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PROPERTIES OF SEQUENCE OF LINEAR FUNCTIONALS

ON BV WITH APPLICATIONS

L-E. PERSSON, V. TSAGAREISHVILI AND G. TUTBERIDZE

Abstract. This paper is devoted to investigating the sequence of some
linear functionals in the space BV of finite variation functions. We prove
that under certain conditions this sequence is bounded. We also prove
that this result is sharp. In particular, the obtained results can be
used to study convergence of some general Fourier series. Moreover,
the obtained conditions seem to be new and useful also for classical
orthonormal systems.
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1. INTRODUCTION

In order not to disturb the discussion in this introduction and the proofs
of our main result we have collected all notations, definitions and other
preliminaries in Section 2.

In this paper we prove a new convergence result for a special sequence
of linear functionals {Un} = {Un(f)}, defined by (2)-(4) and where usually
f ∈ BV on (0, 1). See Theorem 1. We also prove that this result is, in a
sense, sharp. See Theorem 2.

The study of functionals has a rich history and many powerful and inter-
esting results are obtained, see e.g. the monographs [1, 2, 4, 5, 12, 13, 30]
and the references therein. And this interest seems only to increase and one
reason is absolutely the fact that such developments are powerful for various
applications.

For our investigation it is important to remind about the fact that from
Banach’s Theorem (see e.g.[2]) it follows that if f ∈ L2(0, 1), (f ≁ 0) , then
there exists an ONS such that the Fourier series of this function f is not
convergent on [0, 1] with respect to this system. Thus, it is clear that the
Fourier coefficients of functions of bounded variation do not in general satisfy
condition in Theorem B (the Menchov-Rademacher Theorem).

Another motivation for this paper is to use our main result to obtain
some new results concerning convergence/divergence of general Fourier se-
ries. Some other results for this case can be found in [6, 7, 8, 9, 10, 14, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. See also the monograph [11].
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The main results Theorems 1 and 2 are presented and proved in Section
3. The new applications concerning convergence of general Fourier series can
be found Section 4. See Theorem 3, Corollary 1, Theorem 4 and Theorem 5.

2. PRELIMINARIES

Let {ϕn} be an orthonormal system (ONS) on [0, 1] .
We denote by BV the class of all functions of bounded variation on (0, 1)

and write V (f) for the total variation of a function f on [0, 1].
By A we denote the Banach space of absolutely convergent functions with

the norm ‖f‖A defined by

‖f‖A := ‖f‖C +

1
∫

0

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

dx. (1)

We will investigate the linear functionals {Un(f)} defined by

Un(f) :=

∫ 1

0
f(x)Qn(d, a, x)dx, (2)

where f ∈ L2, a = {an} ∈ l2 is an arbitrary sequence of numbers and

Qn(d, a, x) :=

n
∑

k=1

dkaklog kϕk(x). (3)

Here {dn} denote a sequence of real number such that

dn = O

( √
n

log2(n+ 1)

)

. (4)

For this investigation of the functionals {Un(f)} we need the following
important Lemma (see [9]).

Lemma 1. If f ∈ L2 (0, 1) takes only finite values on [0, 1] and h ∈ L2 (0, 1)
is an arbitrary function, then

∫ 1

0
f (x) h (x) dx =

n−1
∑

i=1

(

f

(

i

n

)

− f

(

i+ 1

n

))∫ i/n

0
h (x) dx (5)

+

n
∑

i=1

∫ i/n

(i−1)/n

(

f (x)− f

(

i

n

))

h (x) dx

+ f (1)

∫ 1

0
h (x) dx.

We denote

Bn (d, a) = max
1≤i<n

∣

∣

∣

∣

∣

∫ i/n

0
Qn (d, a, x) dx

∣

∣

∣

∣

∣

. (6)
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We say that the sequence of functionals {Un(f)} is bounded on the space
V, if, for any {an} ∈ l2,

lim sup
n→∞

|Un(f)| < +∞.

We also need the following result of S.Banach (see e.g. [2]):

Theorem A . Let f ∈ L2 be an arbytrary (non-zero) function. Then there
exists an ONS {ϕn} such that

lim sup
n→∞

∣

∣

∣

∣

∣

n
∑

k=1

Ck(f)ϕk(x)

∣

∣

∣

∣

∣

= +∞ a.e. on [0, 1],

where Ck(f) are the Fourier coefficients of the function f ∈ L2 with respect
to the system {ϕk} and defined as follows

Ck(f) :=

1
∫

0

f(x)ϕk(x)dx. (7)

Moreover, we recall the following well-known result of Menshov and Rademacher
(see e.g. [11] Ch.9, p.332).

