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Abstract Broad application of the continuous time Markov chain is caused by mem-
oryless property of exponential distribution. An employment of non-exponential
distributions leads to remarkable analytical difficulties. The usage of arbitrary non-
negative density approximation by a convolution of exponential densities is a way
of considerable interest. Two aspects of the problem solution are considered. Firstly,
the parametrical estimation of the convolution on the basis of given statistical data.
Secondly, an approximation of fixed non-negative density. An approximation and es-
timation are performed by the method of the moments, maximum likelihoodmethod,
and fitting of a density. An empirical analysis of different approaches has been per-
formed with the use of simulation. The efficiency of the considered approach is
illustrated by the task of the queuing theory.

1 Introduction

Broad application of the continuous time Markov chain is caused by exponential
distribution properties, see for example, [3], [4] and [6]. The employment of non-
exponential distributions leads to considerable analytical difficulties. The usage of
arbitrary nonnegative density approximation by a convolution of exponential densi-
ties is a way of considerable interest. Such approach is considered in this manuscript.
More general approach consists in application so called phase type (PH) distribution,
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see [5]. Unfortunately, parameter’s estimation of PH type distribution is a difficult
statistical problem. We confine ourselves to a sum of exponential distributed ran-
dom variables. Two aspects of the problem are considered. Firstly, the parametrical
estimation of the convolution on the basis of given statistical data. Secondly, an
approximation of fixed non-negative density. Different approaches to such approx-
imation and estimation are under consideration: maximum likelihood method, the
method of the moments, fitting of densities. An empirical analysis of different ap-
proach has been performed using the simulation. The efficiency of the considered
approach is illustrated by the task of the queuing theory.

2 Convolution of the exponential densities

Let /1, . . . ./< be independet random variables having exponential distribution with
parameters _ = (_1, . . . , _<), where all components {_8} are different. A distribution
of their sum ( = /1 + · · · + /< has the following density and cumulative distribution
function for I ≥ 0, see [2]:
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Moment of order A is calculated by formula
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3 ML-estimation of the parameters

Firstly, we consider maximum likelihood method of parameter’s estimation for den-
sity (1) when a sample corresponds this distribution, for example, see [8]. For this
aim it is necessary to calculate partial derivative with respect to estimated parameters
{_8}:
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Finally
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Now we can use a gradient method for searching maximum likelihood estimates of
_ = (_1, . . . , _<).

4 Parameter’s estimation by the moments’ method

The moments’ method does not request explanations. We will use somemodification
of this method, using more moments as a number of unknown parameters.

Let `∗A be an empirical moment of the A-th order, : ≥ < and `∗ = (`∗
1
, . . . , `∗

:
).

As a criterion of the estimation we consider the following:
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'" (_) =
:∑
A=1

��`A (_) − `∗A ��1/A . (5)

A value of _, which minimizes this criterion, gives necessary estimate.
If distribution type of the given sample is known, we can act as follows: firstly,

it is necessary to estimate the unknown distribution parameters; the second phase
involves the approximation of corresponding density by a convolution of exponents.
Such approximation is considered below.

5 Approximation of the density

The following situation is considered here. We have some differentiable density 6(I)
of a non-negative continuous random variable. It is necessary to approximate the
above mentioned density 6(I) by the density (1).

Firstly, we can approximate it using moments of the density 6(I). With this aim
in view these moments are used instead of the empirical moments {`∗A } in formula
(5). Secondly, as criterion of the estimation we can use a square between curves 6(I)
and 5 (I;_):

'( (_) =
∫ ∞

0

h(I) | 5 (I;_) − 6(I) |3I, (6)

where h(I) ≥ 0 is a known "weight" function.
Here themultiplierh(I) allows the deviations to get variousweights | 5 (I;_) − 6(I) |

for various I. If h(I) = I then the stress is laid on big value of the argument. If
h(I) = 1/I – on of the neighbourhood of zero. A case h(I) = 6(I) means that the
emphasis is placed on big values of 6(I).

