
Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering

A Method for Determining Optimal Charging Infrastructures in Public
Ferry Transportation Networks

Joachim Kristensen
DTE–3900, Master thesis in Applied Computer Science, Narvik, May 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
In this thesis, we establish the theoretical foundation for determining the min-
imum requirements for charging infrastructures in networks where electric
ferries operate on a fixed schedule. The problem—named the Multiple-Trip
Electric Charging Station Placement (MT-ECSP)—is formulated as a 0–1 Inte-
ger Program, and is subsequently proven to be NP-hard.

We construct several instances of the MT-ECSP, and solve them using Google
OR-Tools CP-SAT solver in a simple application. The results show that the MT-
ECSP is solveable both for theoretical and practical purposes.

Acknowledgements
The author would like extend his deepest gratitude to the supervisors Rune
Dalmo and Aleksander Pedersen for being instrumental not only during the
course of this thesis project, but throughout the entirety of the master’s studies.
Thank you for always keeping your office doors open, challenging my ideas,
and being beacons of inspiration.

Next, the author wishes to thank his colleague, Johanne Holst Klæboe, with
whom countless hours of joy and utter frustration has been endured together.
Without you, I would not been able to finish even the first term of this study
programme.

The author also wishes to thank Hyke for providing the thesis project. It has
proved to be the most challenging, yet rewarding feat to date.

Last, but not least, thank you mom and dad for your immense love, support
and guideance during my academic ventures. Thank you for encouraging me
to pursue a degree, and motivating me to see it through.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Theory . 3

1.2.1 Complexity Theory and NP-Complete Problems . . . 3
1.2.2 0–1 Integer Programming 5
1.2.3 Optimization Problems 6
1.2.4 A Brief Overview of Constraint Programming 7

1.3 State of the Art . 8
1.3.1 Solving Optimization Problems 8
1.3.2 Charging Infrastructure 9
1.3.3 The Electric Charging Station Placement Problem . . 10

1.4 Contribution to Literautre 11
1.5 Objectives . 12

2 Tools 13
2.1 Programming Langugages 13
2.2 Optimization Tools . 14
2.3 Comparison . 15

3 Problem Formulation 17
3.1 Characteristics . 17
3.2 Notation . 18
3.3 Instance . 19
3.4 Charger Configurations . 20
3.5 Complexity Analysis . 23

v

vi contents

4 Implementation 29
4.1 Overview . 29

4.1.1 MT-ECSP Instance 29
4.1.2 Solving the Model 30

4.2 Setup of Experiments . 33

5 Performance 37
5.1 Manually Defined Networks 37
5.2 Benchmarks . 40

6 Discussion 43
6.1 Computational Complexity 43
6.2 Proof of Concept . 44
6.3 Benchmarks . 45

7 Concluding Remarks 47
7.1 Future Work . 48

Bibliography 51

List of Figures
1.1 Euler diagram for problems in NP 4

3.1 A route, 𝑟 , with three stops, 𝑠0, 𝑠1, 𝑠2 20
3.2 Number of solutions for 250 instances of the MT-ECSP, re-

specitvely . 22

4.1 The MT-ECSP class with functions 30
4.2 Model implementation using Google OR-Tools 30
4.3 Defintion of variables and constraints 31
4.4 The CP-SAT solver is solving the MT-ECSP in a two-stage process 32
4.5 The main function of the program 32
4.6 An arbitrary network . 33
4.7 A suggested network provided by Hyke 34
4.8 Single route initialization procedures 35
4.9 Network initilization procedures 36
4.10 Initialization of the network provided by Hyke 36

5.1 Optimal solution to the network illustrated in fig. 3.1. 38
5.2 Optimal solutions to the network illusrated in fig. 4.6. 38
5.3 The optimal solution to the network suggested by Hyke . . . 39
5.4 Optimal objective values for 𝑛, where 𝐾 = 300 41
5.5 Time spent solving for 𝑛 . 41
5.6 Number of search branches explored 41
5.7 Number of occured conflicts for size 𝑛 42

vii

List of Tables
2.1 A brief comparison of different optimization tools, with re-

spect to some selected features. 16

3.1 Options for selecting 𝑒 candidate sites from a route total of 3
stops. 21

4.1 Metadata for the real world network 35

ix

1
Introduction
This master thesis is a research project centering around the theoretical ground-
work for solving a practical problem concerning the optimal placement of charg-
ing stations in public transit networks. This work conducted in this thesis aims
to showcase computer science as a tool for problem solving, by providing such
a foundation and demonstrating its applications.

In this chapter,we cover relevant theory, state of the art papers andmethodology,
and the objectives of the research project.

The remainder of the thesis is organized as follows. In Chapter 2, the tools used
for meeting the proposed objectives are presented. Chapters 3 to 5 are all chap-
ters presenting theoretical and practical results. In chapter 3,we present a math-
ematical formulation of the problem, alongside model assumptions, nomencla-
ture, and lastly prove its complexity. Chapter 4 show the nomenclature and
model in a practical setting, where a program is devised in an attempt to solve
the problem. Lastly, chapter 5 evaluates the performance of the program.

1.1 Background

Over half of the global population resides in cities, which contribute signifi-
cantly to greenhouse gas emissions [1]. In 2014, the transportation sector was
the world’s second largest GHG emitter, accounting for roughly 23% of global

1

2 chapter 1 introduction

emissions and 21% of emissions within the European Union [2, 3, 4]. Moreover,
this sector is linked to air pollution and traffic congestion issues.

A 2007 study by Schrank et al. revealed that in 2005, the average annual travel
delay for rush hour trips in the United States was 38 hours, based on data
from 437 urban areas [5]. According to INRIX Roadway Analytics, this figure
has increased significantly since then, particularly in major urban centers. For
instance, in 2022, London experienced the highest average annual traffic delay
at 156 hours [6].

A response to the obligation of countries contributing to climate mitigation has
sparked a growing interest in sustainable solutions. In his 2018 paper, Fulton [7]
coined three revolutions in urban transportation as vehicle electrfication, au-
tomation and shared mobility as emerging trends in future mobility. In recent
years, the Norwegian government has allocated millions of NOK in funding
research and innovation in new climate-friendly technology [8].

From Norway’s Climate Aciton Plan for 2021-2023, “Climate initiatives in Nor-
way will be designed to bring about domestic emission reductions and to de-
velop technology that can also be used internationally. Norway will play a part
in creating climate solutions for the future.“ [9, p. 13].

The topography of Norway, often characterized by interconnected cities and
waterways, including Drammen, Oslo, Fredrikstad, Trondheim, and Tromsø,
presents opportunities for developing climate-friendly urban transport solu-
tions. In 2015, the Norwegian MF Ampere was the world’s first all-electric car
ferry put into service. Tannum and Ulvensøen[10] gave a state of the art re-
view of urban mobility projects in Norway centered around autonomous short-
distance ferries in 2019. In addition, numerous publications[11, 12, 13, 14, 15]
have emerged both in Norway and internationally, highlighting the growing
interest, challanges, and advancements in this sector.

In the pool of newly sprung innovations in Norway emerges an Oslo based
company developing electric, autonomous ferries (EAFs) for public transport
in urban areas; Hydrolift Smart City Ferries, or Hyke [16].

This thesis is the formulated in joint partnership with Hyke, and concerns
itself with the strategic placement of charging jetties in the area a ferry fleet is
operating in. Hyke wishes to gain insight into the minimum requirements for
charging jetties; how many jetties on a given route need to be charging jetties
to ensure that the ferries can continously operate without having to charge for
a prolonged amount of time.

In the following section, this thesis will explore various theoretical concepts,

1.2 theory 3

such as complexity theory and optimization problems, which are essential for
understanding the nature of the problem under investigation. These concepts
will be applied to the practical problem, ultimately leading to a proof-of-concept
implementation.

1.2 Theory

The field of computer science is built upon the core principle of problem solving.
From its inception, computer science has aimed to develop methods and tools
to address a wide range of practical and theoretical challenges. This thesis
explores one such practical problem and demonstrates how computer science
techniques can be employed to provide a comprehensive and efficient solution.
Before delving into the specific problem, it is essential to understand the general
process of problem solving in computer science.

The first step in a problem solving process is to transform a real world problem
into a well defined problem that can be systematically addressed by computer
science. This involves identifying the essential components and characteristics
of the problem, such as its input, desired output, any constraints or conditions
that must be met, and in many cases [17, 18, 13, 19] a mathematical formula-
tion/model. A clear and precise problem statement is crucial, as it serves as the
foundation upon which the rest of the problem solving process is built.

Once a problem is well defined, it can be classified based on its inherent charac-
teristics. This classification helps determine which programming paradigm(s),
algorithm(s), and technique(s) are most appropriate for solving the problem
at hand. An understanding of the problem’s classification is instrumental in
guiding the subsequent steps of the problem solving process[20].

Different problemsmay require different solving strategies, and the efficiency of
a solution often depends on the appropriateness of the chosen algorithm(s) [19,
p. 17] [21]. This selection process involves considering factors such as time
complexity, space complexity, and ease of implementation, as well as potential
trade-offs between these factors.

1.2.1 Complexity Theory and NP-Complete Problems

Complexity theory is a branch of computer science that aims to understand
the resources needed to execute computational problems efficiently. These
resources can include time, memory, or any other factors that influence the
performance of an algorithm. By classifying problems based on their inherent

4 chapter 1 introduction

Figure 1.1: Euler diagram for P, NP, NP-complete, and NP-hard set of problems. The
left side is valid under the assumption that P ≠ NP, while the right side is
valid under the assumption that P = NP [23].

difficulty, complexity theory provides insights into the limitations of computa-
tional power and the solvability of various problems.

Two primary classes of problems are central to complexity theory: P andNP.
Problems in the P class are considered ‘easy’ to solve, as algorithms exist
that can solve them in polynomial time—the time taken to find a solution
is proportional to a polynomial function of the input size. In contrast, NP
(nondeterministic polynomial time) problems are those for which a solution
can be verified in polynomial time, but discovering the solution might not follow
the same time constraint.

A subset of NP problems, known as NP-complete problems are considered
the most challenging within the NP class, and have a unique property: if
an algorithm could efficiently solve any NP-complete problem, it could be
adapted to solve all other problems in the NP class with the same efficiency.
The concept of NP-completeness was first introduced by Stephen Cook in his
seminal paper ‘The Complexity of Theorem-Proving Procedures’ [22], where he
proved that the Boolean Satisfiability Problem (SAT) is NP-complete.

Despite extensive research, an efficient algorithm for any NP-complete prob-
lem has not yet been discovered. As a result, the question of whether P equals
NP remains one of the most significant open questions in the field, illustrated
in fig. 1.1. If P were proven to be equal to NP, it would mean that every
problem with a solution verifiable in polynomial time could also be solved in
polynomial time.

