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ABSTRACT 

The proposed paper documents research carried out in the 

Smart Charge project. This project has investigated the 

use of electric snowmobiles for V2G purposes. Electric 

snowmobiles and ATVs have been introduced in remote 

areas in the Arctic to replace the fossil fuelled vehicles that 

dominate today. Electric versions of these can add extra 

loads to the local electricity grid. But they can also be 

considered a resource for energy flexibility. The Smart 

Charge project is in the process of developing a concept 

that can support the management and control of a set of 

snowmobiles for V2G services in the Arctic.  An essential 

part of this is prediction. Creating the necessary foresight 

is important, to mobilize, prepare and to engage such 

vehicles to provide peak shaving assistance for a grid. The 

project has investigated different methods for this and has 

addressed the practicality of the approach developed for a 

use-case set in a part of Northern Finland. The paper 

concludes that V2G services with snowmobiles can be 

feasible and well supported by the prediction methods 

applied. The findings also suggest that the approach 

developed could be generally applicable, not only in the 

Arctic. 

INTRODUCTION 

In arctic areas such as northern Norway, Finland, Sweden, 

Canada, Alaska and Svalbard, mobility today is very much 

dominated by light vehicles such as ATVs (all-terrain 

vehicles) and snowmobiles. Most of these vehicles are 

fossil fuelled. However, recently electric versions of such 

vehicles have been introduced in the commercial market. 

Assuming that light electric vehicles (LEVs) like these are 

going to a gain a solid foothold in these regions, like 

electric cars have done already in some parts of the world 

there will be an impact on the grid system, but possibly 

also a way to manage loads in local distribution grids and 

microgrids. LEVs need to charge, but at the same time 

LEVs could possible represent a resource and provide 

energy flexibility services to handle capacity issues or 

function as an energy reserve to improve supply and 

increase supply resilience. With the introduction of LEVs 

in these regions new opportunities arise based on the 

vehicle-to-grid (V2G) concept. In comparison with buses, 

trucks and cars a single LEV has a limited battery capacity 

to offer. An extensive fleet of LEVs would be needed to 

create a practical option. But there exists some favourable 

possibilities. The population of LEVs in the arctic regions 

may be dense compared to the community that they serve. 

In the case of Longyearbyen at Svalbard with a permanent 

population of a little more than 2000 people there exists 

approximately 2300 registered snowmobiles. The Arctic is 

subject to dramatic seasonal changes. This entails distinct 

cyclical use or non-use of the vehicles. For instance, during 

the period late April to late October, the snow conditions 

are very poor or non-existent, making the snowmobile 

useless as a means of transportation.  

Consequently, snowmobiles are typically parked idle 

during the summer period at Svalbard and in other places 

in the Arctic. Due to the limited physical size of LEVs, it 

is possible to park a significant number of vehicles in a 

limited area. Hence, a summer based V2G regime based 

on electric snowmobiles could be established with lesser 

constraints than vehicles in all year use. During winter a 

V2G concept for snowmobiles would face similar 

challenges to that typically considered for electric cars in 

urban areas. The research done in the Smart Charge project 

has been concerned with these issues, and the project can 

offer novel insight regarding the basic requirements that 

need to be considered in order to provide a useful V2G 

service by means of LEVs in the Arctic. Due to the 

relatively small battery units installed on electric vehicles 

a considerable number of vehicles need to be engaged, 

managed and controlled. This in turn requires certain 

provisions that the project has identified and tested. The 

scope of the project has been limited to first generation, 

electric snowmobiles. However, we believe that a big part 

of what has been established is relevant for LEVs in 

general and even for V2G regimes based on larger 

vehicles. V2G must involve advance notices to prepare the 

vehicle and inhibit other use of it.  During the winter this 

is especially important since the snowmobiles are in 

regular use. 

