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heating space and hot water are the reasons for the high share
of electricity in the energy mix [2].

Considering the significant impact of the household sector
on energy consumption, it is important to examine energy
management strategies, such as load monitoring, to help
households reduce their energy use and promote sustainability
[3]. There are two main methods for monitoring energy
consumption in residential and commercial buildings: Intrusive
Load Monitoring (ILM) and Non-Intrusive Load Monitoring
(NILM) [4]. In the ILM method, the meters and sensors are
directly installed on each appliance or device; therefore, the
ILM method provides detailed and accurate data on the usage
of individual appliances. But the ILM method is expensive and
time-consuming regarding the installation and maintenance of
all the meters. This is why the NILM concept was proposed
for the first time in the 1980s [5]. In this method, the total
electricity signal consumption is analyzed to identify and
estimate the usage pattern on each appliance. NILM is less
expensive and easier to implement than ILM, but it may be
less accurate in monitoring the energy usage of individual
appliances.

Different methods have been used for NILM, such as
machine learning, signal processing, optimization, and pattern
recognition techniques. In the signal processing methods,
Fourier transforms, wavelet transforms and time-frequency
analysis are used to analyze the power consumption signal
in the frequency domain. A NILM algorithm based on an
improved time-frequency analysis is presented in [6]. In
optimization-based methods, the problem of load disaggrega-
tion is considered an optimization problem [7]. In a study by
Zoha et al. [4], a survey on NILM methods for disaggregated
sensing is conducted, with a comprehensive overview of
NILM structure and a review of the state-of-the-art algorithms.
Another study by Hosseini et al. [8] presents a review of
the NILM in the application of home energy management
systems. A more recent review study of methods, challenges,
and perspectives for NILM is presented by Kasemli et al.
[9], where the paper provides a literature review of NILM
algorithms for residential appliances.

Abstract—Load monitoring is an essential task in energy 
management systems. In this paper, an approach that relies 
on a long short-term memory (LSTM) model and a discrete 
wavelet transform (DWT) filter i s p resented t o e stimate the 
energy usage of flexible a ppliances. I n t he p reprocessing stage, 
the main features of the aggregated power signal are extracted 
using DWT. Deep learning methods are very sensitive to hyperpa-
rameters, and choosing optimal values can significantly improve 
the accuracy of the model. To optimize the performance of the 
LSTM model, a Bayesian optimization algorithm is used to find 
the optimal set of hyperparameters. The performance of the 
proposed approach is evaluated using real-world data collected 
from a residential building in northern Norway. The results show 
that the proposed methodology can accurately disaggregate the 
power consumption of different appliances, with higher accuracy 
compared to existing methods.

Index Terms—Energy disaggregation, Bayesian optimization, 
deep learning, Non-intrusive load monitoring, Signal processing.

I. INTRODUCTION

The residential sector in Europe significantly contributes
to energy consumption, with buildings accounting for about
40% of the total energy use [1]. Similarly, in Norway, the
household sector has a high share of the country’s total
energy consumption. According to the statistics provided by
”Energy Facts Norway,” the total energy use in households
was 47.6 TWh in 2017, which was 22% of the final energy
consumption. It was the third-largest energy-consuming sector
after the industry and transport sectors. This statistic also
shows that electricity is the most widely used type of energy
in the household sector, accounting for 83% of all energy
types, including electricity, biofuel, and district heating. The
increasing use of electrical devices and using electricity for
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During the last few years, machine learning methods, among
others, support vector machines [10], decision trees [11], and
deep learning has become popular in NILM. It is because
of their ability to learn the features of appliance signatures.
Widespread installation of smart meters in recent years makes
it possible to have access to electricity consumption data of
common appliances used in both residential and commercial
buildings. Several recently proposed methods for the NILM
problem are based on deep learning methods such as Long
Short-Term Memory (LSTM), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) [12]. A CNN-
based algorithm in which the inputs and outputs are formed as
data sequences are utilized for energy disaggregation in [13].
A deep learning approach based on multi-layer, feed-forward
neural networks is presented in [14] to identify the common
household appliances based on the total power flow. Compared
to other deep learning techniques, LSTM networks often
outperform because they can handle lags of unknown duration
between significant events in a time series [15]. This unique
feature of LSTMs gives them a competitive advantage over
other deep learning methods in identifying changes in power
consumption. The authors in [16] present a method based on
the LSTM-RNN algorithm to address the problem of energy
disaggregation, and this algorithm can be a robust solution.
In another research, a combination of an adaptive ensemble
filtering method and an LSTM architecture is employed to
extract the power consumption of the sizable appliances from
the aggregated power signal [17].

