
The Faculty of Science and Technology
Department of Computer Science

Aquilier: An Ethereum-Based Smart Contract for Door-Lock Management
in Home Assistant

Niklas Strand
Master’s Thesis in Computer Science INF-3981

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“”
–

Abstract
The widespread adoption of distributed computer systems, exemplified by plat-
forms like Airbnb and Booking.com, has transformed homes into rental proper-
ties and streamlined vacation rentals by offering comprehensive tools for listing
properties, processing payments, facilitating searches, and enabling communi-
cation. However, a critical gap remains: these platforms do not facilitate the
coordination of physical access to these properties, a significant challenge af-
fecting tenants and service personnel. This gap complicates logistics and raises
substantial security concerns, as property owners must ensure safe and autho-
rised access without direct oversight. Additionally, landlords are increasingly
facing disputes concerning the true identity of tenants, questioning whether
they are indeed who they claim to be. There are also concerns about whether
the individuals who book the property are the same who occupy it.

In this thesis,we propose Aquilier, a novel decentralised system utilising blockchain
technology and smart contracts to manage and log physical access to rental
properties. Distinguishing itself from traditional methods, Aquilier integrates
seamlessly with the HomeAssistant smart-home systems to control door locks,
enhancing the security and convenience of property access. All operations are
securely logged in a tamper-proof ledger using the Ethereum blockchain, ensur-
ing unparalleled security and accountability in access management. We show
that this approach is reliable and secure but that further research is needed to
reduce the cost of blockchain operations.

Acknowledgements
I am grateful to my supervisor, Professor. Håvard Dagenborg, for his invalu-
able guidance, support, and expertise throughout this project. His insights and
suggestions have been crucial in shaping this thesis.

I would also like to express my deepest appreciation to my girlfriend, Frida
Omma, for her constant support and encouragement throughout this journey.
Her constant reminders to stay focused and her dedication have been a signifi-
cant source of strength and motivation for me.

Special thanks are due to Guro Jansurud and Morgan Prott for their great
support and friendship. Their positive attitude has motivated me to complete
the thesis.

I am sincerely grateful to everyone who has supported me in this journey.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Methodology . 3
1.3 Methodical Approach in Software Engineering 4
1.4 Scope and Limitation . 6
1.5 Context . 7
1.6 Contributions . 8

2 Background and Related Work 9
2.1 Smart Contracts and Decentralized Applications 9
2.2 Ethereum Blockchain Fundamentals 10

2.2.1 Ethereum Virtual Machine-EVM 11
2.2.2 Ethereum State and Storage 12
2.2.3 Gas and Gwei in Ethereum 12

2.3 Ethereum Block Time and Real-Time Implications 13
2.4 Decentralised Identifiers and Verifiable Credentials 14

3 Qualitative Market Analysis 15
3.1 Official Government Perspectives 16
3.2 Platform and services . 16

3.2.1 Smart Home Integrations in Vacation Rental Platforms 17
3.3 Findings and Discussion . 19
3.4 Ethical and Security Considerations 20

4 Requirements and Specifications 23
4.1 Functional Requirements 23
4.2 Non functional Requirements 24

vii

viii contents

5 Design and Implementation 25
5.1 Overview . 25
5.2 Smart Contracts . 26

5.2.1 Property Registry . 27
5.2.2 User Registry . 28
5.2.3 Booking Management 29

5.3 Frontend . 32
5.3.1 User Interaction . 32
5.3.2 Property Management Interaction 36

5.4 Smart Home Integration . 37
5.4.1 Proxy . 38

5.5 Tools and framework . 39

6 Evaluation 41
6.1 Deployment . 43

6.1.1 Deployment Cost Estimation 43
6.2 Event listener . 45
6.3 Issues . 47

6.3.1 Dilemma of Block Time in Booking Transactions . . . 47

7 Discussion 49
7.1 Advantages and Challenges 50
7.2 Security and Privacy Concerns 50

7.2.1 Potential Risks . 51
7.3 Cost Analysis of Smart Contract Operations 52

7.3.1 Economic Feasibility 53
7.3.2 Practical Implications 53

7.4 Automated Economic Security in Booking Management . . . 55
7.5 Etherum node vs service . 55
7.6 Future Work . 55

8 Conclusion 59

9 Appendix 61

List of Figures
5.1 System architecture and data flow of Aquilier 26
5.2 Aquilier frontend logged in 32

6.1 Screenshot of the MetaMask Wallet 44
6.2 Screenshot of the transaction on Sepolia Testnet 46

ix

List of Tables
3.1 Analysis of Vacation Rental Platforms 18

xi

1
Introduction
The vacation rental market has undergone a significant transformation, shifting
from the simplicity of roadside vacancy signs to a digital ecosystem dominated
by a vast array of internet platforms. These platforms cater to a broad audience,
from major hotel chains and travel agencies to individual homeowners look-
ing to rent out a spare room, effectively reshaping the industry’s competitive
landscape.

Digitalisation has brought numerous benefits to the vacation rental market,
offering greater access and flexibility for users. Digital platforms allow indi-
viduals to rent out their homes, while owners rent other properties, effectively
utilising housing capacity.

However, alongside these benefits, several drawbacks have emerged. Commu-
nities and cities have seen significant impacts on property prices. Governments
face challenges with taxation and regulation due to the nature of these plat-
forms [1, 2]. Fraudulent hosts and property misuse by renters have also become
prevalent issues [3].

As a result of these developments, the current short-term rental market faces
critical challenges, notably the need to build trust among governments, hosts,
and tenants. There is also an emerging requirement for integrating seamless
access in smart home systems, enabling automated rental management, ad-
dressing regulatory and taxation enforcement issues, streamlining operational
processes to enhance property management efficiency, and ensuring security

1

2 chapter 1 introduction

and synchronisation across rental platforms.

These multi-faced challenges highlight the intricate features and requirements
future systems must solve to encompass the market demand. Thus, the trans-
formative potential of smart contract technology is shown to be beneficial [4].
Blockchain technology has emerged as a feasible solution to address similar
issues by quantifying and decentralising trust [5]. The immutability and trans-
parency properties of decentralised applications (DApps) present a viable solu-
tion to the current issues in the short-term rental market. Blockchain offers an
innovative approach to distributing trust and streamlining transactions without
the need for central authority or intermediaries. The technology could effec-
tively address the prevalent gaps in the market, proposing a more organised,
trustworthy, and efficient rental ecosystem.

1.1 Problem Statement

Given the apparent lack of trust and governance in the digital platforms used
in the rental market, we explore and propose a potential solution to these
issues, focusing on enhancing security and reliability in digital access manage-
ment for rental properties. The intricate task of transferring access between
parties essentially encapsulates the broader issues identified in our analysis;
trust, transparency, and privacy. We believe that resolving the access transfer
dilemma can redefine rental market standards.
The thesis focuses on applying smart contracts and leveraging the blockchain’s
immutable and transparent features to manage and log property access. How
can property access be automated to ensure security and transparency while
preserving privacy in the digital realm? The question is a cornerstone in ex-
ploring blockchain technology as a transformative tool for the vacation rental
industry. Therefore, our thesis is as follows:

Utilising Ethereum smart contracts to transfer property access can
automate property management and enhance security and opera-
tional efficiency.

