
Faculty of Science and Technology
Department of Physics and Technology

Analysis of dust impacts observed with the Radio Plasma Wave instru-
ment onboard ESA’s Solar Orbiter

Alen Ferkic
FYS-3931 Master’s thesis in Space Physics - December 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Dust particles are one of the major constituents of the interplanetary medium
in our solar system. They are presumably formed by fragmentation processes
of meteoroids and for a certain range of sizes and parameters the dust par-
ticles move radially outwards from the Sun. The Radio plasma Wave (RPW)
instrument on Solar Orbiter can measure dust particles that impact the space-
craft. By measuring the impacting dust particles we hope to learn about the
size and mass distribution of the dust particles formed by the fragmentation
processes.

For this thesis we investigate the amplitudes of observed dust impact signals
from a set of convolutional neural network processed RPW data. The observa-
tions extend from June 2020 to June 2023 and during this period, Solar Orbiter
reaches as close as 0.29 AU from the Sun. The model assumption is that the
mass and the impact velocity of the dust particle is correlated to the measured
voltage amplitude. We searched for systematic variations for recorded dust sig-
nals along the orbit of Solar Orbiter and the measured voltage amplitude were
divided into three categories. The categories was compared for inbound and
outbound trajectories as well as perihelion and aphelion paths. Assuming we
have a constant impact velocity the slope of the mass distribution was derived.
In addition, under the assumption of a constant dust velocity we infer the ratio
of small particles along the orbit.

Many of the results indicate a mass distribution that increases with the distance
from the Sun. Further the results showed that the dust impact flux is higher
on an inbound trajectory compared to an outbound trajectory. A possible ex-
planation for this is the influence of the relative velocity in the impact velocity
and potential changes of the mass distribution.

i

Acknowledgements
I am sincerely thankful to my supervisor Professor IngridMann for the guidance
you provided to me throughout this master’s thesis. You encouraged me and
kept me on track especially during challenging moments. I would also like to
express my gratitude towards Samuel Kočiščák for our helpful discussions and
providing help with the data and questions I had about Python.

I would also like to show my appreciation to my co-students for motivating and
inspiring me even through the darkest winters in Tromsø. You made the past
five years enjoyable and it would not have been the same without you. A big
thanks to Amalie Gjelsvik for also proof reading my thesis.

Lastly I would like to thank my family and friends at home for showing me
the support and believing in me. Your support has been crucial throughout this
academic journey and I am excited for the future that lies ahead.

iii

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables 1

1 Introduction 3

2 Solar Orbiter 5
2.1 Launch and mission . 5
2.2 The Radio Plasma Wave (RPW) 6

2.2.1 Spacecraft charging 6
2.2.2 Dust measurement 7
2.2.3 Signal shape . 8

2.3 Dust detection algorithm 11
2.4 Data product and selection 11

3 Background considerations on dust particles 15

4 Methods 19
4.1 Orbital Parameters . 19
4.2 Voltage amplitude analysis 21
4.3 Derivation of the slope of the mass distribution 23
4.4 Simplified mass distribution 26

5 Results and discussion 27
5.1 Choice of the voltage amplitude categories 27
5.2 Comparison of inbound and outbound trajectories 29
5.3 Mass ratio of a constant mass 32
5.4 Slope of the mass distribution 34
5.5 Comparison of perihelion and aphelion impacts 35

v

6 Conclusion 41

Bibliography 43

A Data files 47

B Code 49

vi

List of Figures
2.1 Simulation of an ideal dust impact signal. The red line corre-

sponds to the antenna’s potential, the green line corresponds
to the spacecraft’s potential and black line is the difference
between the potentials. (Taken from Zaslavsky, 2015) 9

2.2 Shows a saturated dust impact on the three antennas. The
uppermost panel shows antenna 1, followed by antenna 2
and 3. The last panel shows them together in one Figure. . . 10

2.3 Sketch of the spacecraft and antenna configurations. SE1 Mode
(orange) has only monopole channels shown with orange ar-
rows. XLD1 Mode (blue) has 2 dipole and 1 monopole shown
with blue arrows. DIFF1 Mode (green) has only dipole shown
with green arrows. 13

3.1 Shows the 𝛽-value as a function of the mass for young cometary
dust and asteroidal dust. This Figure is taken from Henriksen,
2020 in which he adapted it from Wilck and Mann (1996). . 17

4.1 The heliocentric distance and radial velocity of Solar Orbiter
from 15𝑡ℎ of June 2020 to 14𝑡ℎ June 2023. 20

4.2 Normalized density distribution of peak voltage with loga-
rithmic scales from April - November 2020. Red line shows a
power-law least-square fit with a slope of −1.37±0.07. Error-
bars are computed from

√
𝑁𝑏𝑖𝑛/(Δ𝑉𝑏𝑖𝑛𝑁𝑡𝑜𝑡) where 𝑁𝑏𝑖𝑛 is the

number of counts in the bin, Δ𝑉𝑏𝑖𝑛 the bin width in mV, and
𝑁𝑡𝑜𝑡 the total number of events from which the histogram is
computed. This Figure is taken from the work of Zaslavsky
et al. (2021). 22

5.1 Normalized density of the peak voltages with logarithmic scales.
The dashed lines are located at 20𝑚𝑉 and 200𝑚𝑉 28

vii

5.2 Amplitude ratio of the three categories, shows the inbound
and outbound orbits. Fully drawn lines are outbound and
dashed lines are inbound. Errors are filled in around the lines.
All of the inbound sums up to 100 % and all of the outbound
sums up to 100 %. 29

5.3 The mass ratio between two masses as a function of the dis-
tance. Blue line shows dust impacts with masses larger than
10−17 kg and Orange line shows masses smaller than 10−17
kg. Error bars are constructed with upper and lower bounds
of charge production threshold each day. A offset of 0.05 AU
is included as well. 33

5.4 Shows the slope value 𝑎 from weekly intervals for all the days
recorded as a function of distance. The red line is a least-
square fit of all the points. 34

5.5 Shows the perihelion side and aphelion trajectory. Shaded
area corresponds to the perihelion and the white area cor-
responds to the aphelion side. 36

5.6 Shows the ratio of the categories for the aphelion and aphe-
lion trajectories as a function of the impact velocity. 38

viii

List of Tables
5.1 Voltage amplitude categorized into three categories. Weak are

amplitudes less than 20 mV, mid are amplitudes between 20
mV and 200 mV and strong are amplitudes greater than 200
mV. 29

5.2 Shows the inbound numbers for weak, mid, strong and the
total at different distances. 31

5.3 Shows the outbound numbers for weak, mid, strong and the
total at different distances. 31

5.4 Shows the number of impacts at different distance intervals. 31
5.5 Shows the "perihelion side" counts for weak, mid, strong and

the total for different impact velocities. 37
5.6 Shows the "aphelion side" counts for weak, mid, strong and

the total for different impact velocities. 37

1

1
Introduction
Dust particles play a role in our solar system in forming the zodiacal light and
giving a brightness to the night sky. Most of the dust particles originate from
comets and asteroids. The majority forms in the fragmentation process of dust
- dust collisions and frequently occur in the inner solar system (Mann et al.,
2019). The size and the amount of dust that is formed in the fragmentation
process by collisions influence the mass distribution of the dust particles that
is observed.

Dust particles can be detected by dedicated dust detectors such as the cosmic
dust analyzer onboard the Cassini spacecraft (Srama et al., 2004). It is also
possible to detect dust impacts with the use of radio instruments during space
missions (Meyer-Vernet, 2001). This is possible because a large fraction of the
material ionizes when the dust particle hits the spacecraft. The ionizedmaterial
influences the measurement of the radio instrument. The Radio Plasma Wave
(RPW) onboard the Solar Orbiter is one of those instruments. Solar Orbiter is
one of the few space missions that explore the inner solar system inside 1 AU
(Müller et al., 2020).

In this thesis we use data from the RPW to measure dust impacts that collides
with the spacecraft using the process of impact ionization. When a dust particle
collides with Solar Orbiter it generates a voltage pulse that the RPW records.
Theory suggests that the amplitude of the signal generated varies with the
impact speed and the mass of the impacting dust particle. The objective of this
thesis is to investigate the recorded dust impact signals along the orbit of Solar

3

Orbiter so far and search for possible systematic variations. The aim is to infer
information on the mass and impact velocity of the impacting dust particles
from the measurements.

This thesis starts with an overview of Solar Orbiter in Chapter 2 and the back-
ground theory needed for the data product and measurement of the dust im-
pacts. In Chapter 3, the theoretical framework for dust particles is provided.
Chapter 4 gives a description of the method used in this thesis, including or-
bital parameters, voltage amplitude analysis and the calculation of the mass
distribution slope. The results of the analysis and calculations are presented in
Chapter 5 along with a discussion and interpretation of these results. Finally
in Chapter 6, a summary and the conclusion of the results is presented.

4

2
Solar Orbiter
This chapter gives a overview of the objectives of Solar Orbiter. It also provides
the background needed to understand Solar Orbiter’s dust measurement tech-
nique. In addition we discuss the data product and selection. In section 2.1 we
describe the launch and the mission. This is followed by a description of the
instrument and the physics of dust measurement in section 2.2. Section 2.3
includes a description of the dust detection algorithm. Finally in chapter 2.4
we describe the data product and selection.

2.1 Launch and mission

ESA’s Solar Orbiter was launched 10th of February 2020 using the Atlas V
launch vehicle from Cape Canaveral Florida. The spacecraft will study the Sun
with a minimum distance of 0.28𝐴𝑈 and in an orbit with inclination up to
33◦ from the ecliptic plane (Müller et al., 2020). Using several gravity assist
flybys from Venus, the spacecraft will adjust it’s trajectory and increase the
inclination. The first flyby in December 2020 corrected the orbit around the
Sun, while subsequent flybys will increase the inclination.

The primary scientific objectives of the Solar Orbiter can be summarized into
four questions that describe the overall mission (Mueller et al., 2013):

1. How and where do the solar wind plasma and magnetic field originate

5

in the corona?

2. How do transients drive heliospheric variability?

3. How do solar eruptions produce energetic particle radiation that fills the
heliosphere?

4. How does the solar dynamo work and drive connections between the
Sun and heliosphere?

To answer these questions, the Solar Orbiter carries several different instru-
ments and one of those can also be used for detection of dust particles.

2.2 The Radio Plasma Wave (RPW)

The Radio Plasma Wave (RPW) is an instrument that measures and analyzes
electric field and magnetic field fluctuations As described in detail in Mak-
simovic et al. (2020) It consists of three electric antennas that can measure
properties of the plasma environment and solar wind. Conducting dust mea-
surements with the RPW is not the main point of the instrument, but it was kept
in mind when designing it that it would be able to measure dust impacts. The
RPW has a subsystem called Time Domain Sampler (TDS) which provides elec-
tric wave forms, which are of interest in this thesis. The TDS records snapshots
of the voltage measured when the voltage exceeds a certain threshold (Soucek
et al., 2021). A description of the TDS system and the physics behind dust im-
pacts is explained later in section 2.2.2 and 2.3. The antennas are negatively
biased with respect to the spacecraft to minimize the potential variations with
respect to the plasma at low frequencies (Khotyaintsev et al., 2021). There are
two sample rates that the waveforms are sampled with, the first one is 262.1
kHz and the second one is 524.2 kHz. The latter is used when the spacecraft
is inward of 0.5 AU.

2.2.1 Spacecraft charging

Spacecrafts are exposed to several charging processes in space which affects
the electric potential of the spacecraft. The expression for the currents that
work onto the spacecraft is given by:

𝑑𝑞

𝑑𝑡
= 𝐼𝑝ℎ + 𝐼𝑠𝑤 + 𝐼𝑠𝑒𝑐 + ... (2.1)

6

Where 𝐼𝑝ℎ is the current due to photo electron emission, 𝐼𝑠𝑤 is the current
caused by solar wind particles collection and 𝐼𝑠𝑒𝑐 is the current due to secondary
electron emission by electron impact. A further explanation of each term is
given in (Zaslavsky, 2015).

The equilibrium potential, also known as the floating potential, can be found
by solving the steady state solution of equation 2.1, i.e when 𝑑𝑞/𝑑𝑡 = 0 The
solution for the floating potential of the spacecraft is found to be:

𝜙 = 𝑇𝑝ℎ𝑙𝑛

(
𝐽𝑝ℎ0𝑆𝑙𝑖𝑡

𝑒𝑛𝑒𝑣𝑒𝑆𝑠𝑐

)
(2.2)

where𝑇𝑝ℎ is the photon electron temperature, 𝐽𝑝ℎ0 is the photoemission current
density, 𝑆𝑙𝑖𝑡 is the illuminated surface of the object, 𝑒 is the elementary charge
constant, 𝑛𝑒 is the electron density, 𝑣𝑒 is the averaged electron velocity and
the 𝑆𝑠𝑐 is the surface area of the spacecraft. We see that the potential depends
on the local plasma parameter 𝑛𝑒 which is why it is also called the floating
potential. A full description of the derivation is beyond the scope of this thesis
and is described in detail in (Zaslavsky, 2015).

2.2.2 Dust measurement

The RPW instrument can be used to measure dust impacts through a process
called impact ionization. When a dust particle hits the spacecraft, the dust par-
ticle is destroyed and a portion of the material ionizes. The process generates
a cloud of free electrons and ions that are attracted or repelled from the space-
craft depending on the electric potential of the spacecraft. The charge 𝑄 that
is generated by the impact can be described by the equation below (Auer and
Sitte, 1968):

𝑄 = 𝜉𝑚𝜅𝑣𝛾 (2.3)

where 𝑄 is given in Coloumb,𝑚 is the mass of the impactor given in kg and
𝑣 is the impact velocity given in km/s. The constant 𝜉 is a proportionality
constant and parameters 𝜅 and 𝛾 are from experimental data that depends on
the impactor and target composition (Mann et al., 2019).

Electrons are much lighter than ions which makes them quick compared to
the ions, assuming that they have similar temperature which was shown to
be the case (Collette et al., 2016). The Solar Orbiter is positively charged and
when the dust particles hit the spacecraft the electrons are quickly collected

7

while the ions are repelled in a short amount of time (𝜇𝑠 timescale) before the
spacecraft reaches its floating potential again. We assume that the potential
of an antenna in monopole mode 𝜙𝑎𝑛𝑡 is roughly constant during the process.
The term monopole will be explained in section 2.4. This enables us to link the
charge 𝑄 produced by the impact with the peak of our voltage pulse through
the following equation: (Zaslavsky et al., 2021)

𝑄 (𝑚, 𝑣) ≃
𝐶𝑠𝑐𝑉𝑝𝑒𝑎𝑘

Γ
(2.4)

where 𝐶𝑠𝑐 is the capacitance of the spacecraft and Γ is an attenuation factor.
expressed as:

Γ = 𝐶𝑎𝑛𝑡/(𝐶𝑎𝑛𝑡 +𝐶𝑠𝑡𝑟𝑎𝑦)

Using equations 2.3 and 2.4 we can relate the measured voltage with the prop-
erties of the dust particle such as mass and velocity. The resulting equation
is:

𝑉𝑝𝑒𝑎𝑘 =
𝜉𝑚𝜅𝑣𝛾Γ

𝐶𝑠𝑐

(2.5)

2.2.3 Signal shape

The electric potential measured between an antenna and the spacecraft is
recorded as a waveform, which can be studied. The combination of electrons
being collected and ions being repelled after impact, gives rise to a pulse in the
signal before the spacecraft relaxes to its equilibrium potential. The pulse is
defined as the perturbation in the equilibrium potential given by 𝛿𝜙 in equation
2.2.

The shape of the signals depend on the electric potential of the spacecraft. As
mentioned, electrons are quicker than ions which means that they get attracted
or repelled, respectively in the case of a positively or a negatively charged
spacecraft. The antennas can also affect the signal; however since we measure
in monopole mode and we assume that the antenna’s potential are roughly
constant, the antennas does not affect the shape in our case (Zaslavsky et al.,
2021). a thing to note is that the location of the impact can affect which antenna
reads the largest pulse - it is the antenna with the greatest amplitude that the
impact location is closest to. Generally the antennas give the same shape when
examined individually, but the amplitude difference is in the location of the

8

impact. This allows us to study body and antenna effect separately.