STATE-OF-THE-ART AND RELATED WORK 

The research presented here extends previous 

documentation in the project [1]. During the recent years a 

lot of buzz around V2G has been witnessed, increasing in 

intensity with the growing number of electric vehicles and 

an expanding charging infrastructure [1]. In the wake of 

this a polarized debate arose whether the benefits of V2G 

could balance out the disadvantages. Sceptics have  



  

 

Table 1 Two different models of electric snowmobiles available 

in the market today 

 Model 1 Model 2 

Battery capacity li-ion (kWh) 23kWh 7-21kWh 

Battery peak power 67kW 60kW 

Charging rate – onboard 

charger 

Up to 6.6kW 

AC 

Up to 6.6kW 

AC 

Charging ports Type 1-CCS Type 1-CCS 

Top speed 100 km/h 100 km/h 

Range 140km 100km 

Weight (kg) 341 270 

Price From 

$15,000 

From 

€15,000 

primarily been concerned with battery degradation. A 

discharge pattern involving transfer of power from the 

vehicle’s battery to the grid or as a behind-the-meter 

resource for buildings were believed to cause loss of value 

for a vehicle owner that could not be defended 

economically. Others expressed concerns that a viable 

business model for V2G was lacking. The proponents had 

a different opinion and Nissan was an early mover. The 

CHAdeMO protocol offered a V2G opportunity and most 

early V2G trials typically involved the Nissan Leaf model. 

However, no open standard, supporting Type 2 and CCS 

connections became available before the introduction of 

the OCPP version 2 protocol. Even today, few car models 

have adopted the ISO 15118 which is essential for 

communication between the electric vehicle and the 

external charging infrastructure and required for both Pay 

and Charge services and V2G. The INVADE project 

adopted a systematic approach to establish essential 

provisions for practical Smart Charging as well as V2G. 

Issues and opportunities mentioned have been addressed 

by [2-7]. The work reported here has extracted and 

extended insight presented in these references. However, 

the vast majority of these have focused on V2G services 

for electric cars. Documentation of industrial initiatives 

that have adopted V2G for larger vehicles such as buses 

have also been documented [3]. However, no other project, 

to the authors’ knowledge, have addressed the creation of 

V2G services with LEVs and definitely not any research 

addressing electric snowmobiles and, the Arctic in 

particular. One apparent reason is that the history of 

electric snowmobiles is a very recent one, triggered by 

green shift policies in Europe as well as in North America. 

But the recent market introduction of such has triggered 

considerable interest. For the project, snowmobiles with 

the specifications shown in Table 1 have been subject to 

the work documented. 

THE SMART CHARGE V2G CONCEPT 

To establish a practical V2G service a number of 

snowmobiles need to be managed and the individual power 

contributions need to be aggregated. Despite the 

differences between summer activities and winter 

activities the snowmobiles can be grouped as shown in 

Figure1 as a nested Boolean sets, the Venn diagram shows 

the different groups as sets and subsets. This 

categorization is important. It helps to determine the size 

of the fleet of snowmobiles required to counter an 

anticipated peak. In addition it defines different states for 

management and control that requires early notice and lead 

time for mobilization, completion of the required fleet to 

be engaged and more.  Beyond all it provides a basis for 

information for owners of the vehicles in due time. 

Expectation management in V2G regimes is important. 

The set S refers to all registered snowmobiles within a 

community or area. C refers to all registered snowmobiles 

under contract with a V2G-regime. M is the set of 

snowmobiles that need to be mobilized by means of an 

early notice and await further instructions. R is the 

minimum set of such vehicles required to produce the 

power to sustain peak curtailment as long as demanded.  A 

is the set of vehicles which are activated and contribute to 

a feed into the grid. The reason that R>A is because 

batteries in snowmobiles are small. To last through a 

whole peak shaving period a replacement needs to be 

established and activated when the batteries of first A-

group are depleted or have reached a predefined minimum 

state-of-charge (SOC). The arrows in the diagram serve to 

illustrate a migration between the sets. When the SOC has 

reached a minimum, a snowmobile needs to be dismissed 

and another must take its place, if the overall discharge 

action is not terminated. Replacement candidates in R will 

then be engaged. Group M are essentially standby and will 

not be engaged unless predicted capacity requirements 

proved to be wrong, a technical problem arises or violation 

of the contractual agreement occur. Throughout we 

assume a contract that specifies a subscription fee and an 

activation fee as well reimbursement of discharged energy. 