To address our thesis, we first conducted a market analysis of existing online
short-term rental platforms. We second devised Aquilier, a DApp designed to
address these multifaceted challenges in the vacation rental market. Aquilier
stands out by leveraging the robustness of blockchain technology and the pre-
cision of smart contracts to manage and transfer physical access to rental prop-
erties. A Blockchain system is engineered to enhance trust, security and trans-
parency, which are essential in the digital short-term ecosystem.

1.2 methodology 3

Aquilier’s core functionality is anchored in a sophisticated locking mechanism
seamlessly integrated with HomeAssistant smart-home systems. This mecha-
nism is more than a physical barrier; it is part of a comprehensive security
protocol incorporating decentralised identifiers (DID) and verifiable creden-
tials(VC). Only authorised individuals, verified through a transparent and im-
mutable blockchain system, can access the property. This approach significantly
addresses trust issues by providing a reliable method for property owners to
verify tenant identities and manage access permissions.

1.2 Methodology

This thesis adopts a mixed-methods approach, utilising qualitative and quan-
titative analyses, to comprehensively identify and address the challenges in
the short-term real estate rental market, particularly focusing on integrating
blockchain technology and smart home systems.

We adopted the methodology framework detailed in Anne Håkanson’s compre-
hensive work on research methods and methodologies for research projects
[6]. Håkanson’s insights were instrumental across various stages, from the
initial market analysis to the implementation phase of our project. Her empha-
sis on methodological rigour and adaptability significantly shaped our mixed-
methods approach. This approach ensured that our research was rooted in
sound academic practices and capable of effectively addressing the complex
aspects of our study.

The methodology begins with an in-depth market analysis, examining 15 rental
platforms and key governmental documents to identify market trends, regu-
latory perspectives, and technological gaps. This is followed by the practical
implementation of ’Aquilier’, where we develop and deploy a decentralised solu-
tion, utilising agile development practices and iterative testing. The conclusion
synthesises the findings from both the market analysis and implementation
phases, evaluating the efficacy of the proposed solution against the identified
market needs and technological challenges. This multifaceted approach ensures
a thorough understanding and validation of the research hypothesis, bridging
the gap between theoretical analysis and practical application.

The Qualitative Market Analysis (chapter 3) was essential in exploring the
dynamics of the short-term real estate rental market, and the integration po-
tential of blockchain and smart home technologies. The qualitative method
involved an in-depth analysis of 15 rental platforms and official EU and US
documents. This analysis provided valuable insights into the market’s current
state, regulatory perspectives, and technological gaps.

4 chapter 1 introduction

The mixed-methods approach allowed for a comprehensive market understand-
ing, blending detailed qualitative insights with structured quantitative sum-
maries. The methodology’s vigilant aspect, where qualitative and quantitative
data complement and validate each other, ensured the robustness and reliabil-
ity of the research findings.

1.3 Methodical Approach in Software
Engineering

The thesis applies the Software Development Life Cycle (SDLC) framework [7].
While developing Aquilier, we adapted the traditional SDLC model, focusing
on six key phases, from Requirement Analysis to Maintenance, to cater to the
specific needs and constraints of the Aquilier project. This adaptation not only
aligns with the objectives of this thesis but also underlines the importance of
structured, methodical approaches in software engineering. We also blended
this more traditional approach with a scrum sprint during the implementation
phase due to the experimental nature of developing smart contracts.

Analysis
The first stage involved analysing requirements, a process we undertook through
a comprehensive market analysis. This analysis, detailed in Chapter 3, helped
us identify several existing gaps and potential requirements in the current
market offerings. Based on these findings, we narrowed our focus to a specific
feature that we believed was crucial and represented the issues we uncovered.
The feature we chose to concentrate on was the locking mechanism of a prop-
erty and the process of granting access, which we recognised as crucial for
enhancing security and user experience in real estate rentals. Addressing key
features, we aim to establish a foundation for resolving identified market gaps.
The requirement is encapsulated in user stories.

Design
The user stories we had identified in the previous stage formed the design
stage. In response, we developed three smart contracts that would synchronise
data: Property Registry, User Registry and booking management. We recog-
nised early on that a direct connection between the smart home system and
the blockchain was unfeasible. Consequently, the need for implementing a
proxy became evident. This proxy serves as a link, bridging the smart home
system with the blockchain. Given the decentralised nature of the blockchain,
maintaining a consistent connection between the blockchain and the proxy
presented a challenge. We faced two options: operating a node on the network

1.3 methodical approach in software engineering 5

or relying on an external service for a stable connection. We chose the latter
option for simplicity and efficiency, selecting Infura [8] as our service provider.
This choice facilitated seamless integration with the blockchain. The design
choices, including this integration, are detailed in Figure 5.1.

Implementation
Knowing the desired design of our system,we read up and grasped the tools and
prerequisites necessary to develop the system’s code base. Our smart contract
ecosystem was developed on a robust local development setup, enabling us
to simulate a virtual Ethereum blockchain environment. This was essential
for iterative testing, debugging, and developing the components of the smart
contracts.

We used several tools during the implementation. The Truffle framework and
Ganache provided a smooth workflow, including built-in smart contract com-
pilation, linking, deployment, and binary management. Truffle also greatly
facilitated the creation of migration scripts, which are JavaScript files that help
deploy contracts to the network. These scripts allow for sequential deployment
of smart contracts, essential for managing dependencies between contracts
and ensuring that the deployment process is reproducible. We used Ganach
as the local virtual blockchain network. We will go into details later in the
report 5.5.

Testing
After implementation, rigorous testing was conducted. Testing is a critical part
of smart contract development due to the immutable nature of blockchain.
We wrote our test scripts in JavaScript, taking advantage of the Mocha testing
framework and Chai for assertions, which are both compatible with Truffle. The
distributed nature of the EVM makes debugging a tedious task where printing
works, but stepping through the execution of the code in runtime is impossible.
Tests are essential. These tests were run against the smart contracts deployed on
the Ganache local blockchain, allowing us to validate our logic in a controlled
environment before deployment to the Sepolia testnet. The three contracts
were deployed to the public decentralised Sepolia test network as part of the
implementation. The booking management contract can be viewed and verified
at: Link to booking management contract. The Evaluation chapter will delve
deeper into our testing and the deployment of the smart contracts 5.5.