1.2 theory 5

Building upon Cook’s work,Richard Karp’s influential paper ‘Reducibility Among
Combinatorial Problems’ demonstrated theNP-completeness of 21 combinato-
rial problems by introducing the concept of polynomial-time reducibility [24].
This technique allowed Karp to show that if any one of the 21 problems he
studied could be solved efficiently, then all of them could be solved efficiently.
The polynomial-time reducibility showed NP-complete problems are closely
related in terms of their complexity, and that they shared the same level of
inherent difficulty.

The significance of NP-completeness was further emphasized in the classic
book ‘Computers and Intractability: A Guide to the Theory of NP-Completeness’
by Garey and Johnson [20]. This book provided a comprehensive introduction
to the topic, cataloging many more NP-complete problems and offering in-
sights into the study of computational complexity. The word intractibility in
this context refers to problems for which no efficient (polynomial-time) algo-
rithm is known or believed to exist. For NP-complete problems, intractibility is
rooted in this fact.

It is, however, essential to recognize that their intractability is a reflection of our
current state of knowledge rather than an inherent property of the problems
themselves. Notably, ‘intractable’ does not imply that a problem is unsolvable;
rather, it suggests that the problem is challenging to solve efficiently, especially
for large input sizes.

As mentioned by Wayne[25], solving any NP-complete problem involves sacri-
ficing one of three desired features.

i. Solve arbitary instances of the problem.

ii. Solve problem to optimality.

iii. Solve problem in polynomial time.

1.2.2 0–1 Integer Programming

One of the problems Karp proved to beNP-complete was 0–1 Integer Program-
ming (IP). However, the theoretical foundation of 0–1 IP dates back to the early
works of George Dantzig, who laid the groundwork for Linear Programming
(LP) [26], and later IP.

A Linear Program (LP) is a classical optimization problem consisting of a set of
continous variables and a set of linear constraints (equalities or inequalities),
where the goal is to optimize (minimize/maximize) a function subject to the

6 chapter 1 introduction

constraints [27]. The LP can be expressed in its canonical form as

Minimize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0,

where 𝑥 is a column vector of 𝑛 variables, 𝑐 is a column vector of objective
coefficients, 𝐴 is a matrix of constraint coefficients, and 𝑏 is a column vector
of constraint bounds. The objective function 𝑐𝑇𝑥 is linear with respect to the
decision variables, and the constraints are linear inequalities.

If the variables in the LP is restricted to be integers, the problem is referred to
as an Integer Program (IP). If the variables can take both continous or integer
values, the problem is referred to as a Mixed Integer Linear Program (MILP), or
Mixed Integer (Linear) Program (MIP).

0–1 IP is a special case of IP, in which the decision variables stored in 𝑥 are binary,
i.e., restricted to values of 0 or 1. The binary nature of the decision variables
enables the modeling of complex combinatorial problems with inherent yes-or-
no decisions, such as[11, 18].

A 0–1 IP problem can be formulated as follows:

Minimize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏
𝑥 ∈ {0, 1}𝑛,

where {0, 1} denotes the set of binary values.

Due to the expressiveness of IPs, many other classical problems such as The
Travelling Salesman Problem (TSP) ans The Knapsack Problem (KP) are formu-
lated as IPs[28].

1.2.3 Optimization Problems

Descision problems and optimization problems are two categories of computa-
tional problems that differ in their objectives and the nature of their solutions.
A decision problem is a computational problem that asks a yes-or-no question
about the input. The goal is to determine whether the input satisfies a specific
property or condition, and so, decision problems can be formalized as a set of
inputs for which the answer is ‘yes’ and another set for which the answer is
‘no’[20].

1.2 theory 7

Optimization problems, in contrast, involve finding the best solution among a
set of possible solutions according to some objective function or criterion. The
goal is to either maximize or minimize an objective, depending on the problem
at hand.

In relation to complexity theory, it is the descision version of a problem that
refers to its computational complexity[29], whereas the associated optimiza-
tion problem can be solved by answering the descision problem a polynomial
number of times[28]. Generally, if the decision version of a problem is NP-
complete, then its associated optimization version is NP-hard[28, 30]; that
is, at least as hard as the hardest problems in NP.

In this thesis, we are investigating an optimization problem which will be for-
mally introduced in later sections. Optimization problems are ubiquitous in
many fields such as mathematics, economics, engineering, and computer sci-
ence, to name a few. They often involve finding an optimal solution to a problem
that is constrained by limited resources, conflicting objectives, or other restric-
tions. Discrete optimization (DO), in particular, focuses on problems where the
set of possible solutions is discrete or finite, rather than continuous. 0–1 IP
describes such an optimization problem, as the binary nature of the decision
variables denotes a yes-or-no decision to be made; ‘should I go left or right?’,
‘invest in this stock or the other?’, or ‘install a charger at this location, and if so,
which charger type?’.

1.2.4 A Brief Overview of Constraint Programming

A paradigm used when solving optimization problems is constraint program-
ming (CP). It is an approach that allows for the expression of combinatorial
problems using constraints, which are relations that must be satisfied by the
problems solution; that is, an assignment to the decision variables that satisfies
the constraints[31]. By defining the problem in terms of constraints, solvers can
apply specialized search techniques to efficiently explore the solution space,
pruning branches that cannot lead to a feasible or optimal solution.

In [32], the CP paradigm is described as a two-phases approach; modeling the
problem, and finding a solution to it. Themodeling process involves introducing
the variables of the problem, their domain(s), and defining the constraints
which governs them. The solution phase is conducted by built-in solvers which
interprets the model and (hopefully) finds an optimal solution. This creates
a modularity to the problem solving process, allowing developers to focus on
accurately representing the problem without worrying about the underlying
search algorithms or optimization techniques.

8 chapter 1 introduction

The mid 80’s saw the rise of the programming language CHIP, and towards the
late 80’s Prolog III, and the early 90’s CLP(R). These where the first languages
defined as Constraint Logic Programming (CLP) languages, which emerged
as a generalization of logic programming. Noteable features included arith-
metic constraints, linear arithmetic over rational numbers, and constraints over
sequences. Methods at the time for addressing constraint search problems in-
volved developing specialized programs in procedural languages. This process
demanded significant effort in program development, and the resulting pro-
grams frequently proved difficult to maintain, modify, and expand[33]. CHIP
was an attempt to overcome these difficulties, and was the first language to
offer finite domain constraints in its toolbox, and enabled a more declarative
and flexible approach to constraint solving techniques.

Later, the software company ILOG had its advent. Unlike CLPs - which had
programmable search - ILOG provided an Optimization Modeling Language
(OML), enabling the developer to only model the problem, and letting the
underlying ILOG Solver solve it[34]. This further emphasized the two-phase
approach in the CP paradigm, and led to a alternative problem-solving process
where developers could focus on problem representation and leave the intri-
cacies of the search algorithms and optimization techniques to the underlying
solvers. For more information regarding CP, CLP, and OML, we refer the reader
to [31].

1.3 State of the Art

In this section, we discuss the results of our literature study. It is mainly di-
vided into two categories, with some overlap. In section 1.3.1, we present a brief
overview concering the use of optimization tools in literature. Section 1.3.2 con-
cerns itself with literature on charging infrastructure for electric vehicles. Sec-
tion 1.3.3 highlights a paper by Wang et al. [18], where they present a method
minimizing the cost in charging infrastructures for electric buses.

1.3.1 Solving Optimization Problems

In section 1.2.4, we discussed the use of solvers in relation to CP. Over the years,
a variety of both commercial and open-source solvers have become available,
and their use has been prevalent in the literature. Many papers reviewed during
the literature study of this thesis, such as[12, 35, 36, 37, 17, 38, 39], have utilized
solvers as a tool to achieve their respective objectives.

From these papers, we identify two categories in which solvers have been em-

1.3 state of the art 9

ployed; (1), utilize them to solve a model, or (2), propose algorithms which
are compared with the solution of the solver (performance and quality of solu-
tion).

Lai and Lo[17], and Li et al.[37] implemented heuristic algorithms to solve
a Network Design Problem (NDP), and a routing problem with opportunity
charging, respecitvely. Their results were subsequently compared with those
obtained using the IBM ILOG CPLEX Optimizer (which we will refer to as CPLEX
from here on). Schiffer and Walther[35], and Havre et al.[12] used the Gurobi
optimization tool for solving routing problems. Other authors, such as Paparella
et al. [39] used both Gurobi and YALMIP(Yet Another LMI Parser)[40] in a joint
optimization model.

The use of solvers and optimization tools in relation to this thesis will be further
discussed in chapter 2.

1.3.2 Charging Infrastructure

Literature considering charging station (CS) locality for electric maritime trans-
port is relatively scarse. To the best of the authors knowledge, no literature
exsits on CS locality considering EAFs for public transport in urban areas. In
a recent master’s thesis by Driessen [14], a CS placement method for inland
shipping in the Netherlands was developed using a flow-refueling model; orig-
inally proposed by Kuby and Lim [38]. Driessen also mentions an absense of
scientific publications in this area, as literature usually consider battery swap-
ping location for ships, and the technical and financial feasibility of charging
stations. On problems related to planning EV charging infrastructure, Driessen
refers to a recent review of modeling options by Metais et al. [41].

In their review, 63 articles concerining infrastructure optimization were con-
sidered. These articles considered an optimization goal alongside a general
problem. This could be maximizing the number of EVs that can be charged at
a station, minimzing time spent waiting at a CS, or minimizing infrastructure
costs; finding a configuration that allows to have as few stations as possible
whilst covering the demand for charging. For the latter, location and sizing is
a general problem.

Metais et al. defined three main categories for optimization models; node-
based, path-based, and tour-based, where the main difference is the way in
which they represent the location of facilities (charging stations).

A node-based location model represents the location of a facility as a node
in a network. The model aims to identify a subset of nodes in the network

10 chapter 1 introduction

where facilities should be located to optimize a given objective function, such as
guaranteeing facilities appear within a certain predetermined distance.

A path-based location model represents the location of a facility as a set of
connected edges in a network, where the demand along an edge is represented
as a flow running through the edge. Followingly, some edges have a higher flow
than others, and so, the model aims to identify a subset of paths or routes in
the network where facilities should be located in order to cover a maximum
of flows. Contrary to the node-based model, facilities are placed alongside an
edge. Driessen [14], utilized a path-based optimization model.

A tour-based location model represents the location of a facility as a complete
tour or cycle in the network. The model aims to identify a subset of tours or
cycles that visit a set of demand points and include the location of a facility in
the tour. Facilities can be placed on any point along the tour, including both
nodes and edges. This was also illustrated by Driessen[14, p. 1], as the number
of CS in a feasable round trip could heavily depend on their location in the
network.