While the problem of NILM using various deep learning
methods has been researched to some extent, in many re-
searches, the effect of data preprocessing techniques on the
proposed models has not been considered. But in this research,
a discrete wavelet transforms filter is used to extract the
features of the main signal to improve the performance of the
LSTM model. Most of the research that has been conducted on
NILM has treated it as a classification problem, focusing on
identifying on/off events. However, in this study, the problem
is being approached as a regression problem, with the goal of
disaggregating the load signature of appliances from the main
signal. The main contributions of this article are outlined as
follows

1) A methodology for load disaggregation is proposed
based on the LSTM network to identify the load profile
of major appliances.

2) Discrete wavelet transform is utilized for the prepro-
cessing stage to improve the performance of the LSTM
network

3) A Bayesian optimization algorithm is implemented to
find the optimal set of hyperparameters for training and
testing the LSTM network.

4) A new dataset in the arctic climate of northern Norway
is measured and prepared to be used for evaluating the
proposed methodology.

Following the introduction section, section II briefly dis-
cusses the use case and the data that is used for the evaluation
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Fig. 1. The total power usage of each appliance for the entire measured
period (26-09-2021 to 19-10-2021)

of the proposed method. Section III presents the methodology
and its different stages. Experiment results are demonstrated
in Section IV. Finally, Section V concludes this article.

II. USE CASE

There are some publicly available datasets that can be used
to evaluate the proposed NILM algorithms in different studies.
Some of them have been widely used in different research,
such as REDD [18], REFIT [19], AMPDs [20] datasets.
But to the best of the author’s knowledge, there is not a
dataset in the arctic climate for the application of NILM.
For this reason, the authors initiated data collection in the
arctic climate of northern Norway, for use in the application
of energy disaggregation. The data which is used in this
paper are measured in a residential house located in Narvik,
Norway. The data are measured from 26-09-2021 to 19-10-
2021. Measurements are performed using Schneider Electric
Power Tags on every outgoing circuit breaker, where the total
power consumption is measured on the main circuit breaker.
A Raspberry Pi is used to collect and store the measurement
data in an InfluxDB database through MODBUS TCP. The
data includes the measurement of the total power usage of the
house, voltage, and current for different appliances including
a charging station of a plug-in hybrid electric vehicle (EV),
hot water tank (HWT), stove, electric oven, and heat pump.
Measurements of load current, power factor, and voltage are
sampled every 10 minutes. In some of the measurements, a
sensor is installed for an aggregate load. For example, a sensor
is used to measure the aggregate electricity consumption of
light and outlet of the washing room which includes a washing
machine and floor heating.

The total power usage of each appliance for the entire
measured period (26-09-2021 to 19-10-2021) is calculated and
shown in Fig. 1. Based on Fig. 1, EV has consumed the
largest part of the total power which is 60.5 % or 371.3 (kW),
therefore it is a suitable load to be considered as a flexible
load, it can be scheduled to be charged during the off-peak
period when the electricity demand is low.



III. METHODOLOGY

In this paper, an approach is proposed to address the
problem of residential load desegregation on a new dataset
collected in the arctic climate of northern Norway. By ac-
curately disaggregating the power consumption of different
appliances, the overall energy consumption of buildings can
be reduced. The suggested solution can be extended to other
regions and can provide a valuable tool for building energy
management systems. A combination of a discrete wavelet
transform (DWT) filter and long short-term memory (LSTM)
model is utilized to estimate the energy usage of flexible
appliances from the aggregated power. The methodology has
different stages, first stage is data collection which is explained
in II. Then in the preprocessing stage, in addition to data
cleaning and normalization, a DWT filter is applied to the
total power signal to extract the main features of the signal.
Deep learning methods are very sensitive to hyperparameters,
therefore a Bayesian optimization algorithm is implemented to
find the optimal set of hyperparameters for the LSTM network.
The detail of all the above-mentioned stages and the structure
of an LSTM network is explained in the following subsections.

A. Pre-processing

1) Data normalization and cleaning: Data cleaning is the
first step before training any machine learning algorithm.
This can improve data quality and consistency. Data cleaning
includes various steps such as detecting outliers data, inter-
polating or imputing missing values, finding missing values,
standardization, or normalization. In the data set used in
this research, some missing values were found, which are
replaced by the median of the data. The preprocessing stage
also involves normalizing the data, which helps to bring all
the features of the data to a similar scale. This can improve
the performance of the LSTM network, as it can reduce the
impact of features with larger values dominating the model’s
predictions. The data are normalized as follows

xnew “
x ´ x̄

σ
(1)

where xnew, x̄ , x, and σ are the normalized value, mean of
real values, real value, and the standard deviation of the true
values, respectively.