Figure 2.1: Simulation of an ideal dust impact signal. The red line corresponds to
the antenna’s potential, the green line corresponds to the spacecraft’s
potential and black line is the difference between the potentials. (Taken
from Zaslavsky, 2015)

Figure 2.1 shows an ideal dust impact signal. The red line is the potential of
the antenna 𝜙𝑎𝑛𝑡 , the green line is the potential of the spacecraft 𝜙𝑠𝑐 and the
black line is the difference between 𝜙𝑎𝑛𝑡 and 𝜙𝑠𝑐 , which is the waveform we
measure. We see that the potential difference gives rise to a voltage pulse. The
green line decreases significantly compared to the red line and this is due to
the spacecraft having a larger surface area which enables it to collect more of
the free charges after the impact (Zaslavsky, 2015). Dust impacts can occur on
the solar panel, but we do not use them as a collecting area due to them being
electrically isolated on the front side. Impacts on the solar panels can produce
charges that could be collected by conductive parts of the spacecraft but we
neglect this effect (Zaslavsky et al., 2021)

The antenna has a saturation effect where it can cause inconsistent measure-
ments of the amplitude. Large voltages amplitudes (> 200) mV may not be
reliable as we are not sure if the measurement has been saturated. We do not
know for certain what affects the saturation and at what limit an amplitude
becomes saturated, but from inspection of the signals it has an variation but
is never below 200 mV. Figure 2.2 shows a saturated dust impact, which is
particularly evident in the third panel from the top where we can see that after
the impact the signal decays exponentially before it breaks and then returns to
the equilibrium.

Other effects that can alter the signal are high energy electrons that escape the
potential of the spacecraft, which causes a negative spike in the signal due to

9

Figure 2.2: Shows a saturated dust impact on the three antennas. The uppermost
panel shows antenna 1, followed by antenna 2 and 3. The last panel shows
them together in one Figure.

10

the spacecraft becoming more positively charged. Another effect which we have
to be aware of is ions that are repelled can influence the signal if they come
too close to the antenna. One can think of it almost as ions are interfering with
the antennas in a way that the antennas reads them twice. This leads to the
antennas measuring positive charges which causes a secondary peak after the
dust impact’s primary peak. This secondary peak sometimes exhibits a greater
amplitude than the primary peak. (Kočiščák et al., 2023b)

In this thesis I will focus on the amplitude of the dust impacts and not on the
shape of the signals. A portion of the amplitude information to saturated dust
impacts may be retrieved with signal processing techniques. I will not look into
that as that is beyond the scope of this thesis, however this could be studied in
future work.

2.3 Dust detection algorithm

The TDS has a detection algorithm on-board which allows the detection of
dust impacts using an voltage amplitude threshold. The instrument takes a
short snapshot of 1/16s of the waveform with a rate of 16384 every second.
If the snapshot exceeds the minimum amplitude threshold it is recorded and
processed by the software onboard the TDS. A detailed explanation of the
detection algorithm can be found in the work of Soucek et al., 2021. The duty
cycle of the TDS is between 1/32 and 1/16 which means that even under
normal conditions it is only online for about 3% or % of a second.

The convolutional neural network (CNN) is a machine learning detection algo-
rithm. Although The TDS has its own detection algorithm, The CNN detection
method is used in this work. This is due to the CNN having a 96%± 1% overall
classification precision and 94% ± 2% dust detection accuracy while the on-
board dust classifier has a 85% overall precision and 75% detection accuracy.
A description of how the CNN detection method works can be found in the
work of Kvammen et al., 2022. In some of the results we use a 5% error on the
classification since we assume that it is related to the dust detection accuracy
to CNN.

2.4 Data product and selection

The Data files used in this thesis can be downloaded from the link in the Ap-
pendix, In this thesis we have used data from June 2020 to June 2023. The
data format is in ".cdf" and one ".cdf" file contains 24 hours of data that the

11

RPW instrument measures. From the website we use Data product level 2 (L2)
and select tds_wf_e, this is TDS electric field waveform data which contains
our voltage measurements. We are interested in the Triggered snapshot wave-
form (TSWF) which are the snapshots recorded when the TDS algorithm was
triggered. The antennas have three configuration modes:

• SE1 mode: three monopoles, 𝑉 1, 𝑉 2 and 𝑉 3

• XLD1 mode: two antennas measures dipole (𝑉 1 −𝑉 3), (𝑉 2 −𝑉 1) and
one channel is antenna 𝑉 2 against spacecraft (𝑉 2 −𝑉𝑠𝑐)

• DIFF1 mode: three dipole, (𝑉 1 −𝑉 3), (𝑉 2 −𝑉 1) and (𝑉 3 −𝑉 2)

Figure 2.3 shows the configuration of the antennas. Monopole is the antenna’s
electric potential against the spacecraft’s electric potential and dipole is the
electric potential difference between two antennas. In SE1 mode the three
channels are monopoles which is shown as the orange color in Figure 2.3. The
blue color is XLD1 mode which has two channels in dipole and one channel
in monopole. Meanwhile, DIFF1 mode has three channels in dipole colored in
green. Maksimovic et al., 2020

XLD1 mode is used in this thesis as all of our data (both CNN and TDS) are
in this mode. It is also the most practical since it can be adapted to monopole
channels and the length between two antennas in dipole provides an advantage
for plasma measurements. 𝐷𝐼𝐹𝐹1 mode is not useful in our case since we want
monopole measurement for simplicity. Not being able to adapt it to monopole
makes the calculation of charge production more complicated since one would
need to know the impact location with respect to the antennas (Zaslavsky et al.,
2021).

12

Figure 2.3: Sketch of the spacecraft and antenna configurations. SE1 Mode (orange)
has only monopole channels shown with orange arrows. XLD1 Mode (blue)
has 2 dipole and 1 monopole shown with blue arrows. DIFF1 Mode (green)
has only dipole shown with green arrows.

13

In our case we use data that is recorded in 𝑋𝐿𝐷1 and the channels are shown
below:

ch1 = 𝜙1 − 𝜙3

ch2 = 𝜙2 − 𝜙1

ch3 = 𝜙2 − 𝜙𝑠𝑐

where 𝜙1, 𝜙2, 𝜙3 are the antennas electric potential and 𝜙𝑠𝑐 is the spacecraft
potential. We can arrange the channels on this form (𝑉𝑖 ≡ 𝜙𝑖 −𝜙𝑠𝑐) so that we
measure in monopole mode:

𝑉1 = ch3 − ch2
𝑉2 = ch3
𝑉3 = ch3 − ch2 − ch1

𝑉1,𝑉2 and𝑉3 is now our new voltage in monopole. As mentioned the signal can
be affected by a secondary peak which affects the amplitude. Upon observing
the signals of dust impacts, it seems that it is only one of the antennas that shows
the secondary peak effect most of the time, while the other antennas have more
or less equal amplitude. There is no preferred antenna that shows the effect.
In the data processing, the effect (of a secondary peak) is removed by only
considering the signal from the antenna with the lowest peak amplitude, and
disregarding the signals from the other two antennas. This method allows us
to exclude the secondary peak while maintaining an accurate representation
of the amplitude. The offset of each channel is removed by subtracting the
average.

14

3
Background considerations
on dust particles

The majority of the dust in the solar system originates from the fragmentation
of celestial objects such as asteroids and comets. These large objects are known
as the parent objects of the dust. The produced dust particles from the frag-
mentation process are initially in orbits with inclination similar of their parents
body (Mann et al., 2004). Large dust particles on the scale of micrometer are in
Keplerian orbits around the Sun with velocities and number density increased
close to the Sun. (Mann et al., 2019).

The forces that act on a dust particle are the gravitational pull from the Sun,
the Solar radiation pressure and the Lorentz force. If the charge to mass ratio
of the dust particle is small, the Lorentz force can be neglected and in this case
the Lorentz force is neglected. The dynamics of dust particles can be described
by the Solar radiation pressure and the gravity from the Sun. These forces are
radial forces working in opposite directions which makes their ratio a useful
way to describe dust trajectories. This ratio is known as the 𝛽-value of the dust
particles and is expressed in the equation below.

𝛽 =
𝐹𝑟𝑎𝑑

𝐹𝑔
(3.1)

15

The 𝛽-value together with the initial conditions describes the dust trajectories.
The large dust particles are dominated by the gravity force and have a 𝛽 −
value between 0 < 𝛽 < 0.5. Small dust particles are often in a unbound
hyperbolic orbit and have a 𝛽 − value of 𝛽 ≥ 0.5, these particles are known as
𝛽-meteoroids. 𝛽-meteoroids are pushed radially outwards from the Sun due to
the Solar radiation pressure. It is assumed that Solar Orbiter collides with the
𝛽-meteoroids. The 𝛽-value depends on the size and composition of the dust
particle and are discussed below.

Since the dust particles have mass they feel the gravitational force from the
Sun. This force can be described as:

𝐹𝑔 = −𝐺𝑀⊙𝑚𝑑

|𝑟 |3 𝑟

Where 𝐺 is the gravitational constant, 𝑀⊙ is the Solar mass and 𝑚𝑑 is the
mass of the dust particle. 𝑟 is position vector of the dust particle relative to the
Sun.

The Sun emits photons in all directions, propagating outward at the speed
of light. The photons carries momentum which enables them to scatter of
objects transferring the momentum. When a photon collides with a dust grain
it scatters off the dust particle exerting a force onto it. This is the Solar radiation
pressure expressed as:

𝐹𝑟𝑎𝑑 =
𝐴𝑑𝑄𝑝𝑟𝑆0

|𝑟 |3 𝑟

Where 𝐴𝑑 is the cross section of the dust particle,𝑄𝑝𝑟 is the efficiency factor of
the radiation pressure weighted by the solar spectrum and 𝑆0 is the solar flux
weighted for the distance to the Sun. A detailed explanation of this parameter
is given in Sterken et al., 2012.

Figure 3.1 shows us the 𝛽-value as a function of the mass in grams for two
dust species. In the original work from Wilck and Mann (1996), there are two
more curves that are similar to asteroidal dust, which are old cometary and
interstellar dust. It is safe to assume that our dust grains follow the 𝛽-value
for asteroidal dust and not young cometary dust. This is because the analysis
previously done shows trajectories that can be explained with 𝛽-values around
0.5. (Kočiščák et al., 2023b).

If we consider a dust particle, we notice that 𝐹𝑔 is dependent on the mass and
𝐹𝑟𝑎𝑑 is dependent on the cross section. Both are related to the size as mass
can be described as𝑚 = 𝜌𝑉 . Assuming we have a spherical dust particle, We
can see that 𝐹𝑔 scales with 𝑟3

𝑑𝑢𝑠𝑡
and 𝐹𝑟𝑎𝑑 scales with 𝑟2

𝑑𝑢𝑠𝑡
, which causes the

16

gravity force to dominate. This is the explanation of the right hand side of the
peak in Figure 3.1.

On the other hand we see that for low mass the 𝛽-value is small. If the dust
particle is significantly smaller than the wavelength of the photon, the photon
will pass through it and not be able to scatter off the dust particle. This results
in not pushing it outwards as there is no momentum transfer. The dust particles
that has a size much smaller than the typical wavelength of the solar spectra
does not scatter the sunlight photons effectively.

Figure 3.1: Shows the 𝛽-value as a function of the mass for young cometary dust and
asteroidal dust. This Figure is taken from Henriksen, 2020 in which he
adapted it from Wilck and Mann (1996).

17

4
Methods
In this chapter we discuss the methods used to derive the results. A brief look
of the orbital parameters is introduced in section 4.1, following a method de-
scription of the voltage amplitude measurements in section 4.2. In section 4.3
a derivation of the slope to the mass distribution is included as well as the
calculation of a charge production threshold in section 4.4.

4.1 Orbital Parameters

Orbital parameters were calculated by generating an ephemeris for Solar Or-
biter. It can be generated with the link in the Appendix. Figure 4.1 shows the
radius of Solar Orbiter and the radial velocity with respect to the Sun. It has
data from 15𝑡ℎ of June 2020 to 14𝑡ℎ June 2023 which is the same amount of
data in days as the measurements.

The closest point to the Sun is 0.29 AU and the furthest is 1.01 AU. The radial
velocity ranges from −23.6 to +23.6 km/s. On the 27𝑡ℎ of November 2021 Solar
Orbiter did an Earth flyby to adjust the trajectory of the spacecraft, which can
be seen in the radial velocity panel where the curve shows a sudden change
around 8𝑡ℎ of December.

The coordinate system used is Heliocentric Aries Ecliptic (HAE) which has the
Z-axis normal to the ecliptic, X-axis points towards the first point of Aries on

19

the Vernal Equinox and Y-axis completes the system forming a right-handed
coordinate system. A description of the coordinate system can be found in
𝐻𝑒𝑛𝑟𝑖𝑘𝑠𝑒𝑛 (2022).

Figure 4.1: The heliocentric distance and radial velocity of Solar Orbiter from 15𝑡ℎ of
June 2020 to 14𝑡ℎ June 2023.

20

4.2 Voltage amplitude analysis

We are interested in the voltage peak amplitude as they are related to the mass
and velocity of the impacting dust particles. Voltage measurements can have
a low amplitude, resulting in an uncertainty in whether the signal is a dust
impact, or if it is a potential perturbation that triggers the TDS algorithm. On
the other hand we can have dust impacts with saturated voltage amplitudes
which does not reveal the true amplitude. Due to this effects we categorize the
voltage amplitude into three groups. weak corresponds to dust impacts with
low voltage amplitudes, mid corresponds to voltage amplitudes we are certain
of and strong corresponds to dust impacts with voltage amplitudes that may be
saturated. Figure 4.2 shows the normalized density of the peak voltages of dust
impacts measured from April - November 2020. This Figure is adapted from a
publication by Zaslavsky et al. (2021). We see in the Figure that there are dust
impacts that deviates from the straight line both at the lower amplitudes and
higher amplitudes.

Due to these deviating points we want to categorize the amplitudes in a way
that represents the groups accurately. In the section 5.1 we describe the chosen
values and the reason behind it.

21

Figure 4.2: Normalized density distribution of peak voltage with logarithmic scales
from April - November 2020. Red line shows a power-law least-
square fit with a slope of −1.37 ± 0.07. Errorbars are computed from√
𝑁𝑏𝑖𝑛/(Δ𝑉𝑏𝑖𝑛𝑁𝑡𝑜𝑡) where 𝑁𝑏𝑖𝑛 is the number of counts in the bin, Δ𝑉𝑏𝑖𝑛

the bin width in mV, and 𝑁𝑡𝑜𝑡 the total number of events from which the
histogram is computed. This Figure is taken from the work of Zaslavsky
et al. (2021).

22

4.3 Derivation of the slope of the mass
distribution

The voltage peak distribution follows a power law behaviour as can be seen
in Figure 4.2. The slope that they found as a result of using a power-law least-
square fit has an value of 𝑎 ≈ 1.34 (Zaslavsky et al., 2021). In this section we
show a newmethod on how to derive the slope value 𝑎 by looking at the charge
production between two interval ranges. Based on assumptions we can infer
the mass distribution of the dust impacts. The results are presented in section
5.4.

The intervals ranges are represented below:

𝑄𝑙𝑜 <𝑄 < 𝑄ℎ𝑖

𝑄ℎ𝑖 <𝑄

We assume we have a probability density function (PDF) of the masses:

𝑓𝑚 (𝑚) = 𝑐 ·𝑚𝑎 (4.1)

Equation 4.1 integrates to

∫ ℎ𝑖

𝑙𝑜

𝑓𝑚 (𝑚) 𝑑𝑚 = 𝑐

[
𝑚𝑎+1

𝑎 + 1

]ℎ𝑖
𝑙𝑜

= 𝑐
ℎ𝑖𝑎+1 − 𝑙𝑜𝑎+1

𝑎 + 1
Where 𝑙𝑜 and ℎ𝑖 are lower and upper boundaries respectively, later in the thesis
we explain our selection for 𝑙𝑜 and ℎ𝑖.

We assume that the impact velocity is constant within the time periods of
the intervals in question, which enables us to have a charge production that
depends only on the mass 𝑄 (𝑚). The proportionality constant is included in
𝑣 , we then have:

𝑄 =𝑚𝑣

𝑄

𝑣
=𝑚 =⇒ 𝑄 ∝𝑚

23

This implies that:

𝑓𝑚 (𝑚) = 𝑐 ·𝑚𝑎 =⇒ 𝑓𝑄 (𝑄) = 𝑐′ ·𝑄𝑎

The slope of 𝑓𝑄 (𝑄) is the same as the slope of 𝑓𝑚 (𝑚). Using measured values
of 𝑄 we can infer the slope of the mass distribution, assuming that the mass
distribution does not change over the time period of the measurements. Con-
sidering equation 2.3, we see that a higher mass𝑚 implies a higher charge 𝑄
given that the velocity 𝑣 is constant. The masses for our boundaries 𝑙𝑜 and ℎ𝑖
are:

𝑚𝑙𝑜 =
𝑄𝑙𝑜

𝑣

𝑚ℎ𝑖 =
𝑄ℎ𝑖

𝑣

where 𝑄𝑙𝑜 and 𝑄ℎ𝑖 is the charge production related to the mass𝑚𝑙𝑜 and𝑚ℎ𝑖 ,
respectively.

