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1   |   INTRODUCTION

Human reasoning and decision-making are prone to 
bias. A salient example is the tendency to see purpose 
and intentionality in natural phenomena when there is 
none. This is known as teleological reasoning (Kelemen 
et al., 2013). As with other well-documented reasoning bi-
ases, what causes this non-normative reasoning remains 

elusive (Kelemen,  1999). In this paper, we assess three 
competing theories on how bias in reasoning arises by 
examining performance on a teleological reasoning task 
while measuring pupil size and response times.

Teleological reasoning is seen early in children's rea-
soning development as an explanatory default (DiYanni 
& Kelemen,  2005). This bias is so persistent that even 
physical scientists have been shown to endorse false 
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Abstract
Teleological reasoning is the tendency for humans to see purpose and intention-
ality in natural phenomena when there is none. In this study, we assess three 
competing theories on how bias in reasoning arises by examining performance on 
a teleological reasoning task while measuring pupil size and response times. We 
replicate that humans (N = 45) are prone to accept false teleological explanations. 
Further, we show that errors on the teleological reasoning task are associated 
with slower response times, smaller baseline pupil size, and larger pupil dilations. 
The results are in line with the single-process extensive integration account and 
directly oppose predictions from dual-processing accounts. Lastly, by modeling 
responses with a drift-diffusion model, we find that larger baseline pupil size is as-
sociated with lower decision threshold and higher drift rate, whereas larger pupil 
dilations are associated with higher decision threshold and lower drift rate. The 
results highlight the role of neural gain and the Locus Coeruleus–Norepinephrine 
system in modulating evidence integration and bias in reasoning. Thus, teleologi-
cal reasoning and susceptibility to bias likely arise due to extensive processing 
rather than through fast and effortless processing.
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teleological explanations, such as “Trees produce oxy-
gen so that animals can breathe.” under time pressure 
(Kelemen et  al.,  2013). It is proposed that teleological 
reasoning remains a cognitive default throughout life 
(Kelemen et al., 2013). Teleological beliefs may be replaced 
later in life with scientific normative explanations such as 
“Oxygen produced by trees is a by-product of photosyn-
thesis.” It is not known if this new mindware (scientific 
explanations) becomes intuitive knowledge for smarter 
individuals (Raoelison et al., 2020; Stanovich, 2018) or if 
teleological reasoning always needs to be suppressed by 
deliberative processing (Evans,  2008; Kahneman,  2011). 
These two explanations are in line with the Smart intuitor 
and Default-Interventionist dual-process models, respec-
tively, which have been highly influential in research on 
bias in reasoning (Evans, 2008; Evans & Stanovich, 2013; 
Kahneman, 2011; Pennycook et al., 2015; Stanovich, 2009a, 
2009b). We here briefly introduce two dual-process mod-
els, the Default-Interventionist account and the Smart in-
tuitor account. Alternative dual-process models were not 
included as they failed to make clear and distinct predic-
tions from the Default-Interventionist and Smart intuitor 
accounts in this task (Epstein, 1994; Sloman, 1996).

1.1  |  Dual-process models

At the core, dual-processing accounts state that human 
reasoning can be separated into two different modes 
of processing (Evans,  2008; Evans & Stanovich,  2013; 
Kahneman, 2011). Type 1 processing, often called intui-
tive or heuristic, is automatic and does not require work-
ing memory capacity, that is, measurable features of Type 
1 processing are being fast and effortless. Type 2 process-
ing, often called analytic or deliberate, relies on working 
memory resources and uses mental simulation to generate 
responses. Measurable features of Type 2 processing are 
being slow and effortful. Accordingly, these processes can 
be gauged by measuring response times and pupil dila-
tions, as the pupil is known to dilate with increasing cog-
nitive effort (Hess & Polt, 1964; Kahneman & Beatty, 1966; 
van der Wel & van Steenbergen, 2018).

1.2  |  Default-interventionist account

The Default-Interventionist account (Evans, 2008; Evans 
& Stanovich, 2013; Kahneman, 2011) proposes that Type 
1 processes are the default. Type 2 processes are engaged 
at later stages of reasoning, or not at all. The Default-
Interventionist account proposes that humans are cog-
nitive misers because their default is to conserve effort 
expenditure by relying on Type 1 processing. Thus, bias 

in reasoning occurs due to overreliance on fast effortless 
Type 1 processing and failure to engage in slow, effort-
ful Type 2 processing when called for. According to the 
Default-Interventionist account, an intuitive teleological 
explanatory default produced by Type 1 processes (e.g., 
“Trees produce oxygen so that animals can breathe.”) 
would have to be inhibited and overridden by Type 2 
processing to produce a normative scientifically accurate 
explanation (e.g., “Oxygen is a by-product of photosyn-
thesis./Trees do not produce oxygen so that animals can 
breathe.”) when trying to understand events and phenom-
ena. Importantly, the Default-Interventionist account pre-
dicts that overriding a false teleological explanation would 
require longer response times and more effort, compared 
to accepting a false teleological explanation which should 
be fast and effortless.

1.3  |  The smart intuitor account

The Smart intuitor account has evolved from the Default-
Interventionist account as an increasing number of 
studies show evidence opposing predictions from the 
Default-Interventionist account (Bago & De Neys,  2017, 
2019; Newman et al., 2017; Raoelison et al., 2020; Raoelison 
& De Neys, 2019; Thompson et al., 2011). An example of this 
was shown by Raoelison et al. (2020) with a two-response 
paradigm for the cognitive reflection test (Frederick, 2005). 
The cognitive reflection test has been developed to assess 
an individual's ability to override an initial intuitive incor-
rect response in order to produce a deliberate correct re-
sponse (consistent with Default-Interventionist account). 
However, Raoelison et al. (2020) showed that most correct 
responses were made fast (intuitively), and very few correct 
responses were due to respondents' initial wrong response 
followed by a correction after deliberation. Accordingly, the 
Smart intuitor account proposes that Type 1 processing can 
produce many types of intuitions which were previously 
believed could only arise from Type 2 processing (Bago & 
De Neys, 2019; Evans & Stanovich, 2013; Kahneman, 2011; 
Sloman,  1996; Thompson et  al.,  2018). Importantly, the 
Smart intuitor account proposes that high cognitive capacity 
individuals are more likely to answer correctly on reasoning 
tasks by having “better” or more accurate intuitions (Bago & 
De Neys, 2017, 2019; Raoelison et al., 2020). A corrective de-
liberate process (as proposed by Default-Interventionist) can 
still happen, but most correct responses in decision-making 
tasks are due to accurate intuitions rather than overriding 
faulty intuitions (Raoelison et al.,  2020). The Smart intui-
tor account predicts then that overriding of false teleological 
explanations is not always necessary. Both teleological in-
tuitions and scientifically normative intuitions can be made 
intuitively through a fast and effortless Type 1 process. More 
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generally, the Smart intuitor account predicts that both nor-
mative responses and errors can be made fast and with little 
effort. However, when engaging in Type 2 processing, seen 
by longer response times and more effort, the normative re-
sponse is more likely.

