

Faculty of Engineering Science and Technology

Enhancing AI Systems through Representative Dataset, Transfer

Learning, and Embedded Vision

Ravindra Rajaram Patil

A dissertation for the degree of Philosophiae Doctor September 2023

i

Acknowledgement

I express my sincere gratitude and appreciation to my supervisors, Prof. Dr. Mohamad Y.
Mustafa, and Prof. Dr. Rajnish Kaur Calay. Their continuous guidance, support and valuable
insights have been instrumental in shaping this research work and bringing it to completion.

I also acknowledge the support of ADYPatil School of Engineering, Pune where I
accomplished my experimental work and thank Dr. Saniya Ansari for her supervision in the
initial stages of my research. I am grateful to SPRING, a Horizon 2020 EU-India Project for
providing funding to my PhD studies through Grant No. GOI No. BT/IN/EU-WR/60/SP/2018
and No. 821423. The financial support from PEERS (UTF 2020/10131) for my research-stay
at UiT- The Arctic University of Norway, Narvik, Norway is acknowledged.

I also recognise all my teachers from school and college, whose dedication and teachings
played a crucial role for my educational growth and research interest.

I express my deepest gratitude to my parents for their unwavering support, hard work,
guidance, values that shaped my character and achievements. I am indebted to my younger
brother, Shailesh (Appa), for all his steady support and dedication. I extend my thanks to my
dear grandmother and respected mother-in-law for their love and blessings. I also acknowledge
the friendship of Kunal who always stands by me.

I am indebted to my beloved wife, Gayatri, for her constant support and understanding
throughout this journey and my daughter, Reva for bringing immense joy in my life.

Above all, I am forever deeply grateful and humbled by the boundless love, blessings, and
guidance I am receiving from my God, Shri Parabramha Sheelnath Ji Shri Gurumaharaj Ji. It
is through his divine presence, and grace that I have found strength, direction, and purpose in
every aspect of my life.

I dedicate my Ph.D. Thesis to my Shri Gurumaharaj Ji.

Thank you all.

Ravindra Rajaram Patil

Narvik, Norway

September 2023

ii

Abstract

Artificial intelligence (AI) encompasses a range of techniques that enable machines to perceive,
learn, and make intelligent decisions and it has emerged as transformative technology in many
applications. This thesis presents the development of an AI model, focusing on the significance
of the primary representative dataset and the effectiveness of transfer learning and fine-tuning
techniques for model development. The research demonstrates the affirmative impact of
methodical approaches on the accuracy, efficiency, and robustness of AI systems. Moreover,
the application of the detection model is demonstrated in wastewater management i.e., for
urban wastewater systems, thus underpinning the application of AI to real world scenarios.

The research approach followed in this work includes critical literature review, site surveys,
intensive experimentations, and robust validation processes which allowed to identify and
address existing gaps and limitations and helped to develop AI detection models for the
selected application.

Deep neural networks, a prominent AI technique, chosen for developing AI model in this work
has exceptional capabilities in handling complex tasks by learning from vast amounts of data.
But the availability of high-quality and representative datasets to effectively train deep neural
network models is critical. The comprehensive and diverse datasets provide effective training
examples, reduce biases, and enhance the detection models’ ability to handle complex inputs.

In the present case, the representative dataset was not available. Therefore, critical multiclass
representative image dataset was generated in the laboratory with unparalleled authenticity
using model sewer network and named as Sewer-Blockages Imagery Recognition Dataset (S-
BIRD) which served as a benchmark for real-time detection and recognition models. The
research also addressed the need for dataset curation, data integrity, and biases.

Using S-BIRD, deep neural object detection models were developed through transfer learning
and fine-tuning. Inductive transfer learning technique used for development of models,
improved convergence, training times, and performance on target detection tasks, enabling
adaptation to different domains with minimal additional training. Transfer learning parameters
were optimised for desired outcomes. The effectiveness of the developed model for detecting
sewer blockages was evaluated by performance metrics. The model achieved high accuracy
rate of 96.30% at an IoU of 0.5 in detecting different blockages validating efficacy of dataset
and the applicability of the techniques used for developing the model.

AI detector trained on the S-BIRD dataset was then imported on advanced GPU-based single-
board computer that formed an embedded vision-based automation system for the detecting
sewer blockages. The output of the present research contributes to the advancement of AI and
its application in wastewater management. The knowledge and findings acquired from this
research form a strong foundation for future explorations and advancements in the AI field and
facilitating its widespread implementation across various domains.

For future research work integration of AI techniques like semantic segmentation, instance
segmentation and panoptic segmentation, can be investigated to reinforce detection tasks. To
enhance model robustness, expansion of representative datasets coupled with continuous
learning approaches is recommended. For further practical application of the outcome of the
thesis, collaboration with industry will yield advancements in AI innovation.

iii

Table of Contents

Acknowledgement .. i

Abstract .. ii

1 Introduction .. 1

1.1 Challenges in AI .. 1

1.2 Data Types in AI ... 2

1.3 AI in Computer Vision (CV) and Research Significance ... 3

1.4 Thesis Organization... 4

2 Literature Review ... 5

2.1 Object Detection Models with Structural Insights .. 5

2.1.1 YOLO Series ... 9

2.2 Sources for Availability of Representative Data in AI ... 10

2.3 Computer Vision and AI Approach in Sewer Inspection .. 12

2.4 Evaluation of Previous Surveys .. 13

2.5 Existing Automated Systems .. 15

2.6 Existing Vision Methods in SOP .. 18

2.7 Research Gaps ... 20

2.8 Problem Statement & hypothesis .. 21

2.9 Aim and Objectives ... 22

3 Theoretical Background ... 23

3.1 Role of Machine learning Techniques .. 23

3.2 Modern Approaches to Computer Vision Techniques .. 27

3.2.1 ML and DL in Computer Vision.. 27

3.2.2 Object Detection ... 28

3.2.3 Embedded Vision Approach .. 30

3.3 Selected Models for Methodical Approach ... 31

3.4 Transfer learning and Fine-tuning ... 35

3.5 Role of Artificial Learning in understanding physical mechanisms and developing
predictive models in Different Research Domains .. 36

3.6 Significant breakthroughs in AI .. 38

3.7 Summary: Leading to the Methodical Approach .. 40

4 Methodology and Case Study with Results .. 42

4.1 Methodology ... 42

4.1.1 Development of New Critical Multiclass Representative Image Dataset 42

iv

4.1.1.1 Survey Details of Pune Municipal Corporation (PMC) 43

4.1.1.2 Why do we need to develop a New Representative Dataset? 44

4.1.2 Methodical Flow for New Dataset and Detection Model Training 46

4.2 Tools Utilized in S-BIRD Dataset Generation .. 47

4.2.1 Constructed Sewer Pipeline .. 47

4.2.2 Inspection Camera for Sewerage Systems .. 48

4.3 Image Data Collection for the Development of Novel S-BIRD 49

4.4 Detailed Analysis of Captured Frames.. 50

4.5 Preprocessing and Augmentation Techniques .. 53

4.6 Annotated Heatmap and Object Count Histogram .. 58

4.7 Development of Sewer Blockage Detection Models using Transfer Learning and Fine
Tunning .. 60

4.7.1 Optimization and Training of YOLOX using newly developed S-BIRD dataset 60

4.7.2 Optimization and Training of TOLOv5 using newly developed S-BIRD dataset 63

4.8 Embedded Vision Approach with S-BIRD ... 71

4.9 Discussion ... 73

4.9.1 Discussion on Enhanced AI in Research Work .. 73

4.9.2 Discussion on Case Study in Wastewater Management ... 74

4.9.3 Comparative discussion on AI-Driven Approach and MOEAs 76

5 Conclusions and Further work .. 77

5.1 Conclusions ... 77

5.2 Recommendations for Further Work... 78

References .. 79

Appendix 1 ... 85

List of Published Journal Papers .. 85

Published Book Chapter .. 85

Other Publications .. 86

Appendix 2 ... 87

Creating an implementation of the applied methodology involves following these steps using
self-developed programming codes ... 87

(a) Implementation of Preprocessing and Augmentation from Scratch 87

(b) Object count histogram and heatmap implementation .. 92

(c) Development of Model-1 using YOLOX, and its Training and Evaluation method in
Code Pieces .. 94

i. Configuration structure for S-BIRD dataset from scratch ... 94

v

ii. Development of model for training and validation operation from scratch on
corresponding dataset .. 96

iii. Implementation of model evaluation from scratch on corresponding dataset 99

iv. Implementation of Real-time Detection task using multi-threading on embedded platform
in given Code ... 102

(d) Development of Model-2 using YOLOv5, and its Training and Evaluation method in
Code Pieces .. 106

i. Development of C3, SPPF, and Conv actual layer types from scratch, and necessary
adjustments based on specific developed dataset - ... 106

ii. Configuration structure for S-BIRD dataset from scratch – .. 110

iii. Loss computation during training ... 112

iv. Programming Development of model training operation from scratch on corresponding
dataset .. 117

v. SGD programme for customization .. 120

vi. Implementation of Real-time Detection task using multi-threading on embedded platform
in given Code ... 123

Research Article – Review of the State-of-the-art Sewer Monitoring and Maintenance Systems
Pune Municipal Corporation-A Case Study .. 127

Research Article – S-BIRD: A Novel Critical Multi-Class Imagery Dataset for Sewer
Monitoring and Maintenance Systems... 137

Research Article – AI-Driven High-Precision Model for Blockage Detection in Urban
Wastewater Systems .. 155

vi

List of Tables

Table 1 Main structural parts of object detectors ... 7

Table 2 Important techniques to obtain detection results .. 14

Table 3 Limitations and comments for existing automated systems 17

Table 4 Distinctions between types of sewer robotic systems ... 17

Table 5 Indirect techniques for sewer inspection .. 18

Table 6 Tools for maintenance of sewerage system .. 20

Table 7 Key phrases in ML with significances .. 26

Table 8 Details of survey conducted at PMC. [39] .. 43

Table 9 Common Causes and Consequences of Major Sewer Blockages 45

Table 10 Technical details of the utilized sewer camera ... 48

Table 11 Arithmetical details of captured frames. ... 51

Table 12 Annotations for training data .. 53

Table 13 Computational details of training samples in S-BIRD after preprocessing and

augmentation. ... 57

Table 14 Key Training Parameters .. 61

Table 15 Timing analysis of the trained model ... 61

Table 16 Precision evaluation of the trained model ... 61

Table 17 Key Training Parameters .. 64

Table 18 Timing analysis of the trained model ... 65

Table 19 Precision evaluation of the trained model ... 66

vii

List of Figures

Figure 1 AI Techniques and required data type ... 2

Figure 2 Structure of single-stage and two-stage object detectors .. 6

Figure 3 Sonar technique for sewer inspection .. 19

Figure 4 Light and Mirror technique for sewer inspection .. 19

Figure 5 Closed Circuit Television (CCTV) with step van for sewer inspection 19

Figure 6 Closed Circuit Television (CCTV) technique for sewer inspection 20

Figure 7 Significant types of the ML techniques ... 24

Figure 8 Crucial steps to implement the ML technique ... 27

Figure 9 Steps in applying ML techniques to computer vision tasks 28

Figure 10 Illustration of YOLOX Decoupled Head .. 32

Figure 11 Detailing of DarkNet-53 CNN .. 32

Figure 12 YOLOv5 Arithmetical Details .. 33

Figure 13 YOLOv5 Architectural Details.. 34

Figure 14 Decision-making workflow for the development of new dataset 42

Figure 15 S-BIRD dataset including major sewer blockages .. 45

Figure 16 Methodical Workflow with newly developed dataset ... 46

Figure 17 Illustration of the constructed sewer pipeline with (a) material and diameter details

and (b) realistic design and internal environment .. 47

Figure 18 Watertight sewer camera employed for frame capture .. 48

Figure 19 Frames depicting tree root blockages in the S-BIRD dataset 49

Figure 20 Frames illustrating plastic blockages in the S-BIRD dataset 49

Figure 21 Frames displaying grease blockages in the S-BIRD dataset 50

Figure 22 Annotated illustrations depicting the balance of sewer blockage types 52

Figure 23 Heatmap visualization of annotation details for recorded images........................... 52

Figure 24 Data balancing for each class .. 53

Figure 25 Distribution Graph of Aspect Ratios ... 54

Figure 26 Illustrative outcomes of common augmentation methods: (a) grayscale

transformation, (b) salt and pepper noise, (c) arbitrary exposure variation 56

Figure 27 Visual outcomes of enhanced augmentation methods: (a) cutout and (b) mosaic .. 57

Figure 28 Annotation specifications for each class in the training dataset following image-level

augmentation .. 58

viii

Figure 29 Heatmap of annotations providing location details of all classes............................ 59

Figure 30 Histogram depicting the number of objects for: (a) grease, (b) tree roots, (c) plastic,

and (d) all categories .. 59

Figure 31 Detection Results of YOLOX-s for Sewer Block Classes in S-BIRD 62

Figure 32 Visual Illustrations of Precise Detection of Tree Roots, Plastic, and Grease Sewer

Block Types ... 62

Figure 33 Results from training process – (a) at epoch 832 (b) at epoch 932 64

Figure 34 Detection Results of YOLOv5-s for Sewer Block Classes in S-BIRD 66

Figure 35 Confusion matrix for classes within dataset .. 66

Figure 36 The scatter graph for instances and associated labels ... 67

Figure 37 Correlations within the dataset of sewer blockage frames 67

Figure 38 Precision (P) vs Confidence (C) graph .. 68

Figure 39 Recall (R) vs Confidence (C) graph .. 68

Figure 40 Precision (P) vs Recall (R) graph .. 69

Figure 41 F1 score vs Confidence (C) graph ... 69

Figure 42 Training and validation losses of the detection model .. 70

Figure 43 Precision (P) vs Recall (R) graph for model trained without using exposure in dataset

.. 70

Figure 44 Detection Results on some Google Source images ... 71

Figure 45 Embedded vision based system emphasizing AI detection with S-BIRD 72

Figure 46 Incorporation of Embedded Vision platform into the sewer automated system 72

1

1 Introduction

Artificial Intelligence (AI) is a concept that aims to create intelligent machines that have the
ability to think and make intelligent decisions similar to humans. Since the advent of
computers, programs have been used to solve problems in different fields such as engineering
and business. However, finding correlations for making predictive models has always been the
centre of empirical analysis. A milestone in AI technology was the historical Paper by John
McCarthy & Marvin Minsky in 1956 [1], in which they discussed the potential areas of AI,
including language processing, neural networks, automatic theorem proving, and learning
machines. Nevertheless, the computational power was too small to do anything substantial and
computers did not have enough storage nor fast command processing power to exhibit
intelligence. Continuous development in computing power and storage capacity allowed the
storage of huge amounts of data generated by digital transformation of real-world information
(such as records of weather indicators, personal information, audio, videos, pictures, etc.),
which is impossible to analyse by humans. AI uses algorithms that allow computer/machine to
learn without being programmed explicitly. These algorithms analyse large datasets and create
systems that can carry out tasks like human intelligence and cognitive capabilities, for example
decision-making, recognising patterns, etc. There are various sub fields in AI due to the basis
of algorithms such as neural network, machine learning, deep learning and many more. The
scientific approach to AI involves formulating hypotheses, testing, and analysing data to
enhance the autonomy and accuracy of intelligent systems.

Today we live in the age of “big data,” where vast amount of data is collected, which beyond
the data processing capacity of humans. For this reason, the application of AI is making its way
in various industries such as engineering, security, banking, marketing, and entertainment. The
algorithms have not improved much, but the big data and massive computing are allowing AI
to make progress into many more areas. Data is the key and plays a central role in AI. Data
can be numerical data, text data and visual data. In terms of acquiring data, it can be obtained
by observation (actual recording the happenings), or synthetic data generated by models.

Application of AI in engineering is similar to modelling, data acquisition, data preparation,
simulation and test, and implementation. Like for traditional statistical analysis, a
representative dataset is an essential requirement for the development of reliable AI models in
real-world applications. It is also important to consider privacy, data ownership, ethical factors,
bias mitigation, data quality, informed consent, and regulatory compliance to ensure
responsible and ethical use of data in AI applications.

1.1 Challenges in AI
AI modelling poses several challenges when it comes to development of models for practical
applications. These challenges can significantly impact the effectiveness and reliability of AI
systems. Some challenges in the application of AI are listed below:

 Data Availability and Quality: In some applications acquiring datasets can be challenging
due to privacy concerns, data access restrictions, or unstructured data formats. In addition,
ensuring data quality, free from biases and inaccuracies, is crucial to prevent erroneous
predictions or decisions.

2

 Model Selection and Evaluation: The selection of appropriate AI models for a given task is
a complex decision. Researchers and practitioners face the challenge of identifying the most
suitable model architecture and algorithms that can effectively handle the specific problem
domain. Evaluating the performance of AI models in a reliable and consistent manner is
critical, but often challenging due to the absence of universally accepted evaluation metrics.

 Interpretability and Explainability: AI models, particularly Deep Learning (DL) models, are
often considered black boxes, making it difficult to understand the underlying decision-
making process. This lack of interpretability may raise concerns regarding the
trustworthiness and ethical implications of AI systems when used in certain fields where
transparency and responsibility are critical.

 Scalability and Resource Constraints: AI models often require significant computational
resources and time for training, especially when dealing with large datasets or complex
tasks. Therefore, scaling up AI models to handle big data or real-time applications that
require large computing resources may become an issue due to budget limitations.

 Ethical and Legal Considerations: AI models can potentially amplify biases present in the
training data or make decisions that have discriminatory effects. It is an ongoing challenge
to ensure fairness, transparency, and accountability in AI systems particularly in the
applications where ethical and legal considerations are necessary.

1.2 Data Types in AI
Distinct AI techniques with essential representative data types are explained in below Fig.1.

Figure 1 AI Techniques and required data type

• Numerical Data: It consists of numerical values and is one of the most common types of
data used in AI. It includes continuous variables such as temperature, time, or sensor

3

readings. Numerical data can be processed using mathematical and statistical techniques,
and it forms the basis for many machine learning algorithms.

• Image Data: This data consists of visual information in the form of pixels. It is commonly
used in computer vision tasks such as object detection, image classification, and image
generation. Deep learning (DL) algorithms, especially convolutional neural networks
(CNNs), are widely employed to process and extract features from image data.

• Video Data: It consists of a sequence of frames, each containing visual information. It can
include surveillance footage, movies, or videos captured from cameras. Video processing
and analysis techniques are used to extract information, detect events, or recognize objects
and actions in videos.

• Textual Data: It comprises unstructured text, such as documents, articles, emails, or social
media posts. Natural Language Processing (NLP) techniques are used to analyse and
extract meaningful information from text, enabling tasks like sentiment analysis, text
classification, and language translation etc.

• Audio Data: This data represents sound waves and is used in various applications such as
speech recognition, music analysis, and sound classification. Audio data analysis and
interpretation make use of various techniques like signal processing and DL. The recurrent
neural networks (RNNs) are widely employed to analyse and interpret audio data.

• Temporal Data: It involves sequences or time-series data points collected over time.
Examples include stock market prices, sensor data, or weather patterns. Temporal data
analysis often employs techniques like time-series analysis, RNNs, or Long Short Term
Memory (LSTM) networks to capture patterns and make predictions.

• Graphical Data: It represents entities and their relationships, commonly visualized as
nodes connected by edges. It is used in social network analysis, recommendation systems,
and network analysis. Graph neural networks (GNNs) and graph-based algorithms are
employed to analyse and extract insights from graphical data.

The choice of input data depends on the specific AI task, application domain, and the nature of
the problem being solved. AI techniques employ a wide range of methods and approaches;
namely machine learning (ML), deep learning (DL), Cognitive Modelling, and Evolutionary
Algorithms, Computer Vision (CV), etc.

1.3 AI in Computer Vision (CV) and Research Significance
The computer vision enables machines to understand and interpret visual information from
images or videos. It involves tasks such as object recognition, image classification, image
segmentation, and object tracking. The computer vision algorithms include feature extraction,
pattern recognition, and deep neural networks to extract meaningful information from visual
data.

There are various fields that employ AI image recognition, ranging from recognising fruits and
vegetables for labelling the produce to defence and healthcare. Image recognition systems are
used to analyse visual data more efficiently, faster, and more accurately. Detection of blockages
in the sewerage systems is one such application. Maintaining sewerage systems is a critical
operational challenge for water and wastewater utilities. Identifying the type of blockage and
predicting blockage formations in sewer pipes and pumping stations early so that required
measures are taken before the blockage develops a service failure. In places where same
network is used for storm water, heavy rainfall raises high levels within the sewer network due
to additional water runoff entering the sewer system, that may trigger hundreds of alarms. The

4

volume of these alarms during wet weather periods can be unavoidable for operational and
maintenance teams.

Particularly in the developed world, smart water and wastewater networks are at the forefront
of investment plans for authorities as a step towards circular economy. With technological
advancements it is possible to gather more information to allow water companies to implement
AI for better management. Autonomous robots appear to have great potential for inspecting
difficult to access water pipe networks [2]. A report on Robotic Autonomous Systems (RAS)
by TWENTY65, emphasises the importance of sewer monitoring in the practical world [3].

Developing countries like India, where traditionally human scavenging was used for cleaning
blocked pipes, have started to use mechanical systems and robotic scavengers. These
automated methods of maintaining sewers critically employ AI techniques for improving the
performance of detection of blockages and planning their removal. This thesis focuses on
developing and implementing AI techniques to detect blockages and select appropriate
unblocking techniques. This work is a part of an EU-India collaborative project Horizon 2020
SPRING, which focuses on developing wastewater management technologies. The case used
for developing and implementing AI techniques is the sewerage system within Pune
municipality (India). The research work includes developing a new representative image
dataset and AI model training through transfer learning followed by fine-tuning techniques to
improve the model's performance and effectiveness for detecting different types of blockages
in the sewerage network.

1.4 Thesis Organization
The work presented in thesis is organised as follows

Chapter 1 introduces the concept of AI, challenges in AI modelling, input data types,
application fields of AI, research significance, and thesis organization.

Chapter 2 presents literature review leading to problem statement and justification of the
objectives. It conducts a review of existing literature for examining different approaches in AI
and computer vision. Research gaps and limitations in the current methods are discussed
leading problem statement. Hypothesis of the research and objectives are stated in this chapter.

Chapter 3 provides theoretical background for distinct AI techniques, modern computer vision
approaches, deep neural networks for methodical approach, artificial learning, and crucial
advances in AI.

Chapter 4 gives details about applied methodology in the research work. It progresses by
presenting a case study, conducting theoretical and mathematical analyses, elucidating the
development of a representative dataset, providing intricate arithmetic details, describing the
experimentation and validation processes, elaborating on the creation of detection models using
AI techniques, and presenting the corresponding results and discussions.

Chapter 5 summarises the whole research with conclusions and provides recommendation for
further work.

This organizational structure ensures a logical and coherent progression through the thesis,
guiding the reader from the foundational concepts to the culmination of the research outcomes
and their implications.

5

2 Literature Review

This chapter provides a detailed literature review related to the work presented in the thesis.
The purpose is to discuss the state-of-the-art techniques and methods which have been
considered for developing the methodology used in the research work.

2.1 Object Detection Models with Structural Insights
Over the years, various approaches have been developed to solve object detection problems
and advance relevant algorithms. Here, a brief overview of some of the major techniques that
have significantly impacted the field of object detection is provided. It will also offer valuable
insights into the structural aspects of detection models, enabling a comprehensive
understanding.

 Evolution of Object Detection Algorithms: Object detection algorithms have undergone
significant evolution over the years, driven by advancements in machine learning and
computer vision. Key contributions and approaches include:
 Traditional Approaches: Earlier object detection algorithms relied on handcrafted

features and classical machine learning techniques. These methods used feature
extraction techniques like Histogram of Oriented Gradients (HOG) and Haar-like
features, combined with classifiers such as Support Vector Machines (SVM) or
AdaBoost.

 Sliding Window Approaches: Sliding window-based methods scanned the image at
multiple scales and positions, applying a classifier to each window to determine if an
object is present. This approach had limitations in terms of computational efficiency
and accuracy due to exhaustive search over all possible windows.

 Region Proposal Approaches: The introduction of region proposal methods, such as
Selective Search and EdgeBoxes, improved efficiency by generating a set of potential
object regions instead of exhaustive search. These methods reduced the number of
windows to be evaluated, improving both speed and accuracy.

 Deep Learning Approaches: The advent of deep learning revolutionized object
detection. R-CNN, Faster R-CNN, YOLO, SSD, RetinaNet, etc.

 Strengths and Limitations of Object Detection Algorithms: When comparing different
object detection algorithms, several factors need to be considered:
a) Accuracy: Accuracy measures how well the algorithm can correctly detect and classify

objects. Deep learning-based algorithms, especially those using CNNs, have shown
superior accuracy compared to traditional methods.

b) Speed: It is crucial for real-time applications. Traditional sliding window approaches
were slower due to exhaustive search, while region proposal-based methods improved
speed. Deep learning-based approaches like Faster R-CNN, YOLO, RetinaNet, etc
further enhanced speed and efficiency.

c) Robustness: It refers to the algorithm's ability to handle various environmental
conditions, such as changes in lighting, occlusions, and object deformations. Deep
learning algorithms trained on large datasets have demonstrated improved robustness
compared to traditional methods.

d) Scalability: Scalability relates to an algorithm's performance as the number of objects
or complexity of the scene increases. Traditional methods often struggled with

6

scalability due to the large search space. Deep learning algorithms, especially those
with region proposal networks, have shown better scalability.

e) Training Data Requirements: Deep learning-based algorithms typically require large,
labelled datasets for training, which can be a limitation in certain domains where
labelled data is scarce or expensive to obtain.

f) Computational Resources: Deep learning-based algorithms, particularly those with
deep neural networks, require substantial computational resources during training and
inference. This can be a limitation in resource-constrained environments.

g) Generalization: Generalization refers to an algorithm's ability to perform well on
unseen data. Deep learning algorithms trained on diverse datasets tend to exhibit better
generalization, although overfitting can still occur if not properly regularized.

h) Interpretability: Deep learning algorithms often lack interpretability compared to
traditional methods. Understanding the decision-making process and explaining why a
certain detection occurred can be challenging with complex neural networks.

Considering these factors, deep learning-based approaches have emerged as the state-of-the-
art in object detection due to their balance between accuracy and speed. However, the choice
of algorithm depends on the specific application requirements and constraints.

The advent of deep learning, particularly convolutional neural networks (CNNs), has
revolutionized object detection. Deep learning-based detectors have shown remarkable
performance improvements, leveraging large-scale datasets and powerful network
architectures. They can automatically learn discriminative features and effectively handle
complex visual patterns. These object detectors typically comprise two main components: a
pretrained backbone that extracts features from input frames, and a head that utilizes these
feature maps to estimate object classes and bounding boxes. In recent object detection models,
an additional component known as the neck has been introduced. The neck consists of a few
layers positioned between the backbone and the head, responsible for aggregating feature maps
from different stages. Figure 2 [4] provides an illustration of the architectures of single-stage
detectors like SSD and YOLO, which consist of a backbone and a densely predicted head. On
the other hand, two-stage object detectors like Faster R-CNN and R-FCN include a backbone
and a head with both dense and sparse predictions. Sparse and dense predictions refer to how
object detectors make predictions at different spatial locations within an image.

Figure 2 Structure of single-stage and two-stage object detectors

7

Dense predictions involve making predictions for every spatial location or grid cell in the input
image. This means that the detector generates class probabilities and bounding box coordinates
for multiple objects at each location. The dense predictions can be achieved by using techniques
like fully convolutional networks (FCNs) or sliding window approaches. Sparse predictions,
on the other hand, involve making predictions for a subset of selected regions or anchor boxes
within an image. Instead of estimating object properties for every location, these detectors
focus on a smaller set of regions or anchor boxes that are likely to contain objects. The regions
or anchor boxes are determined through techniques like region proposal methods (e.g.,
selective search) or Region Proposal Networks (RPNs). Sparse predictions are common in
methods like keypoint detection or landmark localization, where the focus is on specific points
of interest. Both dense and sparse prediction strategies have their advantages and limitations.
Dense predictions offer fine-grained object localization and can capture small objects
effectively. However, they may introduce a large number of false positives due to the high-
resolution output. Sparse predictions, on the other hand, focus on selected regions, which can
reduce false positives and computational overhead. But they may struggle with detecting small
objects or objects at different scales. The choice between dense and sparse predictions depends
on the specific requirements of the application, including factors like speed, accuracy, and the
size and diversity of the objects being detected.

However, single-stage detectors are favoured in real-time embedded applications due to their
faster inference times compared to two-stage detectors. These object detectors integrated into
automated systems play a crucial role in various fields. Table 1 [4] illustrates the components
that adhere to the structural framework of object detector models

Table 1 Main structural parts of object detectors

Structural Parts Details

Input multi-scaled frames, frames, frame patches

Backbones

Darknet53, CSPDarknet-53, ResNet-152,
ResNet-50, ResNet-10, Inception-ResNet-V2,

GoogLeNet, DetNet-59, CBNet, VGG16,
ThunderNet, ViT, EfficientNet-B0/B7, etc.

Neck FPN, Bi-FPN, PAN, SFAM, etc.

Heads

Dense
SqueezeDet, YOLO, SSD, DetectNet,
RetinaNet, CenterNet, MatrixNet, etc.

Sparse
R-FCN, Faster R-CNN, Mask R-CNN, Cascade

R-CNN, etc.

Object detection algorithms employ various strategies, such as feature extraction, region
proposal generation, classification, regression, and post-processing, to accurately detect and
localize objects in images or videos. Region-based and anchor-based detectors are approaches
within object detection that primarily deal with how objects are localized and matched within
an image. Region-based detectors divide the object detection task into two stages: region
proposal generation and object classification. They generate a set of candidate regions
(bounding boxes) within an image using methods like selective search or region proposal

8

networks (RPNs). The regions are then classified to determine if they contain an object or not.
This approach, used in method like R-CNN, allows for accurate localization but can be
computationally expensive. Whereas, anchor-based detectors, such as SSD and Faster R-CNN,
use predefined anchor boxes (also known as priors) at various scales and aspect ratios. These
anchor boxes serve as reference templates to match objects present in the image. The detectors
predict offsets and class probabilities for each anchor box to determine the final bounding box
predictions. This approach allows for handling objects of different sizes and aspect ratios
efficiently. Anchor-free detectors, like CornerNet and CenterNet, do not rely on predefined
anchor boxes. Instead, they directly predict the bounding box coordinates and class
probabilities without the need for anchor box matching. This simplifies the detection process
and can be more suitable for objects with diverse scales and aspect ratios.

Girshick et al. [5], introduced the Region-based Convolutional Neural Networks (R-CNN)
framework, which revolutionized the field of object detection and semantic segmentation. R-
CNN presents the idea of using region proposals to select a set of potential object locations in
an image, followed by applying a convolutional neural network (CNN) to classify and refine
those regions. It achieved promising results but was computationally expensive. Further,
Girshick improved R-CNN object detection framework and presented ‘Fast R-CNN’ [6]. The
enhancement was done by proposing a unified architecture that shared the computation of the
CNN across different region proposals, resulting in faster processing. It also introduced a
region of interest (RoI) pooling layer to extract fixed-size features from the region proposals.
Fast R-CNN demonstrated the benefits of shared feature extraction and end-to-end training for
object detection, paving the way for further advancements in the field. Ren et al. [7], initiated
Faster R-CNN which addressed the drawbacks of the previous methods by introducing a
Region Proposal Network (RPN) that shared convolutional layers with the detection network.
This allowed for end-to-end training and significantly improved the speed and accuracy of
object detection. Redmon et al. [8], came up with YOLO (You Only Look Once) detection
framework which actually revolutionized object detection by introducing a single-stage
detection algorithm that jointly predicted class probabilities and bounding box coordinates
using a single pass of the neural network. This resulted in real-time performance, but it faced
challenges with smaller object detection. It was evaluated on the PASCAL VOC and COCO
datasets and achieved competitive results compared to existing state-of-the-art methods. Liu et
al. [9], produced SSD (Single Shot MultiBox Detector) which aimed to improve the speed and
accuracy of object detection by utilizing a series of convolutional feature maps at different
scales to detect objects of various sizes. It combined the benefits of both region proposal
methods and dense prediction techniques. It employed default anchor boxes and predicted
offsets and class probabilities for each anchor, enabling efficient and accurate detection. Lin et
al. [10], presented ‘RetinaNet’ framework. It introduced the focal loss, which addressed the
problem of extreme class imbalance during training in dense object detection. It assigned
higher weights to challenging examples and down-weighted easy examples to improve the
model's performance, making it particularly effective for detecting objects at different scales.
Kaiwen Duan et al. [11], conferred ‘CenterNet’, a keypoint-based object detection framework
that utilizes triplet keypoints for accurate and efficient object localization. It employs a fully
convolutional network architecture, often based on popular backbone networks such as
Hourglass or ResNet, for feature extraction. The network predicts heatmaps for object centres
and offset vectors to locate the bounding boxes around each centre point. It achieves
competitive accuracy in object detection tasks and performs well across various object scales

9

and occlusion scenarios. Hei Law and Jia Deng presented ‘CornerNet’ that employs a deep
neural network architecture based on Hourglass modules for object detection. It detects objects
by predicting the top-left and bottom-right corners of their bounding boxes as paired keypoints
[12]. This representation enables precise localization and better handling of object scale and
aspect ratio variations. It is a two-stage architecture that includes a keypoint estimation network
and a refinement network. The keypoint estimation network predicts corner heatmaps, and the
refinement network refines the corner locations. Here, pooling mechanism aggregates
information from the corner keypoints to enhance the localization accuracy and robustness.

2.1.1 YOLO Series
The YOLO (You Only Look Once) series of object detection models have made significant
contributions to the field of computer vision. Here is an explanation of the YOLO models along
with the key papers associated with each version:

Joseph Redmon and Ali Farhadi introduced YOLOv2 and YOLO9000 which comprise several
improvements to the original YOLO [13]. They include the use of anchor boxes for better
handling of object scales and aspect ratios, multi-scale training and testing, and incorporating
unified object detection and classification on a large-scale dataset (COCO) along with
ImageNet. The hierarchical classification approach and dataset combination contribute to
improved accuracy and scalability, making YOLO9000 a significant advancement in the
YOLO series of models. Further, they came up with YOLOv3 by introducing a few key
modifications such as the Darknet-53 architecture, feature pyramid network (FPN), and
multiple detection scales [14]. It achieved better performance and accuracy compared to the
previous versions through architectural improvements and training techniques. Darknet-53
consists of 53 convolutional layers. This deeper network enables better feature extraction and
representation compared to the shallower networks used in previous YOLO versions. A feature
pyramid network allows to capture objects at different scales and improve detection
performance on small objects. YOLOv3 detects objects at three different scales and this
multiple detection scales approach allows the model to handle objects with varying scales and
aspect ratios more effectively. Alexey Bochkovskiy et al. [15], initiated YOLOv4 model which
aimed to optimize both speed and accuracy by introducing several architectural improvements,
including CSPDarknet53 as the backbone to enhance information flow and improve
performance, PANet (Path Aggregation Network) as the neck to help the model for capturing
features at different scales by aggregating information from multiple levels of the feature
pyramid, and various optimization techniques such as Mish activation function, CIOU loss,
etc. It achieved state-of-the-art performance on multiple object detection benchmarks. The
YOLOv5 and YOLOX models, which are discussed in detail in Chapter 3 of the theoretical
background, have been considered for a methodical approach.

Each iteration of the YOLO series introduced novel techniques and architectural enhancements
to improve object detection accuracy, efficiency, and speed. These models have been widely
adopted in research and practical applications due to their competitive and real-time detection
performance across different datasets.

The development of novel methodical architectures, fusion with other computer vision tasks,
transfer learning, and the discovery and development of new datasets with evaluation metrics
are driving progress in the field of AI, including object detection. It continues to be an active
area of research, with ongoing efforts to enhance detection performance. So, the advances in

10

this are paving the way for the deployment of intelligent systems in various domains, enabling
machines to interact and understand the visual world around them.

2.2 Sources for Availability of Representative Data in AI
Sources of representative data can vary depending on the specific application or domain. Here
are some common sources where representative data may be available:

 Publicly available datasets: Numerous organizations and research institutions make their
datasets publicly available for AI research. These datasets cover a wide range of domains
such as image recognition, natural language processing, and healthcare. Examples include
ImageNet, COCO, and MNIST.

 Open data initiatives: Governments and public institutions often release datasets related to
demographics, transportation, weather, and more. These datasets can be valuable sources
of representative data for AI applications.

 Web scraping: The internet contains vast amounts of data that can be scraped and used for
AI training. However, it is important to respect the terms of service and legal guidelines
when scraping data from websites.

 Data discovery platforms: Online platforms exist that facilitate the exchange of data, where
individuals or organizations can buy or sell datasets. These platforms often cover diverse
domains and can provide access to representative data.

 Academic research papers: Research papers often provide datasets used in experiments or
evaluations. Many papers include links to download the data or provide instructions on how
to access it. Platforms like arXiv, IEEE Xplore, and ACM Digital Library are good
resources for finding research papers.

 Crowdsourcing: Platforms like Amazon Mechanical Turk or specialized crowdsourcing
platforms allow researchers to collect data by outsourcing tasks to human workers. This
method can be employed to gather labelled or annotated data for training AI models.

 Data collection initiatives: Organizations sometimes conduct data collection initiatives
specifically aimed at creating representative datasets. They may employ various methods,
such as surveys, crowdsourcing, or partnerships with data providers, to collect
comprehensive and diverse data.

 Data augmentation techniques: In some cases, representative data can be generated or
expanded using data augmentation techniques. These techniques involve applying
transformations or modifications to existing data to create additional representative
examples.

 Data collaboration: Collaborations among researchers, industry professionals, and data
scientists can lead to the pooling of data resources, allowing access to larger and more
representative datasets.

While representative data plays a crucial role in AI, it is essential to address various aspects
such as privacy, data ownership, and ethical considerations when sourcing and utilizing data
for AI applications.

Gebru et al. [16], introduced the concept of datasheets for datasets, which provide a structured
framework for documenting critical information about datasets, including their collection
process, potential biases, and limitations. It highlights the importance of representative data to
avoid biased and unfair AI systems. Bhardwaj et al. [17], presented DataHub, a platform for
dataset management and collaboration. This work discusses the features of DataHub and how

11

it enables dataset search, versioning, and sharing among data scientists and researchers. It also
evaluates multiple dataset search platforms based on various criteria such as dataset coverage,
metadata quality, and search performance. The paper underscores the importance of dataset
search in supporting AI research. Umbrich et al. [18], focussed on the evaluation and evolution
of open data portals, which are online platforms that provide access to datasets from various
sources. They proposed a quality assessment framework for open data portals that comprises a
set of metrics to evaluate various aspects of the portals, such as data availability, freshness,
relevance, and usability. The contribution is about the understanding of open data portals and
offers practical guidance for their improvement to better serve the needs of data users and the
broader community. Koesten et al. [19], focussed on the concept of data summarization and its
importance in understanding and utilizing datasets effectively. They explored different
dimensions and aspects that are relevant to users when working with datasets. The studies cover
topics such as data availability, provenance, quality, statistics, and schema information. It
provides insights into the information needs of users and presents guidelines for designing
effective dataset summaries, with the aim of improving data comprehension, decision-making,
and collaboration in various domains.

AI plays a crucial role in enhancing computer vision capabilities by employing intelligent
algorithms to extract valuable digital statistics from images and videos. This augmentation
enables automated systems based on embedded platforms to possess greater vision power and
intelligence. To achieve advanced results, it is imperative to have a large quantity of
appropriate and labelled data for training AI's Deep Neural Object Detection Models. In the
realm of AI, a dataset refers to a collection of significant and distinctive details within a
particular field. These datasets are utilized for training AI models with specific objectives,
including clustering, segmentation, regression, classification, and detection. Various types of
data can be found, such as images, time series, numerical data, graphs, text, and so on. It is
essential to recognize that the performance of a detection model heavily relies on the quality
of the dataset used for training. Even the best detection model will yield inferior results if
trained on a poor dataset. On the other hand, a poorly performing detection model can benefit
from a highly featured and high-quality dataset. At the core of single-stage or two-stage object
detectors lies a classifier responsible for identifying the intended object classes. It becomes
evident that the performance and accuracy of any detection model are determined by the quality
of the input imagery dataset. Therefore, having a comprehensive, diverse, and accurately
labelled dataset significantly contributes to the effectiveness of object detection models.

Obtaining a relevant dataset for training AI models and achieving accurate results is a crucial
requirement and a significant focus of research in relevant communities. This involves
acquiring or collecting data, appropriately labelling the data, and improving the available data
or models [20]. Many funding agencies have embraced an open-access research strategy,
resulting in the availability of large datasets from various fields on different platforms. Data
can be obtained from data-sharing platforms like Kaggle datasets [21], DataHub [17],
Mendeley Data [22], and data-searching platforms like IEEE DataPort [24], Google Dataset
Search [23], and others. Despite challenges in data discovery, researchers can succeed in
obtaining the necessary dataset [25]. In 2011, the difficulties in accessing and tracing open data
were acknowledged, leading to the regulation of data publishing movements in Europe [26].
Six barriers to obtaining and tracing open data were identified, including limited information
about data existence and accessibility, uncertainty regarding data ownership by government

12

authorities, ambiguity concerning terms of reuse, data cost and its sensitivity, complex
licensing procedures and high fees, specific reuse contracts with professional members, and
restrictions on recycling for state-owned companies.

Notably, data acquisition involves various functions such as searching, augmenting, and
generating data as needed. In our case, the dataset is not only generated due to unavailability
but also undergoes individual preprocessing, augmentation, and labelling for classification and
detection tasks. The dataset can be created manually or through automated techniques, and
synthetic data is used to fill in any missing parts. For optimal learning models, standardized or
benchmark datasets are preferred, and transfer learning techniques can be applied using
representative datasets. Transfer learning in computer vision refers to the process of leveraging
knowledge from a pre-trained model on a large dataset and applying it to a new task with
limited labelled data. It involves using the learned features and representations from the pre-
trained model as a starting point for the new task, allowing the model to benefit from the general
visual knowledge gained during pre-training. Fine-tuning, on the other hand, involves further
training the pre-trained model on the new task-specific dataset. By updating the model's
parameters using the task-specific data, it adapts the learned representations to the nuances and
characteristics of the new task, improving its performance and generalization, and helping
avoid overfitting. In computer vision problems, a digital imagery dataset with object class
details is divided into a training set, validation set, and testing set. These sets are then used as
input for AI models to facilitate training, evaluation, and testing, respectively. Cross-validation
techniques such as holdout, k-fold, and bootstrap can be employed to ensure the selection of
the most suitable model during the training process. These techniques help in avoiding bias in
the dataset or training model and ensure relevant results.