A minimization of integral (6) can be done through gradient method. If sign
( 5 (I;_) − 6(I)) = ±1 gives a sign of the difference 5 (I;_) − 6(I), then a partial
derivative of (6) is as follows:

3

3_:
'( (_) =

∫ ∞

0

h(I)B86=
(
5 (I;_) − 6(I)

) 3

3_:
5 (I;_)3I. (7)

Concerning the above considered approaches it is critical to underscore that it is
possible to use a mixture of various estimates of vector parameter _. It is easier to
apply equal weights of mixture’s components. But at the same time, it is possible
to select weights based on some assumptions or speculations. We can control this
procedure by calculating the criterion (5) and (6).

Further we present results of experiment’s investigation for above considered
approaches.
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6 Experimental study

We use a simulation for a verification of received estimates. Further = means a size
of given sample.

Firstly, we present results of ML-estimations using density (1). Let vector _1 =
(1, 1.6, 2.1) be true values of unknown parameters of the distribution (1). Estimates
_2 = (1.02, 1.114, 3.12), _3 = (0.9, 1.26, 3.66), and _4 = (1.08, 1.32, 2.16) were
received on samples of sizes 100, 200, 250, correspondingly. Graphs of the density
function (1) for these parameters are presented in Figure 1.

Fig. 1 True 5 (G, _1) and estimated densities

Table 1 contains corresponding values of expectation ` and variance f2. We see
that the difference in these values has a small influence on the form of the densities.

Table 1 Expectation ` and variance f2 for different estimates

_1 _2 _3 _4

` 2.101 2.178 2.178 2.146
f2 1.617 1.833 1.939 1.646

Further we consider the approximation results of some distribution by density (1).
The Weibull-Gnedenko distribution (see [7]) will be considered as an approximated
distribution. This distribution has the following density 5, (I; 0, 2) and moments
`,A (0, 2):
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5, (I; 0, 2) = 2
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`,A (0, 2) = 0AΓ
(
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2
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)
, A = 1, 2, . . . , (9)

where parameters 0, 2 > 0.
Let us set 0 = 5.7, 2 = 2.2. In this case `,1 (0, 2) = 5.048, `,2 (0, 2) = 31.35,

`,3 (0, 2) = 224.721, `,4 (0, 2) = 1.797 × 103.
Firstly, we consider results of approximations by maximum likelihood method.

With this purpose inmind used samplewas simulatedwith respect to this distribution.
The size of the sample equals 250, the number< of convolution‘s components equals
3. The necessary estimates of the parameter are gotten through the procedure of log-
likelihood function minimization. As result we have estimate

_∗ = (0.57 0.58 0.59)) .

Fig. 2 contains graphs of density functions 5, (G; 5.7, 2.2) and 5 (G;_∗). Addi-
tionally the density of Erlang distribution

5 �A (G, U, :) = U

(: − 1)! (UG)
:−1 (U4)4G?(−UG), G ≥ 0

with parameters U = 0.85 and : = 3 is presented.

Fig. 2 True 5 , (G;2.2, 5.7) and estimated densities

Results of approximations of the density (8) by the density (1) for different used
moments are represented in the Tab.2. Values of the parameters _ = (_1, . . . , _<)
estimation for 3 moments `,1, `,2, `,3 and < = 3 are denoted by _11, _12, _13,
for 4 moments `,1, `,2, `,3, `,4 and < = 4 are denoted by _21, _22, _23,



On a parametric estimation for a convolution of exponential densities 7

_24. Corresponding moments `A (_1) and `A (_2) are represented too. Graphs of the
corresponding densities are presented in Fig.3.

Table 2 Approximations of the density (8) using criterion (5)

r _1A `A (_1) _2A `A (_2)

1 0.56 4.63 0.70 4.789
2 0.61 28.764 0.725 28.864
3 0.83 224.723 0.90 210.187
4 1.15 1.797 × 103

Fig. 3 Density of Weibull-Gnedenko distribution and its approximations

These graphs can be improved if the procedure of the approximation by means
criteria (6) is employed. It gives graphs, presented in Fig.4 for h(I) = 1. Table 3
contains values of estimated parameters and moments.