To distinguish between the Default-Interventionist 
and Smart intuitor accounts, we included individual 
difference measures of cognitive ability and cognitive 
motivation. According to the Default-Interventionist 
account, engaging in Type 2 processing increases the 
probability of normative responses. Therefore, perfor-
mance on the teleological reasoning task should be asso-
ciated with higher trait cognitive motivation (Cacioppo 
et al., 1996; Stanovich, 2009b; Toplak et al., 2011, 2014; 
West et  al.,  2008). However, if normative responses are 
made intuitively by individuals high in cognitive ability 
as proposed by the Smart intuitor account, then cognitive 
ability should be associated with performance and cogni-
tive motivation should have less influence on normative 
responding (Raoelison et al., 2020).

Importantly, underlying both the Default-Interventionist 
and Smart intuitor account is the assumption that more ef-
fortful and extensive processing (Type 2) leads to more nor-
mative responses and less bias. However, a single-process 
framework, the Extensive integration account, makes the 
opposite prediction, namely that bias in reasoning is ex-
acerbated by more extensive processing. Recently, Eldar 
et al. (2021) highlighted that dual-process theories and the 
Extensive integration account make opposing predictions 
regarding pupil dilation and found support for the Extensive 
integration account in three framing tasks.

1.4  |  Extensive integration, neural 
gain, and the locus coeruleus–
norepinephrine system

The Extensive integration account builds on a single-
process framework where decision-making is seen as a dy-
namic process of gradual noisy evidence accumulation and 
integration leading up to a decision (Busemeyer et al., 2006; 
Busemeyer & Townsend, 1993; Krajbich & Rangel, 2011; 
Usher et al., 2013; Usher & McClelland, 2004). Here, bias 
accumulates if the decision-making process unfolds over 
many time steps. Thus, a small bias will have larger ef-
fects if each piece of evidence has lower weighting and 
the decision requires a longer evidence accumulation pro-
cess. Thus, more extensive integration is associated with 
more bias (Eldar et al., 2021; Usher & McClelland, 2004). 
Importantly, it is proposed that evidence integration is in-
fluenced by the Locus Coeruleus–Norepinephrine system, 
as norepinephrine modulates neural gain (Aston-Jones & 
Cohen, 2005; Eldar et al., 2013; Eldar, Cohen, et al., 2016; 

Eldar, Niv, et al., 2016; Jepma & Nieuwenhuis, 2011; Joshi 
et  al.,  2016). Low neural gain leads to lower weighting 
of each piece of evidence, and thus more extensive in-
tegration is required to reach a decision (Eldar, Cohen, 
et  al.,  2016; Eldar et  al.,  2013, 2021). Conversely, high 
neural gain leads to increased weighting of each piece of 
evidence. Importantly, neural gain can be gauged with 
pupillometry as pupil diameter is highly correlated with 
Locus Coeruleus activity (Aston-Jones & Cohen,  2005; 
Eldar et  al.,  2021; Gilzenrat et  al.,  2010; Reimer 
et  al.,  2016). Smaller baseline pupil diameter indicates 
low tonic Locus Coeruleus activity, low norepinephrine 
levels, and low neural gain (Aston-Jones & Cohen, 2005; 
Berridge & Waterhouse,  2003; Eldar et  al.,  2013; Eldar, 
Niv, et  al.,  2016; Joshi et  al.,  2016; Reimer et  al.,  2016). 
Additionally, larger pupil dilations can also indicate low 
neural gain as baseline pupil size and baseline-corrected 
pupil dilations are inversely correlated (Aston-Jones & 
Cohen,  2005; Eldar et  al.,  2013; Gilzenrat et  al.,  2010). 
Thus, according to the Extensive integration account, 
bias in reasoning occurs due to more extensive evidence 
integration, which is exacerbated by low neural gain. 
Therefore, the Extensive integration account predicts that 
biased responses (i.e., teleological reasoning errors) are 
associated with longer response times and larger pupil di-
lations (indicating low neural gain).

In this study, we assessed which of the three accounts 
best explains teleological reasoning bias by evaluating 
performance on a teleological reasoning task. A teleolog-
ical reasoning bias is evident if participants make more 
errors when evaluating the truth of false teleological ex-
planations compared to comparable control statements 
(such as physical  explanations and true teleological 
explanations, see methods). Both dual-process models 
predict that slower response times and larger pupil di-
lations are associated with more normative responses, 
that is, rejecting false teleological explanations (e.g., 
“Trees produce oxygen so that animals can breathe”). 
The Extensive integration account makes opposing 
predictions, namely that normative responses are asso-
ciated with fast responses and smaller pupil dilations. 
Additionally, the Extensive integration account predicts 
that larger baseline pupil size is associated with norma-
tive responding.

Table  1 summarizes the predictions across the three 
accounts.

1.5  |  Exploratory analyses and 
pre-registration

As an exploratory measure we recorded pupil dila-
tions following feedback (correct or incorrect) that 
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participants received after their responses in the tele-
ological reasoning task. Pupil dilation has been linked 
to decision uncertainty and the following surprise 
after feedback (Colizoli et al., 2018; de Gee et al., 2021; 
Preuschoff et al., 2011; Urai et al., 2017). We expected 
larger pupil dilation, signaling surprise, for error tri-
als compared to trials with correct responses. Further, 
we expected larger pupil dilation where decision con-
fidence was high, but the feedback indicated being in-
correct, and smaller dilations on trials where decision 
confidence was low. Pupil dilation to feedback cannot 
confirm or disconfirm any account.