Deployment
Throughout its development, we deployed all smart contracts on three plat-
forms - Ethereum Testnet Sepolia,Remix Shanghai virtualmachine, andGanache
local VM- with each platform providing unique insights and contributing to
their development. Initially deployed in a controlled environment, Truffle Suite

https://sepolia.etherscan.io/address/0x4bbd5b6e419c1baf43ba2e8319eb7aa8fd252245

6 chapter 1 introduction

and Ganache enabled rapid prototyping and testing. Subsequent deployments
on Remix and the Shanghai VM were instrumental in advanced debugging
and performance optimisation since Remix offers a virtual debugging session.
Finally, deploying to the Sepolia testnet, which closely resembles the Ethereum
mainnet environment. The deployment to Sepolia played a critical role in en-
hancing and ensuring the robustness of the contracts. In the evaluation chapter,
we conducted a thorough assessment of contract execution, focusing on the
intricate details of efficiency and cost of execution (chapter 5.5).

Maintenance
The final phase of SDLC, The Maintenance phase, is left to our section on future
developments in this thesis, which will be discussed thoroughly in Future Work
section 7.6.

By employing the SDLC framework, the thesis aims to deliver a robust and
comprehensive understanding of the development of Aquilier, showcasing how
structured and methodical approaches in software engineering can be effec-
tively applied in a practical software development project.

1.4 Scope and Limitation

The primary scope of this thesis is focused on addressing property access chal-
lenges within the short-term rental market through the innovative application
of blockchain technology and smart contracts. The objective is to explore and
demonstrate how smart contracts can enhance property access’s security, effi-
ciency, and transparency in the short-term rental domain.

While acknowledging the importance of privacy in digital transactions, this
aspect remains orthogonal to the core focus of this thesis and, as such, will
not be addressed in detail. It is recognised that privacy is a critical component
of digital interactions, but its complexities and implications fall outside the
narrowed scope of this study.

Additionally, while this research leverages essential tools and protocols such
as HomeAssistant, Decentralised Identifiers (DID), and Verifiable Credentials
(VC), these components are considered operational elements rather than pri-
mary subjects of analysis. Their role in the overall system is acknowledged,
but the thesis does not delve deeply into these aspects. These tools and pro-
tocols are instrumental in facilitating the implementation and functionality
of the proposed smart contract solutions; however, the focus remains on how
blockchain and smart contracts specifically address the identified challenges

1.5 context 7

in property access.

This thesis aims to investigate and articulate the potential of blockchain and
smart contracts in revolutionising the process of property access. This involves
evaluating the effectiveness of smart contracts in creating a more secure, trans-
parent, and efficient environment for property access, thereby contributing
to the broader conversation of technological innovation in the real estate sec-
tor.

1.5 Context

The master project is conducted in affiliation with the Cyber Security Group
(CSG). The research group is dedicated to exploring fundamental systems prob-
lems with a strong foundation in practical application domains. The group’s
research centres on efficient, scalable, transparent, and secure distributed sys-
tems, which form the key digital services in modern society.

The CSG is affiliated with the Corpore Sano Centre, a research entity that
drives high-impact life sciences research at the crossroads of computer science,
sports science, and medicine. This unique intersection allows the Corpore Sano
Centre to focus on interdisciplinary research, including elite sports performance
development, injury prevention, preventive healthcare, large-scale population
screening, and epidemiological health studies.

The latest research by CSG involves:
“Capturing Nutrition Data for Sports: Challenges and Ethical Issues”, Sharma
et al. [9]. This paper explores the challenges and ethical considerations of using
Image-Based Dietary Assessment (IBDA) and AI methods for capturing nutri-
tion data in athletes, highlighting the need for accuracy and legal compliance
in nutrition and sports science research.

“Scalable Infrastructure for Efficient Real-Time Sports Analytics” Johansen et
al. [10]. This research focuses on the development and deployment of PM-
Sys, a smartphone-based athlete monitoring system, demonstrating promising
outcomes in enhancing athlete performance and the effective use of artificial
intelligence for predictive analysis in sports.

“Dutkat: AMultimedia System forCatching Illegal Catchers in a Privacy-Preserving
Manner” Nordmo et al. [11]. This paper presents the design of a privacy-
preserving AI surveillance system for monitoring professional fishing activities,
which balances legal privacy concerns with the need to capture forensic evi-
dence of illicit activities and operate efficiently by reducing data transfer over

8 chapter 1 introduction

satellite networks.

1.6 Contributions

This thesis makes several key contributions to propertymanagement and blockchain
technology. The primary contributions are as follows:

Market Analysis
A comprehensive market survey was conducted, encompassing an analysis of
15 rental platforms and key governmental documents. This survey provides
insights into market trends, regulatory perspectives, and technological gaps
within the short-term rental market. The findings of this survey contribute to a
deeper understanding of the current market dynamics and the evolving needs
within this sector.

Aquilier
The development and implementation of ’Aquilier’, a decentralised application,
represent a significant contribution. Aquilier is designed to address the iden-
tified challenges in the vacation rental market, leveraging the robustness of
blockchain technology and the precision of smart contracts to manage and
secure physical access to rental properties. This system demonstrates a novel
approach to enhancing trust and security in digital rental transactions.

These contributions aim to advance the discussion and development of technology-
driven solutions in the realm of property rentals, focusing on utilising blockchain
to improve operational efficiency, security, and trust.

2
Background and Related
Work

2.1 Smart Contracts and Decentralized
Applications

A smart contract, in essence, is a self-executing contract with the terms of
the agreement directly written into lines of code. Unlike traditional contracts,
where legal mechanisms enforce terms, smart contracts enforce these terms by
cryptographic code. This means that once the contract conditions are met, it
executes the specified actions automatically without intermediaries.

The concept of smart contracts is not entirely new. Nick Szabo, a computer
scientist and cryptographer, introduced the idea of digital contracts that can
be embedded in digital assets in 1994 [12]. Szabo described how these con-
tracts could be autonomously executed contractually. Later, in 1997, Szabo
published the paper titled “Formalizing and Securing Relationships on Public
Networks” [13]. In this work, he emphasised the potential and versatility of
smart contracts through various clauses.

9

10 chapter 2 background and related work

Szabo pointed out that:

Smart contracts go beyond the vending machine in proposing to
embed contracts in all sorts of property that is valuable and con-
trolled by digital means [13, p. 2].

Nick Szabo’s vending machine analogy offers an insightful perspective into
the essence of smart contracts. As a vending machine autonomously functions,
validating coins and dispensing items without human intervention, smart con-
tracts execute preset actions once specific conditions are met. This seamless
operation minimises the need for intermediaries, guaranteeing that contract
stipulations are upheld.

With the advent of blockchain technology, the scope of smart contracts has
grown tremendously. Blockchain presents a decentralised and secure space
where contracts are self-implementing, resistant to tampering, and transparent.
Every network participant can ascertain the legitimacy and performance of a
contract. Consider the straightforward workings of a vending machine, where
integrated hardware and software rules direct the transaction. Transform that
notion into a digital context, visualising the vending machine in an abstract
light. The conventional machine accepts a form of payment, such as a coin, and
dispenses the desired beverage based on user selection. In the transition to a
digital domain, new complexities arise. Issuing a digital beverage is challenging
or may not resonate with the values of most humans. However, digital assets
like keys or proof of ownership can be digitalised and issued. Since the vending
machine is now digital, any conditions can be scripted. The machine is now
scalable and can manage multiple contracts and complex conditions, surpassing
a physical vending machine’s capabilities.