Theorem B. If {ϕn} is an ONS on [0, 1] and a number sequence {cn}
satisfies the condition

∞
∑

n=1

c2n log
2
2 n < +∞,

then the series

∞
∑

n=1

cnϕn (x)

converges a.e. on [0, 1].

3. The Main Results

Our first main result reads:

Theorem 1. If, for any {an} ∈ l2,

Bn (d, a) = O (1) , (8)

then the sequence of functionals {Un(f)} is bounded on the space BV for
every f ∈ BV.
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Proof. By using Lemma 1, when h (x) = Qn (d, a, x) we have

∫ 1

0
f(x)Qn(d, a, x)dx =

n−1
∑

i=1

(

f

(

i

n

)

− f

(

i+ 1

n

))∫ i/n

0
Qn(d, a, x)dx

+

n
∑

i=1

∫ i/n

(i−1)/n

(

f (x)− f

(

i

n

))

Qn(d, a, x)dx

+f (1)

∫ 1

0
Qn(d, a, x)dx := A1 +A2 +A3. (9)

Let f ∈ BV , then we get (see (6))

|A1| ≤ max
1≤i<n

∣

∣

∣

∣

∣

∫ i/n

0
Qn(d, a, x)dx

∣

∣

∣

∣

∣

·
n−1
∑

i=1

∣

∣

∣

∣

f

(

i

n

)

− f

(

i+ 1

n

)∣

∣

∣

∣

≤ V (f)Bn(d, a).

Hence, from condition (8) it follows that

|A1| = O(1)V (f).

By applying Hölder’s inequality and (4) , we get (since {an} ∈ l2)

|A2| ≤
n
∑

i=1

sup
x∈[ i−1

n
, i
n
]

∣

∣

∣

∣

f(x)− f

(

i

n

)∣

∣

∣

∣

∫ i/n

(i−1)/n
|Qn(d, a, x)| dx

≤ V (f) max
1≤i≤n

∫ i/n

(i−1)/n
|Qn(d, a, x)| dx

≤ V (f)
1√
n

(∫ 1

0
Q2

n(d, a, x)dx

)1/2

=
V (f)√

n





∫ 1

0

(

n
∑

k=1

dkak log kϕk(x)

)2

dx





1/2

=
V (f)√

n

(

n
∑

k=1

d2ka
2
k log

2 k

)1/2

= V (f) ·
max
1≤k≤n

|dk|
√
n

· log n
(

n
∑

k=1

a2k

)1/2

= O(1)V (f).
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By using (6) and Cauchy’s inequality, for any {an} ∈ l2 we find that

|A3| = O(1)

∣

∣

∣

∣

∫ 1

0
Qn(d, a, x)dx

∣

∣

∣

∣

≤ O(1)

(∣

∣

∣

∣

∣

∫ 1−1/n

0
Qn(d, a, x)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ 1

1−1/n
Qn(d, a, x)dx

∣

∣

∣

∣

∣

)

≤ O(1)

(

Bn(d, a) +
1√
n

(∫ 1

0
Q2

n(d, a, x)dx

)1/2
)

= O(1).

Taking into consideration in (9) the above estimates of |A1|, |A2| and |A3|
we have that

∣

∣

∣

∣

∣

∫ 1

0
f(x)

n
∑

k=1

dkak log kϕk(x)

∣

∣

∣

∣

∣

= O(1).

It follows that
|Un(f)| ≤ M(f), (10)

where M(f) is a constant which does not depend on n and the proof is
complete.

�

Next we state a result which, in particular, show that the statement in
Theorem 1 is, in a sense, sharp.

Theorem 2. If for some {bn} ∈ l2

lim sup
n→∞

Bn(d, b) = +∞,

then there exists a function g ∈ A, such that

lim sup
n→∞

|Un(g)| = +∞.

Proof. First we suppose that

lim sup
n→∞

∣

∣

∣

∣

∫ 1

0
Qn (d, b, x) dx

∣

∣

∣

∣

= +∞.