Lastly, in accordance with the Extensive integra-
tion account, we modeled responses on the teleological 
reasoning task with an established sequential sam-
pling model of the decision process, the drift-diffusion 
model (Ratcliff,  1978; Ratcliff & McKoon,  2008; Smith 
& Ratcliff,  2004). The drift-diffusion model allows for 
the investigation of latent psychological processes un-
derlying decisions (Ratcliff & McKoon,  2008; Wiecki 
et al.,  2013). Additionally, the drift-diffusion model en-
ables investigation of the link between psychological 
processes and neural mechanisms by utilizing physiolog-
ical measures (i.e., pupil dilation) as predictors of param-
eters in the drift-diffusion model (Cavanagh et al., 2011, 
2014; Wiecki et al., 2013).

Pre-registration for this study is available on OSF 
(https://​osf.​io/​vk7r4/​​). Our pre-registered hypotheses 
were in line with the Default-Interventionist dual-process 
account. Please note, we deviate from the pre-registration 
as the analysis plan was found to be inadequate. 
Additionally, the pre-registration included plans to assess 
heart-rate variability; however, due to low-quality record-
ings (Empatica E4), these data could not be analyzed and 
are hence not described further.

2   |   METHODS

2.1  |  Participants

Participants were non-psychology students, N = 45 (27 
female), and mean age was 23.35 years (range 18–37). 
Participants reported not having any neurological disorder, 
history of brain disease or surgery, and not taking any cen-
tral nervous system medication or drugs. In addition, as all 
test stimuli were in English and participants had different 
native languages, self-rated English proficiency had to be 
higher than 4 on a scale from 1 to 7, where 1 = “understand 
a few words” and 7 = “Master it like native language”. The 
threshold was set based on a previous study showing no dif-
ference in deliberate reasoning performance between native 
and second language, and no effect of English proficiency on 
deliberate reasoning for participants scoring above 4 on the 
same English proficiency scale (Mækelæ & Pfuhl, 2019). All 
participants gave written informed consent prior to partici-
pation. The study was approved by the institutional review 
board at the Department of Psychology, UiT, The Arctic 
University of Norway. Participants received a voucher 
worth 400 NOK (approximately 40 USD) for participating 
in two test sessions (from test session two we included two 
cognitive ability measures in the SOM where we report the 
relationship between performance on the teleological rea-
soning task and two cognitive ability measures).

2.2  |  Materials

2.2.1  |  Cognitive motivation

We used the 18-item Need for Cognition Scale (NFC) 
(Cacioppo et  al.,  1984), which measures a person's 

T A B L E  1   Predictions of the three accounts for responses in the teleological reasoning task.

Parameter Default-interventionist Smart intuitor Extensive integration

Response time Slow responses are more likely 
normative. Fast responses are more 
likely errors

Slow responses are more likely 
normative. Fast responses can be 
both normative and errors

Fast responses are more likely 
normative. Slow responses are 
more likely errors

Pupil dilation Larger dilations are more likely 
normative responses. Smaller 
dilations are more likely errors

Larger dilations are more likely 
normative responses. Smaller 
dilations can be both errors and 
normative responses

Smaller dilations are more likely 
normative responses. Larger 
dilations are more likely errors

Baseline pupil 
size

N/A N/A Larger baseline more likely leads to 
normative responses

Cognitive 
ability

High ability predicts better performance 
(but see Stanovich and West [2008])

High ability predicts better 
performance

N/A

Cognitive 
motivation

High cognitive motivation predicts 
better performance

Cognitive motivation has less impact 
on performance than cognitive 
ability

N/A

Note: Predictions where the three accounts make similar predictions are not included, for example, pupil dilation to feedback (see text).
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tendency to engage in and enjoy cognitively effortful activ-
ities. An example item is “I prefer complex to simple prob-
lems.” The 18 items are rated on a 5-point Likert scale from 
1 = “Extremely uncharacteristic of me” to 5 = “Extremely 
characteristic of me.” Total score can range from 18 to 90. 
Internal consistency was high, McDonalds ω = 0.86. The 
scale was implemented in Qualtrics (Qualtrics, Provo, 
UT).

2.2.2  |  Cognitive ability

We used a composite of rational reasoning tasks to 
measure cognitive ability. The battery of rational rea-
soning tasks was created with 14 items from the heuris-
tics and biases literature. We used items 2–7 from the 
Cognitive Reflection Test (Toplak et al., 2014), one fully 
disjunctive reasoning problem; “the marriage problem” 
(Levesque, 1986), one probability matching task (Koehler 
& James, 2010), one probability estimation task; “the bus 
problem” (Teigen & Keren,  2007), one making sense of 
medical results problem (Gigerenzer et  al.,  2007), one 
Bayesian reasoning problem (Toplak et al., 2007), adapted 
from Fischhoff and Beyth-Marom (1983), one covariation 
detection problem (Stanovich & West, 1998), one knight 
and knave problem (Smullyan, 1978), and one conditional 
reasoning problem (Lehman et al., 1988). Correct answers 
were scored as 1, incorrect as 0. Total composite rational 
reasoning score ranged between 0 and 14. The task was 
implemented in Qualtrics (Qualtrics, Provo, UT).

2.2.3  |  Teleological reasoning

The teleological reasoning task consisted of statements 
containing false teleological explanations (test items), as 
well as control statements (control items) that participants 
were asked to judge as true or false (Kelemen et al., 2013; 
Kelemen & Rosset,  2009). There were 77 items in total, 
34 of which were test items consisting of false teleological 

explanations for natural phenomena (e.g., “Trees pro-
duce oxygen so that animals can breathe.”). The 43 con-
trol items consisted of 24 physical explanations that were 
either true (“Objects fall downwards because they are 
affected by gravity.”) or false (“Soup is hot because it is pri-
marily liquid.”), and 19 control teleological explanations 
that were either true (“Schools exist in order to help peo-
ple learn new things.”) or false (“Mice run away from cats 
in order to get exercise.”). Thus, test sentences are false 
teleological explanations in the domain of natural phe-
nomena where the stated explanations are inappropriate. 
Control sentences are teleological explanations concern-
ing the social–conventional and artifact domains where 
these explanations are appropriate.