The rise of blockchain technology enables trust integration since the machine
can join an extensive network of similar devices, validating, sharing, and record-
ing their transactions. This interoperability means smart contracts can be ap-
plied across numerous scenarios like financial transactions, property transfers,
and tickets, to name a few. Ultimately, smart contracts promise to transform
these operations, introducing revolutionary automation, enhanced security, and
scalability.

2.2 Ethereum Blockchain Fundamentals

Ethereum is a decentralised blockchain network derived from the Ethereum
White paper [14] published by Vitalik Buterin in 2014, who founded Ethereum.
Essentially, Ethereum is designed to be the next-generation smart contract plat-

2.2 ethereum blockchain fundamentals 11

form capable of executing more intricate transactions and operations than Bit-
coin. While Bitcoin, as introduced by Satoshi Nakamoto in his whitepaper [15],
primarily functions as a decentralised digital currency and a store of value,
Bitcoin is the most extensive system for digital assets. In contrast, Ethereum
extends beyond this foundational role by aiming to support DApps. Ethereum
introduces the innovative concept of smart contracts and decentralised appli-
cations, which opens the door to many use cases beyond only transferring and
holding digital assets.

2.2.1 Ethereum Virtual Machine-EVM

The EVM serves as the runtime environment for smart contracts on the Ethereum
blockchain. Often described as the operating system of Ethereum, the EVM is
responsible for executing and maintaining smart contracts. Hildenbrandt et al.
[16] demonstrates that improper use of structures and storage can lead to sig-
nificant security issues. Implementation of smart contracts executing on the
EVM can lead to significant property losses, which is a vulnerability. The ability
of Ethereum to execute intricate transactions and applications is fundamentally
anchored in the capabilities of the EVM. The EVM is a Turing-complete vir-
tual machine that allows anyone to execute arbitrary EVM Byte Code. In other
words, the runtime environment for every smart contract on the Ethereum net-
work. Every Ethereum node runs on the EVM to maintain consensus across the
blockchain.

Unlike Bitcoin, which has a limited scripting ability primarily for transferring
coins, Ethereum’s smart contracts can encode any computational function. This
means developers have the flexibility to create a wide range of applications,
from decentralised financial tools to games and beyond.

With this flexibility, challenges arise to ensure that code execution doesn’t bur-
den the network. Ethereum addresses this through the concept of gas. Every
operation, from simple transactions to complex smart contract interactions,
requires a certain amount of gas to execute. Gas is a measure of computa-
tional work and serves as a fee mechanism. By requiring users to pay gas to
execute operations, Ethereum ensures that the network remains efficient and
discourages wasteful or malicious computations [16].

The versatility of the EVM and the gas mechanism allow Ethereum to expand
the boundaries of blockchain applications, offering capabilities far beyond being
a digital currency.

12 chapter 2 background and related work

2.2.2 Ethereum State and Storage

Smart contracts on Ethereum have their own storage, which is persistent across
function calls and transactions. This storage is an integral part of the Ethereum
state and is used to keep the contract’s state. As discussed by Luu et al. [17]
in their work titled “Making Smart Contracts Smarter”, properly handling and
updating this storage is crucial for contract security, as vulnerabilities in this
aspect can lead to significant exploits.

Each transaction the EVM executes leads to a state transition. This transition
involves computational work that is quantified in terms of gas. The gas system is
designed to ensure fair compensation for the computational effort contributed
by the miners. This mechanism is vital for the security and efficiency of state
transitions in Ethereum [16].

Solidity data structures and mappings
Ethereum smart contracts commonly use data structures like mappings and
structs to manage and organise data efficiently. Mappings in Ethereum are key-
value stores used in smart contracts for efficiently storing and retrieving data.
They are similar to hash tables. They associate unique keys with corresponding
values. In Ethereum, mappings are particularly useful when linking addresses
to balances or states. It is crucial to manage mappings carefully, as improper
handling can lead to vulnerabilities in contract logic,

Structs in Ethereum are custom-defined types that allow the grouping of several
variables. In Ethereum, structs are used to create complex data types that can
represent various entities like users, agreements, or assets. They provide a way
to model real-world entities and relationships in a more structured manner.
The correct definition and use of structures are essential to clearly and securely
implement contract logic [16].

Security Considerations: While mappings and structs are powerful tools for
data organisation in smart contracts, their usage must be carefully considered
from a security perspective. Ying Fu et al. "EVMFuzzer: detect EVM vulnerabil-
ities via fuzz testing" [18]. Emphasises that vulnerabilities in smart contracts
can arise from incorrect or inefficient use of these data structures, leading to
potential exploits and inconsistencies in contract behaviour.

2.2.3 Gas and Gwei in Ethereum

Gas in the Ethereum network is a unit that measures the computational effort
required to execute operations. It is essential for the network’s operation, sim-

2.3 ethereum block time and real-t ime implications 13

ilar to how a car needs gasoline. Gas in Ethereum ensures that the network’s
transactions, which require computational resources, are not susceptible to
spam or infinite loops. The cost of these computations is covered by gas fees,
calculated as the amount of gas used multiplied by the cost per unit of gas. This
fee is mandatory for all transactions, successful or not [19].

Gwei, short for ’giga-wei’, is a denomination of Ethereum’s native currency,
Ether (ETH). One gwei equals one billion wei (the smallest unit of ETH, named
after Wei Dai, the creator of b-money). Gwei is commonly used to quote gas
prices, where one gwei is 0.000000001 ETH or 10−9 ETH. This denomination
makes it easier to understand and calculate gas costs without dealing with very
small numbers[20].

Each Ethereum block has a base fee acting as a reserve price. The offered
price per gas must at least match the base fee, for a transaction to be eligible
for inclusion in a block. The fee is calculated based on the size of previous
blocks compared to the target block size, helping to make transaction fees
more predictable. The base fee is burned upon block creation, removing it from
circulation and preventing indefinite high block sizes.

2.3 Ethereum Block Time and Real-Time
Implications

Ethereum operates on a blockchain protocol where transactions are grouped
into blocks. These blocks are added to the blockchain at regular intervals, a
process known as block time. Unlike real-timemeasurements that are consistent
and linear, Ethereum block time is a probabilistic measure and is subject to
fluctuations. Typically, Ethereum aims for a block time of approximately 13-15
seconds. However, this is not a fixed interval and can vary based on network
conditions and the difficulty adjustment algorithm [21].