In addition, we suppose a penalty fee for contractual 

breech [8]. An arrow points from C to M and suggests a 

transfer when replacements for members initially 

mobilized must take place.   

Circumstances may inhibit an owner of a snowmobile to 

take part and we suppose that the contract defines a 

maximum number of rejects within a contractual period to 

allow members of the regime to dismiss a call for 

mobilization.  We also assume that recruitment to the V2G 

Figure 1 A LEV based V2G fleet can be organized as nested sets. 

A: vehicles activated. R: vehicles needed for the whole 

curtailment period, M: The total number notified and mobilized 

in some way for an upcoming V2G session. C: The full group of 

vehicles under contract. S: all vehicles. 



  

 

regime is ongoing and that there could be a growth in C. It 

is important to understand that the arrows drawn involve 

different time constraints too. In our work we have 

considered the following: 𝑡𝑅𝐴, < 1𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑡𝑀𝑅 <

1ℎ𝑜𝑢𝑟, 𝑡𝐶𝑀 < 1𝑑𝑎𝑦 and 𝑡𝑆𝑅 can be measured in weeks. 

When snowmobiles are parked idle during the summer 

these time constraints are less important as the 

snowmobiles are already stationary and would be 

connected. To build a large enough V2G fleet and have the 

different vehicles pass through the different states time is 

essential. The time limits associated with the different state 

transitions are dependent on the peak shaving strategy, the 

extent and duration of the power peaks anticipated and the 

magnitude of the reduction that will be specified in the 

contract with the grid owner or his representative. 

The Smart Charge project has dedicated much of its effort 

to solicit tools and methods to support the V2G 

management concept for snowmobiles. It is crucial to 

create the best outlook for mobilization as well as rolling 

engagement. The rest of the paper will address this part 

specifically. 

METHODOLOGY FOR FORECAST AND 

DEVELOPMENTS 

For aggregated capacity considerations the data on the 

snowmobiles in Table 1 were applied. To support the 

concept described above with sufficiently precise forecasts 

and the defined use-cases, different machine learning 

methods were applied and compared with the required 

forecasting. The ambition was to find a solution for both 

short-term predictions and create models with sufficient 

prudence to support the forecast for more extensive 

periods forward. Load data used for training and testing 

was collected from two different sites in the Arctic region. 

One of the use cases in the project related to the situation 

in Longyearbyen. However, the use-case described, which 

has also been addressed in [1], stemmed from a 

recreational site not far from Rovaniemi in North-Finland. 

The site in Finland provided load data with an hourly 

resolution that originated from two substation areas, 

Lumikartano and Iglut. Several machine learning models 

were subjected to the dataset originating from these sites. 

This was needed to determine the most suitable approach 

for our purpose; Extreme Gradient Boosting (XGBoost) 

method [9], and deep learning methodologies such as Deep 

Feedforward Network, Deep Convolutional Neural 

Network (CNN), Recurrent Neural Network Long Short-

Term Memory (LSTM) model, and Auto-Regressive 

Recurrent Neural Network (AR-LSTM) models [10]. The 

methods were applied for short-term and long-term 

predictions in light of the conceptual management model 

described above. The load data was also analysed to 

 
Figure 2 The benchmark of the models performance for long-

term predictions. 

Table 2  XGBoost model performance for short-term predictions 

of the two sites. 

determine peak occurrence and likely peak recurrence to 

determine capacity requirements and fleet size. 

