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Abstract—This paper examines the current state-of-the-art in 

object tracking and detection in the context of baggage handling 

systems using a variety of technologies, with special interest in 

image classification. Data collection at Tromsø Airport using 

simple and inexpensive equipment in order to capture images of 

different types of luggage will be described. Furthermore, a 

selection of three relevant techniques for image classification will 

be investigated, and experiments will be conducted to detect 

irregular and potentially problematic bags in the collected dataset. 

Finally, recommendations for use cases and an interface to an 

intelligent baggage handling system will be proposed.  
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I. INTRODUCTION

Perhaps the most important task of an airport is to ensure that 
passenger luggage is safely and efficiently transported to their 
designated destination. Failure to deliver bags on time may lead 
to dissatisfied passengers, extra work for airport personnel, 
costly delays, and missed flights. Delays may even have an 
environmental impact in the form of increased fuel consumption 
of both airplanes and ground vehicles during bottlenecks and 
queues [1]. According to SITA, more than half of all bag delays 
were caused by either transfer mishandling or failure to load the 
bag [2]. In 2018, IATA introduced Resolution 753 as an effort 
to reduce the number of lost and mishandled bags, by mandating 
members to keep an accurate inventory of all items entering and 
leaving the baggage handling system (BHS) [3]. Airports may 
comply by using manual labor, or by increased use of sensors, 
smart systems, and automation. Tracking and reporting luggage 
status manually is time consuming and tiring work, especially in 
larger airports. On the other hand, an intelligent autonomous 
BHS would be able to monitor and track luggage in multiple 
locations, detect problems, provide useful insight to personnel, 
and may even provide added value to passengers in the form of 
real-time tracking and status updates. Such a system is 
envisioned to consist of multiple intelligent entities, some of 
which may include robot arms for picking up and stowing 
luggage, cameras, autonomous baggage carts, and a set of 
software agents monitoring status and allocating resources based 
on the current load. A BHS has many similarities to a shipping 
facility, and one may draw inspiration from companies like 

Norway’s Komplett [4] or the global giant Amazon [5], where 
the package dispatch, shipping and tracking is managed by 
autonomous systems. However, unlike standardized parcels 
used in shipping, personal luggage may be of a variety of shapes, 
sizes, and textures. As a result, an intelligent BHS requires 
accurate information about incoming items, which in turn 
creates the need for relevant data sets. Visual recognition of 
luggage is expected to be an appropriate method, given the 
amount of research that has been performed on object detection 
and classification in recent years.  As such, this paper will 
examine image data collection, preprocessing, and labelling, 
before investigating and testing a selection of classification 
models. Furthermore, the proof-of-concept should be cost 
effective and unintrusive, making adoption less of a hurdle. This 
means that both the data collection hardware/sensors, required 
infrastructure, and the model itself should be light-weight and 
inexpensive, and be made of readily available components. 

II. RELATED WORK AND CONTRIBUTIONS

Efforts have been made with respect to both tracking and 
classification of luggage using various technologies. Examples 
include the use of smart tags based on radio frequency 
identification (RFID) to improve bag tracking precision [6, 7], 
and owner verification during baggage claim [8]. In short, it has 
been shown that RFID is a reliable method of tracking luggage. 
However, this requires additional hardware and supporting 
infrastructure, which in turn requires effort from both passengers 
and airport personnel to enable successful adaptation. On the 
other hand, security systems based on video surveillance are 
already in widespread use in airports today and extending such 
a system with the necessary components for luggage tracking 
and classification is expected to require minimal infrastructural 
upgrades. 