A significant characteristic of Ethereum is the variable unit of time. Due to
network congestion and the computational complexity of mining, the time
it takes to add a new block can change. This variability poses unique chal-
lenges, especially when aligning blockchain operations with time measured in
real-world events. In the context of Ethereum smart contracts, this variability
necessitates a design approach that accommodates the approximate nature
of block time. For instance, contracts dealing with time-sensitive operations
must account for that block time does not precisely align with real-world time.
Developers often use block numbers instead of timestamps for operations that
depend on timemeasurements, acknowledging the approximate nature of block

14 chapter 2 background and related work

time. As Ethereum continues to evolve, with updates and enhancements like
the transition to Ethereum 2.0 and the adoption of proof-of-stake, block time
dynamics may also change. In summary, the block time of Ethereum is a cru-
cial aspect of the architecture in blockchain-based applications, impacting how
smart contracts are designed and executed. Understanding the probabilistic
and variable nature is essential to developing or interacting with applications
on the Ethereum network.

2.4 Decentralised Identifiers and Verifiable
Credentials

A user initiates their decentralised identity model by generating a DID, a unique
and self-sovereign identifier that links to a DID document containing crypto-
graphic keys.

An issuer, such as an educational institution or employer, provides the user with
a VC. These credentials, containing claims about the user, are secured with
the issuer’s digital signature. Users store these credentials in secure digital
wallets, ensuring they are available for sharing. Users who need to verify their
identity share the VC with a verifier, accompanied by proof, usually a digital
signature linked to their DID. Allowing verifiers to authenticate the VC by
cross-referencing the digital signature with the public keys in the issuer’s DID.
Ensuring the credential legitimacy and current validity. The streamlined process
underscores a shift towards a more secure, user-centred approach in digital
identity verification.

DID and VC represent a paradigm shift in digital identity and authentication
away from centralised services. DIDs provide a mechanism for creating globally
unique identifiers without reliance on a central registry, fostering an environ-
ment where trust is distributed. Conversely, VC enables the issuance, sharing,
and verification of credentials in a secure and privacy-preserving manner.

According to C.Brunner et al. DID and VC:Untangling Decentralized Identifiers
and Verifiable Credentials for the Web of Trust [22], the workflows for creating,
sharing, and verifying VC are integral to their utility. The trustmodel underlying
DID and VC presents unique challenges. Establishing a link between a DID and
a real-world identity involves complexities and privacy concerns. Managing the
cryptographic keys is critical for the security of DID and introduces usability
challenges.

3
Qualitative Market
Analysis

This chapter systematically analyses platforms offering short-term rental prop-
erties, focusing on operational systems. The investigation encompasses both a
governmental perspective and an in-depth analysis of a selection of platforms,
examining their services and capabilities.

The analysis aims to understand and comprehend the short-term rental market.
Map out the needs and services required by our system. This thesis adopts
a mixed-methods [6] approach with a primary focus on qualitative analysis,
supplemented by quantitative elements extracted from our data. Our analysis
of 15 platforms and official documents from the US and EU provided deep
insights into the current state of short-term real estate rentals.

The following sections will delve into the specifics of ourmethodology, including
how qualitative data was quantified and the synthesis of this information to
form a cohesive analysis.

15

16 chapter 3 qualitative market analysis

3.1 Official Government Perspectives

This section of the thesis explores the perspectives of official government bodies
in both the European Union and the United States on the short-term rental mar-
ket, specifically examining the impact on housing affordability and regulatory
responses.

In the European Union, the research document from the European Parliamen-
tary Research Service [1] outlines several prominent issues in the short-term
rental market, including the impact on housing markets property price inflation
and displacement of long-term residents; challenges in balancing the needs and
interests of stakeholders such as property owners, tenants, and local communi-
ties; the necessity for harmonised regulations across member states; concerns
about unfair competition with traditional hospitality businesses; and the need
for transparent and secure data handling in online rental platforms. These is-
sues underscore the focus of the European Union on creating a balanced and
well-regulated short-term rental market. The research states that an easier and
harmonised system for data collection is needed.

Similarly, in the United States, local governments have experienced the impact
of short-term rentals on affordable housing [2]. Official sources, such as the
Internal Revenue Service and municipal councils, acknowledge the challenges
posed by the proliferation of these rentals. Regulations vary widely across states
and cities, but there is a common thread of attempting to balance the inter-
ests of property owners, residents, and communities while ensuring housing
availability and affordability. The documents reveal that while the regulatory
approaches differ, both the EU and the US are seeking solutions to the complex
challenges presented by the short-term rental market.

3.2 Platform and services

Our market analysis methodically assessed 15 leading services and platforms,
chosen for their significant presence in the global vacation rental market and
their widespread popularity. This strategic selection facilitated a detailed in-
vestigation into each service as we can see in the table: (3.1). Focusing on these
prominent platforms allowed us to thoroughly understand the dynamics and
trends shaping the vacation rental sector.

This targeted selection was aimed at acquiring a representative cross-section of
the market. The chosen platforms are diverse in terms of their operational mod-
els, customer base, geographic focus, and the range of services offered. Such
diversity ensures a comprehensive understanding of the current landscape in

3.2 platform and services 17

vacation real estate listings, especially in terms of how these platforms manage
secure access control and booking management.

The analysis of these platforms provided valuable insights into prevailing trends,
operational challenges, and potential areas for improvement in the vacation
rental industry. By focusing on the most influential and widely used platforms,
the study aims to capture the broader dynamics of the market while also pay-
ing attention to specific regional topics, particularly in Europe. We posed two
research questions to deepen our understanding of the current vacation rental
market about smart home technology integration, and platform specialisation
and user experience.

1. How does the platform incorporate smart home technologies, specifically in
terms of access control and guest management?

2. What are the distinctive features or services that define the platform’s spe-
cialisation, and how do they enhance the user experience?

The first question is designed to explore the extent and nature of smart home
technology integration, with a particular focus on features that enhance se-
curity and streamline property management. The second question aims to
uncover each platform’s unique offerings and how they contribute to creating
a competitive edge in the market.

Through these questions, we sought to identify potential market gaps in smart
home integration, especially in access control solutions, and to gain a com-
prehensive view of how each platform differentiates itself in the competitive
landscape of vacation rentals.

3.2.1 Smart Home Integrations in Vacation Rental
Platforms

In our study of vacation rental platforms, we observed a growing trend in the
integration of smart home technologies, particularly smart locks, to enhance
security and guest experience. Here are some notable examples:

AirBnB announced plans to integrate smart locks in the US and Canada with
support for specific brands like Schlage, August, and Yale. This integration will
enable hosts to automatically generate unique access codes for each reservation,
accessible to guests via the Airbnb app. Additionally, discussions on various
forums indicate that third-party smart home devices currently offer integration
through export calendars, facilitating unique access code generation for hosts
[38].