From that we predict the number of dust grains between the two masses,𝑚𝑙𝑜

and𝑚ℎ𝑖 using the PDF:

𝑁𝑄∈ (𝑄𝑙𝑜 :𝑄ℎ𝑖
) =

∫ 𝑚𝑙𝑜

𝑚ℎ𝑖

𝑓𝑚 (𝑚) 𝑑𝑚 = (4.2)

𝑁𝑄∈ (𝑄𝑙𝑜 :𝑄ℎ𝑖
) =

∫ 𝑄ℎ𝑖
𝑣

𝑄𝑙𝑜
𝑣

𝑓𝑚 (𝑚) 𝑑𝑚 (4.3)

Then we integrate equation 4.3:

24

𝑁𝑄∈ (𝑄𝑙𝑜 :𝑄ℎ𝑖
) = 𝑐

(
𝑄ℎ𝑖

𝑣

)𝑎+1
−

(
𝑄𝑙𝑜

𝑣

)𝑎+1
𝑎 + 1

(4.4)

= 𝑐

𝑄𝑎+1
ℎ𝑖

𝑣 ′
−
𝑄𝑎+1
𝑙𝑜

𝑣

𝑎 + 1
(4.5)

=

(
𝑐

𝑣 (𝑎+1) (𝑎 + 1)

)
(𝑄𝑎+1

ℎ𝑖
−𝑄𝑎+1

𝑙𝑜
) (4.6)

For the other interval we integrate:

𝑁𝑄>𝑄ℎ𝑖
=

∫ ∞

𝑄ℎ𝑖
𝑣′

𝑓𝑚 (𝑚) 𝑑𝑚

We note that it is strictly that𝑎 < −1which enables the infinite term to converge
to 0. Integrating we get:

𝑁𝑄>𝑄ℎ𝑖
=

∫ ∞

𝑄ℎ𝑖
𝑣′

𝑓𝑚 (𝑚) 𝑑𝑚 =

(
𝑐

𝑣 ′(𝑎 + 1) (𝑎 + 1)

)
(−𝑄𝑎+1

ℎ𝑖
) (4.7)

We relate the expressions 4.6 and 4.7:

𝑁𝑄>𝑄ℎ𝑖

𝑁𝑄∈ (𝑄𝑙𝑜 ;𝑄ℎ𝑖
) = 𝑅 =

−𝑄𝑎+1
ℎ𝑖

𝑄𝑎+1
ℎ𝑖

−𝑄𝑎+1
𝑙𝑜

(4.8)

Where 𝑅 is the ratio between the counts 𝑁 of the intervals

We invert equation 4.8 to get 𝑎:

𝑎 =
− ln(𝑄ℎ𝑖) + ln(𝑄𝑙𝑜) + ln

(
𝑅

𝑅+1
)

ln(𝑄ℎ𝑖 − ln(𝑄𝑙𝑜)
(4.9)

Equation 4.9 was found using Wolfram Mathematica which is a computational
intelligence software. The equation implies that 𝑅 has to be positive number.
The values for 𝑄ℎ𝑖 and 𝑄𝑙𝑜𝑤 are discussed later in the thesis.

25

4.4 Simplified mass distribution

In this section we use a constant mass threshold to derive a charge production
threshold. This enables us to investigate the mass of the impacting particles.
From the voltage measurements we calculate the charge production of the
dust impacts and see if it exceeds the charge threshold. This will tell us if
the dust impact had a mass larger or smaller than the fixed mass. The charge
production threshold is calculated using the relation between equation 2.3 and
equation 2.4. The peak voltage amplitude is related to the charge production
with equation 2.5. We assume that the impact velocity is equal to the velocity of
the dust particle and the radial velocity of the spacecraft given in the equation
below:

𝑣𝑖𝑚𝑝 = 𝑣𝑑𝑢𝑠𝑡 + 𝑣𝑠𝑜𝑙𝑂
𝑟𝑎𝑑

(4.10)

We assume that 𝑣𝑑𝑢𝑠𝑡 = 50km/s since Zaslavsky et al. (2021) derived that
as the average dust velocity in his work. It is also assumed that it remains
constant during the orbits, seeing as in Figure 1 in the work of Kočiščák et al.
(2023a) it remains roughly constant for different 𝛽-values at different intervals
of distances.

Since the radial velocity of Solar Orbiter varies daily, we calculate a daily charge
production threshold as a function of the radial velocity of the spacecraft. In
this derivation, we consider a high charge yield, leading to the parameters in
equation 2.3 being assigned values of 𝜉 = 0.7, 𝜅 = 1, and 𝛾 = 3.5 (McBride
and McDonnell, 1999).

The fixed mass used in this work is𝑚 = 1.0 × 10−17 kg, the reason being that
panel 2 of Figure 7 in the work of Zaslavsky et al. (2021), shows that the mass is
on the order of 1×10−17 kg. The dust impacts that has a charge production that
exceeds the threshold are then compared against the dust impacts that do not
exceed the threshold. This will tell us about the mass of the dust particles.

26

5
Results and discussion
This Chapter provides the result and the discussion, we first take a look at the
voltage distribution and determine our categories in section 5.1. A comparison
of the inbound and outbound trajectory is conducted in section 5.2 to search
for variations along the orbit. This is followed by mass threshold comparison
along the orbit with the aim of seeing a trend for the mass distribution in
section 5.3. Section 5.4 we calculate the slope value of the voltage amplitude
distribution which is related to themass distribution of the dust particles. Finally
in section 5.5 we take a look at the impact velocity at two different trajectories
that corresponds to the perihelion and aphelion to search for variation due to
impact velocity.

5.1 Choice of the voltage amplitude categories

Figure 5.1 shows the normalized density of the peak voltages of all the mea-
surements. We see that the majority of the measurements follow a linear fit
on logarithmic scales, especially during the mid section. A portion of the weak
voltages deviates from the line at around 100mV, there is also two peaks in the
weak section but as mentioned the weak section can contain noise signals that
has triggered the TDS algorithm. On the strong we see that there are measure-
ments that do not follow the line and are scattered around. The measurements
are in agreement with the results reported by Zaslavsky et al. (2021), we see a
similar trend of amplitudes following a linear fit as seen in Figure 4.2.

27

Figure 5.1: Normalized density of the peak voltages with logarithmic scales. The
dashed lines are located at 20𝑚𝑉 and 200𝑚𝑉 .

Based on Figure 5.1 I choose my weak,mid and strong values. We see that there
are inconsistencies in following a line at the start of the weak section. There
is also the two peaks which are hard to explain but as mentioned this section
can be dust impacts or noise that has triggered the TDS algorithm. For these
reasons a value of amplitudes greater than 20 mV has been chosen for the weak
category.

The mid section follows a consistent line from 20 mV until the 200 mV mark
before the amplitudes start to scatter. Therefore the mid category contains
amplitude values between 20 and 200 mV. The remaining strong group is then
amplitude values greater than 200mV,we also see that a portion of these points
are scattered which can be a result of saturated amplitudes. The categories
are represented in table 5.1 as well as the counts of them throughout all of the
measurements.

28

Name Amplitude Counts
Weak 20 mV > V 5808
Mid 20 mV < V < 200 mV 2737

Strong 200 mV < V 1076

Table 5.1: Voltage amplitude categorized into three categories. Weak are amplitudes
less than 20 mV, mid are amplitudes between 20 mV and 200 mV and
strong are amplitudes greater than 200 mV.

5.2 Comparison of inbound and outbound
trajectories

Figure 5.2 shows the ratio between the groups weak, mid and strong for in-
bound and outbound trajectories. The inbound is showed in dashed lines and
outbound are fully drawn lined. Error bars are calculated with a

√
𝑁 , where 𝑁

is the counts for one group in each distance point for inbound and outbound
respectively. In addition there is a 5% classification error included due to CNN’s
classification precision. The distance 0.3 AU is not included because the ratios
between inbound and outbound trajectory at this point is significantly differ-
ent.

Figure 5.2: Amplitude ratio of the three categories, shows the inbound and outbound
orbits. Fully drawn lines are outbound and dashed lines are inbound. Er-
rors are filled in around the lines. All of the inbound sums up to 100 %
and all of the outbound sums up to 100 %.

29

We see that the ratios between the groups are somewhat similar for inbound
and outbound at the aphelion ≈ 1.0 AU. As mentioned the distance point 0.3
AU is not included due to the ratios between the groups being substantially
different for both trajectories. At the perihelion and aphelion this should not
be the case since the spacecraft is more or less at same point regardless of an
inbound or outbound trajectory. The spacecraft also spends less days at the
perihelion since the velocity is higher closer to the Sun. This means that it
does not get as many dust impacts at the perihelion compared to the aphelion,
which could explain the difference. We clearly see that there is an increase of
dust impacts with a mid amplitude class from 0.5 AU and beyond for inbound
compared to the mid class at outbound. Error bars do overlap when looking at
0.65 AU.

We know that the relative velocity between Solar Orbiter and the dust grains
are different for inbound and outbound trajectory. My interpretation is that on
the inbound orbit the relative velocity is greater compared to the outbound
resulting in a higher impact velocity. This generates a voltage pulse with an
amplitude high enough that classifies a weak dust impact on outbound orbit to
mid on inbound orbit. One would also expect the strong amplitude impacts to
increase in correlation with the mid amplitude impacts. However this seems
not to be the case.

A further look, shows that weak amplitudes decreases at 0.45 AU and beyond
on the inbound compared to the outbound. In table 5.2 and 5.3, we see that the
total numbers of impacts are greater for inbound compared to the outbound for
every distance interval which is expected since the dustmoves radially outwards
from the Sun. This might indicate that, an increase in relative velocity on
inbound orbit produces higher charge that results in more dust impacts.

We do see that the outbound strong impacts are greater than the inbound for
0.35 − 0.5 AU, looking at the numbers in 5.2 and 5.3 we see that the counts of
strong in this interval are greater for the outbound path but it is not a recurring
pattern for the other intervals. A possible explanation is that for the outbound
strong the mass had a greater influence on the charge production compared to
the impact velocity for these dust impacts. Other than that it is hard to draw a
conclusion for the increase in strong at this interval.

In general, we do see an higher flux of impacting dust particles on the inbound
trajectory compared to the outbound trajectory, this is sensible as the impact
velocity is greater on an inbound path compared to an outbound path which
can result in more dust impacts being detected. We see that it is the weak and
mid categories that shows most variation between the two trajectories while
the strong shows small variation.

30

Table 5.2: Shows the inbound numbers for weak,mid, strong and the total at different
distances.

Distance (AU) Weak Mid Strong Total
0.3 − 0.4 348 233 43 624
0.4 − 0.5 189 190 55 434
0.5 − 0.6 449 225 87 761
0.6 − 0.7 520 279 100 899
0.7 − 0.8 482 207 100 789
0.8 − 0.9 519 188 112 819
0.9 − 1.01 760 279 81 1120

Table 5.3: Shows the outbound numbers forweak,mid, strong and the total at different
distances.

Distance (AU) Weak Mid Strong Total
0.3 − 0.4 202 158 56 416
0.4 − 0.5 160 156 69 385
0.5 − 0.6 363 117 63 543
0.6 − 0.7 508 214 101 823
0.7 − 0.8 316 116 59 491
0.8 − 0.9 343 104 51 498
0.9 − 1.01 538 164 66 768

Distance (AU) Number of impacts
0.2 − 0.3 251
0.3 − 0.4 1040
0.4 − 0.5 819
0.5 − 0.6 1304
0.6 − 0.7 1722
0.7 − 0.8 1317
0.9 − 1.01 1888

Table 5.4: Shows the number of impacts at different distance intervals.

31

5.3 Mass ratio of a constant mass

Figure 5.3 shows the ratio of dust impacts that has a mass larger or smaller than
1.0× 10−17 kg at 0.1 AU distance intervals. The distance intervals are the sum
of dust impacts that are between the current point and the preceding interval
step. For example the interval 0.3 shows the dust impacts within the range
0.2− 0.3, while the 0.4 point includes impacts between 0.3 and 0.4 and so on.
Because of this, an offset of 0.05 AU has been added to represent the average
between two intervals. The ratio is then calculated from the total between
the intervals. The error bars are produced assuming that events near the mass
threshold have been miss categorized. Near the threshold corresponds to a
lower limit of 0.75𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and an upper limit of 1.5𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

We see a clear trend that the ratio of masses smaller than 1.0×10−17 increases
with decreasing distance to the Sun. A possible explanation is that we have
smaller dust particles closer to the Sun. Since we do not know the mass distribu-
tion of the dust particles throughout the solar system nor the mass distribution
of fragmentation of larger objects it is hard to conclude anything at this point.
Nevertheless we know that the 𝛽-value from Figure 3.1 is low for either very
small dust particles that does not get affected by solar radiation pressure or
too large dust grains where the gravitational pull dominates. One assumption
that is made is that the dust particles are of same composition since this can
affect the 𝛽-value. Due to the fact that Figure 5.3 shows small masses closer to
the Sun, this could indicate that we are on the left side of the 𝛽-value peak as
shown in figure 3.1 where we have small particles.

Calculations of the charge production threshold was also attempted with a fixed
mass of 1.0×10−16 kg however this became only one-sided and gave us nothing
to compare with. This tells us that given the average 𝑣𝑑𝑢𝑠𝑡 = 50𝑘𝑚/𝑠, there are
no dust impacts with masses larger than 1.0× 10−16 kg. For better comparison
one would do intervals of masses and see how they change along the distance,
however this was not done due to the limited amount of time.

32

Figure 5.3: The mass ratio between two masses as a function of the distance. Blue
line shows dust impacts with masses larger than 10−17 kg and Orange
line shows masses smaller than 10−17 kg. Error bars are constructed with
upper and lower bounds of charge production threshold each day. A offset
of 0.05 AU is included as well.

33

5.4 Slope of the mass distribution

The intervals we consider in equation 4.9 are the intervals for themid and strong
categories. This means that we compare the number of mid versus the number
of strong, so our𝑄 values in equation 4.9 are𝑄𝑙𝑜 which corresponds to a voltage
amplitude of 20 mV and 𝑄ℎ𝑖 which corresponds to a voltage amplitude of 200
mV. Figure 5.4 shows the slope value 𝑎 calculated with equation 4.9. Each point
represents the sums of mid and strong individually in a weekly interval where
the impact velocity is assumed constant within each week. The distance is the
average of all the days within the week. The red line is constructed by a least
square polynomial fit of the points and the mean value of all the points are
𝑎 ≈ −1.56 ± 0.18. The error is the standard deviation of all the points.

Figure 5.4: Shows the slope value 𝑎 from weekly intervals for all the days recorded as
a function of distance. The red line is a least-square fit of all the points.

In the work of Zaslavsky et al. (2021), the authors reported that their results of
linear fitting showed a steeper curve at the perihelion compared to the aphelion,
this can be seen in Figure 4.2. They also mention that it is hard to draw a
conclusion of this result and it is sensible to wait for more data. By studying
Figure 5.4 it seems that the slope trend continues with extended data. The slope
is steeper closer to the Sun compared to far away. The slope value they found
using a least square fit of the voltage distributions is 𝑎 = −1.34±0.07. With the

34

method used in this thesis, the value of 𝑎 is calculated to be 𝑎 = −1.56 ± 0.18.
This seems to be reasonable in agreement with the authors considering we
have different amount of data. The data Zaslavsky et al. (2021) used is from 1𝑠𝑡
of April to 30𝑡ℎ, during this period, Solar Orbiter have not done its first gravity
assisted flyby. This means that the perihelion is at approximately 0.5 AU while
the perihelion for this data is at approximately 0.29 AU.

If we consider Figure 5.4 we see that smaller slope value 𝑎 results in a steeper
curve along the distance. Since we are using the ratio of counts between the
mid group and strong group, this indicates that there are fewer strong classified
amplitudes compared to mid classified amplitudes. As mentioned before there
is a possibility that there are smaller dust particles closer to the Sun compared
to far away. One could argue that the slope supports this explanation since there
are fewer strong amplitude dust impacts than mid amplitude dust impacts at
this distance given that they have the same impact velocity.

Some of the differences between the slope values for (Zaslavsky et al., 2021)
and this investigation, are the method, the data and the classification method.
The authors did a linear fitting of the voltage distribution in Figure 4.2 where
the voltage ranged from 4−206 mV (Zaslavsky, personal communication 2023).
The same assumption they used is also used in this thesis, that we assume the
velocity is independent of the mass and that the mass is proportional to the
charge production. However, we find the slope value by finding the ratio of the
counts between the measured amplitude categories mid and strong that has a
voltage amplitude range of 20 − 200mV. As mentioned Zaslavsky et al. (2021)
used data from 1𝑠𝑡 of April to 30𝑡ℎ with the TDS algorithm while the data used
in this work is from June 2020 to June 2023 with the CNN data.

As previously discussed, the trend of a steeper 𝑎 closer to the Sun appears to
be in agreement of what has formerly been shown. There are some factors
that could distinguish the similarities between my report and previous work,
nonetheless as the slope values 𝑎 are derived using the same assumption of a
constant velocity, it seems plausible.