Indeed, examples of image recognition in the context of 
classification and tracking of luggage are shown in [9-16]. 
Convolutional neural networks (CNNs) were used in [9, 10] to 
identify and classify abandoned items. In [11], a multi-camera 
setup with transfer learning was used to track passengers and 
their luggage at security checkpoints in an airport. Perhaps the 
most well-documented application of object recognition and 
image processing in relation to airports and luggage is the 
detection of illegal items in x-ray images from baggage scanners 
[12-15]. Examples include automatic detection of suspicious 
objects using both deep and shallow networks, stacked 



autoencoders, and random forest [12]. In this paper, the authors 
investigated and compared a selection of algorithms for 
detecting firearm parts. In [13], multiple views of the x-ray 
machine were combined to detect illegal objects from various 
angles. Furthermore, in [14], the authors demonstrated how free 
and open-source software could be used for classification of x-
ray scans in an airport, using TensorFlow with CNNs and 
transfer learning. In [15], detection of small metallic items in 
high-resolution, cluttered images of shipping containers was 
performed using CNNs. 

Finally, in [16], the authors investigated the use of static 
filters for image classification of abandoned objects in an airport 
using security camera feeds. The authors were able to devise a 
set of domain-specific filters, as there were only so many objects 
and features one can expect to appear at an airport. They showed 
that a relatively simple set of features were sufficient in order to 
classify an object with a high success rate using a certain 
combination of filters, and how many times they appeared in 
each object. 

In addition to classification of luggage, how to route and 
model bag flow in a BHS have also been documented various 
papers. For instance, how to deal with prioritized items, bag 
jams and coordination of different bag origins was investigated 
in [17, 18]. A more detailed, event-driven simulation based on 
the concept of Petri Nets was presented in [19]. The main area 
of interest in this paper was to identify and analyze the 
percentage of bags not reaching their intended destination in 
time, which the authors refer to as “failed bags”. One cause of 
failed bags is the fact that paper tags are prone to failure and may 
become mangled beyond recognition, leading to manual 
intervention and thus risk being late for their destination.  

Based on these findings, this paper will explore the 
following topics: 

• How can cameras be placed in suitable locations along
a BHS to capture and create a dataset for baggage type
classification?

• How can the collected dataset be utilized for counting
and detection of potentially problematic luggage?

• Is it possible to achieve precise classification of
irregular luggage items without using deep models?

As such, the contributions of this paper are as follows: first, 
acquisition of relevant data will be performed, and findings will 
be presented. Next, a selection of relevant image processing 
techniques will be discussed and compared, followed by a set of 
classification experiments on the collected images of luggage. A 
convolutional neural network, a support vector machine, and a 
random forest classifier will be trained and evaluated. Finally, 
the results will be discussed, and suggestions for future work and 
potential applications and benefits in the context of an intelligent 
BHS will be addressed. 

III. APPROACH

An intelligent BHS as proposed in the introduction may 
essentially be controlled using either a centralized, top-down 
structure, or a distributed, edge-based architecture consisting of 
smart and/or autonomous agents representing various 

components. Centralized control may be easier to design and 
implement in the short run, but may lack scaling flexibility, in 
addition to communication overhead. The master controller in a 
centralized system would have to be powerful enough to process 
all inputs from all sensors, make decisions based on the data, and 
communicate instructions back to each part of the BHS. 
Transferring and processing complex sensor data in the form of 
images requires both robust and low-latency communication 
infrastructure, and powerful computational hardware. 
Furthermore, this architecture is more susceptible to failure, as 
it relies on a single point of failure in the form of a central data 
processing and decision-making device. 

On the other hand, in a distributed, edge-based BHS decision 
system, sensors and actuators can be made “smart” and perform 
data collection, processing, and decision making locally with 
low latency. Communication between different parts can be 
performed ad-hoc, with simplified, standardized and light-
weight protocols. A system modelled as a collection of 
autonomous agents is also expected to be more scalable and 
robust. Even if one agent, or a group of agents should fail, the 
whole BHS will not need to be taken offline for maintenance. 
High level monitoring and control overrides may still be issued 
by a simpler, centralized controller, but this will play a smaller, 
non-critical role in a distributed system. As such, this paper will 
take special interest in edge computing, local data collection and 
processing, and light-weight classification models. 