18 chapter 3 qualitative market analysis

Platform Key Characteristics
Airbnb [23] Global reach, community-driven approach
Booking.com [24] Wide range of accommodations, user-friendly booking
Rentalia [25] European-based, variety of property types
Home2Book [26] High-quality properties, guest experience focus
VRBO [27] Wide range of vacation rentals, US market presence
Expedia [28] Hotel and vacation rentals, travel accommodation in-

sights
HomeAway [29] Extensive international listings
TripAdvisor
Rentals [30]

User reviews integrated with rental listings

FlipKey [31] Variety of rentals, user review integration
Agoda Homes [32] Private accommodations, Asia-Pacific market insights
TUI Villas [33] European focus, wide property range
Homestay.com [34] Local home stays, personalized rental experiences
Zillow Rentals [35] Long-term rental insights, contrast with vacation

rentals
Trivago [36] Price comparison across various sites, including rentals
HomeToGo [37] offering comprehensive comparisons and user-friendly

search

Table 3.1: Analysis of Vacation Rental Platforms

3.3 findings and discussion 19

Another example is Booking.com, which provides recommendations and sup-
port for hosts to use smart locks and security devices, though it does not offer
direct integration. Hosts are advised on features such as single-use codes, re-
mote unlocking via apps, app analytics, and connectivity considerations. The
platform also allows hosts to indicate the presence of smart locks on their
property listings [39].

3.3 Findings and Discussion

After analysing both the platforms and government documentation, it is ap-
parent that there is a pressing need for seamless integration between listing
platforms and smart home systems. The data also suggests that governments
are seeking a uniform approach to managing user data. Furthermore, there
is a notable lack of efficient systems for overseeing taxation and local market
regulations. This analysis underscores significant technological gaps, particu-
larly in integrating blockchain technology with smart home systems to enhance
security and efficiency in property management. We can also identify notable
technological gaps, particularly in the integration of blockchain technologywith
smart home systems for enhanced security and efficiency in property manage-
ment. The analysis reinforces our initial hypothesis regarding existing gaps and
deficiencies in the market, which could be addressed to meet market demands
better.

Smart Home Technology Integration
Research question 1 reveals that there is a lack of seamless integration for
automated access in smart systems. Our analysis found a notable absence of
seamless integration between the examined rental platforms and smart home
systems, particularly in the context of automated access. Despite technological
advancements in both domains, we found no evidence that current systems
offer the full scope of automatic access approval that could potentially be ac-
complished with advanced integration. This gap underscores the untapped
potential of blockchain technology in facilitating this integration, thereby of-
fering enhanced security and trust in access control systems.

Platform Specialisation and User Experience
Research question 2 identified multiple challenges in governmental regulation
and taxation enforcement. Our analysis of official documents from the EU and
US revealed significant challenges faced by governments in enforcing regula-
tions and taxation in the rental market. This has contributed to elevated rental
prices in many areas. The potential of a unified blockchain interface, with the
inherent transparency properties and public ledger system, could be transforma-

20 chapter 3 qualitative market analysis

tive in this context. Such a system could streamline regulatory compliance and
taxation processes, potentially stabilising rental market prices and enhancing
governmental oversight.

Additional findings
Operational inefficiencies in property management current systems and plat-
forms often require manual interventions, leading to over-managed and time-
consuming processes. Hosts frequently need to coordinate obvious tasks such
as cleaning and general maintenance despite their simplicity, resulting in sig-
nificant inefficiencies. The integration of smart contracts with smart home sys-
tems offers a promising solution by automating property management tasks,
thus streamlining operations and enhancing efficiency for both owners and
renters.

The last finding is regarding security and synchronisation challenges. Our re-
search indicates a significant fragmentation in the rental market due to the
vast amount of platforms available to hosts. Many hosts limit their listings to
only one or two platforms despite the potential benefits of broader exposure,
primarily due to the challenges in synchronising calendars and pricing across
multiple services. Additionally, the lack of standardised market practices leads
to the risk of less secure or potentially malicious platforms. Blockchain and
smart contract technology could address these issues by offering a foundational
platform. Utilising the inherent security of cryptography, blockchain could fa-
cilitate synchronised data management across various platforms, establishing
more unified standards and enhancing overall market security.

3.4 Ethical and Security Considerations

Given the sensitive nature of granting someone access to a property, often
one’s own home, a particular emphasis was placed on the ethical and security
aspects of the Aquilier system. The adaptation of blockchain technology with
smart home control systems raises several important questions and concerns.
These issues are intricately linked to user privacy, data security, and the ethical
implications of automated access control.

In this thesis, while a comprehensive solution to these challenges is beyond the
scope of our currentwork, they are thoroughly discussed, and their potential res-
olutions are suggested for future research. Key areas of concern include:

3.4 ethical and security considerations 21

Data Privacy
The integration of smart home technology with blockchain requires measures
to ensure the privacy and security of user data. This consideration involves
protecting personal information related to home access, movements, and habits
and ensuring compliance with data protection regulations.

Security of Smart Contracts
Given the central role of smart contracts in this implementation of access con-
trol, addressing potential vulnerabilities is essential. This involves implement-
ing robust security protocols and conducting thorough audits and testing to
prevent unauthorised access.

Ethical Use of Technology
The automated nature of blockchain-based access control raises ethical con-
cerns regarding fairness and transparency. A future scenario where Aquiliers
integrated home system with AI technology. It is imperative to evaluate and
ensure that the system’s decision-making processes are free from bias and that
users understand how access decisions are made.

Responsibility and Accountability
With automated decision-making, delineating responsibility in case of system
errors or misuse is complex. This aspect involves exploring the accountability
of system developers, property owners, and the blockchain network, ensuring
that there are clear protocols for addressing and rectifying any issues that
arise.

These considerations are crucial for the responsible deployment and use of
technologies like Aquilier. Although not fully resolved within the scope of this
thesis, it is important that they are addressed and carefully considered in future
development. The discussion of these ethical and security considerations lays
the groundwork for future work to build upon, ensuring that the Aquilier system
not only advances in technical capabilities but also aligns with the highest
standards of ethical responsibility and security.

4
Requirements and
Specifications

In this chapter, we methodically outline the requirements of Aquilier, detailing
the specific requirements and specifications that emerged from our comprehen-
sive market analysis. As elaborated in Chapter 3, this analysis identified key
gaps and potential improvements in the current market offerings. We focused
on addressing these gaps by defining features that would enhance security and
user experience in real estate rentals, considering that our main focus is giving
access to property via smart contracts.

4.1 Functional Requirements

Requirement 1. A user should be able to request access to a property they
have booked.

Requirement 2. Each user must have a unique identifier, a name or username,
contact details, phone number, email, and physical address.

Requirement 3. Users should be authenticated to ensure secure access to their
accounts and transactions.

Requirement 4. A structured set of attributes must uniquely represent each

23

24 chapter 4 requirements and specifications

property. This includes a unique identifier, relation to owner, property title,
location, daily cost of renting and a boolean indicating if the property is Active.

Requirement 5. A booking must have a relation to the property that is booked.
It has to be uniquely identified, the definition for the booked time period, a
reference to the user holding the booking, and an indication if it is active.