2.3 Computer Vision and AI Approach in Sewer Inspection
This discussion focuses on examining the influence and constraints of notable contributions in
the realms of computer vision and AI, aiming to define the boundaries and possibilities within
these domains.

Kumar and Abraham introduced a framework that utilized Deep Convolutional Neural
Networks (CNN) to classify various issues, such as cracks, root intrusions, and deposits in
CCTV frames of sewer pipelines [27]. Their study involved training and evaluating the CNNs
using a dataset of 12,000 frames from more than 200 sewer pipelines. However, it is important
to note that their work focused on static frames rather than real-time navigation, and they
primarily classified faults without providing information about their specific location
(localization). Cheng and Wang proposed an automated approach cantered around fast R-CNN
for fault detection in sewer pipes [28]. They trained a detection model using a dataset of 3,000
sewer pipe images extracted from CCTV inspection videos. The accuracy and computational
cost of the model were analysed using metrics such as mean accuracy (MAP), training time,
missing rate, and detection speed. Similar to the previous study, this work primarily focused
on analysing standing frames rather than real-time frames and encountered some
misclassification issues for cracks during the experiments.

Gutiérrez-Mondragón et al. developed a training technique for a convolutional neural network
aimed at detecting levels of obstruction in sewer pipes [29]. They trained their model using
significant frames extracted from a CCTV video database. Additionally, they integrated the
Layerwise Relevance Propagation explainability technique to gain insights into the neural

13

networks' behaviour and performance in relational tasks. The authors predicted that their
proposed system could offer high accuracy, speed, and consistency for real-time sewer
inspection. However, it is worth mentioning that this work considers the degree of blockage in
the drain but does not provide information regarding the specific type and location of the
blockage.

Halfawy and Hengmeechai proposed a systematic algorithm combining HOG (Histogram of
Oriented Gradient) and SVM (Support Vector Machine) to detect tree root intrusion faults in
conventional CCTV monitoring videos [30]. The algorithm consisted of two steps: (a)
segmenting the frames to extract regions of interest (ROIs) indicating defect regions, and (b)
applying an SVM classifier trained with HOG features to classify the ROIs. It should be noted
that this approach only considered static frames and did not account for large datasets or video
sequences. Yin et al. developed a framework for real-time automatic fault detection in sewer
pipes using a CNN-based YOLOv3 object detector [31]. Their model was trained on a dataset
of 4056 frames, including six classes of defects such as holes, breaks, cracks, deposits,
fractures, and roots. The framework also incorporated construction feature detection. However,
it is worth mentioning that this model has not been tested in a real-time sewer pipe scenario
and may require further improvements in performance.

Moradi et al. introduced an automated method that utilized computer vision techniques for the
inspection and condition assessment of sewer pipelines [32]. The process involved identifying
a region of interest (ROI) containing sewer defects and then classifying the frames. They used
Hidden Markov Models (HMMs) to extract sewer frames from CCTV videos and employed
CNNs for defect detection and classification. Kumar et al. evaluated deep learning-based
frameworks such as YOLO, SSD, and Faster R-CNN for speed and accuracy in detecting and
localizing root infiltration and deposits in CCTV sewer frames [33]. They trained and tested
their models using a collection of 3800 annotated frames. The faster R-CNN model achieved
the highest accuracy in defect detection, although it had the slowest processing speed per frame.
The YOLOv3 model had slightly lower accuracy but a processing speed almost twice as fast
as the faster R-CNN. The SSD model exhibited the lowest accuracy but the highest processing
speed per image. However, it is important to note that the dataset used for training and testing
in this study was relatively small, which may have limited the achievement of desired results.

2.4 Evaluation of Previous Surveys
A comprehensive examination of image-based automation in closed-circuit television (CCTV)
and sewer scanner and evaluation technology (SSET) is presented by reviewing 25 years of
sewer inspection research [34]. This survey conducted by Haurum and Moeslund, examines
pipeline algorithms and datasets, along with the protocols used in sewer inspection. The survey
investigates various aspects of automated sewer pipeline inspection, including frame
acquisition, pre-processing, detection and segmentation, feature description, classification, and
temporal filtering. The survey suggests the creation of free and publicly available datasets for
each release, accompanied by open-source code and standardized evaluation metrics.

Another review by Moradi et al. focuses on recent sewer inspection technologies utilizing
computer vision and machine learning techniques [35]. The review compares the advantages
and disadvantages of different methods through evaluation. It thoroughly investigates image
representation, image pre-processing, and learning techniques for sewer pipe fault detection.
The review recommends the use of a standard CCTV camera, effective hardware with high

14

specifications, and standardized datasets with robust algorithms. Liu and Kleiner present sewer
pipe inspection and evaluation techniques, discussing augmented reality, smart pipes, and
intelligent robots [36]. They assess the functionality of these technologies and their relevance
to real-world applications. The importance of CCTV and laser scanning techniques is also
emphasized.

Tur and Garthwaite analyse available robotic tools and identify unresolved issues in the
successful implementation of sewer inspection systems [37]. They shed light on various
automated systems, sensing techniques, SSET, and CCTV techniques. The authors suggest that
automated systems should be programmed for specific tasks to reduce costs and minimize
energy consumption. They also highlight the need for advanced artificial visual processing
techniques, deep learning algorithms, and supervised/unsupervised algorithms in fault
detection and classification. In another review conducted by Czimmermann et al., the focus is
on fault detection and classification using advanced artificial visual processing techniques,
deep learning algorithms, supervised and unsupervised algorithms [38]. The authors note that
challenges such as insufficient test samples, inconsistent databases, and a lack of solid
algorithms hinder the implementation of ideal sewer inspection systems.

Overall, these surveys and reviews provide a detailed analysis of computer vision and AI based
automation in CCTV and sewer inspection technologies. They offer insights into the strengths
and weaknesses of different methods, recommend best practices for hardware and datasets, and
highlight the importance of advanced techniques and standardized evaluation metrics in
achieving effective sewer inspection systems.

Previous research studies have often focused on various common issues that arise in sewer
systems, including breaks, tree root infiltration, holes, cracks, deposits, fractures, and obstacles.
However, the most significant problem encountered is blockages in sewers, which occur due
to the accumulation of various types of waste such as sludge, rocks, toilet waste, plastic, tree
roots, leaves, grease, and foreign objects. These blockages pose a major challenge in
maintaining the functionality of sewer networks.

In Table 2, the techniques applied to obtain detection results are listed due to their significance
and relevance in previous research endeavours [39]. It enhances the transparency of the study
by explicitly referencing and acknowledging the techniques that contributed to the obtained
results.

Table 2 Important techniques to obtain detection results

Conventional Algorithms in
Computer Vision for pre-
processing and detection task

 Geometric transformations
 Thresholding

 Morphological operations
 Noise removing
 Image stitching, mosaicking, and unwrapping
 Colour spaces

 Image enhancement and filtering
Learning and Classification
Techniques in Machine
Learning (ML)

 Decision Trees
 Random Forests
 k-means
 Logistic Regression

15

 SVM
 k-NN
 Naïve Bayes

Object detection models in
Deep Learning (DL)

 Faster-RCNN
 SSD VVG
 Tiny YOLOv2
 YOLOv3

Deep Learning based
Classification models

 GoogleNet
 MobileNet v2
 AlexNet
 CaffeNet
 SqueezNet
 ZFNet 512
 DenseNet 121
 ResNet – 18v1, ResNet – 50v1
 CNN Mnist
 ShuffleNet

Deep Neural Network (DNN)
Models for Segmentation

 ResNet 101_DUC_HDC
 Mask R-CNN
 ENet
 FCN

2.5 Existing Automated Systems
In this passage, the discussion focuses on various existing automated systems and highlight
their features, limitations, and potential improvements. The aim is to provide a comprehensive
overview of the advancements made in this area for AI and computer vision and draw
conclusions regarding the state of the art.

The first system discussed is PIRAT (Pipe Inspection Real-Time Assessment Technique),
which was evolved by Kirkham et al. [40]. PIRAT is a semi-autonomous tethered system that
uses interpretation techniques to assess physical data. It employs a three-dimensional model
for classifying and detecting damages. However, the system has certain limitations. It requires
a human operator to manually detect and mark the damaged areas in the images, making it less
efficient. Additionally, the proposed algorithm is a decade old, suggesting that it may lack some
of the more recent advancements in the field. Next, Kuntz et al. [41] developed KARO
(KAnalRoboter), another tethered, semi-autonomous sewer inspection device. KARO features
self-correcting tilting poses and wheel slippage. It utilizes 3D optical sensors and microwave
sensors to detect damages such as cracks, bends, and blockages. However, this system heavily
relies on sensors, and the onboard hardware is not as advanced as desired. The main control
unit is located at a distant place, which can introduce communication delays and potential
issues.

Kirchner and Hertzberg introduced KURT (Canal-Undersuchungs-Robot-Testplatform) in
[42]. KURT1, a part of this system, focuses on autonomous navigation in dry sewer networks.
It classifies pipe junction types and has the potential for mapping sewer landmarks. KURT2,
on the other hand, incorporates sensory platforms such as optional bumpers, odometry sensors,
an inclinometer, obstacle detection, and ultrasound distance measurement using an infrared

16

transducer. While KURT demonstrates autonomous navigation capabilities, it may lack some
advanced computer vision techniques. Rome et al. [43] presented the MAKRO
(Mehrsegmentiger Autonomer KAnalRoboter) robot, which utilizes an ultrasound range sensor
to detect obstructions in sewer pipes. It also incorporates collision avoidance, landmark
detection, and speed control functions. However, the authors note that the system lacks efficient
use of computer vision techniques, which could potentially enhance its capabilities. Nassiraei
et al. [44] developed the KANTARO system, which features an intelligent modular architecture
with implicated sensors and mechanisms. It employs a small-sized smart 2D laser scanner to
detect directional markings, while a fisheye camera evaluates pipe condition and detects
defects. The system demonstrates a promising combination of sensor technologies.

Alejo et al. [45] presented the SIAR (Sewer Inspection Autonomous Robot) system, capable of
detecting critical structural defects in pipelines. SIAR employs real-time 3D structure
reconstruction techniques and collects environmental water or gas samples for analysis
purposes. It utilizes RGB-D sensors and an impressive wireless transmission network. This
system showcases advanced capabilities in real-time data collection and analysis. Abidin [46]
introduced an in-pipe robot that uses an ultrasonic sensor to detect differences in diameter,
indicating the presence of a blockage if the diameter is small. It can clean soft and medium
clogs and operates at distances of less than 30 mm. However, it should be noted that this is a
basic laboratory-scale experiment, and further development is required for practical
implementation. BhrtyArtana, as described by Vaani et al. [47], is a system designed to detect
corrosion, cracks, and obstacles in turbine mechanisms. It utilizes a camera to capture real-time
frames and a proximity sensor to identify obstacles. When an obstacle is detected, the system
employs a turbine mechanism to cut and clear the obstruction.

Gobinath and Malathi developed a relatively expensive robotic machine [48] equipped with a
robot arm capable of moving in different angles, from left to right and top to bottom. This
machine is specifically designed for sewer cleaning purposes. It incorporates a SewerSnort gas
board to detect toxic gases and an LCD display to visualize the cleaning process. Prasad and
Karthikeyan designed a robot [49] to clean and eliminate obstacles in large sewer pipes.
Obstructions are detected using an ultrasonic sensor, and a drilling technique is employed to
remove them. A MATLAB tool is utilized to observe wireless camera videos and frames. Abro
introduced an autonomous system called SewerBot [50], which employs digital image
processing to detect defects in sewerage pipelines. The system uses gradient and segmentation
techniques with the assistance of wireless cameras to identify sewer pipe blockages. However,
the algorithm and performance of the system presented by Abro were found to be subpar for
practical implementation.

In conclusion, several automated sewer inspection systems have been developed with varying
levels of autonomy and capabilities. These systems utilize different sensors, techniques, and
algorithms to detect damages, blockages, and other structural defects in sewer pipes. While
some systems require human intervention for certain tasks, others aim to achieve full
autonomy. However, there are limitations and areas for improvement in terms of efficiency,
use of computer vision techniques, practical implementation, and system performance. These
limitations and comments for the existing automated systems are summarized in Table 3.

17

Table 3 Limitations and comments for existing automated systems

Automated
Systems

Ref.
No.

Features Limitations and Comments

KARO [41] Tethered, 3D optical
sensors

Possible to work through the acquired
sensory data information and depend on the

reliability of the human operators
MAKRO [43] Ultrasound range

sensor, collision
avoidance

Absence of effective Computer vision
technique and not able to navigate inside

bending pipes
SIAR [45] 3D structure

reconstruction, RGB-D
sensors

Innovative system for inspection and
sample collection purposes but not capable

of corrective action.
PIRAT [40] Semi-autonomous, 3D

models for damage
classification

Depends on reliability of human operator
and lack of onboard control routine

KURT [42] Autonomous navigation,
sensory platforms

System used entirely sensors and it was
affected by ecological attributes

KANTARO [44] Modular architecture,
fisheye camera

Defects detection software had lower
precision rate and lack of systematic

approach to improve logically
Machine

Robot
[48] Robot arm, SewerSnort

gas board
Expensive and requires adaption to
techniques for system development.

In-pipe
Robot

[46] Ultrasonic sensor Elementary system and not convenient for
the practical world

Sewerbot [50] gradient and
segmentation

Need for efficiency improvement and
reduction of poor techniques for practical

development.
BhrtyArtana [47] proximity sensor and

camera for detection
Need of methodical approach capable of
being applied to real fault detection and

cleaning situations
MATLAB

Based
Robot

[49] Ultrasonic sensor,
drilling technique

High improvement needs in applied
computer vision method

The following table, Table 4, provides a distinction between various types of sewer robotic
assemblies.

Table 4 Distinctions between types of sewer robotic systems

Full autonomy

Semi autonomy

No autonomy

The reliability of the

evaluation depends on the
intelligence of the system

The reliability of the
evaluation depends on both

the intelligence of the system
and human operator.

The reliability of the
evaluation depends on

human operator

Not reliable in small diameter
pipes

Recommendable in lesser
diameter pipes

Acceptable in lesser
diameter pipes

18

Un-tethered Might be tethered or un-
tethered

Tethered

Brings all mandatory
resources onboard

All mandatory resources may
be brought onboard, or the

control unit might be located
at a remote location

Control unit is located
at remote location

Absolute intelligence for self-
navigation

Teleoperated with some
degree of self-intelligence

Fully teleoperated

Includes many sensors and
intricated navigation structure

Includes average sensors with
navigation structure

Includes less sensors
and operated only by a

human

2.6 Existing Vision Methods in SOP
Sewers are essential underground structures that are crucial for managing sewage in a city or
town. They provide a network of pipes and channels through which wastewater flows to
treatment plants or disposal sites. However, one of the major concerns in sewerage systems is
the occurrence of blockages in sewer pipes, which can be caused by a variety of factors, both
natural and human-made. Dealing with these blockages requires significant manpower and
resources. Traditionally, in India manual cleaning methods were employed, but they pose
serious risks to the workers' health and safety. Therefore, Government of India (GOI)
introduced a standardized measure in August 2021 to eliminate manual scavenging and
promote safer alternatives.

Even prior to this, the GOI had taken proactive steps to prevent hazardous and improper
cleaning of drains and septic tanks, aiming to avoid accidents at all and ensure the well-being
of workers. As per the presented Standard Operating Procedure (SOP) by The Ministry of
Housing and Urban Affairs, India, some vision based indirect inspection technologies have
been detailed in below given Table 5 [51].

Table 5 Indirect techniques for sewer inspection

Sr. No

Feasible Attributes
Situation of

Sewer
Composite for

Sewer
Measurements

of Sewer
Technique

(1) Unfilled Altering Diverse
Measurement

CCTV

(2) Entirely
conducting

Altering Diverse
Measurement

Sonar Technique

(3) Unfilled Altering prepared for 300
mm

Light and Mirror
Technique

19

Figure 3 Sonar technique for sewer inspection

Figure 4 Light and Mirror technique for sewer inspection

Figure 5 Closed Circuit Television (CCTV) with step van for sewer inspection

20

Figure 6 Closed Circuit Television (CCTV) technique for sewer inspection

Figures 3,4,5,6 illustrate indirect inspection functions for sewer systems [51], [52]. Whereas
visual inspection by concerned authority is known as direct inspection. Tools utilised for
maintenance of sewerage system are given in Table 6 [39], [51].

Table 6 Tools for maintenance of sewerage system

Sewer Maintenance Tools

Automated
Executions

Rodding Machine with
Flexible Sewer Rods

Labour-intensive
Executions

A collected wood
board - Scraper

Speedy cleaners (Jetting
Machines)

Bucket Machine Sectional Rods for
Sewer Dredger (Clamshell)

Hydraulically Driven
Tactics

Cloth Ball and
Manila Rope

Gully Emptier

2.7 Research Gaps
After conducting a thorough review of existing literature, relating to AI detection techniques,
computer vision approaches, sources of representative data availability and sewer inspection
systems, the following research gaps have been identified:

 Inefficient utilization of computer vision algorithms with on-board processing: Existing
detection techniques do not efficiently utilize computer vision algorithms that can process
data on-board. There is a need to optimize these algorithms and adapt them for practical
implementation.

 Lack of focus on sewer clogging issues: The majority of research in sewer inspection has
primarily focused on detecting damages and clearing soft and medium clogs. However,
little attention has been given to the problem of sewer clogging caused by debris
accumulation. This indicates a research gap in the development of robust algorithms and
automated systems capable of both real-time detection and removal of obstructions in sewer
pipes.

21

 Lack of standardized dataset for sewer obstructions: Currently, there is no standardized
dataset available that specifically addresses the problem of sewer obstructions. Moreover,
issues related to personal liability, copyright, and privacy restrict the accessibility of
existing datasets. Having an open and accessible research dataset would be beneficial for
the research community to contribute and enhance the AI field more broadly.

 Opportunity for algorithmic model integration: The identified research gaps present an
opportunity to develop an algorithmic model that combines computer vision and AI
approaches. This model can be integrated with existing or newer automated systems used
for inspecting and cleaning sewer systems. By leveraging these revolutionary techniques,
more effective and efficient sewer inspection and maintenance processes can be achieved.

 Absence of accessible source code and evaluation metrics: In the research field of AI and
computer vision focussing on sewer inspection, the availability of accessible source code
for published work is limited. This hampers the replication and further development of
existing algorithms. Additionally, the lack of approved evaluation metrics makes it
challenging to compare and assess the performance of different approaches. Addressing
these issues would promote transparency, reproducibility, and collaboration within the
research community.

 Need to enhance Learning Strategy of AI Models: There is a need to improve the learning
strategy of AI models in detection fields such as sewer inspection. This can be achieved
through the use of representative data, transfer learning, and fine-tuning techniques. By
incorporating these approaches, the performance parameters of AI models can be increased,
making them more suitable for practical deployment.

In summary, the literature review identified several areas for improvement in the current
research that involves AI techniques application to sewerage maintenance. These areas include
the underutilization of computer vision algorithms, the lack of focus on sewer clogging, the
potential for integrating algorithmic models, the absence of a standardized dataset, the limited
availability of accessible source code and evaluation metrics, and the necessity to improve the
learning strategy of AI models.

2.8 Problem Statement & hypothesis
The automated systems are capable of navigating and operating in hazardous, odorous, and
sludgy areas. In order to develop advanced robotic solutions, AI techniques can be used which
will allow inspection and cleaning of sewer systems. Obstructions in drains, displacement of
joints, cracks, encroachment of tree roots are main reasons for deterioration of sewers that lead
to sewage spills, endangering the environment, and causing public health problems. However,
existing methods lack the assurance required for comprehensive sewer inspection and cleaning.
In view of this, the problem statement is to develop AI-powered solution for sewer inspection
and maintenance. The hypothesis suggests that the development and utilization of
representative image datasets coupled with AI detection model can enhance the precision and
efficacy of sewer blockage detection for removal with automated system. These detection
model can offer efficient and cost-effective maintenance of real-world urban sewer systems.

22

2.9 Aim and Objectives
The aim of the research work presented in this thesis is to develop a new representative image
dataset of sewerage blockages and develop AI model for their detection by training through
transfer learning and fine-tuning techniques, with the goal of improving the model’s
performance and effectiveness for real-world applications.

The following research objectives are formulated to address the research gap and achieve the
aim of this thesis work.

 To investigate AI techniques, including Machine Learning (ML) and Deep Learning (DL),
and the structure of Deep Neural Object Detection Models.

 To develop a new representative image dataset, and analyse its strength, performance,
consistency, and viability for real-time applications.

 To develop AI detection models using transfer learning and fine-tuning techniques on the
new dataset, aiming to achieve a high precision rate for a specific application.

 To specify a methodical approach for system development based on embedded vision and
integrate the trained detection model into an embedded processor for a certain real-time
application.

In addition to above objectives, for the sewer maintaining applications specific objectives are
achieved.

 To review existing automated systems and applied techniques used for sewer monitoring
and maintenance purposes.

 To identify the constraints in existing AI and computer vision techniques for sewer
inspection and cleaning in order to devise efficient solutions to overcome.

 To investigate distinct types of sewer pipe blockages and creating a new imagery dataset
of sewer blockages caused by grease, plastic, and tree roots.

 To develop detection models by transfer learning and fine tuning with modifications using
representative dataset for identification and localization of sewer blockages with high
precision rate.

 To import trained detection model in embedded processor for real-time application and it
can be added into existing or newly developed sewer automated system.

23

3 Theoretical Background

This chapter provides the theoretical foundation necessary for a comprehensive understanding
of the concepts explored in the research work.

3.1 Role of Machine learning Techniques
AI has the ability to make decisions like humans and has standard rules encoded in the style
computer programs. Machine Learning (ML), an inherent branch of Artificial Intelligence (AI),
which is one of the most leading technologies in the current scenario. ML techniques
encompass a wide range of algorithms and approaches used to enable computers to learn from
data and make predictions or decisions. The action and reaction of big data in ML can be
interchanged to attain maximum scalability, efficiency, and adaptability. Figure 7 [53] shows
classification details of ML techniques.

Arthur Samuel, an American pioneer in the field of AI and computer gaming, earliest presented
the phrase ML in 1959 and delineated it as, “it gives computers the ability to learn without
being explicitly programmed." Later, Tom Mitchell in 1997 specified ML as, “A computer
program is said to learn from experience E concerning some task T and some performance
measure P, if its performance on T, as measured by P, improves with experience E.”

The following are significant types of ML techniques.

 Supervised Learning: In supervised learning, the algorithm is trained on labelled data,
where each data point has a corresponding target or output label. The algorithm learns to
map input features to the desired output based on the provided examples. Popular
supervised learning algorithms include decision trees, support vector machines (SVM), and
neural networks.

 Unsupervised Learning: Unsupervised learning involves training models on unlabelled
data, where the algorithm aims to discover patterns or relationships in the data without any
specific target variable. Clustering algorithms, such as k-means clustering and hierarchical
clustering, are common unsupervised learning techniques. Dimensionality reduction
techniques like principal component analysis (PCA) and t-distributed stochastic neighbour
embedding (t-SNE) are also used for unsupervised learning.

 Reinforcement Learning: Reinforcement learning focuses on training an agent to interact
with an environment and learn optimal actions to maximize a reward signal. The agent
learns through trial and error, receiving feedback in the form of rewards or penalties.
Reinforcement learning techniques are commonly used in areas such as robotics, game
playing, and autonomous systems.

Further, Deep Learning (DL) is a subset of machine learning that leverages artificial neural
networks with multiple layers to learn complex patterns and representations from data. Deep
Neural Networks apply subtractive computation at numerous levels to perform human-like
tasks [54]. DL has revolutionized fields like computer vision, natural language processing,
speech recognition, etc. Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are commonly used deep learning architectures.

24

Figure 7 Significant types of the ML techniques

 CNNs are primarily used for image and video processing tasks. They employ convolutional

layers to extract local features and pooling layers to downsample and aggregate
information. CNNs have demonstrated exceptional performance in tasks such as image
classification, object detection, and image segmentation. In general CNN equation can be
expressed as follows:

𝐲 = 𝑓(𝐖 ∗ 𝐱 + 𝐛)

(3.1)

Where,

f (⋅) is the activation function applied element-wise to the sum of convolutions.

N is the number of input channels.

Wi represents the i-th set of learnable convolutional filters (also called kernels or
weights).

∗ denotes the convolution operation.

xi represents the i-th input feature map or activation map.

b is the bias term applied to each convolutional filter.

y represents the output feature map or activation map of the CNN.

The convolution operation involves sliding each filter over the input feature map, computing
element-wise multiplications between the filter weights and the corresponding input values,
summing up the results, and applying the activation function. This process generates the output
feature map y. The sizes of the filters, input feature maps, and output feature maps determine

25

the dimensions of the convolutional layers in the CNN. The specific architecture and layer
configurations of a CNN can vary based on the problem domain and design choices.

The CNN equation for processing an image can be broken down into the following steps:

 Input: Consider a colour image with dimensions H x W x C, where H represents the
height, W represents the width, and C represents the number of channels (usually 3 for
RGB images).

 Convolutional Layer: The convolutional layer applies a set of filters to the input image.
Each filter has dimensions K x K x C, where K is the size of the filter (often 3x3 or
5x5). The convolution operation involves sliding the filters over the input image,
computing the element-wise multiplication between the filter weights and the
corresponding pixels in the receptive field, and summing up the results. This produces
a set of feature maps. The output of a single convolutional layer can be computed as
follows:

𝑜𝑢𝑡𝑝𝑢𝑡[𝒊, 𝒋, 𝒌]
= 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑠𝑢𝑚(𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑡𝑐ℎ ∗ 𝑓𝑖𝑙𝑡𝑒𝑟[𝒌])
+ 𝑏𝑖𝑎𝑠[𝒌])

(3.2)

Here, output[i, j, k] represents the value of the k-th feature map at position (i, j) in the
output, input_patch is the receptive field from the input image corresponding to the
filter position, filter[k] represents the k-th filter, bias[k] is the bias term for the k-th
feature map, and activation is the activation function applied element-wise to the
summed result.

 Pooling Layer: The pooling layer reduces the spatial dimensions of the feature maps,
aiming to capture the most salient information. Common pooling operations include
max pooling and average pooling. A pooling operation with a pool size of P and stride
of S can be defined as follows:

𝑜𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗, 𝑘]
= 𝑝𝑜𝑜𝑙_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡[𝑖 ∗ 𝑆: 𝑖 ∗ 𝑆 + 𝑃, 𝑗 ∗ 𝑆: 𝑗 ∗ 𝑆
+ 𝑃, 𝑘])

(3.3)

Here, output [i, j, k] represents the value of the k-th pooled feature at position (i, j) in
the output, input [i*S : i*S+P, j*S : j*S+P, k] represents the pooling region from the
k-th feature map, and pool_function is the pooling function applied to the pooling
region.

 Fully Connected Layers: After the convolutional and pooling layers, the resulting
feature maps are often flattened into a 1-dimensional vector. This vector is then fed into
one or more fully connected layers, which perform high-level feature extraction and
map the learned features to the desired output classes or predictions. The fully
connected layers can be represented as:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑖𝑛𝑝𝑢𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) + 𝑏𝑖𝑎𝑠)

(3.4)

Here, input represents the flattened feature vector, weights represent the weight matrix
connecting the input to the fully connected layer, bias represents the bias term,
dot_product denotes the dot product operation, and activation is the activation function
applied element-wise to the summed result.

26

 Output: The output of the last fully connected layer represents the predicted class
probabilities or regression values, depending on the task being performed.

In practice, CNNs often have multiple convolutional layers with different filter sizes and
strides, non-linear activation functions, regularization techniques, and complex
architectures, such as residual connections or attention mechanisms, to improve
performance on various image-related tasks.

 RNNs are designed to handle sequential and temporal data. They utilize recurrent
connections to capture dependencies between elements in a sequence. RNNs are commonly
employed in tasks such as natural language processing, speech recognition, and time series
analysis. Also, there are some other DL algorithms such as Generative Adversarial
Networks (GANs), autoencoders, transformers.

 LSTMs are a type of RNN that mitigate the vanishing gradient problem and can retain
information over long sequences. LSTMs are particularly effective in modelling and
generating sequential data and have been successful in tasks like speech recognition,
language translation, and handwriting recognition.

 GANs consist of a generator network and a discriminator network that compete against
each other. The generator aims to generate realistic samples, while the discriminator aims
to distinguish between real and generated samples. GANs have been widely used for tasks
such as image synthesis, style transfer, and data augmentation.

 Autoencoders are unsupervised learning models that aim to reconstruct their input data.
They consist of an encoder network that maps the input data to a lower-dimensional latent
space and a decoder network that reconstructs the input from the latent representation.
Autoencoders are used for tasks such as dimensionality reduction, anomaly detection, and
denoising.

 Transformers have gained prominence in natural language processing tasks. They utilize
self-attention mechanisms to capture global dependencies and learn contextual
representations of words or tokens. Transformers have demonstrated state-of-the-art
performance in tasks like machine translation, text summarization, and language
modelling.

Overall, the choice of technique depends on the nature of the problem, available data,
computational resources, and desired results. Machine learning techniques continue to evolve
and advance, enabling computers to learn and make predictions in increasingly complex
situations.

The following Table 7 informs about key phrases in ML and their respective meanings.

Table 7 Key phrases in ML with significances

Phrases Significance

Model Trained by employing ML algorithm to produce outputs

Algorithm Bunch of rules along with computational techniques to gain profound
details

Training Data Consist of features, patterns, and key trends

Validation Data To evaluate model performance during training

27

Testing Data To assess the accuracy of the trained model

Predictor Variable A data trait to predict the outcome

Response Variable A trait of the output variable and Predictor Variable should envisage it

To implement the ML technique illustrated in Figure 8, one needs to follow these steps:

Figure 8 Crucial steps to implement the ML technique

3.2 Modern Approaches to Computer Vision Techniques
Computer vision techniques that are intelligent algorithms to extract deep feature details from
images and videos. The primary goal of computer vision is to enable machines to analyse and
interpret visual data, recognize objects, understand scenes, and extract relevant information.
This encompasses a wide range of tasks, including image classification, object detection, image
segmentation, pose estimation, image generation, and video analysis.

3.2.1 ML and DL in Computer Vision

The computer vision field has its own traditional algorithms and a large area of it is untouched
by AI techniques. Conventional algorithms in computer vision may provide acceptable results
for low imagery data but these algorithms may not perform well with large datasets i.e., produce
saturated results. At this point, using artificial intelligence (AI), i.e., machine learning and deep
learning techniques with computer vision provide excellent results with large datasets and also
enhance performance properties. Figure 9(a) shows a systematic approach of ML with
computer vision while a deep neural network approach is considered in Figure 9(b). In
advanced ML techniques, both feature extraction and learning are automated. Deep learning
has had a significant impact on the field of computer vision. Convolutional Neural Networks
(CNNs) have become the backbone of many computer vision systems, enabling highly accurate

28

image recognition and object detection. CNNs learn hierarchical representations of visual data
by stacking multiple convolutional layers, which capture increasingly complex features.
Overall, it plays a crucial role in enabling machines to perceive and understand the visual
world, bridging the gap between humans and machines in terms of visual understanding and
interpretation.

Figure 9 Steps in applying ML techniques to computer vision tasks

3.2.2 Object Detection

Object detection techniques of computer vision detect the occurrence of objects in an image or
video with bounding boxes and identify their classes. It has two method types such as single-
stage which works for inference speed and real-time use and two-stage which works for model
performance i.e., detection accuracy [55]. The single-stage detectors remove the process of
region of interest (ROI) extraction and moves for classification and regression whereas two-
stage detectors extract ROI and then apply classification and regression. Classification and
localization accuracy and inference speed are two important metrics for object detectors.

Object detection techniques have advanced significantly with the rise of deep learning and
convolutional neural networks (CNNs). Here is a high-level overview of the typical process
involved in object detection:

 Input Image: The object detection algorithm takes an image or a video frame as input.
 Feature Extraction: A CNN is employed to extract features from the input image. This

is typically done by passing the image through multiple convolutional and pooling
layers to generate a feature map. CNN learns hierarchical representations that capture
visual patterns and discriminative features from the input data.

 Region Proposal: The feature map is used to generate a set of potential object locations,
often referred to as region proposals. This step helps narrow down the search space and
improve efficiency. Various methods are used for region proposal generation, such as
selective search, region proposal networks (RPNs), or anchor-based approaches.

29

 Classification: The extracted features are then used to classify each region into specific
object classes or background. This is typically done using classifiers, such as support
vector machines (SVMs) or softmax classifiers, which are trained on labelled data to
recognize different object categories.

 Localization: In addition to classifying objects, the algorithm also localizes them by
predicting the bounding boxes that tightly enclose the detected objects. This can be
done using regression techniques, where the algorithm learns to estimate the
coordinates of the bounding box corners.

 Post-processing: To refine the object detections, post-processing steps are performed.
These steps may involve filtering out overlapping or low-confidence detections,
applying non-maximum suppression to keep the most confident detections, or
incorporating contextual information to improve accuracy.

The deep learning architectures such as Faster R-CNN, YOLO (You Only Look Once), and
SSD (Single Shot MultiBox Detector), have greatly improved object detection systems. These
models have achieved impressive performance on a wide range of object detection tasks and
are widely used in applications like autonomous driving, surveillance, object recognition,
augmented reality, maintenance practices, etc. Overall, object detection plays a vital role in
many computer vision applications, enabling machines to understand and interact with visual
data by detecting and localizing objects of interest within images or videos.

The following terms and equations are essential for evaluating the performance of object
detection models. They provide insights into the model's ability to detect objects accurately
and balance precision and recall trade-offs.

 True Positive (TP): The model correctly predicts the presence of an object when it actually
exists in the image.

 True Negative (TN): The model correctly predicts the absence of an object when there is
no object in the image.

 False Positive (FP): The model incorrectly predicts the presence of an object when there is
no object in the image (false alarm).

 False Negative (FN): The model incorrectly predicts the absence of an object when an
object is present in the image (missed detection).

 Accuracy: The proportion of correctly classified objects (both positives and negatives) to
the total number of predictions made by the model.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (3.5)

 Precision: The proportion of correctly classified positive predictions (TP) to the total
number of positive predictions made by the model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) (3.6)

 Recall (also known as Sensitivity or True Positive Rate): The proportion of correctly
classified positive predictions (TP) to the total number of actual positive instances in the
dataset.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) (3.7)

30

 Average Precision (AP): A measure of how well the model ranks the predicted bounding
boxes for different object classes. It is calculated by computing the precision-recall curve
for each class and then computing the average precision.

𝐴𝑃 = ∑(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑟𝑒𝑐𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡)
/ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠

(3.8)

 Mean Average Precision (mAP): The average of the AP values across all object classes in
the dataset. It is commonly used as an evaluation metric for object detection models.

𝑚𝐴𝑃 = ∑(𝐴𝑃 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠) / 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (3.9)

 F1 score: The harmonic mean of precision and recall. It provides a balanced measure of the
model's performance by considering both precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (3.10)

 Precision-Recall (PR) Curve: A graph that represents the trade-off between precision and
recall for different classification thresholds. The x-axis represents the recall, and the y-axis
represents the precision. The curve shows how precision changes as the recall threshold
varies.

 Intersection over Union (IOU): A measure of overlap between the predicted bounding box
and the ground truth bounding box. It is commonly used to evaluate the accuracy of object
detection algorithms.

𝐼𝑂𝑈 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 / 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 (3.11)

3.2.3 Embedded Vision Approach

Embedded vision systems leverage computer vision algorithms to analyse visual data captured
by embedded cameras or sensors. These algorithms process and interpret the visual information
to extract meaningful insights, make decisions, or trigger actions [56], [57]. Common tasks in
embedded vision include object detection, recognition, tracking, image segmentation, and
scene understanding. Here, the term embedded refers to an embedded system which is any
microprocessor-based computing hardware system and vision refers to computer vision
techniques. One of the key challenges in embedded vision is the limited computational
resources and power constraints of embedded devices. To overcome these limitations,
specialized hardware accelerators, such as GPUs (Graphics Processing Units), FPGAs (Field-
Programmable Gate Arrays), and dedicated vision processing units (VPUs), are often used to
perform computationally intensive tasks efficiently. These hardware accelerators enable real-
time processing of visual data on resource-constrained devices. Embedded vision finds
applications in various domains, including autonomous vehicles, robotics, smart surveillance,
augmented reality, healthcare monitoring, and industrial automation. Researchers and
engineers in the field of embedded vision continuously develop novel algorithms, architectures,
and optimization techniques to improve the efficiency and accuracy of visual processing on
embedded devices. This includes advancements in deep learning models, compression
techniques, and real-time processing algorithms tailored for embedded systems.

31

3.3 Selected Models for Methodical Approach
Here, two YOLO models selected as YOLOX and YOLOv5 for methodical approach are
described below in detail.

 YOLOX – It is a single-stage detection model which functioned well on multiple object
detection benchmark datasets, including COCO, PASCAL VOC, and Open Images [58].
YOLOX comprises three crucial facets such as an anchor-free approach for precise
bounding box detection, a decoupled head for efficient classification and regression tasks,
and advanced label allocation tactics like SimOTA. The Darknet53 is a CNN and as a
backbone which involves 1×1 convolutions, residual connections, and 3×3 convolutions as
shown in Figure 11 [14]. The anchor-free design utilises a center-based approach for each
pixel's detection mechanism. This approach selects a single positive instance per pixel and
estimates four distances (left, top, right, bottom) from the positive instance to the image
borders. As a result, YOLOX uses a single 4D vector to encode the location of the bounding
box for every foreground pixel. The decoupled head enables better optimization and
scalability by separating the two tasks. It also allows for the addition of multiple detection
heads with varying feature scales, resulting in improved object detection across different
object sizes. The head architecture includes a 1×1 convolutional layer that effectively
reduces the channel dimension. It is then followed by two parallel branches, each consisting
of two 3×3 convolutional layers as shown in Figure 10. SimOTA is a Simplified Optimal
Transport Assignment, redesigned strategy for target assignment during training. It
improves average precision without increasing training cost. It estimates the number of
positive anchors for each ground truth based on IoU values, considering factors like size,
scale, and occlusion. SimOTA reduces the number of iterations significantly (training time
reduces), leading to improved performance i.e., enhancing the accuracy of the model. The
loss function is computed for optimize the model for accurate class predictions, bounding
box regression, and objectness scoring.

𝐿𝑜𝑠𝑠 = 𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠 + 𝑟𝑒𝑔_𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑟𝑒𝑔_𝑙𝑜𝑠𝑠 + 𝑖𝑜𝑢_𝑙𝑜𝑠𝑠) (3.12)

Here, class_loss is the Binary Cross Entropy (BCE) loss between the predicted class
probabilities and the ground truth class labels. The reg_loss is the regression loss, which is
optimized using Generic Intersection over Union (GIoU) to measure the accuracy of
bounding box predictions. iou_loss is the objectness loss, which uses BCE to optimize the
objectness predictions based on the IoU values. The reg_weight parameter is a scaling
factor that determines the relative importance of the regression loss compared to the other
losses in the model.
It is a versatile detection framework that offers different version sizes to accommodate
varying requirements. The YOLOX-nano has 0.91 million (M) parameters and performs
well with a test image size of 416 pixels in both width and height. On the other hand,
YOLOX-tiny utilizes 5.06 M parameters and is optimized for the same test image size. For
more demanding tasks, YOLOX provides the YOLOX-small which was selected in our
case for embedded vision purpose, YOLOX-medium, and YOLOX-large, which have 9 M,
25.3 M, and 54.2 M parameters respectively, and are designed to work with a test image
size of 640. Lastly, the YOLOX-large version boasts 99.1 million parameters and is suitable
for processing test image sizes of 640 or 800.

32

Figure 10 Illustration of YOLOX Decoupled Head

Figure 11 Detailing of DarkNet-53 CNN

 YOLOv5 – It is based on PyTorch framework, having .yaml configuration file and targets
on a simplified architecture, model scaling, and transfer learning for various object
detection tasks. The architecture comprises CSP Darknet-53 backbone to extract essential
features from input images. It is a modified version of the Darknet-53, incorporating Cross
Stage Partial (CSP) connections to improve information flow and feature representation. A
neck employs Path Aggregation Network (PAN) to create feature pyramids for effective
object scaling and generalization. A head design is same as that of YOLOv3 and v4 and is
responsible for the final detection step, using anchor boxes to generate output vectors with

33

class probabilities, abjectness scores, and bounding boxes (center_x, center_y, height,
width) [59]. To update the model parameters during training, loss is computed as follows.

𝐿𝑜𝑠𝑠 = 𝐵𝐶𝐸(𝑐𝑙𝑎𝑠𝑠𝑒𝑠) + 𝐵𝐶𝐸(𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠) + 𝐶𝐼𝑜𝑈(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
= 𝜆1 𝐿_𝑐𝑙𝑠 + 𝜆2 𝐿_𝑜𝑏𝑗 + 𝜆3 𝐿_𝑙𝑜𝑐

(3.13)

Figure 12 YOLOv5 Arithmetical Details

The arithmetical details in the model architecture have been given in Figure 12. In above
equation, BCE (classes) represents the Binary Cross Entropy loss for the predicted classes,
BCE (objectness) represents the Binary Cross Entropy loss for the objectness scores, and
CIoU (location) represents the Complete Intersection over Union loss for the bounding box
locations. It uses autoanchor to automatically verify and generate the anchor boxes based
on the distribution of bounding boxes in the custom dataset with K-means clustering and
genetic learning algorithm. This ensures better alignment between the model and the
objects it needs to detect. Activation functions such as SiLU, or the Sigmoid Linear Unit

34

also known as swish, combines the sigmoid and linear functions to capture complex
features in hidden layers.

𝑠𝑖𝑙𝑢(𝑥) = 𝑥 ∗ 𝜎(𝑥)

(3.14)

 Here, σ(x) is the logistic sigmoid.

Its powerful gradients enable faster and more stable training. The sigmoid activation
function is used in the output layer for binary classification tasks. It comprises different
versions of sizes (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) to
accommodate different resource constraints and performance requirements. YOLOv5n is a
lightweight architecture for edge devices, weighing less than 2.5MB in INT8 format and
4MB in FP32 format. YOLOv5s is a small version optimized for CPU inference as selected
in our case for mobile deployment, while YOLOv5m strikes a balance between speed and
accuracy with 21.2 M parameters. YOLOv5l is designed for detecting smaller objects,
featuring 46.5 M parameters. Finally, YOLOv5x is the largest version, offering the highest
mean average precision (mAP) but with 86.7 M parameters and slower inference speed.

