenergetic
distribution. However, we notice that some areas are better
described by a specific type of energy distribution. This is the
case for the arc zone which is better reconstructed by a Maxwel-
lian distribution.

Dataset 2 – Maxwellian distribution (Fig. 12):

� (Table 1) For the most part of the map (84.9% of the geo-
graphic locations), the altitude of the emission peak is
overestimated (mostly from +2 to +6%). The area of the
arc where the mean energy is low is correctly estimated
or underestimated by up to �6%.

� (Table 2) For the integrated intensity, we consider that its
estimation is correct for about half of the map (49.8%),
without correspondence with a precise area of the aurora.
The rest is generally overestimated, with a small proportion
of extreme values (4.2% beyond +70% relative error.)

Figure 13. Relative error on measured and simulated integrated VER (in %) with respect to the VER field-aligned profiles for dataset 1, with
an optimization calculation based on (left) a Maxwellian energy distribution, and (right) a quasi-monoenergetic energy distribution. The white
pixels correspond to the areas where the relative error is not calculable.

Figure 12. Relative error on measured and simulated altitude of the emission peak (in %) with respect to the VER field-aligned profiles for
dataset 2, with an optimization calculation based on (left) a Maxwellian energy distribution, and (right) a quasi-monoenergetic energy
distribution.
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Dataset 2 Quasi-monoenergetic distribution (Fig. 14):

� (Table 1) The altitude is mostly well estimated (for 67.2%
of the map), while the altitude in the arc region is rather
underestimated (up to �10%) and overestimated in the
southern region up to +6%, especially where the average
energies are rather high.

� (Table 2) The column intensity integral is also mostly well
estimated (72.6%). Only the area near the arc is underesti-
mated up to �70%. We do not obtain extreme values as in
the previous case with the Maxwellian distribution.

If the quasi-monoenergetic distribution gives better results for
this dataset, it should be noted that, again, the arc is slightly
better described with the optimization performed with a Max-
wellian distribution.

In conclusion, we can observe that whatever the dataset and
the energy distribution used in the optimization calculation, the
relative error in altitude is always less than ±10% and most
often less than ±6%.

Concerning the intensity integral, the error distribution is
much more spread out, between �70% and +250%. However,
we consider that an integral estimate of ±30% is still quite
acceptable. Furthermore, we can note that the error distribution
with a quasi-monoenergetic energy distribution is less spread
out (�60 to +40% globally) than in the case of the Maxwellian
distribution, which gives a minority proportion (up to 3.4% of
the areas covered by the map) of extreme relative error values
of +70 to +250%.

It is important to notice that the link between the altitude of
the peak emission and the mean energy is not linear meaning
that an error of 6% on the altitude can produce a much larger
error on the mean energy. This is especially critical at low

altitudes where the variation of the altitude of the emission peak
becomes small. At 100 km, an error of 2.5 km (the resolution in
altitude of ALIS tomographic reconstructions) produces a shift
of 28% on the mean energy. The most interesting observation
is that some structures of the aurora are best described by a
specific type of energy distribution, as we have seen with the
Maxwellian distribution for the arc. In a more general way,
we observe in Figure 6 that narrow ALIS emission maxima pro-
files were best approximated by a quasi-monoenergetic distribu-
tion assumption and that wider emission profiles were best
described by a Maxwellian energy distribution. This implies that
the choice of energy distribution should ideally be adapted
locally, depending on the structures observed in the aurora.

In addition, it should be noted that the altitude thresholds
were defined differently for dataset 1 and dataset 2. This may
introduce a bias and partly explain the poorer results obtained
in the Maxwellian case of the last dataset (dataset 2). However,
since there is a real performance gap with the quasi-monoener-
getic case for the same data set, it seems that the Maxwellian
description of the energy deposition is less suitable for the emis-
sions measured in dataset 2 meaning that the energy distribu-
tions are more monoenergetic in this case.