The task was computerized with stimulus sentences 
presented auditorily via noise-canceling headphones. The 
task was self-paced, and each trial was initiated by pressing 
the space bar. Trials started with a fixation cross appearing 
on screen, and the auditory stimulus was presented after 
a delay of 0.5 s (see Figure 1). Stimulus sentences varied 
in duration between 2.3 and 3.7 s. After the stimulus sen-
tence ended, participants had 4 s to respond, indicating 
whether the statement was true or false by pressing “D” 
or “K” on a QWERTY keyboard, respectively. Participants 
received feedback 1.8–2.4 s after their answer, by a “V” or 
“X” appearing in place of the fixation cross (feedback du-
ration 4.0–6.2 s, uniformly jittered), representing correct 
and incorrect responses, respectively. If a participant did 
not respond within the 4 s, the trial was amended to the 
end of the task for repetition. All stimuli presented on 
screen were isoluminant. Items were pseudo-randomized 
with the constraint of not more than three in a row of the 
same type (test items or control items).

Instructions, fixation cross, and feedback for the task 
were presented on a monitor (width 34 cm, height 27 cm, 
resolution 1280 × 1024). The teleological reasoning task 
was programmed in Python (version 3.7) and presented 
in Psychopy (Peirce et al., 2019), script available on OSF 
(https://​osf.​io/​vk7r4/​​). The auditory test stimuli for the 
teleological reasoning task were created by entering the 

F I G U R E  1   Teleological reasoning task. Trial structure of the Teleological reasoning task. Fixation cross, duration 200 ms. Statement 
(stimulus onset delayed by 0.5 s) presented auditorily (length 2.3–3.7 s). Feedback (onset 1.8–2.4 s after response, jittered) indicating correct 
and incorrect responses (here X for being wrong) presented on screen (4.0–6.2 s). Figures not to scale.
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stimulus statements into Google Cloud ‘s speech-to-text 
API (Demo provided by Google Cloud online (available 
at: https://​cloud.​google.​com/​speec​h-​to-​text, [accessed 
08.27.2019])). The resulting output was recorded with the 
audio recording and editing software Audacity® (Version 
2.3.2, Audacity Team, 2019), audio files are available on 
OSF (https://​osf.​io/​vk7r4/​​).

2.3  |  Pupil recording

Pupil size was recorded during the teleological reason-
ing task with a desk-mounted Eyelink 1000 eye tracker 
(SR-Research, Ontario, Canada) with a sampling rate of 
500 Hz. A chinrest was used to stabilize head position 
and viewing distance (65 cm from top of screen, 69 cm 
from screen bottom). A two-minute baseline measure-
ment of pupil dilation was recorded in a sitting position 
in front of the computer before the teleological reasoning 
task started. Participants were instructed to fixate on the 
center of the screen.

2.3.1  |  Procedure

Participants were recruited through flyers at UiT, The 
Arctic University of Norway. Participants were individ-
ually tested by a trained experimenter. The order of the 
tasks were cognitive ability, cognitive motivation, and 
teleological reasoning task. The test session included 
assessments for a separate replication project (Mækelæ 
et  al.,  2023), with a Demand selection task (Kool 
et al., 2010) followed by NASA task load index (Hart & 
Staveland, 1988) and another N-TLX assessment follow-
ing cognitive ability, administered at the beginning of 
the session in a different room. However, these assess-
ments are not relevant to the current study and were 
not expected to affect performance in any of the other 
assessments.

2.4  |  Data processing

Data processing of pupil measurement was performed 
in the statistical environment R (version 4.1.2.) (R Core 
Team, 2021). Eyeblinks and other artifacts (rapid changes 
in pupil size, caused by head movements, lid flicker-
ing, etc.) were detected based on the signal's velocity 
(Mathot,  2018) and corrected using linear interpolation. 
Here, thresholds and on- and offset margins for the in-
terpolation window were adapted on an individual basis, 
due to inter-individual differences in signal recovery (the 
speed at which the signal returns back to normal). The 

interpolated signal was smoothed with a 3 Hz low-pass 
Butterworth filter. If blinks or artifacts spanned more 
than 1000 consecutive milliseconds, the respective inter-
polated signal was treated as missing. Finally, the signal 
was visually screened, and trials with remaining artifacts 
were identified and excluded from further analysis if the 
artifacts occurred during time windows of interest (trial 
baseline, decision, and feedback; n = 0.5 trials per par-
ticipant on average). For each trial, baseline pupil size 
(“Baseline pupil”) was calculated as the average signal 
across the first 200 ms following the onset of the fixation 
cross. Pupil dilation during decision-making, that is, the 
time window from onset of the auditory stimulus until re-
sponse made, and during feedback processing, that is, the 
time window between feedback onset and the subsequent 
3000 ms, was baseline-corrected by subtracting baseline 
pupil from every sample within the respective time win-
dow of interest. Maximum pupil dilation during decision-
making (“PDmax-BL”) and during feedback (“Feedback 
PDmax-BL”) were extracted. For decision-making, maxi-
mum pupil dilation was further calculated based on the 
raw signal, without prior baseline correction (“PDmax”).

Baseline pupil, PDmax, PDmax-BL, and Feedback 
PDmax-BL measures were treated as missing (NA) if more 
than 50% of the signal within the respective time window 
were missing and/or interpolated.

2.5  |  Data analyses

Linear mixed models were analyzed with the lme4 pack-
age (Bates et al., 2015). Modeling of responses on the base-
rate tasks with the drift-diffusion model was performed 
with Python (version 3.9) (Patil et al., 2010). The model 
was implemented with the hierarchical drift-diffusion 
model, contained in the dockerHDDM (Pan et al., 2022; 
Wiecki et al., 2013).

First, we aimed to replicate that humans show a tele-
ological reasoning bias. We assessed whether false teleo-
logical explanations (test condition) lead to more errors in 
reasoning compared to comparable explanations (control 
condition) by testing if there was a significant difference 
in accuracy between the test and control conditions.