From the 63 articles, only two considered buses or public transport as a use
case, and only one[18] of the two minimized the infrastructure cost as an
optimization goal, which we will discuss in the next section.

1.3.3 The Electric Charging Station Placement Problem

Wang et al. [18] mentions several contributions to the placement of EV charging
stations. However a common property among them is the assumption that the
vehicles can freely traverse the area to find an appropriate charging station.
They proceed to formulate two problems concerning the charging infrastruc-
tre for electric buses, namely the Electric Charging Station Placement (ECSP)
problem, and the ECSP_LB (limited battery) problem. These are both problems
referring to a tour-based location model, where the candidate sites (where to
place the charging stations) are limited to nodes.

A key difference betweenWang et al. and the other papers included in [41] is the
assumption that vehicles operate under a fixed shedule, and so, uncertainties
regarding SoC and traversal patterns is quite low. Charging infrastucture for
buses are considered easier to design due to this fact[41]. Two approches are
briefly introduced: (1) If the vehicles can operate without charging in the
entirety of an operational period, they can simply be charged at a depot. (2)
Utilize fast charging stations at selected stops so that every vehicle can complete
their tours. A similar argument was made by Masliakova[42], where bus routes
and partial charging strategies was designed using Ant Colony Optimization

1.4 contribution to literautre 11

techniques with Genetic Algorthims.

Both the ECSP and ECSP_LB problems were designed such that the buses
traversing their respective routes should have sufficient SoC to complete their
trip. Their models considered the energy consumption for each stop sequence
in a route, and then the total energy consumption for the forwarding trip and
the returning trip, respectively. The recharging capabilities provided by the
charging infrastructure had to be sufficiently high, such that the buses were
always able to reach the next stop in the route.

Both the ECSP and ECSP_LB problems were proved to be NP-hard by reduction
from the Vertex Cover (VC) problem. The ECSP was formulated as a LP, where
heuristic algorithms were developed to approximate a solution. The ECSP_ LB
was formulated as an ILP, where the general case considers multiple routes.
In the special case considering a single route, a backtracking algorithm imple-
mented to find an optimal solution. This algorithm could also be extended to
the general case (a multiple backtracking algorithm), but at a higher complex-
ity.

To the best of the authors knowledge, this paper is considered state of the art
in the case where the vehicles operates on a fixed schedule.

1.4 Contribution to Literautre

The ECSP and ECSP_LB problems indeed introduce the concept of different
charging rates, but there is room to elaborate on certain aspects. For instance,
the nature of the chargers used could be more explicitly stated— whether it
is a single type with varying charging intervals or involves multiple charger
types with a fixed or varying interval. Additionally, the charging state of the
buses could be further clarified— whether they are partially charged or charge
to full.

The charging strategy currently revolves around the premise that the energy
charged at a stop cannot exceed a constant, 𝐵, representing the bus’s battery
size. Further diversification of charging strategies could potentially enhance
the practical applicability of the models. Finally, the designed use case of the
ECSP and ECSP_LB problems could be expanded upon— whether they are
meant for multiple route traversals or just a single one. We recognize this is an
important distinction, as:

1. The charging infrastructure desgined for a single traversal has to make
sure that the vehicle can reach the next stop in its route, once. This

12 chapter 1 introduction

implies when reaching the final stop in a route, the vehicles SoC could—in
theory—be close to 0%, or some other threshold value.

2. For multiple trips where the charging interval is fixed, the charging in-
frastructure has to make sure that the vehicle can reach the next stop
in the route multiple times. In other words, the recharging capabilities
must be at least as high as the energy consumed, or the SoC loss between
every traversal of the route must be small enough to support multiple
trips, as discussed in [42].

3. If the charging interval is not fixed, then the vehicle can charge to full at
any leg of its route, or choose an appropriate charging interval based on
the current energy needs.

We will draw inspiration from Wang et al., and propose a modified problem
formulation. Specifically, we will consider the case where the vehicles traverse
their route indefinetly, with multiple chargers types available, and a fixed charg-
ing interval.

1.5 Objectives

The objectives of this thesis are both scientific and practical. The primary objec-
tive is to determine the computational complexity of identifying the minimum
requirement for charging stations in a network of electric ferries. The minimum
requirement refers to the same objective of Wang et al., and is to minimize the
infrastructre cost, while providing sufficient charging capabilities.

Determining the computational complexity involves framing the problem in
a manner that allows it to be related to a known problem and attempting to
prove its complexity through reduction. This will subsequently allow for solving
strategies to emerge.

The solving strategies encompasses the practical objective of this thesis. We will
consider optimization tools which can be used to solve ourmodel of the problem.
Exploiting the model, we will demonstrate its feasibility by implementing an
application, and conduct several experiments as a proof of concept. This is
meant to compliment the primary objective, as well as showing that the problem
has a practical applicability.

We hereby refer to the problem as the Multiple-Trip Electric Charging Station
Placement (MT-ECSP) problem.

2
Tools
In this chapter, we present the tools used in this thesis. Since the objectives
does not concern implementations/improvements upon already existing algo-
rithms, but rather provide a proof of concept by means of programming, we
will utilize already existing tools for solving the MT-ECSP. To meet this end,
we will investigate optimization tools and programming languages suitable for
a time limited research project, like this thesis.

The hardware used is a laptop running Microsoft Windows 11 Education (v.
10.0.22621), equipped with 32GB RAM, and an Intel Core i7–9750H CPU @
2.60GHz.

The first requirement for any proprietary tool is compatibility with Windows
11, and preferrably integration with an IDE. Moreover, learning a programming
language unknown to the author could severely slow down—or potentially
hinder the progress of—the development phase. Finally, licensing constraints
would have a greater negative impact, as it either involves a budget for using
the tool, or is time limited by a trial period.

2.1 Programming Langugages

In choosing a programming language for the development phase, we prior-
itize languages in which the author has the most expertise and knowledge,

13

14 chapter 2 tools

specifically C++ and Python. Furthermore, it is essential to note that the opti-
mization tool itself carries out the heavy-duty computation in the experiment.
The selected programming language will be employed for preparing and ma-
nipulating data and act as a bridge with the chosen optimization tool.

C++ is an open soruce, high level general-purpose language. It is a compiled
langugage; the source code is passed to a compiler which generates machine
code executeable by the CPU prior to runtime. Some of C++’s core strengths
include low-level memory manipulation and template-based programming,
granting developers granular control over their applications’ performance. This
makes C++ a powerful language to write performance-critical applications,
examples being in the fields of game development, embedded systems, and
optimization software.

Python is an open source, high level and general-purpose programming lan-
guage. Unlike C++,Python is not a compiled language, but interepreted; source
code is being translated to machine code line by line during runtime. As a result,
interpreted languages tend to be slower in execution than compiled languages.
However, Python is widely known for its modularity (in terms of libraries), and
relatively simple and consistent syntax. This makes Python suitable for rapid
prototyping, which is imperative for the development phase.

2.2 Optimization Tools

In this section, we discuss four optimization tools that were considered for
solving the MT-ECSP; Gurobi, CPLEX, Google OR-Tools, and MiniZinc.

Gurobi [43] is an optimization solver that offer solvers for LP, MILP, Quadratic
Programming (QP), Mixed-Integer Quadratic Programming (MIQP), Quadrati-
cally Constrained Programming (QCP), and Mixed-integer Quadratically Con-
strained Programming (MIQCP). It is widely used in industries such as finance,
energy, logistics, and manufacturing for solving complex optimization prob-
lems. Gurobi supports Windows, Linux, and Mac OS X, and offers an API for
C, C++, C#, Java, Python, and MATLAB.

Similar to Gurobi, the CPLEX optimizer is compatible with all three operating
systems, and provides an API for the same programming languages.

MiniZinc[44] is a free, open source constraint modeling language which lets
the developer model constraint satisfaction—and optimization problems. It
was developed to create a standard modelling language for CP problems, as
experimenting with different solvers required the developer to learn different,

2.3 comparison 15

incompatible modelling langues; making them hard to compare[45]. MiniZinc
was then introduced as a solver independent modelling language which could
support multiple solvers such as Gurobi or CPLEX. The distribution of MiniZ-
inc is bundled with the MiniZinc IDE, compiler, and several pre-configured
solvers. In addition, the MiniZinc distrubution offer interfaces for Python and
JavaScript.

Google OR-Tools[46] is a free, open-source software suite for optimization. It
provides a rich API featuring specialized solvers, models, and algorithms for
solving problems such as linear and mixed-integer programming, constraint
programming, vehicle routing, and graph algorithms. The Google OR-Tools’
native library is implemented in C++, however, wrappers for the programming
languages Python, C#, and Java are available.

2.3 Comparison

Table 2.1 compares the different optimization tools considered for the devel-
opment phase. All four optimization tools offer a community, support, docu-
mentation, and example implementations. Notably, both MiniZinc and Google
OR-Tools provide dedicated Google discussion groups, making it convenient
for developers to ask questions about the respective tools by simply registering
with a Google email account. Unfortunately, both Gurobi and CPLEX require
a license for usage, immediately disqualifying them as potential tools for the
development phase.

Both theMiniZinc distribution andGoogle OR-Tools comes seemingly ready out-
of-the-box after some preliminary installation steps. It is important to note that,
while using theMiniZinc API with a programming language, one cannot directly
define a model using the programming languages’ syntax. Instead, the model
must be created using the MiniZinc language and subsequently loaded into the
respective languages’ API. Google OR-Tools, however, lets one directly define
a model using the chosen programming language’s syntax. Ultimately, this led
Google OR-Tools to be selected as the optimization tool for the development
phase.

As previously mentioned, both C++ and Python are compatible with Google
OR-Tools. Taken into consideration that the programming language should only
be used for pre-processing and interface with the underlying API, we consider
Python to be the most suitable language for the development phase.

16 chapter 2 tools

Feature CPLEX Gurobi MiniZinc Google OR-Tools
Python yes yes partially yes
C++ yes yes no yes
Free no no yes yes
IDE Integration yes yes yes yes
User Community yes yes yes yes
Support yes yes yes yes

Table 2.1: A brief comparison of different optimization tools, with respect to some
selected features.

3
Problem Formulation
In this chapter, we present the problem formulation of the MT-ECSP. First, the
notations, characteristics, and a preliminary analysis of the solution space is
presented. Then, we show that the MT-ECSP is NP–hard by reduction from
0–1 IP.

3.1 Characteristics

This section presents the characteristics of the MT-ECSP. We are aware that
uncertainties exist in several aspects of the problem, and so, deterministic con-
ditions are applied for simplification.