The first requirement implies several subsequent requirements, a representa-
tion of users and properties. A well-defined user and property model is essential
to manage and ensure secure transactions effectively. The requirements for user
representation ensure a seamless and secure user experience and lay the foun-
dation for reliable and efficient synchronised access management. Subsequently,
the first requirement also implies a structured representation of booking and
properties.

4.2 Non functional Requirements

Requirement 6. Security User data must be securely stored and handled. Ad-
ditionally, we need to ensure that only the correct users can access the property.

Requirement 7. User data should not be distributed to others other than itself,
for example, when the user accesses the property, and personal information
must be kept secret.

Requirement 8. The system has to execute efficiently. If a user has to stand
and wait several seconds for the door to unlock, the system will be perceived
slowly.

Requirement 9. We assume the cost has to be reasonable, looking at a month
or per tenant. If the cost is higher than 10 USD for the entire booked period or
per month, the cost is perceived as unreasonably high.

5
Design and
Implementation

This chapter provides an in-depth exploration of the design and implementation
aspects of the Dapp Aquilier, which has been developed to tackle the intricate
challenges identified in the analysis Chapter 3. Aquilier is a proof-of-concept
application specifically engineered to facilitate access to physical properties
through the innovative use of smart contracts.

5.1 Overview

Aquilier consists of several components and applications. The three smart con-
tracts illustrated furthest up on Figure 5.1 are central components. They also
act as a database since they write all data to the Ethereum distributed ledger.
The smart contracts have an inherent Application Programming Interface (API)
since all data written to the ledger data can be queried or read. Additionally,
we developed a proxy server written in Golang, illustrated in the centre of our
system architecture in Figure 5.1 that acts as a bridge between the Ethereum
smart contracts and the smart home system. We developed two different ways
of triggering methods on the smart contracts, one via a frontend developed
using the react framework and Typescript, and the second a test script written
in javascript.

25

26 chapter 5 design and implementation

Figure 5.1: System architecture and data flow of Aquilier

For both the frontend and the Proxy, it is imperative to maintain a persistent
connection to the Ethereum network. This can be achieved by either running
an Ethereum node with a known IP or integrating the system towards a service
that maintains this connection. In this initial phase, we decided to use the
service Inrura in favour of running our own Ethereum node.

Utilising the Infura service is a suitable and resource-efficient alternative to self-
hosting our Ethereum node. The Proxy server maintains the connection to the
smart home system where we adopted the home Assistant docker image. In the
home assistant container, we have defined a virtual lock to represent a physical
door lock. This holistic approach underscores the commitment to building a
robust and versatile DApp capable of addressing real-world challenges.

Throughout the development, we focused on leveraging well-established frame-
works and technologies supported by extensive documentation and prior re-
search. The choice of the Ethereum blockchain was particularly influenced by
the widespread adoption and maturity of its programming language, Solidity,
within smart contract development communities.

The following sections will delve into technical details essential to the imple-
mentation.

5.2 Smart Contracts

The three smart contracts form the pillars of the Aquilier system, serving as
the key components for state management. These contracts are architected

5.2 smart contracts 27

to execute on the Ethereum blockchain, ensuring that interactions between
the smart contracts, the Proxy, and the smart home system are conducted se-
curely. Every operation written on the Ethereum network has a cost in the
form of gas [19]. As a result, we have to write as efficient code as possible, and
where operations can be executed outside the network, the so-called off-chain
transactions should be considered.

In the context of Ethereum blockchain operations, data retrieval transactions or
read operations do not incur any gas fees. This is because they do not necessitate
state changes on the blockchain,whichwould require mining and, consequently,
the cost of computational resources. Consequently, for operations that involve
summarising or aggregating data, such as collating details of property instances,
it is more cost-effective to execute these computations off-chain.

5.2.1 Property Registry

Property management is the smart contract primarily responsible for managing
and storing information related to properties. Every time a property is added,
removed, or modified by a user, the Property Registry smart contract captures
and retains the state of these changes.

Central to the contract is the createProperty function, which allows property
owners to register new properties on the blockchain. This function instantiates
a new Property struct, assigns a unique ID based on the current number of
properties listed, and sets the property as available. Upon successful creation,
the contract emits a PropertyCreated event, which serves as a transparent
ledger entry signalling the addition of a new property to the platform. This
event logs the property’s ID, owner’s address, name, location, daily rate, and
availability for the benefit of subscribers and listeners interested in real-time
updates.

For retrieval of property details, the contract offers a getPropertyById function,
which, given a property ID, returns the corresponding Property struct. This func-
tion ensures that any participant can verify property details in an immutable
and trustless manner. Additionally, the contract provides a getAllProperties
function that returns an array of all registered properties. This function, while
comprehensive, is noted for its potential to be gas-intensive, indicating that
it might require a significant amount of computational power and, therefore,
incur higher transaction costs when used.

The property struct is a custom data type designed to store all relevant infor-
mation about a property. Property Struct:

28 chapter 5 design and implementation

struct Property {
address ownerAddress;
string name;
string location;
uint256 dailyRate;
bool isAvailable;

}

The Property struct within Aquilier encapsulates the essential attributes of
a rental property on the blockchain. It associates property with its owner’s
Ethereum ownerAddress, ensuring that transactions, such as rental payments,
are linked to the rightful recipient. The name and location fields provide de-
scriptive identifiers, the former for recognition within the platform and the
latter specifying the property’s physical address. The dailyRate is set as an
integer value, delineating the cost per day, which facilitates financial transac-
tions and pricing transparency. Lastly, the isAvailable boolean flag signifies the
property’s current rental status, enabling dynamic booking availability man-
agement. This structure is simple yet fundamental for basic operations in the
system, offering a secure and efficient mechanism for property listings.

These structures, functions and events form a robust interface for property man-
agement, leveraging the inherent benefits of blockchain technology—security,
transparency, and immutability—to streamline operations within the real estate
domain.

5.2.2 User Registry

The UserRegistry contract is a cornerstone of the Aquilier platform, providing
a decentralised framework for managing tenant identities.

User Struct:

struct User {
address userAddress;
string name;
string phone;
string email;
string physicalAddress;
bytes32 did;

}

It defines the placeholder for users in Aquilier that associates a user’s Ethereum
address with personal and contact information, including name, phone number,

5.2 smart contracts 29

email, and physical address. Additionally, it employs a unique bytes32 decen-
tralised identifier (DID) for each user, generated via a keccak256 hash of the
user’s Ethereum address, which enhances privacy and security.

Users are stored within a mapping, linking Ethereum addresses to correspond-
ing User structs. The getMyUserDetails function allows users to retrieve their in-
formation, ensuring they have access to their data as stored on the blockchain.

The contract provides an addUser function for users to register their details.
This public function is a gateway that internally calls addUserInternal, an in-
ternal function that encapsulates the logic for adding user information to the
blockchain. This separation of concerns via internal function usage ensures
that user data is added securely and consistently.