Today, airports are well equipped with surveillance 
equipment and related infrastructure. Therefore, an approach 
leveraging existing hardware is expected to be more cost 
effective, while simultaneously being less obtrusive.  However, 
all airports may not have surveillance cameras targeting the BHS 
conveyor belts. As such, the proposed solution involves placing 
dedicated cameras in strategic locations along a BHS conveyor 
belt, configured to capture images of each item from various 
angles. As mentioned previously, an intelligent BHS needs 
detailed information about incoming items, and the first matter 
of business is to determine whether the bag is of regular or 
irregular shape. This assumes that most bags are square, hard, 
and of a certain size, implying that each part in an intelligent 
BHS should be optimized for this type of item. On the other 
hand, it is assumed that a smaller number of bags do not conform 
to these specifications, in particular backpacks, duffel bags, and 
ski bags, requiring special care when handled by a non-human 
actor. The ability to automatically identify and classify irregular 
baggage for optimized sorting and stacking may even be used to 
prioritize luggage based on “regularity”, in order to have simpler 
items that are less likely to cause problems and jams get priority 
in the BHS, while bags that are identified as “irregular” may 
have to be sent last to avoid tangles and jams. An overview of 
the proposed approach is shown in Fig. 1, and each step will be 
discussed on detail in the following sections. 

A. Data collection

As mentioned in the introduction, one of the main areas of
interest of this paper is the use of inexpensive hardware and 
readily available software to perform both data collection and 
classification. As such, a Raspberry Pi 4B along with off-the-
shelf web cameras and external drives were used to collect the 
image data. The Raspberry Pi was able to handle two  



Fig. 1. Block diagam of proposed combinations including all steps 

simultaneous camera feeds, which were monitored in separate 
threads using OpenCV [20]. A python script was developed and 
configured to capture images of resolution 320x240 whenever 
the mean square error between frames was larger than a 
manually fine-tuned threshold. The idea was that an empty 
conveyor would have small changes between frames, as 
opposed to more significant changes whenever a bag entered the 
frame and moved past the field of view of the camera. To set up 
and collect the image data, Tromsø Airport was chosen due to 
its location, in addition to ease of access to bag conveyors due 
to undergoing renovation of its BHS.  

During renovation, a temporary bag arrivals area was set up, 
and it was decided to mount the Raspberry Pi at this location. 
Bags from arriving planes were manually loaded from trolleys 
onto the belt seen in Fig. 2. The Raspberry Pi and its peripherals, 
along with one camera was secured to the above cable ladder. 
The camera provided a top-down view of the conveyor belt, and 
will be referred to as camera 2 going forward. The other camera, 
referred to in this paper as camera 1, was mounted on the 
horizontal support beam seen in the center of Figure 1 for a front 
perspective view of the same area. The data collection period 
lasted for three weeks, from February 1st to February 23rd. 

An important point to consider when performing any 
activity on airport premises is security. As such, it was agreed 
upon that the raspberry pi should not be connected to a network 
but should only be accessed locally through the hotspot and 
SSH. If improperly configured, IoT devices may pose severe 
threats to a network’s security and integrity. This was also one 
of the reasons storing the captured image data locally was 
chosen in favor of network storage. Furthermore, the GDPR 
imposes restrictions on the collection and use of any data that 
may contain personally identifiable information. Most 
importantly, stowers or other personnel may inadvertently be 
caught on camera when loading bags onto the conveyor belt. 
Secondly, the bags themselves could be used to identify their 
owner directly or indirectly, as it is not uncommon to adorn 
luggage with identifiable markings or similar embellishments. 
In addition, name tags containing personal information may be 
visible and readable. However, if images were captured in a 

Fig. 2. Placement of data collection rig and cameras at Tromsø airport 

lower resolution, this would be less likely to pose a problem. 

B. Dataset preparation and labelling

During the data collection period, a total of 132,768 images
were captured from both cameras combined. First, images only 
containing an empty conveyor were removed from the training 
sets. Next, a manual review was conducted to identify and 
remove any images containing identifiable stowers. For the 
labelling, bags were deemed irregular based on shape, size, 
loose straps, and texture according to the previously stated 
assumptions. 