5.5 Comparison of perihelion and aphelion
impacts

We want to investigate how the voltage amplitude is influenced by the impact
velocity 𝑣𝑖𝑚𝑝 . An attempt is to compare the categories for different impact
velocities at trajectories for the perihelion and the aphelion to see if there is a
noticeable difference for the categories. Figure 5.5 illustrates the trajectories

35

we want to compare. The shaded area corresponds to the perihelion trajectory,
assuming Solar Orbiter travels from minimum 𝑣𝑟𝑎𝑑 to maximum 𝑣𝑟𝑎𝑑 where
𝑣𝑟𝑎𝑑 is the radial velocity of the spacecraft. The aphelion is then the remaining
trajectory of the orbit from maximum 𝑣𝑟𝑎𝑑 to minimum 𝑣𝑟𝑎𝑑 . We also assume
that the dust particles traveling radially outwards from the Sun has a velocity
of 𝑣𝑑𝑢𝑠𝑡 = 50 km/s. The impact velocity is then:

𝑣𝑖𝑚𝑝 = 𝑣𝑟𝑎𝑑 + 𝑣𝑑𝑢𝑠𝑡 (5.1)

Figure 5.5: Shows the perihelion side and aphelion trajectory. Shaded area corre-
sponds to the perihelion and the white area corresponds to the aphelion
side.

Figure 5.6 shows the ratio of weak, mid and strong categories as a function of
the impact velocity for the perihelion side (a) and aphelion side (b). Error bars
are calculated using

√
𝑁 where 𝑁 is the number of counts in each point, along

with a 5% CNN classification uncertainty. The counts are determined by exam-
ining intervals of the impact velocity range, ranging from 20 to 80km/s, with
interval steps of 10km/s. The points are then located at the average velocity
of the intervals. The dashed vertical line is located at the 50km/s mark. This is
where the Solar Orbiter has 𝑣𝑟𝑎𝑑 = 0 which is at the perihelion and aphelion
respectively. The counts and the total of all the categories for perihelion and
aphelion sides is shown in table 5.5 and 5.6 respectively.

For Figure 5.6a the right hand side of the dashed line is when the spacecraft
is moving towards the perihelion where the 70km/s mark is at the minimum
𝑣𝑟𝑎𝑑 ≈ −23km/s as shown in Figure 5.5. The left hand side is then after the
perihelion where the 30𝑘𝑚/𝑠 mark is at the maximum 𝑣𝑟𝑎𝑑 ≈ 23km/s. For
Figure 5.6b the left hand side of the dashed line is from the maximum 𝑣𝑟𝑎𝑑
towards the aphelion. The right hand side is then from the aphelion tominimum
𝑣𝑟𝑎𝑑 .

36

Table 5.5: Shows the "perihelion side" counts for weak, mid, strong and the total for
different impact velocities.

Impact velocity (km/s) Weak Mid Strong Total
20 − 30 141 136 51 328
30 − 40 448 241 108 837
40 − 50 378 193 92 663
50 − 60 505 373 128 1006
60 − 70 367 213 68 648
70 − 80 258 178 34 470

Table 5.6: Shows the "aphelion side" counts for weak, mid, strong and the total for
different impact velocities.

Impact velocity (km/s) Weak Mid Strong Total
20 − 30 117 54 28 199
30 − 40 677 228 102 1007
40 − 50 669 210 93 972
50 − 60 1059 400 162 1621
60 − 70 886 422 185 1493
70 − 80 318 206 72 596

37

(a) The ratio of the categories for the perihelion as a function of the impact
velocity.

(b) The ratio of the categories for the perihelion as a function of impact
velocity

Figure 5.6: Shows the ratio of the categories for the aphelion and aphelion trajectories
as a function of the impact velocity.

38

It does not appear to be a clear trend at the perihelion side in Figure 5.6a,we see
that the weak and mid groups are somewhat mirrored while the strong is on a
decrease towards the perihelion and beyond. One has to take into account that
the spacecraft spends significantly less days on this side of the trajectory which
means that the counts are low compared to the aphelion side. Themid category
does have a decrease from 55 − 45km/s which would be on the inbound orbit
towards the perihelion. This could be a relative velocity change that decreases
the mid group but it is not a strong indication of this.

For the aphelion side in Figure 5.6b we see an increase of mid classified dust
impacts and a decrease in weak classified dust impacts from 30 to 70km/s. The
strong classified dust impacts stays roughly constant along this trajectory. The
right hand side of the black dashed line is on an inbound course which means
the relative velocity increases. This could be an explanation for the increase in
the mid category and decrease in the weak category.

Overall this comparison did not give much insight on how the groups varies
with the impact velocity as thought. We do see an increase on the inbound
course of the aphelion which can be due to the increase of relative velocity.
Other than that maybe there is no variation to consider here. Since the charge
production depends also on the mass, it could be that the mass has a more
significant influence on the charge production compared to the impact velocity.
Of course the impact velocity is not constant which makes this a simplified
comparison, nevertheless it is hard to draw a conclusion on this topic.

39

6
Conclusion
The aim of this master’s thesis was to infer information on the mass and impact
velocity of the impacting dust particles from RPW measurements. A key aspect
of this work was to search for systematic variations of recorded dust signals
along the orbit of Solar Orbiter. The data that was used in this thesis is CNN
processed data from June 2020 to June 2023. The CNN process is explained
in Kvammen et al. (2022). The data cover the period where Solar Orbiter’s
heliocentric distance ranged from 0.28 - 1.01 AU.

We investigated the voltage amplitudes of the dust impacts that was measured
by the RPW. The amplitudes were divided into three groups weak, mid and
strong. This was done because weak classified dust impacts may include noise
and strong classified dust impacts may be saturated. We examined the cate-
gories both on inbound and outbound trajectories of the orbit and found that
the mid category increased and weak decreased on the inbound trajectory com-
pared to the outbound. A possible explanation for this is the increase of relative
velocity between the dust particles and the spacecraft on a inbound trajectory.
This would be the case for dust particles that move radially outwards from the
Sun. An increase in relative velocity leads to an increase in the impact velocity
of the dust particles causing more classified mid on a inbound path compared
to a outbound path. We also saw that the total of impacts are greater on the
inbound trajectory compared to the outbound trajectory which is expected for
dust that moves radially outwards from the Sun. Further when we consider the
perihelion and aphelion part of the trajectories, it was difficult to find signifi-
cant trends on the perihelion trajectory. On the other hand when looking at the

41

aphelion trajectory we see an increase of mid dust impacts after the aphelion
passage.

We derived a charge production threshold using a constant mass of 1.0×10−17
kg and assumed a known dust velocity that was derived by Zaslavsky et al.
(2021). A comparison of the ratio of the events that exceeded the charge thresh-
old and those that did not was done along the orbit. The comparison showed
that there are more dust particles with smaller masses than the fixed mass
closer to the Sun. The results suggest that the mass distribution is changing
when coming closer to the Sun.

Previous research on the voltage amplitudes conducted by Zaslavsky et al.
(2021) shows that the distribution of the voltage measurements follows a linear
fit at double logarithmic scales. Upon deriving the voltage distribution for the
extended data set that was used in this thesis, we see a similar result for the dis-
tribution. We calculated a slope value under the assumption of constant impact
velocity which provided insight about the mass distribution given the impact
velocity. The slope value we found was at 𝑎 = −1.56±0.18 and is steeper closer
to the Sun. Since we are comparing the counts of ourmid and strong categories,
the steepness tells us that there are few classified strong amplitudes near the
Sun compared to the mid classified amplitudes. This observation could also be
an indication of smaller dust particles in the vicinity of the Sun as opposed to
those found at larger distances.

The investigations of the observations that we made, indicate that the mass
distribution changes with the distance from the Sun and that less massive
particles are more abundant near the Sun. The results also agree with the
assumption that the detected dust particles are moving away from the Sun. We
note that there are uncertainties in the results, limiting the conclusiveness of
the analysis. The methods used in this work are based on assumptions which
we described above. The assumptions can to some extent influence the results.
Nonetheless some of the research agrees with what has been previously done.
For future work one can look into the saturation effect and see what influences
it. This can lead to more information on the strong amplitudes and possibly
make a more accurate mass distribution of the impacts.

42

Bibliography
A. Auer and K. Sitte. Detection technique for micrometeoroids using impact

ionization. Earth and Planetary Science Letters, 4(2):178–183, 1968.

A. Collette, D. Malaspina, and Z. Sternovsky. Characteristic temperatures of
hypervelocity dust impact plasmas. Journal of Geophysical Research: Space
Physics, 121(9):8182–8187, 2016.

A. J. Henriksen. Interstellar dust in the inner heliosphere and impact detection
capabilities with esa’s solar orbiter spacecraft. Master’s thesis, University of
Tromsø, 2022.

E. G. Henriksen. Interplanetary dust fluxes observed with parker solar probe.
Master’s thesis, University of Tromsø, 2020.

Y. V. Khotyaintsev, D. B. Graham, A. Vaivads, K. Steinvall, N. J. Edberg, A. I.
Eriksson, E. P. Johansson, L. Sorriso-Valvo, M. Maksimovic, S. Bale, et al.
Density fluctuations associated with turbulence and waves-first observations
by solar orbiter. Astronomy & Astrophysics, 656:A19, 2021.

S. Kočiščák,A. Kvammen, I. Mann,S. H. Sørbye,A. Theodorsen, andA. Zaslavsky.
Modeling solar orbiter dust detection rates in the inner heliosphere as a
poisson process. Astronomy & Astrophysics, 670:A140, 2023a.

S. Kočiščák, I. Mann, N. Meyer-Vernet, A. Theodorsen, J. Vaverka, and A. Za-
slavsky. Impact ionization double peaks analyzed in high temporal resolution
on solar orbiter. EGUsphere, 2023:1–39, 2023b.

A. Kvammen, K. Wickstrøm, S. Kociscak, J. Vaverka, L. Nouzak, A. Zaslavsky,
K. Rackovic Babic, A. Gjelsvik, D. Pisa, J. Souček, et al. Machine learning
detection of dust impact signals observed by the solar orbiter. 2022.

M. Maksimovic, S. Bale, T. Chust, Y. Khotyaintsev, V. Krasnoselskikh, M. Kret-
zschmar, D. Plettemeier, H. Rucker, J. Souček, M. Steller, et al. The solar
orbiter radio and plasma waves (rpw) instrument. Astronomy & Astrophysics,

43

642:A12, 2020.

I. Mann, H. Kimura, D. A. Biesecker, B. T. Tsurutani, E. Grün, R. B. McKibben,
J.-C. Liou, R. M. MacQueen, T. Mukai, M. Guhathakurta, et al. Dust near the
sun. Space science reviews, 110:269–305, 2004.

I. Mann, L. Nouzák, J. Vaverka, T. Antonsen, Å. Fredriksen, K. Issautier,
D. Malaspina, N. Meyer-Vernet, J. Pavl, Z. Sternovsky, et al. Dust observa-
tions with antenna measurements and its prospects for observations with
parker solar probe and solar orbiter. In Annales Geophysicae, volume 37,
pages 1121–1140. Copernicus GmbH, 2019.

N. McBride and J. McDonnell. Meteoroid impacts on spacecraft:: sporadics,
streams, and the 1999 leonids. Planetary and Space Science, 47(8-9):1005–
1013, 1999.

N. Meyer-Vernet. Detecting dust with electric sensors in planetary rings, comets
and interplanetary space. In Spacecraft Charging Technology, volume 476,
page 635, 2001.

D. Mueller, R. G. Marsden, O. St. Cyr, H. R. Gilbert, and S. O. Team. Solar
orbiter: exploring the sun–heliosphere connection. Solar Physics, 285:25–70,
2013.

D.Müller,O. S. Cyr, I. Zouganelis,H. R. Gilbert,R. Marsden,T. Nieves-Chinchilla,
E. Antonucci, F. Auchère, D. Berghmans, T. Horbury, et al. The solar orbiter
mission-science overview. Astronomy & Astrophysics, 642:A1, 2020.

J. Soucek, D. Píša, I. Kolmasova, L. Uhlir, R. Lan, O. Santolík, V. Krupar, O. Kru-
parova, J. Baše, M. Maksimovic, et al. Solar orbiter radio and plasma waves–
time domain sampler: In-flight performance and first results. Astronomy &
Astrophysics, 656:A26, 2021.

R. Srama, T. J. Ahrens, N. Altobelli, S. Auer, J. Bradley, M. Burton, V. Dikarev,
T. Economou, H. Fechtig, M. Görlich, et al. The cassini cosmic dust analyzer.
Space Science Reviews, 114:465–518, 2004.

V. J. Sterken, N. Altobelli, S. Kempf, G. Schwehm, R. Srama, and E. Grün. The
flow of interstellar dust into the solar system. Astronomy & Astrophysics, 538:
A102, 2012.

M. Wilck and I. Mann. Radiation pressure forces on “typical” interplanetary
dust grains. Planetary and Space Science, 44(5):493–499, 1996.

44

A. Zaslavsky. personal communication.

A. Zaslavsky. Floating potential perturbations due to micrometeoroid impacts:
Theory and application to s/waves data. Journal of Geophysical Research:
Space Physics, 120(2):855–867, 2015.

A. Zaslavsky, I. Mann, J. Soucek, A. Czechowski, D. Píša, J. Vaverka, N. Meyer-
Vernet,M.Maksimovic, E. Lorfèvre,K. Issautier, et al. First dustmeasurements
with the solar orbiter radio and plasma wave instrument. Astronomy &
Astrophysics, 656:A30, 2021.

45

A
Data files
The data files of the RPW measurements can be downloaded from this link:
https://rpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/

The ephemeris for Solar Orbiter can be generated and downloaded from this
link: https://ssd.jpl.nasa.gov/horizons/app.html#/

The CNN files were provided to me privately by Samuel Kočiščák.

47

https://rpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/
https://ssd.jpl.nasa.gov/horizons/app.html#/

B
Code
This appendix shows the scripts that was used in this thesis in Python language.
Listing B.1 is used to read the cdf and cnn files and loads the processed data
into a list that we use to plot the graphs used in this thesis. Listing B.2 is used
to plot the trajectories, voltage distribution and calculate the slope value and
plot it.

1 # Importing packages
2 import numpy as np
3 import cdflib
4 import pandas as pd
5 import glob
6 from datetime import datetime
7

8 import pickle
9

10 # inserts the datafile into a list
11 cdf_list = glob.glob(’C :\\06*. cdf ’)
12 # highrate_list = glob.glob(’C:\\ Users \\ alenf \\ PycharmProjects \\

Project Paper \\ data \\test - data_highrate *. txt ’)
13 data_11_2022 = glob.glob(’C:\\ Users \\ afe029 \\ OneDrive - UiT

Office 365\\ Masters \\ data \\ Label - MaxAmplitude *. txt ’)
14

15 # constant
16 AU = 1.496e+8
17

18 def data_product_single_CDF (file):
19 """
20 Reads the CDF files and extracts the CNN data files

corresponding to the CDF File.