Finally, it is worth emphasizing that each parameter of the
energy distribution (Em or Etot) seems to be linked to a unique
observable quantity (column intensity integral and altitude of
the emission peak). This allows us to decouple these two quan-
tities. However, the width and shape of the distribution appear
to be an important parameter since some regions do not fit with
one of the two tested distribution shapes. A solution to this
problem can be to test a Gaussian distribution with variable
width. It adds a third input and thus necessitates extending
the dimension of the input cubes which complicates the opti-
mization problem. However, the three input parameters will

Figure 14. Relative error on measured and simulated integrated VER (in %) with respect to the VER field-aligned profiles for dataset 2, with
an optimization calculation based on (left) a Maxwellian energy distribution, and (right) a quasi-monoenergetic energy distribution.

Table 1. Trends related to the emission peak altitude estimate on the map, for each dataset and energy distribution. The estimate is considered
correct when the value of the emission peak altitude is equal to the value given by the ALIS measurements with a precision lower than the VER
altitude resolution (2.5 km). This table is associated with Figures 11 and 12. More explanations can be found in Section 4.4. *The acronym q.m
corresponds to a quasi-monoenergetic distribution.

Emission peak altitude Dataset 1 – Maxw Dataset 1 – q.m* Dataset 2 – Maxw Dataset 2 – q.m*

% correct estimate 79.2% 70.7% 10.5% 67.2%
% under estimation 4% 1% 4.6% 16.5%
% over estimation 16.8% 28.6% 84.9% 16.3%
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continue to be decoupled. In other words, the altitude of the
emission peak stays a proxy of the mean energy, the area
defined by the emission distribution a proxy of the energy flux,
and the altitude thickness of the emission peak a proxy for the
width of the distribution.

4.5 Comparison with results from Simon Wedlund
et al. (2013)

The datasets were initially chosen to allow comparison of
the results of our optimization method with those of Simon
Wedlund et al. (2013). Figure 14 of Simon Wedlund et al.
(2013) plots the electron particle fluxes obtained by authors with
the ALIS MART algorithm at three different date and hours:

� 05 March 2008 18:41:30 UT (dataset 1),
� 05 March 2008 18:42:40 UT (dataset 2),
� 05 March 2008 18:43:30 UT.

The reconstructions are done on a single location corre-
sponding to the location of the EISCAT UHF beam at 110
km meaning (X; Y) = (�46; 1.9). Dataset 1 corresponds to
the dash line and dataset 2 to the continuous line (Fig. 14 of
Simon Wedlund et al., 2013). For this comparison, we consider
the dataset 2.

Figure 15 represents the result of the optimization at the
EISCAT location for the dataset 2. The energy flux obtained
by Simon Wedlund et al. (2013) is of the order of

18 erg�cm�2�s�1 for dataset 2 in agreement with
17 erg�cm�2�s�1 obtained in this work. Regarding the mean en-
ergy of the particles, we obtain for dataset 2, Em = 2.7 keV. This
is slightly higher than the energy of the second peak recon-
structed by Simon Wedlund et al. (2013) equal to 2 keV. Our
results are consistent with those of Simon Wedlund et al.
(2013) regarding the mean energy and the energy flux. How-
ever, it is important to keep in mind that the extracted distribu-
tion will be different since we imposed here a given shape
which is not the case in the work of Simon Wedlund et al.
(2013). The hypothesis is however mandatory in this optimiza-
tion to allow to reduce the number of parameters. At the
EISCAT location, the fit using a Maxwellian distribution seems
much better for this VER field-aligned profile than the quasi-
monoenergetic distribution suggesting a wide energy distribu-
tion. To conclude this section, this comparison allows us to
verify the accuracy of our results and validate the use of this
new optimization method, which is complementary to the one
used in Simon Wedlund et al. (2013).

5 Conclusion and perspectives

An optimization method has been implemented between
the VER measurements of the Nþ

2 1NG 427.8 nm and the
Transsolo code simulations. The cost function computed from
the least-square method is used to approximate the experimental
measurements as accurately as possible. We thus obtained the
distribution of the mean energy and energy flux of the precipi-
tated electrons which are responsible for the volume emission
rate measured by the ALIS instruments during the night on
March 5th, 2008 at 18:41:30 UT (dataset 1) and at 18:42:40
UT (dataset 2).