2) Signal denoising: One of the important steps in the pre-
processing stage is signal denoising, where unwanted noises
are removed from the signal while the important features of the
signal are preserved. Therefore, removing noise from the time
series can lead to an increase in modeling accuracy. There
are different methods for signal denoising such as low-pass
filtering, moving average, wavelet denoising, and principle
component analysis (PCA). In this paper, the discrete wavelet
transform (DWT) method is chosen to remove the noise of
the time series. DWT is a powerful tool for signal smoothing,
with features that make it superior to other methods. For
example, specifying a threshold value allows the identification
and removal of noise at certain frequencies, while preserving
the important characteristics of the signal [21].

B. Bayesian optimization

The performance of deep learning models is highly depen-
dent on their hyperparameters. A set of configuration param-
eters used during the training and testing of a deep learning
model are called hyperparameters. Therefore, it is very crucial
to select the optimal hyperparameters to train a deep learning
model. For example, in an LSTM model, the number of
hidden layers, batch size, validation split, etc. are considered
hyperparameters. There is not one set of hyperparameters that
is suitable for all the models, it varies from model to model
according to the problem statement [22]. There are different
methods for hyperparameter tuning such as random search,
grid search, genetic algorithm, and Bayesian optimization. One
of the most common hyperparameter tunings is hand tuning
which is based on trial and error, finding the optimal set
of hyperparameters using trial and error is a difficult and
time-consuming method. The other method is grid search
which searches between all the defined boundaries to find the
optimum solution, it is not scalable for higher dimensions,
and it takes a long time to search among all the searching
ranges. Bayesian optimization has shown a fast and acceptable
performance in the literature. The algorithm of this method
does not check all the points within the defined boundaries
one by one, rather a probabilistic model is used to suggest the
next set of parameters that are close to the region that is likely
to contain the optimal solution. In other words, it does not
check the outlier points [23]. Therefore it takes a shorter time
to use Bayesian optimization rather than grid search or random
search methods. Bayesian optimization is an optimization
method that is commonly used for hyperparameter tuning in
machine learning. In this method, the objective function, fpxq

is a black box or unknown function. The basic idea of Bayesian
optimization is to model the black-box function using a
probabilistic model, which is usually considered a Gaussian
function. In the procedure of Bayesian optimization, posterior
information of fpxq is updated using the prior information,
to find the global optimal point of the function. More details
about Bayesian optimization can be found in [24].

C. The LSTM model

An LSTM model is an extended version of a Recurrent
neural network that is widely used for time-series predictions.
An LSTM unit is comprised of several gates and a cell state.
In Fig.2 the LSTM unit structure is presented. The cell state
works as a memory for the LSTM unit. The gates can add
or remove information from the cell state. They are different
neural networks that are trained to decide which information
should be deleted or kept in the cell state. An LSTM unit
has three gates including an input gate, a forget gate, and
an output gate. The sigmoid activation function (σ) is used
for each gate to constrain values between 0 and 1 while the
tanh activation function is used for cell state and input gate
to compress the input values to a range between ´1 and 1.
The forget gate removes information that is less important or
no longer needed by the LSTM unit. The output of the forget
gate is a vector with values between 0 and 1, where 0 implies
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Fig. 2. The structure of the LSTM unit.

deleting information and 1 means keeping information. The
task of the input gate is to add new information to the cell
state. The output gate takes useful information from the input
and from the state cell. It sends them as output for the current
cell and as hidden state for the next cell. More information
about the architecture and equations for the LSTM cell can be
found in [15].

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Electricity usage of different appliances in a case study
in northern Norway is utilized for evaluating the proposed
model for load disaggregation application. More detail about
the dataset is explained in section II. The proposed method
is implemented in “Google Colab” using Pandas, Numpy,
TensorFlow, Keras, and scikit-learn libraries.

The proposed approach is implemented to disaggregate the
electricity consumption of four different appliances which
have a high share of total power including hybrid electric
vehicle (EV), hot water tank (HWT), electric heater (EH),
and floor heating/washing machine/light (FH/WM/Lght) (the
sensor measured the aggregate power consumption of light and
outlet of washing room which includes washing machine and
floor heating).