• All routes are bi-directional. The routes of the transit service are known,
and are bi-directional, i.e, the ferries travels to their end destination, and
then retraces their path back to the starting point, covering each stop in
reverse order. Moreover, we assume every route to be designed in such
a way that the ferries are able to traverse once without running out of
energy. This way, we neglect the battery constraint.

• The energy consumption is known. The energy consumption for each
route is assumed to represent the worst-case scenario,which in ourmodel
implies that the ferries are operating while being fully loaded, driving
at a constant speed. In reality, actual energy usage may be influenced by

17

18 chapter 3 problem formulation

various factors such as ascending or descending inclines, driving with or
against the current, and harnessing solar energy for recharging purposes.

• The charging duration is fixed. Charging occurrs whilst loading/un-
loading passengers at a stop equipped with a charger. Since the ferries
are assumed to be operating at full capacity, we also assume that the
time spent docked is the same for every stop, and so, we assume a partial
charging strategy.

• The ferries are homogenous.We assume the ferries to be homogenous;
they use the same amount of energy (if traversing the same route), and
have the same capacity.

• The charging effect is consistent. Conditions that affect the amount of
power recharged, such as battery temperature, is disregarded.

• Any stop can be equipped with a charger. A stop can only be equipped
with one charger, and each route must have at least one charger installed.
This implies that a vehicle cannot travel to a nearby stop outside its route
to charge.

• Grid availability is disregarded.We assume that the cost of installing
a charger is equal to the cost of purchasing it, and is not affected by grid
availability.

• Vehicles are operational at all times. The charging infrastructure is de-
signed in such a way that the vehicles are able to continously operate their
assigned route without having to stop for a prolonged amount of time,
i.e., the charging infrastructure must provide ample charging capabilities
to compensate for energy loss associated with a route traversal.

• Charger types are unlimited. We assume there can be an umlimited
amount of charger types used in the charging infrastructure.

3.2 Notation

The following notation is used to describe the MT-ECSP:

• A set S denoting all unique stops in the network, where S = {𝑠0, . . . , 𝑠𝑛},
where 𝑛 > 1. Each stop 𝑠𝑖 is represented as a tuple consisting of a value
and a cost. The functions 𝑣 (𝑠𝑖) and 𝑐 (𝑠𝑖) can be utilized to obtain the
value and cost of a stop, respectively.

3.3 instance 19

• A setR denoting all routes in the network,whereR = {𝑟0, . . . , 𝑟𝑝}, where
𝑝 > 0. Each route 𝑟𝑤 is represented by a sequence of stops, such that
R ⊆ S and 𝑟𝑤 ⊂ S.

• A setQ = {𝑄0, . . . , 𝑄𝑝} denoting the multiplicity of stops in a route. Each
element 𝑄𝑤 = {𝑞𝑤,0, . . . , 𝑞𝑤,𝑖} represents the occurrence of 𝑠𝑖 in route
𝑟𝑤 .

• A set K denoting the energy consumed for traversing each route in the
network, where K = {𝑘0, . . . , 𝑘𝑝}. Each element 𝑘𝑤 corresponds to the
energy consumption of route 𝑟𝑤 .

• A setV denoting the available charger types, whereV = {𝑣0, . . . , 𝑣𝑚},
where𝑚 > 0. Each element 𝑣 𝑗 denotes the charging power (𝑘𝑊) deliv-
ered when charging for a fixed time interval.

• A set C denoting the costs associated with purchasing each charger type,
where C = {𝑐0, . . . , 𝑐𝑚}. Each element 𝑐 𝑗 corresponds to the cost of
purchasing charger 𝑣 𝑗 .

The set Q serves to emphasize the value of installing a charger at a specific stop
𝑠𝑖 in the network. For example, consider an instance in which stop 𝑠𝑖 is visited
twice during the traversal of route 𝑟𝑤 . In this case, the vehicle would charge at
the stop both during the forwarding trip and the returning trip. Consequently,
the charging capabilitiy of 𝑣 𝑗 on 𝑠𝑖 is effectively doubled, while the cost 𝑐 𝑗 is
unchanged. It is important to note that we assume the vehicle to complete the
docking and charging procedures before departing from the first stop in route
𝑟𝑝 . As a result, the first stop in 𝑟𝑤 is not included in 𝑄𝑤 .

3.3 Instance

The goal of the MT-ECSP is to find the assignment of 𝑣 𝑗 to 𝑠𝑖 such that∑︁
𝑠∈𝑟𝑤

𝑣 (𝑠) ≥ 𝑘𝑤 ∀𝑤 = 0, 1, . . . , 𝑝 (3.1)

and the total cost 𝑐 is minimized. We denote the solutions violating and ad-
hering to (3.1) as infeasible and feasible solutions, respecitvely. The solution(s)
with the lowest cost and while adhering to (3.1), are refered to as optimal. All
the feasible solutions including the optimal denotes a feasible region.

An instance of the MT-ECSP instance is given by defining the sets R,K,V
and C. During a preprocessing step, we compute the reminding sets S and

20 chapter 3 problem formulation

𝑠1 𝑠2 𝑠3

Figure 3.1: A route, 𝑟 , with three stops, 𝑠0, 𝑠1, 𝑠2

Q.

We illustrate a simple instasnce with only one route and three charger types,
based in the network shown in fig. 3.1. Then, we get:

• R = {𝑟0} = {𝑠0, 𝑠1, 𝑠2, 𝑠1, 𝑠0}

• S = {𝑠0, 𝑠1, 𝑠2}

• Q = {𝑄0} = {1, 2, 1}, corresponding to 𝑠0, 𝑠1 and 𝑠2, respectively.

• K = {𝑘0} = 30.

• V = {𝑣0, 𝑣1, 𝑣2} = {5, 15, 50}.

• C = {𝑐0, 𝑐1, 𝑐2} = {10, 100, 1000},

where the values of the elements ofK,V, and C are arbitrary numbers.

Given that the energy consumption 𝑘0 = 30 and the multiplicity of stop 𝑠1 is
𝑄0,1 = 2, the optimal solution to this instance has a cost of 100, and corresponds
to assigning charger type 𝑣1 to stop 𝑠1, as 2𝑣1 ≥ 𝑘0. No other feasible solutions
are able to meet this end.

While the solution to this instance can be found by obeservation alone, there
are in fact 63 possible solutions. In the next section, we show that the solution
space of any instance grows exponentially with respect to the size of S and
V.

3.4 Charger Configurations

Given a network of any size, 𝑛, a maximum of 𝑛 chargers can be installed. We
express this as

𝑛∑︁
𝑒=1

(
𝑛

𝑒

)
, (3.2)

3.4 charger configurations 21

e
(
𝑛
𝑒

)
Combinations Options

1
(3
1
)

{𝑠1} or {𝑠2} or {𝑠3} 3

2
(3
2
)

{𝑠1, 𝑠2} or {𝑠1, 𝑠3} or {𝑠2, 𝑠3} 3

3
(3
3
)

{𝑠1, 𝑠2, 𝑠3} 1

Table 3.1: Options for selecting 𝑒 candidate sites from a route total of 3 stops.

which denotes the number of ways to equip 𝑛 stops with 𝑒 charging stations.
Then, for every instance of 𝑒, there are 𝑚 available charger types to choose
from. We extend (3.2), and get

𝑛∑︁
𝑒=1

(
𝑛

𝑒

)
𝑚𝑒 . (3.3)

Now, we continue with the example used in the previous section; a single route
with three stops, such that𝑚 = 𝑛 = 3.(
𝑛
𝑒

)
implies the number of ways to select candidate sites for different values of

𝑒, shown in table 3.1.

Ultimately, (3.3) yields a total of 3 ∗ 31 + 3 ∗ 32 + 1 ∗ 33 = 63 possible charger
configurations for this instance.

By experimenting with different sizes of 𝑛 = {1, 2, 3, 4, 5, 6}, respectively, we
observe (3.3) defines the sequence 3, 15, 63, 255, 1023, 4095. We express it as
a function of 𝑛

𝑓 (𝑛) = 4𝑛 − 1, (3.4)

where −1 denotes at least one charger has to be installed.

Recall𝑚 = 3 in the example. Since𝑚 can be any positive integer in the general
case, we rewrite (3.4) as a function of 𝑛 and𝑚 such that

𝑓 (𝑛,𝑚) = (𝑚 + 1)𝑛 − 1, (3.5)

where (𝑚 + 1) denotes the number of choices to be made for each stop, con-
sisting of every charger type (𝑚) and no charger type (+1).

A graphical representation of (3.5) can be seen in fig. 3.2. Each instance is
represented as a rectangle, and the height and color of the rectangle denotes
the size of the solution space for that instance.

22 chapter 3 problem formulation

20

40

1

2

3

4

5
10−2

1020

1042

Network size (𝑛)Charger types (𝑚)

N
um
be
ro
fs
ol
ut
io
ns

Surface plot of 𝑓 (𝑛,𝑚)

Figure 3.2: Number of solutions for 250 instances of the MT-ECSP, respecitvely.

3.5 complexity analysis 23

We have now shown that the number of possible charging configurations grows
exponentially with respect to the size of the network. This exponential growth,
known as the combinatorial explosion[28], is present in many other classical
combinatorial optimization problems. Examples being TSP, KP, and VC, where
they, too, exhibit an exponential growth.

3.5 Complexity Analysis

In this section,we prove that the MT-ECSP isNP-hard. Recall from section 1.3.1
that if a problem isNP-complete, then its corresponding optimization version
is NP-hard. Thus, the procedure for proving NP-hardness is first showing
that the MT-ECSP is inNP. Then, show that an already knownNP-complete
problem,𝐵, can be reduced to theMT-ECSP, in polynomial time,𝐵 <𝑝 MT-ECSP,
or MT-ECSP <𝑝 𝐵. We demonstrate the latter.

Theorem 1. The Multiple-Trip Electric Charging Station Problem (MT-ECSP) is
NP-hard.

Proof. To prove the hardness of the MT-ECSP, we show that it is in NP and is
NP-complete by reduction from 0-1 IP.

1. MT-ECSP ∈ NP:

Given a solution to theMT-ECSP,we can verify in polynomial timewhether
a solution is valid. Since the definition of the MT-ECSP is an optimization
problem, we define its decision version as the following:

Is there an assignment of 𝑣 𝑗 to 𝑠𝑖 such that∑︁
𝑠𝑖 ∈𝑟𝑤

𝑣 (𝑠𝑖) ≥ 𝑘𝑤 and
∑︁
𝑠𝑖 ∈𝑆

𝑐 (𝑠𝑖) ≤ 𝑡 ∀𝑤 = 0, 1, . . . , 𝑝,

where 𝑡 is a threshold value for the objective function.