Second, to investigate which of the three accounts 
best explains performance in the teleological reasoning 
task we applied separate generalized linear mixed mod-
els (GLMM) for response times and pupil dilations. All 
reported models successfully converged. We only report 
relevant estimates of fixed factors in the manuscript; 
for more details on the models, see SOM (Tables  S1–S5 
and S7–S10). For the pupil analysis, the main analysis is 
conducted with maximum pupil dilation with Baseline 
pupil subtracted (“PDmax-BL”) as this is a common way 
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to report pupil dilation (Mathot,  2018), also referred to 
as phasic response. Further, we report analyses with 
Baseline pupil (also referred to as tonic response) and 
PDmax (uncorrected) entered separately as this is of par-
ticular interest for the Extensive integration account. We 
note that the latter approach may lead to multicollinearity 
issues; however, centering of the variables alleviates this. 
Assessment of variance inflation factor with the “caret” 
package (Kuhn, 2015) and visual inspection of the resid-
uals with the “DHARMa” package (Hartig, 2022) showed 
no multicollinearity issues.

Third, to investigate how individual differences in cog-
nitive ability and cognitive motivation influence suscep-
tibility to false teleological explanations, we performed a 
linear model with cognitive motivation and cognitive abil-
ity as predictors of accuracy in the test condition.

Values for “Baseline pupil”, “PDmax”, “PDmax-BL”, 
and “Feedback PDmax-BL” were separately z-scored 
within participants. Cognitive motivation and cognitive 
ability were z-scored across participants.

2.6  |  Exploratory analyses

Pupil dilations following feedback were recorded to inves-
tigate uncertainty and surprise in the teleological reason-
ing task. We applied a Linear mixed model (LMM) with 
Feedback PDmax-BL as outcome with condition and ac-
curacy as fixed factors.

A drift-diffusion model was applied to investigate la-
tent psychological processes underlying decision in the 
teleological reasoning task and the influence of pupil dy-
namics. The drift-diffusion model is an established com-
putational model of the decision process consistent with 
the Extensive integration account (Ratcliff, 1978; Ratcliff 
& McKoon, 2008; Smith & Ratcliff, 2004). We note that the 
drift-diffusion model was accuracy coded, meaning the 
decision boundaries are correct and incorrect responses, 
and accordingly do not include a bias parameter.

First, we assessed whether there was a difference in the 
decision process when evaluating false teleological expla-
nations compared to control statements, by testing if there 
were significant differences in the main parameters of the 
drift-diffusion model in the test and control condition. 
Second, pupil data were applied as a linear predictor of 
trial-by-trial variation in drift rate, threshold, and drift-rate 
variability. We ran the analyses with both “PDmax-BL” 
and separately entered “PDmax” and “Baseline pupil” as 
predictors.

For each model, we ran five Markov chains with 20,000 
samples each, 12,000 of which were burn-in. Every second 
sample was discarded as thinning in order to reduce au-
tocorrelation in chains. Model convergence was assessed 

with visual inspection of the trace, autocorrelation, the 
marginal posterior, and the Gelman-Rubin R statistic. All 
parameters had an R-hat value below 1.01. Model com-
parison was conducted with the deviance information 
criterion (DIC). Lower DIC indicates better fit. However, 
we note results of models with fit in similar range as DIC 
has limitations when comparing fit. See SOM Table S11 
for comparison of all models.

2.7  |  Sample size

Our sample size rationale was based on a comparable 
study linking pupil responses to prediction-making in en-
vironments with changing stochastic structure (de Berker 
et al., 2016; Kreis et al., 2023). In this study, a pupillary 
sensitivity measure to uncertainty correlated highly posi-
tively with performance (Pearson correlation coefficient 
r = .62, n = 22). Assuming some regression to the mean, 
we based our sample size calculation on a smaller effect 
size, r = .4, α of 0.05 (two-sided test), power of 0.8, which 
yielded 44 participants in the analysis (G power 3.1). 
Regarding individual differences, Thompson et al. (2018) 
report large effect sizes (η2 of 0.3 to 0.6), and thus a sam-
ple of 40 participants would be sufficient to find an effect. 
Our final sample after exclusions was deemed sufficient to 
continue with analyses.

3   |   RESULTS

A total of six participants were excluded, two by their be-
havioral responses (one failed to respond, one mixed up 
buttons), and four had too low quality of their pupil data 
or calibration failed, leaving a total of 39 participants (see 
SOM for behavioral analysis prior to exclusions by low-
quality pupil data, i.e., with n = 43).

Descriptive statistics for all variables can be found in 
Table 2.

3.1  |  Accuracy

To assess if participants showed a teleological reasoning 
bias, we compared participants' performance in the test 
condition to the control condition. A Mann–Whitney U 
test showed that the percentage of correct responses in the 
control condition (Mdn = 91.9, SD = 5.4) was significantly 
higher than the percentage of correct responses in the 
test condition (Mdn = 75.0, SD = 14.4), U = 1315, p < .001. 
This indicates that participants on average showed a tele-
ological reasoning bias and endorsed false teleological 
explanations.
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8 of 17  |      MÆKELÆ et al.

3.2  |  Response times

To assess if normative responses were associated with 
longer (as predicted by dual-process models) or shorter (as 
predicted by the Extensive integration account) response 
times, we applied a GLMM with accuracy as outcome 
(normative–error responses) and z-scored response times 
and condition as fixed factors and participants as random 
factors.

The results showed that correct responses were asso-
ciated with shorter response times (β = −0.48, SE = 0.06, 
z = −8.59, p < .001), and that more errors were made in the 

test condition (β = −1.18, SE = 0.13, z = −9.28, p < .001), 
see Figure 2.

3.3  |  Pupil dilation – Decision

The most important question in this study is whether er-
rors in teleological reasoning are associated with small or 
large pupil dilations. The Default-Interventionist account 
predicts that errors occur through a fast effortless pro-
cess and would therefore be associated with smaller pupil 
dilations. The Smart intuitor account predicts that both 

Mean SD Minimum Maximum

Baseline pupil (tonic response) 32.81 4.99 21.92 51.59

PDmax 35.73 5.65 24.37 58.49

PDmax-BL (phasic response) 2.91 1.93 −1.54 14.87

Feedback PDmax-BL 1.83 2.33 −11.92 14.29

Response time in seconds 1.21 0.80 0.01 3.96

Cognitive ability 7.21 2.48 3.00 13.00

Cognitive motivation 55.10 10.19 24.00 74.00

Note: Variables not z-scored.