49

21 Also reads for both sample rates 262137.5 and 524275.0
22 :param file:
23 : return : amplitude , date , mean value and median
24 """
25 cdf_file = cdflib .CDF(file)
26 voltage = cdf_file . varget (’waveform_data_voltage ’)
27

28 monopole_1 = voltage [:, 2, :] - voltage [:, 1, :]
29 monopole_2 = voltage [:, 2, :]
30 monopole_3 = voltage [:, 2, :] - voltage [:, 1, :] - voltage

[:, 0, :]
31

32 waveform = np.array ([monopole_1 , monopole_2 , monopole_3])
33 waveform = np. transpose (waveform , (1, 0, 2))
34 quality = cdf_file . varget (’QUALITY_FACT ’)
35 flagger = quality == 65535
36 sample_rate = cdf_file . varget (’SAMPLING_RATE ’)
37 yyyymmdd = file [-16: -8]
38 ## two sample rates ,262137.5 and 524275.0
39

40 if sample_rate [0] == 262137.5:
41 cnn_file = glob.glob(
42 f’C:\\ Users \\ afe029 \\ OneDrive - UiT Office

365\\ Masters \\ data \\ cnn label \\2022\\2022*{ yyyymmdd }*. txt
’)

43 cnn_filer = glob.glob(
44 f’C:\\ Users \\ afe029 \\ OneDrive - UiT Office

365\\ Masters \\ data \\ Label - MaxAmplitude *{ yyyymmdd }*. txt ’)
45 index_list = np.zeros (0, dtype=np. uint32)
46

47 if any(yyyymmdd in file for file in cnn_file):
48 print(yyyymmdd)
49 cnn = pd. read_csv (cnn_file [0])
50 dust = np.array(cnn[’Label ’], dtype=bool)
51

52 normal_index = np. arange (len(waveform))
53

54 arange_index = np. append (normal_index [
flagger == 1], normal_index [flagger == 0])

55 label_finder = np.array(cnn[’Index ’])[dust]
- 1

56 indice = arange_index [label_finder]
57 waveformz = waveform [indice ,: ,:]
58

59 amplitude = np.zeros(len(waveformz [: ,0 ,0]))
60 for i in range(len(waveformz)):
61 bias_wf1 = waveformz [i ,0 ,:]
62 bias_wf2 = waveformz [i ,1 ,:]
63 bias_wf3 = waveformz [i ,2 ,:]
64

65 mean_wf1 = np.mean(bias_wf1)
66 mean_wf2 = np.mean(bias_wf2)
67 mean_wf3 = np.mean(bias_wf3)
68

50

69 wf1 = bias_wf1 - mean_wf1
70 wf2 = bias_wf2 - mean_wf2
71 wf3 = bias_wf3 - mean_wf3
72

73 max1 = max(wf1)
74 max2 = max(wf2)
75 max3 = max(wf3)
76

77

78 amplitude [i] = (min(max1 ,max2 ,max3))
79

80 average = np.mean(amplitude)
81 median = np. median (amplitude)
82

83 return amplitude , yyyymmdd , average , median
, waveformz

84

85 if any(yyyymmdd in filer for filer in
cnn_filer):

86 print(yyyymmdd)
87 for filer in cnn_filer :
88 index = int(filer [-7: -4])
89 index_list = np. append (index_list ,

index)
90

91 normal_index = np. arange (len(waveform))
92

93 arange_index = np. append (normal_index [
flagger == 1], normal_index [flagger == 0])

94 indice = arange_index [index_list]
95

96 waveformzz = waveform [indice ,: ,:]
97

98 amplitude = np.zeros(len(waveformzz [:, 0,
0]))

99 for i in range(len(waveformzz)):
100 bias_wf1 = waveformzz [i, 0, :]
101 bias_wf2 = waveformzz [i, 1, :]
102 bias_wf3 = waveformzz [i, 2, :]
103

104 mean_wf1 = np.mean(bias_wf1)
105 mean_wf2 = np.mean(bias_wf2)
106 mean_wf3 = np.mean(bias_wf3)
107

108 wf1 = bias_wf1 - mean_wf1
109 wf2 = bias_wf2 - mean_wf2
110 wf3 = bias_wf3 - mean_wf3
111

112 max1 = max(wf1)
113 max2 = max(wf2)
114 max3 = max(wf3)
115

116 amplitude [i] = (min(max1 , max2 , max3))
117

51

118 average = np.mean(amplitude)
119 median = np. median (amplitude)
120

121 return amplitude , yyyymmdd , average , median
, waveformzz

122

123 elif sample_rate [0] == 524275.0:
124 cnn_files = glob.glob(f’C:\\ cnn_high - sample \\

cnn_high_sampling *{ yyyymmdd }*. txt ’)
125 indexes = np.zeros (0, dtype=np. uint32)
126 print(cnn_files)
127 for file in cnn_files :
128 index = int(file [-8: -4])
129

130 indexes = np. append (indexes , index)
131

132 waveformz = waveform [indexes , :, :]
133

134 amplitude2 = np.zeros(len(waveformz [:, 0, 0]))
135 for i in range(len(waveformz)):
136 bias_wf1 = waveformz [i, 0, :]
137 bias_wf2 = waveformz [i, 1, :]
138 bias_wf3 = waveformz [i, 2, :]
139

140 mean_wf1 = np.mean(bias_wf1)
141 mean_wf2 = np.mean(bias_wf2)
142 mean_wf3 = np.mean(bias_wf3)
143

144 wf1 = bias_wf1 - mean_wf1
145 wf2 = bias_wf2 - mean_wf2
146 wf3 = bias_wf3 - mean_wf3
147

148 max1 = max(wf1)
149 max2 = max(wf2)
150 max3 = max(wf3)
151

152 amplitude2 [i] = (min(max1 , max2 , max3))
153

154

155 average2 = np.mean(amplitude2)
156 median2 = np. median (amplitude2)
157

158

159 return amplitude2 , yyyymmdd , average2 , median2 ,
waveformz

160

161

162 def read_ephemeris (date):
163 """
164 This function reads a txt file. The txt file is a generated

ephemeris from the link in the appendix .
165 Takes the a date parameter and calculates the heliocentric

distance , tangetial velocity and radial velocity of the
spacecraft at that date.

52

166

167 :param date: date of the cdf file
168 : return : helicentric distance , tangetial velocity , radial

velocity
169 """
170

171 hae_r = np.zeros (0)
172 hae_v = np.zeros (0)
173

174 file = pd. read_csv (’C:\\ Users \\ afe029 \\ OneDrive - UiT
Office 365\\ Masters \\ data \\ horizons_results .txt ’)

175 calender = file[’Calendar Date (TDB)’]
176 cord_x = file[’X’]
177 cord_y = file[’Y’]
178 cord_z = file[’Z’]
179

180 cord_vx = file[’VX’]
181 cord_vy = file[’VY’]
182 cord_vz = file[’VZ’]
183

184

185 julian = file[’JDTDB ’]
186 date_in_YY_MM_DD = []
187 yyyymmdd_list = []
188 for i in range(len(julian)):
189 date_in_YY_MM_DD . append (str(calender [i][6:17]))
190

191 dt_object1 = datetime . strptime (date_in_YY_MM_DD [i], "%Y
-%b-%d")

192 yyyymmdd = datetime . strftime (dt_object1 , "%Y%m%d")
193 yyyymmdd_list . append (str(yyyymmdd))
194

195 if date in yyyymmdd_list :
196 index = yyyymmdd_list .index(date)
197 x = cord_x [index]
198 y = cord_y [index]
199 z = cord_z [index]
200

201 vx = cord_vx [index]
202 vy = cord_vy [index]
203 vz = cord_vz [index]
204

205

206 hae_r = np. append (hae_r , [x, y, z])
207 hae_v = np. append (hae_v , [vx , vy , vz])
208

209 hae_r = np. reshape (hae_r , ((len(hae_r) // 3, 3)))
210 hae_v = np. reshape (hae_v , ((len(hae_v) // 3, 3)))
211 hae_phi = np. degrees (np. arctan2 (hae_r [:, 1], hae_r [:,

0]))
212

213 hae_radius = np. linalg .norm(hae_r) / AU # radius of
Solar orbiter in reference to the Sun in AU

214

53

215 radial_v = np.zeros(len(hae_r [:, 0]))
216 tangential_v = np.zeros(len(hae_r [:, 0]))
217

218 for i in range(len(hae_r [:, 0])):
219 unit_radial = hae_r[i, :] / np. linalg .norm(hae_r[i,

:])
220 radial_v [i] = np.inner(unit_radial , hae_v[i, :])
221 tangential_v [i] = np. linalg .norm(hae_v[i, :] -

radial_v [i] * unit_radial)
222

223

224 return hae_radius , radial_v , tangential_v
225

226 # Makes numpy arrays
227 totals_impacts = np.zeros (0)
228 dates = np.zeros (0)
229 weaks = np.zeros (0)
230 strongs = np.zeros (0)
231 mids = np.zeros (0)
232

233 weaks_2 = np.zeros (0)
234 strongs_2 = np.zeros (0)
235 mids_2 = np.zeros (0)
236

237 solO_radius = np.zeros (0)
238 tang_velocity = np.zeros (0)
239 radial_velocity = np.zeros (0)
240 phi = np.zeros (0)
241

242 means = np.zeros (0)
243 medians = np.zeros (0)
244

245 weak_Q = np.zeros (0)
246 strong_Q = np.zeros (0)
247 threshold_Q = np.zeros (0)
248

249 result_array = np.empty ((2, 0))
250

251 mass = 1e -17
252 v_dust = 50
253

254 def Q_finder (v_rad , V_peak):
255 """
256 Calculates the charge threshold and find the charge that

corresponds to the voltage amplitude .
257 :param v_rad: radial velocity of the spacecraft
258 :param V_peak : peak amplitude of the voltage measurement
259 : return : charge value , charge threshold
260 """
261 C_sc = 3.55e -10
262 Gamma = 0.36
263 xi = 0.7
264 vel = v_dust + v_rad
265 Q_value = (C_sc * V_peak) / Gamma

54

266

267 amplitude_peak = (xi * mass * (vel **3.5) * Gamma) / C_sc
268

269

270 Q_threshold = 0.7 * mass * (vel **3.5)
271

272 return Q_value , Q_threshold , amplitude_peak
273

274 # Numpy arrays
275 Strong_V = np.zeros (0)
276 weak_V = np.zeros (0)
277

278 charge_error_low_limit = np.zeros (0)
279 charge_error_upper_limit = np.zeros (0)
280 charge_error_boundary = np.zeros (0)
281

282 # Reads through all the cdf files and returns the needed data
283 for file in cdf_list :
284 try:
285 print(file)
286 amplitude , date , mean , median , voltage =

data_product_single_CDF (file)
287 radius , radial_v , tan_v , hae_phi = read_ephemeris (date

)
288

289 Q, Q_threshold , V_peak = Q_finder (radial_v , amplitude)
290

291 charge_great = sum(Q < Q_threshold)
292 charge_low = sum(Q > Q_threshold)
293

294 charge_error_upper = sum(Q > 1.5* Q_threshold)
295 charge_error_lower = sum(Q < 0.75 * Q_threshold)
296 charge_error_left = (charge_low + charge_great) -

charge_error_lower - charge_error_upper
297 print(charge_error_upper)
298 print(charge_error_lower)
299

300 charge_error_low_limit = np. append (
charge_error_low_limit , charge_error_lower)

301 charge_error_upper_limit = np. append (
charge_error_upper_limit , charge_error_upper)

302 charge_error_boundary = np. append (charge_error_boundary
, charge_error_left)

303

304 amplitude_greater = sum(V_peak < amplitude)
305 amplitude_less = sum (V_peak > amplitude)
306

307 velocity_values = np. full_like (amplitude , radial_v)
308

309 stacker = np. vstack ((amplitude , velocity_values))
310

311 result_array = np. hstack ((result_array , stacker))
312

313

55

314 dates = np. append (dates , date)
315 solO_radius = np. append (solO_radius , radius)
316 tang_velocity = np. append (tang_velocity , tan_v)
317 radial_velocity = np. append (radial_velocity , radial_v)
318 phi = np. append (phi , hae_phi)
319

320 threshold_Q = np. append (threshold_Q , Q_threshold)
321

322 totals_impacts = np. append (totals_impacts , len(
amplitude))

323 weak = sum ((amplitude * 1e3) < 50)
324 strong = sum ((amplitude * 1e3) > 250)
325 mid = len(amplitude) - strong - weak
326

327 weak_2 = sum ((amplitude * 1e3) < 20)
328 strong_2 = sum ((amplitude * 1e3) > 200)
329 mid_2 = len(amplitude) - strong_2 - weak_2
330

331

332 weaks = np. append (weaks , weak)
333 strongs = np. append (strongs , strong)
334 mids = np. append (mids , mid)
335

336 weaks_2 = np. append (weaks_2 , weak_2)
337 strongs_2 = np. append (strongs_2 , strong_2)
338 mids_2 = np. append (mids_2 , mid_2)
339

340 weak_V = np. append (weak_V , amplitude_less)
341 Strong_V = np. append (Strong_V , amplitude_greater)
342

343 weak_Q = np. append (weak_Q , charge_low)
344 strong_Q = np. append (strong_Q , charge_great)
345

346 means = np. append (means , mean)
347 medians = np. append (medians , median)
348 except IndexError :
349 pass
350

351

352

353 #Puts all the data into a single list
354 Data_array = [weaks ,mids , strongs , totals_impacts , dates ,

solO_radius , tang_velocity , radial_velocity , phi ,voltage ,
weak_Q , strong_Q , threshold_Q , result_array , weak_V ,
Strong_V , weaks_2 ,mids_2 , strongs_2 , charge_error_low_limit
, charge_error_upper_limit , charge_error_boundary]

355 #dumps the data into a file
356 data_file = open(’data_product_long_long_long ’, ’wb’)
357 pickle .dump(Data_array , data_file)
358 data_file .close ()

Listing B.1: Code used to read the Solar Orbiter data files and CNN files

1 import numpy as np

56

2 import pickle
3 import matplotlib . pyplot as plt
4 import datetime as dt
5 import matplotlib .dates as mdates
6 import scipy. signal as sps
7

8 data_file = open(’data_product_long_long_long ’, ’rb’)
9

10 # Data_array = [weaks ,mids , strongs , totals_impacts , dates ,
solO_radius , tang_velocity , radial_velocity , phi , voltage ,
weak_Q , strong_Q , threshold_Q , amplitude_velocity [2,:],
weak_V , strong_V ,

11 # weaks_2 , mids_2 , strongs_2 , charge_error_lower ,
charge_error_upper , charge_error_whatsleft

12

13 data_array = pickle .load(data_file)
14

15 # Assign the data products from data_array into single arrays
16 weak_V = data_array [14]
17 strong_V = data_array [15]
18 twoD_array = data_array [13]
19

20 amplitude_array = twoD_array [0 ,:] *1e3
21 velocity_array = twoD_array [1 ,:]
22

23

24 weak_Q = data_array [10]
25 strong_Q = data_array [11]
26

27 charge_error_lower = data_array [19]
28 charge_error_upper = data_array [20]
29 charge_error_within = data_array [21]
30

31

32 weaks= data_array [16] # number of impacts < 20mV
33 mids = data_array [17] # number of impacts 20 < mV < 200
34 strongs = data_array [18] # number of impacts > 200
35

36 total_impacts = data_array [3] #total impacts for each day
37

38

39 date = data_array [4]
40 SolO_radius = data_array [5]
41 tan_velocity = data_array [6]
42 radial_velocity = data_array [7]
43 phi = data_array [8]
44

45 #Plots the voltage amplitude distribution with logarithmic
scales

46

47 """ hist , edges = np. histogram (amplitude_array , bins=np. logspace
(np.log10(min(amplitude_array)), np.log10(max(
amplitude_array)), 75) , density =True)

48

57

49 # Calculate bin centers for the scatter plot
50 bin_centers = (edges [: -1] + edges [1:]) / 2
51

52 # Calculate errors using the given formula
53 bin_width = edges [1] - edges [0]
54 total_events = len(amplitude_array)
55 errors = np.sqrt(hist) / (bin_width * total_events)
56

57

58 # Create a scatter plot with error bars and log axes
59 plt. errorbar (bin_centers , hist , yerr=errors , fmt=’o’, color=’

black ’, alpha =0.75 , capsize =3)
60 plt. vlines ([20 ,200] , ymin =1e-6, ymax =1, linestyles =’--’, colors

=’k ’)
61 plt.text(s= ’Weak ’, x= 2, y=10** -4)
62 plt.text(s = ’Mid ’, x = 50, y =10** -4)
63 plt.text(s = ’Strong ’, x = 300, y = 10** -1)
64

65

66 # Set logarithmic scales for both axes
67 plt. xscale (’log ’)
68 plt. yscale (’log ’)
69 plt.ylim (1e -6 ,1)
70 plt.grid ()
71

72 # Set labels and title
73 plt. xlabel (’ Monopole peak voltage (mV) ’)
74 plt. ylabel (’ Normalized density [1/ mV) ’)
75

76 # Show the plot
77 plt.show () """
78

79

80 #Plots the heliocentric distance and the radial velocity
81 """ dates_x_axis = [dt. datetime . strptime (d,’%Y%m%d ’).date () for

d in date]
82

83 fig , axs = plt. subplots (2)
84

85 axs [0]. set_title (’Solar Orbiter ’)
86 axs [0]. plot(dates_x_axis , SolO_radius)
87 axs [0]. set_ylabel (’ Distance from sun (AU) ’)
88

89 axs [1]. plot(dates_x_axis , radial_velocity)
90 axs [1]. set_ylabel (’ Radial Velocity (km/s) ’)
91 axs [0]. grid ()
92 axs [1]. grid ()
93

94 axs [0]. xaxis. set_major_formatter (mdates . DateFormatter (’%d/%m/%Y
’))

95 axs [0]. xaxis. set_major_locator (mdates . DayLocator (interval =225))
96 axs [1]. xaxis. set_major_formatter (mdates . DateFormatter (’%d/%m/%Y

’))
97 axs [1]. xaxis. set_major_locator (mdates . DayLocator (interval =225))

58

98 plt.show () """
99

100

101 def data_table (a,b):
102 """
103 Caluclates the weak , mid , strong and etc. within the

intervals a and b
104 :param a: lower limit of interval
105 :param b: upper limit of interval
106 """
107 total_Q = strong_Q + weak_Q
108 distance_index = np.where ((SolO_radius >= a)& (SolO_radius

<= b))
109

110 weak = sum(weaks[distance_index])
111 mid = sum(mids[distance_index])
112 strong = sum(strongs [distance_index])
113 total = sum(total_impacts [distance_index])
114 Q_total = sum(total_Q [distance_index])
115

116 Weaks_Q = sum(weak_Q [distance_index])
117 strongs_Q = sum(strong_Q [distance_index])
118

119 high_Q = sum(charge_error_upper [distance_index])
120 low_Q = sum(charge_error_lower [distance_index])
121 within_Q = sum(charge_error_within [distance_index])
122

123 Q_error = sum(charge_error_within [distance_index])
124

125

126 weak_ratio = weak / total
127 mid_ratio = mid / total
128 strong_ratio = strong / total
129