Let 𝑍 be a certificate to the MT-ECSP verification algorithm, containing
the charger type assigned to the unique stops in the network. For the in-
stance previously created using fig. 3.1,𝑍 = {0, 𝑣1, 0}, and 𝑆 = {𝑠0, 𝑠1, 𝑠2}.
Then, the verification algorithm assigns 𝑧𝑖 to 𝑠𝑖 , and checks whether∑︁

𝑠𝑖 ∈𝑟𝑤
𝑣 (𝑠𝑖) ≥ 𝑘𝑤 and

∑︁
𝑠𝑖 ∈𝑟𝑤

𝑐 (𝑠𝑖) ≤ 𝑡 ∀𝑤 = 0, 1, . . . , 𝑝

where each step of the algorithm can be computed in polynimial time

24 chapter 3 problem formulation

with the respect to the input size. Therefore, the overall complexity of the
verification algorithm is polynomial, and followingly, MT-ECSP ∈ NP.

2. MT-ECSP is NP-complete:

Recall from section 1.2.2 that the 0-1 IP in its canonical form is given by

min c𝑇 x
s.t Ax ≤ b

x ≥ 0,
where

• A is the coefficient matrix. It contains the coefficients of the decision
variables in the inequality constraints.

• b is the constraint vector. It represents the upper bounds on the
inequality constraints.

• c is the cost vector. It contains the coefficients of the decision vari-
ables in the objective function.

• x is the decision variable vector. It represents the variables in the
problem that must take binary values, as required by the 0-1 IP
formulation.

• b, c, and x are column vectors.

We construct the vector x by transforming each original variable from
S into a set of binary decision variables, one for each assignment of 𝑣 𝑗
to 𝑠𝑖 , such that x = {𝑥00, 𝑥01, . . . , 𝑥0𝑚, . . . , 𝑥𝑛𝑚}. These binary decision
variables, 𝑥𝑖 𝑗 , indicate whether 𝑠𝑖 takes 𝑣 𝑗 . If all 𝑥𝑖 𝑗 ’s are 0 for a specific
variable 𝑠𝑖 , it means that 𝑠𝑖 takes no value, i.e., the stop is not equipped
with a charger. This transformation takes 𝑂 (𝑛𝑚) time, where 𝑛 is the
size of S and𝑚 is the size of V.

Recall that at most one charger can be installed at a stop. We formulate
this as 𝑛 constraints:

𝑚∑︁
𝑗=0

𝑥𝑖 𝑗 ≤ 1 ∀𝑖 ∈ 0, 1, . . . , 𝑛

Lastly, we introduce 𝑝 energy constraints such that the charging infras-
tructure installed on every route provides recharging facilities at least

3.5 complexity analysis 25

equal to the energy consumed.

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑞𝑤𝑖𝑣 𝑗𝑥𝑖 𝑗 ≥ 𝑘𝑤 ∀𝑤 ∈ 0, 1, . . . , 𝑝

Then, the 0-1 IP formulation can be written as:

minimize
𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑐 𝑗𝑥𝑖 𝑗 (3.6)

subject to
𝑚∑︁
𝑗=0

𝑥𝑖 𝑗 ≤ 1 ∀𝑖 ∈ 0, 1, . . . , 𝑛, (3.7)

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑞𝑤𝑖𝑣 𝑗𝑥𝑖 𝑗 ≥ 𝑘𝑤 ∀𝑤 ∈ 0, 1, . . . , 𝑝, and (3.8)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 0, 1, . . . , 𝑛,∀𝑗 ∈ 0, 1, . . . ,𝑚,

which is the model of the MT-ECSP.

We express the above formulation in its canonical form, and get c𝑇 x:

[
C0 C1 . . . C𝑚

]
1×𝑚


X0
X1
...

X𝑚,

𝑚×1

where X𝑗 =
[
𝑥 𝑗0 𝑥 𝑗1 . . . 𝑥 𝑗𝑛

]𝑇
1×𝑛, and C𝑗 =

[
𝑐 𝑗 𝑐 𝑗 . . . 𝑐 𝑗

]
1×𝑛.

Lastly, Ax ≤ b:

1𝑛 0𝑛 . . . 0𝑛
0𝑛 1𝑛 . . . 0𝑛
...

...
. . .

...

0𝑛 0𝑛 . . . 1𝑛
U U . . . U
...

...
. . .

...

U U . . . U

 (𝑛+𝑤)×𝑚


X0
X1
...

X𝑚

𝑚×1

≤



1
1
...

1
−𝑘0
...

−𝑘𝑤

 (𝑛+𝑤)×1

,

where 1𝑛 and 0𝑛 are 𝑛-dimensional vectors of 1’s and 0’s respectively,
U =

[
−𝑢0 −𝑢1 . . . −𝑢𝑚

]
1×𝑛, and 𝑢 𝑗 is the product of 𝑞𝑤𝑖𝑣 𝑗 .

26 chapter 3 problem formulation

We observe, by multiplying the matrices and exploiting its components,
we get the following system of equations

𝑥00 + 𝑥01 + · · · + 𝑥0𝑚 ≤ 1
𝑥10 + 𝑥11 + · · · + 𝑥1𝑚 ≤ 1

...

𝑥𝑛0 + 𝑥𝑛1 + · · · + 𝑥𝑛𝑚 ≤ 1
−𝑢0(𝑥00 + 𝑥01 · · · + 𝑥0𝑚)
−𝑢1(𝑥10 + 𝑥11 · · · + 𝑥1𝑚)

...

−𝑢𝑚 (𝑥𝑛0 + 𝑥𝑛1 + · · · + 𝑥𝑛𝑚) ≤ −𝑘0
...

−𝑢0(𝑥00 + 𝑥01 · · · + 𝑥0𝑚)
−𝑢1(𝑥10 + 𝑥11 · · · + 𝑥1𝑚)

...

−𝑢𝑚 (𝑥𝑛0 + 𝑥𝑛1 + · · · + 𝑥𝑛𝑚) ≤ −𝑘𝑤,

which matches the constraints given in the 0-1 IP formulation of the MT-
ECSP. Note that 𝑢 𝑗 and 𝑘𝑝 are multiplied by -1 to properly formulate the
constraints in the Ax ≤ b form. We emphasize that 1𝑛, 0𝑛, U, C𝑗 , and X𝑗
are included to make the formulation more compact and readable.

The decision version of the MT-ECSP as a 0-1 IP can be formulated by
introducing a threshold value of the objective function, 𝑡 , and reads:

Is there a binary vector x ∈ {0, 1}𝑛 such that c𝑇 x ≤ 𝑡 and Ax ≤ b?

Let x∗ be a certificate to the verification algorithm. For instance,

x∗ = {𝑥∗00, 𝑥∗01, . . . , 𝑥∗0𝑚, 𝑥∗1𝑚 . . . , 𝑥∗𝑛𝑚} = {1, 0, . . . , 0, 1 . . . 1}.

We denote 𝑦 as the matrix-vector product of Ax∗, and 𝑧 as the objective
function value c𝑇 x∗. Then, the verification algorithm can be expressed
as follows:

𝑦𝑖 ≤ 𝑏𝑖 ∀𝑖 ∈ 1, . . . ,𝑚 and 𝑧 ≤ 𝑡 (3.9)

If both conditions in eq. (3.9) hold true, then the verification algorithm
outputs yes. Each step of the verification algorithm can be computed in

3.5 complexity analysis 27

polynomial time with respect to the input size. Specifically, computing 𝑦
and 𝑧 involve a linear number of multiplications and additions, while both
criteria in eq. (3.9) involve a linear number of comparisons. Therefore,
the overall complexity of the verification algorithm is polynomial.

To summarize step 2, the MT-ECSP can be reduced to a 0-1 IP in poly-
nomial time as follows. First, transform the set 𝑆 into a binary vector 𝑥
by combining 𝑆 and 𝑉 , which takes 𝑂 (𝑛𝑚) time. Then, introduce 𝑛 + 𝑝
constraints, and formulate the 0-1 IP in its canonical form. Lastly, verify
the solution in polynomial time.

Thus, we conlude that MT-ECSP <𝑝 0-1 IP.

By combining the results of steps 1 and 2, we conclude that the MT-ECSP is
NP-complete. Thus, its corresponding optimization version is NP-hard. □

4
Implementation
In this chapter, we present the results of our development phase, where Google
Or-Tools’ Constraint Programming Satisfiability (CP-SAT) solver is applied to
solve the MT-ECSP. First, we demonstrate how the notation and model from
chapter 3 interacts with Google OR-Tools’ API in the devised program. Then,
we show how the experiments are set up.

4.1 Overview

The implementation is written to follow the notation used in section 3.2, and
the mathematical formulation of the model given in eqs. (3.6) to (3.8) as close
as possible. The source code shown in the next subsections will be snippets
from the complete implementation, which can obtained by a request to the
author.

4.1.1 MT-ECSP Instance

The implementation consists of a single class, illustrated in fig. 4.1. The init
function initializes the MT-ECSP instance with the setsV, C,K, R and Q. All
experiments assumes bi-directional routes. Therefore, Q is an optional argu-
ment, and should be used to define an alternative route symmetry.

29

30 chapter 4 implementation

1 class MT_ECSP:
2 def __init__(self, V, C, K, R, Q=None):
3 def __define_variables(model):
4 def __initialize_model():
5 def search_for_all_solutions(min, obj_fun):

Figure 4.1: The MT-ECSP class with functions.

1 def __initialize_model(self):
2 model = cp_model.CpModel()
3

4 X, energy_constraints, x =
5 self.__define_variables(model)
6

7 for x_i in x.values():
8 model.Add(sum(x_i) <= 1)
9

10 for w, k_w in enumerate(self.K):
11 model.Add(energy_constraints[w] >= k_w)

Figure 4.2: The model is initialized as an instance of CpModel, provided by Google OR-
Tools’ API. After a preprocessing step, the constraints defined in eqs. (3.7)
and (3.8) are added to the model.

In fig. 4.2, we demonstrate how the model is initialized.

The creation of the binary decision variables 𝑥𝑖 𝑗 , eqs. (3.6) and (3.8), are illus-
trated in fig. 4.3.

4.1.2 Solving the Model

After initilazing the model, it is then passed to the solver. We demonstrate this
in fig. 4.4. This apporach allows for multiple solutions with an equal objective
value to be found.

The entry point of the program is given in fig. 4.5. Observe, that the search_for_solutions
function is called twice; first to find the optimal objective function value, and
then to search the solution space.