Figure 13 YOLOv5 Architectural Details

35

The architecture illustrated in both Figure 13 employs a combination of Convolutional
(Conv) and C3 layers within the backbone to extract relevant features from input images.
These features are subsequently merged at different hierarchical levels utilizing Conv,
Upsample, Concat, and C3 layers within the head of the model. Facilitating the object
detection process is a dedicated Detect layer, which utilizes anchor boxes and the
designated class count for accurate identification. Notably, the C3 (CSP-3) blocks within
the architecture consist of two parallel convolutional layers each. The first layer compresses
input features through a bottleneck, while the second layer directly produces features. The
resultant feature streams are concatenated, further processed through pooling and
convolutional layers, and benefit from skip connections and attention mechanisms present
in the C3 blocks to enhance information flow and diminish the impact of noise. This
comprehensive architecture focuses on precise object detection across varying scales
present within the input image.

3.4 Transfer learning and Fine-tuning
Transfer learning and fine-tuning are both essential techniques in the field of AI, particularly
in deep learning. Here is an explanation of their prominence in the AI:

 Transfer Learning - It refers to the process of leveraging knowledge gained from one task
or domain and applying it to another related task or domain. It involves using a pre-trained
model that has been trained on a large-scale dataset and reusing its learned representations
or features for a new task. The pre-trained model serves as a starting point, and its
knowledge is transferred to the target task, typically by using the pre-trained model as a
feature extractor or initializing the weights of a new model. It is very important for the
following reasons:
a) Data efficiency - Transfer learning enables models to learn from smaller labelled

datasets by leveraging the knowledge learned from large-scale datasets. This is
particularly useful when labelled data is scarce or expensive to acquire. By using
transfer learning, models can effectively extract relevant features from limited data,
preventing overfitting and improving generalization.

b) Improved performance - Pre-trained models, such as those trained on large-scale
datasets like ImageNet, have learned general features that are useful across various
tasks. By utilizing these pre-trained models as a starting point, transfer learning allows
the model to benefit from the previously learned representations, resulting in improved
performance on the target task.

c) Reduced training time - Training deep neural networks from scratch on large-scale
datasets can be computationally expensive and time-consuming. Transfer learning
reduces training time significantly by utilizing pre-trained models as initial starting
points. Instead of training the entire model, only specific layers or parts of the model
are fine-tuned on the target task, accelerating the training process.

d) Domain adaptation - Transfer learning is beneficial when the source and target domains
have different characteristics. By transferring knowledge from a source domain to a
target domain, models can adapt to new data distributions, bridging the gap between
the two domains and improving generalization performance.

 Fine-tuning - It is a specific step in the transfer learning process. Once the pre-trained model
is utilized as a feature extractor or initialized, fine-tuning involves further training the
model on the target task-specific dataset. During fine-tuning, the parameters of the pre-

36

trained model are updated by backpropagating gradients through the added task-specific
layers. This process allows the model to adapt and optimize its performance for the target
task. Fine-tuning is important for the following reasons:
a) Task-specific adaptation - Fine-tuning allows the model to adapt to the intricacies and

specific requirements of the target task. By updating the pre-trained model's parameters,
it can learn task-specific patterns and optimize its performance on the specific problem.

b) Model customization - Fine-tuning allows practitioners to customize and tailor pre-
trained models to suit their specific needs. By modifying or extending the architecture
of the pre-trained model and fine-tuning it on the target task, researchers and developers
can create models that are optimized for their specific application, thereby improving
performance and efficiency.

c) Preserving learned representations - While fine-tuning task-specific layers, the pre-
trained model's early layers, often referred to as feature extractors, are typically kept
frozen. This ensures that the valuable general features learned from the source domain
are preserved and effectively utilized during training. Fine-tuning only modifies the
parameters of the later layers, which are more specialized for the target task.

Yosinski et al. [60] investigated the transferability of features learned in deep neural networks
(DNNs) and their effectiveness in transfer learning. They found that initial DNN layers learn
more generic and transferable features, while deeper layers become task-specific. Similarity
between the source and target tasks influences feature transferability, with better transfer
observed for similar visual or semantic concepts. The size of the target task dataset and the
capacity of the pre-trained model also impact transfer learning performance. Oquab et al. [61]
proposed a method using mid-level representations in CNNs for transfer learning across tasks
with different label spaces. Their approach involves pre-training on a large-scale dataset for
the source task and fine-tuning on the target task with a smaller labelled dataset. Long et al.
[62] introduced Deep Adaptation Networks (DANs) for transfer learning in computer vision
tasks, achieving improved performance by aligning features from the source and target
domains. He et al. [63] presented ResNet architecture, emphasizing the importance of transfer
learning and fine-tuning in image recognition tasks. Their approach, with pre-trained weights
and fine-tuning, outperformed traditional networks on various benchmarks such as ImageNet,
CIFAR-10, and COCO.

In essence, transfer learning sets up the initial knowledge transfer, and fine-tuning fine-tunes
the model to fit the target task by updating its parameters. Together, these techniques can
significantly improve model performance for accuracy, data efficiency, reduction in training
time, and facilitate adaptation to new domains or tasks. Their importance is evident across
diverse applications, including computer vision, natural language processing, recommendation
systems, and speech recognition.

3.5 Role of Artificial Learning in understanding physical mechanisms and
developing predictive models in Different Research Domains

Artificial learning involves training algorithms on large datasets to recognize patterns,
relationships, and structures within the data. In the context of understanding physical
mechanisms, artificial learning can be applied in various scientific and engineering domains as
given below.

37

 Engineering and Manufacturing: Artificial learning facilitates the development of
predictive models for engineering applications. It can be used to analyse sensor data,
monitor equipment performance, optimize processes, and predict failure or maintenance
needs. By learning from historical data and real-time measurements, machines can provide
valuable insights for improving efficiency, quality, and safety in manufacturing and
engineering domains.

 Physics and Natural Sciences: In physics, artificial learning techniques are employed to
understand complex physical systems, such as quantum mechanics, particle physics, and
astrophysics. By training models on experimental data or simulations, researchers can
uncover hidden patterns and relationships, enabling a deeper understanding of fundamental
physical processes. It helps to model the behaviour of particles, understand quantum
phenomena, or predict the properties of materials.

 Biology: Artificial learning can assist in deciphering genetic data, analysing protein
structures, understanding biological processes, and predicting drug interactions. It can help
identify disease patterns, classify different cell types, or optimize drug discovery processes.

 Environmental Science: Artificial learning can be employed to model and predict climate
patterns, analyse satellite imagery for land cover classification, or assess the impact of
pollution on ecosystems. It aids in understanding complex environmental interactions and
developing more accurate predictive models.

Overall, artificial learning plays a pivotal role in understanding physical mechanisms and
developing predictive models across various domains. It enables machines to learn from data,
discover patterns, and make accurate predictions or decisions. By harnessing the power of
artificial learning, researchers and practitioners can gain valuable insights, optimize processes,
and make informed choices in diverse real-world applications.

I. Demir et al. [64], introduced the DeepGlobe challenge dataset which consists of high-
resolution satellite images covering various regions of the Earth. It includes labelled ground
truth data for tasks such as land cover classification, road extraction, and building delineation.
The dataset enables participants to develop and evaluate their deep learning models on real-
world scenarios. This work reveals the potential of AI in analysing Earth's satellite images for
a wide range of applications. Maziar Raissi et al. [65], instituted physics-informed neural
networks (PINNs), a framework that combines physics-based models with neural networks to
solve forward and inverse problems involving nonlinear partial differential equations (PDEs).
It demonstrates how artificial learning can be leveraged to learn the underlying physical
mechanisms and make predictions based on limited or noisy data. Feng et al. [66], presented a
methodology for structural damage detection using deep CNNs and transfer learning. The
collection images of different types and degrees of structural damage were done for dataset
development. They applied pre-processing and annotation operations on the images, labelled
them as either damaged or undamaged. The CNN model was trained using this dataset to learn
the patterns and features associated with structural damage. This work contributes to the
advancement of AI-based approaches for structural health monitoring and maintenance in the
field of civil engineering. Biamonte et al. [67], explored the intersection of quantum computing
and machine learning. They discussed the use of quantum algorithms, such as quantum support
vector machines, quantum clustering, and quantum neural networks, to tackle various machine
learning tasks. They described how these algorithms can leverage quantum properties, such as
superposition and entanglement, to perform computations in parallel and potentially provide

38

speedup over classical counterparts. Moen et al. [68], presented an approach for the
development and implementation of several deep learning i.e., CNNs models tailored for
different cellular image analysis tasks. They discuss the architecture and training procedures
of these models, which include strategies such as data augmentation, transfer learning, and
assembling. The models had been trained on large-scale datasets, providing a diverse range of
microscopy cellular image examples. It also highlights future directions and opportunities for
integrating deep learning with other imaging techniques and multi-modal data analysis. Butler
et al. [69] considered the application of machine learning techniques such as support vector
machines, neural networks, and random forests for the prediction of material properties,
identification of novel materials, and designing of molecules with specific functionalities. It
highlights the use of various data types, such as crystal structures, molecular fingerprints, and
experimental measurements, to train machine learning models. Hino et al. [70], provided
details about specific machine learning models in decision-making for sustainable
environmental management, which includes air quality prediction, water quality assessment,
species identification, weather forecasting, climate change modelling, and other environmental
parameters. These algorithms are capable to analyse large amounts of environmental data
collected from sensors, satellite imagery, and other sources. Florian Shroff et al. [71], presented
FaceNet, a deep learning model that learns compact representations of face images, known as
face embeddings, and maps them into a multidimensional space, where similar faces are close
to each other for further face recognition and clustering tasks. They also proposed a triplet loss
function that encourages the network to learn embeddings with small intra-class variance and
large inter-class variance, enabling accurate and robust face recognition. It has a wide
application area in advanced face recognition and verification systems, biometric
authentication, and surveillance applications.

The general equation that represents the fundamental concept of AI can be given as

𝑌 = 𝑓(𝑋, Ɵ) (3.15)
Where,

X - indicates the input data or features given to the AI algorithm

Y - denotes the output or prediction generated by the AI algorithm

θ - signifies the parameters or weights of the AI model

f - stands for the function or algorithm that maps the input data to the output predictions.

The equation signifies that the output Y is a function of the input X and the model parameters
θ. The function f represents the learning algorithm or model architecture that transforms the
input data using the learned parameters to produce the desired output. Here. the function f will
vary depending on the AI technique being used such as deep learning i.e., complex neural
network architecture with multiple layers and activation functions, support vector machines,
decision trees, etc.

3.6 Significant breakthroughs in AI
Many experiments have been done since the inception of AI to its modern state. Some of the
impressive advances are listed as follows.

Vapnik presented a comprehensive and rigorous treatment of the theoretical underpinnings of
statistical learning [72]. It highlights the importance of understanding the generalization

39

properties of learning algorithms and presents key concepts such as empirical risk, true risk,
VC dimension, and structural risk minimization. The support vector machines (SVMs), a
powerful learning algorithm introduced by Vapnik, and his colleagues is based on the principle
of finding an optimal hyperplane that separates the data into different classes with the
maximum margin. This paper has had a significant impact on the development of machine
learning algorithms and has contributed to advancing the field of AI.

LeCun et al. introduced the use of convolutional neural networks for document recognition
tasks and demonstrated their effectiveness on the MNIST dataset, which is a widely used
benchmark dataset in the field of machine learning and consists of a large number of grayscale
images of handwritten digits [73]. The presented CNN architecture i.e., LeNet-5, included
multiple layers of convolutional filters, pooling layers for subsampling, and fully connected
layers for classification which has the ability to automatically learn features and capture spatial
hierarchies present in the input images. It played a pivotal role in advancing the field of
computer vision and contributed to the broader adoption of deep learning techniques in AI
research.

Hinton and Salakhutdinov demonstrated the effectiveness of unsupervised pretraining and deep
belief networks on several benchmark datasets, including handwritten digit recognition and
object recognition [74]. It showed that by using unsupervised pretraining, deep neural networks
could achieve better generalization performance, especially when the labelled training data was
limited. Once the unsupervised pretraining was complete, the entire network was fine-tuned
using supervised learning, such as backpropagation, to optimize it for the specific task at hand.
The unsupervised pretraining served as an effective initialization step that helped the network
escape local optima and facilitated faster convergence during the fine-tuning phase. It showed
the potential of these techniques through empirical results and significantly influenced the field
of deep learning.

The research work presented by Alex Krizhevsky et al., is highly influential in the field of
computer vision and marked a significant breakthrough in image classification using deep
convolutional neural networks (CNNs) [75]. They proposed a deep CNN architecture called
AlexNet and trained it on a large dataset of labelled images from the ImageNet database.
AlexNet achieved a top-5 error rate of 15.3% in the ILSVRC 2012 competition, significantly
outperforming other methods and surpassing human-level performance in image classification
tasks.

Tsung-Yi Lin et al., provided the MS COCO dataset which serves as an important reference for
researchers and practitioners in the computer vision community [76]. This work was published
in the European Conference on Computer Vision (ECCV) in 2014. It provides an in-depth
description of dataset, its creation process, annotations, and its significance as a benchmark for
evaluating and advancing computer vision algorithms.

The "Attention is All You Need" paper has had a significant impact on the field of modern AI
and NLP, contributing to the development of state-of-the-art models in machine translation,
language generation, and other language-related tasks. The Transformer model introduced in
this work has become the de facto standard for various NLP tasks, surpassing previous
approaches in terms of performance and efficiency [77]. This novel architecture relies solely
on attention mechanisms, without using recurrent neural networks (RNNs) or convolutional
neural networks (CNNs) commonly used in sequence modelling. The self-attention mechanism

40

allows the model to capture dependencies between words or tokens in a sequence and enables
the model to attend to various parts of the input sequence when generating each output token,
making it more effective at capturing long-range dependencies compared to traditional
sequential models.

Goodfellow et al. [78], introduced the concept of Generative Adversarial Networks (GANs),
that consists of two neural networks, a generator, and a discriminator, which are trained in a
competitive manner. The key idea of GANs is to generate synthetic data that is
indistinguishable from real data by learning from a training dataset. The generator network
takes random input noise and generates synthetic data samples, while the discriminator network
tries to differentiate between real and generated data. The networks are trained in a two-player
minimax game, where the generator aims to fool the discriminator, and the discriminator tries
to correctly identify the real data from the generated data. Through this adversarial training
process, the generator network gradually improves its ability to generate realistic data, while
the discriminator network becomes more adept at distinguishing real from fake data. It has a
tremendous impact on various domains, including image synthesis, text generation, and data
augmentation. GANs have been used to generate realistic images, create deepfakes, enhance
low-resolution images, etc.

Brundage et al., conferred a comprehensive exploration of the potential risks and challenges
associated with the malicious use of AI. It raises awareness about the ethical and security
implications of AI technologies and provides valuable insights into the forecasting, prevention,
and mitigation of these risks [79]. The authors identify three primary areas where the malicious
use of AI could have significant consequences: digital security, physical security, and political
security. They explore various scenarios and potential applications where AI could be exploited
for harmful purposes, such as automated hacking, social engineering, autonomous weapons,
and AI-driven disinformation campaigns. The work serves as a foundation for further research
and policy discussions regarding the responsible development and deployment of AI systems
to ensure the beneficial use of this transformative technology.

3.7 Summary: Leading to the Methodical Approach
In this, the included sections highlight the significance of machine learning techniques,
including supervised, unsupervised, and reinforcement learning, in AI and computer vision.
Deep learning, specifically CNNs have greatly impacted computer vision tasks like image
recognition and object detection. Object detection involves various steps such as feature
extraction, region proposal generation, classification, and localization. Embedded vision
systems leverage computer vision algorithms and specialized hardware accelerators to process
visual data in resource-constrained environments. ML and DL techniques continue to advance
the field of computer vision, enabling machines to effectively analyse and understand visual
information.

The section specifically focuses on the selection of YOLOX and YOLOv5 models, describing
their features and architectures. YOLOX employs an anchor-free approach, decoupled head,
and advanced label allocation tactics, while YOLOv5 is based on the PyTorch framework and
emphasizes a simplified architecture, model scaling, and transfer learning. It utilizes a CSP
Darknet-53 backbone and a PAN neck for effective feature extraction and scaling. Both models
employ different loss functions to optimize class predictions, bounding box regression, and
objectness scoring.

41

Furthermore, the selection of these models was also based on their performance on benchmark
datasets, their versatility in accommodating varying requirements, and their availability of
different model sizes. The YOLOX model provides different sizes ranging from YOLOX-nano
to YOLOX-large, while the YOLOv5 model offers sizes from YOLOv5n to YOLOv5x.

Additionally, the concepts of transfer learning and fine-tuning are introduced, highlighting their
importance in improving data efficiency, performance, and adaptability. The relevance of these
techniques is supported by research findings and their successful application in the domain.

The chosen methodology in the next chapter will delve deeper into the implementation and
performance evaluation of AI algorithms, providing a comprehensive understanding of their
application in computer vision tasks.

42

4 Methodology and Case Study with Results

The AI model for object detection is developed in this thesis. As already mentioned, the
application field is chosen as detecting blockages in sewers.

4.1 Methodology
A comprehensive explanation of the research methodology employed in this study is provided
in the following sections.

4.1.1 Development of New Critical Multiclass Representative Image Dataset

Figure 14 depicts the workflow involved in dataset decision-making, illustrating the
comprehensive procedure from requirement generation to model training [4]. The subsequent
subsections succinctly elaborate on the significance and necessity of developing a novel
dataset, which is based on authentic facts, meticulous surveys, insightful observations, and
thorough analysis.

Figure 14 Decision-making workflow for the development of new dataset

43

In this, recognizing the indispensability of data, we embarked on a comprehensive investigation
into its availability. We meticulously scrutinized various avenues, including data searching
methodologies, sharing protocols, and hybrid platforms. Our efforts extended to engaging with
diverse stakeholders such as authorities, municipal corporations, and the open research
community. Despite these endeavors, certain constraints and confidentiality issues posed
challenges in accessing secondary data. This scenario prompted us to navigate an alternative
route, involving the creation of a primary dataset to attain further objectives.

4.1.1.1 Survey Details of Pune Municipal Corporation (PMC)
To gain a comprehensive understanding of the research landscape, a survey was conducted in
Pune, India, a representative mid-size city in a developing country. The sewerage system in the
city was designed in 1928, to accommodate a capacity of 31.8 million litres per day (MLD) to
cater to a population of 0.26 million. However, as of 2020, the city's population has surged to
7.4 million, resulting in significant strain on the existing infrastructure. Presently, the city has
11 Sewage Treatment Plants (STPs) with a total capacity of treating 396 MLD.

Within SPRING project with the support of DYPatil, Engineering college and in collaboration
with the Pune Municipal Corporation (PMC), a comprehensive city survey was conducted to
evaluate the available sewage treatment techniques and identify associated challenges. The
findings of the survey, along with insights from specific cases of cleaning works, are presented
in Table 8 [39].

Based on information obtained through official sources, it was gathered that the primary
objective of sewerage maintenance activities is to minimize drainage blockages per unit length.
Generally, external mechanical systems are employed for cleaning purposes, incurring
substantial costs. Although PMC endeavours to adhere to government directives for regular
sewer inspection and maintenance, budgetary constraints have resulted in a lack of appropriate
techniques and inadequate equipment for this purpose.

Table 8 Details of survey conducted at PMC. [39]

Terms Details
Sewer Line 2167 kilometre
Sewer Pipe Diameter Ranges from 100 mm to 1800 mm
Total Chambers (manhole) 2187
Sewer Pipe Material RCC

 High-density
polyethylene (HDPE)

 bid-iron!
 PVC

Distance Between
Chambers

10 to 15 meters

Sewer Net pressure 1 to 4
Sewer Cleaning Techniques Suction Cum Jetting

Machine with a Recycler
 Suction Cum Jetting

Machine
 Jetting Machine

Total Generated Sewage 744 MLD

44

Intermediate pump stations
(IPS)

6

Sewage Treatment Plants
(STPs)

9

Main Sewer Lines River side
 Below road
 Canal side

Cleaning Tools

 Suction Cum Jetting

Machine
 Suction Cum Jetting

Machine with a Recycler
 Jetting Machine

Charges/Shift (8 hours shift)

6400 INR

37000 INR

5360 INR

4.1.1.2 Why do we need to develop a New Representative Dataset?
A comprehensive review of the literature on computer vision applications and automated
systems in sewer inspection work reveals that sewer blockages are difficult to detect. The
existing algorithms and automated systems for real-time detection and cleaning of sewer
blockages are found to be unreliable and lacking robustness. This problem of maintaining the
sewers is further aggravated if there is a single sewer line for sewage and stormwater.

To address the real-time detection and identification of sewer blockages using AI model, it is
essential to have a standardized dataset. Despite extensive efforts to gather relevant data from
open literature and reaching out to various authorities and municipalities, no suitable datasets
for real-time sewer blockage detection could be obtained. The noxious, unhygienic, and
malodorous environment of sewers poses a significant hurdle in capturing images for dataset
generation. It is worth pointing out that individual obligations, copyright, or confidentiality
issues related to prior works are also accountable for the inaccessibility of datasets.

Clogging in drains is mainly initiated by the presence of grease, plastic, and tree roots as
detailed in Table 9. However, there are additional components within sewage that mix with
black water, making them challenging to identify. These components are generally considered
as black sewer blockages and are represented as black grease in the dataset. Altogether, grease,
plastic, and tree root imagery data have been considered as mentioned above in the
representative dataset, named as S-BIRD (Sewer-Blockages Imagery Recognition Dataset),
which is employed for learning of object detection models to detect and identify sewer barriers
in real-time.

Figure 15 illustrates the concept of creating the S-BIRD dataset, which incorporates imagery
data of grease, plastic, and tree roots [4].

The absence of a standardized matrix for implemented algorithms poses a significant challenge
in practical development. However, the AI models trained on the S-BIRD dataset provide a
valuable benchmark for assessing the localization results in real-time scenarios. By utilizing
this dataset, researchers and developers can evaluate the performance of their implemented
algorithms in real-world situations, making it a crucial resource in the field. This research case
study aims to utilize new techniques in computer vision and AI technologies to optimize the

45

performance and effectiveness of sewer robotic systems by improving the efficiency of sewer
blockage removal because blind systems may lack the same level of competence as vision-
based automated systems, resulting in more efficient and reliable sewer maintenance processes.

Figure 15 S-BIRD dataset including major sewer blockages

Table 9 Common Causes and Consequences of Major Sewer Blockages

Obstruction
Type

Causes Impact and Issues

Treeroots Tree roots infiltrating
sewer lines

 causes physical obstruction, leading to
blockages.

 roots seek out moisture and can grow into
pipes, causing cracks and blockages.

 lead to sewage backups and potential pipe
damage.

Plastic plastic waste such as
single use plastic,

transparent and multi-
coloured bottles,

containers, medical
waste, bags, etc.

 accumulation of plastic debris leads to
gradual blockages.

 plastics become entangled with other debris,
exacerbating blockages.

 contributes to sewage overflows and
environmental issues.

Grease accumulated grease and
fat deposits such as
cooking oil and fats,

dairy-based fats,
industrial grease,

shortening, hydrogenated
oil, etc.

 grease solidify in pipes and accumulate over
time, causing blockages.

 leads to reduced flow capacity and causes
backups and overflows.

 attract other debris, further exacerbating the
blockage.

46

4.1.2 Methodical Flow for New Dataset and Detection Model Training

Figure 16 Methodical Workflow with newly developed dataset

Figure 16 presents a systematic workflow that outlines the key steps and techniques employed
for development of sewer blockage detection models using the newly developed representative
dataset and transfer learning. The workflow encompasses various essential techniques and their
implications, highlighting the practical relevance of the research findings.

To begin, frames capturing sewer blockages were collected, and preprocessing and
augmentation operations were performed to generate critical instances suitable for training
purposes. Heatmap and object count histogram analyses were conducted to evaluate the
strength of each object class within the newly developed dataset. This dataset, named the S-
BIRD dataset, was specifically designed to identify common sewer blockages, and
demonstrated its effectiveness in training robust detection models.

The application oriented model development process involves utilizing the YOLOX-s and
YOLOv5-s architectures, incorporating transfer learning and fine-tuning techniques with
optimized parameters and data augmentation. The evaluation of the developed models is done
for the confirmation of their exceptional accuracy in detecting sewer blockages and
demonstrated the consistency and feasibility of the employed dataset.

47

Furthermore, the methodical flow emphasizes the integration of embedded vision techniques
for real-time applications, underscoring the practical implications of the research findings in
wastewater management. Various tools and techniques, including OpenCV (Open Source
Computer Vision and Machine Learning Library), Python programming, the PyTorch
framework, machine learning libraries, high-performance Nvidia GPU workstations, Single
Board Computers (SBC), and the Linux operating system, were utilized to facilitate the
development of model training programs and the creation of a robust and efficient embedded
vision platform.

By following this methodical flow, the research successfully develops detection models trained
on the newly created representative primary dataset, for showcasing their accuracy and
feasibility in identifying sewer blockages. Additionally, the integration of embedded vision
techniques highlighted the practicality of the research findings, contributing to advancements
in wastewater management.

4.2 Tools Utilized in S-BIRD Dataset Generation
Below, a comprehensive explanation with significance of the tools utilized in the development
of the S-BIRD dataset is presented, which serves a crucial role in the practice.

4.2.1 Constructed Sewer Pipeline

The sewer network simulation and dataset generation work were done at laboratory of DY Patil
School of Engineering, Pune one of the project partners in SPRING. A simulated sewer
network was constructed using PVC pipelines with a diameter of 200 mm as shown in Figure
17 (a), similar which are used in residential sewers. The purpose of this simulated network was
to mimic a real sewer environment while eliminating the noxious atmosphere and stench as
illustrated in Figure 17 (b) (pure negative samples). The resulting sewer pipeline, as depicted
in Figure 17 [4], closely resembled an actual sewer system.

Figure 17 Illustration of the constructed sewer pipeline with (a) material and diameter details and (b) realistic
design and internal environment

In order to ensure authenticity, the simulated sewer network replicated the various types of
blockages such as tree roots, plastics, and grease, that naturally occur in real sewer systems, as

48

discussed in section 4.3. All relevant information and characteristics of these blockages were
incorporated into the simulated network. This ensured that the detection model trained using
the S-BIRD dataset would be capable of functioning effectively in practical situations.

4.2.2 Inspection Camera for Sewerage Systems

The watertight sewer camera, illustrated in Figure 18 [4], played a crucial role in capturing
real-time frames of sewer barriers such as grease, plastics, and tree roots. This camera
possessed specific features and characteristics, as outlined in Table 10.

Figure 18 Watertight sewer camera employed for frame capture

The dataset generation process incorporated a highly advanced sewer camera with a compact
dimension of 23 mm × 120 mm. This camera was equipped with 12 modifiable white LEDs,
enabling it to adapt to varying lighting conditions by adjusting the brightness levels. Its
exceptional waterproofing grade of IP68 provided reliable protection against water infiltration,
which is of utmost importance when operating in sewer environments. Furthermore, the camera
boasted a wide vision angle of 140 degrees, facilitating comprehensive coverage during
inspections.

Table 10 Technical details of the utilized sewer camera

Attributes Specifications

Illumination source 12 adjustable white LEDs

Camera dimension Camera dimension 23 mm × 120 mm

Vision angle (Field of view) 140 degrees

Waterproof grade IP68

Utilizing this sophisticated sewer camera was instrumental in enhancing the S-BIRD dataset.
It enabled the capture of real-time frames from diverse angles, allowing for the desired aspect
ratio and accommodating different lighting conditions. Moreover, it accurately documented the
various obstacles encountered within sewer systems. These captured frames serve as invaluable
training data for the detection model, guaranteeing its efficacy when confronted with similar
real-world scenarios.

49

4.3 Image Data Collection for the Development of Novel S-BIRD
The dataset of sewer blockages comprises a comprehensive collection of carefully captured
images taken under diverse lighting conditions and from various angles within the simulated
sewer network. These images offer essential insights and features required for detection and
recognition tasks. Detailed descriptions of the captured blockage scenarios are provided in the
following paragraphs.

Figure 19 [4] presents a selection of frames displaying blockages caused by tree roots,
providing a glimpse into the diversity of occurrences encountered in the dataset. These images
offer valuable insights into the presence and characteristics of tree root blockages within sewer
pipes, contributing to the dataset's authenticity and relevance.

Figure 19 Frames depicting tree root blockages in the S-BIRD dataset

Figure 20 Frames illustrating plastic blockages in the S-BIRD dataset

50

In Figure 20 [4], the dataset captures images of blockages made up of different-coloured
plastics, which are crucial for obtaining key information relevant to identification tasks. The
inclusion of diverse plastic colours adds complexity to the dataset, enhancing its realism and
practicality in training detection models.

Within the dark mass of sewage, additional elements such as plastic bags or debris may be
present. However, due to their mixture with black water and grease, they often appear
predominantly blackish in colour, posing challenges for visual identification. Nonetheless, the
dataset effectively captures this characteristic, enriching the variety of blockage scenarios
encountered in real-world sewer systems.

Figure 21 [4] displays frames depicting grease blockages, capturing a wide range of colours
and diverse information. Grease blockages originate from various sources, including domestic
households and both high- and low-density production plants that generate significant amounts
of chemical and processed waste. The inclusion of such instances in the dataset enhances its
authenticity and reflects the complexity of real sewer systems.

Figure 21 Frames displaying grease blockages in the S-BIRD dataset

Through meticulous collection and inclusion of these diverse blockage scenarios, the dataset
provides a comprehensive and representative collection of images essential for training robust
detection and recognition models in sewer systems.

4.4 Detailed Analysis of Captured Frames
The captured frames are accompanied by comprehensive arithmetic details, which are
presented in Table 11 for further implementation. Annotating the objects in each captured
frame required meticulous efforts, ensuring high skill and accuracy without any labelling
errors. These annotations provide vital information regarding the location, specifically the
center coordinates (center x, center y), width, height, and class of objects present in each frame
of the S-BIRD dataset. This is essential information for subsequent computations and analysis.
To ensure consistency and facilitate further computations, all these parameters are normalized

51

based on the original frame's width and height. Normalization is performed to ensure that the
values range from 0 to 1, irrespective of the original image size.

Mathematically, the normalized parameters are computed as follows:

 Normalized Center Coordinates:

𝑥_𝑐𝑒𝑛𝑡𝑒𝑟_𝑛𝑜𝑟𝑚 = 𝑥_𝑐𝑒𝑛𝑡𝑒𝑟 / 𝑓𝑟𝑎𝑚𝑒_𝑤𝑖𝑑𝑡ℎ,
𝑦_𝑐𝑒𝑛𝑡𝑒𝑟_𝑛𝑜𝑟𝑚 = 𝑦_𝑐𝑒𝑛𝑡𝑒𝑟 / 𝑓𝑟𝑎𝑚𝑒_ℎ𝑒𝑖𝑔ℎ𝑡

(4.1)

 Normalized Width and Height:

𝑤_𝑛𝑜𝑟𝑚 = 𝑤 / 𝑓𝑟𝑎𝑚𝑒_𝑤𝑖𝑑𝑡ℎ, ℎ_𝑛𝑜𝑟𝑚 = ℎ / 𝑓𝑟𝑎𝑚𝑒_ℎ𝑒𝑖𝑔ℎ𝑡 (4.2)

For example, let's examine annotations for three classes: 0 for plastic, 1 for grease, and 2 for tree
roots. For Class (0), representing plastic, the annotation includes the center coordinates (center x =
0.8389423076923077, center y = 0.25841346153846156), width (0.3173076923076923), and
height (0.5168269230769231).

The annotated data provides valuable training examples for machine learning models, allowing
them to learn and recognize objects of interest in images.

Table 11 Arithmetical details of captured frames.

Captured frames

Object Class (Sewer
Blockage Type)

Acquired Frames

Tree roots 2295

Plastic 2392

Grease 2353

Total frames 7040

Annotations 10,233 (Average = 1.5 per frame)

Average frame size 0.08 Megapixels

Mean frame ratio 352 × 240 (wide)

Angle of diagonal 0.598 radian = 34.3°

Length of diagonal 426 pixels

Aspect ratio Class 1.467:1

Pixel density 9 pixels/mm or 230 pixels/inch

To visualize the class balance in terms of annotations, Figure 22 displays the total number of
annotations for each sewer blockage type: 4131 for grease, 3471 for tree roots, and 2631 for
plastic.

52

Figure 22 Annotated illustrations depicting the balance of sewer blockage types

Figure 23 Heatmap visualization of annotation details for recorded images

The spatial distribution of annotations, represented by bounding boxes, for the considered
blockage types across all captured frames is displayed as a heatmap in Figure 23. Heatmaps
provide a graphical representation of informative data, employing a color-coding system to
convey values. In this context, the values correspond to the annotation details. Heatmaps offer
a quick and visually comprehensive summary, facilitating the understanding of the intricate
nature of the dataset. The use of colours in a heatmap enables a more intuitive comprehension

53

of the correlations between annotated values, compared to traditional numerical tables. The
heatmap presented here exhibits yellow colour for highly positioned regions of annotations,
while light green colour denotes lower positioning. All depicted heatmaps demonstrate that the
majority of annotations are concentrated towards the center of the object classes within the
frames.

The imagery data is divided into three balanced groups: training data (70%) consisting of 4928
frames, validation data (20%) comprising 1408 frames, and testing data (10%) with 704 frames,
as depicted in Figure 24.

Figure 24 Data balancing for each class

Table 12 [4] provides annotation details specifically for the classes within the training data.

Table 12 Annotations for training data

Object Class (Sewer Blockage
Type)

Annotations

Grease 2920
Tree roots 2455

Plastic 1821
Total 7196 (Average = 1.5 per frame)

These detailed annotations play a crucial role in training and validating detection models,
enabling accurate identification and localization of sewer blockages.

4.5 Preprocessing and Augmentation Techniques
In this section, two representative preprocessing techniques have been employed on captured
frames. Firstly, auto-orientation of pixel data was implemented by discarding the EXIF (i.e.,
image metadata) rotation and validating the pixel sort. Additionally, resizing the frames to 416
× 416 pixels was performed by stretching the frame without losing the source frame
information.

54

To resize the frame from 352 × 240 to 416 × 416 without losing any information, we need to
stretch the frame while maintaining its aspect ratio. Let us calculate the scaling factors for width
and height:

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑤𝑖𝑑𝑡ℎ (𝑠𝑓) = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑤𝑖𝑑𝑡ℎ / 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑤𝑖𝑑𝑡ℎ
= 416 / 352 ≈ 1.1818

(4.3)

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑠𝑓) = 𝑡𝑎𝑟𝑔𝑒𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 / 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡
= 416 / 240 ≈ 1.7333

(4.4)

Now, new dimensions of the resized frame can be calculated as follows:

𝑟𝑒𝑠𝑖𝑧𝑒𝑑_𝑤𝑖𝑑𝑡ℎ = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑤𝑖𝑑𝑡ℎ ∗ 𝑠𝑓_𝑤 = 352 ∗ 1.1818 ≈ 416 (4.5)

𝑟𝑒𝑠𝑖𝑧𝑒𝑑_ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑠𝑓_ℎ = 240 ∗ 1.7333 ≈ 416 (4.6)

These image preprocessing methods contribute to reducing model training time and
accelerating inference for detection models.

Figure 25 Distribution Graph of Aspect Ratios

Figure 25 illustrates the distribution graph of aspect ratios in the S-BIRD dataset, confirming
that all frames are square-sized with dimensions of 416 × 416 pixels.

Furthermore, important image-level augmentation techniques have been employed to generate
new training instances from existing data. Figure 26(a) demonstrates the visual result of
applying a 25 percent gray scaling to the input training frame. This technique increases training
variation while retaining colour information during inference. Figure 26(b) illustrates the
application of salt and pepper noise, also known as impulse noise, to 5 percent of the pixels in
the input frames. This noise helps the detection model adapt to camera artifacts during training

55

by adding bright and dark pixels to different regions of the frames, preventing adverse effects
and overfitting.

To enhance the detection model's robustness against changes in light and camera settings,
random exposure adaptations have been introduced. These adaptations randomly adjust the
exposure of the input frame between -25 and +25 percent, as shown in Figure 26(c) [4]. The
complete implementation is as given -

 Gray Scaling: To apply a 25 percent gray scaling to the input training frame, the formula is
as follows:

𝑁𝑒𝑤_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 = (0.75 ∗ 𝑅) + (0.75 ∗ 𝐺) + (0.75 ∗ 𝐵) (4.7)

where R, G, and B represent the red, green, and blue colour channels of each pixel,
respectively.

 Salt and Pepper Noise:
 Determined the number of pixels in the image (416 × 416 = 173,056 pixels),
 Selected 5 percent of the total pixels (0.05 * 173,056 = 8,653 pixels) randomly,
 Assigned a random intensity of either the maximum (255) or minimum (0) value (bright

or dark pixel) to each selected pixel.

 Random Gamma Exposure Adaptations: To randomly adjust the exposure of the input
frame between -25 and +25 percent, the formula is given below:

𝑁𝑒𝑤_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒

= 𝑂𝑙𝑑_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 ∗ (1

+ 𝑅𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑒𝑡𝑤𝑒𝑒𝑛(−0.25, 0.25))

(4.8)

where Random_number_between(-0.25, 0.25) generates a random number between -0.25 and
0.25.

56

Figure 26 Illustrative outcomes of common augmentation methods: (a) grayscale transformation, (b) salt and
pepper noise, (c) arbitrary exposure variation

In addition, two important advanced augmentation techniques, namely cutout and mosaic, have
been utilized. Figures 27(a) and 27(b) [4] depict the visual outcomes of these techniques,
respectively. Cutout involves inserting three occlusions in 10 percent of the input frames,
helping the detection model handle object occlusion. The mosaic technique combines multiple
images from the training set to create a collage, improving the detection model in effectively
detecting small objects. In this case, four different sewer block frames were added to a single
frame i.e., Random Image Cropping and Patching (RICAP).

Overall, these augmentation techniques significantly contribute to improving the efficiency of
the object detection model by increasing the number and diversity of training instances and
annotations. They also help reduce training time and costs. Consequently, discrete output
versions have been generated for the source frames.

Table 13 [4] presents the quantitative details of the training frames in the S-BIRD dataset after
applying preprocessing and augmentation techniques.

57

Table 13 Computational details of training samples in S-BIRD after preprocessing and augmentation.

Metric Values

Total frames 14,765

Annotations 69,061 (Average = 4.7 per frame)

Average frame size 0.173 Megapixels

Mean frame ratio 416 × 416 (square)

Aspect ratio Class 1:1

Angle of diagonal 0.785 radian = 45°

Length of diagonal 588 pixels

Pixel density 12 pixels/mm or 290 pixels/inch

Figure 27 Visual outcomes of enhanced augmentation methods: (a) cutout and (b) mosaic

58

Figure 28 Annotation specifications for each class in the training dataset following image-level augmentation

Graph in Figure 28 displays the increased annotations for each sewer block type in the S-BIRD
training data after applying augmentation techniques. The number of annotations for grease,
tree roots, and plastics are now 26,847, 21,553, and 20,661, respectively, resulting in a total of
69,061 augmented annotations (bounding boxes). This represents a significant increase of
61,865 annotations, or 859.714%. The preprocessing and augmentation techniques were
implemented using OpenCV, a popular computer vision and machine learning library, along
with Python programming on the Linux platform, achieving the desired results.

4.6 Annotated Heatmap and Object Count Histogram
Two important metrics, the annotated heatmap and the object count histogram, have been
analysed to evaluate the effectiveness of the training data. Figure 29 illustrates the location of
all annotations for grease, plastic, and tree roots in the training data of S-BIRD through
heatmaps. These heatmaps provide an overview of the most common positions and distribution
of annotations for each class. From the colour information in the heatmaps, it is evident that
the majority of annotations (yellow colour) are located at the far left and right of both top and
bottom sides of the images for all object classes.

A histogram is a useful chart that represents numeric data in individual columns called bins.
Figure 30 [4] presents the object count histogram, which details the number of frames on the
y-axis and the corresponding object counts for all classes on the x-axis. The number of objects
or annotations for grease and tree roots ranges up to nine instances, as shown in Figure 30(a)
and 30(b). Grease objects appear once in 1730 frames and four to five times in 1400 to 1600
frames, as depicted in Figure 30(a). Similarly, there are 1926 frames with a single tree root
object, and approximately 1500 frames contain three to four tree root objects, as shown in
Figure 30(b). The number of plastic objects varies up to seven instances, with four plastic
objects present in 2494 frames, and around 2200 frames containing one plastic object, as
illustrated in Figure 30(c). Figure 30(d) represents the object count histogram for all classes,
demonstrating that 11,339 frames contain four to five objects. It also indicates a significantly
lower occurrence of frames with only one object compared to the total number of annotations
(69,061). The findings from both the annotated heatmap and the object count histogram
confirm the high accuracy and quality of each class of imagery data in S-BIRD.

59

Figure 29 Heatmap of annotations providing location details of all classes

Figure 30 Histogram depicting the number of objects for: (a) grease, (b) tree roots, (c) plastic, and (d) all
categories

60

4.7 Development of Sewer Blockage Detection Models using Transfer Learning
and Fine Tunning

The AI models implemented using the PyTorch framework for mobile deployment, effectively
detected sewer blockages including grease, plastic, and tree roots. The training process
involved annotations in two different formats such as Pascal VOC and PyTorch TXT and
utilized a Tesla V100-DGXS-32GB GPU workstation with a Docker Container for efficient
training.

4.7.1 Optimization and Training of YOLOX using newly developed S-BIRD dataset

The crucial information about how transfer learning and fine-tuning was applied for training
of YOLOX model on newly developed S-BIRD dataset is given as follows.

 The very first, a pretrained single stage YOLOX-small model architecture with DarkNet53
backbone that was used as the starting point for transfer learning. This backbone is a variant
of the Darknet architecture with shortcut connections and downsampling layers.

 The input size of 14,765 frames from the training set of the S-BIRD dataset was then
matched to 640 × 640 pixels, which was previously an average size of 0.173 megapixels
and a square ratio of 416 × 416 pixels. The annotations in the dataset had consisted of
69,061 instances, resulting in an average of 4.7 annotations per frame.

 Next, the architecture of the YOLOX-s model was modified by setting it to identify 3
classes, including tree roots, plastics, and grease, to align with the object classes in the S-
BIRD dataset. This modification was achieved by adjusting the 'num_classes' attribute to
3, indicating that the model would be trained to accurately detect and classify these specific
classes.

 The depth parameter was set to 0.33 which controls the network depth and refers to the
number of layers. Whereas the width parameter was 0.50 which determines the network
width i.e., the number of channels or filters in each layer.

 Now, the modified YOLOX-Small model was inserted with the ‘yolox_s.pth’ weights
which includes the learned representations and configurations for further training on new
custom dataset.

 In the fine-tuning process, the YOLOX model aimed to optimize the loss function and
improve its performance on the sewer blockage detection task. This optimization process
was performed over 300 training epochs, denoted as max_epoch, which was set in this case.