130 Q_weak_ratio = Weaks_Q / Q_total
131 Q_strong_ratio = strongs_Q / Q_total
132

133 Q_errors = Q_error / Q_total
134

135

136

137 return weak_ratio , mid_ratio , strong_ratio , weak , mid ,
strong , Weaks_Q , strongs_Q , Q_weak_ratio , Q_strong_ratio ,
Q_total , total , Q_errors , high_Q , low_Q , within_Q

138

139 # distances
140 distance_01 = [0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0]
141

142 #empty arrays
143 weak_list = np.zeros (0)
144 mid_list = np.zeros (0)
145 strong_list = np.zeros (0)
146 weak_list_number = np.zeros (0)

59

147 mid_list_number = np.zeros (0)
148 strong_list_number = np.zeros (0)
149 Q_weak_list = np.zeros (0)
150 Q_strong_list = np.zeros (0)
151 Q_weak_list_r = np.zeros (0)
152 Q_strong_list_r = np.zeros (0)
153 totals = np.zeros (0)
154 Q_totals = np.zeros (0)
155

156 error_Q = np.zeros (0)
157

158 high_Q_list = np.zeros (0)
159 low_Q_list = np.zeros (0)
160 within_Q_list = np.zeros (0)
161

162

163 # assign values into empty arrays with the data_table function
164 for i in range(len(distance_01) -1):
165 try:
166 weak_ratio , mid_ratio , strong_ratio , weak_number ,

mids_number , strong_number , Q_weak , Q_strong , Q_weak_ratio ,
Q_strong_ratio , Q_total , total , Q_error , high_Q , low_Q ,

within_Q = data_table (distance_01 [i], distance_01 [i+1])
167

168 weak_list = np. append (weak_list , weak_ratio)
169 mid_list = np. append (mid_list , mid_ratio)
170 strong_list = np. append (strong_list , strong_ratio)
171 weak_list_number = np. append (weak_list_number ,

weak_number)
172 mid_list_number = np. append (mid_list_number ,

mids_number)
173 strong_list_number = np. append (strong_list_number ,

strong_number)
174 Q_weak_list = np. append (Q_weak_list , Q_weak)
175 Q_strong_list = np. append (Q_strong_list , Q_strong)
176 Q_weak_list_r = np. append (Q_weak_list_r , Q_weak_ratio)
177 Q_strong_list_r = np. append (Q_strong_list_r ,

Q_strong_ratio)
178 Q_totals = np. append (Q_totals , Q_total)
179 totals = np. append (totals , total)
180 error_Q = np. append (error_Q , Q_error)
181

182 high_Q_list = np. append (high_Q_list , high_Q)
183 low_Q_list = np. append (low_Q_list , low_Q)
184 within_Q_list = np. append (within_Q_list , within_Q)
185

186 except ZeroDivisionError :
187 pass
188 # weak_list = np. append (weak_list , 0)
189 # mid_list = np. append (mid_list , 0)
190 # strong_list = np. append (strong_list , 0)
191

192

193

60

194

195 def charge_error_bars ():
196 """
197 calculates the error bar for the charge production that is

calculated with a fixed mass
198 : return :
199 """
200 points_strong = Q_strong_list_r
201 points_lower = np.zeros (0)
202 points_higher = np.zeros (0)
203

204

205 for i in range(len(Q_weak_list_r)):
206 points_lower = np. append (points_lower , low_Q_list [i] /

Q_totals [i])
207 points_higher = np. append (points_higher , (low_Q_list [i]

+ within_Q_list [i]) / Q_totals [i])
208

209

210

211

212 error_p = points_higher - points_strong
213 error_m = points_strong - points_lower
214

215

216 errorbar = np.array ([error_m , error_p])
217

218 return errorbar
219

220 charge_error = charge_error_bars ()
221

222

223 ## Plots the charge production ratio that corresponds to masses
less or greater than 1e -17 kg

224 """ plt. errorbar (np.array(distance_01 [2:]) + 0.05 , Q_weak_list_r
* 100 , fmt=’o-’,label = "Mass < 1e -17 Kg", capsize =3, yerr

=(charge_error [1 ,:] * 100, charge_error [0 ,:] * 100))
225 plt. errorbar (np.array(distance_01 [2:]) + 0.05 , Q_strong_list_r

* 100 , fmt=’o-’,label = "Mass > 1e -17 Kg", capsize =3, yerr
=(charge_error [0 ,:] * 100, charge_error [1 ,:] * 100))

226 plt. xlabel (’ Distance from the Sun (AU) ’)
227 plt. ylabel (’Ratio (%) ’)
228 plt.grid ()
229 plt. legend ()
230 plt.show ()
231

232 plt.plot(distance_01 [2:] , weak_list_number , label= ’weak
amplitude >50 mV ’)

233 plt.plot(distance_01 [2:] , mid_list_number , label = ’mid
amplitude 50 > mV > 250 ’)

234 plt.plot(distance_01 [2:] , strong_list_number , label = ’strong
amplitude 250>mV ’)

235 plt. xlabel (’ Distance (AU) ’)
236 plt. ylabel (’ Number of events ’)

61

237 plt.grid ()
238 #plt. legend (loc= "upper left ")
239 plt.show () """
240

241

242

243 #finds the minimum and maxima for the heliocentric distance
244 maxima = sps. argrelextrema (SolO_radius , np. greater)
245 minimum = sps. argrelextrema (SolO_radius , np.less)
246

247 maximum_rad_v = sps. argrelextrema (radial_velocity , np. greater)
248 minimum_rad_v = sps. argrelextrema (radial_velocity , np.less)
249

250 def calculate_error (counts , total):
251 """
252 Calculates the error bar with a 5% classification error as

well as the square root of counts
253 :param counts : counts of a specific category
254 :param total: total for all the categories
255 : return : errorbar in absolute value
256 """
257 # Calculate the error with a 5% confidence interval
258 error_margin = 0.05 * total
259 lower_bound = (counts - np.sqrt(counts)) / (total +

error_margin)
260 upper_bound = (counts + np.sqrt(counts)) / (total -

error_margin)
261

262 regular = counts / total
263

264 error_upper = upper_bound - regular
265 error_lower = lower_bound - regular
266

267 # Calculate the relative error as a percentage of the total
268 relative_error = np.array ([error_lower , error_upper]) * 100
269

270 return np.abs(relative_error)
271

272

273 perihelion_velocity = [radial_velocity [0:33] , radial_velocity
[179:237] , radial_velocity [385:452] , radial_velocity
[584:617] , radial_velocity [775:807] , radial_velocity
[912:942]]

274 aphelion_velocity = [radial_velocity [34:178] , radial_velocity
[238:384] , radial_velocity [453:583] , radial_velocity
[618:774] , radial_velocity [808:911] , radial_velocity
[943: -1]]

275

276 def new_velocity ():
277

278 """
279 Finds the perihelion and aphelion trajectories and plots

them as a function of the impact velocity
280 : return :

62

281 """
282

283 average_distance_03_inward = np.mean(np. concatenate ((
radial_velocity [584:590] , radial_velocity [775:783] ,
radial_velocity [912:918]))) + 50

284 average_distance_03_outward = np.mean(np. concatenate ((
radial_velocity [572:584] , radial_velocity [761:775] ,
radial_velocity [899:912]))) + 50

285

286

287 average_distance_04_inward = np.mean(np. concatenate ((
radial_velocity [179:188] , radial_velocity [385:396] ,
radial_velocity [590:598] , radial_velocity [783:788] ,

288 radial_velocity [918:923]))) + 50
289 average_distance_04_outward = np.mean(np. concatenate ((

radial_velocity [153:179] , radial_velocity [374:385] ,
radial_velocity [542:576] , radial_velocity [728:761] ,

290 radial_velocity [884:899]))) + 50
291

292 average_distance_05_inward = np.mean(np. concatenate ((
radial_velocity [188:206] , radial_velocity [396:418] ,
radial_velocity [598:600] , radial_velocity [788:791] ,
radial_velocity [918:923] , radial_velocity [923:927]))) + 50

293 average_distance_05_outward = np.mean(np. concatenate ((
radial_velocity [93:153] , radial_velocity [317:374] ,
radial_velocity [505:542] , radial_velocity [692:728] ,
radial_velocity [860:884]))) + 50

294

295 average_distance_06_inward = np.mean(np. concatenate ((
radial_velocity [0:13] , radial_velocity [206:222] ,
radial_velocity [418:435] , radial_velocity [600:604] ,
radial_velocity [791:794] , radial_velocity [927:923]))) + 50

296 average_distance_06_outward = np.mean(np. concatenate ((
radial_velocity [45:93] , radial_velocity [260:317] ,
radial_velocity [482:505] , radial_velocity [655:692] ,
radial_velocity [839:860] , radial_velocity [972:978]))) + 50

297

298 average_distance_07_inward = np.mean(np. concatenate ((
radial_velocity [13:34] , radial_velocity [222:238] ,
radial_velocity [435:453] , radial_velocity [604:610] ,
radial_velocity [794:799] , radial_velocity [930:935]))) + 50

299 average_distance_07_outward = np.mean(np. concatenate ((
radial_velocity [34:45] , radial_velocity [238:260] ,
radial_velocity [453:482] , radial_velocity [624:655] ,
radial_velocity [817:839] , radial_velocity [949:971]))) + 50

300

301

302 average_distance_08_inward = np.mean(np. concatenate ((
radial_velocity [610:618] , radial_velocity [799:808] ,
radial_velocity [936:943]))) +50

303 average_distance_08_outward = np.mean(np. concatenate ((
radial_velocity [618:624] , radial_velocity [808:817] ,
radial_velocity [943:949]))) + 50

304

63

305

306 inward_08_weak = sum(weaks [584:590]) + sum(weaks [775:783])
+ sum(weaks [912:918])

307 outward_08_weak = sum(weaks [572:584]) + sum(weaks [761:775])
+ sum(weaks [899:912])

308

309 inward_07_weak = sum(weaks [179:188]) + sum(weaks [385:396])
+ sum(weaks [590:598]) + sum(weaks [783:788]) + sum(

310 weaks [918:923])
311 outward_07_weak = sum(weaks [153:179]) + sum(weaks [374:385])

+ sum(weaks [542:572]) + sum(weaks [728:761]) + sum(
312 weaks [884:899])
313

314 inward_06_weak = sum(weaks [188:206]) + sum(weaks [396:418])
+ sum(weaks [598:600]) + sum(weaks [788:791]) + sum(

315 weaks [918:923]) + sum(weaks [923:927])
316 outward_06_weak = sum(weaks [93:153]) + sum(weaks [317:374])

+ sum(weaks [505:542]) + sum(weaks [692:728]) + sum(
317 weaks [860:884])
318

319 inward_05_weak = sum(weaks [0:13]) + sum(weaks [206:222]) +
sum(weaks [418:435]) + sum(weaks [600:604]) + sum(

320 weaks [791:794]) + sum(weaks [927:930])
321 outward_05_weak = sum(weaks [45:93]) + sum(weaks [260:317]) +

sum(weaks [482:505]) + sum(weaks [655:692]) + sum(
322 weaks [839:860]) + sum(weaks [972:978])
323

324 inward_04_weak = sum(weaks [13:34]) + sum(weaks [222:238]) +
sum(weaks [435:453]) + sum(weaks [604:610]) + sum(

325 weaks [794:799]) + sum(weaks [930:935])
326 outward_04_weak = sum(weaks [34:45]) + sum(weaks [238:260]) +

sum(weaks [453:482]) + sum(weaks [624:655]) + sum(
327 weaks [817:839]) + sum(weaks [949:971])
328

329 inward_03_weak = sum(weaks [610:618]) + sum(weaks [799:808])
+ sum(weaks [936:943])

330 outward_03_weak = sum(weaks [618:624]) + sum(weaks [808:817])
+ sum(weaks [943:949])

331

332 inward_08_mid = sum(mids [584:590]) + sum(mids [775:783]) +
sum(mids [912:918])

333 outward_08_mid = sum(mids [572:584]) + sum(mids [761:775]) +
sum(mids [899:912])

334

335 inward_07_mid = sum(mids [179:188]) + sum(mids [385:396]) +
sum(mids [590:598]) + sum(mids [783:788]) + sum(

336 mids [918:922])
337 outward_07_mid = sum(mids [153:179]) + sum(mids [374:385]) +

sum(mids [542:572]) + sum(mids [728:761]) + sum(
338 mids [884:899])
339

340 inward_06_mid = sum(mids [188:206]) + sum(mids [385:418]) +
sum(mids [598:600]) + sum(mids [788:791]) + sum(

341 mids [918:923]) + sum(mids [923:927])

64

342 outward_06_mid = sum(mids [93:153]) + sum(mids [317:385]) +
sum(mids [505:542]) + sum(mids [692:728]) + sum(

343 mids [860:884])
344

345 inward_05_mid = sum(mids [0:13]) + sum(mids [206:222]) + sum(
mids [418:435]) + sum(mids [600:604]) + sum(

346 mids [791:794]) + sum(mids [927:930])
347 outward_05_mid = sum(mids [45:93]) + sum(mids [260:317]) +

sum(mids [482:505]) + sum(mids [655:692]) + sum(
348 mids [839:860]) + sum(mids [972:978])
349

350 inward_04_mid = sum(mids [13:34]) + sum(mids [222:238]) + sum
(mids [435:453]) + sum(mids [604:610]) + sum(

351 mids [794:799]) + sum(mids [930:935])
352 outward_04_mid = sum(mids [34:45]) + sum(mids [238:260]) +

sum(mids [453:482]) + sum(mids [624:655]) + sum(
353 mids [817:839]) + sum(mids [949:971])
354

355 inward_03_mid = sum(mids [610:618]) + sum(mids [799:808]) +
sum(mids [936:943])

356 outward_03_mid = sum(mids [618:624]) + sum(mids [808:817]) +
sum(mids [943:949])

357

358 inward_08_strong = sum(strongs [584:590]) + sum(strongs
[775:783]) + sum(strongs [912:918])

359 outward_08_strong = sum(strongs [572:584]) + sum(strongs
[761:775]) + sum(strongs [899:912])

360

361 inward_07_strong = sum(strongs [179:188]) + sum(strongs
[385:396]) + sum(strongs [590:598]) + sum(

362 strongs [783:788]) + sum(strongs [918:923])
363 outward_07_strong = sum(strongs [153:179]) + sum(strongs

[374:385]) + sum(strongs [542:572]) + sum(
364 strongs [728:761]) + sum(strongs [884:899])
365

366 inward_06_strong = sum(strongs [188:206]) + sum(strongs
[385:418]) + sum(strongs [598:600]) + sum(

367 strongs [788:791]) + sum(strongs [918:923]) + sum(strongs
[923:927])

368 outward_06_strong = sum(strongs [93:153]) + sum(strongs
[317:385]) + sum(strongs [505:542]) + sum(

369 strongs [692:728]) + sum(strongs [860:884])
370

371 inward_05_strong = sum(strongs [0:13]) + sum(strongs
[206:222]) + sum(strongs [418:435]) + sum(strongs [600:604])
+ sum(

372 strongs [791:794]) + sum(strongs [927:930])
373 outward_05_strong = sum(strongs [45:93]) + sum(strongs

[260:317]) + sum(strongs [482:505]) + sum(
374 strongs [655:692]) + sum(strongs [839:860]) + sum(strongs

[972:978])
375

376 inward_04_strong = sum(strongs [13:34]) + sum(strongs
[222:238]) + sum(strongs [435:453]) + sum(

65

377 strongs [604:610]) + sum(strongs [794:799]) + sum(strongs
[930:935])

378 outward_04_strong = sum(strongs [34:45]) + sum(strongs
[238:260]) + sum(strongs [453:482]) + sum(

379 strongs [624:655]) + sum(strongs [817:839]) + sum(strongs
[949:971])

380

381 inward_03_strong = sum(strongs [610:618]) + sum(strongs
[799:808]) + sum(strongs [936:943])

382 outward_03_strong = sum(strongs [618:624]) + sum(strongs
[808:817]) + sum(strongs [943:949])

383

384 inward_list_weak = np.array ([inward_03_weak , inward_04_weak
, inward_05_weak , inward_06_weak , inward_07_weak ,
inward_08_weak])

385 inward_list_mid = np.array ([inward_03_mid , inward_04_mid ,
inward_05_mid , inward_06_mid , inward_07_mid , inward_08_mid
])

386 inward_list_strong = np.array ([inward_03_strong ,
inward_04_strong , inward_05_strong , inward_06_strong ,
inward_07_strong , inward_08_strong])

387

388 outward_list_weak = np.array ([outward_03_weak ,
outward_04_weak , outward_05_weak , outward_06_weak ,
outward_07_weak , outward_08_weak])

389 outward_list_mid = np.array ([outward_03_mid , outward_04_mid
, outward_05_mid , outward_06_mid , outward_07_mid ,
outward_08_mid])

390 outward_list_strong = np.array ([outward_03_strong ,
outward_04_strong , outward_05_strong , outward_06_strong ,

391 outward_07_strong , outward_08_strong
])