Then, if g(x) = 1, x ∈ [0, 1], we have

lim sup
n→∞

∣

∣

∣

∣

∫ 1

0
g(x)Qn (d, b, x) dx

∣

∣

∣

∣

= +∞.

Obviously g ∈ A. Theorem 2 holds in this case.
Next we suppose that

∣

∣

∣

∣

∫ 1

0
Qn (d, b, x) dx

∣

∣

∣

∣

= O(1). (11)

Let 1 ≤ in < n be an integer, such that

Bn (d, b) = max
1≤i<n

∣

∣

∣

∣

∣

∫ i/n

0
Qn (d, b, x) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ in/n

0
Qn (d, c, x) dx

∣

∣

∣

∣

∣

.
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Suppose that for some sequence b = {bk} ∈ l2

lim sup
n→∞

Bn(d, b) = +∞. (12)

Consider the following sequence of test functions:

fn (x) =







0, when x ∈
[

0, inn
]

1, when x ∈
[

in+1
n , 1

]

continuous and linear, when x ∈
[

in
n ,

in+1
n

]

.

Then (see (1))

‖fn‖A =

∫ 1

0

∣

∣

∣
f

′

n (x)
∣

∣

∣
dx+ ‖fn (x)‖C ≤ 2.

Furthermore,
∣

∣

∣

∣

∣

n−1
∑

i=1

(

fn

(

i

n

)

− fn

(

i+ 1

n

))∫ i/n

0
Qn (d, b, x) dx

∣

∣

∣

∣

∣

(13)

=

∣

∣

∣

∣

∣

∫ in/n

0
Qn (d, b, x) dx

∣

∣

∣

∣

∣

= Bn (d, b) .

Then, if x ∈
[

i−1
n , i

n

]

we find that
∣

∣

∣

∣

fn (x)− fn

(

i

n

)∣

∣

∣

∣

{

≤ 1, if i = in + 1,
0, if i 6= in + 1,

and it implies that (since {bn} ∈ l2)
∣

∣

∣

∣

∣

n
∑

i=1

∫ i/n

(i−1)/n

(

f (x)− f

(

i

n

))

Qn (d, b, x) dx

∣

∣

∣

∣

∣

(14)

≤
n
∑

i=1

sup
x∈[ i−1

n
, i
n
]

∣

∣

∣

∣

f (x)− f

(

i

n

)∣

∣

∣

∣

∫ i/n

(i−1)/n
|Qn(d, b, x)| dx

≤ V (f) max
1≤i≤n

i/n
∫

(i−1)/n

|Qn(d, b, x)| dx

= O(1)
1√
n

(∫ 1

0
Q2

n(d, b, x)dx

)1/2

= O(1)
1√
n

max
1≤k≤n

dk log n

(

n
∑

k=1

b2k

) 1

2

= O(1).

Consequently, by using (5) when f (x) = fn (x) and Qn (d, a, x) = Qn (d, b, x) ,
and combining (11), (13), (14), we get that

∣

∣

∣

∣

∫ 1

0
fn (x)Qn (d, b, x)

∣

∣

∣

∣

dx ≥ Bn(d, b) −O (1)−O(1).
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From here and from (12) we have, that

lim sup
n→∞

∣

∣

∣

∣

∫ 1

0
fn (x)Qn (d, b, x) dx

∣

∣

∣

∣

= +∞.

Finally, we note that since

Un (f) =

∫ 1

0
f (x)Qn (d, b, x) dx

is a sequence of linear bounded functionals on A, then by the Banach-
Steinhaus theorem, there exists a function g ∈ A such that

lim sup
n→∞

|Un(g)| = lim sup
n→∞

∣

∣

∣

∣

∫ 1

0
g (x)Qn (d, b, x) dx

∣

∣

∣

∣

= +∞. (15)

The proof is complete.
�

4. Applications concerning convergence of general Fourier

series

Our first application reads:

Theorem 3. If condition (8) of Theorem 1 holds then, for any function
f ∈ BV,

∞
∑

k=1

d2kC
2
k(f) log

2 k < +∞.

Proof. By using condition (8) of Theorem 1, and using equation (10) and (7)
we have that

n
∑

k=1

dkCk(f) log k =

∫ 1

0
f(x)

n
∑

k=1

dk log kϕk(x)dx

=

∫ 1

0
f(x)Qn(d, a, x)dx.