Table 3 Approximations of the density (8) using criterion (6)

r _3A `A (_3) _4A `A (_4)

1 0.59 5.001 0.70 5.188
2 0.60 33.347 0.75 33.684
3 0.61 277.971 0.80 262.703
4 0.85 2.393× 103

Having examined presented graphs, we conclude that parameters _ = (0.57, 0.58,
0.59) or _ = (0.59, 0.60, 0.61) give the best approximation. This example can be
considered as a “hard” case, because the gotten approximation isn’t very good.
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Fig. 4 Density of Weibull-Gnedenko distribution and its approximations

We present another example, where gotten approximation is good. Namely let us
consider a log-normal distribution’s density (see [7])

5 !# (G, `, f) = 1

Gf
√
2c
4G?

(
−

(
;= G
<

)2
2f2

)
, G ≥ 0,

with parameters < = 4.552, f = 0.650.
Using criterion (6) and weight function h(I) = I, we get the following parameter

vector of the exponentially distributed addends:

_ = (_1, _2, _3) = (0.5, 0.51, 0.96).

If we use the criterion of the moments (5), we get the following estimates:

_ = (_1, _2, _3) = (0.32, 0.40, 1.80).

Corresponding densities are presented in Fig.5. Below moments of the distribu-
tions are presented too.

We see that approximation of the density’s curve is good, but the moments are
different. So, it is necessary to make a sacrifice. Further it is possible to use mixture
of the exponential densities (Fig.6). It allows us finding a compromise between
requests to densities and moments. For example, mixture (0.5 0.51 0.96) and (0.32
0.40 1.80) with equal weight 0.5 gives estimate _"1 =(0.41 0.455 1.38). Mixture
(0.5 0.51 0.96) and (0.5 0.51 0.52) with equal weight 0.5 gives estimate _"2 =(0.50
0.51 0.74). Corresponding approximating densities and their moments are presented
below. This example shows that several types of good approximation are possible.
Both examples tell that the described approach isn’t universal one. To apply it
successfully, it is necessary to verify that used approximation is well.
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Fig. 5 Density of Log-normal distribution and its approximations

Fig. 6 Density and moments of the mixtures

7 Application to a single queueing system M/G/1/k

A single-server queueing system with a Poisson flow of the customers with arrival
intensity U is under consideration. A distribution of the service time is arbitrary.
Different service times are independent, and do not dependent on arrival flow too.
Maximal number of the customers in the system equals : .
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It is necessary to consider nonstationary regime, namely, to calculate a distribution
of the number of customers in the system - (C) at time moment C.

This system was studied by many authors, see, for example, [3]. Usually the sta-
tionary regime is considered. The nonstationary regime excepts any simple analysis.
We use the above described approach for that.

Let assume that the convolution of the exponential distributions with parameters
_ = (_1, . . . , _<) adequately describes service time (. Then this time is presented
as ( = /1 + · · · + /<.

We will be concerned with < sequential phases of the service with lengths
/1, . . . , /<.

Let � (C) and � (C) represent the number of customers in the queue and the phase
of service at time moment t, correspondingly. � (C) = 0 means that the queueing
system is empty, so � (C) = 0 too. Obviously,. (C) = (� (C), � (C)) is a two-dimensional
Markovian process.

To simplify the next presentation, we input a one-dimensional process # (C) =
<� (C) + � (C), that gives a total number of the phases of the forthcoming services.
A set of values of this random variable is Ω = 0, 1, . . . , =∗, where =∗ = <: . The
following relations take place:

= = 0→ � = 0 and � = 0,
= > 0 and

=

<
is an integer→ � = < and � =

=

<
, (10)

= > 0 and
=

<
is not an integer→ � = <>3 (=, <) and

� =
1

<
(= − <>3 (=, <)).

These relations give two functions i and k on = which define � and �:

i(=) = � and k(=) = �.