RESULTS 

For short-term predictions (1 hour horizon) XGBoost 

proved to be, by far, the best candidate in test. Multiple 

validation and test exercises proved that this decision tree 

based boosting method was better than all the other neural 

networks-based models listed above. The XGBoost model 

carried out the forecasts with a lower error rate and better 

accuracy in predicting the consumption peaks. Note too 

from Table 2 that the Mean Absolute Error (MAE) is less 

than 6kW, which suggests that a tolerance measured in  

terms of number of actively engaged snowmobiles is less 

than 2 vehicles. 

We monitored the performance of the models for both 

short-term and long-term predictions. However, it is 

important to note that the models' performance alone on 

training data does not imply the practicality of a model. 

Indeed, it is of great importance to evaluate the model's 

performance on unseen data (test data) to assess the ability 

of the model in generalization. Thereby we utilized the 

aggregated results from both training and testing to 

determine the most suitable model. For instance, in Figure 

3, we can see that both LSTM and AR-LSTM models 

performed well on long-term predictions during the 

validation process, while their performance dropped 

considerably on the unseen data. In this study, we used 

Site MSE RMSE MAE 

Lumikartano 107.470 10.364 5.330 

Iglut 129.586 11.384 5.888 



  

 

repeated k-fold cross-validation [11] to evaluate our  

models and improve the estimated performance further. 

Furthermore, the criteria for choosing a suitable model for 

long-term predictions are different from that of short-term. 

In both cases, it is clear that the model needs to learn and 

capture the underlying dynamics within the given dataset. 

For short-term prediction tasks, we looked for the model 

which obtained the lowest error during both the validation 

and test processes. Yet, in addition to that, for long-term 

prediction tasks, we look for models that could capture the 

peak values closely. Indeed, the long-term prediction tasks 

involve higher complexity, as the predictive models are 

required to capture and extract the long-term time 

dependencies. Therefore, preserving a model which can 

carry out long-term predictions with a reasonable low error 

would suffice the need. Note that this error rate depends on 

the task and might vary from case to case. 

For a deeper future forecast to support mobilization, the 

LSTM model came out on top. A comparison between the 

best candidates for long-term predictions is shown in 

Figure 2. Based on the observations, the densely connected 

model could capture the patterns within the time series 

with relatively good accuracy. Nevertheless, the model's 

predictions for peak loads were not as precise as the LSTM 

model. Like the densely connected model, the CNN model 

could follow the consumption load patterns within the time 

series. However, the CNN model achieved significantly 

lower performance than the other models. It is worth 

noting that when we looked deeper into the densely 

connected model performance, we discovered a degree of 

randomness entangled with the model's predictions. 

Indeed, it appeared that the model learned the mid-range 

values rather than the peak consumption loads. Besides, 

the AR-LSTM model performed closely to the LSTM 

model in terms of accuracy and loss. However, when we 

inspected the actual model's predictions, it depicted a 

similar behavior as the densely connected network. 

Therefore, we decided to use the LSTM model for further 

work and forecast consumption loads. Figure 3 presents 

the performance of the LSTM model for long-term 

consumption loads prediction.  

Table 3 Distribution of consumption values of Lumikartano and 

Iglut sites. 