392

393 total_inward = np.array ([inward_03_weak + inward_03_mid +
inward_03_strong , inward_04_weak + inward_04_mid +
inward_04_strong ,

394 inward_05_weak + inward_05_mid +
inward_05_strong , inward_06_weak + inward_06_mid +
inward_06_strong ,

395 inward_07_weak + inward_07_mid +
inward_07_strong , inward_08_weak + inward_08_mid +
inward_08_strong])

396

397 total_outward = np.array(
398 [outward_03_weak + outward_03_mid + outward_03_strong ,

outward_04_weak + outward_04_mid + outward_04_strong ,
399 outward_05_weak + outward_05_mid + outward_05_strong ,

outward_06_weak + outward_06_mid + outward_06_strong ,
400 outward_07_weak + outward_07_mid + outward_07_strong ,

outward_08_weak + outward_08_mid + outward_08_strong])
401

402 weak_error_in_lower = np.zeros (0)
403 weak_error_in_upper = np.zeros (0)
404

66

405 mid_error_in_lower = np.zeros (0)
406 mid_error_in_upper = np.zeros (0)
407

408 strong_error_in_lower = np.zeros (0)
409 strong_error_in_upper = np.zeros (0)
410

411 weak_error_out_lower = np.zeros (0)
412 weak_error_out_upper = np.zeros (0)
413

414 mid_error_out_lower = np.zeros (0)
415 mid_error_out_upper = np.zeros (0)
416

417 strong_error_out_lower = np.zeros (0)
418 strong_error_out_upper = np.zeros (0)
419

420

421 for i in range(len(total_outward)):
422 error_weak_inward = calculate_error (inward_list_weak [i

], total_inward [i])
423 error_mid_inward = calculate_error (inward_list_mid [i],

total_inward [i])
424 error_strong_inward = calculate_error (

inward_list_strong [i], total_inward [i])
425

426 error_weak_outward = calculate_error (outward_list_weak [
i], total_outward [i])

427 error_mid_outward = calculate_error (inward_list_mid [i],
total_outward [i])

428 error_strong_outward = calculate_error (
outward_list_strong [i], total_outward [i])

429

430 weak_error_in_lower = np. append (weak_error_in_lower ,
error_weak_inward [0])

431 weak_error_in_upper = np. append (weak_error_in_upper ,
error_weak_inward [1])

432

433 mid_error_in_lower = np. append (mid_error_in_lower ,
error_mid_inward [0])

434 mid_error_in_upper = np. append (mid_error_in_upper ,
error_mid_inward [1])

435

436 strong_error_in_lower = np. append (strong_error_in_lower
, error_strong_inward [0])

437 strong_error_in_upper = np. append (strong_error_in_upper
, error_strong_inward [1])

438

439 weak_error_out_lower = np. append (weak_error_out_lower ,
error_weak_outward [0])

440 weak_error_out_upper = np. append (weak_error_out_upper ,
error_weak_outward [1])

441

442 mid_error_out_lower = np. append (mid_error_out_lower ,
error_mid_outward [0])

443 mid_error_out_upper = np. append (mid_error_out_upper ,

67

error_mid_outward [1])
444

445 strong_error_out_lower = np. append (
strong_error_out_lower , error_strong_outward [0])

446 strong_error_out_upper = np. append (
strong_error_out_upper , error_strong_outward [1])

447

448

449

450 average_velocity_inward = [average_distance_03_inward ,
average_distance_04_inward , average_distance_05_inward ,
average_distance_06_inward , average_distance_07_inward ,
average_distance_08_inward]

451 average_velocity_outward = [average_distance_03_outward ,
average_distance_04_outward , average_distance_05_outward ,
average_distance_06_outward ,average_distance_07_outward ,
average_distance_08_outward]

452

453 plt. errorbar (average_velocity_inward , (inward_list_weak /
total_inward) * 100, label = ’Weak ’, fmt=’o-’,yerr =(
weak_error_in_lower , weak_error_in_upper))

454 plt. errorbar (average_velocity_inward , (inward_list_mid /
total_inward) * 100, label = ’Mid ’, fmt=’o-’, yerr =(
mid_error_in_lower , mid_error_in_upper))

455 plt. errorbar (average_velocity_inward , (inward_list_strong /
total_inward) * 100, label = ’Strong ’, fmt=’o-’, yerr =(

strong_error_in_lower , strong_error_in_upper))
456 plt. vlines (50, ymin =0, ymax =100 , linestyles =’--’, colors = ’

k’)
457 plt.title(’Perihelion side ’)
458 plt. xlabel (’Impact velocity (km/s)’)
459 plt. ylabel (’Amplitude ratio of the total (%) ’)
460 plt.grid ()
461 plt. legend ()
462

463 plt.show ()
464

465 plt. errorbar (average_velocity_outward , (outward_list_weak /
total_outward) * 100, label = ’Weak ’, fmt=’o-’, yerr =(

weak_error_out_lower , weak_error_out_upper))
466 plt. errorbar (average_velocity_outward , (outward_list_mid /

total_outward)* 100, label = ’Mid ’, fmt=’o-’, yerr =(
mid_error_out_lower , mid_error_out_upper))

467 plt. errorbar (average_velocity_outward , (outward_list_strong
/ total_outward) * 100, label = ’Strong ’, fmt=’o-’, yerr =(
strong_error_out_lower , strong_error_out_upper))

468 plt. vlines (50, ymin =0, ymax =100 , linestyles =’--’, colors =’k
’)

469 plt.title(’Aphelion side ’)
470 plt. xlabel (’Impact velocity (km/s)’)
471 plt. ylabel (’Amplitude ratio of the total (%) ’)
472 plt.grid ()
473 plt. legend ()
474

68

475 plt.show ()
476

477 new_velocity ()
478

479 # Average distances for the inbound and outbound trajectories
480 average_distance_02_outbound = np.mean (((SolO_radius [924 :

928])))
481 average_distance_02_inbound = np.mean (((SolO_radius [924 : 928])

))
482

483 average_distance_03_outbound = np.mean(np. concatenate ((
SolO_radius [599:609] , SolO_radius [794:803] , SolO_radius
[929:938])))

484 average_distance_03_inbound = np.mean(np. concatenate ((
SolO_radius [590:599] , SolO_radius [778:787] , SolO_radius
[914:923])))

485

486 average_distance_04_outbound = np.mean(np. concatenate ((
SolO_radius [206:213] , SolO_radius [610:617] , SolO_radius
[804:810] , SolO_radius [939:946])))

487 average_distance_04_inbound = np.mean(np. concatenate ((
SolO_radius [197:205] , SolO_radius [582:589] , SolO_radius
[771:777] , SolO_radius [909:913])))

488

489 average_distance_05_outbound = np.mean(np. concatenate ((
SolO_radius [0:16] , SolO_radius [214:230] , SolO_radius
[418:421] , SolO_radius [618:623] , SolO_radius [811:814] ,
SolO_radius [947:948])))

490 average_distance_05_inbound = np.mean(np. concatenate ((
SolO_radius [185:196] , SolO_radius [408:417] , SolO_radius
[574:581] , SolO_radius [763:770] , SolO_radius [901:908])))

491

492 average_distance_06_outbound = np.mean(np. concatenate ((
SolO_radius [17:40] , SolO_radius [231:245] , SolO_radius
[422:440] , SolO_radius [624:628] , SolO_radius [815:823] ,
SolO_radius [949:953])))

493 average_distance_06_inbound = np.mean(np. concatenate ((
SolO_radius [171:184] , SolO_radius [389:407] , SolO_radius
[567:573] , SolO_radius [754:762] , SolO_radius [893:900])))

494

495 average_distance_07_outbound = np.mean(np. concatenate ((
SolO_radius [41:44] , SolO_radius [246:260] , SolO_radius
[441:454] , SolO_radius [629:639] , SolO_radius [824:831] ,
SolO_radius [954:963])))

496 average_distance_07_inbound = np.mean(np. concatenate ((
SolO_radius [155:170] , SolO_radius [373:388] , SolO_radius
[557:566] , SolO_radius [743:753] , SolO_radius [887:892])))

497

498 average_distance_08_outbound = np.mean(np. concatenate ((
SolO_radius [45:54] , SolO_radius [261:282] , SolO_radius
[455:469] , SolO_radius [640:653] , SolO_radius [832:845] ,
SolO_radius [964:977])))

499 average_distance_08_inbound = np.mean(np. concatenate ((
SolO_radius [136:154] , SolO_radius [351:372] , SolO_radius

69

[544:556] , SolO_radius [730:742] , SolO_radius [878:886])))
500

501 average_distance_09_outbound = np.mean(np. concatenate ((
SolO_radius [55:92] , SolO_radius [283:317] , SolO_radius
[470:504] , SolO_radius [654:691] , SolO_radius [846:860])))

502 average_distance_09_inbound = np.mean(np. concatenate ((
SolO_radius [93:135] , SolO_radius [318:350] , SolO_radius
[505:543] , SolO_radius [692:729] , SolO_radius [861:877])))

503

504

505

506 outbound_weak_02 = sum(weaks [924 : 929])
507 inbound_weak_02 = sum(weaks [788:794])
508

509 outbound_mids_02 = sum(mids [924 : 929])
510 inbound_mids_02 = sum(mids [788:794])
511

512 outbound_strongs_02 = sum(strongs [924 : 929])
513 inbound_strongs_02 = sum(strongs [788:794])
514

515

516 outbound_weak_03 = sum(weaks [599:610]) + sum(weaks [794:804]) +
sum(weaks [929:939])

517 inbound_weak_03 = sum(weaks [590:600]) + sum(weaks [778:788]) +
sum(weaks [914:924])

518

519 outbound_mids_03 = sum(mids [599:610]) + sum(mids [794:804]) +
sum(mids [929:939])

520 inbound_mids_03 = sum(mids [590:600]) + sum(mids [778:788]) + sum
(mids [914:924])

521

522 inbound_strongs_03 = sum(strongs [590:600]) + sum(strongs
[778:788]) + sum(strongs [914:924])

523 outbound_strongs_03 = sum(strongs [599:610]) + sum(strongs
[794:804]) + sum(strongs [929:939])

524

525 outbound_weak_04 = sum(weaks [206:214]) + sum(weaks [610:618]) +
sum(weaks [804:811]) + sum(weaks [939:947])

526 inbound_weak_04 = sum(weaks [197:206]) + sum(weaks [582:590]) +
sum(weaks [771:778]) + sum(weaks [909:914])

527

528 outbound_mids_04 = sum(mids [206:214]) + sum(mids [610:618]) +
sum(mids [804:811]) + sum(mids [939:947])

529 inbound_mids_04 = sum(mids [197:206]) + sum(mids [582:590]) + sum
(mids [771:778]) + sum(mids [909:914])

530

531 outbound_strongs_04 = sum(strongs [206:214]) + sum(strongs
[610:618]) + sum(strongs [804:811]) + sum(strongs [939:947])

532 inbound_strongs_04 = sum(strongs [197:206]) + sum(strongs
[582:590]) + sum(strongs [771:778]) + sum(strongs [909:914])

533

534 outbound_weak_05 = sum(weaks [0:17]) + sum(weaks [214:231]) + sum
(weaks [418:422]) + sum(weaks [618:624]) + sum(weaks
[811:815]) + sum(weaks [947:949])

70

535 outbound_mids_05 = sum(mids [0:17]) + sum(mids [214:231]) + sum(
mids [418:422]) + sum(mids [618:624]) + sum(mids [811:815]) +
sum(mids [947:949])

536 outbound_strongs_05 = sum(strongs [0:17]) + sum(strongs
[214:231]) + sum(strongs [418:422]) + sum(strongs [618:624])
+ sum(strongs [811:815]) + sum(strongs [947:949])

537

538

539 inbound_weak_05 = sum(weaks [185:197]) + sum(weaks [408:418]) +
sum(weaks [574:582]) + sum(weaks [763:771]) + sum(weaks
[901:909])

540 inbound_mids_05 = sum(mids [185:197]) + sum(mids [408:418]) + sum
(mids [574:582]) + sum(mids [763:771]) + sum(mids [901:909])

541 inbound_strongs_05 = sum(strongs [185:197]) + sum(strongs
[408:418]) + sum(strongs [574:582]) + sum(strongs [763:771])
+ sum(strongs [901:909])

542

543

544 outbound_weak_06 = sum(weaks [17:41]) + sum(weaks [231:246]) +
sum(weaks [422:441]) + sum(weaks [624:629]) + sum(weaks
[815:824]) + sum(weaks [949:954])

545 outbound_mids_06 = sum(mids [17:41]) + sum(mids [231:246]) + sum(
mids [422:441]) + sum(mids [624:629]) + sum(mids [815:824]) +
sum(mids [949:954])

546 outbound_strongs_06 = sum(strongs [17:41]) + sum(strongs
[231:246]) + sum(strongs [422:441]) + sum(strongs [624:629])
+ sum(strongs [815:824]) + sum(strongs [949:954])

547

548

549 inbound_weak_06 = sum(weaks [171:185]) + sum(weaks [389:408]) +
sum(weaks [567:574]) + sum(weaks [754:763]) + sum(weaks
[893:901])

550 inbound_mids_06 = sum(mids [171:185]) + sum(mids [389:408]) + sum
(mids [567:574]) + sum(mids [754:763]) + sum(mids [893:901])

551 inbound_strongs_06 = sum(strongs [171:185]) + sum(strongs
[389:408]) + sum(strongs [567:574]) + sum(strongs [754:763])
+ sum(strongs [893:901])

552

553

554 outbound_weak_07 = sum(weaks [41:45]) + sum(weaks [246:261]) +
sum(weaks [441:455]) + sum(weaks [629:640]) + sum(weaks
[824:832]) + sum(weaks [954:964])

555 outbound_mids_07 = sum(mids [41:45]) + sum(mids [246:261]) + sum(
mids [441:455]) + sum(mids [629:640]) + sum(mids [824:832]) +
sum(mids [954:964])

556 outbound_strongs_07 = sum(strongs [41:45]) + sum(strongs
[246:261]) + sum(strongs [441:455]) + sum(strongs [629:640])
+ sum(strongs [824:832]) + sum(strongs [954:964])

557

558

559 inbound_weak_07 = sum(weaks [155:171]) + sum(weaks [373:389]) +
sum(weaks [557:567]) + sum(weaks [743:754]) + sum(weaks
[887:893])

560 inbound_mids_07 = sum(mids [155:171]) + sum(mids [373:389]) + sum

71

(mids [557:567]) + sum(mids [743:754]) + sum(mids [887:893])
561 inbound_strongs_07 = sum(strongs [155:171]) + sum(strongs

[373:389]) + sum(strongs [557:567]) + sum(strongs [743:754])
+ sum(strongs [887:893])

562

563

564 outbound_weak_08 = sum(weaks [45:55]) + sum(weaks [261:283]) +
sum(weaks [455:470]) + sum(weaks [640:654]) + sum(weaks
[832:846]) + sum(weaks [964:979])

565 outbound_mids_08 = sum(mids [45:55]) + sum(mids [261:283]) + sum(
mids [455:470]) + sum(mids [640:654]) + sum(mids [832:846]) +
sum(mids [964:979])

566 outbound_strongs_08 = sum(strongs [45:55]) + sum(strongs
[261:283]) + sum(strongs [455:470]) + sum(strongs [640:654])
+ sum(strongs [832:846]) + sum(strongs [964:979])

567

568

569 inbound_weak_08 = sum(weaks [136:155]) + sum(weaks [351:373]) +
sum(weaks [544:557]) + sum(weaks [730:743]) + sum(weaks
[878:887])

570 inbound_mids_08 = sum(mids [136:155]) + sum(mids [351:373]) + sum
(mids [544:557]) + sum(mids [730:743]) + sum(mids [878:887])

571 inbound_strongs_08 = sum(strongs [136:155]) + sum(strongs
[351:373]) + sum(strongs [544:557]) + sum(strongs [730:743])
+ sum(strongs [878:887])

572

573 outbound_weak_09 = sum(weaks [55:93]) + sum(weaks [283:318]) +
sum(weaks [470:505]) + sum(weaks [654:692]) + sum(weaks
[846:861])

574 outbound_mids_09 = sum(mids [55:93]) + sum(mids [283:318]) + sum(
mids [470:505]) + sum(mids [654:692]) + sum(mids [846:861])

575 outbound_strongs_09 = sum(strongs [55:93]) + sum(strongs
[283:318]) + sum(strongs [470:505]) + sum(strongs [654:692])
+ sum(strongs [846:861])

576

577

578 inbound_weak_09 = sum(weaks [93:136]) + sum(weaks [318:351]) +
sum(weaks [505:544]) + sum(weaks [692:730]) + sum(weaks
[861:878])

579 inbound_mids_09 = sum(mids [93:136]) + sum(mids [318:351]) + sum(
mids [505:544]) + sum(mids [692:730]) + sum(mids [861:878])

580 inbound_strongs_09 = sum(strongs [93:136]) + sum(strongs
[318:351]) + sum(strongs [505:544]) + sum(strongs [692:730])
+ sum(strongs [861:878])