T A B L E  2   Descriptive statistics.

F I G U R E  2   Response times separated by condition and accuracy. Response times, average per participant in seconds for the teleological 
reasoning task. Responses are separated by condition and accuracy.
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      |  9 of 17MÆKELÆ et al.

errors and normative responses can be associated with 
small pupil dilations; however, if pupil dilations are large, 
the account predicts that normative responses are more 
likely. The Extensive integration account, on the other 
hand, predicts that errors should be associated with larger 
pupil dilations.

To test if larger or smaller pupil dilations were pre-
dictive of correct responses on the teleological reason-
ing task, we applied a GLMM with accuracy as outcome, 
PDmax-BL (phasic response) and condition as fixed 
factors and by-participant random intercepts (see SOM 
Table  S6 for analysis with pupil dilation and effort as 
outcome).

The results showed that smaller pupil dilations were a 
significant predictor of normative responses (β = −0.19, 
SE = 0.06, z = 3.15, p = .002), and that participants made 
more errors in the test condition (β = −1.30, SE = 0.12, 
z = −10.51, p < .001). Thus, the results indicate that er-
rors are associated with larger pupil dilations (i.e., larger 
phasic responses). Figure 3 shows average pupil wave-
form for correct and incorrect responses (see also, SOM 
Figure  S1 for phasic response (z-scored PDmax-BL) in 
the time window from stimulus sentence onset until 
response).

Next, the Extensive integration account specifi-
cally predicts that lower baseline pupil size and larger 
pupil dilations are associated with more bias and thus 
more incorrect responses. To assess the contribution of 

both Baseline pupil and PDmax, we applied a GLMM 
with accuracy as outcome, Baseline pupil, PDmax, and 
condition as fixed factors and by-participant random 
intercepts.

The results showed that higher Baseline pupil was as-
sociated with more correct responses (β = 0.24, SE = 0.08, 
z = 3.06, p = .002). Conversely, larger PDmax were asso-
ciated with more errors (β = −0.21, SE = 0.08, z = −2.76, 
p = .006), and the test condition was associated with more 
errors (β = −1.31, SE = 0.12, z = 10.53, p < .001). The results 
showed that errors in teleological reasoning are associ-
ated with smaller baseline pupil size (tonic response) and 
larger pupil dilations (phasic response).

3.4  |  Individual differences

To distinguish between the Default-Interventionist and 
Smart intuitor account, we included individual differ-
ence measures of cognitive ability and cognitive motiva-
tion. According to the Default-Interventionist account, 
engaging in Type 2 thinking, thus increasing probability 
of normative responses, is related to trait differences in 
cognitive motivation. However, if normative responses 
are made intuitively by individuals high in cognitive abil-
ity as proposed by the Smart intuitor account, then cogni-
tive motivation should make little difference in normative 
responding.

F I G U R E  3   Pupil waveform for correct and incorrect responses in the control and test conditions during listening and until a response 
was made. Change in pupil waveform from onset of the statement until a response was made in the teleological reasoning task. Minimum 
duration is 2.4 s (shortest statement and immediate responding), maximum is 7.7 s. Pupil waveform is averaged across all participants and 
trials. Exclusions applied. Shaded area represents standard error. ms, milliseconds.
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10 of 17  |      MÆKELÆ et al.

To investigate how individual differences in cognitive 
motivation and cognitive ability influence performance, 
we conducted a linear model with cognitive motivation 
and cognitive ability as predictors of accuracy in the test 
condition. The model explained 28.1% of the variance in 
accuracy, with cognitive ability (β = 0.08, SE = 0.02, t = 3.74, 
p = .001) but not cognitive motivation (β = −0.01, SE = 0.02, 
t = −0.38, p = .710) as a significant predictor of perfor-
mance in the test condition. The results show that higher 
cognitive ability, but not higher cognitive motivation, is 
associated with successfully rejecting false teleological 
explanations.1

3.5  |  Exploratory analyses

3.5.1  |  Pupil dilation to feedback

As an exploratory investigation we looked at pupil dila-
tion following feedback, as pupil dilation has been known 
to signal decision uncertainty and surprise after feedback 

(de Gee et  al.,  2021). We interpret large pupil dilations 
here to indicate more surprise (see Figure 4).

To assess decision uncertainty and surprise for errors 
and normative responses in the two conditions, we con-
ducted a linear mixed model with Feedback PDmax-BL as 
outcome and response, and condition and their two-way 
interaction as fixed factors and by-item2 random 
intercepts.

The results yielded a significant interaction (β = 0.36, 
SE = 0.12, t = 2.89, p = .004), that is, pupil dilation was larg-
est for incorrect responses in the control condition and 
smallest for correct responses in the control condition. On 
average, correct responses were associated with smaller 
pupil dilations to feedback (β = −0.84, SE = 0.10, t = −8.58, 
p < .001) compared to incorrect responses, and pupil di-
lations were on average larger in the control condition 
(β = −0.31, SE = 0.11, t = −2.73, p = .006) compared to the 
test condition. The result from the analyses of pupil dila-
tion to feedback showed larger pupil dilations for errors, 
and this effect was larger in the control condition than in 
the test condition.

 1SOM contains analysis for two additional measures of cognitive ability 
for a sub-sample of participants which participated on a separate day 
for a separate project.

 2By-item random intercepts were applied as the model failed to 
converge when including by-participant random intercepts.

F I G U R E  4   Phasic response (z-scored maximum pupil dilation with baseline subtracted) during feedback. Phasic response during 
feedback is the z-scored maximum pupil dilation with baseline subtracted and averaged per participant. Responses are separated by 
condition and accuracy.
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      |  11 of 17MÆKELÆ et al.

3.5.2  |  Drift-diffusion model

To find the model with the best fit, we analyzed the models 
in two steps. First, we assessed whether any of the main 
parameters of the drift-diffusion model differed between 
the test and control condition. In the second step, we as-
sessed whether pupil measures could predict trial-by-trial 
variation in parameters of the drift-diffusion model.