Hence,
n
∑

k=1

dkakCk(f) log k = Un(f).

Since

|Un(f)| = O(1)

it follows that
n
∑

k=1

dkak log kCk(f) = O(1).

Now, if we suppose that for any {ak} ∈ l2,

lim sup
n→∞

|Un(f)| < +∞,
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then the following series
∞
∑

k=1

dkak log kCk(f) (16)

is convergent.
This means that {dkCk(f) log k} ∈ l2, or

∞
∑

k=1

d2kC
2
k(f) log

2 k < +∞.

The proof is complete.
�

In particular, Theorem A and Theorem 1 imply the following new result:

Corollary 1. If condition (8) of Theorem 1 holds for any function f ∈ BV,

then the following series
∞
∑

k=1

dkCk(f)ϕk(x)

is convergent a.e. on [0, 1].

Remark. If condition (8) of Theorem 2 is fulfilled and dk = 1, k = 1, 2, . . . ,
then, for any f ∈ BV the series

∞
∑

k=1

Ck(f)ϕk(x)

is convergent a.e. on [0, 1].

Next, we state the following result showing that Theorem 3 is, in a sense,
sharp.

Theorem 4. For any function g ∈ A (g 6= 0) there exists an ONS {ϕn}
such that for some {an} ∈ l2 and dk = 1, k = 1, 2, . . .

lim sup
n→∞

n
∑

k=1

C2
k(f) log

2 k = lim sup
n→∞

|Un(g)| = +∞. (17)

Proof. Let g be an arbitrary function. According to the Banach Theorem
there exists an ONS {ϕn} such that

lim sup
n→∞

∣

∣

∣

∣

∣

n
∑

k=1

Ck(g)ϕk(x)

∣

∣

∣

∣

∣

= +∞ a.e. on [0, 1]. (18)

Consequently, by using (18) and Theorem A, we conclude that

∞
∑

k=1

C2
k(g) log

2 k = +∞. (19)
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Indeed, suppose the contrary to (17) namely that for arbitrary {an} ∈ l2

lim sup
n→∞

|Un(g)| < +∞.

Then as it follows from (16) when dk = 1, k = 1, 2, . . . for any {an} ∈ l2
that the series

∞
∑

k=1

ak log kCk(g)

is convergent. Thus, {Ck(g) log k} ∈ l2 or

∞
∑

k=1

C2
k(g) log

2 k < +∞,

which contradicts (19).
This contradiction shows that (17) holds so the proof is complete.

�

Finally, we state the following efficiency result:

Theorem 5. Let {ϕn} be an ONS such that uniformly with respect to x ∈
[0, 1] it holds that

∫ x

0
ϕn(x)dx = O

(

1

n

)

. (20)

Then for any a = {an} ∈ l2,

Bn(d, a) ≤ max
x∈[0,1]

∣

∣

∣

∣

∣

∫ x

0

n
∑

k=1

dkak log kϕk(u)du

∣

∣

∣

∣

∣

= O(1). (21)

Proof. According to (20) and by the Cauchy inequality we get (see (4))

Bn(d, a) ≤ max
x∈[0,1]

∣

∣

∣

∣

∣

∫ x

0

n
∑

k=1

dkak log kϕk(u)du

∣

∣

∣

∣

∣

= max
x∈[0,1]

∣

∣

∣

∣

∣

n
∑

k=1

dkak log k

∫ x

0
ϕk(u)du

∣

∣

∣

∣

∣

= O(1)

∣

∣

∣

∣

∣

n
∑

k=1

akdk log k
1

k

∣

∣

∣

∣

∣

= O(1)

(

n
∑

k=1

a2k

)1/2( n
∑

k=1

d2k log
2 k

1

k2

)1/2

= O(1)

(

n
∑

k=1

k

log4(k + 1)

log2 k

k2

)1/2

= O(1).

Hence, (21) is proved so the proof is complete.
�
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Remark: Consequently, the functionals defined by (2) are bounded e.g.
when {ϕn} is the trigonometric or Walsh system.

Final remark. We pronounce that some other convergence/divergence
result of one-dimensional Vilinkin-Fourier series can be found in the new
book [18]. We hope that our (Functional) approach can be used to contribute
to solving some of the open questions raised in this book. In this connection
we also mention the new paper [19], which is related to the famous Carleson
paper [3].
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