581

582

583 outbound_total_02 = outbound_weak_02 + outbound_mids_02 +
outbound_strongs_02

584 outbound_total_03 = outbound_weak_03 + outbound_mids_03 +
outbound_strongs_03

585 outbound_total_04 = outbound_weak_04 + outbound_mids_04 +
outbound_strongs_04

586 outbound_total_05 = outbound_weak_05 + outbound_mids_05 +
outbound_strongs_05

72

587 outbound_total_06 = outbound_weak_06 + outbound_mids_06 +
outbound_strongs_06

588 outbound_total_07 = outbound_weak_07 + outbound_mids_07 +
outbound_strongs_07

589 outbound_total_08 = outbound_weak_08 + outbound_mids_08 +
outbound_strongs_08

590 outbound_total_09 = outbound_weak_09 + outbound_mids_09 +
outbound_strongs_09

591

592 inbound_total_02 = inbound_weak_02 + inbound_mids_02 +
inbound_strongs_02

593 inbound_total_03 = inbound_weak_03 + inbound_mids_03 +
inbound_strongs_03

594 inbound_total_04 = inbound_weak_04 + inbound_mids_04 +
inbound_strongs_04

595 inbound_total_05 = inbound_weak_05 + inbound_mids_05 +
inbound_strongs_05

596 inbound_total_06 = inbound_weak_06 + inbound_mids_06 +
inbound_strongs_06

597 inbound_total_07 = inbound_weak_07 + inbound_mids_07 +
inbound_strongs_07

598 inbound_total_08 = inbound_weak_08 + inbound_mids_08 +
inbound_strongs_08

599 inbound_total_09 = inbound_weak_09 + inbound_mids_09 +
inbound_strongs_09

600

601 outbound_total = [outbound_total_02 , outbound_total_03 ,
outbound_total_04 , outbound_total_05 , outbound_total_06 ,
outbound_total_07 , outbound_total_08 , outbound_total_09]

602 inbound_total = [inbound_total_02 , inbound_total_03 ,
inbound_total_04 , inbound_total_05 , inbound_total_06 ,
inbound_total_07 , inbound_total_08 , inbound_total_09]

603

604

605 weak_outbound_list = np.array ([outbound_weak_02 /
outbound_total_02 , outbound_weak_03 / outbound_total_03 ,
outbound_weak_04 / outbound_total_04 , outbound_weak_05 /
outbound_total_05 , outbound_weak_06 / outbound_total_06 ,
outbound_weak_07 / outbound_total_07 ,

606 outbound_weak_08 / outbound_total_08 ,
outbound_weak_09 / outbound_total_09])

607

608 mid_outbound_list = np.array ([outbound_mids_02 /
outbound_total_02 , outbound_mids_03 / outbound_total_03 ,
outbound_mids_04 / outbound_total_04 , outbound_mids_05 /
outbound_total_05 , outbound_mids_06 / outbound_total_06 ,
outbound_mids_07 / outbound_total_07 ,

609 outbound_mids_08 / outbound_total_08 ,
outbound_mids_09 / outbound_total_09])

610

611 strong_outbound_list = np.array ([outbound_strongs_02 /
outbound_total_02 , outbound_strongs_03 / outbound_total_03 ,

outbound_strongs_04 / outbound_total_04 ,
outbound_strongs_05 / outbound_total_05 ,

73

outbound_strongs_06 / outbound_total_06 , outbound_strongs_07
/ outbound_total_07 ,

612 outbound_strongs_08 / outbound_total_08 ,
outbound_strongs_09 / outbound_total_09])

613

614 weak_inbound_list = np.array ([inbound_weak_02 /
inbound_total_02 , inbound_weak_03 / inbound_total_03 ,
inbound_weak_04 / inbound_total_04 , inbound_weak_05 /
inbound_total_05 , inbound_weak_06 / inbound_total_06 ,

615 inbound_weak_07 / inbound_total_07 ,
inbound_weak_08 / inbound_total_08 , inbound_weak_09 /
inbound_total_09])

616

617

618 mid_inbound_list = np.array ([inbound_mids_02 / inbound_total_02
, inbound_mids_03 / inbound_total_03 , inbound_mids_04 /
inbound_total_04 , inbound_mids_05 / inbound_total_05 ,
inbound_mids_06 / inbound_total_06 ,

619 inbound_mids_07 / inbound_total_07 ,
inbound_mids_08 / inbound_total_08 , inbound_mids_09 /
inbound_total_09])

620

621 strong_inbound_list = np.array ([inbound_strongs_02 /
inbound_total_02 , inbound_strongs_03 / inbound_total_03 ,
inbound_strongs_04 / inbound_total_04 , inbound_strongs_05 /

inbound_total_05 , inbound_strongs_06 / inbound_total_06 ,
622 inbound_strongs_07 / inbound_total_07 ,

inbound_strongs_08 / inbound_total_08 , inbound_strongs_09 /
inbound_total_09])

623

624 weak_outbound_list2 = [outbound_weak_02 , outbound_weak_03 ,
outbound_weak_04 , outbound_weak_05 , outbound_weak_06 ,
outbound_weak_07 , outbound_weak_08 , outbound_weak_09]

625 mid_outbound_list2 = [outbound_mids_02 , outbound_mids_03 ,
outbound_mids_04 , outbound_mids_05 , outbound_mids_06 ,
outbound_mids_07 , outbound_mids_08 , outbound_mids_09]

626

627 strong_outbound_list2 = [outbound_strongs_02 ,
outbound_strongs_03 , outbound_strongs_04 ,
outbound_strongs_05 , outbound_strongs_06 ,
outbound_strongs_07 , outbound_strongs_08 ,
outbound_strongs_09]

628

629 weak_inbound_list2 = [inbound_weak_02 , inbound_weak_03 ,
inbound_weak_04 , inbound_weak_05 , inbound_weak_06 ,
inbound_weak_07 , inbound_weak_08 , inbound_weak_09]

630

631 mid_inbound_list2 = [inbound_mids_02 , inbound_mids_03 ,
inbound_mids_04 , inbound_mids_05 , inbound_mids_06 ,
inbound_mids_07 , inbound_mids_08 , inbound_mids_09]

632

633 strong_inbound_list2 = [inbound_strongs_02 , inbound_strongs_03 ,
inbound_strongs_04 , inbound_strongs_05 , inbound_strongs_06

, inbound_strongs_07 , inbound_strongs_08 ,

74

inbound_strongs_09]
634

635

636 average_distance_inbound = np.array ([
average_distance_02_inbound , average_distance_03_inbound ,
average_distance_04_inbound , average_distance_05_inbound ,
average_distance_06_inbound , average_distance_07_inbound ,
average_distance_08_inbound , average_distance_09_inbound])

637 average_distance_outbound = np.array ([
average_distance_02_outbound , average_distance_03_outbound ,

average_distance_04_outbound , average_distance_05_outbound
, average_distance_06_outbound ,
average_distance_07_outbound , average_distance_08_outbound ,

average_distance_09_outbound])
638

639

640 distance = [0.4 , 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
641

642 mean_dist = np.zeros (0)
643

644

645 for i in range (2 ,10):
646 print(i)
647 mask = ((SolO_radius > i / 10) * (SolO_radius < (i + 1) /

10))
648

649 mean_dist = np. append (mean_dist , np.mean(SolO_radius [mask])
)

650

651

652

653

654 error_weak_out_lower = np.zeros (0)
655 error_weak_out_upper = np.zeros (0)
656

657 error_mid_out_lower = np.zeros (0)
658 error_mid_out_upper = np.zeros (0)
659

660 error_strong_out_lower = np.zeros (0)
661 error_strong_out_upper = np.zeros (0)
662

663 error_weak_in_lower = np.zeros (0)
664 error_weak_in_upper = np.zeros (0)
665

666 error_mid_in_lower = np.zeros (0)
667 error_mid_in_upper = np.zeros (0)
668

669 error_strong_in_lower = np.zeros (0)
670 error_strong_in_upper = np.zeros (0)
671

672 for i in range(len(mid_outbound_list [1:])):
673 error_weak_outbound = calculate_error (weak_outbound_list2 [i

], outbound_total [i])
674 error_mid_outbound = calculate_error (mid_outbound_list2 [i],

75

outbound_total [i])
675 error_strong_outbound = calculate_error (

strong_outbound_list2 [i], outbound_total [i])
676

677 error_weak_inbound = calculate_error (weak_inbound_list2 [i],
inbound_total [i])

678 error_mid_inbound = calculate_error (mid_inbound_list2 [i],
inbound_total [i])

679 error_strong_inbound = calculate_error (strong_inbound_list2
[i], inbound_total [i])

680

681 error_weak_out_lower = np. append (error_weak_out_lower ,
error_weak_outbound [0])

682 error_weak_out_upper = np. append (error_weak_out_upper ,
error_weak_outbound [1])

683

684 error_mid_out_lower = np. append (error_mid_out_lower ,
error_mid_outbound [0])

685 error_mid_out_upper = np. append (error_mid_out_upper ,
error_mid_outbound [1])

686

687 error_strong_out_lower = np. append (error_strong_out_lower ,
error_strong_outbound [0])

688 error_strong_out_upper = np. append (error_strong_out_upper ,
error_strong_outbound [1])

689

690

691 error_weak_in_lower = np. append (error_weak_in_lower ,
error_weak_inbound [0])

692 error_weak_in_upper = np. append (error_weak_in_upper ,
error_weak_inbound [1])

693

694 error_mid_in_lower = np. append (error_mid_in_lower ,
error_mid_inbound [0])

695 error_mid_in_upper = np. append (error_mid_in_upper ,
error_mid_inbound [1])

696

697 error_strong_in_lower = np. append (error_strong_in_lower ,
error_strong_inbound [0])

698 error_strong_in_upper = np. append (error_strong_in_upper ,
error_strong_inbound [1])

699

700

701 #Plots the weak , mid and strong for inbound and outbound
trajectories

702 plt. errorbar (average_distance_outbound [1:] , weak_outbound_list
[1:] * 100 , label=’Outbound weak ’, capsize = 3, fmt = ’-’,

color =’blue ’)
703 plt. fill_between (average_distance_outbound [1:] ,

weak_outbound_list [1:] * 100 - error_weak_out_lower ,
weak_outbound_list [1:] * 100 + error_weak_out_upper , color
= ’midnightblue ’, alpha = 0.4, lw = 0)

704

705 plt. errorbar (average_distance_outbound [1:] , mid_outbound_list

76

[1:] * 100, label = ’Outbound mid ’, capsize = 3 , fmt = ’-’
, color =’orange ’,)

706 plt. fill_between (average_distance_outbound [1:] ,
mid_outbound_list [1:] * 100 - error_mid_out_lower ,
mid_outbound_list [1:] * 100 + error_mid_out_upper , color =
’gold ’, alpha = 0.4, lw = 0)

707

708 plt. errorbar (average_distance_outbound [1:] , strong_outbound_list
[1:] * 100 , label = ’Outbound strong ’, capsize = 3, fmt =

’-’, color = ’green ’)
709 plt. fill_between (average_distance_outbound [1:] , np.array(

strong_outbound_list)[1:] * 100 - error_strong_out_lower ,
np.array(strong_outbound_list)[1:] * 100 +
error_strong_out_upper , color = ’forestgreen ’, alpha =
0.5, lw= 0)

710

711 plt. errorbar (average_distance_inbound [1:] , np.array(
weak_inbound_list)[1:] * 100 ,label=’Inbound weak ’, capsize

= 3, fmt = ’--’, color = ’cyan ’)
712 plt. fill_between (average_distance_inbound [1:] , np.array(

weak_inbound_list)[1:] * 100 - error_weak_in_lower , np.
array(weak_inbound_list)[1:] * 100 + error_weak_in_upper ,
color = ’darkslategrey ’, alpha = 0.5, lw = 0)

713

714

715 plt. errorbar (average_distance_inbound [1:] , np.array(
mid_inbound_list)[1:] * 100, label = ’Inbound mid ’, capsize

= 3,fmt = ’--’, color = ’maroon ’)
716 plt. fill_between (average_distance_inbound [1:] , np.array(

mid_inbound_list)[1:] * 100 - error_mid_in_lower , np.array(
mid_inbound_list)[1:] * 100 + error_mid_in_upper , color = ’
crimson ’, alpha = 0.5, lw = 0)

717

718

719 plt. errorbar (average_distance_inbound [1:] , np.array(
strong_inbound_list)[1:] * 100, label = ’Inbound strong ’,
capsize = 3,fmt = ’--’, color=’lawngreen ’)

720 plt. fill_between (average_distance_inbound [1:] , np.array(
strong_inbound_list)[1:] * 100 - error_strong_in_lower ,np.
array(strong_inbound_list)[1:] * 100 +
error_strong_in_lower , color = ’seagreen ’, alpha = 0.5, lw
= 0)

721

722

723 plt. xlabel (’Distance from the Sun (AU)’)
724 plt. ylabel (’Ratio (%) ’)
725

726 plt.grid ()
727 plt. legend (loc=’center right ’, bbox_to_anchor = (1, 0.5))
728

729 plt.show ()
730

731 print("inbound , weak", weak_inbound_list2)
732 print("inbound , mid", mid_inbound_list2)

77

733 print("inbound , strong ", strong_inbound_list2)
734 print("inbound , total", inbound_total)
735

736 print("outbound , weak", weak_outbound_list2)
737 print("outbound , mid", mid_outbound_list2)
738 print("outbound , strong ", strong_outbound_list2)
739 print("outbound , total", outbound_total)
740

741

742

743 weekly_weak = np.zeros (0)
744 weekly_mid = np.zeros (0)
745 weekly_strong = np.zeros (0)
746 weekly_distance = np.zeros (0)
747

748

749 #Finds the weak , mid and strong in weekly intervals
750 for i in range (0, len(weaks), 8):
751 # Sum the elements in the current chunk (excluding the 7th

element) and append to the weekly_sums list
752 end_index = i +7
753 weekly_sum = sum(weaks[i: end_index])
754 weekly_d = np.mean(SolO_radius [i: end_index])
755 weekly_weak = np. append (weekly_weak , weekly_sum)
756 weekly_mid = np. append (weekly_mid , sum(mids[i: end_index]))
757 weekly_strong = np. append (weekly_strong , sum(strongs [i:

end_index]))
758

759 weekly_distance = np. append (weekly_distance , weekly_d)
760

761

762

763 def slope ():
764 """
765 Finds the slope of the mass distribution
766 : return :
767 """
768 R = weekly_strong / weekly_mid
769 R_2 = sum(strongs) / sum(mids)
770 Q_low = 20
771 Q_high = 200
772 #print(R)
773 #print(R_2)
774 a = (-np.log(Q_high) + np.log(Q_low) + np.log ((R / (R+1))))

/ (np.log(Q_high) - np.log(Q_low))
775

776 exponent = a
777 #print(np.log(R/(R -1)))
778

779 return exponent
780

781 exponent = slope ()
782

783

78

784 list_exponent = [[e,w] for e, w in zip(exponent ,
weekly_distance) if np. isfinite (e)]

785

786

787

788

789 #plots the exponent points and a slope
790 fig , ax = plt. subplots ()
791

792 exponent_list = np.zeros (0)
793 weekly_distance_list = np.zeros (0)
794

795 for item in list_exponent :
796 ax. scatter (item [1], item [0], c = ’blue ’)
797 exponent_list = np. append (exponent_list , item [0])
798 weekly_distance_list = np. append (weekly_distance_list , item

[1])
799

800 mean_a = np.mean(exponent_list)
801

802 percentile_5 = np. nanpercentile (exponent_list , 5)
803 percentile_95 = np. nanpercentile (exponent_list , 95)
804

805 coeff =np. polyfit (weekly_distance_list , exponent_list ,1)
806

807 line = np. poly1d (coeff)
808 ax.plot(weekly_distance_list ,line(weekly_distance_list), color

= ’red ’)
809 ax. set_xlabel (’Distance from Sun (AU)’)
810 ax. set_ylabel (’Exponent a’)
811 plt.show ()

Listing B.2: Code uses the cnn processed data files and plots the trajectories as well
as calculates the slope value and plots it.

79

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Solar Orbiter
	2.1 Launch and mission
	2.2 The Radio Plasma Wave (RPW)
	2.2.1 Spacecraft charging
	2.2.2 Dust measurement
	2.2.3 Signal shape

	2.3 Dust detection algorithm
	2.4 Data product and selection

	3 Background considerations on dust particles
	4 Methods
	4.1 Orbital Parameters
	4.2 Voltage amplitude analysis
	4.3 Derivation of the slope of the mass distribution
	4.4 Simplified mass distribution

	5 Results and discussion
	5.1 Choice of the voltage amplitude categories
	5.2 Comparison of inbound and outbound trajectories
	5.3 Mass ratio of a constant mass
	5.4 Slope of the mass distribution
	5.5 Comparison of perihelion and aphelion impacts

	6 Conclusion
	Bibliography
	A Data files
	B Code