In the first step, we found that drift rate was signifi-
cantly lower in the test condition compared to the control 
condition (probability of drift rate in test condition being 
larger than mean in control = 0.01). Posterior estimates of 
drift rate in test and control conditions can be seen in 
Figure 5. Threshold was not significantly different in the 
two conditions (although, near significance level for the 
threshold being higher in the test condition), with a 0.077 
probability of the mean threshold in the test condition 
being higher than the mean threshold in the control con-
dition (see SOM Figure S2).3

In the second step, we applied pupil measures as pre-
dictors of trial-by-trial variation in parameters of the drift-
diffusion model. According to the Extensive integration 
account, lower baseline pupil size, and thus also larger 
pupil dilations (as they are inversely correlated), should be 
linked to more extensive integration. More extensive inte-
gration in the drift-diffusion model can be achieved from 
either decreased drift rate (lower rate of accumulation to-
ward decision boundary) or increased threshold (response 
caution) or both.

The winning model indicated by lowest DIC value 
was the model with z-scored Baseline pupil and z-scored 
PDmax as predictors of threshold, with separate drift rate 
by condition. As can be seen from Figure 6, Baseline pupil 
and PDmax had opposite effects on the decision thresh-
old. Higher Baseline pupil was linked to lower threshold, 
whereas higher PDmax was associated with higher deci-
sion threshold.

We note that the winning model (Figure 6, DIC = 6088) 
showed only slightly better fit compared to the model with 
PDmax-BL as a predictor of drift rate (DIC = 6098) and 
the model with Baseline pupil and PDmax as predictors 
of drift rate (DIC = 6100). Importantly, the effect of pupil 
measures on drift rate was opposite to the effect these 
measures had on threshold (see SOM Figure S3). That is, 
higher PDmax-BL was associated with both lower drift 
rate and higher decision threshold (see SOM Figures S4 
and S5). Posterior predictive modeling supported that 
PDmax-BL as a predictor of threshold had slightly better 
fit compared to PDmax-BL as a predictor of drift rate (see 
SOM Figures  S7 and S8). Lastly, PDmax-BL was not re-
lated to drift-rate variability (see SOM Figure S6).

4   |   DISCUSSION

The purpose of this study was to investigate theoretical 
frameworks that explain bias in reasoning, in particular, 
teleological reasoning. The participants in the study did 
show a teleological reasoning bias, as evidenced by their 
acceptance of false teleological explanations for natural 
phenomena at a significantly higher rate compared to 
errors made on comparable control statements. This is 

 3Including drift-rate variability to the model or both separate threshold 
and drift rate was evaluated as not adding significant improvement to 
the model.

F I G U R E  5   Posterior estimate of group mean drift rate in 
the test and control condition. Significant difference in posterior 
estimates of group mean drift rate in the test and control condition 
in the Teleological reasoning task.

F I G U R E  6   Effect of z-scored baseline pupil and PDmax on 
decision threshold. Posterior estimates of regression coefficients 
for z-scored trial-baseline pupil size and z-scored maximum pupil 
dilation as predictors of trial-by-trial variation in threshold.
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consistent with previous studies on teleological reason-
ing (Kelemen et al., 2013). By modeling responses with a 
drift-diffusion model, we found further support for false 
teleological explanations being harder to evaluate as the 
test condition yielded a lower drift rate.

Errors in reasoning were associated with slower 
response times and larger pupil dilations. Further, 
smaller baseline pupil size and larger pupil dilations 
were associated with errors in reasoning. Thus, the re-
sults strongly support the extensive integration account 
of bias in reasoning and provide no support for dual-
processing accounts.

The extensive integration account relies on a frame-
work where decision-making is seen as a noisy sequen-
tial sampling process where evidence is accumulated over 
time toward decision bounds, and a response is made 
when the evidence reaches a decision boundary. In this 
task, a possible mechanism for the decision-making pro-
cess is that the statement presented is compared to pieces 
of knowledge about the world represented in memory. 
This comparison results in a weighting where the prob-
ability can favor the statement being true or false. Each 
comparison is counted as a piece of evidence with varying 
strength for the statement being true or false. Evidence is 
accumulated over time until the relative evidence weight-
ing is strongly favoring the statement either being true or 
false (accumulation reaches decision boundary), and a re-
sponse is made for the favored option. A small bias favor-
ing acceptance of teleological explanations for each piece 
of evidence increases the chance of accepting a false te-
leological explanation with more extensive accumulation. 
Alternatively, the mechanism through which biases arise 
may be weighting too heavily information that should not 
influence the outcome of the decision. For example, when 
evaluating the test statement “The sun makes light so that 
plants can photosynthesize” the piece of knowledge that 
plants use light in the photosynthesis process can bias the 
evaluation of the statement as a whole toward being true, 
when it is not. This is coherent with evidence showing 
that low neural gain can broaden attention, which could 
allow irrelevant information to influence and bias deci-
sions (Eldar et al., 2013, 2021).

The extensive integration account further draws on re-
search showing that the Locus Coeruleus–Norepinephrine 
system modulates neural gain in the brain which influences 
neural communication, such that when gain is high, acti-
vated neurons become more active, and inhibited neurons 
become less active (Aston-Jones & Cohen, 2005; Berridge & 
Waterhouse, 2003; Eldar, Niv, et al., 2016; Joshi et al., 2016). 
In the sequential sampling process, this means that when 
gain is high each piece of evidence is more heavily weighted, 
and fever pieces of evidence are needed to reach a decision 

boundary (Eldar et al., 2021; Eldar, Niv, et al., 2016). By an-
alyzing trial-by-trial variation in pupil size with the drift-
diffusion model, the results strongly support that pupil 
dynamics reflect changes in neural gain. Larger baseline 
pupil size was associated with both lower decision threshold 
and higher drift rate. Thus, larger (tonic) baseline pupil size, 
indicating higher gain, was associated with less evidence ac-
cumulation which led to faster responses and importantly, 
fewer errors. Conversely, larger phasic pupil dilations were 
associated with higher decision threshold and lower drift 
rate. Thus, larger phasic pupil dilations, indicating low 
neural gain, were associated with more evidence accumula-
tion which led to slower response times and more errors in 
reasoning. Accordingly, the results corroborate predictions 
from the extensive integration account.