4.1 overview 31

1 def __define_variables(self, model):
2 X = [[[] for _ in r_p] for r_p in self.R]
3 objective_function = 0
4 energy_constraints = []
5 x = {}
6

7 for w in range(len(self.R)): # decision variables
8 for i, s_i in enumerate(self.R[w]):
9 if s_i not in x:
10 x[s_i] = [model.NewBoolVar(f'x{s_i}_{j}')

for j in range(len(self.V))]↩→
11 X[w][i] = x[s_i]
12

13 for x_, Q_w in zip(X, self.Q): # energy constraints
14 v_f = 0
15 for x_i, q_w_i in zip(x_, Q_w):
16 for j in range(len(x_i)):
17 v_f += q_w_i * self.V[j] * x_i[j]
18 energy_constraints.append(v_f)
19

20 for i in x.keys(): # objective function
21 for j in range(len(x[i])):
22 objective_function += x[i][j] * self.C[j]
23

24 self.objective_function = objective_function
25

26 return X, energy_constraints, x

Figure 4.3: Defintion of variables and constraints. 𝑋 is a transformation of the set R,
and contains the boolean descision variables 𝑥𝑖 𝑗 instead of the stops 𝑠𝑖 . 𝑥
is the set of all unique 𝑥𝑖 𝑗 .

32 chapter 4 implementation

1 def search_for_solutions(self, minimize=None,
objective_value):↩→

2 model = self.__initialize_model()
3 if minimize:
4 model.Minimize(self.objective_function)
5 solver = cp_model.CpSolver()
6 status = solver.Solve(model)
7

8 return solver.ObjectiveValue()
9 else:
10 model.Add(self.objective_function ==

objective_value)↩→
11

12 solver = cp_model.CpSolver()
13 solver.parameters.enumerate_all_solutions =

True↩→
14 status = solver.Solve(model)

Figure 4.4: The CP-SAT solver is solving the MT-ECSP in a two-stage process. First,
the objective function is minimized to find the optimal objective value.
Then, a new model is created, where the objective value is added as an
additional constraint.

1 def main():
2 V = [5, 15, 50]
3 C = [10, 100, 1000]
4

5 K, R = generate_network()
6

7 mt_ecsp = MT_ECSP(V, C, K, R)
8 obj_val = mt_ecsp.search_for_solutions()
9 mt_ecsp.search_for_solutions(minimize=True,

obj_val)↩→

Figure 4.5: The main function of the program. The setsV and C are defined. Then,
K and R are initialized during the generation of the network.

4.2 setup of experiments 33

𝑠0𝑟0 𝑠1 𝑠2 𝑘0 = 30

𝑠3𝑟1 𝑠4 𝑠5 𝑘1 = 120

𝑠6𝑟2 𝑠7 𝑠8 𝑘2 = 80

𝑠9

𝑟3

𝑘3 = 160

Figure 4.6: An arbitrary network consisting of 4 routes and 10 stops. Each route is
distinguished by the coloring of the route name and edges between each
stop 𝑠𝑖 . Observe that the stops 𝑠2, 𝑠5, 𝑠8 are shared between rotues.

4.2 Setup of Experiments

We devised several experiments to test the correctness of our implementation,
the feasibility of the model, and the performance of the program. Three ex-
periments were manually defined, the route illustrated in fig. 3.1, the network
illustrated in fig. 4.6, and a network suggested by Hyke, illusrated in fig. 4.7.
Table 4.1 contains metadata associated with fig. 4.7.

In addition, we created route initialization procedures both for single and mul-
tiple routes. The procedure for generating a single route is demonstrated in
fig. 4.8. By not supplying any arguments, the function sets up the route shown
in fig. 3.1.

Generation of multiple routes can be done randomly by passing arguments
to the function shown in fig. 4.9. The default setting is the generation of the
routes illustrated in fig. 4.6. We emphasize that the values of 𝐾 are arbritary
numbers, and denotes the energy consumption of traversing the route.

Lastly, fig. 4.10 demonstrates how the network suggested by Hyke can be ini-
tialized.

34 chapter 4 implementation

𝑠0𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑠11

𝑠12

𝑠13

𝑠14𝑠15

𝑠16

𝑠17𝑠18

𝑠19

𝑠0𝑠1

𝑠2

𝑠3

𝑠19

Figure 4.7: A suggested network provided by Hyke. The red boxes emphasizes the
area covering 𝑠0, 𝑠1, 𝑠2, 𝑠3, and 𝑠19. In the bottom red box, the colored
edges denotes the different routes in that area.

4.2 setup of experiments 35

𝑟𝑤 𝑠𝑖 ∈ 𝑟𝑤 𝑘𝑤

𝑟0 𝑠0, 𝑠2, 𝑠3 122
𝑟1 𝑠0, 𝑠1, 𝑠3 149
𝑟2 𝑠1, 𝑠2 32
𝑟3 𝑠4, 𝑠8 47
𝑟4 𝑠4, 𝑠12 29
𝑟5 𝑠4, 𝑠5, 𝑠6 11
𝑟6 𝑠4, 𝑠7 18
𝑟7 𝑠4, 𝑠9, 𝑠10, 𝑠11 47
𝑟8 𝑠3, 𝑠19 73
𝑟9 𝑠3, 𝑠13, 𝑠14, 𝑠15 54
𝑟10 𝑠3, 𝑠13, 𝑠16, 𝑠17, 𝑠18 57

Table 4.1: The routes, stops, and the energy usage for the network shown in fig. 4.7.

1 def generate_synthetic_route(n=None, K=None):
2 if not n and not K:
3 return [30], [[0, 1, 2]]
4 else:
5 return [K], [list(range(n))]

Figure 4.8: Single route generation procedures.

36 chapter 4 implementation

1 def generate_synthetic_network(w=None, n=None):
2 if not w and not n:
3 return [30, 120, 80, 160], [[0, 1, 2], [3, 4,

5], [6, 7, 8], [9, 7, 4, 1]]↩→
4 else:
5 K = [random.randint(10, 180) for _ in

range(w)]↩→
6 R = []
7

8 for _ in range(w):
9 r_w = []
10 r_w_size = random.randint(3, n)
11 while len(r_w) < r_w_size:
12 value = random.randint(0, n - 1)
13 if value not in r_w:
14 r_w.append(value)
15

16 R.append(r_w)
17

18 return K, R

Figure 4.9: Network initilization procedures.

1 def generate_suggested_network(E):
2 NM = 0.539956803
3 NME = E * NM
4

5 R = [[0, 2, 3], [0, 1, 3], [1, 2], [
6 4, 8], [4, 12], [4, 5, 6], [4, 7], [4, 9, 10,

11], [3, 19], [3, 13, 14, 15], [3, 13, 16,
17, 18]]

↩→
↩→

7

8 K_ = [8.25 * NME, 10.05 * NME, 2.20 * NME, 3.2 *
NME, 2.0 * NME, 0.75 * NME,↩→

9 1.23 * NME, 3.20 * NME, 4.9 * NME, 3.67 * NME,
3.88 * NME]↩→

10

11 K = [int(k_w * 2) for k_w in K_]
12

13 return K, R

Figure 4.10: Initialization of the network provided by Hyke. The argument 𝐸 denotes
the energy consumption of the ferry. The variable 𝑁𝑀𝐸 denotes the
energy usage per nautical mile. The numbers in 𝐾_ denotes the total
distance in kM for the route.

5
Performance
This section presents the results of the experiments. It is divided into two
subsections, manually defined networks, and benchmarks, respecitvely. All the
experiments were set up using three charger types, where the values 𝑣 𝑗 denotes
charged energy for a fixed time interval. First, we present the results of the
manually defined networks. Then, a benchmark of the application.

5.1 Manually Defined Networks

The first two experiments were conducted to verify the correctness of our
implementation andmodel using the networks illustrated in fig. 3.1 and fig. 4.6,
respecitvely. The third experiment was conducted to a test our solution on a
real network, provided Hyke. All experiments were solved to optimality within
30ms.

We show the optimal solutions for the experiments in fig. 5.1, fig. 5.2, and
fig. 5.3, using the output from our application. Two optimal solutions were
found for fig. 4.6.

37

38 chapter 5 performance

𝑠0 𝑠1 𝑠2 𝑘0 = 30

𝑣2 = 50
𝑣1 = 15
𝑣0 = 5
No charger

Figure 5.1: Optimal solution to the network illustrated in fig. 3.1.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

𝑠6 𝑠7 𝑠8

𝑠9

(a) First optimal solution.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

𝑠6 𝑠7 𝑠8

𝑠9

(b) Second optimal solution.

Figure 5.2: Optimal solutions to the network illusrated in fig. 4.6.

5.1 manually defined networks 39

𝑠0𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑠11

𝑠12

𝑠13

𝑠14𝑠15

𝑠16

𝑠17𝑠18

𝑠19

Figure 5.3: The optimal solution to the network suggested by Hyke.

40 chapter 5 performance

5.2 Benchmarks

As all the results shown in the previous section were solved to optimality within
a suprisingly short time frame, we conducted additional experiments with
larger instances to gain additional insights into the performance of the ap-
plication. This was achieved by benchmarking our application for 30 instances
of the MT-ECSP for a single route.

The size of each route initially starts from 𝑛 = 3, and incrementally increases to
𝑛 = 33. 𝐾 remains constant for every instance, and is set to 300. The runtime
of the benchmark was monitored, alongside data retrieved from the solver. In
the output below, we present the profiling result for the main function of our
program using the line_profiler[47] tool.
Timer unit: 1e -06 s

Total time: 54.1581 s
File: Solver_routes2 .py
Function : main at line 173

Line # Hits Time Per Hit % Time Line Contents
==

...
180 30 26.1 0.8 0.0 for i in range (3, 33, 1):
181 30 209.0 6.7 0.0 K, R = generate_synthetic_route (K=300 , n=

↩→ i)
182
183 30 1017.1 32.8 0.0 mt_ecsp = MT_ECSP (V, C, K,
184 30 9.0 0.3 0.0 R=R, Q=None)
185 30 908346.7 29301.5 1.7 obj_val = mt_ecsp . search_for_solutions ()
186 30 53248460.1 1717692.3 98.3 mt_ecsp . search_for_solutions (minimize =

↩→ False , objective_function =obj_val , i=i)

The benchmark ran for a total of 54.1581 seconds, where the second call
to search_ for_ solutions used 98.3% of the execution time; when the solver
searched for multiple solutions with the minimized objective value. In figs. 5.4
to 5.7, we show statistics provided by the solver for the same benchmark.

In 5.4, the optimal objective value increases from 0 to 4000 for 𝑛 = 3 to 𝑛 = 4.
This is due to an infeasible solution being found for 𝑛 = 3, as no objective value
is at least 𝐾 . We observe that the optimal objective value rapidly decreases
from 𝑛 = 5 to 𝑛 = 11, and then slowly flattens from 𝑛 = 12 to 𝑛 = 33.