Process # (C) is continuous-time ergodic finiteMarkov chain. Its (=∗+1)× (=∗+1)-
matrix of the transition intensities Λ = (Λ=,=′) is as follows:

Λ=,=+< = U, = = 0, . . . , =∗ − <,
Λ=,=−1 = _k (=) , = = 1, . . . , =∗,

the remaining components of the matrix equal zero.
Now we are able to calculate the conditional probability %=,=′ (C) = %{(# (C) =

=′ |# (0) = =)} that a total number of the phases # (C) at time moment C equals =′ if
initially one equals =. Let %(C) = (%=,=′ (C)) be the corresponding (=∗ + 1) × (=∗ + 1)-
matrix and Λ� be a diagonal (=∗ + 1) × (=∗ + 1)-matrix with the diagonal Λ1,
where Λ1 is column-vector of dimension = + 1 from units. If all eigenvalues of
matrix (generator) � = Λ − Λ� are different then probabilities %(C) = (%=,=′ (C))
can be represented simply. Let a[ and /[ , = = 0, . . . , =∗, be the eigenvalue and the
corresponding eigenvector of�, / = (/0, . . . , /=∗ ) be the matrix of the eigenvectors
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and /̃ = /−1 = (/̃)
0
, . . . , /̃)

=∗ ) be the corresponding inverse matrix (here /̃= is the
=–th row of /̃).

Then, see [1],

%(C) =
(
%=,=′ (C)

)
=

=∗∑
==0

4G?(a[C)/= /̃=. (11)

Now a distribution of the number of the customers in the system - (C) at time
moment C can be calculated. Let us suppose that initially at time moment C = 0 8
customers are in the system. If 8 > 0 we suppose additionally that the service of the
customer begins only now.

If Ω(8) = {= ∈ Ω : i(=) = 8}, then
%(- (C) = 8′ |- (0) = 8) =

∑
=′∈Ω(8′)

%8:,=′ (C), 0 ≤ 8, 8′ ≤ :. (12)

Below the numerical example is considered. Our aim is to study how the expec-
tation � (- (C)) of the number of customers in the system depends on time C. The
famous Pollaczek-Khinchin formula gives an answer for the stationary case. If U is
intensity of Poisson flow, ` and f are average and standard deviation of service time,
and load coefficient d = U` is less than one, then

� (- (∞)) = d + d
2 + (_f)2
2(1 − d) . (13)

We consider the following initial data: U = 0.2, < = 3, _ = (_1, _2, _3)) =

(1, 1.6, 2.1)) , : = 4, =∗ = 12. The first and the second moments of the service time,
calculated by formula (3), are as follows: ` = `1 (_) = 2.101, `2 (_) = 6.032, so
f = 1.272.

Fig.7 contains the generator�. Expression (14) and Fig.9 (see Appendix) contain
the vector E = (E0, . . . , E12) of the eigenvalues and the matrix / of the eigenvectors.
The matrix of the transition probabilities for C = 2 is presented in Fig.10 (see
Appendix).

j = (−2.99, −2.69, 0, −1.65 + 1.138, −1.65 − 1.138, −0.34, −1.61 + 0.818,
−1.61 − 0.818, −2.21, −0.66, −1.59 + 0.268, −1.59 − 0.268, −1.20) (14)

TheFig.8 contains final graphs of� (- (∞)) and� (- (C)), named as"40=# (C, 01,
_1)0 and �EA#D<14A (C, 0.1, _1) correspondingly. We see how non-stationary expec-
tation � (- (C)) tends to stationary limit.
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Fig. 7 The table with generator �

Fig. 8 The graph of the dependence "40=# (C , 01, _1)0 = � (- (C)) on C and stationary value
�EA#D<14A (C , 0.1, _1) = � (- (∞))

8 Conclusions

Two aspects of the problem were considered. Firstly, the parametrical estimation of
the convolution on the basis of given statistical data. Secondly, an approximation
of fixed non-negative density. Different approaches to such approximation and esti-
mation was considered: maximum likelihood method, the method of the moments,
fitting of densities. An empirical analysis of different approaches has been performed
using the simulation. The efficiency of the considered approach was illustrated by
the task of the queuing theory.
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Appendix

Fig. 9 The matrix of the eigenvectors

Fig. 10 Matrix of the transition probabilities for C = 2
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