Results are evaluated based on three different metrics,
the Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Normalised Mean Square Error (NRMSE) which
are commonly used to evaluate the energy disaggregation
problem. NRMSE is the ratio between RMSE and the range
of the true value (ymax ´ ymin), its value should be between
0 and 1, where smaller values indicate better performance of
the model. The mathematical relations of the metrics are as
follows

MAE “
1

n

n
ÿ

i“1

|yi ´ ŷi| (2)

RMSE “
1

n

n
ÿ

i“1

pyi ´ ŷiq
2 (3)

NRMSE “
RMSE

ymax ´ ymin
(4)

TABLE I
THE SEARCH BOUNDARIES FOR HYPERPARAMETERS OPTIMIZATION

—

Hyperparameters Initial value Final value Type
Window size 6 360 int

Number of Unit 1 3 150 int
Number of Unit 2 3 150 int

Drop out 1 0 0.5 float
Drop out 2 0 0.5 float
Batch size 16 1024 int

Learning rate 0.0001 0.1 float
Decay 1e-6 1e-2 float
L2 reg 1e-7 1e-4 float

Validation split 0.1 0.3 float

where yi, ŷi, ymax, and ymin in the above formulas are true
value, estimated value, maximum true value, and the minimum
true value, respectively.

In the following subsections, the details of the experimental
setup for different steps are presented separately.

1) Denoising the data using discrete wavelet transform:
In this stage, the total power is smoothed out using the
DWT method described in III-A2, and afterward, the extracted
feature is used as one of the inputs of the LSTM network to
train the model. An open-source wavelet transforms software
for Python called ”PyWavelets” [25] is used for filtering out
the aggregated power signal using the DWT method.

2) Bayesian Optimization: In this article, Bayesian opti-
mization is utilized for finding the optimal parameters for
training and testing the LSTM model. For this reason, a
Python package for Bayesian optimization is used to find the
optimal solution, more detail about the package can be found
in [26]. The Bayesian algorithm estimates a set of LSTM
network parameters, which include window size, number of
units, dropout value, batch size, validation split, learning rate,
decay, and kernel regularizer. The search range for different
parameters is summarized in Table I.

The data are divided into three categories, training, valida-
tion, and testing. The amount of data for validation is one of
the parameters that the Bayesian algorithm finds in the range
of 0.1 to 0.3 percent of the data. The amount of data for testing
varies based on the type of appliances. For example, one day
of data is considered to test the model for the electric heater
and hot water tank, but for electric vehicles and FH/WM/Lght,
approximately two and a half days of data is used to test the
model to include more samples of the device in the operating
mode. The rest of the data is used to train the model.

The features and characteristics of different appliances are
not the same, that is why the electricity consumption pattern of
household appliances is different. It depends on factors such as
power rating, usage pattern, and efficiency. Therefore, a set of
optimal hyperparameters can not be used for all the appliances.
For this reason, the algorithm of Bayesian optimization is
implemented for all the case studies separately. The results
show different configurations for different appliances. The
optimal solution for LSTM network configuration for different
appliances using the Bayesian algorithm is presented in Table
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Fig. 4. Comparison of the proposed method with ground truth for the hot
water tank.

II.

B. Results and discussion

Based on the configuration mentioned in Table II, the
proposed algorithm is implemented for the above-mentioned
appliances. The signature identification of appliances are
shown in Figs. 3 - 6. These figures depict the performance
of the proposed approach compared to ground truth data.
As observed, the proposed method can estimate complicated
energy patterns.

To demonstrate the effectiveness of the proposed method
compared to other techniques, it is compared with widely
used state-of-the-art approaches in the application of NILM,
such as linear regression, decision tree regression, and also
with a standalone LSTM model. The results for DWT-LSTM
and its comparison with other methods based on different
metrics (MAE, RMSE, NRMSE) are presented in Table III
and Fig. 7. Based on the results summarized in Table III,
the stand-alone LSTM model performs better than LR and
DTR methods in estimating the power consumption of the
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Fig. 5. Comparison of the proposed method with ground truth for Floor
heating cable/Washing Machine /Light.
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Fig. 6. Comparison of ground truth data with the proposed method for Electric
heater.

considered case studies. The superiority of the LSTM model
to compared ones can be because of its ability to capture
long-term dependencies in time series data, it can recognize
patterns in the power consumption data of specific appliances.
The DWT-LSTM outperforms the stand-alone LSTM model.
It means that filtering the main signal before feeding it to the
LSTM model leads to improving the performance of the model
by removing noise and extracting relevant features.

V. CONCLUSION

The problem of residential load disaggregation considering
a case study in the arctic climate of northern Norway is
addressed in this paper. A combination of a discrete wavelet
transform filter with an LSTM model is used to disaggregate
the signature of four different appliances from the total power.
For the optimal performance of the LSTM model, a Bayesian
optimization algorithm is implemented to find the best set
of hyperparameters for each appliance. Experimental results
on the real-world data show the superiority of the proposed
approach compared to other techniques.
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