Figure 5.5 shows, that as the number of optimal solutions found increases, so
too does the time taken to solve. This is, however, not always the case, as the
highest number of optimal solutions was found when 𝑛 = 20, whereas the
highest time spent was for 𝑛 = 23.

Figures 5.6 and 5.7 illustrates more clearly the factors contributing to time
expenditure. Both the number of explored search branches and the number of
conflicts reached their peak values when the time spent searching was at its
highest.

5.2 benchmarks 41

0 5 10 15 20 25 30 35
0

2

4

·103

O
bj
ec
tiv
e
va
lu
e

0

0.5

1

1.5

2·104

O
pt
im
al
so
lu
tio
nsValue

Solutions

Figure 5.4: Optimal objective values, alongside the number of optimal solutions found
for 𝑛.

0 5 10 15 20 25 30 35
0

5

10

Ti
m
e
(s
ec
on
ds
)

0

0.5

1

1.5

2·104

O
pt
im
al
so
lu
tio
nsTime

Solutions

Figure 5.5: Time spent solving for𝑛, alongside the number of optimal solutions found.

0 5 10 15 20 25 30 35
0

5

10

Ti
m
e
(s
ec
on
ds
)

0

1

2

3

4·105

Ex
pl
or
ed
br
an
ch
esTime

Branches

Figure 5.6: Number of search branches explored, alongside time taken to solve for 𝑛.

42 chapter 5 performance

0 5 10 15 20 25 30 35
0

5

10

Ti
m
e
(s
ec
on
ds
)

0

0.5

1
·105

N
um
be
ro
fc
on
fli
ct
s

Time
Conflicts

Figure 5.7: Number of occured conflicts for size 𝑛.

6
Discussion
In this chapter, we discuss the results found in chapters 3 to 5. First, we discuss
how the results of chapter 3 were obtained. Then, we reflect on the results
from chapters 4 and 5.

6.1 Computational Complexity

The primary objective of this thesis was to establish the computational com-
plexity of the MT-ECSP, where the paper “Electric Vehicle Charging Station
Placement for Urban Public Bus Systems’ by Wang et al. [18] was used as a
starting point. The first leg of determining the complexity involved formulat-
ing the nomenclature, mentioned in section 3.2. After closer inspection, we
recognized that the stops in each route and the charging effect provided by the
chargers could be seen as variables and values, respectively.

Subsequently, the procedure of assigning values to variables described a finite
set of choices to be made, with contraints on those choices. For instance, the
sum of all variables in a route should be at least some integer, denoting the
energy consumption of that route. Moreover, only one charger could be installed
at a stop, implying once a charger had been installed, all other choices would
be disregarded. Section 3.3 did not quite capture the latter constraint, and so,
we investigated methods for representing this relationship.

43

44 chapter 6 discussion

Wang et al. [18] used a binary decision varible 𝑥𝑖 to denote whether a charging
station was placed at stop 𝑖 in their model. As a result, we extended 𝑥𝑖 to 𝑥𝑖 𝑗 ,
denoting both the conditions of whether a charger was installed, and which
charger type. The study of IPs was a consequence of this result. Seeing that Karp
proved the special case of IPs, 0–1 IPs to be NP-complete [24], this became a
natural candidate for the reduction, leading up establishing the computational
complexity of the MT-ECSP.

6.2 Proof of Concept

The secondary objective of this thesis was to compliment the scientific results
by investigating solution strategies for the MT-ECSP as a proof of concept. Ulti-
mately, we utilized Google OR-Tools’ API alongside their CP-SAT solver to meet
this end. In chapter 4, we demonstrated how such a solution strategy could be
implemented, and presented the results in chapter 5.

The findings in figs. 5.1 to 5.3 revealed valueable insights. Firstly, all three
experiments were solved to optimality, suggesting that our model is properly
defined, and the implementation is correct. The solution found for fig. 5.1 was
also the same solution we found by observation in section 3.3, conforming to
the above sentence. Lastly, all experiments were solved within the fraction of a
second, showing that real world instances of the MT-ECSP can be solved quickly
and precisely.

A powerful feature of the CP-SAT solver is the ability to search for multiple so-
lutions. For the practical purposes of MT-ECSP, multiple solutions may provide
valueable insights to the charging infrastructure. As mentioned in section 3.1,
grid availability is disregarded. In practice, however, absense of grid availability
may impose additional costs of installing a charger, as sufficient infrastructure
may not be present at a candidate site. Finding multiple optimal solutions to the
MT-ECSP allows for alternative strategies to be discovered, which may reduce
the overall cost of the infrastructure.

This is reflected in the result shown in fig. 5.2,where different chargers installed
on 𝑠3 and 𝑠5 can be switched, while yielding the same objective value.

Based the results shown in figs. 5.2a and 5.2b, 𝑟2 and 𝑟3 had a charging infras-
tucture yielding 20 and 50 kW more than the energy consumed by traversing
the routes, respectively. This provides the possibility of exploiting the excess
energy. Due to the deterministic assumptions of the MT-ECSP, the only exploita-
tion would include increasing the average speed used to traverse those routes,
which in turn would imply a higher energy consumption.

6.3 benchmarks 45

6.3 Benchmarks

In section 5.2, we presented a performance analysis of our implementation,
consisting of a benchmark and a profiling test. The purpose of the analysis
was to experiment with instances of the MT-ECSP where the solver would
identify solutions from a larger solution space (determined by eq. (3.5)), and
possibly a larger number of solutions. This way, we would be able to deter-
mine what impact—if any—the solution space had on the performance of the
program.

The results presented in fig. 5.4 show that the solver found a maximum of
nearly 20000 optimal solutions when 𝑛 = 20, determined by the objective
value used for the search procedure. Figure 5.5 clearly shows, however, that
there is no correlation between the size of the solution space and the runtime
of the application. The profiling result compliments this, as only 1.7% of the
runtime was used to find optimal objective values for all instances.

Rather, figs. 5.5 to 5.7 suggest that the runtime is determined by the number
of optimal solutions found and the procedures involved in identifying them. In
other words, how hard it is to find solutions for a given objective value.

7
Concluding Remarks
This thesis set out to explore the problem of determing minimum requirements
for charging infrastructures in networks where electric ferries operate on a fixed
schedule. Drawing inspiration from literature, and particularly from Wang.et
al. [18], we named the problem MT-ECSP; the Multiple-Trip Electric Charging
Station Placement problem. This due to the similarities between the objectives
of the problems.

The categorical nature of the MT-ECSP was formulated as an optimization
problem, rooted in minimizing the overall cost of the charging infrastructure.
A key characteristic of the MT-ECSP included finding a charging infrastructure
that could—in theory—support the vehicles indefinetly, with partial recharg-
ing.

The primary objective of the thesis was to determine the complexity of the MT-
ECSP, and propose methods for solving it. To meet this end, we analysed the
characteristics of the MT-ECSP, showing—including, but not limited to—that
the solution space grew exponentially with respect to the size of the input.
Subsequently, we proved that the MT-ECSP was NP-hard, by reduction to the
famous NP-complete problem, 0–1 IP.

By exploiting the model, we implemented an application to provide a proof
of concept, complimenting the results from chapter 3. This was the secondary
objective of this thesis.

47

48 chapter 7 concluding remarks

The proof of concept involved conducting several experiments, each focusing
on specific instances of the MT-ECSP, using Google OR-Tools’ CP-SAT Solver
as a tool to solve them. The results showed that the MT-ECSP model is both
feasible and solveable in an acceptable time frame for synthetic networks and
real world instances.

As a concluding remark, the author is satisfied with the results, and most im-
portantly, the learning outcome obtained during the course of this research
project. A final note on future work is elaborated in the next section.

7.1 Future Work

The results discussed in the previous chapter show that the MT-ECSP can be
solved to optimality within a very short time frame, both for custom and real
ferry networks. While the MT-ECSP primiarily is meant to find optimal charg-
ing infrastructures for electric ferries operating under a fixed schedule, we
argue that ferries are a specific use case, and not by any means a limitation for
usage.

Wang et al.[18] tested their solution on a real public bus system with 115 bus
routes, and over 900 stops. While we have not considered an instance of such
magnitude in this thesis, it would without a doubt provide deeper insights into
the solvability and possible limitations of the model and implementation. If the
MT-ECSP proves to be solveable for such large scale networks, then comparing
our results with Wang et al. would make an enticing project.

We mentioned in Sections 1.3.3 and 1.4 a thesis by Masliakova [42], where Ant
Colony Optimization with Genetic Algorthims was used to determine optimal
routing and charging procedures for electric buses. Key takeaways from the
thesis in relation to this research project includes a parameter denoting the
amount of trips a route is traversed by a bus during the span of a day, and varying
charging intervals for each stop. The charging intervals were determined such
that the bus always has enough energy to reach the next stop in a route.

We assumed the ferries to be operating at full capacity all day, implying a fixed
charging interval. A possible improvement to our model would be to include
optimal charging intervals, alongside the frequency in which a route is traversed.
For instance, could the charging infrastructre cost be reduced by strategically
charging for a prolonged amount of time at selected stops? This would result
in a modified objective function, possibly involving the elements of the set c to
be a determined by a cost function, where the cost no longer involves just the
price of a charger, but the time spent charging as well.

7.1 future work 49

A final improvement could include stochatic elements, such as customer de-
mand to be added to the model. This way, the energy consumption of the ferries
would no longer be known for certain, as well as the fixed charging interval.
Consequently, the energy consumption associatedwith traversing a route would
be a fixed number, with a varying degree of uncertainty.

Bibliography
[1] A. Gouldson, S. Colenbrander, A. Sudmant, F. McAnulla, N. Kerr, P. Sakai,
S. Hall, E. Papargyropoulou, and J. Kuylenstierna, “Exploring the
economic case for climate action in cities,” Global Environmental Change,
vol. 35, pp. 93–105, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0959378015300169

[2] I. E. Agency, “Co2 emissions from fuel combustion (2016 edition): Key co2
emissions trends,” 2016.

[3] K. Zhang and S. Batterman, “Air pollution and health risks due to vehicle
traffic,” Science of The Total Environment, vol. 450-451, pp. 307–316, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0048969713001290

[4] G. S. Santos, I. Sundvor, M. Vogt, H. Grythe, T. Haug, B. Høiskar,
and L. Tarrason, “Evaluation of traffic control measures in oslo
region and its effect on current air quality policies in norway,”
Transport Policy, vol. 99, pp. 251–261, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0967070X19307462

[5] D. L. Schrank, T. J. Lomax et al., “The 2007 urban mobility report,” Texas
Transportation Institute, Tech. Rep., 2007.