According to dual-process theories, when Type 2 pro-
cesses are engaged the normative answer should be more 
likely. Type 2 processes are indicated by longer response 
times and more effort, reflected in larger pupil dilations. 
In this study, we found that normative responses were 
associated with shorter response times and less effort as 
reflected in smaller (phasic) pupil dilations, which contra-
dicts dual-process predictions.

Response time in this study was limited but not 
speeded, that is, time was sufficient as the mean response 
time was more than two standard deviations below the 
time limit. The error rate in the test condition in this study 
was comparable to the error rate in the unspeeded con-
dition in Kelemen et al. (2013). We have no indication of 
participants having felt time-pressured. But even if so, the 
speed-accuracy trade-off would have affected the test and 
control condition similarly (Kelemen et al., 2013).

Pupil dilation leading up to the decision was pre-
dicted by response accuracy. On one hand, higher base-
line pupil size could indicate an optimal level of arousal 
and attention (Aston-Jones & Cohen,  2005; Berridge & 
Waterhouse, 2003). On the other hand, larger pupil dila-
tions could reflect higher uncertainty (Colizoli et al., 2018; 
Preuschoff et al., 2011; Urai et al., 2017; Yu & Dayan, 2005) 
on subjectively more difficult trials, where errors indeed 
are more likely. These explanations are not mutually ex-
clusive but describe separate processes. A less likely expla-
nation, in a dual-process framework, explains the results 
by rationalization of intuitive errors (however, the authors 
advise against post-hoc justifications). Additionally, the 
results could be explained by unsuccessfully invested ef-
fort in trials where errors were made. However, there were 
no differences in effort by condition (see SOM Table S6 for 
analysis of pupil dilation/effort), which speaks against 
an explanation of unsuccessfully invested effort. Finding 
no difference by condition in pupil dilation could be ex-
plained by participants not experiencing a difference with 
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      |  13 of 17MÆKELÆ et al.

regard to conditions in terms of difficulty or not recogniz-
ing a need to spend more effort.

Trial-by-trial variation in pupil dilation (and trial 
baseline and pupil dilation separately) was associated 
with changes in both threshold and drift rate in the drift-
diffusion model, with the model for threshold showing 
a slightly better fit. This is coherent with findings from 
Cavanagh et al. (2014) who found that pupil dilation pre-
dicted threshold and found a slightly worse fit for drift rate. 
Other studies have linked pupil dilation to bias and vari-
ability in drift rate (de Gee et al., 2020; Leong et al., 2021; 
Murphy et al., 2014). In this study, pupil dilation had no 
relation to variability in drift rate. Bias in drift rate was 
not investigated. The difference in results across studies 
is probably due to task differences which influence the 
parameters of the drift-diffusion model, as well as differ-
ent influences on pupil dilation, that is, arousal, surprise, 
reward, uncertainty, cognitive effort, and more (Beatty & 
Lucero-Wagoner,  2000; Laeng et  al.,  2012). Considering 
variation in both tasks and influence on pupil dynamics, 
it is unlikely that pupil dilation would converge on influ-
encing a single parameter of the drift-diffusion model. 
However, within the context of this study, the influence 
of both baseline pupil size and pupil dilation on drift rate 
and threshold fit the predictions from the Extensive inte-
gration account.

Feedback-evoked pupil dilations were larger for errors 
compared to normative responses, which is consistent 
with an account of pupil dilation signaling uncertainty 
and surprise (Colizoli et  al.,  2018; de Gee et  al.,  2021; 
Preuschoff et  al.,  2011; Urai et  al.,  2017). Additionally, 
pupil dilations to errors were larger in the control con-
dition indicating higher degree of surprise and higher 
confidence in the control condition. Higher uncertainty 
in the test condition compared to the control condition 
is consistent with the results from drift-diffusion model 
showing lower drift rate in the test condition indicating 
higher stimulus difficulty. The results also reflect the be-
havioral finding of the test condition being more difficult 
than the control condition.

Individual difference measures of cognitive ability 
and cognitive motivation were included in the study as 
predictions from the Default-Interventionist and Smart 
intuitor accounts differed. Performance on the teleolog-
ical reasoning task was associated with higher cogni-
tive ability and not cognitive motivation, supporting the 
Smart intuitor account. The measures of cognitive ability 
(see SOM for all measures) in this study were included 
as a convenient indicator of cognitive ability. However, 
the measures have several limitations and should only 
be interpreted as indicators of cognitive ability. They 
should not be interpreted as valid measures of general 

intelligence. The results should therefore be evaluated 
with caution. Rational reasoning tasks have been used as 
a measure dependent on both cognitive ability and cog-
nitive motivation (Stanovich, 2016; Trippas et al., 2015). 
However, recent evidence suggests performance can be 
explained by cognitive ability and is not related to cog-
nitive effort (Mækelæ et  al.,  2023; Otero et  al.,  2022). 
We also note that sample size was low and results from 
individual difference measures should be considered 
exploratory.

4.1  |  Limitations

A limitation of this study is that performance on the tele-
ological reasoning task was not assessed both speeded and 
unspeeded but with a fixed 4-s time limit for responding. 
Participants might differ in how time-pressured they felt. 
Hence, we do not know participants’ maximum perfor-
mance, or how the decision process would unfold with-
out any time restrictions. However, the time to evaluate 
the truth of statements about the world in real life may 
not be much longer as there are often implicit time con-
straints such as flow of conversation, opportunity costs, in 
addition to cognitive effort costs. Importantly, we do note 
that there is no known anatomical link between the pupil 
and the Locus Coeruleus, and the relationship is likely re-
lated to common downstream influences (Nieuwenhuis 
et al., 2011). We therefore have no direct measures of neu-
ral gain or the Locus Coeruleus–Norepinephrine system. 
Variation in pupil size may also be influenced by other 
factors.

5   |   CONCLUSION

Teleological reasoning bias measured as errors in a teleo-
logical reasoning task was associated with larger pupil di-
lations and slower response times. The results support the 
extensive integration account of bias in reasoning and di-
rectly oppose predictions from dual-processing accounts.
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