Optimization calculations performed with a Maxwellian
energy distribution yielded a mean energy ranging from 1.8 to
5.2 keV with energy flux from 0.1 to 44.3 erg�cm�2�s�1 for
dataset 1, and a mean energy from 2.2 to 9.5 keV with energy
flux from 2.1 to 136.7 erg�cm�2�s�1 for dataset 2. The optimiza-
tion result at the EISCAT location is consistent with the work
conducted by Simon Wedlund et al. (2013) in terms of mean
energy and energy flux for the main emission peak. Assuming
a quasi-monoenergetic energy distribution over the entire map,
we find a mean energy of 4.2 to 11.8 keV with energy flux rang-
ing from 0.1 to 45 erg�cm�2�s�1 for dataset 1, and 8 to 17.1 keV
with energy flux ranging from 2.2 to 110.1 erg�cm�2�s�1 for
dataset 2.

Detailing the maps, we observe that the column integral
intensity is clearly linked to the energy flux and the altitude
of the peak with the mean energy. Furthermore, it is important
to point out that depending on the location on the map, the fit is

Figure 15. Result of the optimization for dataset 2 at the EISCAT
location. We obtain a mean energy of 2.7 keV and an energy flux of
17 erg�cm�2�s�1 with Maxwellian distribution.

Table 2. Trends related to the integral estimate on the map, for each dataset and energy distribution. The estimate is considered correct to be
within ±30% of the experimental integral value. This table is associated with Figures 12 and 13. More explanations can be found in Section 4.4.
*The acronym q.m corresponds to a quasi-monoenergetic distribution.

Integral Dataset 1 – Maxw Dataset 1 – q.m* Dataset 2 – Maxw Dataset 2 – q.m*

% correct estimate 86.4% 83.4% 49.8% 72.6%
% under estimation 1.4% 16.5% 4.4% 27.4%
% over estimation 12.2% 0.1% 45.8% 0%
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better for monoenergetic distributions when its altitude thick-
ness is thin or with Maxwellian distributions when it is large.
We thus are able to differentiate between regions with mono-
energetic acceleration processes such as potential drops from
regions with other acceleration processes. A further update of
this work could be to try to fit the emission profiles using
Gaussian distributions and add the width of the Gaussian as a
free parameter. This will change the optimization architecture
because it will need to fit on a third parameter but will still
be possible with those datasets.

Furthermore, our results show that there is linearity between
the energy flux and the column-integrated VER and that the
coupling between the mean energy and the energy flux is very
weak. Therefore, it could be considered, in order to improve the
optimization process, to decouple the mean energy and the
energy flux and initially perform optimization only on the first
free parameter (i.e. the mean energy). Once this parameter is
fixed, the second free parameter (i.e. the energy flux) can be
used to recover the characteristics of the energy distribution.

The uncertainties on the reconstructions are still important in
the order of 30%. This is mainly due to the uncertainties of the
atmospheric model and the cross-sections in the Transsolo sim-
ulations. Another way to improve these simulations can be to
perform such optimization on other emission lines linked to
the electron precipitations. In this perspective, the O I 844.6
nm line could be a good candidate since it is produced by
two processes directly linked with the precipitation flux (O2 dis-
sociation and direct excitation of O). We will then be able to
compare the results and then better calibrate the precipitation
reconstruction.
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Figure A1. VER maps for dataset 1 between 102.5 km and 110 km. We can observe an auroral arc of moderate intensity extending from West
to East in the north of the map and an emission intensity maximum in the southwest region. The maximum arc intensity is between 107.5 km
and 110 km of altitude.

Appendix

VER measurements – Datasets 1 and 2
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Figure A2. VER maps for dataset 1 between 112.5 km and 117.5 km. The intensity of emissions from the auroral arc and the southwest region
decreases with altitude.
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Figure A3. VER maps of dataset 2 between 100 km and 107.5 km. We expected to observe the same auroral arc, extending from West to East
in the north of the map, that of dataset 1. The emission intensity of the auroral arc increases with altitude. The south-western region with
maximum emission intensity presented in dataset 1 seems to have dissipated in this dataset 2.
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Figure A4. VER maps of dataset 2 between 110 km and 117.5 km. We can observe the maximum intensity of the auroral arc at 110 km of
altitude then a decrease up to 117.5 km.
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