Finally, images were manually labelled as either “regular”, 
or “irregular” based on the presence of one or more such 
irregular bag somewhere in the frame. For camera 1, this 
resulted in a dataset consisting of 28,348 images of regular items 
only, and 17,834 images containing irregular items. For camera 
2, the dataset contained 16,141 images of regular items, and 
9,062 images containing irregular items. Fig. 3 shows examples 
of images containing both irregular and regular items (a), a 
single irregular bag (b), a single regular item (c), and multiple 
regular items. Finally, images were cropped to 240 by 240, 
resulting in more of the region of interest filling the frame. 
Images taken with camera 2 had empty regions in the lower 
section of the frame, which cropping did not remove. 

Fig. 3. Various types of images of bags, taken with camera 1 (a, c) and camera 
2 (b, d)  



C. Image classification experiments, validation and testing

Image processing for object detection may be performed
using a variety of computer vision techniques. As previously 
mentioned, the main area of interest is on detecting irregular 
pieces of luggage in each image frame and evaluating the 
performance of computationally expensive versus lighter 
techniques. For the experiments described in this paper, the 
following test suite was developed: First, 10% of images from 
each class, for each camera angle were randomly selected and 
put aside for testing each model after training. Next, each model 
was trained on the remaining 90% of images using appropriate 
methods, described in detail in the next sections. Finally, each 
model was used to classify the previously unseen 10% of images 
from their respective angle, and any misclassified images were 
recorded for later analysis. Training accuracy and prediction 
results of each model will be discussed in the results section. 

1) Convolutional Neural Network A basic CNN classifier

was implemented using TensorFlow [21]. The training data was 

loaded and split 80/20 for training and loss validation using 

built-in utilities from Keras. For the first experiment, a simple 

network consisting of three relu-activated 2D convolutional 

layers, three max pool-layers and two dense layers was 

implemented. For the CNN experiments, network depths 

ranging from 3 to 6 convolutional layers were tested, and their 

respective performance recorded. Each variant of the CNN was 

trained on images from camera 1 and 2 in separate operations. 

2) Manual feature extraction Unlike a CNN, SVM and

Random Forest models do not consider the spatial relationship 

of features in an image [22, 23]. According to [24], feature 

extraction may be beneficial for classification accuracy in these 

models. As a result, a preprocessing step was introduced in 

order to transform the images into a format more suitable for 

these methods. As seen in [16], extracting features based on 

domain knowledge showed promise, and a similar method was 

used for the next experiments. First, images were converted to 

grayscale. Next, basic features were extracted using the 

Oriented FAST and Rotated BRIEF (ORB) detector, Harris 

corner detector, the Shi-Tomasi corner detector (dubbed 

“GoodFeatures” internally in OpenCV), and Hough line 

detector. The ORB detector is a keypoint detector and matcher 

similar to SURF and SIFT [25]. The Harris corner detector 

detects corners, as defined as a region in an image where the 

intensity varies in all directions [26]. The Shi-Tomasi corner 

detector is an alternative corner detector, and may be said to be 

more restrictive, as it finds the most prominent corners in an 

image [27]. Preliminary tests showed that images containing 

irregular bags were more visually complex, and thus contained 

more features than their plainer regular counterparts. For the 

training images, feature extraction and counting were 

performed once in a separate step before training the models, 

and the resulting values were stored offline in a tabular format. 