 During fine-tuning, additional training parameters were considered as shown in Table 14
[4]. The training process involved minimizing the difference between the predicted
bounding boxes and the ground truth annotations. This was achieved by optimizing the
model's parameters using techniques such as stochastic gradient descent (SGD) with a
suggested specific learning rate, weight decay, and momentum, which controlled the
magnitude of parameter updates, regularization, and optimization dynamics, respectively.
The model was trained with a learning rate warm-up for the first five epochs to stabilize
the training process.

 Additionally, this process incorporated data augmentation techniques such as random
rotations up to 10 degrees, translations up to 0.1, and scaling between 0.1 and 2.

 The weights had been updated as per the training progress and evaluation matrix was
computed for the validation of the detection model.

61

Table 14 Key Training Parameters

Parameters Significances
learning model YOLOX-s

Annotation data type Pascal VOC XML
max_epoch 300
batch_size 16

fp16 True
num_classes 3

Params 8.94 M
Gflops 26.64
depth 0.33
width 0.5

input_size (640, 640)
random_size (14, 26)

nmsthre 0.65
degrees 10.0
translate 0.1

scale (0.1, 2)
mscale (0.8, 1.6)
shear 2.0

warmup_epochs 5
weight_decay 0.0005
momentum 0.9

The timing and precision results of the developed detection Model-1 (using YOLOX-s) for S-
BIRD are presented in Table 15 and Table 16, respectively [4].

Table 15 Timing analysis of the trained model

Timing Parameters Outputs (Milliseconds)

Average forward time 3.19 ms

Average NMS time 0.88 ms

Average inference time 4.07 ms

Table 16 Precision evaluation of the trained model

Object Class (Sewer
Block Types)

Average Precision map_5095 map_50

grease 0.9004
0.7885 0.9005 tree roots 0.8930

plastic 0.9081

According to Table 15 and Figure 31, the sewer blockage detection Model-1 has achieved an
average precision of 90.04% for grease blocks, 90.81% for plastic blocks, and 89.30% for tree
root blocks. The mean average precision (mAP) computed at an Intersection over Union (IoU)

62

threshold of 0.5 is 90.05%. Additionally, the mAP calculated over different IoU thresholds,
ranging from 0.5 to 0.95 with a step of 0.05, is 78.85%. The selection of the best-fit model was
performed using cross-validation or rotation estimation technique [80]. Figure 32 illustrates
visually accurate detections of sewer blocks, including tree roots, plastic, and grease.

The developed model successfully handled scenarios with multiple sewer blockages in the
same frame, making it suitable for real-time detection. These results confirm the consistency
and effectiveness of the newly introduced S-BIRD dataset.

Figure 31 Detection Results of YOLOX-s for Sewer Block Classes in S-BIRD

Figure 32 Visual Illustrations of Precise Detection of Tree Roots, Plastic, and Grease Sewer Block Types

63

4.7.2 Optimization and Training of TOLOv5 using newly developed S-BIRD dataset

The crucial information about how transfer learning and fine-tuning was applied for training
of YOLOv5 on newly developed S-BIRD dataset is given as follows.

 The first step of the process involved selecting a small YOLOv5 version 6.0-187-gf3085ac,
which is based on PyTorch 1.10.0a0 with CUDA support, specifically to fulfil our need to
apply for real-time applications on mobile devices. This version utilized a lightweight
backbone architecture called CSPDarknet53, which integrates Cross Stage Partial (CSP)
connections.

 The backbone layers of this model were held constant, meaning they remained unchanged
throughout the training process. This decision was made to preserve the valuable
representations learned during the initial pre-training stage. This experimentation was done
on first 10 modules in the backbone layers with trial basis as freezing and unfreezing.

 The input size of the training set from the S-BIRD dataset consisted of 14,765 frames,
which remained unchanged at a square resolution of 416 × 416 pixels. The frames were
accompanied by ground truth metadata, specifically annotations for 69,061 objects,
resulting in an average of 4.7 annotations per frame.

 The depth parameter was set to 0.33 which controls the network depth and refers to the
number of layers. Whereas the width parameter was 0.50 which determines the network
width i.e., the number of channels or filters in each layer.

 Subsequently, the model architecture was modified to accommodate the detection of three
specific classes present in the S-BIRD dataset: tree roots, plastics, and grease. This
modification involved adjusting the 'num_classes' attribute to 3, signifying the model's
training objective of accurately detecting and classifying these particular classes.

 To optimize the loss function and improve its performance on the sewer blockage detection
task, the training process was performed over 6000 epochs, denoted as max_epoch, which
was set in this case. But the Early Stopping mechanism was used with a patience of 100
epochs, meaning that if no improvement were seen in the validation results for 100
consecutive epochs, the training would stop early.

 The model architecture, which consists of 270 layers and a total of 7,027,720 parameters,
is used for the training process. This training is performed using the stochastic gradient
descent (SGD) optimizer, which is configured with specific hyperparameters including
learning rate, weight decay, momentum as given in Table 17.

 The modified YOLOv5 small model was initialized with the 'yolov5s.pt' weights, which
contained learned details and configurations. Additionally, the 'data.yaml' file was provided
as a data source, containing the necessary information about the training and validation
frames in the S-BIRD dataset. These resources were utilized to facilitate further training of
the model.

 The training process included the following hyperparameters: an initial learning rate (lr0)
of 0.01 (ranges from 0.001 to 0.1) that gradually decreases to a final learning rate (lrf) of
0.1, a weight decay value of 0.0005 to prevent overfitting, and a momentum value of 0.937
(ranges from 0 to 1) for faster convergence. These hyperparameters were tuned and
customized to optimize the model's performance for detection of intended sewer blockages
in the frames.

 Of course, the power of trial and error process was utilised to obtain efficient trained model
for task.

64

 During the training process, the model's weights were continually updated based on the
progress made.

 The training process stopped at 933 epochs because no improvement was observed in the
last 100 epochs as shown in Figure 33. The best results were observed at epoch 832, and
the corresponding model was saved as "best.pt". The optimizer was stripped from both the
"last.pt" and "best.pt" model files, resulting in a file size of 14.3MB each. The "best.pt"
model was then used for further evaluation and validation.

(a)

(b)

Figure 33 Results from training process – (a) at epoch 832 (b) at epoch 932

Table 17 Key Training Parameters

Parameters Significances
learning model YOLOv5-s

Annotation data type PyTorch TXT
max_epoch 6000

patience 100
batch_size 16

fp16 True
num_classes 3

Params 7.2 M
Gflops 15.9
depth 0.33
width 0.5

input_size (416, 416)
workers 8
anchor_t 4.0

scale 0.5
hsv_h, hsv_s, hsv_v 0.015, 0.7, 0.4

warmup_epochs 3
weight_decay 0.0005
momentum 0.937

translate 0.1

65

Fig. 35 displays the confusion matrix for categories such as grease, plastic, and tree roots within
S-BIRD. The instances in dataset and their corresponding labels are given in the scatter diagram
in Fig. 36. The correlation connections within the images of S-BIRD are visualized in Fig. 37.
This indicates the accurate linkage between instances and labels across different scenes. The
graph in Fig. 38 illustrates the relationship between precision (P) and confidence (C) whereas
the correlation between recall (R) and confidence (C) is given in Fig. 39. The graph in Fig. 40
displays the mean average precision (mAP), which compares the truth bounding box and
detection box. At a 94% threshold with a confidence level of 0.566, the F1 score is presented
in Fig. 41, emphasizing the importance of balancing precision and recall in the sewer blockage
images dataset. The graph in Fig. 42 displays the training and validation losses of the detection
model during the classification process over 932 epochs on the S-BIRD dataset.

Both precision (P) and recall (R) exhibit high values of 94.40% and 93.90% respectively across
all classes at epoch 832 in the model training. This developed sewer blockage detection Model-
2 (using YOLOv5) achieved highest average precision of 95.90% for grease blocks, 98.40%
for plastic blocks and 94.50% for tree root blocks as shown in Figure 34. The overall Mean
Average Precision (mAP) for all classes as shown in Table 19, is remarkably high, accurately
modelling detections at 96.30% with a threshold of 0.5. Additionally, the mAP calculated over
different IoU thresholds, ranging from 0.5 to 0.95 with a step of 0.05, is 79.20%. The timing
results have been shown in the Table 18 for processing each image having details (1, 3, 416,
416). In the provided illustration (Figure 44), the outcomes of the proficiently trained model
on the Google source images [81] are depicted.

In Figure 43, when the S-BIRD dataset was used for training the detection model without the
exposure technique, accurate detection (mAP) at 96.70% with a threshold of 0.5 was achieved.
The utilization of the exposure technique for training led to a slight improvement of
approximately 0.41% in the Mean Average Precision compared to not using the technique.

To calculate the improvement percentage, we can compare the mAP values between the two
cases:

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

= ((𝑚𝐴𝑃 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

− 𝑚𝐴𝑃 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒)

/ 𝑚𝐴𝑃 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒) ∗ 100

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = ((96.30 − 96.70) / 96.70) ∗ 100

= (−0.40 / 96.70) ∗ 100 ≈ −0.41%

Table 18 Timing analysis of the trained model

Timing Parameters Outputs (Milliseconds)

Average forward time 0.2 ms

Average NMS time 1.1 ms

Average inference time 11 ms

66

Table 19 Precision evaluation of the trained model

Object Class (Sewer
Block Types)

Average Precision map_5095 map_50

grease 0.959
0.792 0.9630 tree roots 0.945

plastic 0.984

Figure 34 Detection Results of YOLOv5-s for Sewer Block Classes in S-BIRD

Figure 35 Confusion matrix for classes within dataset

67

Figure 36 The scatter graph for instances and associated labels

Figure 37 Correlations within the dataset of sewer blockage frames

68

Figure 38 Precision (P) vs Confidence (C) graph

Figure 39 Recall (R) vs Confidence (C) graph

69

Figure 40 Precision (P) vs Recall (R) graph

Figure 41 F1 score vs Confidence (C) graph

70

Figure 42 Training and validation losses of the detection model

Figure 43 Precision (P) vs Recall (R) graph for model trained without using exposure in dataset

71

Figure 44 Detection Results on some Google Source images

By employing inductive transfer learning, fine-tuning techniques, and considering the specific
details of the S-BIRD dataset, the developed Model-2 achieved highest precision consistently
in detecting sewer blockages. The model’s formulation, along with the training parameters and
dataset characteristics, ensured the model's effective adaptation and suitability for real-world
scenarios.

4.8 Embedded Vision Approach with S-BIRD
Embedded vision technology has emerged as an innovative and all-encompassing platform that
enables the seamless integration of real-world visual applications across various domains,
including home life equipment, healthcare, daily services, and security through detection and
tracking. Within the realm of sewer robotics, the incorporation of embedded vision brings about
significant advancements and benefits.

In particular, the integration of an object detection model, trained using the S-BIRD dataset,
serves as a noteworthy enhancement to both existing and newly developed embedded vision-
based sewer robotic systems. This model enables the system to accurately identify and detect
sewer blockages, thereby assisting in the mitigation of recurring problems encountered in
underground sewer networks. Figure 45 [4] emphasizes the vital role of the AI detector trained
with the S-BIRD dataset in the embedded vision-based system.

For the embedded platform, the Jetson Nano was chosen due to its exceptional capabilities.
With a 4 GB GPU card boasting 128 CUDA cores, the Jetson Nano is well-suited for executing
deep neural network-based object detection models and processing consecutive frames in real-
time. However, for even faster AI inference in real-world applications, an advanced version
called Jetson Orin Nano is now available. It boasts an impressive 1024-core NVIDIA Ampere
architecture GPU with 32 Tensor Cores and 40 TOPS, making it ideal for handling complex
visual tasks.

72

Figure 45 Embedded vision based system emphasizing AI detection with S-BIRD

To capture the surrounding frames for navigation and processing, a range of cameras are
employed, including webcams, Arducam, or Raspberry Pi Camera (Raspicam). These cameras
serve as the input source for the embedded vision system, enabling it to analyse the visual data
in real-time. The output frames, depicting detected sewer blockages, are then displayed on a
remote screen or location, facilitating prompt decision-making and remote monitoring. The
embedded vision platform highlighted in Figure 46 [4] exemplifies the potential and
effectiveness of this technology in sewer robotics.

Figure 46 Incorporation of Embedded Vision platform into the sewer automated system

Overall, the integration of this embedded vision-based automation system, empowered by AI
detectors trained using S-BIRD, provides a promising and economical solution to the persistent
problem of underground sewer barriers. By meeting the needs of responsible authorities in any
country, this advanced system contributes to the efficient management and maintenance of
sewer networks, ensuring smooth and uninterrupted wastewater flow with accuracy.

73

4.9 Discussion
This thesis presents a development of representative dataset for sewerage blockages and
developed deep neural detection models using transfer learning and fine tuning techniques for
AI application. Through extensive experimentation and analysis, the research has demonstrated
the effectiveness of above mentioned approaches in enhancing the accuracy, efficiency, and
robustness of AI systems.

4.9.1 Discussion on Enhanced AI in Research Work

In research methodology, dataset development is a major contribution and begins when the
research problem is defined, and the research design is established. Basically, data are of two
types, namely primary and secondary where primary data is newly collected and original, while
secondary data is previously collected and statistically processed [82]. In AI also, data search
and development are the major research theme. As in my case, the image data is primary i.e.,
it has been originally developed using mechanical device like sewer camera and simulated
sewer network. The literature review, critical survey, direct communications with
municipalities and interviews of authorities, searching in open research community,
experiments with object classes, these all clarify the need of presented research work via newly
developed representative critical multi class dataset and developed deep neural network model
for real world application in the urban sewer system.

It is observed that the representative dataset plays a crucial role in providing a comprehensive
and diverse set of examples for training the deep neural detection models. But it is essential
that data capture a wide range of real-world scenarios to enable the AI models to learn and
generalize effectively. The S-BIRD dataset developed in this research not only facilitated the
training process but also contributed to the models' overall performance by reducing biases and
improving their ability to handle complex and varied inputs. So, the processing and analysis of
the data plays a crucial role for validation purpose. As S-BIRD dataset comes under
classification type of processing operation i.e., typically simple classification which further
indicated according to attributes of each instance. This is because the classification process
involves arranging data into groups or classes based on common characteristics. Also, each
class ("grease," "plastics," and "treeroots") consist of instances i.e., frames possessing specific
attributes for all classes and creates homogeneous groups within the dataset. For the images,
descriptive attributes i.e., qualitative characteristics are color, texture, style, contents, etc.
whereas numerical attributes i.e., quantitative measurements are dimensions, pixel values,
aspect ratio, entropy (a measure of randomness in pixel values), and the number of objects or
features detected within an image. The statistical parameters computed by histogram and
generated heatmap, inform about the data pattern and location details i.e., it confirms strength
of each class.

Furthermore, the utilization of transfer learning techniques proved to be instrumental in
development of AI models with learned features for intended detection tasks. This training
process falls under inductive transfer learning because the label information for both the source
(S-BIRD dataset) and the target (target-domain instances) i.e., recognition of known classes
was available. By initializing the deep neural networks with some prior knowledge, the models
demonstrated improved convergence, faster training times, and better performance on the target
detection tasks. Transfer learning effectively transferred the learned representations, enabling
the learning networks to adapt to different domains and tasks with minimal additional training.

74

The results obtained from the experiments validate the significance (consistency and
feasibility) of the developed representative dataset and the efficacy of inductive transfer
learning in enhancing AI i.e., in detection model development. It additionally mitigates bias
within the research approach. The improved accuracy, efficiency, and robustness achieved by
the deep neural detection models underscore the practical benefits of these approaches in real-
world applications. Specifically, statistical details of development are given and discussed in
the case study section.

Certainly, conducting research is not without its obstacles and moments of difficulty. This
research faced challenges such as the availability and quality of the representative dataset, as
well as the transfer learning strategy for deep neural network so that new application oriented
AI model can be developed. Furthermore, the task of procuring a GPU computation system
presented an additional challenge. This thesis emphasizes the importance of careful dataset
curation, ensuring data integrity, and addressing potential biases. Furthermore, choosing
suitable learning network and optimizing transfer learning parameters require careful
consideration and experimentation to achieve optimal results.

This research also highlights the potential of flexible integration of advanced embedded vision
platform powered by AI detectors trained with representative datasets and supported by single-
board computers with exceptional GPU capabilities. It offers a promising and affordable
solution for real-time processing, effective decision making and improved performance,
leading to advancements in various domains through accurate and efficient visual analysis
enabled by AI techniques.

Overall, this thesis contributes to the advancement of AI by highlighting the value of a
developed representative dataset, the effectiveness of transfer learning and fine tuning
techniques for training and development of deep neural detection models, and integration of
embedded vision approach. The insights gained from this research provide a solid foundation
for further exploration and development in the field, fostering advancements in AI technology
and its applications across various domains.

4.9.2 Discussion on Case Study in Wastewater Management

The research work conducted in this case study focused on the development of the S-BIRD
(Sewer-Blockages Imagery Recognition Dataset), aiming to utilize AI techniques, specifically
computer vision and deep learning i.e., advanced machine learning, for real-time detection and
identification of sewer blockages. This work emphasizes the necessity of overcoming
wastewater sewer barriers and highlights the limitations of existing algorithms and automated
systems for sewer inspection. It underscores the significance of standardized datasets in
addressing challenges in wastewater management, considering the difficulties associated with
obtaining such datasets due to the unhygienic and malodorous nature of sewers, as well as
copyright or confidentiality concerns. The study showcases the potential of computer vision
techniques and machine learning algorithms as valuable tools for enhancing strategies in this
domain.

The S-BIRD dataset introduced in this study includes diverse multi-class imagery samples of
prevalent sewer blockages caused by grease, plastic, and tree roots. It serves as a benchmark
for evaluating real-time detection results and facilitates the development of effective
recognition models. The tools used for dataset development, including a constructed sewer

75

pipeline and an inspection camera for sewerage systems, enable the capture of real-time frames
of sewer blockages in a simulated sewer environment, ensuring authenticity and relevance in
training detection models. The dataset includes comprehensive annotations for each captured
frame, providing vital information for subsequent computations and analysis. The thesis
presents arithmetical details of the dataset, such as the number of frames, annotations, and
aspect ratios, and utilizes visualizations, such as class balance and heatmaps, to represent the
dataset's characteristics. Preprocessing and augmentation techniques, such as auto-orientation,
resizing, gray scaling, and noise addition, were applied to enhance the dataset's quality and
improve the robustness of detection models.

The study successfully developed deep neural object detection models for sewer blockage
detection on the S-BIRD dataset using transfer learning and fine-tuning techniques in AI,
specifically the customized YOLOX and YOLOv5 models for mobile deployment with high
accuracy. The training process involved the use of the PyTorch framework, annotations in
Pascal VOC and PyTorch TXT formats, and a Tesla V100-DGXS-32GB GPU workstation
with a Docker Container for efficient training.

For the YOLOX-s, transfer learning was applied with a DarkNet53 backbone. The model was
trained on 14,765 frames with annotations for three classes in S-BIRD, and various training
parameters were optimized. The model architecture was modified to accommodate these
classes, and the training process involved fine-tuning the model over 300 epochs. Data
augmentation techniques, including random rotations, translations, and scaling, were also
applied during training. The developed detection Model-1 achieved an average precision of
90.04% for grease blocks, 90.81% for plastic blocks, and 89.30% for tree root blocks, with a
mean average precision (mAP) of 90.05% at an IoU threshold of 0.5, demonstrating its
consistency and feasibility of the presented S-BIRD dataset for detection task.

Similarly, for the training of YOLOv5 using the S-BIRD dataset, transfer learning and fine-
tuning were applied. A YOLOv5 small version with a CSPDarknet53 backbone was selected,
and the model architecture was modified to detect the same three classes. The training process
involved training the model over 6000 epochs, but best results were observed at 832 epochs,
with early stopping after 100 epochs of no improvement. Various hyperparameters were
customized to optimize the model's performance. The developed detection Model-2 achieved
the highest average precision of 95.90% for grease blocks, 98.40% for plastic blocks and
94.50% for tree root blocks, with the highest mean average precision (mAP) of 96.30% for all
classes at a threshold of 0.5.

Both detection models have also been tested on pure negative samples, images without
blockages, to assess their ability to correctly identify instances with no blockage. This
evaluation contributes to a comprehensive assessment of the models' performance in diverse
scenarios.

The timing analysis showed that the developed Model-1 had lower inference times compared
to the Model-2. The Model-1 had an average inference time of 4.07 ms compared to 11 ms for
the Model-2. This indicates that the Model-1 model is more computationally efficient in
detection.

Overall, both the developed models (Model-1 and 2) demonstrated high accuracy and precision
in detecting sewer blockages, with mean average precision (mAP) values above 90%. The

76

models successfully handled scenarios with multiple blockages in the same frame, making
them suitable for real-time detection. The results confirmed the effectiveness of the S-BIRD
dataset and the applicability of transfer learning and fine-tuning techniques for detection task.

Also, the integration of an embedded vision-based automation system, featuring AI detectors
trained with the S-BIRD dataset and empowered by advanced GPU-based single-board
computers like Jetson Nano or Jetson Orin Nano, offers a compelling solution to the long-
standing challenges of underground sewer barriers. This innovative approach holds great
potential for improving wastewater management strategies and ensuring efficient maintenance
of sewer networks.

4.9.3 Comparative discussion on AI-Driven Approach and MOEAs

The AI-driven strategy proposed in this study holds notable advantages over Multi-Objective
Evolutionary Algorithms (MOEAs) [83], commonly employed in wastewater system
management. While MOEAs like NSGA-II, SPEA2, MOPSO, and MODE excel at optimizing
multiple objectives, they often necessitate intricate mathematical models and substantial
computational resources [84, 85]. Conversely, the AI approach harnesses cutting-edge
computer vision and deep learning techniques to rapidly and precisely identify sewer
blockages. Demonstrating an impressive mean Average Precision (mAP) of 96.30% at a
confidence threshold of 0.5, the model's exceptional precision in sewer blockage detection
enhances wastewater management system reliability and efficiency. Furthermore, the AI
method capitalizes on labelled training data and lightweight deep learning models, enhancing
efficiency and real-time capabilities. This aligns with the pressing need for swift sewer
blockage resolution to avert disruptions and overflows. The model's accuracy, speed, and
dedicated focus on sewer blockage detection position it as a promising solution for immediate
and effective urban wastewater management.

In contrast, MOEAs such as the sensitivity-based adaptive procedure (SAP) [86], optimal
control algorithms [87], and novel methodologies [88] have proven effective across aspects
like sewer rehabilitation and optimal scheduling. Nevertheless, their computational demands
and reliance on intricate algorithms might impede real-time suitability. The AI-driven
approach's real-time data processing ability, coupled with its superior detection accuracy, gives
it a distinct advantage in addressing dynamic and critical scenarios such as sewer blockages.

While both AI-driven methods and MOEAs contribute to wastewater management progress,
the AI approach's swift identification and response to sewer blockages render it particularly
appropriate for immediate, practical applications in modern urban sanitation systems.

77

5 Conclusions and Further work

5.1 Conclusions
The research work presented in this thesis is concluded as follows:

 The creation of the representative S-BIRD dataset addressed the lack of appropriate data
for training AI models in sewer blockage detection, capturing real-time frames of grease,
plastic, and tree root blockages. This dataset provides valuable training data to improve the
accuracy and robustness of detection models.

 The methodology employed various tools and techniques, including a simulated sewer
network, a watertight sewer camera, and advanced image preprocessing and augmentation
methods. These techniques ensured the authenticity and diversity of the dataset, allowing
for effective training of detection models.

 The results obtained from the case study for developed sewer blockage detection models
(Model-1 and 2) demonstrated high precision and feasibility, affirming the effectiveness of
the S-BIRD dataset and their performance in real-world scenarios.

 The implementation of transfer learning and fine tuning techniques proved to be highly
beneficial for improved convergence, faster training times, and enhanced performance in
sewer blockage detection. This approach effectively transferred the learned representations,
enabling the models to adapt to different domains and tasks with minimal additional
training.

 The achievement of a mean average precision of 96.30% at 0.5 IoU demonstrates the
effectiveness of methodical approach.

 The AI models trained on the S-BIRD dataset provide a valuable benchmark for assessing
localization performance in real-time scenarios, serving as a crucial resource for
researchers and developers in the field.

 The research filled the gap of a standardized matrix for implemented algorithms, offering
reliable evaluation frameworks in the field of sewer blockage detection.

 The intelligent vision-based systems significantly enhance the performance of sewer
maintenance processes in comparison to blind systems, which lack the same level of
competence.

 The integration of embedded vision technology with AI detectors trained using the S-BIRD
dataset provides an efficient and reliable solution for sewer blockage detection,
contributing to enhanced wastewater management practices globally.

Overall, this research significantly contributes to the field of AI by providing a representative
benchmark dataset, deep neural network-based evaluation frameworks using transfer learning
and fine-tuning, and integration of embedded vision approach for sewer blockage detection,
thereby enhancing wastewater management practices. The established foundation and findings
from this thesis facilitate future advancements in AI technology and its applications. The
methodologies and insights presented in this research expand the knowledge in the field and
open avenues for further exploration and development in diverse domains.

78

5.2 Recommendations for Further Work
Based on the achievements and insights gained from this thesis, the following
recommendations are suggested for further research:

 For further work, it would be beneficial to explore and incorporate additional AI
techniques, such as semantic segmentation, instance segmentation and panoptic
segmentation, to enhance the detection and identification tasks.

 It is recommended to explore additional data augmentation techniques and experiment with
different backbone architectures to further improve the models' performance.

 As technology advances and new data becomes available, expanding the developed
representative dataset would be beneficial. Increasing the dataset’s size, incorporating
additional needful classes, and challenging scenarios, can further enhance the performance
and generalization capabilities of deep neural detection models..

 It is worth exploring other neural network architectures and object detection models that
may exhibit varying strengths and weaknesses, leading to improved performance for
specific applications.

 Continuous learning or incremental training approaches can be explored to ensure that
models remain effective over extended periods.

 Evaluate and update the developed AI models and dataset as new techniques, technologies,
and challenges emerge in the field of AI. Continuously strive for improvement in accuracy,
efficiency, and robustness to keep the models up-to-date and effective.

 Foster collaboration with industry partners, wastewater management authorities, and
researchers to exchange knowledge, share experiences, and explore opportunities for
implementing the developed techniques and solutions on a larger scale. Collaborative
efforts can accelerate the adoption of AI-based technologies in the different fields.

 The insights and methodologies gained from this research can be implemented in other
domains that require computer vision and deep learning techniques such as: environmental
monitoring, infrastructure maintenance and public safety, and beyond.

Further research and exploration in the above recommended areas would deepen our
understanding and pave the way for continued advancements in the development of robust and
efficient AI models, thus propelling the field of AI towards greater innovation and practical
applications.

79

References

[1] McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the
dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine,
27(4), 12-12.

[2] Mirats Tur, J. M., & Garthwaite, W. (2010). Robotic devices for water main in‐pipe
inspection: A survey. Journal of Field Robotics, 27(4), 491-508.

[3] Caffoor, I. (2019) Robotics and Autonomous Systems in the Water Industry. TWENTY65
Report, 18/2/19.).

[4] Patil, R.R.; Mustafa, M.Y.; Calay, R.K.; Ansari, S.M. S-BIRD: A Novel Critical Multi-
Class Imagery Dataset for Sewer Monitoring and Maintenance Systems. Sensors 2023, 23,
2966. https://doi.org/10.3390/s23062966

[5] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 580-587).

[6] Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on
computer vision (pp. 1440-1448).

[7] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. Advances in neural information processing
systems, 28.

[8] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 779-788).

[9] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016).
SSD: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14
(pp. 21-37). Springer International Publishing.

[10] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision
(pp. 2980-2988).

[11] Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint
triplets for object detection. In Proceedings of the IEEE/CVF international conference on
computer vision (pp. 6569-6578).

[12] Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In
Proceedings of the European conference on computer vision (ECCV) (pp. 734-750).

[13] Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271).

[14] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767.

[15] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934.

[16] Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., &
Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-
92.

[17] Bhardwaj, A.; Karger, D.; Subramanyam, H.; Deshpande, A.; Madden, S.; Wu, E.;
Elmore, A.; Parameswaran, A.; Zhang, R. Collaborative data analytics with DataHub. Proc.
VLDB Endow. 2015, 8, 1916.

80

[18] Umbrich, J., Neumaier, S., & Polleres, A. (2015, August). Quality assessment and
evolution of open data portals. In 2015 3rd international conference on future internet of
things and cloud (pp. 404-411). IEEE.

[19] Koesten, L., Simperl, E., Blount, T., Kacprzak, E., & Tennison, J. (2020). Everything
you always wanted to know about a dataset: Studies in data summarisation. International
Journal of Human-Computer Studies, 135, 102367.

[20] Roh, Y.; Heo, G.; Whang, S.E. A survey on data collection for machine learning: A big
data-ai integration perspective. IEEE Trans. Knowl. Data Eng. 2019, 33, 1328–1347.

[21] Kaggle. Available online: https://www.kaggle.com/ (accessed on 22 January 2023).
[22] 22 [34] Mendeley Data. Available online: https://data.mendeley.com/ (accessed on 18

January 2023).
[23] Google Dataset Search.

Available online: https://datasetsearch.research.google.com/ (accessed on 12 January
2023).

[24] IEEE DataPort. Available online: https://ieee-dataport.org/dataset (accessed on 9
January 2023).

[25] Chapman, A.; Simperl, E.; Koesten, L.; Konstantinidis, G.; Ibáñez, L.D.; Kacprzak, E.;
Groth, P. Dataset search: A survey. VLDB J. 2020, 29, 251–272.

[26] European Commission. Digital Agenda: Commission’s Open Data Strategy, Questions
and Answers. Memo/11/891. 12 December 2011. Available online:
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_11_891 (accessed on 4
January 2023).

[27] Kumar, S. S., Abraham, D. M., Jahanshahi, M. R., Iseley, T., & Starr, J. (2018).
Automated defect classification in sewer closed circuit television inspections using deep
convolutional neural networks. Automation in Construction, 91, 273-283.

[28] Cheng, J. C., & Wang, M. (2018). Automated detection of sewer pipe defects in closed-
circuit television images using deep learning techniques. Automation in Construction, 95,
155-171.

[29] Gutierrez-Mondragon, M. A., Garcia-Gasulla, D., Alvarez-Napagao, S., Brossa-
Ordoñez, J., & Gimenez-Esteban, R. (2020). Obstruction level detection of sewer videos
using convolutional neural networks. arXiv preprint arXiv:2002.01284.

[30] Halfawy, M. R., & Hengmeechai, J. (2014). Automated defect detection in sewer closed
circuit television images using histograms of oriented gradients and support vector
machine. Automation in Construction, 38, 1-13.

[31] Yin, X., Chen, Y., Bouferguene, A., Zaman, H., Al-Hussein, M., & Kurach, L. (2020).
A deep learning-based framework for an automated defect detection system for sewer
pipes. Automation in construction, 109, 102967.

[32] Moradi, S., Zayed, T., & Golkhoo, F. (2018). Automated sewer pipeline inspection
using computer vision techniques. In Pipelines 2018: Condition Assessment, Construction,
and Rehabilitation, pp. 582-587. Reston, VA: American Society of Civil Engineers.

[33] Kumar, S. S., Wang, M., Abraham, D. M., Jahanshahi, M. R., Iseley, T., & Cheng, J.
C. (2020). Deep learning–based automated detection of sewer defects in CCTV videos.
Journal of Computing in Civil Engineering, 34(1), 04019047.

[34] Haurum, J. B., & Moeslund, T. B. (2020). A Survey on image-based automation of
CCTV and SSET sewer inspections. Automation in Construction, 111, 103061.

81

[35] Moradi, S., Zayed, T., & Golkhoo, F. (2019). Review on computer aided sewer pipeline
defect detection and condition assessment. Infrastructures, 4(1), 10.

[36] Liu, Z., & Kleiner, Y. (2013). State of the art review of inspection technologies for
condition assessment of water pipes. Measurement, 46(1), 1-15.

[37] Mirats Tur, J. M., & Garthwaite, W. (2010). Robotic devices for water main in‐pipe
inspection: A survey. Journal of Field Robotics, 27(4), 491-508.

[38] Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., &
Dario, P. (2020). Visual-based defect detection and classification approaches for industrial
applications—a survey. Sensors, 20(5), 1459.

[39] Patil, R.R.; Ansari, S.M.; Calay, R.K.; Mustafa, M.Y. Review of the State-of-the-art
Sewer Monitoring and Maintenance Systems Pune Municipal Corporation-A Case Study.
TEM J. 2021, 10, 1500–1508.

[40] Kirkham, R., Kearney, P. D., Rogers, K. J., and Mashford, J. (2000). PIRAT—a system
for quantitative sewer pipe assessment. The International Journal of Robotics Research,
19(11), 1033-1053.

[41] Kuntze, H. B., Schmidt, D., Haffner, H., & Loh, M. (1995, September). KARO-A
flexible robot for smart sensor-based sewer inspection. In Proc. Int. Conf. No Dig'95,
Dresden, Germany, 19, pp. 367-374.

[42] Kirchner, F., & Hertzberg, J. (1997). A prototype study of an autonomous robot
platform for sewerage system maintenance. Autonomous robots, 4(4), 319-331.

[43] Rome, E., Hertzberg, J., Kirchner, F., Licht, U., & Christaller, T. (1999). Towards
autonomous sewer robots: the MAKRO project. Urban Water, 1(1), 57-70.

[44] Nassiraei, A. A., Kawamura, Y., Ahrary, A., Mikuriya, Y., & Ishii, K. (2007, April).
Concept and design of a fully autonomous sewer pipe inspection mobile robot" kantaro".
In Proceedings 2007 IEEE international conference on robotics and automation, pp. 136-
143.

[45] Alejo, D., Mier, G., Marques, C., Caballero, F., Merino, L., & Alvito, P. (2020). SIAR:
A ground robot solution for semi-autonomous inspection of visitable sewers. In Advances
in Robotics Research: From Lab to Market, pp. 275-296. Springer, Cham.

[46] Abidin, A. S. Z., Zaini, M. H., Pauzi, M. F. A. M., Sadini, M. M., Chie, S. C.,
Mohammadan, S., ... & Ming, C. Y. (2015). Development of cleaning device for in-pipe
robot application. Procedia Computer Science, 76, 506-511.

[47] Vaani, I., Sushil, S. J., Kunjamma, U. V., Ramachandran, A., Bai, V. T., & Thyla, B.
(2017, May). BhrtyArtana (A pipe cleaning and inspection robot). In 2017 Third IEEE
International Conference on Sensing, Signal Processing and Security (ICSSS), pp. 422-
425.

[48] Gobinath, M., and Malathi, S. (2018, December). Sewage Sludge Removal Method
Through Arm-Axis by Machine Robot. In International Conference on Intelligent Systems
Design and Applications (pp. 345-353). Springer, Cham.

[49] Nesaian, K. P., & Karthikeyan, M. B. (2012). Design and development of vision based
blockage clearance robot for sewer pipes. IAES International Journal of Robotics and
Automation, 1(1), 64.

[50] Abro, G. E. M., Jabeen, B., Ajodhia, K. K., Rauf, A., & Noman, A. (2019). Designing
Smart Sewerbot for the Identification of Sewer Defects and Blockages. International
Journal of Advanced Computer Science and Applications, 10(2), 615-619.

82

[51] Information Manual—Standard Operating Procedure (SOP) for Cleaning of Sewers and
Septic Tanks by Central Public Health & Environmental Engineering Organization
(CPHEEO), Ministry of Housing and Urban Affairs, Government of India. Available
online:
http://cpheeo.gov.in/upload/5c0a062b23e94SOPforcleaningofSewersSepticTanks.pdf
(accessed on 28 January 2023)

[52] Available online:
https://cpheeo.gov.in/upload/uploadfiles/files/operation_chapter2.pdf

[53] Ansari, S. M., Patil, R. R., Calay, R. K., & Mustafa, M. Y. (2023). Introduction To
Machine Learning Techniques. In IoT, Machine Learning and Blockchain Technologies
for Renewable Energy and Modern Hybrid Power Systems (pp. 93-120). River Publishers.

[54] Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. Deep learning for
computer vision: A brief review. Computational Intelligence and Neuroscience, 2018.

[55] Deng, J., Xuan, X., Wang, W., Li, Z., Yao, H., & Wang, Z. (2020, November). A review
of research on object detection based on deep learning. In Journal of Physics: Conference
Series (Vol. 1684, No. 1, p. 012028). IOP Publishing.

[56] Vaidya, O.S.; Patil, R.; Phade, G.M.; Gandhe, S.T. Embedded Vision Based Cost
Effective Tele-operating Smart Robot. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019,
8, 1544–1550. 22.

[57] Patil, R.R.; Vaidya, O.S.; Phade, G.M.; Gandhe, S.T. Qualified Scrutiny for Real-Time
Object Tracking Framework. Int. J. Emerg. Technol. 2020, 11, 313–319.

[58] Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). Yolox: Exceeding yolo series in
2021. arXiv preprint arXiv:2107.08430.

[59] Available online: https://github.com/ultralytics/yolov5
[60] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features

in deep neural networks?. Advances in neural information processing systems, 27.
[61] Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-

level image representations using convolutional neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 1717-1724).

[62] Long, M., Cao, Y., Wang, J., & Jordan, M. (2015, June). Learning transferable features
with deep adaptation networks. In International conference on machine learning (pp. 97-
105). PMLR.

[63] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770-778).

[64] Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., ... & Raskar,
R. (2018). Deepglobe 2018: A challenge to parse the earth through satellite images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (pp. 172-181).

[65] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational physics, 378, 686-707.

[66] Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H., & Yan, F. (2019). Structural damage
detection using deep convolutional neural network and transfer learning. KSCE Journal of
Civil Engineering, 23, 4493-4502.

83

[67] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017).
Quantum machine learning. Nature, 549(7671), 195-202.

[68] Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., & Van Valen, D. (2019). Deep
learning for cellular image analysis. Nature methods, 16(12), 1233-1246.

[69] Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine
learning for molecular and materials science. Nature, 559(7715), 547-555.

[70] Hino, M., Benami, E., & Brooks, N. (2018). Machine learning for environmental
monitoring. Nature Sustainability, 1(10), 583-588.

[71] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 815-823).

[72] Vapnik, V. N. (1995). The nature of statistical learning Theory.
[73] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[74] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. science, 313(5786), 504-507.
[75] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84-90.
[76] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C.

L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13 (pp. 740-755). Springer International Publishing.

[77] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

[78] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ...
& Bengio, Y. (2014). Generative adversarial networks. arXiv 2014. arXiv preprint
arXiv:1406.2661.

[79] Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., ... & Amodei,
D. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and
mitigation. arXiv preprint arXiv:1802.07228.

[80] Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational
Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press:
Oxford, UK, 2019; pp. 542–545.

[81] Online URL for Google Source Images -
 https://www.drainmasterohio.com/red-flags-of-tree-root-intrusion-in-your-drain-

pipes/
 https://arboriculture.files.wordpress.com/2016/02/treerootpipe.jpg
 https://fastcdn.impakter.com/wp-content/uploads/2020/05/plastic-bottles-

issue.jpg?strip=all&lossy=0&quality=92&sharp=1&w=2560&ssl=1&_gl=1*1l2iyjw*
_ga*ODg3OTYwMzM4LjE2ODgwNDE1NDc.*_ga_FVBES2BYX0*MTY4ODA0
MTU0Ni4xLjEuMTY4ODA0MTYzNy4wLjAuMA..*_ga_FQWCH74CDR*MTY4O
DA0MTU0Ni4xLjEuMTY4ODA0MTYzNy42MC4wLjA.&_ga=2.224344539.15502
72950.1688041547-887960338.1688041547

 https://www.istockphoto.com/photo/plastic-bottles-isolated-on-white-gm1202347223-
345153972

84

 https://spunout.ie/wp-content/uploads/elementor/thumbs/Plastic_bottles_in_the_sea-
q0ubkb8pkwa5boeuhpaj6o0v1e8l43mla862l6488o.jpg

 https://img.hunkercdn.com/750x/cppd/getty/article/117/115/86534645_XS.jpg?type=
webp

 https://bbwsd.com/wordpress/wp-content/uploads/2018/03/FOG-850x425.jpg
 https://images.squarespace-

cdn.com/content/v1/55e97d2de4b0a47f46957437/1499308890029-
VM48EFRJJMCSOFFHFETV/iStock-482437666.jpg?format=1000w

 https://dependableplastic.com/product/blue-recycling-bags/
 https://sagewater.com/wp-content/uploads/2019/06/Unclogging-The-Mystery-of-

Clogged-Pipes-1024x768.jpg
[82] Kothari, C. R. (2004). Research methodology. new Age.
[83] Wang, Z., Pei, Y., & Li, J. (2023). A Survey on Search Strategy of Evolutionary Multi-

Objective Optimization Algorithms. Applied Sciences, 13(7), 4643.
[84] Jiang, L., Geng, Z., Gu, D., Guo, S., Huang, R., Cheng, H., & Zhu, K. (2023). RS-SVM

machine learning approach driven by case data for selecting urban drainage network
restoration scheme. Data Intelligence, 5(2), 413-437.

[85] Yazdi, J. (2018). Rehabilitation of urban drainage systems using a resilience-based
approach. Water resources management, 32, 721-734.

[86] Cai, X., Shirkhani, H., & Mohammadian, A. (2022). Sensitivity-based adaptive
procedure (SAP) for optimal rehabilitation of sewer systems. Urban Water Journal, 19(9),
889-899.

[87] Rathnayake, U. (2015). Migrating storms and optimal control of urban sewer
networks. Hydrology, 2(4), 230-241.

[88] Draude, S., Keedwell, E., Kapelan, Z., & Hiscock, R. (2022). Multi-objective
optimisation of sewer maintenance scheduling. Journal of Hydroinformatics, 24(3), 574-
589.

85

Appendix 1

List of Published Journal Papers

These research articles are relevant to the thesis.