We can see that the performance of the XGBoost model 

show lower accuracy for the Iglut site compared to 

Lumikartano (see Table 2). One reason could be the added 

uncertainty related to the influx of solar power in this part 

of the distribution grid. For the long-term prognostication 

(See Table 3) the accuracy varied too. The 24 hour outlook 

can be viewed both in terms of hourly changes and long 

term trends.  From Figure 3 the trend established by the 

long-term prediction is fairly obvious and informative, 

while in some instances the next 24 hour prediction looks 

poor with up to 30% mismatch from the ground truth. A 

case in point is a situation where the predictor 

overestimates a peak of 70 kWh/h, while the true value is 

53kWh/h. Another situation shows a brief underestimation 

of 14 kWh/h against the true 55kWh. The former is a 25% 

overestimation and the second is a brief 75% 

underestimation. However, the underestimation is in 

regions with lower loads, which we are not so concerned 

with. The correct trend is soon picked up too. The 

overestimation typically happens when significant peaks 

are foreseen. If the vehicles are able to discharge in a V2G 

situation with a power rate between 3 or 6 kW, the early 

notification based on the overshooting prediction would 

imply a 24 hour mobilization of up to 24 vehicles in Set A, 

while the true value would imply approximately 18.  But 

Site count mean std min max 

Lumikartano 21973 -2.897 1.0 -1.209 3.660 

Iglut 21973 9.500 1.0 -0.980 4.393 

Figure 3 (top row) XGBoost model performance during the validation process. The line plots represent the performance of the model for 

the specified period. Here, the model used the consumption load information from previous hour to forecast the consumption load in the 

next hour. (bottom row) LSTM model performance during the validation process for long-term. The line plots represent the performance 

of the model for the specified period. Here, the model used the consumption load information from previous 24 hours to forecast the 

consumption load in the next 24 hours. The history is the information provided to the model to forecast the values in the future. The target 

values (red line) are the actual consumption loads while the prediction (green line) is the consumption load predicted by the model. 



  

 

with constant multi-step predictions of lesser horizons 

more accurate figures would lead to convergence towards 

a more accurate prediction and lead to an early dismissal 

of the surplus 6. Alternatively they could be included in 

the Set R to cover for the reserve in a rolling activation 

plan. 

Consequently, the XGBoost and LSTM methods were 

adopted for further work for short-term and long-term 

predictions, respectively. 

CONCLUSIVE DISCUSSION 

Introduction of a V2G regime based on LEVs such as 

snowmobiles require good planning and for that good 

foresight.  Both are essential in order to design a good 

management and control system for persistent reliance on 

the reserve power that such vehicles offer.  The completion 

of such a design is still in the making in the project. What 

the research presented here proves, however, is that it is 

possible to make quite good short term predictions and 

satisfactory long term predictions. We could have possibly 

enhanced the multi-step prediction by introducing 

postprocessing by means of a moving average model. This 

would probably make the longer trend more salient.  

However, so far this element has not been included. What 

the reported work emphasizes, that none of the models 

tested were absolutely suited, though the final result 

produced by the LSTM can be applied for practical 

purposes. The tolerance is catered for through mobilized 

reserves constituting the M set. Yet, there is room for 

improvement in the present multi-step approach. But as 

can be witnessed, linking  ongoing prediction to different 

future states for a V2G operation helps to control the 

process towards activation (Set A), where a fleet of 

vehicles discharge power at the same time to create and 

aggregated impact. Moreover it helps to provide an early 

notification for those that need to be involved (Set M). 

Expectation management is important if vehicles are in 

regular use. With sufficient lead time owners of vehicles 

can organize their day and week accordingly. As a part of 

the V2G management system, notification that specifies 

when the grid is open for recharging is also possible. This 

feature will be incorporated in the final management 

system. As can be observed, the low-impact periods in the 

grids in Finland are predicted too (see Figure 3). This 

means that the same approach can provide the members of 

the V2G regime with the necessary advance notice when it 

is possible to recharge, which in turn could facilitate 

personal planning.  One issue posted at the outset of the 

project is whether for LEV owners with low battery 

capacity can be useful for V2G services. The answer has 

been provided during the work done, and the issue well 

resolved. LEVs are useful for V2G services despite the low 

battery capacity.  In the case of the Finnish sites a peak 

curtailment of 20kWh/h would demand the activation of 4-

7 snowmobiles (Set A) for 1 hour and additional 8-14 

vehicles (in Set R) for 3 hours. To mobilize this number of 

units should be absolutely feasible here and in other 

communities of the same size. We think that the scalability 

potential is there and the same concept can be applied for 

similar purposes in areas such as Longyearbyen.  Even if 

we look beyond the Arctic the same kind of concepts could 

be deployed for remote communities located in rural areas 

where the electric scooter or ATV is the main means of 

local transport. 
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