As with the CNN, images from camera 1 and 2 were handled 

seperately, resulting in two distinct data sets which were later 

used for fitting the models. On the other hand, test image 

features used for classification were extracted during runtime, 

reminiscent of online operation. This process is represented 

visually in Fig. 4. For irregular items, blob features tended to 

be more clustered together on the item itself as seen highlighted 

in green in Fig. 5 (a, b). On the other hand, blobs were usually 

more spaced out for regular items as seen in (d, e). Furthermore, 

for the regular bags, a large portion of the detected features 

were actually on the conveyor belt, as seen in Fig. 5 (d-f). As a 

result, background subtraction was used to further to highlight 

the item of interest in the frame. Furthermore, Fig. 5 (c, f) shows 

features detected using the Harris corner detector for irregular 

and regular items, marked with red. More specifically, the 

image (c) containing an irregular item had a total of 43 Harris 

corners, as opposed to 25 for the regular items only (f). It is also 

possible to see the features are more clustered together on the 

irregular item itself (Fig. 5 (c)), while they are more scattered 

in Fig. 5 (f), similar to the blob features. Next, a preliminary 

investigation of the separability of the data points was 

conducted by plotting two and two features in 2D and trying to 

identify obvious clusters. This will be discussed in more detail 

in the results section. 

3) Support vector machine For the SVM classification, the

Support Vector Classifier from sklearn [28] was used. The 

model was fitted on the extracted features using the default 

parameters, as described in the documentation [29]. To test the 

model, features were extracted and counted, and then fed to the 

model for classification. The number of misclassified bags of 

each class was recorded, and will be presented in the results  

Fig. 4. Image feature extraction and model training process 

Fig. 5. Examples of detected ORB features (green) and Harris corners (red) 



4) Random forest For the last set of experiments, the

Random Forest classifier from sklearn [28] was used for the 

classification. An initial experiment was conducted in order to 

find the optimum number of trees in the forest, testing forests 

consisting of 50-200 trees. Performance of each forest was 

recorded, and the resulting optimum forest size was used for the 

concluding experiment. In addition, confusion matrices for both 

SVM and Random Forest classification were produced for 

better understanding of the outputs. 

5) Final analysis In the interest of understanding the

reasoning behind each model’s decision, images that were 

misclassified by all three models were put aside for manual 

review after each experiment. Examples of such images will be 

presented in the results section. 

IV. RESULTS

A. Image classification using CNN

For the first experiment, no data augmentation or tuning was
performed beyond creating a basic network structure as 
described in the previous section, and the training and validation 
accuracy and loss for epochs 0 – 5 are plotted in Fig. 6. 
Classification accuracy on the training set was close to 100%, 
while the test set was a mere 78%. Furthermore, the loss of the 
network on the training set was steadily decreasing for each 
epoch, while the loss on the validation set increased significantly 
in the last few epochs. 

After the depth was increased to 4 convolutional layers, 
validation accuracy improved slightly. Increasing the depth to 5 
layers showed even more promise, bringing validation accuracy 
closer to the training accuracy. Finally, adding a 6th layer did 
not contribute to significantly improve validation accuracy. 
Based on these findings, a 4-layer network trained for 2 epochs 
was used for the final classification test. Using this architecture, 
the misclassification rate was 15.3% and 23,7% for camera 1 
images of regular and irregular bags, respectively. Similarly, for 
images taken with camera 2, the misclassification rate was 8.6% 
and 38.8%, respectively. 

Fig. 6. CNN classification accuracy and loss for layers 3-6 

Fig. 7. Extracted features of each class (orange and blue) represented in 2D 

B. Extracted features analysis

Next, an investigation of the separability of the data points
was conducted by plotting two and two features in 2D and 
trying to identify obvious clusters. At first glance, there was no 
clear linear separation or clusters in the plots in Fig. 7 (a-f), as 
points from both classes (orange and blue) have large areas of 
overlap. 

C. Image classification using SVM

Using the SVM-classifier on the extracted features resulted
in a 11.8% and 72.9% misclassification rate for camera 1. The 
associated confusion matrix presented in Fig. 8 shows the full 
picture, and this will be discussed in more detail in the next 
section. For camera 2 images, a similar misclassification rate of 
8.0% and 73.0% was observed for regular and irregular items, 
respectively. 