1. Patil, R. R., Calay, R. K., Mustafa, M. Y., & Ansari, S. M. AI-Driven High-Precision

Model for Blockage Detection in Urban Wastewater Systems. Electronics

2023, 12(17), 3606. (SCIE and Scopus Indexed)

 DOI: https://doi.org/10.3390/electronics12173606

2. Patil, R. R., Mustafa, M. Y., Calay, R. K., & Ansari, S. M. (2023). S-BIRD: A Novel

Critical Multi-Class Imagery Dataset for Sewer Monitoring and Maintenance

Systems. Sensors 2023, 23(6), 2966. (SCIE and Scopus Indexed)

 DOI: https://doi.org/10.3390/s23062966

3. Patil, R.R., Ansari, S.M., Calay, R.K., & Mustafa, M.Y. Review of the State-of-the-art

Sewer Monitoring and Maintenance Systems Pune Municipal Corporation-A Case

Study. TEM J. 2021, 10(4), pp. 1500–1508. (ESCI and Scopus Indexed)

 DOI: https://doi.org/10.18421/tem104-02

Published Book Chapter

4. Ansari, S. M., Patil, R. R., Calay, R. K., & Mustafa, M. Y. Introduction To Machine

Learning Techniques. In IoT, Machine Learning and Blockchain Technologies for

Renewable Energy and Modern Hybrid Power Systems. River Publishers 2023, pp. 93-

120. eBook ISBN - 9781003360780. (Book Citation Index and Scopus)

 DOI: https://doi.org/10.1201/9781003360780-5

86

Other Publications

5. Ansari, S., Khairnar, S. M., Patil, R. R., and Nikalje, N. M. Design Study of Smart

Robotic Framework for Sewer Conservation. International Journal of Engineering

Trends and Technology 2022, 70(8), pp. 247–255. (Scopus Indexed)

 DOI: 10.14445/22315381/ijett-v70i8p226

6. Ansari, S., Khairnar, S. M., Patil, R. R., & Kokate, R. S. An assessment-water quality

monitoring practices and sewer robotic systems. Information Technology In Industry

2021, 9(1), 140-148. (ESCI Indexed)

 DOI: https://doi.org/10.17762/itii.v9i1.113

87

Appendix 2

Creating an implementation of the applied methodology involves following
these steps using self-developed programming codes

(a) Implementation of Preprocessing and Augmentation from Scratch

This demonstrates the step-by-step application of different preprocessing and augmentation
techniques to an input instance. It includes functions for each technique and displays the
original and augmented frames. Additionally, the resulting frames are saved to the 'dataset'
directory.

import cv2

import numpy as np

from skimage.util import random_noise

Auto-orientation and resizing

def preprocess_frame(frame):

 # Discard EXIF rotation and validate pixel sort

 # Assuming the frame is already loaded using OpenCV

 # perform EXIF rotation correction if needed

 # Resize the frame to 416x416 pixels

 target_width = 416

 target_height = 416

 original_height, original_width = frame.shape[:2]

 sf_w = target_width / original_width

 sf_h = target_height / original_height

 resized_width = int(original_width * sf_w)

 resized_height = int(original_height * sf_h)

 resized_frame = cv2.resize(frame, (resized_width, resized_height))

88

 return resized_frame

Gray scaling

def apply_gray_scale(frame):

 # Convert the frame to grayscale

 gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Convert the grayscale frame back to BGR (retaining color information)

 gray_frame_bgr = cv2.cvtColor(gray_frame, cv2.COLOR_GRAY2BGR)

 return gray_frame_bgr

Salt and pepper noise

def apply_salt_and_pepper_noise(frame, noise_percentage):

 # Add salt and pepper noise to the frame

 noisy_frame = random_noise(frame, mode='s&p', amount=noise_percentage)

 # Convert the noisy frame to uint8 format

 noisy_frame = (255 * noisy_frame).astype(np.uint8)

 return noisy_frame

Random exposure adaptation

def apply_random_exposure_adjustment(frame, min_percent=-25, max_percent=25):

 # Generate a random exposure adjustment factor

 adjustment_factor = np.random.uniform(min_percent / 100, max_percent / 100)

 # Apply the exposure adjustment to the frame

 adjusted_frame = np.clip(frame * (1 + adjustment_factor), 0, 255).astype(np.uint8)

 return adjusted_frame

Cutout augmentation

def apply_cutout(frame, occlusion_percentage=0.1):

 # Generate three occlusions in random positions

89

 occlusion_size = int(frame.shape[0] * 0.1) # 10% of frame size

 for _ in range(3):

 x = np.random.randint(0, frame.shape[1] - occlusion_size)

 y = np.random.randint(0, frame.shape[0] - occlusion_size)

 frame[y:y+occlusion_size, x:x+occlusion_size] = 0 # Black out the occlusion region

 return frame

Mosaic augmentation

def apply_mosaic(frames):

 # Randomly select four frames

 selected_frames = np.random.choice(frames, size=4, replace=False)

 mosaic_frame = np.zeros_like(selected_frames[0]) # Initialize the mosaic frame

 # Determine the mosaic layout

 layout = [(0, 0), (0, 1), (1, 0), (1, 1)]

 mosaic_height = mosaic_frame.shape[0] // 2

 mosaic_width = mosaic_frame.shape[1] // 2

 # Patch the selected frames into the mosaic frame

 for i, (row, col) in enumerate(layout):

 frame = selected_frames[i]

 y_start = row * mosaic_height

 y_end = y_start + mosaic_height

 x_start = col * mosaic_width

 x_end = x_start + mosaic_width

 mosaic_frame[y_start:y_end, x_start:x_end] = frame

 return mosaic_frame

Example usage

input_frame = cv2.imread('input_frame.jpg')

90

Preprocess frame

preprocessed_frame = preprocess_frame(input_frame)

Apply gray scaling

gray_scaled_frame = apply_gray_scale(preprocessed_frame)

Apply salt and pepper noise

noise_percentage = 0.05 # 5%

noisy_frame = apply_salt_and_pepper_noise(preprocessed_frame, noise_percentage)

Apply random exposure adjustment

adjusted_frame = apply_random_exposure_adjustment(preprocessed_frame)

Apply cutout augmentation

cutout_frame = apply_cutout(preprocessed_frame)

Mosaic augmentation

frames = [preprocessed_frame1, preprocessed_frame2, preprocessed_frame3,
preprocessed_frame4] # Replace with actual frame list

mosaic_frame = apply_mosaic(frames)

Add resulting frames to the list

Save resulting frames to the dataset

for i, frame in enumerate(resulting_frames):

 filename = f'dataset/resulting_frame_{i}.jpg'

 cv2.imwrite(filename, frame)

Display the frames

cv2.imshow('Input Frame', input_frame)

cv2.imshow('Preprocessed Frame', preprocessed_frame)

cv2.imshow('Gray Scaled Frame', gray_scaled_frame)

cv2.imshow('Noisy Frame', noisy_frame)

cv2.imshow('Adjusted Frame', adjusted_frame)

91

cv2.imshow('Cutout Frame', cutout_frame)

cv2.imshow('Mosaic Frame', mosaic_frame)

cv2.waitKey(0)

cv2.destroyAllWindows()

92

(b) Object count histogram and heatmap implementation

This performs object counting, generates histograms, and creates object heatmaps for each
image's annotations. It gives you a starting point for analysing object distributions and
generating visualizations based on your image and annotation data.

import cv2

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.cluster import KMeans

Load the training set images and annotations

image_paths = ['image1.jpg', 'image2.jpg', ...]

annotation_paths = ['annotation1.txt', 'annotation2.txt', ...]

images = []

annotations = []

for image_path, annotation_path in zip(image_paths, annotation_paths):

 image = cv2.imread(image_path)

 images.append(image)

 # Assuming annotations are stored in text files as bounding box coordinates

 annotation_data = np.loadtxt(annotation_path)

 annotations.append(annotation_data)

Perform object counting and generate the object count histogram

object_counts = [annotation.shape[0] for annotation in annotations] # Number of objects in
each image

Generate the object count histogram

plt.figure(figsize=(8, 6))

sns.histplot(object_counts, bins='auto', kde=True)

93

plt.title('Object Count Histogram')

plt.xlabel('Number of Objects')

plt.ylabel('Number of Images')

plt.show()

Generate the object heatmap for each class

class_names = ['grase', 'plastics', 'treeroots']

class_colors = [(0, 255, 0), (255, 0, 0), (0, 0, 255)] # Green, Blue, Red

heatmaps = []

for annotation, image in zip(annotations, images):

 heatmap = np.zeros_like(image, dtype=np.uint8)

 for bbox in annotation:

 x, y, w, h = bbox.astype(int)

 class_index = int(bbox[-1])

 class_color = class_colors[class_index]

 cv2.rectangle(heatmap, (x, y), (x + w, y + h), class_color, thickness=-1)

 heatmaps.append(heatmap)

Display the heatmaps

for i, heatmap in enumerate(heatmaps):

 plt.figure(figsize=(8, 6))

 plt.imshow(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB))

 plt.title(f'Object Heatmap - Image {i+1}')

 plt.axis('off')

 plt.show()

94

(c) Development of Model-1 using YOLOX, and its Training and Evaluation method in
Code Pieces

i. Configuration structure for S-BIRD dataset from scratch

import os

import sys

from addict import Dict

from my_utils.utils import merge_opt # Assume you have a custom utility for merging options

def update_yolox_model(cfg, inp_params):

 # Transfer learning and fine-tuning details

 # Modified model architecture, loss function, and training parameters

 cfg.num_classes = 3 # Number of classes: tree roots, plastics, grease

 cfg.max_epoch = 300

 cfg.learning_rate = 0.01

 cfg.weight_decay = 5e-4

 cfg.random_size = (14, 26)

 # ... (other custom training parameters as per need can be defined and here it is S-BIRD
dataset)

def main():

 opt = Dict() # Use 'addict' library for configuration

 # Update experiment details and dataset paths

 opt.exp_id = "sewer_blockage_detection"

 opt.dataset_path = "/path/to/s_bird_dataset"

 # Update model details

 opt.backbone = "YOLOX-s"

 opt.input_size = (640, 640)

 opt.random_size = (14, 26)

 opt.test_size = (640, 640)

 opt.num_epochs = 300

95

 # Update label names and reid_dim

 opt.label_name = ['treeroots', 'plastics', 'grease']

 opt.reid_dim = 0

 # Update training parameters

 opt.learning_rate = 0.01

 opt.weight_decay = 5e-4

 opt.random_size = (14, 26)

 opt.degrees = 10.0

 opt.translate = 0.1

 opt.scale = (0.1, 2)

 # ... (other training parameters)

 opt, input_params = merge_opt(opt, sys.argv[1:])

 opt.num_classes = len(opt.label_name)

 opt.gpus_str = opt.gpus

 opt.gpus = [int(i) for i in opt.gpus.split(',')]

 # Replace the following line with your desired logic

 opt.gpus = [i for i in range(len(opt.gpus))] if opt.gpus[0] >= 0 else [-2] # Different logic

 opt.root_dir = os.path.dirname(__file__)

 opt.save_dir = os.path.join(opt.root_dir, 'exp', opt.exp_id)

 if opt.resume and opt.load_model == '':

 opt.load_model = os.path.join(opt.save_dir, 'model_last.pth')

 print("\n{} final config: {}\n{}".format("-" * 20, "-" * 20, opt))

 update_yolox_model(opt, input_params)

if __name__ == "__main__":

 main()

96

ii. Development of model for training and validation operation from scratch on
corresponding dataset

import os

import sys

import datetime

import torch

import torch.optim as optim

from addict import Dict

from my_utils.utils import merge_opt

from my_utils.data_loader import SbirDataset # Replace with your dataset loader

from my_utils.model import YOLOX # Replace with your YOLOX model definition

from my_utils.losses import YOLOXLoss # Replace with your loss function

from my_utils.metrics import calculate_metrics # Replace with your metrics calculation
function

def train_one_epoch(model, dataloader, criterion, optimizer, device):

 model.train()

 total_loss = 0.0

 for batch_idx, (images, targets) in enumerate(dataloader):

 images, targets = images.to(device), targets.to(device)

 optimizer.zero_grad()

 outputs = model(images)

 loss = criterion(outputs, targets)

 loss.backward()

 optimizer.step()

 total_loss += loss.item()

 return total_loss / len(dataloader)

def validate(model, dataloader, device):

97

 model.eval()

 metrics = calculate_metrics() # Implement your metrics calculation function

 with torch.no_grad():

 for batch_idx, (images, targets) in enumerate(dataloader):

 images, targets = images.to(device), targets.to(device)

 outputs = model(images)

 metrics.update(targets, outputs)

 return metrics.get_metrics()

def main():

 opt = Dict() # Use 'addict' library for configuration

 # ... (initialize opt as shown in the previous code snippet)

 # Initialize dataset and dataloaders

 train_dataset = Sbird_Dataset(opt.dataset_path, train=True) # Implement your dataset class

 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size,
shuffle=True)

 val_dataset = Sbird_Dataset(opt.dataset_path, train=False) # Implement your dataset class

 val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=opt.batch_size,
shuffle=False)

 # Initialize YOLOX model

 model = YOLOX(opt.num_classes) # Implement your YOLOX model class

 model.to(device)

 # Initialize loss function and optimizer

 criterion = YOLOXLoss() # Implement your YOLOX loss function

 optimizer = optim.SGD(model.parameters(), lr=opt.learning_rate,
momentum=opt.momentum, weight_decay=opt.weight_decay)

 # Training loop

 for epoch in range(opt.num_epochs):

98

 start_time = datetime.datetime.now()

 train_loss = train_one_epoch(model, train_loader, criterion, optimizer, device)

 val_metrics = validate(model, val_loader, device)

 end_time = datetime.datetime.now()

 elapsed_time = end_time - start_time

 print(f"Epoch [{epoch+1}/{opt.num_epochs}] - "

 f"Train Loss: {train_loss:.4f} - "

 f"Validation Metrics: {val_metrics} - "

 f"Elapsed Time: {elapsed_time}")

 # Save model checkpoint

 if (epoch + 1) % opt.save_epoch == 0:

 checkpoint_path = os.path.join(opt.save_dir, f"model_epoch_{epoch+1}.pth")

 torch.save(model.state_dict(), checkpoint_path)

if __name__ == "__main__":

 main()

99

iii. Implementation of model evaluation from scratch on corresponding dataset

import os

import json

import cv2

import numpy as np

import tqdm

import torch

from torchvision.transforms import functional as F

from models.yolox import YOLOX

Define the paths and parameters

dataset_path = "/data/dataset/S_BIRD_dataset"

annotations_path = os.path.join(dataset_path, "annotations/instances_val.json")

images_dir = os.path.join(dataset_path, "images/val")

model_path = "/path/to/your/model_best.pth"

class_names = ['grease', 'plastics', 'tree roots']

YOLOX Detector class for inference

class YOLOXDetector:

 def __init__(self, model_path, confidence_threshold=0.001):

 self.model = YOLOX().eval()

 self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))

 self.confidence_threshold = confidence_threshold

 def preprocess(self, image):

 image_tensor = F.to_tensor(image).unsqueeze(0)

 return image_tensor

 def run_inference(self, images):

 processed_images = [self.preprocess(image) for image in images]

 inputs = torch.cat(processed_images, dim=0)

 with torch.no_grad():

100

 outputs = self.model(inputs)

 return outputs

def evaluate():

 detector = YOLOXDetector(model_path)

 num_samples = len(os.listdir(images_dir))

 print("Performing inference on images in {}".format(images_dir))

 results_list = []

 for image_index in tqdm.tqdm(range(num_samples)):

 image_filename = f"{image_index:06d}.jpg"

 image_path = os.path.join(images_dir, image_filename)

 assert os.path.isfile(image_path), "Image not found: {}".format(image_path)

 image = cv2.imread(image_path)

 batch_images = [image]

 batch_outputs = detector.run_inference(batch_images)

 for index in range(len(batch_images)):

 output_results = batch_outputs[index].cpu().numpy()

 for result in output_results:

 confidence = result[4]

 if confidence > detector.confidence_threshold:

 class_index = int(result[5])

 class_label = class_names[class_index]

 bbox = result[:4]

 x_min, y_min, width, height = bbox

 x_max, y_max = x_min + width, y_min + height

 results_list.append(

101

 {'bbox': [x_min, y_min, x_max, y_max],

 'category_id': class_index + 1, # Assuming class indices start from 1

 'image_id': image_index + 1, # Assuming image indices start from 1

 'score': confidence})

 result_file_path = "s_bird_results.json"

 with open(result_file_path, 'w') as f_dump:

 json.dump(results_list, f_dump, indent=4)

 print("Results saved to:", result_file_path)

if __name__ == "__main__":

 evaluate()

102

iv. Implementation of Real-time Detection task using multi-threading on embedded
platform in given Code

import os

import cv2

import threading

import time

from queue import Queue

from custom_models import CustomDetector

from custom_utils import mkdir, get_img_path, vis_result # Define necessary utilities

class ImageProcessingThread(threading.Thread):

 def __init__(self, img_queue, results_queue, detector):

 super(ImageProcessingThread, self).__init__()

 self.img_queue = img_queue

 self.results_queue = results_queue

 self.detector = detector

 def run(self):

 while True:

 image_path = self.img_queue.get()

 if image_path is None:

 break

 img = cv2.imread(image_path)

 results = self.detector.detect_objects(img)

 self.results_queue.put((image_path, img, results))

 self.img_queue.task_done()

def process_images():

 img_dir = "path/to/your/image/directory"

 output = "output_images"

 mkdir(output, rm=True)

103

 img_list = get_img_path(img_dir, extend=".jpg")

 assert len(img_list) != 0, "No images found in {}".format(img_dir)

 detector = CustomDetector(model_path="path/to/your/model.pth")

 img_queue = Queue()

 results_queue = Queue()

 num_threads = 4

 threads = []

 for _ in range(num_threads):

 thread = ImageProcessingThread(img_queue, results_queue, detector)

 thread.start()

 threads.append(thread)

 for image_path in img_list:

 img_queue.put(image_path)

 img_queue.join()

 for _ in range(num_threads):

 img_queue.put(None)

 for thread in threads:

 thread.join()

 while not results_queue.empty():

 image_path, img, results = results_queue.get()

 print("Processing image:", image_path)

 classes_of_interest = ["grease", "plastic", "treeroots"]

 filtered_results = [res for res in results if res["class_name"] in classes_of_interest and
res["confidence"] > detector.conf_threshold]

 img = vis_result(img, filtered_results)

104

 save_p = os.path.join(output, os.path.basename(image_path))

 cv2.imwrite(save_p, img)

 print("Saved image to", save_p)

def detect_realtime():

 detector = CustomDetector(model_path="path/to/your/model.pth")

 classes_of_interest = ["grease", "plastic", "treeroots"]

 cap = cv2.VideoCapture(0) # Open the webcam

 time.sleep(2.0)

 while True:

 ret, frame = cap.read()

 if not ret:

 break

 frame = cv2.resize(frame, (400, 400))

 timestamp = time.strftime("%Y-%m-%d %H:%M:%S")

 cv2.putText(frame, timestamp, (10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX,

 0.35, (0, 0, 255), 1)

 # Perform real-time detection using the custom model

 results = detector.detect_objects(frame)

 filtered_results = [res for res in results if res["class_name"] in classes_of_interest and
res["confidence"] > detector.conf_threshold]

 frame = vis_result(frame, filtered_results)

 cv2.imshow("Real-time Detection", frame)

 key = cv2.waitKey(1) & 0xFF

 if key == ord("q"):

 break

105

 cv2.destroyAllWindows()

 cap.release()

if __name__ == "__main__":

 process_images_thread = threading.Thread(target=process_images)

 process_images_thread.start()

 detect_realtime()

 process_images_thread.join()

106

(d) Development of Model-2 using YOLOv5, and its Training and Evaluation method in
Code Pieces

i. Development of C3, SPPF, and Conv actual layer types from scratch, and necessary
adjustments based on specific developed dataset -

import torch

import torch.nn as nn

import time

from torchvision.transforms import Resize, InterpolationMode

Custom Conv-BN-Activation (CBA) block

class CBA(nn.Module):

 def __init__(self, in_channels, out_channels, kernel_size, stride, padding,
activation=nn.ReLU()):

 super(CBA, self).__init__()

 self.cba = nn.Sequential(

 nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),

 nn.BatchNorm2d(out_channels),

 activation

)

 def forward(self, x):

 return self.cba(x)

Custom Bottleneck block

class Bottleneck(nn.Module):

 def __init__(self, in_channels, out_channels, width_multiple=1):

 super(Bottleneck, self).__init__()

 c_ = int(width_multiple * in_channels)

 self.c1 = CBA(in_channels, c_, kernel_size=1, stride=1, padding=0)

 self.c2 = CBA(c_, out_channels, kernel_size=3, stride=1, padding=1)

 def forward(self, x):

 return self.c2(self.c1(x)) + x

107

Customized Spatial Pyramid Pooling - Fast (SPPF) layer

class SPPF(nn.Module):

 def __init__(self, in_channels, out_channels):

 super(SPPF, self).__init__()

 c_ = int(in_channels // 2)

 self.c1 = CBA(in_channels, c_, kernel_size=1, stride=1, padding=0)

 self.pool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)

 self.c_out = CBA(c_ * 4, out_channels, kernel_size=1, stride=1, padding=0)

 def forward(self, x):

 x = self.c1(x)

 pool1 = self.pool(x)

 pool2 = self.pool(pool1)

 pool3 = self.pool(pool2)

 return self.c_out(torch.cat([x, pool1, pool2, pool3], dim=1))

Custom CSPDarknet53 backbone

class CSPDarknet53(nn.Module):

 def __init__(self, in_channels, first_out, width_multiple=0.5, depth_multiple=0.33):

 super(CSPDarknet53, self).__init__()

 c_ = int(first_out * width_multiple)

 self.c1 = CBA(in_channels, c_, kernel_size=6, stride=2, padding=2)

 self.c2 = CBA(c_, c_ * 2, kernel_size=3, stride=2, padding=1)

 c3_channels = int(c_ * (2 ** depth_multiple))

 self.c3 = self._make_C3(c_, c3_channels, depth=2, width_multiple=width_multiple)

 self.c4 = CBA(c3_channels, c3_channels * 2, kernel_size=3, stride=2, padding=1)

 c5_channels = int(c3_channels * (2 ** depth_multiple))

 self.c5 = self._make_C3(c3_channels, c5_channels, depth=4,
width_multiple=width_multiple)

 self.c6 = CBA(c5_channels, c5_channels * 2, kernel_size=3, stride=2, padding=1)

 c7_channels = int(c5_channels * (2 ** depth_multiple))

 self.c7 = self._make_C3(c5_channels, c7_channels, depth=6,
width_multiple=width_multiple)

108

 c8_channels = int(c7_channels * (2 ** depth_multiple))

 self.c8 = CBA(c7_channels, c8_channels, kernel_size=3, stride=2, padding=1)

 self.sppf = SPPF(c8_channels, c8_channels)

 def _make_C3(self, in_channels, out_channels, width_multiple=1, depth=1):

 layers = []

 for _ in range(depth):

 layers.append(Bottleneck(in_channels, out_channels,
width_multiple=width_multiple))

 in_channels = out_channels

 return nn.Sequential(*layers)

 def forward(self, x):

 x = self.c1(x)

 x = self.c2(x)

 x = self.c3(x)

 x = self.c4(x)

 x = self.c5(x)

 x = self.c6(x)

 x = self.c7(x)

 x = self.c8(x)

 x = self.sppf(x)

 return x

YOLOv5s model

class YOLOv5s(nn.Module):

 def __init__(self, first_out, num_classes, anchors, width_multiple=0.5,
depth_multiple=0.33):

 super(YOLOv5s, self).__init__()

 self.backbone = CSPDarknet53(in_channels=3, first_out=first_out,

 width_multiple=width_multiple, depth_multiple=depth_multiple)

 self.num_classes = num_classes

 self.anchors = anchors

 self.head = self._make_head(first_out, num_classes, anchors)

109

 def _make_head(self, first_out, num_classes, anchors):

 heads = []

 for in_channels in [first_out * 4, first_out * 8, first_out * 16]:

 heads.append(nn.Conv2d(in_channels, (5 + num_classes) * len(anchors[0]),

 kernel_size=1))

 return nn.ModuleList(heads)

 def forward(self, x):

 x = self.backbone(x)

 outputs = []

 for i, layer in enumerate(self.head):

 out = layer(x[i])

 bs, _, grid_y, grid_x = out.shape

 out = out.view(bs, len(self.anchors[0]), (5 + self.num_classes), grid_y, grid_x)

 res = out.permute(0, 1, 3, 4, 2).contiguous()

 outputs.append(res)

 return outputs

if __name__ == "__main__":

 batch_size = 32

 image_height = 416

 image_width = 416

 num_classes = 3

 anchors = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]

 first_out = 48

 x = torch.rand(batch_size, 3, image_height, image_width)

 model = YOLOv5s(first_out=first_out, num_classes=num_classes, anchors=anchors)

 start = time.time()

 out = model(x)

 end = time.time()

 print("Timing Details: {:.2f} seconds".format(end - start))

110

ii. Configuration structure for S-BIRD dataset from scratch –

import os

from pathlib import Path

import imgaug.augmenters as iaa

import torch.cuda

Define root directory

parent_dir = Path(__file__).parent.parent

ROOT_DIR = os.path.join(parent_dir, "datasets", "coco")

Configuration for the number of classes and class names

num_classes = 3

class_names = ['Grease', 'Plastic', 'Treeroots']

Model configuration parameters

input_channels = 3

first_output = 48

class_loss_weight = 1.0

object_loss_weight = 1.0

learning_rate = 5e-4

weight_decay = 5e-4

device = "cuda" if torch.cuda.is_available() else "cpu"

image_size = 416

confidence_threshold = 0.01

nms_iou_threshold = 0.6

map_iou_threshold = 0.5

Custom anchor settings

111

custom_anchors = [

 [(10, 13), (16, 30), (33, 23)], # P3/8

 [(30, 61), (62, 45), (59, 119)], # P4/16

 [(116, 90), (156, 198), (373, 326)] # P5/32

]

Data augmentation using the imgaug library

train_transforms = iaa.Sequential([

 iaa.SomeOf((1, 4), [

 iaa.Multiply((0.8, 1.2)),

 iaa.Flipud(0.5),

 iaa.Fliplr(0.5),

 iaa.Affine(rotate=(-20, 20)),

 iaa.GaussianBlur(sigma=(0.0, 2.0)),

 iaa.CLAHE(),

 iaa.Posterize(1),

 iaa.ChannelShuffle(0.5),

])

])

Custom class list

my_classes = ['Grease', 'Plastic', 'Treeroots']

num_classes = len(my_classes)

class_names = my_classes

Custom instance

print(f"Number of classes: {num_classes}")

print(f"Class names: {class_names}")

112

iii. Loss computation during training

import time

import os

import numpy as np

import torch

import torch.nn as nn

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

from custom_utils.training_utils import adjust_multiscale

from custom_utils.bbox_utils import (

 calculate_iou,

 calculate_intersection_over_union,

 custom_non_max_suppression as custom_nms,

)

from custom_utils.visualization import visualize_bounding_boxes

import custom_config

from custom_model import CustomYOLOv5m

from custom_dataset import CustomTrainingDataset

import torch.nn.functional as F

class CustomYOLOLoss:

 def __init__(self, model, rect_training, save_logs=False, filename=None, resume=False):

 self.rect_training = rect_training

 self.mse_loss = nn.MSELoss()

 self.bce_class_loss =
nn.BCEWithLogitsLoss(pos_weight=torch.tensor(custom_config.CLASS_PW))

 self.bce_obj_loss =
nn.BCEWithLogitsLoss(pos_weight=torch.tensor(custom_config.OBJECT_PW))

 self.sigmoid = nn.Sigmoid()

 self.lambda_class = 0.5 * (model.head.num_classes / 80 * 3 / model.head.num_layers)

 self.lambda_object = 1 * ((custom_config.IMAGE_SIZE / 640) ** 2 * 3 /
model.head.num_layers)

113

 self.lambda_box = 0.05 * (3 / model.head.num_layers)

 self.balance = [4.0, 1.0, 0.4]

 self.num_classes = model.head.num_classes

 self.anchors_d = model.head.anchors.clone().detach()

 self.anchors = model.head.anchors.clone().detach().to("cpu")

 self.num_anchor_sets = self.anchors.reshape(9, 2).shape[0]

 self.num_anchors_per_scale = self.num_anchor_sets // 3

 self.S = model.head.stride

 self.ignore_iou_threshold = 0.5

 self.ph = None

 self.pw = None

 self.save_logs = save_logs

 self.filename = filename

 if self.save_logs:

 if not resume:

 log_folder = os.path.join("training_evaluation_metrics", filename)

 if not os.path.isdir(log_folder):

 os.makedirs(log_folder)

 with open(os.path.join(log_folder, "loss.csv"), "w") as f:

 writer = csv.writer(f)

 writer.writerow(["epoch", "batch_idx", "box_loss", "object_loss", "class_loss"])

 print("---")

 print(f'Training Logs will be saved in
{os.path.join("training_evaluation_metrics", filename, "loss.csv")}')

 print("---")

 f.close()

 def __call__(self, predictions, targets, prediction_size, batch_idx=None, epoch=None):

 # Rest of the code remains the same

 pass

114

 def build_targets(self, input_tensor, bounding_boxes, prediction_size):

 # Rest of the code remains the same

 pass

 def compute_loss(self, predictions, targets, anchors, balance):

 # Rest of the code remains the same

 pass

if __name__ == "__main__":

 calculate_loss = True

 batch_size = 32

 image_size = 416

 strides = [8, 16, 32]

 anchors = custom_config.ANCHORS

 first_output = 48

 model = CustomYOLOv5m(first_output=first_output,
num_classes=len(custom_config.CLASSES), anchors=anchors,

 channel_sizes=(first_output * 4, first_output * 8, first_output * 16),
inference=False).to(custom_config.DEVICE)

 model.load_state_dict(state_dict=torch.load("custom_yolov5m.pt"), strict=True)

 dataset = CustomTrainingDataset(num_classes=len(custom_config.CLASSES),

 root_dir=custom_config.ROOT_DIR,
transform=custom_config.TRAIN_TRANSFORMS,

 train=True, rect_train=True, default_size=image_size,
batch_size=batch_size, bbox_format="coco")

 yolo_loss = CustomYOLOLoss(model, rect_training=dataset.rect_train)

 data_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False if
dataset.rect_train else True,

115

 collate_fn=dataset.collate_fn)

 if calculate_loss:

 for images, bounding_boxes in data_loader:

 images = images / 255

 if not dataset.rect_train:

 images = adjust_multiscale(images, target_shape=image_size, max_stride=32)

 predictions = model(images)

 start_time = time.time()

 loss = yolo_loss(predictions, bounding_boxes, prediction_size=images.shape[2:4])

 print(loss)

 """torch.manual_seed(1)

 images = torch.rand((batch_size, 3, image_size, image_size))

 #img_idx = torch.arange(batch_size).repeat(3, 1).T.reshape(12, 1)

 classes = torch.arange(batch_size).repeat(3, 1).T.reshape(12, 1)

 bounding_boxes = torch.randint(low=0, high=image_size, size=(batch_size * 3, 4)) /
100

 labels = torch.cat([bounding_boxes, classes], dim=-1).tolist()

 print(loss(model(images), labels))"""

 else:

 for images, bounding_boxes in data_loader:

 images = images / 255

 if not dataset.rect_train:

 images = adjust_multiscale(images, target_shape=image_size, max_stride=32)

 images = torch.unsqueeze(images[0], dim=0)

 bounding_boxes = bounding_boxes[0]

 targets = yolo_loss.build_targets(images, bounding_boxes, images[0].shape[2:4])

 targets = [torch.unsqueeze(target, dim=0) for target in targets]

116

 strides = [8, 16, 32]

 boxes = cells_to_bboxes(targets, torch.tensor(anchors), strides, list_output=False)

 boxes = custom_nms(boxes, iou_threshold=1, threshold=0.7, max_detections=300)

 visualize_bounding_boxes(images[0].permute(1, 2, 0).to("cpu"), boxes[0])

117

iv. Programming Development of model training operation from scratch on corresponding
dataset

import argparse

import os

import yaml

import torch

import torch.optim as optim

import torch.nn.functional as F

from pathlib import Path

from model import YOLOV5m

from custom_loss import CustomYOLOLoss

from evaluation import YOLOEvaluator

from data_loading import get_data_loaders

from utils import save_checkpoint, load_checkpoint

import config

class ArgumentParser:

 def __init__(self):

 self.parser = argparse. ArgumentParser ()

 self.parser.add_argument("--data", type=str, default="coco", help="Path to dataset")

 self.parser.add_argument("--resume", action='store_true', help="Resuming learning on a
saved checkpoint")

 self.parser.add_argument("--load_weights", action='store_true', help="Load pretrained
weights")

 self.parser.add_argument("--epochs", type=int, default=100, help="Number of training
epochs")

 self.parser.add_argument("--batch_size", type=int, default=16, help="Batch size")

 self.parser.add_argument("--lr", type=float, default=0.001, help="Learning rate")

 self.parser.add_argument("--save_dir", type=str, default="checkpoints", help="Directory
to save checkpoints")

 # ... (other arguments)

 def parse(self):

 return self.parser.parse_args()

118

class Trainer:

 def __init__(self, model, loss_fn, optimizer, device):

 self.model = model

 self.loss_fn = loss_fn

 self.optimizer = optimizer

 self.device = device

 def train_one_epoch(self, data_loader, epoch):

 self.model.train()

 total_loss = 0.0

 for batch_idx, (data, target) in enumerate(data_loader):

 data, target = data.to(self.device), target.to(self.device)

 self.optimizer.zero_grad()

 outputs = self.model(data)

 loss = self.loss_fn(outputs, target)

 loss.backward()

 self.optimizer.step()

 total_loss += loss.item()

 avg_loss = total_loss / len(data_loader)

 print(f"Epoch {epoch}: Average Loss = {avg_loss:.4f}")

 def train(self, train_loader, epochs):

 for epoch in range(1, epochs + 1):

 self.train_one_epoch(train_loader, epoch)

 # ... (validation and checkpoint saving)

def main():

 args = ArgumentParser().parse()

119

 if args.data == "coco":

 # Load S-BIRD dataset

 nc = 3

 labels = ['Grease', 'Plastic', 'Tree roots'] # Replace with actual class labels

 anchors = config.ANCHORS

 # ... (other dataset specific settings)

 else:

 # Handle other datasets

 pass

 model = YOLOV5s(nc=nc, anchors=anchors, ch=(64, 128, 256), inference=False)

 model.to(config.DEVICE)

 if args.load_weights:

 model.load_state_dict(torch.load("pretrained_weights.pth"))

 optimizer = optim.Adam(model.parameters(), lr=args.lr)

 loss_fn = CustomYOLOLoss() # Custom loss implementation

 evaluator = YOLOEvaluator(model, labels, config.DEVICE)

 if args.resume:

 load_checkpoint(model, optimizer, args.save_dir, args.load_weights)

 train_loader, val_loader = get_data_loaders(args.data, args.batch_size)

 trainer = Trainer(model, loss_fn, optimizer, config.DEVICE)

 trainer.train(train_loader, args.epochs)

if __name__ == "__main__":

 main()

120

v. SGD programme for customization

import torch

import argparse

from models import YOLOv5s, YOLOXs # Import your model architectures

from loss import CustomYOLOLoss # Import your loss function

from data_loading import get_data_loaders # Import your data loading function

import config

class ArgumentParser:

 def __init__(self):

 self.parser = argparse.ArgumentParser()

 self.parser.add_argument("--model_type", type=str, default="yolov5", help="Type of
model to use (yolov5/yolox)")

 self.parser.add_argument("--data", type=str, default="s_bird", help="Path to dataset")

 self.parser.add_argument("--resume", action='store_true', help="Resume training on a
saved checkpoint")

 self.parser.add_argument("--load_weights", action='store_true', help="Load pretrained
weights")

 self.parser.add_argument("--max_epochs", type=int, default=6000, help="Number of
training epochs")

 self.parser.add_argument("--batch_size", type=int, default=16, help="Batch size")

 # ... (other arguments)

 def parse(self):

 return self.parser.parse_args()

class Trainer:

 def __init__(self, model, loss_fn, optimizer, device):

 self.model = model

 self.loss_fn = loss_fn

 self.optimizer = optimizer

 self.device = device

121

 def train_one_epoch(self, data_loader, epoch):

 self.model.train()

 total_loss = 0.0

 for batch_idx, (data, target) in enumerate(data_loader):

 data, target = data.to(self.device), target.to(self.device)

 self.optimizer.zero_grad()

 outputs = self.model(data)

 loss = self.loss_fn(outputs, target)

 loss.backward()

 self.optimizer.step()

 total_loss += loss.item()

 avg_loss = total_loss / len(data_loader)

 print(f"Epoch {epoch}: Average Loss = {avg_loss:.4f}")

 def train(self, train_loader, max_epochs):

 for epoch in range(1, max_epochs + 1):

 self.train_one_epoch(train_loader, epoch)

 # ... (validation and checkpoint saving)

def main():

 args = ArgumentParser().parse()

 if args.model_type == "yolov5":

 model = YOLOv5s(num_classes=3, depth=0.33, width=0.5) # Customize model
architecture

 elif args.model_type == "yolox":

 model = YOLOXs(num_classes=3) # Customize model architecture

 else:

 raise ValueError("Invalid model_type")

122

 if args.load_weights:

 model.load_weights("pretrained_weights.pth") # Load pretrained weights if needed

 optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.937,
weight_decay=0.0005)

 loss_fn = CustomYOLOLoss(num_classes=3) # Customize loss function

 train_loader, val_loader = get_data_loaders(args.data, args.batch_size) # Customize data
loading

 trainer = Trainer(model, loss_fn, optimizer, config.DEVICE)

 trainer.train(train_loader, args.max_epochs)

if __name__ == "__main__":

 main()

123

vi. Implementation of Real-time Detection task using multi-threading on embedded
platform in given Code

import cv2

import numpy as np

import argparse

import os

import torch

from concurrent.futures import ThreadPoolExecutor

from model import YOLOV5small

from utils.utils import load_model_checkpoint

from utils.bboxes_utils import non_max_suppression

from PIL import Image

import configparser

from imutils.video import VideoStream

from imutils.video import FPS

import imutils

import datetime

import time

Define classes

CLASSES = ['treeroots', 'plastics', 'grease']

def preprocess_image(image_path):

 img = np.array(Image.open(image_path))

 img = img.transpose((2, 0, 1))

 img = img[None, :]

 img = torch.from_numpy(img)

 img = img.float() / 255

 return img

def process_image(image_path, model):

 img = preprocess_image(image_path)

124

 with torch.no_grad():

 out = model(img.to(device))

 bboxes = cells_to_bboxes(out, model.head.anchors, model.head.stride, is_pred=True,
to_list=False)

 bboxes = non_max_suppression(bboxes, iou_threshold=0.45, threshold=0.25, to_list=False)

 return img[0].permute(1, 2, 0).to("cpu"), bboxes

def webcam_inference_thread():

 vs = VideoStream().start()

 time.sleep(2.0)

 fps = FPS().start()

 while True:

 frame = vs.read()

 frame = imutils.resize(frame, width=400)

 timestamp = datetime.datetime.now()

 ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")

 cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,

 0.35, (0, 0, 255), 1)

 model.conf = 0.80

 model.iou = 0.45

 model.agnostic = False

 model.multi_label = False

 model.classes = None

 model.max_det = 1000

 model.amp = False

 results = model(frame, size=400)

 cv2.imshow("Frame", np.squeeze(results.render()))

125

 key = cv2.waitKey(1) & 0xFF

 if key == ord("q"):

 break

 fps.update()

 fps.stop()

 print("Processed time:", (fps.elapsed()))

 print("Counted FPS:", (fps.fps()))

 cv2.destroyAllWindows()

 vs.stop()

def main():

 parser = argparse.ArgumentParser()

 parser.add_argument("—name_model", type=str, default="model_1", help="Specify the

directory within SAVED_CHECKPOINT")

 parser.add_argument("--checkpoint", type=str, default="checkpoint_epoch_8.pth.tar",

help="Specify the ckpt name within SAVED_CHECKPOINT/ name_model ")

 args = parser.parse_args()

 model = YOLOV5small(first_out=config.FIRST_OUT, nc=len(CLASSES),

anchors=config.ANCHORS,

 ch=(config.FIRST_OUT * 4, config.FIRST_OUT * 8, config.FIRST_OUT *

16)).to(device)

 path2model = os.path.join("SAVED_CHECKPOINT", args.model_name, args.checkpoint)

 load_model_checkpoint(model=model, model_name=path2model, training=False)

126

 with ThreadPoolExecutor(max_workers=2) as executor:

 executor.submit(webcam_inference_thread)

 while True:

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

if __name__ == "__main__":

 main()

127

Research Article – Review of the State-of-the-art Sewer
Monitoring and Maintenance Systems Pune Municipal

Corporation-A Case Study

TEM Journal. Volume 10, Issue 4, Pages 1500-1508, ISSN 2217-8309, DOI: 10.18421/TEM104-02, November 2021.

1500 TEM Journal – Volume 10 / Number 4 / 2021.

Review of the State-of-the-art Sewer
Monitoring and Maintenance Systems Pune

Municipal Corporation - A Case Study

Ravindra R. Patil 1, Saniya M. Ansari 2, Rajnish Kaur Calay 1, Mohamad Y. Mustafa 1

 1 Department of Building, Energy and Material Technology, Faculty of Engineering Science and Technology,
UiT The Arctic University of Norway, Narvik, Norway

2Department of E & TC Engineering DYPSOE, Pune, India

Abstract – There is an increasing trend of using
automated and robotic systems for the tasks that are
hazardous or inconvenient and dirty for humans.
Sewers maintenance and cleaning is such a task where
robots are already being used for inspection of
underground pipes for blockages and damage. This
paper reviews the existing robotic systems and various
platforms and algorithms along with their capabilities
and limitations being discussed. A typical mid-size city
in a developing country, Pune, India is selected in
order to understand the concerns and identify the
requirements for developing robotic systems for the
same. It is found that major concern of sewers are
blockages but there is not enough information on both
real-time detection and removal of it with robotic
systems. On-board processing with computer vision
algorithms has not been efficiently utilized in terms of
performance and determinations for real-world
implementations of sewer robotic systems. The review
highlights the available methodologies that can be
utilized in developing sewer inspection and cleaning
robotic systems.

DOI: 10.18421/TEM104-02
https://doi.org/10.18421/TEM104-02

Corresponding author: Ravindra R. Patil,
PhD Research Scholar, Department of Building, Energy
and Material Technology, Faculty of Engineering Science
and Technology, UiT The Arctic University of Norway,
Narvik, Norway.
Email: ravindra.r.patil@uit.no

Received: 16 July 2021.
Revised: 17 August 2021.
Accepted: 27 August 2021.
Published: 26 November 2021.

© 2021 Ravindra R. Patil et al; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution‐NonCommercial‐NoDerivs 4.0
License.

The article is published with Open Access at
www.temjournal.com

Keywords – sewer monitoring, robotic artifices,
review, computer vision, purview, AI techniques

1. Introduction

Sewers are important part of modern sewerage
system that discreetly and safely carry waste and
storm water away from the buildings to a treatment
place. For the whole system to function securely,
sewers have to be in good conditions. Regular
maintenance and improvement of sewers are
essential responsibilities of authorities that operate
the system.

There are many practical causes that lead to early
deterioration of the sewers. These include blockages,
cracks, joint displacement, tree roots intrusions.
Failure of sewer may result in large volume of
leakage causing environment risk and public health
issues. Sewer blockage is a big concern which causes
overflowing of dirty water causing foul smell and
health risks to people. Thus, a lot of money and
manpower are spent by authorities to ensure proper
functionality of sewer systems.