[6] INRIX. (2022) Inrix global traffic scorecard. Accessed: 2023-01-20.
[Online]. Available: https://inrix.com/scorecard/

[7] L. M. Fulton, “Three revolutions in urban passenger travel,” Joule, vol. 2,
no. 4, pp. 575–578, 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2542435118300941

[8] Samferdselsdepartementet, “Teknologi for bærekraftig beveg-
elsesfrihet og mobilitet,” Tech. Rep. N0573B, 2019, accessed:
2023-01-17. [Online]. Available: https://www.regjeringen.
no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-

51

https://www.sciencedirect.com/science/article/pii/S0959378015300169
https://www.sciencedirect.com/science/article/pii/S0959378015300169
https://www.sciencedirect.com/science/article/pii/S0048969713001290
https://www.sciencedirect.com/science/article/pii/S0048969713001290
https://www.sciencedirect.com/science/article/pii/S0967070X19307462
https://www.sciencedirect.com/science/article/pii/S0967070X19307462
https://inrix.com/scorecard/
https://www.sciencedirect.com/science/article/pii/S2542435118300941
https://www.sciencedirect.com/science/article/pii/S2542435118300941
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf

52 bibl iography

teknologiutvalget_web.pdf

[9] Meld. St. 13, “Report to the storting (white paper): Norway’s climate
action plan for 2021-2030,” 2020/2021. [Online]. Available: https://www.
regjeringen.no/no/dokumenter/meld.-st.-13-20202021/id2827405/

[10] M. S. Tannum and J. H. Ulvensøen, “Urban mobility at sea and on
waterways in norway,” Journal of Physics: Conference Series, vol. 1357, no. 1,
p. 012018, oct 2019. [Online]. Available: https://dx.doi.org/10.1088/1742-
6596/1357/1/012018

[11] I. E. Aslaksen and E. B. Svanberg, “A combined ferry service network
design and dial-a-ride system for the kiel fjord,” Master’s thesis, NTNU,
2020.

[12] K. L. Rødseth, H. Havre, U. Lien,M. Ness, and K. Fagerholt, “Optimal route
to battery electric high-speed vessel services,” Available at SSRN 4330381,
2023.

[13] D. Villa, A. Montoya, and A. M. Herrera, “The electric riverboat charging
station location problem,” Journal of Advanced Transportation, vol. 2020,
pp. 1–16, 2020.

[14] F. Driessen, “A method for optimal charging station placement for ships:
Combining a flow-refueling location model and an agent-based simula-
tion,” Master’s thesis, Delft University of Technology, 2022.

[15] G. Bitar, M. Breivik, and A. M. Lekkas, “Energy-optimized path planning
for autonomous ferries,” IFAC-PapersOnLine, vol. 51, no. 29, pp. 389–394,
2018.

[16] H. S. C. Ferries, “Hyke,” 2023, accessed: 2023-01-12. [Online]. Available:
https://hydroliftsmartcityferries.com

[17] M. Lai and H. K. Lo, “Ferry service network design: optimal fleet size,
routing, and scheduling,” Transportation Research Part A: Policy and
Practice, vol. 38, no. 4, pp. 305–328, 2004. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0965856403001198

[18] X. Wang, C. Yuen, N. U. Hassan, N. An, and W. Wu, “Electric vehicle charg-
ing station placement for urban public bus systems,” IEEE Transactions on
Intelligent Transportation Systems, vol. 18, no. 1, pp. 128–139, 2017.

[19] K. Tangrand, “Optimal routing of electric vehicles in networks with charg-

https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/contentassets/ccdc68196014468696acac6e5cc4f0e7/rapport-teknologiutvalget_web.pdf
https://www.regjeringen.no/no/dokumenter/meld.-st.-13-20202021/id2827405/
https://www.regjeringen.no/no/dokumenter/meld.-st.-13-20202021/id2827405/
https://dx.doi.org/10.1088/1742-6596/1357/1/012018
https://dx.doi.org/10.1088/1742-6596/1357/1/012018
https://hydroliftsmartcityferries.com
https://www.sciencedirect.com/science/article/pii/S0965856403001198
https://www.sciencedirect.com/science/article/pii/S0965856403001198

bibl iography 53

ing nodes: Ant colony optimization with genetic algorithms,” Master’s
thesis, Narvik University College, 2015.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979, vol. 174.

[21] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM (JACM), vol. 19,
no. 2, pp. 248–264, 1972.

[22] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceed-
ings of the third annual ACM symposium on Theory of computing, 1971, pp.
151–158.

[23] B. Esfahbod, “Euler diagram for P, NP, NP-complete, and NP-hard set
of problems,” Wikipedia, n.d., accessed: 2023-04-25. [Online]. Avail-
able: https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-
hard.svg

[24] R. M. Karp, “Reducibility among combinatorial problems, complexity of
computer computations (re miller and jw thatcher, editors),” 1972.

[25] K. Wayne, “Intractability iii,” Accessed: 2023-02-15, 2005, revised version
of the lecture slides created by Kevin Wayne, accompanying the textbook
Algorithm Design by Jon Kleinberg and Éva Tardos. Original and official
version distributed by Pearson. Copyright© 2005 Pearson-AddisonWesley.
All rights reserved. [Online]. Available: https://www.cs.princeton.edu/
~wayne/kleinberg-tardos/pdf/10ExtendingTractability.pdf

[26] G. B. Dantzig, A. Orden, and P. S. Wolfe, Notes on Linear Programming:
Part I: The Generalized Simplex Method for Minimizing a Linear Form Under
Linear Inequality Restraints. Santa Monica, CA: RAND Corporation, 1954.

[27] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algo-
rithms and complexity. Dover Publications, 1998.

[28] L. A. Wolsey, Integer Programming, 1st ed. Wiley-Interscience, 1998.

[29] J. Kleinberg and E. Tardos, Algorithm Design. Pearson Education India,
2006.

[30] R. G. Parker and R. L. Rardin, Discrete optimization. Elsevier, 2014.

[31] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint programming.

https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg
https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/10ExtendingTractability.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/10ExtendingTractability.pdf

54 bibl iography

Elsevier, 2006.

[32] K. Apt, Principles of constraint programming. Cambridge university press,
2003.

[33] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier, “The constraint logic programming language chip,” in Proceed-
ings of the International Conference of Fifth Generation Computer Systems,
1988, pp. 693–702.

[34] P. Stuckey. (2020) From clp(r) to minizinc: There and back again.
Accessed: 2023-04-01. Online conference. [Online]. Available: https:
//www.youtube.com/watch?v=FIyn99_HOPw

[35] M. Schiffer and G. Walther, “The electric location routing problem with
time windows and partial recharging,” European Journal of Operational
Research, vol. 260, no. 3, pp. 995–1013, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221717300346

[36] J. Lin, W. Zhou, and O. Wolfson, “Electric vehicle routing problem,” Trans-
portation research procedia, vol. 12, pp. 508–521, 2016.

[37] X. Li, J. Huang, Y. Guan, Y. Li, and Y. Yuan, “Electric demand-responsive
transit routing with opportunity charging strategy,” Transportation Re-
search Part D-Transport And Environment, vol. 110, SEP 2022.

[38] J.-G. Kim and M. Kuby, “The deviation-flow refueling location
model for optimizing a network of refueling stations,” International
Journal of Hydrogen Energy, vol. 37, no. 6, pp. 5406–5420, 2012,
optimization Approaches to Hydrogen Logistics. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360319911020337

[39] F. Paparella, T. Hofman, and M. Salazar, “Joint optimization of number
of vehicles, battery capacity and operations of an electric autonomous
mobility-on-demand fleet,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), 2022, pp. 6284–6291.

[40] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in matlab,”
in In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[41] M. Metais, O. Jouini, Y. Perez, J. Berrada, and E. Suomalainen, “Too
much or not enough? planning electric vehicle charging infrastructure: A
review of modeling options,” Renewable and Sustainable Energy Reviews,
vol. 153, p. 111719, 2022. [Online]. Available: https://www.sciencedirect.

https://www.youtube.com/watch?v=FIyn99_HOPw
https://www.youtube.com/watch?v=FIyn99_HOPw
https://www.sciencedirect.com/science/article/pii/S0377221717300346
https://www.sciencedirect.com/science/article/pii/S0360319911020337
https://www.sciencedirect.com/science/article/pii/S136403212100993X
https://www.sciencedirect.com/science/article/pii/S136403212100993X
https://www.sciencedirect.com/science/article/pii/S136403212100993X

bibl iography 55

com/science/article/pii/S136403212100993X

[42] K. Masliakova, “Optimal routing and charging procedures for electric
buses,” Master’s thesis, UiT - The Arctic University of Norway, 2016.

[43] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.
[Online]. Available: https://www.gurobi.com

[44] M. Team, “Minizinc,” Accessed: 2023-03-12, 2023. [Online]. Available:
https://www.minizinc.org/

[45] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack,
“Minizinc: Towards a standard cp modelling language,” in Proceedings
of the 13th International Conference on Principles and Practice of Constraint
Programming, volume 4741 of LNCS. Springer, 2007, pp. 529–543.

[46] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

[47] R. Kern, “line_profiler,” https://github.com/pyutils/line_profiler, 2023.

https://www.sciencedirect.com/science/article/pii/S136403212100993X
https://www.sciencedirect.com/science/article/pii/S136403212100993X
https://www.sciencedirect.com/science/article/pii/S136403212100993X
https://www.sciencedirect.com/science/article/pii/S136403212100993X
https://www.gurobi.com
https://www.minizinc.org/
https://developers.google.com/optimization/
https://github.com/pyutils/line_profiler

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Theory
	1.2.1 Complexity Theory and NP-Complete Problems
	1.2.2 0–1 Integer Programming
	1.2.3 Optimization Problems
	1.2.4 A Brief Overview of Constraint Programming

	1.3 State of the Art
	1.3.1 Solving Optimization Problems
	1.3.2 Charging Infrastructure
	1.3.3 The Electric Charging Station Placement Problem

	1.4 Contribution to Literautre
	1.5 Objectives

	2 Tools
	2.1 Programming Langugages
	2.2 Optimization Tools
	2.3 Comparison

	3 Problem Formulation
	3.1 Characteristics
	3.2 Notation
	3.3 Instance
	3.4 Charger Configurations
	3.5 Complexity Analysis

	4 Implementation
	4.1 Overview
	4.1.1 MT-ECSP Instance
	4.1.2 Solving the Model

	4.2 Setup of Experiments

	5 Performance
	5.1 Manually Defined Networks
	5.2 Benchmarks

	6 Discussion
	6.1 Computational Complexity
	6.2 Proof of Concept
	6.3 Benchmarks

	7 Concluding Remarks
	7.1 Future Work

	Bibliography