D. Image classification using Random Forest

Random forests with 50-200 trees were tested, and the
performance of each forest was recorded. Based on the resulting 
best accuracy, a forest with 178 trees was used for the testing 
experiment. This resulted in 24.7% of images of regular items 
and 59.2% of images containing one or more irregular bag 
being misclassified. Finally, for camera 2 images, a 
misclassification rate of 19.1% and 57.3% was recorded for 
regular and irregular items, respectively. As with SVM, a 
confusion matrix was produced, which is shown in Fig. 9 and 
will be discussed later.  

Fig. 8. Confusion matrix for camera 1 images classified with SVM 



Fig. 9. Confusion matrix for camera 1 images classified with Random forest 

E. Analysis of misclassified bags

In the end, the same 26 images of regular items and 380
images containing irregular items were misclassified by all 
three models. Of the images containing one or more irregular 
items, 112 images were of irregular items only, while the 
remaining 268 featured regular items. A selection of offending 
images is presented in Fig. 10. 

V. DISCUSSION OF RESULTS

Implementing a rudimentary luggage classifier based on 
CNN using Keras and Tensorflow was fast and simple. As the 
first iteration of the network only used three convolutional 
layers, accuracy was low. This may be due to the image size 
used, and the images themselves being of a complex and noisy 
nature. As seen in Fig. 6, introducing more layers did improve 
accuracy, which may also be due to the image complexity. 
However, introducing more layers may cause the network to 
overfit, and since adding more than 4 layers did not improve the 
accuracy much in this case, a network with 4 layers became the 
best compromise between accuracy and computational expense. 
However, one can argue that a model is only ever as good as the 
data it is trained on. As no image processing, enhancing or other 

Fig. 10. A selection of camera 1 images labelled as “irregular” misclassified by 
all models 

techniques besides cropping were used on the training images, 
there may be even more gain to be had in this regard. As shown, 
the images used for this paper were collected and used directly 
in the models, relying only on appropriate labelling. As a result, 
more care could be taken to clean and preprocess the data for 
better classification accuracy. This is even more true for the 
other models used in this paper. 

Support Vector Machines also proved to be a viable option 
for classifying images of luggage, albeit with extra 
preprocessing and feature extraction steps. Advantages of SVM 
over CNN include transparency, which may be desirable when 
predictions are to be used in a decision system, like the one 
proposed here. In addition, the models are simpler and less 
computationally expensive to train and run, which may be 
desirable in an edge setting in a decentralized BHS. 
Furthermore, in this particular case, the SVM was able to predict 
the class of regular images with higher accuracy than the CNN, 
which is rather interesting. However, this may be due to dataset 
imbalance, as any model would be more likely to predict the 
correct label by chance due to the larger sample size. As with 
CNNs, care should be taken to preprocess and understand the 
data properly, and not rely solely on tweaking the model itself 
for performance. It was found that the SVM was able to correctly 
classify 88% of images of regular bags, but only 27% of the 
images containing one or more irregular bag. In other words, the 
model performed worse than random guessing. One part of the 
explanation may be that the dataset was imbalanced in favor of 
regular items. However, Fig. 8-9 show a 4.5 to 1 imbalance, 
which is significantly more than the 1.4 to 1 ratio of the training 
data. Statistically, one may assume that the imbalances would be 
more similar in magnitude. This discrepancy may be caused by 
the way images were labelled, as any image containing only a 
small visible part of an irregular item, it was labelled as such. In 
other words, an image containing an obstructed view of an 
irregular item behind two or three regular bags would be labelled 
as “irregular”. This hypothesis was further strengthened when 
looking at the actual misclassified images, like the ones shown 
in Fig. 10. As mentioned, for the irregular images misclassified 
by all models, 70% also prominently featured regular items that 
might throw off the predictions. 

Similarly, random Forest was fast and computationally 
cheap to train, and produced results comparable to the SVM. In 
this case, the random forest model was able to more accurately 
predict the class of images containing irregular items, but worse 
on the regular items. For the images containing irregular items, 
the model was even worse than random guessing. Depending on 
the depth and complexity of each tree, decisions may be difficult 
to validate. However, as random forest is a transparent model, it 
is still easier to justify than the decision made by a CNN. 