Sewer maintenance and cleaning issues have
drawn attention of operators and developers around
the world. In developing countries like India
blockages have been removed by manual cleaning,
which is an undignified method and also harmer
health hazard for the persons involved. Thus,
mechanical and chemical cleaning methods have
replaced manual cleaning. Sewer inspection is an
important part of sewer maintenance to identify
potential problems and resolve them part of routine
maintenance program. Over the time automated and
robotic systems were developed. Earlier tele-operated
robot platforms were controlled by the human
operator and connected by cable with an external
energy supply (Stein and Niederehe, 1992). Since
then, several improvements were made and robotic
systems are now widely available for inspection and
cleaning of sewer systems. The robotic systems are a
preeminent alternatives for navigation and
performing a task in the dull, harmful, and unmanned
area.

https://doi.org/10.18421/TEM104-02

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1501

In this paper, the state-of-the-art review on various
automated sewer maintenance and inspection
systems is presented and future development needs
for automated systems are discussed. A case study of
Pune Municipal Corporation (PMC) is considered to
highlight the specific requirements for a typical
metropolitan city in India.

2. Sewerage Systems and Maintenance in India

Indian sewerage system is a huge problem.
Traditionally, manual techniques and manual
scavenging was used all over India, which used
cleaner entering the sewer pipe and septic tanks for
cleaning. However, in the last decades the
Government of India (GOI) has taken various
initiatives to stop hazardous cleaning and to avoid
accidents and human casualties during improper
practice of cleaning of sewers, septic tanks etc. Only
recently the GOI announced measures to end the
discriminatory and hazardous practice of manual
scavenging by August 2021. Ministry of Housing and
Urban Affairs issued Standard Operating Procedure
(SOP) For Cleaning of Sewers and Septic Tanks in
Nov 2018 [27]. The details for type of inspections
and examinations of sewers are provided and
recommendations are made for sewer cleaning
strategies in the report. However, more funds are
required for the organizations responsible for
sewerage systems to buy the necessary equipment.
Indirect inspection technologies for sewer systems
applicable for Indian conditions are identified [27] as
shown in Table 1. and Fig.1.

Table 1. Sewer System Inspection Technologies considered
applicable to Indian conditions

No

Viability

Technology
Sewer

Material
Sewer
state

Sewer
Dimension

a)
Sonar

Technique
varying

Completely
carrying

Varied
Dimension

b)
Technique of

Light and
Mirror

varying Vacant
ready for 300

mm

C) CCTV varying Vacant
Varied

Dimension

Figure 1. Sewer Inspection Technologies

Table 2. shows the cleaning techniques used in
Indian conditions as recommended in [27].

Case Study - Pune Municipal Corporation

The first sewer system was constructed in Pune
city in 1928. This system was designed for 31.8
MLD to cater to the ultimate design capacity for
population of 0.26 million in the year 1951.
Population of the city grew to 7.4 million in 2020. To
date, there are 11 sewerage treatment plants (STP)
that process 396 MLD in the city. A survey was
conducted to assess the current provisions for
treating sewerage in the city and issues relating to
operating of the system. Table 3. shows the basic
data and available tools in the municipality for
maintaining sewers pipes.

Table 2. Sewer Cleaning Techniques

Sewer cleaning Techniques

L
ab

ou
r-

in
te

ns
iv

e
P

ra
ct

ic
es

Cloth Ball and
Manila Rope

A
u

to
m

at
ed

 P
ra

ct
ic

es

Gully Emptier
Hydraulically
Driven Tactics

Bucket Machine

A collected wood
board - Scraper

Rodding Machine
with Flexible Sewer

Rods

Sectional Rods for
Sewer

Speedy cleaners
(Jetting Machines)

Dredger
(Clam-shell)

Table 3. PMC Surveyed Data

Terms Details

Sewer Line 2167 kilometre

Sewer Pipe Diameter
Ranges from 100 mm to
1800 mm

Total Chambers (manhole) 2187

Sewer Pipe Material

 RCC
 High-density

polyethylene
(HDPE)

 bid-iron
 PVC

Distance Between Chambers 10 to 15 meters
Sewer Net pressure 1 to 4

Sewer Cleaning Techniques

 Suction Cum Jetting
Machine with a
Recycler

 Suction Cum Jetting
Machine

 Jetting Machine
Total Generated Sewage 744 MLD

Intermediate pump stations
(IPS)

6

Sewage Treatment Plants
(STPs)

9

Main Sewer Lines
 Below road
 River side
 Canal side

Cleaning Tools

 Suction Cum Jetting
Machine

 Suction Cum Jetting
Machine with a Recycler

 Jetting Machine

Charges/Shift
(8 hours shift)

6400 INR

37000 INR

5360 INR

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

1502 TEM Journal – Volume 10 / Number 4 / 2021.

Figure 2. shows some of the real incidents of
cleaning operation in the city.

It is evident that the mechanical cleaning is mainly
used. During interviews with the officials, it was
revealed that their goal of maintenance of the sewers
is to reduce the number of sewer blockages per unit
length. Therefore, inspection and scheduled cleaning
is very important part of sewer maintenance. The
PMC tries to follow recommended government
guidelines for regular inspection and cleaning of the
sewers but reliable techniques and tools are not
available.

Figure 2. Visible outturns at PMC survey site

There are several GOI schemes to upgrade the
technology for cleaning sewers across India, the
PMC officials informed that due to budget restraints
they do not have adequate tools.

Existing machines use suction method and jetting
to carry dirt out of sewers and pure pipes with lofty-
pressure jets of water. At places mainly in densely
populated areas, the machines are often too big to
enter some narrow streets sometimes cleaning is
manually performed. In such scenarios small and
portable robotic system would be ideal.

The robotic systems also have cameras for locating
the blockages and help the cleaning arm navigate
toward it. In the next section advances in the robotic
system are discussed.

3. Features of Various Robotic & Automated
Systems

Robotic systems are classified as no-autonomy,
semi-autonomy, and full-autonomy and are capable
for detecting and measuring damage and cleaning.
The CCTV (Closed Circuit Television), SSET
(Sewer Scanner and Evaluation Technology), Laser
Scanning are different techniques which are used for
sewer pipe inspection. Also, the computer vision is
extending its power with AI revolution on embedded
platform.

Many sewer robotic systems such as PIRAT,
KARO, KURT, MAKRO, KANTARO, and SIAR
are reported by many researchers as explained in the
following sections.

Kirkham et al. [1] developed PIRAT (Pipe
Inspection Real-Time Assessment Technique) sewer
inspection semi-autonomous tethered system that
could evaluate the physical data using some
interpretation technique. AI techniques were
developed system to find out and categorize damages
using the three-dimensional model data. A human
operator had to find out real damages, as well as the
damaged regions in the images marked manually.
The system is a decade old with employed
algorithms, and the performance parameters are poor.

Kuntz et al. [2] presented tethered, semi-
autonomous KARO (KAnalRoboter) sewer
inspection equipment which was capable for auto-
correction of tilting pose and slippage in wheel. Pipe
bends, larger cracks in pipe, and obstacles within the
pipe were identified by a 3D optical sensor and a
microwave sensor. This means that the robotic
system was mostly dependent on sensors and read
data.

The PIRAT and KARO both had main control
routines on a computer in the movable control unit
and did not comprise on-board hardware.

Kirchner and Hertzberg progressed six-wheeled,
untethered KURT (Kanal–Undersuchungs–Roboter-
Testplatform) for autonomous navigation in a dry
sewers test net in [3]. KURT1 was competent to
classify a pipe junction type and this patented method
was complimented as probabilistic mapping of
objects, similar to sewer landmarks. The new
KURT2 included sensors for odometry and in-
clinometers, ultrasound distance or infrared
transducers for obstacle detection, and optional
bumpers. In this, sensors may not work in a real
sewer pipe due to dirt covering. Also, ultrasound
sensors are too large in size. The overall reliability of
this robotic system is sensor dependent and only
inspects the sewers and has no ability to solve issues.
Rome et al. [4] came up with an untethered, self-
steering MAKRO (Mehrsegmentiger Autonomer
KanalROboter) robot for fully autonomous

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1503

navigation in roughly cleaned sewer pipes. It carried
all resources on-board. In this, the ultrasound range
sensor was exploited to detect obstacles that block
the pipe. All tasks such as collision avoidance,
movement control, obstacle detection, and landmark
detection were done by the sensors. The computer
vision algorithm or methodology was not clearly
present and focused only on applications of sensors.

Nassiraei et al. developed KANTARO, a fully
autonomous, un-tethered, passive-active intelligent
robot having intelligent modular architecture
involved in mechanism and sensor [5]. They also
proposed a small and smart 2D laser scanner for
directional landmarks detection and utilized the fish
eye camera to assess pipe condition and defect
detection. They proposed a horizontal and vertical
similarity approach for automated faults detection in
sewer pipes using images. In this work, the accuracy
of faults detection software was not high enough as
needed. Alejo et al. introduced SIAR (Sewer
Inspection Autonomous Robot), a system that can
detect critical structural defects in sewer pipelines by
employing 3D structure reconstruction in real-time
and also take water or gas samples of the
environment for further analysis [6]. This robotic
system comprises RGB-D sensors with a powerful
wireless communication system.

Abidin developed an in-pipe robot for cleaning soft
and moderate clog [7]. The ultrasonic sensor was
used to detect diameter difference that means if the
detected diameter is small then it will be considered
that blockages are present inside the pipe. In this, the
cleaning operation was performed when the detected
distance is less than 30mm. This system was not
capable to remove stubborn clog. The development
was lab scale based on very basic experiment and
there was not waterproofing feature for real-time
application.

Vaani et al. [8] developed an automated sewer
robot named as BhrtyArtana where ‘Bhrtya’ stands
for robot and ‘Artana’; stands for waste. This robot
was capable of inspecting cracks, corrosion, and
obstacles as well as clearing any blockage within it.
A camera was installed to get real-time video feed
for analysis and a proximity sensor was connected to
detect obstacle in front of it so that the turbine will
start cutting and clearing the obstacle. The
implemented prototype did not have intelligence of
automated defect detection feature. It is sensor
dependent for obstacle detection.

Gobinath and Malathi implemented a Machine
Robot having a Robot-Arm [9]. That Robot-Arm was
utilized by a few Axis with Stepper Motor to
progress with distinct angles from left to right and
then from top to bottom. An LCD was used to
display the sewage cleaning process. In this, toxic

gases were detected by a board of SewerSnort gas
sensor with a MicaZ mote. The developed system
does not comprise camera-based automated defect
detection and depends on the sensory network. It is
costly and needs modification for the real-world
prototype.

Prasad and Karthikeyan executed a robot for
cleaning and removing the blockage in large sewer
pipes [10]. The blockages were detected by
ultrasonic sensors and cleaned by a drilling
mechanism. A MATLAB tool was used for
monitoring video and captured images from a
wireless camera. The developed mechanism was not
advanced and did not utilize computer vision
excepting video feed from the camera.

Abro et al. conferred an autonomous sewerbot that
detected the defects in sewerage pipelines as well as
blockages using digital image processing [11]. They
also investigated the attributes of a specific sewerage
line utilizing IoT. The gradient and segmentation
techniques were applied for sewer pipe blockage
detection with a wireless camera. Overall, they tried
to solve all inspection issues but the developed
algorithm and performance were inferior for real-
world implementation. Table 4. shows the confines
and respective remarks for the illustrated robotic
artifices.

Table 4. Implemented robotic artifices with their confines
and remarks

Robotic
Artifices

Confines and Remarks
Ref.
No.

PIRAT
No main control routines onboard and
reliability depends on human operator

[1]

KARO
Reliability depends on human operator and
fully sensory data

[2]

KURT
Fully sensory system and sometimes do not
work due to environmental aspects

[3]

MAKRO

Lack of efficient Computer vision
methodology and focused only on sensors
applications. No ability to move inside of
bending pipe.

[4]

KANTARO
Low accuracy of faults detection software,
absence of methodical approach to amend
practically

[5]

SIAR
Advanced system but having no ability to
clear and reform pipe condition in real-time

[6]

In-pipe Robot
Very basic prototype and cannot be
accessed for real-time applications.

[7]

BhrtyArtana
No efficient methodology for defect
detection and removal for real-time
applications

[8]

Machine Robot
Very costly and needs modification in
comprised techniques for the real-world
prototype

[9]

MATLAB
Based Robot

Poor computer vision technique [10]

Sewerbot
The algorithm and performance were
inferior for real-world implementation

[11]

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

1504 TEM Journal – Volume 10 / Number 4 / 2021.

The key differences between types of sewer
robotic systems have been depicted in depth in the
following Table 5.

Table 5. Differences between types of sewer robotic
systems

No-autonomy Semi-autonomy Full-autonomy

entirely
teleoperated

teleoperated with
some amount of
self-intelligence

full intelligence for
self-navigation

tethered
may be tethered or

un-tethered
un-tethered

assessment
reliability

depends on
human operator

assessment
reliability depends

on both human
operator and system

intelligence

assessment
reliability depends

on system
intelligence

less sensory
system and

simply driven
by human
operator

involve moderate
sensors with moving

assembly

comprises several
sensors and critical
moving assembly

fine in small
diameter pipes

preferable in small
diameter pipes

not trustworthy in
small diameter

pipes

control unit at
remote location

may fetch all
obligatory resources
onboard or control

unit may be at
remote location.

fetches all
obligatory

resources onboard

The robots working in the pipes are categorized
depending on their moving techniques as shown in
Figure 3.

Figure 3. Categorizations of robots based on moving
techniques

4. Initiated Computer Vision Algorithms and
Perusal

Here, some identified methodologies are discussed
for their influence and limitations. Kumar and
Abraham made a contribution of the framework that
applies Deep Convolution Neural Networks (CNNs)
to classify various issues such as root intrusions,
cracks, and deposits in sewer CCTV frames [12].
They trained and assessed CNNs using 12,000
frames gathered from over 200 pipelines for
accuracy, precision, and recall. It is observed that
generated consequences are from images and not
from real-time navigation and various defects have
been classified and not detected with locations.

Cheng and Wang initiated an automated approach
for identification of sewer pipe faults centred on
faster R-CNN [13]. In this, 3000 images of sewer
pipes captured from CCTV inspection videos were
applied for training the detection model. Then the
model was analysed for detection accuracy and
calculation cost by consuming missing rate, mean
average precision (MAP), training time, and
detection speed. This approach only functions for
standing frames and not for the real-time video feed.
It also consists of a few incorrect classifications for
cracks in the experiments. Gutiérrez-Mondragón et
al. originated a technique to train a Convolutional
Neural Network for detecting the obstruction level in
pipes [14]. By gathering video database from CCTV,
they generated useful frames to train the model. They
integrated the Layerwise Relevance Propagation
explainability technique for understanding the neural
network behaviour for this task. It has been predicted
that the proposed system can provide greater
accuracy, speed, and consistency for sewer
examination in real-time. This work only focused on
the quantity of obstruction in the sewers and not on
type and locations.

Halfawy and Hengmeechai mentioned a
methodical algorithm of HOG (histograms of
oriented gradients) and SVM (support vector
machine) to find tree root intrusions’ defects in
images collected from conventional CCTV
inspection videos [15]. This was two steps processed
as: (1) image segmentation to extract regions of
interest (ROI) showing defect areas and (2)
classification of the ROI using SVM classifier
trained by the HOG features. Here, the algorithm was
applied only on static images and not on a video
sequence and larger data sets. Yin et al. proposed a
framework for real-time automated defect detection
in sewer pipe by using the CNN based YOLOv3
object detector [16]. The model had been trained
with a data set of 4056 images that includes six types
of defects such as broken, hole, deposits, crack,
fracture, and root and one type of construction

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1505

feature tap. The proposed model had not been tested
in real-time in the sewer pipe and it needs some
improvisation in performance parameters.

Moradi et al. presented an automated sewer
pipeline inspection and condition assessment method
using computer vision techniques [17]. In this, a
region of interest (ROI) of sewer defects was
identified first and then classification was done on
frames. The hidden Markov models (HMM) had
been used to extract frames from sewer CCTV videos
and CNN was proposed to detect the defects and
classify them. This work was also based on dataset
testing with average results.

Kumar et al. evaluated a deep learning-based
framework such as single-shot detector (SSD), you
only look once (YOLO), and faster region-based
convolutional neural network (Faster R-CNN) for
speed and accuracy in classifying and localizing root
intrusions and deposits in sewer CCTV images [18].
For training and testing of the models, 3800
annotated images of defects were used. Here, the
Faster R-CNN model had the highest accuracy for
defects detection and the slowest speed for
processing each image. The YOLOv3 model
presented a slightly lower accuracy than the Faster R-
CNN and was nearly twice as fast as the Faster R-
CNN to treat every frame. The SSD model appeared
to have the lowest accuracy but the highest speed to
process each image. On average in this research, the
incorporated dataset of training and testing was very
little to attain expected consequences. Also, there is a
need to enhance the speed and accuracy of the
prototype.

5. Review of Earlier Surveys

Haurum and Moeslund surveyed the last 25 years
of research for sewer inspection. They presented a
detailed outline inside the field of image-based
automation of Closed-Circuit Television (CCTV) and
Sewer Scanner and Evaluation Technology (SSET)
for sewer inspection [19]. A review was also
performed of the pipeline algorithmic, and datasets
and protocols. Authors investigated all aspects of
automated inspection pipeline such as image
acquisition, preprocessing, detection and
segmentation, feature description, classification, and
temporal filtering. From the survey, it is suggested
that free and publicly available datasets should be
created, should have open-source code for each
publication and standardized evaluation metrics.
Moradi et al. reviewed the current state of sewer
pipeline inspection technology associated with
computer vision and machine learning techniques
[20]. The assessment compared advantages and

disadvantages of one and all methods. The image
preprocessing, Image representation and Learning
have been deeply examined for defect detection in
sewer pipe. In this, it is highlighted that CCTV
cameras must be standard, must have influential
hardware with lofty specifications as well as standard
dataset and robust algorithms.

Liu and Kleiner explored the techniques for pipe
inspection and for assessing the condition of water
distribution and transmission pipes [21]. In their
paper they also discuss various technologies such as
smart pipe, augmented reality, and intelligent robots
and scrutinized for their performance and real-word
relevance. They also shed light on the significance of
the CCTV and laser scanning techniques. Tur and
Garthwaite reviewed existing robotic tools and
noticed unclick problems for development of a
successful robotic sewer pipe inspection device [22].
Types and mechanisms of robotic systems, acquired
sensing technology, and the CCTV and SSET
techniques for visual perceptions have been
highlighted. They discussed principal affairs of
communication, data management, and energy
sources. The robots should be implemented for
performing specific tasks so that these robotic
systems will be cheap and will consume less energy
to move.

Czimmermann et al. focused on automated visual-
based defect detection methods appropriate to
materials such as metals, ceramics and textiles [23].
They pointed to two types of defects such as visible
and palpable. They also described acutely artificial
visual processing techniques, supervised and non-
supervised classifiers and deep learning algorithms
for detection and classification of defects. It is
noticed that the inadequate test samples, mostly
incompatible database, and not developed concrete
algorithms are the issues for a perfect inspection
system.

Following are the common sewer affairs that are
considered in earlier research papers as shown in
Figure 4.

Figure 4. Appeared sewer affairs in the research work

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

1506 TEM Journal – Volume 10 / Number 4 / 2021.

Out of all these sewers issues, sewer blockages are
the major issues. Significant causes of sewers
blockages due to accumulated debris are identified as
follows –

 sand
 silt (i.e., sludge)
 plastic
 grease
 roots and leaves
 rocks
 toiletries waste (such as clip on toilet freshener

holders)
 foreign objects such as baby diapers and wipes,

tampons, oil, sanitary napkins, cat litter, cotton
balls, hair, children’s toys etc.

There is no reliable general algorithm and robotic
system formulated for both identification and
removal of different sewer blockages in real-world
scenario.

6. Sewer Monitoring Techniques

A. Modern computer vision techniques

The most of the area of computer vision is

untouchable by the AI techniques. This area
comprises intelligent algorithms to return evocative
information from frames and videos. These
conventional computer vision algorithms are enough
to produce admissible output for lower imagery data
but outcomes of these algorithms get saturated for
larger datasets. At this point, machine learning and
deep learning techniques confer sublime outturns.
The machine learning techniques are handcrafted
algorithms whereas deep learning techniques use
deep neural networks for solving classification and
regression problems. The deep leaning models need a
large number of images for enhancement in accuracy
[28]. The features selection and training platforms
are also an important aspect in object detection and
classification tasks [29], [30]. The precision rate and
efficiency of these AI techniques depend on the
quality of imagery data.

In below Figures 5. and 6., the general mechanism
in machine learning and in deep learning strategies
have been depicted for identification of sewer affairs.

Figure 5. Mechanism in Machine learning strategy

Figure 6. Mechanism in Deep learning strategy

In Table 6., the acquired methodologies in object

detection tasks have been listed due to their
significance and involvement in the earlier research
work.

Table 6. Crucial methodologies

Conventional
Algorithms for
pre-processing
and detection
task in
Computer Vision

 Colour spaces
 Image stitching, mosaicking,

and unwrapping
 Thresholding
 Noise removing
 Morphological operations
 Image enhancement and

filtering
 Geometric transformations

etc.

Learning and
Classification
Techniques in
Machine
Learning

 SVM
 k-means
 k-NN
 Decision Trees
 Logistic Regression
 Random Forests
 Naïve Bayes

Deep Learning
based object
detection
modules

 SSD VVG
 YOLOv3
 Faster-RCNN
 Tiny YOLOv2

Classifiers in
Deep Learning

 GoogleNet
 AlexNet
 CaffeNet
 ResNet – 18v1, ResNet – 50v1
 ZFNet 512
 MobileNet v2
 SqueezNet
 ShuffleNet
 DenseNet 121
 CNN Mnist

Segmentation
Deep Neural
Network
Modules

 Mask R-CNN
 FCN
 ResNet 101_DUC_HDC
 ENet

The robotic systems need to be energy efficient
and cost effective for realistic applications and it
depends on selection process of finest hardware and
software combinations [24]. In this, the embedded
platform is the foremost optative with computer
vision methodologies for real-world visual
implementations [25], [26]. So, embedded vision is a
spacious area of research for pragmatic evolution in
diverse fields.

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1507

7. Conclusion

In this review, the existing sewer robotic systems
are analysed for features, resorted frameworks and
mechanisms. Overall, it is concluded that the sewers
blockages are the predominant issues of buried
infrastructure. The earlier and modern techniques for
unblocking sewers are discussed with particular
reference to the PMC cleaning and maintaining
techniques of the sewer infrastructure.

The review of published research results revealed
that computer vision algorithms with on-board
processing are not efficiently utilized. To the authors’
knowledge, no robust algorithm and robotic system
available for both real-time detection and removal of
sewer pipe blockages exists to date. This presents a
research opportunity to develop such algorithm that
may be integrated with existing or newer robotic
systems for inspecting and cleaning of sewer
systems.

Acknowledgements

Thanks to the SPRING Eu-India Project and UiT The
Arctic University of Norway, Narvik, Norway for PhD
studies of Ravindra R. Patil (No. 821423 and GOI No.
BT/IN/EU-WR/60/SP/2018).

The publication charges for this article have been
funded by a grant from the publication fund of UiT The
Arctic University of Norway.

References

[1]. Kirkham, R., Kearney, P. D., Rogers, K. J., &

Mashford, J. (2000). PIRAT—a system for
quantitative sewer pipe assessment. The International
Journal of Robotics Research, 19(11), 1033-1053.

[2]. Kuntze, H. B., Schmidt, D., Haffner, H., & Loh, M.
(1995, September). KARO-A flexible robot for smart
sensor-based sewer inspection. In Proc. Int. Conf. No
Dig'95, Dresden, Germany, 19 (pp. 367-374).

[3]. Kirchner, F., & Hertzberg, J. (1997). A prototype
study of an autonomous robot platform for sewerage
system maintenance. Autonomous robots, 4(4), 319-
331.

[4]. Rome, E., Hertzberg, J., Kirchner, F., Licht, U., &
Christaller, T. (1999). Towards autonomous sewer
robots: the MAKRO project. Urban Water, 1(1), 57-
70.

[5]. Nassiraei, A. A., Kawamura, Y., Ahrary, A.,
Mikuriya, Y., & Ishii, K. (2007, April). Concept and
design of a fully autonomous sewer pipe inspection
mobile robot" kantaro". In Proceedings 2007 IEEE
international conference on robotics and
automation (pp. 136-143). IEEE.

[6]. Alejo, D., Mier, G., Marques, C., Caballero, F.,
Merino, L., & Alvito, P. (2020). SIAR: A ground
robot solution for semi-autonomous inspection of
visitable sewers. In Advances in Robotics Research:
From Lab to Market (pp. 275-296). Springer, Cham.

[7]. Abidin, A. S. Z., Zaini, M. H., Pauzi, M. F. A. M.,
Sadini, M. M., Chie, S. C., Mohammadan, S., ... &
Ming, C. Y. (2015). Development of cleaning device
for in-pipe robot application. Procedia Computer
Science, 76, 506-511.

[8]. Vaani, I., Sushil, S. J., Kunjamma, U. V.,
Ramachandran, A., Bai, V. T., & Thyla, B. (2017,
May). BhrtyArtana (A pipe cleaning and inspection
robot). In 2017 Third International Conference on
Sensing, Signal Processing and Security (ICSSS) (pp.
422-425). IEEE.

[9]. Gobinath, M., & Malathi, S. (2018, December).
Sewage Sludge Removal Method Through Arm-Axis
by Machine Robot. In International Conference on
Intelligent Systems Design and Applications (pp. 345-
353). Springer, Cham.

[10]. Nesaian, K. P., & Karthikeyan, M. B. (2012). Design
and development of vision based blockage clearance
robot for sewer pipes. IAES International Journal of
Robotics and Automation, 1(1), 64.

[11]. Abro, G. E. M., Jabeen, B., Ajodhia, K. K., Rauf, A.,
& Noman, A. (2019). Designing Smart Sewerbot for
the Identification of Sewer Defects and
Blockages. International Journal of Advanced
Computer Science and Applications, 10(2), 615-619.

[12]. Kumar, S. S., Abraham, D. M., Jahanshahi, M. R.,
Iseley, T., & Starr, J. (2018). Automated defect
classification in sewer closed circuit television
inspections using deep convolutional neural
networks. Automation in Construction, 91, 273-283.

[13]. Cheng, J. C., & Wang, M. (2018). Automated
detection of sewer pipe defects in closed-circuit
television images using deep learning
techniques. Automation in Construction, 95, 155-171.

[14]. Gutierrez-Mondragon, M. A., Garcia-Gasulla, D.,
Alvarez-Napagao, S., Brossa-Ordoñez, J., &
Gimenez-Esteban, R. (2020). Obstruction level
detection of sewer videos using convolutional neural
networks. arXiv preprint arXiv:2002.01284.

[15]. Halfawy, M. R., & Hengmeechai, J. (2014).
Automated defect detection in sewer closed circuit
television images using histograms of oriented
gradients and support vector machine. Automation in
Construction, 38, 1-13.

[16]. Yin, X., Chen, Y., Bouferguene, A., Zaman, H., Al-
Hussein, M., & Kurach, L. (2020). A deep learning-
based framework for an automated defect detection
system for sewer pipes. Automation in
construction, 109, 102967.

[17]. Moradi, S., Zayed, T., & Golkhoo, F. (2018).
Automated sewer pipeline inspection using computer
vision techniques. In Pipelines 2018: Condition
Assessment, Construction, and Rehabilitation (pp.
582-587). Reston, VA: American Society of Civil
Engineers.

[18]. Kumar, S. S., Wang, M., Abraham, D. M.,
Jahanshahi, M. R., Iseley, T., & Cheng, J. C. (2020).
Deep learning–based automated detection of sewer
defects in CCTV videos. Journal of Computing in
Civil Engineering, 34(1), 04019047.

TEM Journal. Volume 10, Issue 4, Pages 1500‐1508, ISSN 2217‐8309, DOI: 10.18421/TEM104‐02, November 2021.

1508 TEM Journal – Volume 10 / Number 4 / 2021.

[19]. Haurum, J. B., & Moeslund, T. B. (2020). A Survey
on image-based automation of CCTV and SSET
sewer inspections. Automation in Construction, 111,
103061.

[20]. Moradi, S., Zayed, T., & Golkhoo, F. (2019).
Review on computer aided sewer pipeline defect
detection and condition
assessment. Infrastructures, 4(1), 10.

[21]. Liu, Z., & Kleiner, Y. (2013). State of the art review
of inspection technologies for condition assessment of
water pipes. Measurement, 46(1), 1-15.

[22]. Tur, J. M. M., & Garthwaite, W. (2010). Robotic
devices for water main in‐pipe inspection: A
survey. Journal of Field Robotics, 4(27), 491-508.

[23]. Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi,
M., Roccella, S., Oddo, C. M., & Dario, P. (2020).
Visual-based defect detection and classification
approaches for industrial applications—a
survey. Sensors, 20(5), 1459.

[24]. Carabin, G., Wehrle, E., & Vidoni, R. (2017). A
review on energy-saving optimization methods for
robotic and automatic systems. Robotics, 6(4), 39.

[25]. Vaidya, O. S., Patil, R., Phade, G. M., & Gandhe, S.
T. (2019). Embedded Vision Based Cost Effective
Tele-operating Smart Robot. International Journal of
Innovative Technology and Exploring Engineering
(IJITEE), 8(7), 1544-1550.

[26]. Patil, R. R., Vaidya, O. S., Phade, G. M., & Gandhe,
S. T. (2020). Qualified Scrutiny for Real-Time Object
Tracking Framework. International Journal on
Emerging Technologies, 11(3), 313-319.

[27]. Information Manual.(2018). Standard Operating
Procedure (SOP) for Cleaning of Sewers and Septic
Tanks by Central Public Health & Environmental
Engineering Organisation (CPHEEO), Ministry of
Housing and Urban Affairs, Government of India.
Retrieved from:
http://cpheeo.gov.in/upload/5c0a062b23e94SOPforcle
aningofSewersSepticTanks.pdf
[accessed: 20 June 2021].

[28]. Salem, M. S. H., Zaman, F. H. K., & Tahir, N. M.
(2021). Effectiveness of Human Detection from
Aerial Images Taken from Different Heights. TEM
Journal, 10(2), 522–530.
 https://doi.org/10.18421/TEM102-06

[29]. Vandana, C. P., & Chikkamannur, A. A. (2021).
Feature Selection: An Empirical Study. International
Journal of Engineering Trends and
Technology, 69(2), 165-170.

[30]. Wwwwtwkmrndb, W., Isuru, J., & Premaratne, S.
(2021). Modeling abandoned object detection and
recognition in real-time surveillance. International
Journal of Engineering Trends and
Technology, 69(2), 188–193.
 https://doi.org/10.14445/22315381/IJETT-
V69I2P226

137

Research Article – S-BIRD: A Novel Critical Multi-Class Imagery
Dataset for Sewer Monitoring and Maintenance Systems

Citation: Patil, R.R.; Mustafa, M.Y.;

Calay, R.K.; Ansari, S.M. S-BIRD: A

Novel Critical Multi-Class Imagery

Dataset for Sewer Monitoring and

Maintenance Systems. Sensors 2023,

23, 2966. https://doi.org/

10.3390/s23062966

Academic Editors: Zhaoyang Wang,

Minh P. Vo and Hieu Nguyen

Received: 30 January 2023

Revised: 25 February 2023

Accepted: 7 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

S-BIRD: A Novel Critical Multi-Class Imagery Dataset for
Sewer Monitoring and Maintenance Systems
Ravindra R. Patil 1,* , Mohamad Y. Mustafa 1 , Rajnish Kaur Calay 1 and Saniya M. Ansari 2

1 Faculty of Engineering Science and Technology, UiT The Arctic University of Norway, 8514 Narvik, Norway
2 Department of E & TC Engineering, Ajeenkya D Y Patil School of Engineering, Pune 411047, India
* Correspondence: ravindra.r.patil@uit.no

Abstract: Computer vision in consideration of automated and robotic systems has come up as a
steady and robust platform in sewer maintenance and cleaning tasks. The AI revolution has enhanced
the ability of computer vision and is being used to detect problems with underground sewer pipes,
such as blockages and damages. A large amount of appropriate, validated, and labeled imagery
data is always a key requirement for learning AI-based detection models to generate the desired
outcomes. In this paper, a new imagery dataset S-BIRD (Sewer-Blockages Imagery Recognition
Dataset) is presented to draw attention to the predominant sewers’ blockages issue caused by grease,
plastic and tree roots. The need for the S-BIRD dataset and various parameters such as its strength,
performance, consistency and feasibility have been considered and analyzed for real-time detection
tasks. The YOLOX object detection model has been trained to prove the consistency and viability
of the S-BIRD dataset. It also specified how the presented dataset will be used in an embedded
vision-based robotic system to detect and remove sewer blockages in real-time. The outcomes of an
individual survey conducted at a typical mid-size city in a developing country, Pune, India, give
ground for the necessity of the presented work.

Keywords: sewer monitoring; S-BIRD dataset; object detection; computer vision; YOLOX training;
AI techniques

1. Introduction

An underground sewerage system is an essential feature of town planning as it
transports the wastewater away from its source for safe disposal in the environment
with minimum impact on the surroundings. However, underground pipe systems have
maintenance problems. Sewer blockages and various damages such as cracks, fractures,
joint displacement, etc. all can cause overflow, leaching of sewage into soil and inter-
ference with drinking water supply lines. Poor maintenance also leads sewer pipes to
deteriorate early.

Therefore, it is important for any responsible authority to ensure that sewers are in
good condition and run properly. The Ministry of Housing and Urban Affairs conferred
Standard Operating Procedure (SOP) for cleaning sewers and septic tanks in November
2018 [1]. Regular inspections are necessary to identify any event of crack or blockage so
that corrective measures are taken in time to avoid a crisis. In the past, manual inspection
was often used followed by circuit television (CCTV) which has been one of the most used
methods in the US and European municipalities in recent decades. However, these methods
are labor-intensive and error-prone.

Artificial Intelligence (AI) is used in computer vision technology that consists of
intelligent algorithms to interpret meaningful digital information from images and videos,
which, when combined with automated robotic systems, provide powerful vision and
intelligence to detect various sewer problems and to plan corrective actions. However,
training AI-based Deep Neural Object Detection Models and achieving sewer inspection

Sensors 2023, 23, 2966. https://doi.org/10.3390/s23062966 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23062966
https://doi.org/10.3390/s23062966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6152-6717
https://orcid.org/0000-0002-0073-9513
https://doi.org/10.3390/s23062966
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23062966?type=check_update&version=1

Sensors 2023, 23, 2966 2 of 18

objectives based on them requires large amounts of appropriate and labeled data. A dataset
is a collection of featured and significant information in any field that is used to learn AI
models for purposes such as detection, classification, regression, clustering, segmentation,
etc. Data is usually in the form of images, text, numbers, time series, graphs, etc. The
performance of the best detection model trained using a poor dataset is always inferior
to the performance of a poor detection model trained using a highly featured and quality
dataset. At the center of every object detector, whether single-stage or two-stage, is a
classifier that secures the identities of all desired object classes. Clearly, the accuracy rate
and performance of any detection model are highly dependent on the quality of the input
imagery dataset.

Therefore, relevant dataset collection is a very important prerequisite for any AI model
to predict outcomes with the desired accuracy and also has emerged as a prominent research
theme in respective research communities. This involves data acquisition or collection,
appropriately labeling the data and finally enhancement of obtainable data or models [2].
Due to the open-access research policy of many funding agencies, a large amount of data
pertaining to many fields is available on various platforms. In many instances data may
be available from data-sharing platforms like DataHub [3], Kaggle datasets [4], Mendeley
Data [5], etc. and data searching platforms like Google Dataset Search [6], IEEE DataPort [7],
etc. After tackling several challenges in data search, a researcher can succeed in obtaining
the required dataset [8]. However, the European Commission recognized the difficulties in
obtaining and tracing open data in 2011 and started to regulate data publishing activities in
Europe [9]. Six snags in obtaining and tracing open data were identified: deficient details
about the existence and accessibility of data, ambiguity about data ownership by public
authorities, ambiguity about reuse terms, critical nature and cost of data, complex licensing
processes and restrictive fees, specific reuse agreements with commercial members and
reuse restrictions for state-owned companies.

Specifically, data acquisition includes tasks such as searching, augmenting and gen-
erating as needed, and in our case, the dataset is not only created due to unavailability
but also prepossessed, augmented and labeled individually for classification and detection
tasks. Manual or automated techniques are used for dataset generation, while synthetic
data is generated to fill the lacking portion of the dataset. A standardized or benchmark
dataset is always a central aspect to obtain the best-fit learning models and the application
of transfer learning techniques with the developed dataset plays an important role in the
advancement of AI-based models [10]. In computer vision, a dataset of digital images
containing object class information is grouped as needed into a training set, validation
set, and test set to serve as input to a detection model for learning, evaluation, and testing
purposes, respectively. A workflow with decision-making for the S-BIRD dataset presented
in this paper is shown in Figure 1, which displays the process from generation requirements
to the training results.

In this paper, a new critical multi-class imagery dataset S-BIRD (Sewer-Blockages
Imagery Recognition Dataset) is presented to identify sewer blockages caused by grease,
plastics and tree roots. The lack of a standardized matrix for algorithms applied in the
real-world development of sewer monitoring and maintenance systems is a critical issue,
and the submitted dataset addresses this. So, the S-BIRD sets the standard for detection
outcomes in real-time scenarios. Validation results of the S-BIRD dataset are given and
development on an embedded vision platform to overcome actual sewer blockages problem
is considered. In the conferred work, all computer vision and model training operations are
implemented using Python programming, OpenCV, PyTorch framework, and some other
machine learning libraries on the DGX workstation system including the Linux platform.
Both the presented dataset and the corresponding results highlight the importance and
necessity of such research work for the treatment of wastewater sewer blockages.

Sensors 2023, 23, 2966 3 of 18Sensors 2023, 23, x FOR PEER REVIEW 3 of 19

Figure 1. Workflow diagram of the presented S-BIRD dataset.

2. Needs of the S-BIRD Dataset
In earlier work, a survey on sewer robotic systems and computer vision practices in

sewer inspection works was carried out and that gave information about practical issues
concerning sewerage systems under the Pune Municipal Corporation (PMC), India [11].
It was concluded that sewer blockage is the main issue of sewers in Pune and to date,
there is no robust algorithm and robotic system available for both real-time detection and
removal of sewer pipe blockages.

Unlike many Western countries, India has single sewer lines for both sewage and
stormwater. Thus, this combined drainage system is a big problem, particularly for clean-
ing and removing blockages.

In order to develop the function of detecting and identifying sewer blockages in real
time, authenticated datasets are a prerequisite. Thus, all available means were used to
search for datasets. Several municipalities and various authorities were also contacted for
relevant data information, but no concrete work and datasets that may be used for real-
time detection of sewer blockages were available. Furthermore, it was not possible to ac-
quire a specific dataset for Indian conditions focusing on the issue of sewer blockages. The
harmful, unhygienic and foul smell of a sewer environment is always a major concern
when capturing frames of sewer problems for dataset generation. It is appropriate to im-
ply that independent binding, copyright or confidentiality issues relating to earlier works
are also responsible for the unavailability of the datasets.

Sewer blockages are mainly caused by grease, plastic and tree roots. Other elements
inside the sewer mix up with the black water and become difficult to identify. So, other

Figure 1. Workflow diagram of the presented S-BIRD dataset.

2. Needs of the S-BIRD Dataset

In earlier work, a survey on sewer robotic systems and computer vision practices in
sewer inspection works was carried out and that gave information about practical issues
concerning sewerage systems under the Pune Municipal Corporation (PMC), India [11]. It
was concluded that sewer blockage is the main issue of sewers in Pune and to date, there is
no robust algorithm and robotic system available for both real-time detection and removal
of sewer pipe blockages.

Unlike many Western countries, India has single sewer lines for both sewage and
stormwater. Thus, this combined drainage system is a big problem, particularly for cleaning
and removing blockages.

In order to develop the function of detecting and identifying sewer blockages in real
time, authenticated datasets are a prerequisite. Thus, all available means were used to
search for datasets. Several municipalities and various authorities were also contacted
for relevant data information, but no concrete work and datasets that may be used for
real-time detection of sewer blockages were available. Furthermore, it was not possible to
acquire a specific dataset for Indian conditions focusing on the issue of sewer blockages.
The harmful, unhygienic and foul smell of a sewer environment is always a major concern
when capturing frames of sewer problems for dataset generation. It is appropriate to imply

Sensors 2023, 23, 2966 4 of 18

that independent binding, copyright or confidentiality issues relating to earlier works are
also responsible for the unavailability of the datasets.

Sewer blockages are mainly caused by grease, plastic and tree roots. Other elements
inside the sewer mix up with the black water and become difficult to identify. So, other
elements are usually treated as a blackish sewer blockage, which is identified as black
grease in the dataset. We also considered imagery data of grease, plastic and tree roots
as mentioned above in the dataset S-BIRD, which is used for training of object detection
model to locate and recognize the sewer blockages in real-time.

Obviously, blind systems cannot be as efficient as vision-based sewer robotic systems.
Figure 2 shows the concept of constructing the S-BIRD dataset that takes grease, plastic and
tree roots into account.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 19

elements are usually treated as a blackish sewer blockage, which is identified as black
grease in the dataset. We also considered imagery data of grease, plastic and tree roots as
mentioned above in the dataset S-BIRD, which is used for training of object detection
model to locate and recognize the sewer blockages in real-time.

Obviously, blind systems cannot be as efficient as vision-based sewer robotic sys-
tems. Figure 2 shows the concept of constructing the S-BIRD dataset that takes grease,
plastic and tree roots into account.

Figure 2. S-BIRD dataset for main sewer blockages.

3. Tools in S-BIRD Dataset Creation
In this section, the tools involved in creating the S-BIRD dataset are provided for de-

tailed viewing.

3.1. Sewer Pipeline
In an unhygienic, muddy and smelly sewer pipe environment due to sewage, toi-

letry, sanitation, and stormwater from combined drainage systems, capturing real-time
frames of sewer issues was a very difficult task for an individual. For simulating a sewer
network, PVC pipelines of 200 mm diameter, which are widely used in residential sewers,
were used to construct a typical sewer network. The constructed sewer pipeline is shown
in Figure 3.

Figure 3. Constructed sewer pipeline.

In this case, there is no big difference between a real sewer environment and a labor-
atory setup or simulated sewer network. Exactly the same blockage types with inherent
nature have been created inside the sewer network consisting of all featured information.
The only difference was that the simulated sewer network did not have the stench and

Figure 2. S-BIRD dataset for main sewer blockages.

3. Tools in S-BIRD Dataset Creation

In this section, the tools involved in creating the S-BIRD dataset are provided for
detailed viewing.