Although not terrible, the classification accuracy of the 
models still leave room for improvement. As seen, common for 
all models examined was that they struggled to correctly classify 
irregular items, with the lowest misclassification rate of 23,7% 
being achieved by the 4-layer CNN. However, even with 
minimal optimization and only basic preprocessing and tuning, 
preliminary results did show some promise, and further 
investigations should be made into at least one of the models 
presented. 



A. Further work and recommendations

As mentioned, greater care should be taken in order to
extract appropriate features and increase classification 
performance. For a start, the dataset could be further processed 
and distilled into a more concentrated state, making it easier for 
a model to distinguish between the classes. One possible 
solution may be to simply remove any image not prominently 
featuring an irregular bag. However, removing too many such 
images would further imbalance the dataset, which may in turn 
be detrimental for generalization. Another recommendation is to 
investigate the use of bounding box labelling, which is expected 
to help single out irregular bags in an otherwise crowded image. 
Different filters beyond the ones presented in this paper should 
be investigated, with emphasis on identifying features exclusive 
to images of irregular bags. 

In addition, in order to properly label the images collected at 
Tromsø, interviews with stowers should be conducted. In the 
experiments presented in this work, a set of assumptions were 
made that may not hold true according to domain experts. Even 
if classification performance in this particular instance left much 
to be desired, investigations should be made to see if it would be 
possible to perform a portion of the labelling work based on the 
models and filters presented in this work using transfer learning. 

Even if an item was classified as “regular”, it may become 
dislodged, or even fall off the conveyor, becoming lost or 
creating other problems for autonomous systems down the line. 
As such, additional classes based on the state of a bag could also 
be introduced for further insight and intelligence. Again, domain 
experts should be interviewed to determine the most appropriate 
states. Instead of a binary classification, luggage items could be 
given a score based on how likely they were to cause a jam, or 
other problems. Items with a low probability would then get 
priority in the BHS. This would however require a mechanism 
for assigning and keeping track of the priority of individual bags, 
requiring additional, potentially expensive and complex 
infrastructure which is beyond the scope of this work. 

For more accurate classifications, there is also the possibility 
of combining the image data with other measurements, 
including the weight of the item as detected by the conveyors, 
or other external data sources. For example, if there is a vacation 
coming up, a lot of people may be traveling with sports 
equipment, and so on. In this particular instance, a number of the 
collected images featured ski bags and large backpacks, which 
is a result of the time of year data was collected, and the airport 
location itself, as Tromsø is a popular winter destination in 
northern Norway. As such, the rig could be configured to tag 
images with metadata during data collection, examples include 
flight information, bag origin, time of day, season, and 
destination.  If the image resolution was high enough, paper 
baggage tags could also be captured and decoded by the system 
for additional metadata. This in turn may be useful for future 
endeavors. 

B. Interface to an intelligent BHS

On the departure side, passengers check in and drop off their
bags at designated locations as normal. Cameras could then 
register when a new bag enters the system, which allows 
consistent tracking going forward. As a result, in the case of a 

tangle, jam, or other unforeseen event causing bags to become 
lost, personnel are better equipped to track down the offending 
item. On the arrival side, the process would be performed in 
reverse. Bags would be unloaded from the plane onto 
autonomous trolleys and transported back to the terminal where 
they are picked up and placed on conveyors by robot arms. As 
discussed in the introduction, a good portion of lost bags are a 
result of errors during transfer. Cameras placed alongside the 
conveyor in an intelligent BHS would make it easier to confirm 
whether a bag arrived at its transfer destination at all, if it was 
transferred successfully to the correct plane, or if it became lost 
somewhere along the way. An accompanying service may also 
be offered to passengers where they could report a bag as lost 
using a picture of the bag, potentially helping personnel identify 
the bag faster. 
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