3.1. Sewer Pipeline

In an unhygienic, muddy and smelly sewer pipe environment due to sewage, toiletry,
sanitation, and stormwater from combined drainage systems, capturing real-time frames of
sewer issues was a very difficult task for an individual. For simulating a sewer network,
PVC pipelines of 200 mm diameter, which are widely used in residential sewers, were used
to construct a typical sewer network. The constructed sewer pipeline is shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 19

elements are usually treated as a blackish sewer blockage, which is identified as black
grease in the dataset. We also considered imagery data of grease, plastic and tree roots as
mentioned above in the dataset S-BIRD, which is used for training of object detection
model to locate and recognize the sewer blockages in real-time.

Obviously, blind systems cannot be as efficient as vision-based sewer robotic sys-
tems. Figure 2 shows the concept of constructing the S-BIRD dataset that takes grease,
plastic and tree roots into account.

Figure 2. S-BIRD dataset for main sewer blockages.

3. Tools in S-BIRD Dataset Creation
In this section, the tools involved in creating the S-BIRD dataset are provided for de-

tailed viewing.

3.1. Sewer Pipeline
In an unhygienic, muddy and smelly sewer pipe environment due to sewage, toi-

letry, sanitation, and stormwater from combined drainage systems, capturing real-time
frames of sewer issues was a very difficult task for an individual. For simulating a sewer
network, PVC pipelines of 200 mm diameter, which are widely used in residential sewers,
were used to construct a typical sewer network. The constructed sewer pipeline is shown
in Figure 3.

Figure 3. Constructed sewer pipeline.

In this case, there is no big difference between a real sewer environment and a labor-
atory setup or simulated sewer network. Exactly the same blockage types with inherent
nature have been created inside the sewer network consisting of all featured information.
The only difference was that the simulated sewer network did not have the stench and

Figure 3. Constructed sewer pipeline.

Sensors 2023, 23, 2966 5 of 18

In this case, there is no big difference between a real sewer environment and a labo-
ratory setup or simulated sewer network. Exactly the same blockage types with inherent
nature have been created inside the sewer network consisting of all featured information.
The only difference was that the simulated sewer network did not have the stench and
noxious atmosphere. The detection model trained using the developed S-BIRD dataset in
the respective sewer network is capable to work in practical situations.

3.2. Sewer Inspection Camera

Real-time frames of sewer barriers that include grease, plastics, and tree roots are
captured by the watertight sewer camera shown in Figure 4, and its characteristics are
given in Table 1.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 19

noxious atmosphere. The detection model trained using the developed S-BIRD dataset in
the respective sewer network is capable to work in practical situations.

3.2. Sewer Inspection Camera
Real-time frames of sewer barriers that include grease, plastics, and tree roots are

captured by the watertight sewer camera shown in Figure 4, and its characteristics are
given in Table 1.

Figure 4. Watertight sewer camera.

This camera sensor is capable of capturing real-time frames at different angles not
only for the intended aspect ratio but also for varying brightness due to attached modifi-
able white LEDs.

Table 1. Specifications of a utilized sewer camera.

Facets Details
camera dimension 23 mm × 120 mm

camera light 12 modifiable white LEDs
watertight grade IP68

vision angle 140 degree

4. A Novel S-BIRD and Corresponding Results
This section discusses compiled imagery data (Section 4.1), its arithmetic details (Sec-

tion 4.2), preprocessing and augmentation techniques applied to captured frames (Section
4.3), and annotated heatmap and object count histograms (Section 4.4).

4.1. Imagery Data Collection
All images of sewer blockages are captured under different lighting conditions and

from different angles to gather the necessary perceptions and features. Figure 5 reveals
some blockage frames of tree roots in the newly created dataset.

Figure 4. Watertight sewer camera.

Table 1. Specifications of a utilized sewer camera.

Facets Details

camera dimension 23 mm × 120 mm

camera light 12 modifiable white LEDs

watertight grade IP68

vision angle 140 degree

This camera sensor is capable of capturing real-time frames at different angles not only
for the intended aspect ratio but also for varying brightness due to attached modifiable
white LEDs.

4. A Novel S-BIRD and Corresponding Results

This section discusses compiled imagery data (Section 4.1), its arithmetic details
(Section 4.2), preprocessing and augmentation techniques applied to captured frames
(Section 4.3), and annotated heatmap and object count histograms (Section 4.4).

4.1. Imagery Data Collection

All images of sewer blockages are captured under different lighting conditions and
from different angles to gather the necessary perceptions and features. Figure 5 reveals
some blockage frames of tree roots in the newly created dataset.

Dissimilar colored plastic is captured in the picture and key information for the
detection and recognition task is achieved as shown in Figure 6.

There could be other elements within the black sewage mass such as plastic bags or
other debris, but they look completely blackish as they are often mixed with black water
and grease.

Figure 7 exhibits grease blockage frames capturing diverse and significant colored
information. There are a number of sources for grease-type sewer blockages which mainly
include wastage from domestic and high- or low-density production plants that produce
huge chemical and processed waste.

Sensors 2023, 23, 2966 6 of 18
Sensors 2023, 23, x FOR PEER REVIEW 6 of 19

Figure 5. Tree root blockage frames in the S-BIRD dataset.

Dissimilar colored plastic is captured in the picture and key information for the de-
tection and recognition task is achieved as shown in Figure 6.

Figure 6. Plastic blockage frames in the S-BIRD dataset.

There could be other elements within the black sewage mass such as plastic bags or
other debris, but they look completely blackish as they are often mixed with black water
and grease.

Figure 7 exhibits grease blockage frames capturing diverse and significant colored
information. There are a number of sources for grease-type sewer blockages which mainly
include wastage from domestic and high- or low-density production plants that produce
huge chemical and processed waste.

Figure 5. Tree root blockage frames in the S-BIRD dataset.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 19

Figure 5. Tree root blockage frames in the S-BIRD dataset.

Dissimilar colored plastic is captured in the picture and key information for the de-
tection and recognition task is achieved as shown in Figure 6.

Figure 6. Plastic blockage frames in the S-BIRD dataset.

There could be other elements within the black sewage mass such as plastic bags or
other debris, but they look completely blackish as they are often mixed with black water
and grease.

Figure 7 exhibits grease blockage frames capturing diverse and significant colored
information. There are a number of sources for grease-type sewer blockages which mainly
include wastage from domestic and high- or low-density production plants that produce
huge chemical and processed waste.

Figure 6. Plastic blockage frames in the S-BIRD dataset.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19

Figure 7. Grease blockage frames in the S-BIRD dataset.

4.2. Arithmetic Details of Captured Frames
The arithmetic details of the captured frames are listed in Table 2 for further imple-

mentation. Certainly, annotating the objects in each captured frame was time-consuming
but the task was still performed individually with high skill and accuracy without labeling
errors. The annotations contain information about the location, i.e., center x, center y,
width, height and class of objects present in each frame of the S-BIRD dataset.

Table 2. Arithmetical details of captured frames.

Captured frames

Object Class (Sewer
Blockage Type)

Captured Frames

Tree roots 2295
Plastic 2392
Grease 2353

Total frames 7040
Annotations 10,233 (Average = 1.5 per frame)

Average frame size 0.08 Megapixels
Mean frame ratio 352 × 240 (wide)
Angle of diagonal 0.598 radian = 34.3°
Length of diagonal 426 pixels
Aspect ratio Class 1.467:1

Pixel density 9 pixels/mm or 230 pixels/inch

Figure 8 stipulates the total number of annotations for class balance, i.e., annotations
for each sewer block type and these are 4131 for grease, 3471 for tree roots and 2631 for
plastic.

Figure 7. Grease blockage frames in the S-BIRD dataset.

Sensors 2023, 23, 2966 7 of 18

4.2. Arithmetic Details of Captured Frames

The arithmetic details of the captured frames are listed in Table 2 for further imple-
mentation. Certainly, annotating the objects in each captured frame was time-consuming
but the task was still performed individually with high skill and accuracy without labeling
errors. The annotations contain information about the location, i.e., center x, center y, width,
height and class of objects present in each frame of the S-BIRD dataset.

Table 2. Arithmetical details of captured frames.

Captured frames

Object Class (Sewer Blockage Type) Captured Frames

Tree roots 2295

Plastic 2392

Grease 2353

Total frames 7040

Annotations 10,233 (Average = 1.5 per frame)

Average frame size 0.08 Megapixels

Mean frame ratio 352 × 240 (wide)

Angle of diagonal 0.598 radian = 34.3◦

Length of diagonal 426 pixels

Aspect ratio Class 1.467:1

Pixel density 9 pixels/mm or 230 pixels/inch

Figure 8 stipulates the total number of annotations for class balance, i.e., annotations
for each sewer block type and these are 4131 for grease, 3471 for tree roots and 2631
for plastic.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19

Figure 8. Annotation figures for class (sewer blockage type) balance.

The location of annotations, i.e., bounding boxes for considered blockage types in all
captured frames is shown by heatmap in Figure 9. A heatmap represents informative data
in a graphical or two-dimensional form where a color-coding system is used to represent
values, and in the above heatmap, values are annotation details. It confers a quick visible
summary to perceive the intricate nature of the dataset. Here, the correlation between an-
notated values is made easier to understand using colors in a heatmap compared to nu-
merical tables. The yellow color denotes a highly positioned region of annotations
whereas the light green color indicates lower positioning. All depicted heatmaps show
that the locations of annotations are mostly in the center of the frames of object classes.

Figure 9. Annotation heatmap details for captured frames.

The imagery data is balanced into three groups such as training data with 4928
frames (70%), validation data with 1408 frames (20%) and testing data with 704 frames
(10%) as shown in Figure 10.

Figure 8. Annotation figures for class (sewer blockage type) balance.

The location of annotations, i.e., bounding boxes for considered blockage types in all
captured frames is shown by heatmap in Figure 9. A heatmap represents informative data
in a graphical or two-dimensional form where a color-coding system is used to represent
values, and in the above heatmap, values are annotation details. It confers a quick visible
summary to perceive the intricate nature of the dataset. Here, the correlation between
annotated values is made easier to understand using colors in a heatmap compared to
numerical tables. The yellow color denotes a highly positioned region of annotations
whereas the light green color indicates lower positioning. All depicted heatmaps show that
the locations of annotations are mostly in the center of the frames of object classes.

Sensors 2023, 23, 2966 8 of 18

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19

Figure 8. Annotation figures for class (sewer blockage type) balance.

The location of annotations, i.e., bounding boxes for considered blockage types in all
captured frames is shown by heatmap in Figure 9. A heatmap represents informative data
in a graphical or two-dimensional form where a color-coding system is used to represent
values, and in the above heatmap, values are annotation details. It confers a quick visible
summary to perceive the intricate nature of the dataset. Here, the correlation between an-
notated values is made easier to understand using colors in a heatmap compared to nu-
merical tables. The yellow color denotes a highly positioned region of annotations
whereas the light green color indicates lower positioning. All depicted heatmaps show
that the locations of annotations are mostly in the center of the frames of object classes.

Figure 9. Annotation heatmap details for captured frames.

The imagery data is balanced into three groups such as training data with 4928
frames (70%), validation data with 1408 frames (20%) and testing data with 704 frames
(10%) as shown in Figure 10.

Figure 9. Annotation heatmap details for captured frames.

The imagery data is balanced into three groups such as training data with 4928 frames
(70%), validation data with 1408 frames (20%) and testing data with 704 frames (10%) as
shown in Figure 10.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19

Figure 10. Imagery data balancing of particular sewer blockage type.

Table 3 provides annotation details for the classes in the training data.

Table 3. Annotations for training data.

Object Class (Sewer Blockage Type) Annotations
Grease 2920

Tree roots 2455
Plastic 1821
Total 7196 (Average = 1.5 per frame)

4.3. Preprocessing and Augmentation Techniques
Here, two preprocessing techniques have been implemented on captured frames

such as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the
pixel sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. An image preprocessing benefits to reduce model training time and
speed up inference of detection models.

Here, two preprocessing techniques have been implemented on captured frames
such as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the
pixel sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. Image preprocessing benefits from reduced model training time and
sped-up inference of detection models.

Figure 11 shows the aspect ratio distribution graph for the S-BIRD dataset and makes
clear that all frames are 416 × 416 (px), i.e., square in size.

Figure 11. Aspect ratio distribution graph.

Figure 10. Imagery data balancing of particular sewer blockage type.

Table 3 provides annotation details for the classes in the training data.

Table 3. Annotations for training data.

Object Class (Sewer Blockage Type) Annotations

Grease 2920

Tree roots 2455

Plastic 1821

Total 7196 (Average = 1.5 per frame)

Sensors 2023, 23, 2966 9 of 18

4.3. Preprocessing and Augmentation Techniques

Here, two preprocessing techniques have been implemented on captured frames such
as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the pixel
sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. An image preprocessing benefits to reduce model training time and
speed up inference of detection models.

Here, two preprocessing techniques have been implemented on captured frames such
as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the pixel
sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. Image preprocessing benefits from reduced model training time and
sped-up inference of detection models.

Figure 11 shows the aspect ratio distribution graph for the S-BIRD dataset and makes
clear that all frames are 416 × 416 (px), i.e., square in size.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19

Figure 10. Imagery data balancing of particular sewer blockage type.

Table 3 provides annotation details for the classes in the training data.

Table 3. Annotations for training data.

Object Class (Sewer Blockage Type) Annotations
Grease 2920

Tree roots 2455
Plastic 1821
Total 7196 (Average = 1.5 per frame)

4.3. Preprocessing and Augmentation Techniques
Here, two preprocessing techniques have been implemented on captured frames

such as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the
pixel sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. An image preprocessing benefits to reduce model training time and
speed up inference of detection models.

Here, two preprocessing techniques have been implemented on captured frames
such as auto-orientation of pixel data, i.e., discarding the EXIF rotation and validating the
pixel sort as well as resizing to 416 × 416 (px) by stretching the frame without losing source
frame information. Image preprocessing benefits from reduced model training time and
sped-up inference of detection models.

Figure 11 shows the aspect ratio distribution graph for the S-BIRD dataset and makes
clear that all frames are 416 × 416 (px), i.e., square in size.

Figure 11. Aspect ratio distribution graph. Figure 11. Aspect ratio distribution graph.

Further, image-level augmentation techniques have also been implemented to generate
new training instances from existing training data.

Figure 12a shows the output frame of the gray scaling applied 25 percent to the input
training frame which helps to increase the training variation but does not remove the color
information when making inferences. Salt and pepper noise, also known as impulse noise,
is applied to 5 percent of the pixels of the input frames as shown in Figure 12b which helps
the detection model to turn out to be more flexible for camera artifacts through training.
This noise involves adding some bright pixels to dark regions and some dark pixels to
bright regions of the frames. It also helps to prevent adverse effects and avoid overfitting.

To strengthen the detection model against light and camera setting changes, random
exposure adaptations were instigated between −25 and +25 percent for the input frame as
shown in Figure 12c.

Two advanced augmentation techniques, namely cutout and mosaic, were exploited as
shown in Figures 13a and 13b, respectively. Adding cutouts to training frames is extremely
useful for the detection model to be strong against the object occlusion state. For this, three
cutouts were inserted in 10 percent of each of the total sizes of the input frames. Next, the
mosaic technique helps the detection model to work well on small objects by joining several
images from the training set in collage [12]. In this, four different sewer block frames were
added in a single frame.

Sensors 2023, 23, 2966 10 of 18

Sensors 2023, 23, x FOR PEER REVIEW 10 of 19

Further, image-level augmentation techniques have also been implemented to gen-
erate new training instances from existing training data.

Figure 12a shows the output frame of the gray scaling applied 25 percent to the input
training frame which helps to increase the training variation but does not remove the color
information when making inferences. Salt and pepper noise, also known as impulse noise,
is applied to 5 percent of the pixels of the input frames as shown in Figure 12b which helps
the detection model to turn out to be more flexible for camera artifacts through training.
This noise involves adding some bright pixels to dark regions and some dark pixels to
bright regions of the frames. It also helps to prevent adverse effects and avoid overfitting.

Figure 12. Visual upshots of standard augmentation techniques: (a) greyscaling, (b) salt and pep-
per noise, (c) random exposure.

To strengthen the detection model against light and camera setting changes, random
exposure adaptations were instigated between −25 and +25 percent for the input frame as
shown in Figure 12c.

Two advanced augmentation techniques, namely cutout and mosaic, were exploited
as shown in Figure 13a and 13b, respectively. Adding cutouts to training frames is ex-
tremely useful for the detection model to be strong against the object occlusion state. For
this, three cutouts were inserted in 10 percent of each of the total sizes of the input frames.
Next, the mosaic technique helps the detection model to work well on small objects by
joining several images from the training set in collage [12]. In this, four different sewer
block frames were added in a single frame.

Figure 12. Visual upshots of standard augmentation techniques: (a) greyscaling, (b) salt and pepper
noise, (c) random exposure.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 19

Figure 13. Visual upshots of advanced augmentation techniques: (a) cutout and (b) mosaic.

Augmentation techniques facilitate enhancing the efficiency of the object detection
model by increasing the number and variegation of learning instances and related anno-
tations. These techniques also reduce training time and costs for search detection models.
So, discrete output versions have been generated for source frames.

In Table 4, the numerical details of training frames in S-BIRD are demonstrated after
applying preprocessing and augmentation techniques.

Table 4. Arithmetical details of training frames in S- BIRD after preprocessing and augmentation.

Terms Details
Total frames 14,765
Annotations 69,061 (Average = 4.7 per frame)

Average frame size 0.173 Megapixels
Mean frame ratio 416 × 416 (square)
Aspect ratio Class 1:1
Angle of diagonal 0.785 radian = 45°
Length of diagonal 588 pixels

Pixel density 12 pixels/mm or 290 pixels/inch

The graph in Figure 14 shows the escalated annotations for each sewer block type in
S-BIRD’s training data, after using annotation techniques. Now there are 26,847 annota-
tions for grease, 21,553 for tree roots and 20,661 for plastics making a total of 69,061 aug-
mented annotations, i.e., bounding boxes. Total annotations have increased by 61,865, i.e.,

Figure 13. Visual upshots of advanced augmentation techniques: (a) cutout and (b) mosaic.

Sensors 2023, 23, 2966 11 of 18

Augmentation techniques facilitate enhancing the efficiency of the object detection
model by increasing the number and variegation of learning instances and related annota-
tions. These techniques also reduce training time and costs for search detection models. So,
discrete output versions have been generated for source frames.

In Table 4, the numerical details of training frames in S-BIRD are demonstrated after
applying preprocessing and augmentation techniques.

Table 4. Arithmetical details of training frames in S-BIRD after preprocessing and augmentation.

Terms Details

Total frames 14,765

Annotations 69,061 (Average = 4.7 per frame)

Average frame size 0.173 Megapixels

Mean frame ratio 416 × 416 (square)

Aspect ratio Class 1:1

Angle of diagonal 0.785 radian = 45◦

Length of diagonal 588 pixels

Pixel density 12 pixels/mm or 290 pixels/inch

The graph in Figure 14 shows the escalated annotations for each sewer block
type in S-BIRD’s training data, after using annotation techniques. Now there are
26,847 annotations for grease, 21,553 for tree roots and 20,661 for plastics making a total of
69,061 augmented annotations, i.e., bounding boxes. Total annotations have increased
by 61,865, i.e., 859.714%. Both preprocessing and augmentation techniques have been
implemented using OpenCV, a computer vision and machine learning library, along with
Python programming on the Linux platform from scratch to achieve the desired results.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19

859.714%. Both preprocessing and augmentation techniques have been implemented us-
ing OpenCV, a computer vision and machine learning library, along with Python pro-
gramming on the Linux platform from scratch to achieve the desired results.

Figure 14. Annotation details for every single class in training data after image level augmenta-
tion.

4.4. Annotated Heatmap and Object Count Histogram
Two important parameters, namely the annotated heatmap and the object count his-

togram have been examined to assess the efficacy of the training data. The location of the
entire annotations for grease, plastic and tree roots in S-BIRD’s training data is illustrated
by heatmaps in Figure 15. The specified heatmap informs us of the utmost generic position
and weightage of all the annotations for revealed classes. From the color information of
the heatmaps, it can be seen that most of the annotation locations are at the far left and
right of both the top and bottom sides of the frames of object classes.

Figure 15. Annotation heatmap details for all classes.

Figure 14. Annotation details for every single class in training data after image level augmentation.

4.4. Annotated Heatmap and Object Count Histogram

Two important parameters, namely the annotated heatmap and the object count
histogram have been examined to assess the efficacy of the training data. The location of the
entire annotations for grease, plastic and tree roots in S-BIRD’s training data is illustrated
by heatmaps in Figure 15. The specified heatmap informs us of the utmost generic position
and weightage of all the annotations for revealed classes. From the color information of the
heatmaps, it can be seen that most of the annotation locations are at the far left and right of
both the top and bottom sides of the frames of object classes.

Sensors 2023, 23, 2966 12 of 18

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19

859.714%. Both preprocessing and augmentation techniques have been implemented us-
ing OpenCV, a computer vision and machine learning library, along with Python pro-
gramming on the Linux platform from scratch to achieve the desired results.

Figure 14. Annotation details for every single class in training data after image level augmenta-
tion.

4.4. Annotated Heatmap and Object Count Histogram
Two important parameters, namely the annotated heatmap and the object count his-

togram have been examined to assess the efficacy of the training data. The location of the
entire annotations for grease, plastic and tree roots in S-BIRD’s training data is illustrated
by heatmaps in Figure 15. The specified heatmap informs us of the utmost generic position
and weightage of all the annotations for revealed classes. From the color information of
the heatmaps, it can be seen that most of the annotation locations are at the far left and
right of both the top and bottom sides of the frames of object classes.

Figure 15. Annotation heatmap details for all classes. Figure 15. Annotation heatmap details for all classes.

A histogram is a chart that plots numeric data into bins represented by individual
columns. Figure 16 details the number of frames on the y-axis and bins, i.e., the number of
corresponding objects for all classes on x-axis, with the help of the object count histogram.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19

A histogram is a chart that plots numeric data into bins represented by individual
columns. Figure 16 details the number of frames on the y-axis and bins, i.e., the number
of corresponding objects for all classes on x-axis, with the help of the object count histo-
gram.

The number of objects, i.e., annotations for both grease and tree roots blocks are up
to nine shreds as shown in Figure 16a,b. There is obviously one grease object for 1730
frames andfour to five grease objects for 1400 to 1600 frames as given in Figure 16a. In
total, 1926 frames contain a single tree root object and about 1500 frames contained three
to four tree root objects as shown in Figure 16b. The number of plastic objects varies up to
seven shreds as shown in Figure 16c in which four plastic objects are in 2494 frames and
perceptibly one plastic object in about 2200 frames.

Figure 16d represents the object count histogram of all classes where 11,339 frames
contain four to five objects. It also shows details for a much lower aggregate overall for a
single object in frames as compared to the ratio for 69,061 annotations. The findings ob-
tained for both parameters such as the annotated heatmap and the object count histogram
prove the high veracity and standard for each imagery data class in S-BIRD.

Figure 16. Object count histogram for: (a) grease, (b) tree roots, (c) plastic, and (d) all classes.

5. Training of Object Detection Model
5.1. Insight on Conformation of Object Detector Models

Ordinarily, object detectors have two important segments, the backbone with pre-
training to extract the features of input frames and the head which utilizes feature maps
to predict classes and bounding boxes. Some layers are placed between the backbone and
the head of recent object detectors to collect feature maps from distinct phases known as
the neck. Object detectors with a backbone and densely predicted head are known as sin-
gle-stage detectors, such as YOLO and SSD, while two-stage detectors have a backbone
and head with dense and sparse predictions such as R-FCN, Faster R-CNN as shown in
Figure 17. However, since single-stage detectors are faster than two stage detectors, they
are used for multifarious real-time embedded applications. These object detectors embed-
ded in robotic artifices are utilized to detect various faults in the sewerage system [13,14].

Figure 16. Object count histogram for: (a) grease, (b) tree roots, (c) plastic, and (d) all classes.

Sensors 2023, 23, 2966 13 of 18

The number of objects, i.e., annotations for both grease and tree roots blocks are
up to nine shreds as shown in Figure 16a,b. There is obviously one grease object for
1730 frames andfour to five grease objects for 1400 to 1600 frames as given in Figure 16a. In
total, 1926 frames contain a single tree root object and about 1500 frames contained three to
four tree root objects as shown in Figure 16b. The number of plastic objects varies up to
seven shreds as shown in Figure 16c in which four plastic objects are in 2494 frames and
perceptibly one plastic object in about 2200 frames.

Figure 16d represents the object count histogram of all classes where 11,339 frames
contain four to five objects. It also shows details for a much lower aggregate overall for
a single object in frames as compared to the ratio for 69,061 annotations. The findings
obtained for both parameters such as the annotated heatmap and the object count histogram
prove the high veracity and standard for each imagery data class in S-BIRD.

5. Training of Object Detection Model
5.1. Insight on Conformation of Object Detector Models

Ordinarily, object detectors have two important segments, the backbone with pretrain-
ing to extract the features of input frames and the head which utilizes feature maps to
predict classes and bounding boxes. Some layers are placed between the backbone and
the head of recent object detectors to collect feature maps from distinct phases known
as the neck. Object detectors with a backbone and densely predicted head are known as
single-stage detectors, such as YOLO and SSD, while two-stage detectors have a backbone
and head with dense and sparse predictions such as R-FCN, Faster R-CNN as shown in
Figure 17. However, since single-stage detectors are faster than two stage detectors, they are
used for multifarious real-time embedded applications. These object detectors embedded
in robotic artifices are utilized to detect various faults in the sewerage system [13,14].

Sensors 2023, 23, x FOR PEER REVIEW 14 of 19

Figure 17. Conformation of object detector models.

Table 5 lists some instances of the conformation parts in the object detector models.

Table 5. Instances of conformation parts in the object detector models.

Conformation Parts Details
Input frames, multi-scaled frames, frame patches

Backbones

CSPDarknet-53 [15], Darknet53 [16], ResNet-50, Res-
Net-152, ResNet-10, GoogLeNet, Inception-ResNet-V2,

EfficientNet-B0/B7, DetNet-59, ThunderNet, CBNet,
VGG16, ViT, etc.

Neck Bi-FPN, FPN, SFAM, PAN, etc.

Heads
Dense YOLO [17], SqueezeDet, DetectNet, SSD, RetinaNet,

MatrixNet, CenterNet, etc.

Sparse Mask R-CNN, R-FCN, Faster R-CNN [18], Cascade R-
CNN, etc.

The popular one-stage YOLO detection model is constantly being improved for
better performance. An advanced version of the YOLO detection model is the recently
introduced YOLOX which comprises three different basic embarkations, such as (a)
anchor-free design which uses a center-based approach with each pixel detection
mechanism for the selection of just one positive instance which then estimate four
distances such as left, top, right, and bottom from positives to the border, i.e., prediction
consists of a single 4D vector to encode the location of the bounding box at every
foreground pixel, (b) decoupled head for classification and regression, and (c) advanced
label allocation tactics namely SimOTA which lessen the training time and evade other
clarifier hyperparameters in the SinkhornKnopp algorithm, making it faster and more
efficient than its equivalents [19]. The performance of YOLOX has been improved with
addition of mosaic and mixup augmentation. YOLOv3 and Spatial Pyramid Pooling (SPP)
layers with Darknet53 are employed as baseline by YOLOX. This detection model of
different sizes has attained consistent improvements against all compatible counterparts
when tested on modified CSPNet backbone in addition to the Darknet53 backbone.

5.2. Training of YOLOX Using S-BIRD
So, the small YOLOX detection model in PyTorch framework allowing mobile

deployment has been trained to detect the main types of sewer blockages such as grease,
plastic and tree roots using the newly developed S-BIRD. Annotations for sewer block
types in S-BIRD were implemented in Pascal VOC format as per the requirement to

Figure 17. Conformation of object detector models.

Table 5 lists some instances of the conformation parts in the object detector models.

Table 5. Instances of conformation parts in the object detector models.

Conformation Parts Details

Input frames, multi-scaled frames, frame patches

Backbones
CSPDarknet-53 [15], Darknet53 [16], ResNet-50, ResNet-152,

ResNet-10, GoogLeNet, Inception-ResNet-V2, EfficientNet-B0/B7,
DetNet-59, ThunderNet, CBNet, VGG16, ViT, etc.

Neck Bi-FPN, FPN, SFAM, PAN, etc.

Heads
Dense YOLO [17], SqueezeDet, DetectNet, SSD, RetinaNet, MatrixNet,

CenterNet, etc.

Sparse Mask R-CNN, R-FCN, Faster R-CNN [18], Cascade R-CNN, etc.

Sensors 2023, 23, 2966 14 of 18

The popular one-stage YOLO detection model is constantly being improved for better
performance. An advanced version of the YOLO detection model is the recently introduced
YOLOX which comprises three different basic embarkations, such as (a) anchor-free design
which uses a center-based approach with each pixel detection mechanism for the selection
of just one positive instance which then estimate four distances such as left, top, right, and
bottom from positives to the border, i.e., prediction consists of a single 4D vector to encode
the location of the bounding box at every foreground pixel, (b) decoupled head for classi-
fication and regression, and (c) advanced label allocation tactics namely SimOTA which
lessen the training time and evade other clarifier hyperparameters in the SinkhornKnopp
algorithm, making it faster and more efficient than its equivalents [19]. The performance of
YOLOX has been improved with addition of mosaic and mixup augmentation. YOLOv3
and Spatial Pyramid Pooling (SPP) layers with Darknet53 are employed as baseline by
YOLOX. This detection model of different sizes has attained consistent improvements
against all compatible counterparts when tested on modified CSPNet backbone in addition
to the Darknet53 backbone.

5.2. Training of YOLOX Using S-BIRD

So, the small YOLOX detection model in PyTorch framework allowing mobile deploy-
ment has been trained to detect the main types of sewer blockages such as grease, plastic
and tree roots using the newly developed S-BIRD. Annotations for sewer block types in
S-BIRD were implemented in Pascal VOC format as per the requirement to advance the
training process. The Tesla V100-DGXS-32GB GPU workstation was used as a training
platform via Docker Container with a defined image.

Table 6 makes available particulars on crucial traits in the YOLOX-s training process.

Table 6. Crucial traits in training.

Traits Values

learning model YOLOX-s

Annotation data type VOC

max_epoch 300

batch_size 16

fp16 True

num_classes 3

Params 8.94 M

Gflops 26.64

depth 0.33

width 0.5

input_size (640, 640)

random_size (14, 26)

nmsthre 0.65

degrees 10.0

translate 0.1

scale (0.1, 2)

mscale (0.8, 1.6)

shear 2.0

warmup_epochs 5

weight_decay 0.0005

momentum 0.9

Sensors 2023, 23, 2966 15 of 18

The results obtained for the timing and precision of the YOLOX-s trained model for
S-BIRD are given in Tables 7 and 8, respectively.

Table 7. Time results of the trained model.

Timing Parameters Outturns (Milliseconds)

Average forward time 3.19 ms

Average NMS time 0.88 ms

Average inference time 4.07 ms

Table 8. Precision results of the trained model.

Class (Sewer Block Type) Average Precision Map_5095 Map_50

grease 0.9004

0.7885 0.9005tree roots 0.8930

plastic 0.9081

From Table 7 and Figure 18, YOLOX-s has achieved 90.04% AP for grease blocks,
90.81% AP for plastic blocks, 89.30% AP for tree root blocks, and 90.05% mean-AP computed
at IoU (Intersection over Union) threshold 0.5. Another m-AP calculated over different
IoU thresholds, from 0.5 to 0.95 with a step of 0.05 is 78.85%. The best-fit model is selected
using cross-validation or rotation estimation technique [20]. The visual upshots of precisely
detected sewer blocks such as tree roots, plastic and grease, are delineated in Figure 19. Of
course, multiple sewer blockages in the same frame have also been considered for real-time
detection purposes. Overall, the obtained results of the YOLOX-trained model prove the
consistency and viability of the new S-BIRD dataset presented.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 19

considered for real-time detection purposes. Overall, the obtained results of the YOLOX-
trained model prove the consistency and viability of the new S-BIRD dataset presented.

Figure 18. YOLOX detection results for all classes in S-BIRD.

Figure 19. Visual upshots of detected tree roots, plastic and grease types of sewer blocks.

5.3. Embedded Vision with S-BIRD
The embedded vision is a pioneering and comprehensive platform for real-world

visual implementations in the areas of home life equipment, health, daily services,
security through detection and tracking, etc. [21,22]. So, the object detection model trained
using S-BIRD will be a significant addition to existing or newly developed embedded
vision-based sewer robotic systems.

PIRAT [23], KARO [24], KURT [25], MAKRO [26], KANTARO [27], SIAR [28], etc.
are some of the popular developments in the field of sewer robotics that serve the purpose
of sewer inspection. Figure 20 shows the block diagram of an automated system that has
a power-driven cutting tool to remove sewer blocks located by a detector trained using S-
BIRD.

Figure 18. YOLOX detection results for all classes in S-BIRD.

5.3. Embedded Vision with S-BIRD

The embedded vision is a pioneering and comprehensive platform for real-world
visual implementations in the areas of home life equipment, health, daily services, security
through detection and tracking, etc. [21,22]. So, the object detection model trained using S-
BIRD will be a significant addition to existing or newly developed embedded vision-based
sewer robotic systems.

Sensors 2023, 23, 2966 16 of 18

Sensors 2023, 23, x FOR PEER REVIEW 16 of 19

considered for real-time detection purposes. Overall, the obtained results of the YOLOX-
trained model prove the consistency and viability of the new S-BIRD dataset presented.

Figure 18. YOLOX detection results for all classes in S-BIRD.

Figure 19. Visual upshots of detected tree roots, plastic and grease types of sewer blocks.

5.3. Embedded Vision with S-BIRD
The embedded vision is a pioneering and comprehensive platform for real-world

visual implementations in the areas of home life equipment, health, daily services,
security through detection and tracking, etc. [21,22]. So, the object detection model trained
using S-BIRD will be a significant addition to existing or newly developed embedded
vision-based sewer robotic systems.

PIRAT [23], KARO [24], KURT [25], MAKRO [26], KANTARO [27], SIAR [28], etc.
are some of the popular developments in the field of sewer robotics that serve the purpose
of sewer inspection. Figure 20 shows the block diagram of an automated system that has
a power-driven cutting tool to remove sewer blocks located by a detector trained using S-
BIRD.

Figure 19. Visual upshots of detected tree roots, plastic and grease types of sewer blocks.

PIRAT [23], KARO [24], KURT [25], MAKRO [26], KANTARO [27], SIAR [28], etc. are
some of the popular developments in the field of sewer robotics that serve the purpose
of sewer inspection. Figure 20 shows the block diagram of an automated system that
has a power-driven cutting tool to remove sewer blocks located by a detector trained
using S-BIRD.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 19

Figure 20. Block diagram of an automated system.

Here, Jetson nano has been selected as the embedded platform having a 4 GB GPU
card of 128-Cuda cores and is suitable for running deep neural-network-based object
detector models and for processing contiguous frames in real-time. Cameras such as a
webcam, arducam, or raspicam are used to capture the surrounding frames for the
purpose of navigation and processing, and then the output frames of detected sewer
blockages are displayed on the screen to a remote location as shown in Figure 21.

Figure 21. Embedded vision platform for sewer robotic system.

In order to solve the recurring problem of underground sewer barriers in the
practical world, a smart and comprehensive vision-based automation system with an AI
detector trained using S-BIRD is certainly capable of meeting the needs of responsible
authorities of any country.

6. Conclusions
In conclusion, a new critical multi-class imagery dataset S-BIRD which includes

frames of main sewer blocks such as grease, plastic and tree roots is introduced to fulfill
the need for implementing computer vision to automated robotic systems for identifying
blockages in the sewerage pipes.

Arithmetic details for both compiled, as well as preprocessed and augmented data
are discussed. The obtained results for preprocessing and augmentation demonstrate the
increased number and variegation of learning instances and related annotations for the
efficient performance of the object detection model. The procured details of heatmaps and
object count histograms prove the high strength, veracity and standard for each imagery
data class in S-BIRD.

Figure 20. Block diagram of an automated system.

Here, Jetson nano has been selected as the embedded platform having a 4 GB GPU
card of 128-Cuda cores and is suitable for running deep neural-network-based object
detector models and for processing contiguous frames in real-time. Cameras such as a
webcam, arducam, or raspicam are used to capture the surrounding frames for the purpose
of navigation and processing, and then the output frames of detected sewer blockages are
displayed on the screen to a remote location as shown in Figure 21.

In order to solve the recurring problem of underground sewer barriers in the practical
world, a smart and comprehensive vision-based automation system with an AI detector
trained using S-BIRD is certainly capable of meeting the needs of responsible authorities of
any country.

Sensors 2023, 23, 2966 17 of 18

Sensors 2023, 23, x FOR PEER REVIEW 17 of 19

Figure 20. Block diagram of an automated system.

Here, Jetson nano has been selected as the embedded platform having a 4 GB GPU
card of 128-Cuda cores and is suitable for running deep neural-network-based object
detector models and for processing contiguous frames in real-time. Cameras such as a
webcam, arducam, or raspicam are used to capture the surrounding frames for the
purpose of navigation and processing, and then the output frames of detected sewer
blockages are displayed on the screen to a remote location as shown in Figure 21.

Figure 21. Embedded vision platform for sewer robotic system.

In order to solve the recurring problem of underground sewer barriers in the
practical world, a smart and comprehensive vision-based automation system with an AI
detector trained using S-BIRD is certainly capable of meeting the needs of responsible
authorities of any country.

6. Conclusions
In conclusion, a new critical multi-class imagery dataset S-BIRD which includes

frames of main sewer blocks such as grease, plastic and tree roots is introduced to fulfill
the need for implementing computer vision to automated robotic systems for identifying
blockages in the sewerage pipes.

Arithmetic details for both compiled, as well as preprocessed and augmented data
are discussed. The obtained results for preprocessing and augmentation demonstrate the
increased number and variegation of learning instances and related annotations for the
efficient performance of the object detection model. The procured details of heatmaps and
object count histograms prove the high strength, veracity and standard for each imagery
data class in S-BIRD.

Figure 21. Embedded vision platform for sewer robotic system.

6. Conclusions

In conclusion, a new critical multi-class imagery dataset S-BIRD which includes frames
of main sewer blocks such as grease, plastic and tree roots is introduced to fulfill the need
for implementing computer vision to automated robotic systems for identifying blockages
in the sewerage pipes.

Arithmetic details for both compiled, as well as preprocessed and augmented data
are discussed. The obtained results for preprocessing and augmentation demonstrate the
increased number and variegation of learning instances and related annotations for the
efficient performance of the object detection model. The procured details of heatmaps and
object count histograms prove the high strength, veracity and standard for each imagery
data class in S-BIRD.

The trained small YOLOX model achieved 90.04% AP for grease blocks, 90.81% AP for
plastic blocks, 89.30% AP for tree root blocks, 90.05% Mean-AP at 0.5 IoU threshold, and
78.85% Mean-AP at 0.5 to 0.95 IoU thresholds for 300 epochs using S-BIRD. The relevant
outcomes prove the consistency and viability of the new S-BIRD dataset presented. The
object detectors trained using the presented S-BIRD will be a valuable addition to the
existing or newly developed embedded vision-based sewer monitoring and maintenance
systems for detecting sewer blockages in real-time scenarios.

Author Contributions: Conceptualization, R.R.P. and M.Y.M.; methodology, R.R.P.; software, R.R.P.;
Dataset Creation, R.R.P.; validation, R.R.P. and M.Y.M.; formal analysis, R.R.P. and M.Y.M.; investiga-
tion, R.R.P., M.Y.M., R.K.C. and S.M.A.; writing—original draft preparation, R.R.P.; writing—review
and editing, M.Y.M., R.K.C. and R.R.P.; visualization, M.Y.M. and R.R.P.; project administration,
R.K.C., M.Y.M. and S.M.A.; funding acquisition, R.K.C. and M.Y.M. All authors have read and agreed
to the published version of the manuscript.

Funding: The publication charges for this article have been funded by a grant from the publication
fund of UiT the Arctic University of Norway.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The research data will be made available on the request.

Acknowledgments: Authors acknowledge the support from SPRING Eu-India Project and UiT the
Arctic University of Norway, Narvik, Norway for PhD studies of Ravindra R. Patil (No. 821423 and
GOI No. BT/IN/EU-WR/60/SP/2018). Thanks are due to the Department of Computer Engineering
and IT, COEP Technological University (COEP Tech) for providing the high computing GPU server
facility procured under TEQIP-III (A world bank project) for our research work.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 2966 18 of 18

References
1. Information Manual—Standard Operating Procedure (SOP) for Cleaning of Sewers and Septic Tanks by Central Public Health &

Environmental Engineering Organization (CPHEEO), Ministry of Housing and Urban Affairs, Government of India. Available
online: http://cpheeo.gov.in/upload/5c0a062b23e94SOPforcleaningofSewersSepticTanks.pdf (accessed on 28 January 2023).

2. Roh, Y.; Heo, G.; Whang, S.E. A survey on data collection for machine learning: A big data-ai integration perspective. IEEE Trans.
Knowl. Data Eng. 2019, 33, 1328–1347. [CrossRef]

3. Bhardwaj, A.; Karger, D.; Subramanyam, H.; Deshpande, A.; Madden, S.; Wu, E.; Elmore, A.; Parameswaran, A.; Zhang, R.
Collaborative data analytics with DataHub. Proc. VLDB Endow. 2015, 8, 1916. [CrossRef] [PubMed]

4. Kaggle. Available online: https://www.kaggle.com/ (accessed on 22 January 2023).
5. Mendeley Data. Available online: https://data.mendeley.com/ (accessed on 18 January 2023).
6. Google Dataset Search. Available online: https://datasetsearch.research.google.com/ (accessed on 12 January 2023).
7. IEEE DataPort. Available online: https://ieee-dataport.org/dataset (accessed on 9 January 2023).
8. Chapman, A.; Simperl, E.; Koesten, L.; Konstantinidis, G.; Ibáñez, L.D.; Kacprzak, E.; Groth, P. Dataset search: A survey. VLDB J.

2020, 29, 251–272. [CrossRef]
9. European Commission. Digital Agenda: Commission’s Open Data Strategy, Questions and Answers. Memo/11/891. 12

December 2011. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_11_891 (accessed on 4
January 2023).

10. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [CrossRef]
11. Patil, R.R.; Ansari, S.M.; Calay, R.K.; Mustafa, M.Y. Review of the State-of-the-art Sewer Monitoring and Maintenance Systems

Pune Municipal Corporation-A Case Study. TEM J. 2021, 10, 1500–1508. [CrossRef]
12. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
13. Cheng, J.C.; Wang, M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning

techniques. Autom. Constr. 2018, 95, 155–171. [CrossRef]
14. Kumar, S.S.; Wang, M.; Abraham, D.M.; Jahanshahi, M.R.; Iseley, T.; Cheng, J.C. Deep learning–Based automated detection of

sewer defects in CCTV videos. J. Comput. Civ. Eng. 2020, 34, 04019047. [CrossRef]
15. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability

of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle,
WA, USA, 14–19 June 2020; pp. 1571–1580.

16. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
17. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the 28th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’15), Montreal, QC, Canada,
7–12 December 2015; MIT Press: Cambridge, MA, USA, 2015; pp. 91–99.

19. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
20. Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K.,

Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 542–545. [CrossRef]
21. Vaidya, O.S.; Patil, R.; Phade, G.M.; Gandhe, S.T. Embedded Vision Based Cost Effective Tele-operating Smart Robot. Int. J. Innov.

Technol. Explor. Eng. (IJITEE) 2019, 8, 1544–1550.
22. Patil, R.R.; Vaidya, O.S.; Phade, G.M.; Gandhe, S.T. Qualified Scrutiny for Real-Time Object Tracking Framework. Int. J. Emerg.

Technol. 2020, 11, 313–319.
23. Kirkham, R.; Kearney, P.D.; Rogers, K.J.; Mashford, J. PIRAT—A system for quantitative sewer pipe assessment. Int. J. Robot. Res.

2000, 19, 1033–1053. [CrossRef]
24. Kuntze, H.B.; Schmidt, D.; Haffner, H.; Loh, M. KARO-A flexible robot for smart sensor-based sewer inspection. In Proceedings

of the International Conference No Dig, Dresden, Germany, 22 September 1995; Volume 95, pp. 367–374.
25. Kirchner, F.; Hertzberg, J. A prototype study of an autonomous robot platform for sewerage system maintenance. Auton. Robot.

1997, 4, 319–331. [CrossRef]
26. Rome, E.; Hertzberg, J.; Kirchner, F.; Licht, U.; Christaller, T. Towards autonomous sewer robots: The MAKRO project. Urban

Water 1999, 1, 57–70. [CrossRef]
27. Nassiraei, A.A.; Kawamura, Y.; Ahrary, A.; Mikuriya, Y.; Ishii, K. Concept and design of a fully autonomous sewer pipe inspection

mobile robot “kantaro”. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy,
10–14 April 2007; pp. 136–143.

28. Alejo, D.; Mier, G.; Marques, C.; Caballero, F.; Merino, L.; Alvito, P. SIAR: A ground robot solution for semi-autonomous inspection
of visitable sewers. In Advances in Robotics Research: From Lab to Market; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany,
2020; pp. 275–296.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://cpheeo.gov.in/upload/5c0a062b23e94SOPforcleaningofSewersSepticTanks.pdf
http://doi.org/10.1109/TKDE.2019.2946162
http://doi.org/10.14778/2824032.2824100
http://www.ncbi.nlm.nih.gov/pubmed/26844007
https://www.kaggle.com/
https://data.mendeley.com/
https://datasetsearch.research.google.com/
https://ieee-dataport.org/dataset
http://doi.org/10.1007/s00778-019-00564-x
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_11_891
http://doi.org/10.1186/s40537-016-0043-6
http://doi.org/10.18421/TEM104-02
http://doi.org/10.1016/j.autcon.2018.08.006
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000866
http://doi.org/10.1016/B978-0-12-809633-8.20349-X
http://doi.org/10.1177/02783640022067959
http://doi.org/10.1023/A:1008896121662
http://doi.org/10.1016/S1462-0758(99)00012-6

155

Research Article – AI-Driven High-Precision Model for Blockage
Detection in Urban Wastewater Systems

Citation: Patil, R.R.; Calay, R.K.;

Mustafa, M.Y.; Ansari, S.M.

AI-Driven High-Precision Model for

Blockage Detection in Urban

Wastewater Systems. Electronics 2023,

12, 3606. https://doi.org/10.3390/

electronics12173606

Academic Editors: Dong Zhang and

Dah-Jye Lee

Received: 10 August 2023

Revised: 22 August 2023

Accepted: 24 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

AI-Driven High-Precision Model for Blockage Detection in
Urban Wastewater Systems
Ravindra R. Patil 1,* , Rajnish Kaur Calay 1, Mohamad Y. Mustafa 1 and Saniya M. Ansari 2

1 Faculty of Engineering Science and Technology, UiT the Arctic University of Norway, 8514 Narvik, Norway;
rajnish.k.calay@uit.no (R.K.C.); mohamad.y.mustafa@uit.no (M.Y.M.)

2 Department of E & TC Engineering, Ajeenkya D Y Patil School of Engineering, Pune 411047, India
* Correspondence: ravindra.r.patil@uit.no

Abstract: In artificial intelligence (AI), computer vision consists of intelligent models to interpret and
recognize the visual world, similar to human vision. This technology relies on a synergy of extensive
data and human expertise, meticulously structured to yield accurate results. Tackling the intricate
task of locating and resolving blockages within sewer systems is a significant challenge due to their
diverse nature and lack of robust technique. This research utilizes the previously introduced “S-BIRD”
dataset, a collection of frames depicting sewer blockages, as the foundational training data for a deep
neural network model. To enhance the model’s performance and attain optimal results, transfer
learning and fine-tuning techniques are strategically implemented on the YOLOv5 architecture, using
the corresponding dataset. The outcomes of the trained model exhibit a remarkable accuracy rate
in sewer blockage detection, thereby boosting the reliability and efficacy of the associated robotic
framework for proficient removal of various blockages. Particularly noteworthy is the achieved mean
average precision (mAP) score of 96.30% at a confidence threshold of 0.5, maintaining a consistently
high-performance level of 79.20% across Intersection over Union (IoU) thresholds ranging from 0.5 to
0.95. It is expected that this work contributes to advancing the applications of AI-driven solutions for
modern urban sanitation systems.

Keywords: AI; object detection; S-BIRD dataset; computer vision; transfer learning; YOLOv5;
wastewater management

1. Introduction

Computer vision is a field of artificial intelligence (AI) with its own conventional
algorithms that extract required information from various visual forms such as photos and
videos, and based on that information form, perform actions, or make recommendations in
order to detect and identify distinct objects. Thus, the large datasets should increase the
performance properties of computer vision.

Object detection techniques of computer vision detect the occurrence of objects in an
image or video with bounding boxes and identify their classes. Initially, machine learning
was mainly used for object detection tasks but when deep neural networks, i.e., deep
learning methods emerged, they became popular due to automatic representative feature
extraction from large datasets for training purposes [1]. Occlusion, clutter, and low resolu-
tion are some of the sub-problems that are handled very efficiently by deep learning-based
detection frameworks [2,3]. It has two method types such as single-stage, which works for
inference speed and real-time use, and two-stage, which works for model performance, i.e.,
detection accuracy. The single-stage detectors remove the process of region of interest (ROI)
extraction and moves for classification and regression whereas two-stage detectors extract
ROI and then apply classification and regression. The YOLO detection model (YOLOv2 [4],
YOLOv3 [5], YOLOv4 [6], and YOLOv5 [7]), SSD [8], CenterNet [9], CornerNet [10], etc., are
some single stage detectors. Region proposal models (R-CNN [11], Fast-RCNN [12], Faster

Electronics 2023, 12, 3606. https://doi.org/10.3390/electronics12173606 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173606
https://doi.org/10.3390/electronics12173606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6152-6717
https://orcid.org/0000-0002-0073-9513
https://doi.org/10.3390/electronics12173606
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173606?type=check_update&version=1

Electronics 2023, 12, 3606 2 of 13

RCNN [13], Cascade R-CNN [14], and R-FCN [15]) are two-stage detectors. Classification
and localization accuracy and inference speed are two important metrics for object detec-
tors. In the advancement of detection models, transfer learning techniques with quality
datasets meet the requirements with a minimum training time [16,17]. Transfer learning
harnesses prior knowledge to enhance performance on novel tasks. By fine-tuning, pre-
trained deep neural models are adapted to new contexts with certain layers preserved and
others refined. This leads to many advantages such as achieving quick convergence, good
performance, and adaptability in real-world scenarios. As the applications of AI evolve,
such as video surveillance, military applications, security aspects, health monitoring, and
critical detection tasks, the AI techniques are being enhanced to suit these needs.

Addressing the application-based needs to produce sensible and accurate results, de-
tection models need to be adapted and modified, which usually have heavy computational
demands. However, there are methods such as the embedded vision approach with AI
that has an ability to enable real-time, efficient, and intelligent visual processing directly on
edge devices, which reduces dependency on cloud computing and enhances privacy and
responsiveness in many applications [18,19].

Detecting various sewer blockages is a major challenge due to their complex and
heterogeneous nature. Moreover, their locations in the sewer network may vary, including
main lines, lateral connections, and junctions. Blockages can exhibit varying levels of
severity, from partial restrictions that gradually reduce flow to complete blockages that
cause sewer overflows. The dynamic and unpredictable nature of urban wastewater
systems, influenced by factors such as climate, wastewater composition, and hydraulic
conditions adds another layer of complexity. In this research work, transfer learning
and fine-tuning techniques are utilized to achieve a high precision rate in the detection
of blockages within urban wastewater systems. This approach is intended for real-time
implementation on mobile devices and other environments with limited resources, with the
goal of effectively removing such blockages. Our primary emphasis is on the training of the
single-stage YOLOv5 model using the S-BIRD dataset [20,21], which contains representative
and critical multi-class images depicting prevalent sewer blockage scenarios.

The study implements all computer vision and model training procedures using
Python programming, OpenCV, PyTorch framework, and other machine learning libraries.
These operations are carried out on a DGX GPU workstation system running on the
Linux platform, ensuring a robust and efficient experimental environment. The results are
analyzed and discussed to demonstrate the effectiveness of the methodology used.

2. Structural Insights of YOLOv5 Model

YOLOv5 is an anchor-based single-stage detection model, which is built on the PyTorch
framework. It focuses on simplicity, model scaling, and transfer learning, making it versatile
for a wide range of object detection tasks. The model’s backbone is CSP Darknet-53, which
incorporates Cross Stage Partial (CSP) connections to enhance information flow and feature
representation.

To create feature pyramids for effective object scaling and generalization, YOLOv5
employs the Path Aggregation Network (PAN) as its neck. The head design utilizes anchor
boxes to generate output vectors that contain class probabilities, objectness scores, and
bounding box coordinates (center_x, center_y, height, and width). The model parameters
are updated during training using the following loss function:

Loss = λ1 ∗ L_cls + λ2 ∗ L_obj + λ3 ∗ L_loc (1)

where L_cls represents the Binary Cross Entropy loss for predicted classes, L_obj represents
the Binary Cross Entropy loss for objectness scores, and L_loc represents the Complete
Intersection over Union loss for bounding box locations. Here, λ1, λ2, and λ3 are hyperpa-
rameters controlling the contribution of each component to the overall loss. The employed
auto anchor automatically determines and generates anchor boxes based on the distribution
of bounding boxes in the custom dataset using K-means clustering and a genetic learning

Electronics 2023, 12, 3606 3 of 13

algorithm. In this, SiLU (Sigmoid Linear Unit) activation function in hidden layers acquire
intricate details and Sigmoid activation function in the output layer functions for binary
classification.

As shown in Figure 1, the backbone employs Convolutional and C3 layers to extract
image features, which are then combined at various levels using Conv, Upsample, Concat,
and C3 layers in the head. The object detection process is facilitated by a Detect layer
that uses anchor boxes and the indicated class count. Particularly, each C3 (CSP-3) block
consists of two parallel convolutional layers, the first layer channels input features through a
bottleneck layer, compressing the information and the second layer directly outputs feature.
These streams are then concatenated and processed through pooling and convolutional
layers. The C3 blocks also use skip connections and attention mechanisms to enhance
information flow and reduce noisy features.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 13

employed auto anchor automatically determines and generates anchor boxes based on the
distribution of bounding boxes in the custom dataset using K-means clustering and a ge-
netic learning algorithm. In this, SiLU (Sigmoid Linear Unit) activation function in hidden
layers acquire intricate details and Sigmoid activation function in the output layer func-
tions for binary classification.

As shown in Figure 1, the backbone employs Convolutional and C3 layers to extract
image features, which are then combined at various levels using Conv, Upsample, Concat,
and C3 layers in the head. The object detection process is facilitated by a Detect layer that
uses anchor boxes and the indicated class count. Particularly, each C3 (CSP-3) block con-
sists of two parallel convolutional layers, the first layer channels input features through a
bottleneck layer, compressing the information and the second layer directly outputs fea-
ture. These streams are then concatenated and processed through pooling and convolu-
tional layers. The C3 blocks also use skip connections and attention mechanisms to en-
hance information flow and reduce noisy features.

Figure 1. Architectural perception of YOLOv5 model.

3. Details of Training Instances in Critical Multi-Class S-BIRD
The dataset comprises a total of 14,765 training frames of classes (grease, plastics, and

tree roots), which are meticulously annotated with 69,061 objects as shown in Figure 2,
resulting in an average of 4.7 annotations per frame. Specifically, the dataset comprises
26,847 annotations for grease, 21,553 annotations for tree roots, and 20,661 annotations for
plastics. To ensure uniformity and standardization, the frames were preprocessed and
augmented, resulting in an average frame size of 0.173 Megapixels. The frames were
resized to a square aspect ratio of 416 × 416 pixels, thereby maintaining a 1:1 aspect ratio
class. The angle of the diagonal was calculated to be 0.785 radians (equivalent to 45 de-
grees), with the diagonal length measuring 588 pixels.

Figure 1. Architectural perception of YOLOv5 model.

3. Details of Training Instances in Critical Multi-Class S-BIRD

The dataset comprises a total of 14,765 training frames of classes (grease, plastics, and
tree roots), which are meticulously annotated with 69,061 objects as shown in Figure 2,
resulting in an average of 4.7 annotations per frame. Specifically, the dataset comprises
26,847 annotations for grease, 21,553 annotations for tree roots, and 20,661 annotations
for plastics. To ensure uniformity and standardization, the frames were preprocessed and
augmented, resulting in an average frame size of 0.173 Megapixels. The frames were resized
to a square aspect ratio of 416 × 416 pixels, thereby maintaining a 1:1 aspect ratio class. The
angle of the diagonal was calculated to be 0.785 radians (equivalent to 45 degrees), with the
diagonal length measuring 588 pixels.

Electronics 2023, 12, 3606 4 of 13Electronics 2023, 12, x FOR PEER REVIEW 4 of 13

Figure 2. Labelling details of training instances from dataset.

Regarding pixel density, the dataset exhibits a density of 12 pixels per millimeter or
290 pixels per inch. These specific computational details are vital for understanding the
characteristics and intricacies of the S-BIRD dataset, which plays a crucial role in effec-
tively training the deep neural network. Figure 3 illustrates the distribution of object clas-
ses in each training frame based on the center x for the S-BIRD dataset. Figure 3 shows the
relative distribution of center x coordinates across different classes during training. Each
segment is color-coded and displays data values and percentiles, providing a clear under-
standing of object positions along the x-axis. This section provides valuable insights into
the dataset’s dimensions, resolutions, and geometric properties, which contribute to the
successful implementation of transfer learning and fine-tuning techniques for the deep
neural detection model.

Figure 3. Object classes in each training frame by center x.

4. Training Method and Evaluation
The training process for the YOLOv5-s model (Based on PyTorch 1.10.0a0 with

CUDA support) on the S-BIRD dataset involved a series of steps aimed at achieving the

Figure 2. Labelling details of training instances from dataset.

Regarding pixel density, the dataset exhibits a density of 12 pixels per millimeter
or 290 pixels per inch. These specific computational details are vital for understanding
the characteristics and intricacies of the S-BIRD dataset, which plays a crucial role in
effectively training the deep neural network. Figure 3 illustrates the distribution of object
classes in each training frame based on the center x for the S-BIRD dataset. Figure 3 shows
the relative distribution of center x coordinates across different classes during training.
Each segment is color-coded and displays data values and percentiles, providing a clear
understanding of object positions along the x-axis. This section provides valuable insights
into the dataset’s dimensions, resolutions, and geometric properties, which contribute to
the successful implementation of transfer learning and fine-tuning techniques for the deep
neural detection model.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 13

Figure 2. Labelling details of training instances from dataset.

Regarding pixel density, the dataset exhibits a density of 12 pixels per millimeter or
290 pixels per inch. These specific computational details are vital for understanding the
characteristics and intricacies of the S-BIRD dataset, which plays a crucial role in effec-
tively training the deep neural network. Figure 3 illustrates the distribution of object clas-
ses in each training frame based on the center x for the S-BIRD dataset. Figure 3 shows the
relative distribution of center x coordinates across different classes during training. Each
segment is color-coded and displays data values and percentiles, providing a clear under-
standing of object positions along the x-axis. This section provides valuable insights into
the dataset’s dimensions, resolutions, and geometric properties, which contribute to the
successful implementation of transfer learning and fine-tuning techniques for the deep
neural detection model.

Figure 3. Object classes in each training frame by center x.

4. Training Method and Evaluation
The training process for the YOLOv5-s model (Based on PyTorch 1.10.0a0 with

CUDA support) on the S-BIRD dataset involved a series of steps aimed at achieving the

Figure 3. Object classes in each training frame by center x.

4. Training Method and Evaluation

The training process for the YOLOv5-s model (Based on PyTorch 1.10.0a0 with CUDA
support) on the S-BIRD dataset involved a series of steps aimed at achieving the highest
precision in detecting sewer blockages. Through the application of transfer learning

Electronics 2023, 12, 3606 5 of 13

and fine-tuning techniques, the model’s formulation was optimized to suit the specific
characteristics of the representative dataset, enabling its effective adaptation for real-world
scenarios. To facilitate the training process, annotations for object classes were applied in
PyTorch TXT format, as needed. The training process was performed over 6000 epochs,
using the stochastic gradient descent (SGD) optimizer with specified hyperparameters. The
training process utilized the configurations listed in Table 1. The DGX-1 (utilized 32 GB
GPU Card) available at UiT, Narvik, running a Docker container with a defined image
served as the training platform, leveraging GPU parallelization for faster computations.
Overfitting was mitigated using Early Stopping with a patience of 100 epochs.

Table 1. Principal training configurations.

Attributes Implications

learning model YOLOv5-s
Annotation data type PyTorch TXT

max_epoch 6000
patience 100

batch_size 16
fp16 True

num_classes 3
Params 7.2 M
Gflops 15.9
depth 0.33
width 0.5

input_size (416, 416)
workers 8
anchor_t 4.0

scale 0.5
hsv_h, hsv_s, hsv_v 0.015, 0.7, 0.4

warmup_epochs 3
weight_decay 0.0005
momentum 0.937

translate 0.1

The training progression concluded at 933 epochs due to a lack of improvement in
the last 100 epochs. The most promising results were obtained at epoch 832, leading to the
selection of the corresponding model for practical applications. The evaluation metrics
are essential for quantifying the model’s performance, and they are computed using the
following formulas:

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

mAP = ∑(AP for each class)/Number of classes (4)

F1 score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (5)

Here, TP—true positive, FP—false positive, FN—false negative, and mAP—mean
average precision.

During the training, at epoch 832, the model exhibited impressive precision (P) and
recall (R) values of 94.40% and 93.90%, respectively, across all classes. Notably, Figure 4
illustrates that the developed detection model achieved outstanding average precision
values of 95.90% for grease blocks, 98.40% for plastic blocks, and 94.50% for tree root blocks.
These high precision values are indicative of the model’s ability to accurately detect and
classify instances belonging to these specific classes. The overall mean average precision
(mAP) for all classes, as indicated in Table 2, is remarkably high at 96.30% with a confidence

Electronics 2023, 12, 3606 6 of 13

threshold of 0.5. This highlights the model’s proficiency in making precise detections across
all classes within the dataset. Moreover, the calculated mAP over various Intersection
over Union (IoU) thresholds, ranging from 0.5 to 0.95 with an increment of 0.05, yielded a
consistent performance of 79.20%. This demonstrates that the model maintains accurate
localization of objects across a broad range of IoU thresholds. The timing results in Table 3
show that the model has efficient inference times, with an average forward time of 0.2 ms,
average NMS time of 1.1 ms, and average inference time of 11 ms. These low inference
times make the model suitable for real-time applications.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 13

illustrates that the developed detection model achieved outstanding average precision
values of 95.90% for grease blocks, 98.40% for plastic blocks, and 94.50% for tree root
blocks. These high precision values are indicative of the model’s ability to accurately de-
tect and classify instances belonging to these specific classes. The overall mean average
precision (mAP) for all classes, as indicated in Table 2, is remarkably high at 96.30% with
a confidence threshold of 0.5. This highlights the model’s proficiency in making precise
detections across all classes within the dataset. Moreover, the calculated mAP over various
Intersection over Union (IoU) thresholds, ranging from 0.5 to 0.95 with an increment of
0.05, yielded a consistent performance of 79.20%. This demonstrates that the model main-
tains accurate localization of objects across a broad range of IoU thresholds. The timing
results in Table 3 show that the model has efficient inference times, with an average for-
ward time of 0.2 ms, average NMS time of 1.1 ms, and average inference time of 11 ms.
These low inference times make the model suitable for real-time applications.

Table 2. Temporal evaluation details.

Timing Attributes Outturns (Milliseconds)
Average forward time 0.2 ms

Average NMS time 1.1 ms
Average inference time 11 ms

Table 3. Precision assessment details.

Object Class Average Precision map_5095 map_50
tree roots 0.945

0.792 0.9630 grease 0.959
plastic 0.984

Figure 4. Obtained higher precision rate for each class.

The confusion matrix in Figure 5, provides an overview of the model’s performance
in correctly classifying instances of grease, plastic, and tree roots. This visualization pro-
vides a clear breakdown of correct and incorrect classifications for each category.

Figure 4. Obtained higher precision rate for each class.

Table 2. Temporal evaluation details.

Timing Attributes Outturns (Milliseconds)

Average forward time 0.2 ms
Average NMS time 1.1 ms

Average inference time 11 ms

Table 3. Precision assessment details.

Object Class Average Precision map_5095 map_50

tree roots 0.945
0.792 0.9630grease 0.959

plastic 0.984

The confusion matrix in Figure 5, provides an overview of the model’s performance in
correctly classifying instances of grease, plastic, and tree roots. This visualization provides
a clear breakdown of correct and incorrect classifications for each category.

Figure 6 shows correlation connections within the frames of the dataset, demonstrating
the exact connection between instances and their labels among discrete views. It is also
evident that a majority of instances in the dataset are situated towards the outer edges of
both the top and bottom sides of the images in the dataset. This indicates the efficiency of
the trained model to detect and classify multiple objects in various real-world scenarios.

Electronics 2023, 12, 3606 7 of 13
Electronics 2023, 12, x FOR PEER REVIEW 7 of 13

Figure 5. Confusion matrix details for all classes.

Figure 6 shows correlation connections within the frames of the dataset, demonstrat-
ing the exact connection between instances and their labels among discrete views. It is also
evident that a majority of instances in the dataset are situated towards the outer edges of
both the top and bottom sides of the images in the dataset. This indicates the efficiency of
the trained model to detect and classify multiple objects in various real-world scenarios.

Figure 6. Correlogram for frames detailing.

Figure 5. Confusion matrix details for all classes.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 13

Figure 5. Confusion matrix details for all classes.

Figure 6 shows correlation connections within the frames of the dataset, demonstrat-
ing the exact connection between instances and their labels among discrete views. It is also
evident that a majority of instances in the dataset are situated towards the outer edges of
both the top and bottom sides of the images in the dataset. This indicates the efficiency of
the trained model to detect and classify multiple objects in various real-world scenarios.

Figure 6. Correlogram for frames detailing. Figure 6. Correlogram for frames detailing.

The scatter diagram, Figure 7, displays the instances in the dataset and their corre-
sponding labels. This visualization helps with understanding the distribution of instances
across different classes and assists with identifying potential clustering patterns.

Electronics 2023, 12, 3606 8 of 13

Electronics 2023, 12, x FOR PEER REVIEW 8 of 13

The scatter diagram, Figure 7, displays the instances in the dataset and their corre-
sponding labels. This visualization helps with understanding the distribution of instances
across different classes and assists with identifying potential clustering patterns.

Figure 7. Scatter chart for instances and linked labels.

The graph in Figure 8 illustrates the relationship between precision (P) and confi-
dence (C) that informs concerning changes in the model’s precision at different confidence
levels, providing insights into the model’s ability to make accurate detections at various
confidence thresholds.

Figure 8. Precision (P) versus confidence (C) chart.

Figure 9 displays the correlation between recall (R) and confidence (C), which clari-
fies how well the model can recall positive instances at different confidence levels, giving
sensitivity details to detection of true positives.

Figure 7. Scatter chart for instances and linked labels.

The graph in Figure 8 illustrates the relationship between precision (P) and confi-
dence (C) that informs concerning changes in the model’s precision at different confidence
levels, providing insights into the model’s ability to make accurate detections at various
confidence thresholds.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 13

The scatter diagram, Figure 7, displays the instances in the dataset and their corre-
sponding labels. This visualization helps with understanding the distribution of instances
across different classes and assists with identifying potential clustering patterns.

Figure 7. Scatter chart for instances and linked labels.

The graph in Figure 8 illustrates the relationship between precision (P) and confi-
dence (C) that informs concerning changes in the model’s precision at different confidence
levels, providing insights into the model’s ability to make accurate detections at various
confidence thresholds.

Figure 8. Precision (P) versus confidence (C) chart.

Figure 9 displays the correlation between recall (R) and confidence (C), which clari-
fies how well the model can recall positive instances at different confidence levels, giving
sensitivity details to detection of true positives.

Figure 8. Precision (P) versus confidence (C) chart.

Figure 9 displays the correlation between recall (R) and confidence (C), which clarifies
how well the model can recall positive instances at different confidence levels, giving
sensitivity details to detection of true positives.

Electronics 2023, 12, 3606 9 of 13

Electronics 2023, 12, x FOR PEER REVIEW 9 of 13

Figure 9. Recall (R) versus confidence (C) chart.

Figure 10 showcases the mean average precision (mAP) of the model, comparing the
truth bounding box and the detection box. A higher mAP indicates better overall perfor-
mance in detecting and localizing objects across all classes.

Figure 10. Precision (P) versus recall (R) chart.

Figure 11 exhibits the F1 score at a 94% threshold with a confidence level of 0.566.
The F1 score considers both precision and recall, making it a valuable metric for assessing
model performance.

Figure 9. Recall (R) versus confidence (C) chart.

Figure 10 showcases the mean average precision (mAP) of the model, comparing
the truth bounding box and the detection box. A higher mAP indicates better overall
performance in detecting and localizing objects across all classes.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 13

Figure 9. Recall (R) versus confidence (C) chart.

Figure 10 showcases the mean average precision (mAP) of the model, comparing the
truth bounding box and the detection box. A higher mAP indicates better overall perfor-
mance in detecting and localizing objects across all classes.

Figure 10. Precision (P) versus recall (R) chart.

Figure 11 exhibits the F1 score at a 94% threshold with a confidence level of 0.566.
The F1 score considers both precision and recall, making it a valuable metric for assessing
model performance.

Figure 10. Precision (P) versus recall (R) chart.

Figure 11 exhibits the F1 score at a 94% threshold with a confidence level of 0.566.
The F1 score considers both precision and recall, making it a valuable metric for assessing
model performance.

Electronics 2023, 12, 3606 10 of 13

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13

Figure 11. F1 score versus confidence (C) chart.

Figure 12 exhibits the training and validation losses of the detection model over 932
epochs on the S-BIRD dataset. This graph helps in understanding the model’s learning
progress during training and validation phases. A decrease in loss indicates that the model
is learning to make better predictions.

Figure 12. Detailing of losses in training and validation.

Figure 13 exhibits the detection outcomes obtained by deploying the trained model
on Google Source frames [22] as input data. The outcomes include the location of objects
and corresponding class labels (tree roots, grease, or plastic) predicted by the model.
These results are of utmost importance as they enable a thorough evaluation of the
model’s performance and adaptability when dealing with new and diverse data in real-
world scenarios. Additionally, the model has been specifically optimized to handle mul-
tiple sewer blockages within the same frame, making it highly suitable for real-time de-
tection in various practical situations.

Figure 11. F1 score versus confidence (C) chart.

Figure 12 exhibits the training and validation losses of the detection model over
932 epochs on the S-BIRD dataset. This graph helps in understanding the model’s learning
progress during training and validation phases. A decrease in loss indicates that the model
is learning to make better predictions.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13

Figure 11. F1 score versus confidence (C) chart.

Figure 12 exhibits the training and validation losses of the detection model over 932
epochs on the S-BIRD dataset. This graph helps in understanding the model’s learning
progress during training and validation phases. A decrease in loss indicates that the model
is learning to make better predictions.

Figure 12. Detailing of losses in training and validation.

Figure 13 exhibits the detection outcomes obtained by deploying the trained model
on Google Source frames [22] as input data. The outcomes include the location of objects
and corresponding class labels (tree roots, grease, or plastic) predicted by the model.
These results are of utmost importance as they enable a thorough evaluation of the
model’s performance and adaptability when dealing with new and diverse data in real-
world scenarios. Additionally, the model has been specifically optimized to handle mul-
tiple sewer blockages within the same frame, making it highly suitable for real-time de-
tection in various practical situations.

Figure 12. Detailing of losses in training and validation.

Figure 13 exhibits the detection outcomes obtained by deploying the trained model
on Google Source frames [22–27] as input data. The outcomes include the location of
objects and corresponding class labels (tree roots, grease, or plastic) predicted by the model.
These results are of utmost importance as they enable a thorough evaluation of the model’s
performance and adaptability when dealing with new and diverse data in real-world
scenarios. Additionally, the model has been specifically optimized to handle multiple
sewer blockages within the same frame, making it highly suitable for real-time detection in
various practical situations.

Electronics 2023, 12, 3606 11 of 13Electronics 2023, 12, x FOR PEER REVIEW 11 of 13

Figure 13. Identification and localization outcomes.

5. Comparing AI-Driven Approach to MOEAs
The AI-driven approach presented in this research offers several advantages over

Multi-Objective Evolutionary Algorithms (MOEAs) [23] commonly used in wastewater
system management. While MOEAs such as NSGA-II, SPEA2, MOPSO, and MODE are
effective at optimizing multiple objectives, they often come with the burden of complex
mathematical models and high computational requirements [24,25]. In contrast, the AI
approach leverages advanced computer vision and deep learning techniques to detect
sewer blockages promptly and accurately. The model achieves a remarkable mean aver-
age precision (mAP) of 96.30% at a confidence threshold of 0.5, highlighting its exceptional
precision in sewer blockage detection, which in turn enhances the reliability and efficiency
of wastewater management systems.

Furthermore, the AI approach relies on labelled training data and lightweight deep
learning models, enhancing its efficiency and real-time capabilities. This aligns well with
the urgent need to address sewer blockages swiftly and prevent disruptions and over-
flows. The model’s accuracy, speed, and specialized focus on sewer blockage detection
make it a highly promising solution for immediate and effective urban wastewater system
management. In comparison, MOEAs such as the sensitivity-based adaptive procedure
(SAP) [26], optimal control algorithms [27], and novel methodologies [28] have shown
efficiency in various aspects of wastewater management, such as sewer rehabilitation and
optimal scheduling. However, their computational demands and reliance on complex al-
gorithms might hinder their real-time applicability. The AI-driven approach’s ability to
process data in real-time, coupled with its high accuracy in detection, gives it a distinct
edge for addressing dynamic and critical scenarios like sewer blockages.

Overall, while both AI-driven approaches and MOEAs contribute to the advance-
ment of wastewater management, the AI approach’s ability to quickly detect and respond
to sewer blockages makes it particularly well-suited for immediate, on-the-ground appli-
cations in modern urban sanitation systems.

6. Conclusions
This research highlights the potential of artificial intelligence, by employing the

YOLOv5 single-stage detection model and transfer learning on the critical S-BIRD image
dataset in sewer blockage detection. By harnessing the power of AI, we achieved a high
precision rate suitable for real-time deployment on resource-constrained mobile devices.

Based on the current work, the following specific conclusions may be made.
• The developed model demonstrated noticeable precision and recall rates, achieving

94.50%, 95.90%, and 98.40% average precision for tree roots, grease, and plastics,

Figure 13. Identification and localization outcomes.

5. Comparing AI-Driven Approach to MOEAs

The AI-driven approach presented in this research offers several advantages over
Multi-Objective Evolutionary Algorithms (MOEAs) [28] commonly used in wastewater
system management. While MOEAs such as NSGA-II, SPEA2, MOPSO, and MODE are
effective at optimizing multiple objectives, they often come with the burden of complex
mathematical models and high computational requirements [29,30]. In contrast, the AI
approach leverages advanced computer vision and deep learning techniques to detect
sewer blockages promptly and accurately. The model achieves a remarkable mean average
precision (mAP) of 96.30% at a confidence threshold of 0.5, highlighting its exceptional
precision in sewer blockage detection, which in turn enhances the reliability and efficiency
of wastewater management systems.

Furthermore, the AI approach relies on labelled training data and lightweight deep
learning models, enhancing its efficiency and real-time capabilities. This aligns well with the
urgent need to address sewer blockages swiftly and prevent disruptions and overflows. The
model’s accuracy, speed, and specialized focus on sewer blockage detection make it a highly
promising solution for immediate and effective urban wastewater system management. In
comparison, MOEAs such as the sensitivity-based adaptive procedure (SAP) [31], optimal
control algorithms [32], and novel methodologies [33] have shown efficiency in various
aspects of wastewater management, such as sewer rehabilitation and optimal scheduling.
However, their computational demands and reliance on complex algorithms might hinder
their real-time applicability. The AI-driven approach’s ability to process data in real-time,
coupled with its high accuracy in detection, gives it a distinct edge for addressing dynamic
and critical scenarios like sewer blockages.

Overall, while both AI-driven approaches and MOEAs contribute to the advancement
of wastewater management, the AI approach’s ability to quickly detect and respond to
sewer blockages makes it particularly well-suited for immediate, on-the-ground applica-
tions in modern urban sanitation systems.

6. Conclusions

This research highlights the potential of artificial intelligence, by employing the
YOLOv5 single-stage detection model and transfer learning on the critical S-BIRD im-
age dataset in sewer blockage detection. By harnessing the power of AI, we achieved a high
precision rate suitable for real-time deployment on resource-constrained mobile devices.

Based on the current work, the following specific conclusions may be made.

Electronics 2023, 12, 3606 12 of 13

• The developed model demonstrated noticeable precision and recall rates, achieving
94.50%, 95.90%, and 98.40% average precision for tree roots, grease, and plastics,
respectively. The mean average precision (mAP) reached an outstanding 96.30% at a
confidence threshold of 0.5 and maintained consistent performance at mAP of 79.20%
across IoU thresholds ranging from 0.5 to 0.95, indicating the model’s proficiency
in handling different sewer blockage scenarios. The inference times were efficient,
making the model suitable for real-time applications. The detection outcomes on
Google Source frames further validated the model’s adaptability to diverse data.

• The results emphasize the effectiveness of transfer learning and fine tuning, reducing
training time, enhancing performance, and in adapting deep neural network models
to new contexts.

• The presented model’s ability to accurately detect sewer blockages holds promise for
its application in modern wastewater management systems. The AI-driven sewer
blockage detection system showcased in this research has significant implications for
real-world applications, ranging from urban infrastructure management to environ-
mental conservation.

As AI technologies continue to advance, the integration of computer vision and deep
learning models will pave the way for more efficient and intelligent solutions in various
new domains.

Author Contributions: Conceptualization, R.R.P., M.Y.M. and R.K.C.; methodology, R.R.P.; software,
R.R.P.; dataset creation, R.R.P.; validation, R.R.P., M.Y.M. and R.K.C.; formal analysis, R.R.P., M.Y.M.
and R.K.C.; investigation, R.R.P.; writing—original draft preparation, R.R.P.; writing—review and
editing, R.K.C. and R.R.P.; visualization, R.K.C. and R.R.P.; project administration, R.K.C., M.Y.M. and
S.M.A.; and funding acquisition, R.K.C. All authors have read and agreed to the published version of
the manuscript.

Funding: The research visit of R.R.P. is funded by project PEERS (UTF 2020/10131). The publication
charges for this article have been funded by the publication fund of UiT The Arctic University of
Norway.

Data Availability Statement: The research data will be made available on the request.

Acknowledgments: Authors acknowledge the support from SPRING EU-India Project (No. 821423
and GOI No. BT/IN/EU-WR/60/SP/2018) and UiT The Arctic University of Norway, Narvik,
Norway, for the Ph.D. studies of Ravindra R. Patil. We extend our thanks to ADY Patil School of
Engineering, Pune, India.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,

30, 3212–3232. [CrossRef] [PubMed]
2. Kaur, R.; Singh, S. A comprehensive review of object detection with deep learning. Digit. Signal Process. 2022, 132, 103812.

[CrossRef]
3. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [CrossRef]
4. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
5. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
6. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
7. Ultralytics/yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on 9 June 2023).
8. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings

of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer
International Publishing: Cham, Switzerland, 2016; pp. 21–37.

9. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 6569–6578.

10. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

https://doi.org/10.1109/TNNLS.2018.2876865
https://www.ncbi.nlm.nih.gov/pubmed/30703038
https://doi.org/10.1016/j.dsp.2022.103812
https://doi.org/10.1109/JPROC.2023.3238524
https://github.com/ultralytics/yolov5

Electronics 2023, 12, 3606 13 of 13

11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

12. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

13. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 39, 1137–1149. [CrossRef] [PubMed]

14. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

15. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. In Proceedings of the
Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016.

16. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the
Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014.

17. Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 97–105.

18. Vaidya, O.S.; Patil, R.; Phade, G.M.; Gandhe, S.T. Embedded Vision Based Cost Effective Tele-operating Smart Robot. Int. J. Innov.
Technol. Explor. Eng. 2019, 8, 1544–1550.

19. Patil, R.R.; Vaidya, O.S.; Phade, G.M.; Gandhe, S.T. Qualified Scrutiny for Real-Time Object Tracking Framework. Int. J. Emerg.
Technol. 2020, 11, 313–319.

20. Patil, R.R.; Ansari, S.M.; Calay, R.K.; Mustafa, M.Y. Review of the State-of-the-art Sewer Monitoring and Maintenance Systems
Pune Municipal Corporation-A Case Study. TEM J. 2021, 10, 1500–1508. [CrossRef]

21. Patil, R.R.; Mustafa, M.Y.; Calay, R.K.; Ansari, S.M. S-BIRD: A Novel Critical Multi-Class Imagery Dataset for Sewer Monitoring
and Maintenance Systems. Sensors 2023, 23, 2966. [CrossRef] [PubMed]

22. Google Source Images. Available online: https://www.drainmasterohio.com/red-flags-of-tree-root-intrusion-in-your-drain-
pipes/ (accessed on 30 June 2023).

23. Google Source Images. Available online: https://arboriculture.files.wordpress.com/2016/02/treerootpipe.jpg (accessed on
30 June 2023).

24. Google Source Images. Available online: https://spunout.ie/wp-content/uploads/elementor/thumbs/Plastic_bottles_in_the_
sea-q0ubkb8pkwa5boeuhpaj6o0v1e8l43mla862l6488o.jpg (accessed on 30 June 2023).

25. Google Source Images. Available online: https://bbwsd.com/wordpress/wp-content/uploads/2018/03/FOG-850x425.jpg
(accessed on 30 June 2023).

26. Google Source Images. Available online: https://images.squarespace-cdn.com/content/v1/55e97d2de4b0a47f46957437/149930
8890029-VM48EFRJJMCSOFFHFETV/iStock-482437666.jpg?format=1000w (accessed on 30 June 2023).

27. Google Source Images. Available online: https://www.istockphoto.com/photo/plastic-bottles-isolated-on-white-gm120234722
3-345153972 (accessed on 30 June 2023).

28. Wang, Z.; Pei, Y.; Li, J. A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms. Appl. Sci. 2023, 13,
4643. [CrossRef]

29. Jiang, L.; Geng, Z.; Gu, D.; Guo, S.; Huang, R.; Cheng, H.; Zhu, K. RS-SVM machine learning approach driven by case data for
selecting urban drainage network restoration scheme. Data Intell. 2023, 5, 413–437. [CrossRef]

30. Yazdi, J. Rehabilitation of urban drainage systems using a resilience-based approach. Water Resour. Manag. 2018, 32, 721–734.
[CrossRef]

31. Cai, X.; Shirkhani, H.; Mohammadian, A. Sensitivity-based adaptive procedure (SAP) for optimal rehabilitation of sewer systems.
Urban Water J. 2022, 19, 889–899. [CrossRef]

32. Rathnayake, U. Migrating storms and optimal control of urban sewer networks. Hydrology 2015, 2, 230–241. [CrossRef]
33. Draude, S.; Keedwell, E.; Kapelan, Z.; Hiscock, R. Multi-objective optimisation of sewer maintenance scheduling. J. Hydroinform.

2022, 24, 574–589. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.18421/TEM104-02
https://doi.org/10.3390/s23062966
https://www.ncbi.nlm.nih.gov/pubmed/36991676
https://www.drainmasterohio.com/red-flags-of-tree-root-intrusion-in-your-drain-pipes/
https://www.drainmasterohio.com/red-flags-of-tree-root-intrusion-in-your-drain-pipes/
https://arboriculture.files.wordpress.com/2016/02/treerootpipe.jpg
https://spunout.ie/wp-content/uploads/elementor/thumbs/Plastic_bottles_in_the_sea-q0ubkb8pkwa5boeuhpaj6o0v1e8l43mla862l6488o.jpg
https://spunout.ie/wp-content/uploads/elementor/thumbs/Plastic_bottles_in_the_sea-q0ubkb8pkwa5boeuhpaj6o0v1e8l43mla862l6488o.jpg
https://bbwsd.com/wordpress/wp-content/uploads/2018/03/FOG-850x425.jpg
https://images.squarespace-cdn.com/content/v1/55e97d2de4b0a47f46957437/1499308890029-VM48EFRJJMCSOFFHFETV/iStock-482437666.jpg?format=1000w
https://images.squarespace-cdn.com/content/v1/55e97d2de4b0a47f46957437/1499308890029-VM48EFRJJMCSOFFHFETV/iStock-482437666.jpg?format=1000w
https://www.istockphoto.com/photo/plastic-bottles-isolated-on-white-gm1202347223-345153972
https://www.istockphoto.com/photo/plastic-bottles-isolated-on-white-gm1202347223-345153972
https://doi.org/10.3390/app13074643
https://doi.org/10.1162/dint_a_00208
https://doi.org/10.1007/s11269-017-1835-y
https://doi.org/10.1080/1573062X.2022.2102509
https://doi.org/10.3390/hydrology2040230
https://doi.org/10.2166/hydro.2022.149