The contract also defines a tenant struct with a DID and a Verifiable Credential
(VC). While the DID is set upon tenant registration, the VC is assigned later,
serving as a marker for tenant verification. The registerTenant function allows
for the initial setup of tenant data with the DID, and the setTenantVC function,
complemented by the TenantVerified event, completes the verification process
by assigning a VC. The isTenantVerified function provides a simple check to
confirm whether a tenant has a non-zero VC, which correlates to a verified
status.

In essence, the UserRegistry contract utilises the inherited features of blockchain
technology with identity management. It leverages smart contracts to create a
secure, transparent, and verifiable system that manages tenant identities. This
contract ensures that user data integrity is maintained. Through the use of DIDs
and VCs, it aligns with the principles of self-sovereign identity and trustless
verification in the blockchain realm.

5.2.3 Booking Management

The BookingManagement contract in Aquilier is designed for handling book-
ings, offering functionalities to create, cancel, and verify booking statuses. It
introduces a Booking struct encapsulating essential booking details like prop-
erty ID, user address, start and end dates, and active status.

A key feature of this contract is mapping booking IDs to Booking structs, along-
side a nextBookingId counter to ensure unique identifiers for each booking.
The contract emits events such as BookingCreated, BookingCancelled, and Ac-
cessGranted to log significant actions on the blockchain. The createBooking
function allows users to initiate bookings, incrementing nextBookingId with
each new entry and emitting a BookingCreated event. The cancelBooking func-

30 chapter 5 design and implementation

tion enables users to cancel their bookings, provided they are the ones who
initiated the booking and the booking is still active, triggering a BookingCan-
celled event. The checkBookingStatus function allows querying the current
status of a booking, returning true if the booking is active and within the valid
date range.

This contract is central to Aquilier’s booking system, providing a secure and
efficient mechanism to manage property rentals on the blockchain, ensuring
transparency and user autonomy in the rental process.

struct Booking {
uint256 propertyId;
address userAddress;
uint256 startDate;
uint256 endDate;
bool isActive;

}

The booking struct comprises several fields that capture the essential details of
a booking transaction. The propertyId field holds a unique identifier, ensuring
each property can be distinctly referenced. The userAddress field stores the
Ethereum address of the user who initiated the booking, linking the booking
to a specific user within the blockchain’s secure environment. Additionally,
the startDate and endDate fields record the time frame of the rental period.
Lastly, the isActive boolean flag is utilised to indicate the booking’s current
status, determining whether the booking is active. This structure serves as
the data representation of a booking when querying the smart contract for a
booking.

The Booking management contract holds the method for granting access to
a property. This is implemented by using an event that is emitted each time
someone requests access by calling the method:

1 function grantAccess (uint256 _bookingId) public {
2 require (bookings [_bookingId]. isActive , " Booking is not

active ");
3 require (block. timestamp >= bookings [_bookingId].

startDate && block. timestamp <= bookings [_bookingId].
endDate , " Booking is not currently valid ");

4 emit AccessGranted (_bookingId , bookings [_bookingId].
userAddress , bookings [_bookingId]. propertyId);

5 }

Listing 5.1: function grantAccess

This naive method illustrates how one can apply criteria for granting access.

5.2 smart contracts 31

In this case, we only declare two requirements.

In summary, the grantAccess function checks if a booking identified by bookingId
is active and within the valid booking window. If these conditions are met, ac-
cess is granted to the user associated with the booking, which is acknowledged
by emitting an event that can be observed and acted upon by other parts of
the system, in this case, the Proxy.

32 chapter 5 design and implementation

Figure 5.2: Aquilier frontend logged in

5.3 Frontend

The Aquilier system facilitates a frontend web application developed using
React, a modern JavaScript library for building user interfaces. The design
and development focused on creating a naive, functional, and responsive web
application that can write and read data from the blockchain effectively. We
have chosen Typescript in favour of JavaScript due to its strict typing and data
structures.

5.3.1 User Interaction

Accessing the platform, users are greeted with a clean and straightforward
interface encapsulating the application functionality as shown in Figure 5.2.
The landing page has a button to log in with Metamask. When pressed, the
user is forwarded to the Metamask extension, which will prompt the user to
authenticate by confirming its access request in the Metamask popup extension
window.

5.3 frontend 33

1 const handleLogin = async () => {
2 try {
3 if (typeof window . ethereum !== ’undefined ’
4 && window . ethereum . request) {
5 const accounts = await window . ethereum . request ({
6 method : ’eth_requestAccounts ’ }) as unknown as string

[];
7 if (accounts . length > 0) {
8 setAccount (accounts [0]);
9 alert(’ Logged in!’);
10 } else {
11 alert(’No accounts found .’);
12 }
13 } else {
14 alert(’ Please install MetaMask !’);
15 }
16 } catch (error) {
17 console .error(error);
18 alert(’ Failed to login with MetaMask .’);
19 }
20 };

Listing 5.2: handleLogin

The code to log in via MetaMask is shown in listing 5.2. Since handleLogin is
an async method, it sends the request to Metamask and expects a response at a
later point. When the method has The handleLogin method is executed async.
It checks the browser environment to see if an Ethereum object is present.
MetaMask and other Ethereum-compatible browsers inject this object. Its pres-
ence indicates that the user has installed MetaMask or a similar wallet exten-
sion.

Thewindow.ethereum.request property is a function that MetaMask provides
to interact with users’ Ethereum accounts. If MetaMask is detected, the function
requests the MetaMask extension to get the users’ Ethereum account(s). If the
user approves, MetaMask will return an array of account addresses. The use
of await means that the function will pause until MetaMask responds with the
accounts or an error. Once MetaMask responds, the function checks if the array
of accounts returned has at least one account. If it does, it means the user has
successfully logged in. The first account in the array (accounts[0]) is typically
the user’s currently selected account in MetaMask.

If an account is found, the application’s state is updated with the user’s account
address using a state setter function like setAccount. This would typically
trigger a re-render of the component or update the user interface to reflect the
user’s logged-in status.

34 chapter 5 design and implementation

The user is then alerted with a simple browser alert that they have logged in
successfully.

If MetaMask returns no accounts, the user is alerted that no accounts were
found, which typically means they have not created an account in MetaMask
or have not logged into it. Prompting MetaMask Installation.

If an Ethereum object is not present, it is likely that the user does not have
MetaMask installed, and the user is prompted to install MetaMask to interact
with the application.

1 useEffect (() => {
2 if (account) {
3 fetchUserDetails (account);
4 }
5 }, [account]);
6 // This will run fetchUserDetails whenever
7 // the account state is updated

Listing 5.3: useEffect

The useEffect React hook is instrumental in the application’s lifecycle for in-
voking actions in response to state changes. In this instance, it monitors the
account state. When a user authenticates via MetaMask, the account state is
updated with the user’s Ethereum address, triggering useEffect.

The hook then conditionally calls the fetchUserDetails function to retrieve the
user’s information from the smart contract. This process introduces a slight
delay resulting from the time it takes to fetch data from the blockchain be-
fore the user’s details are displayed on the frontend. Such delays are typical
in dApps due to the decentralised nature of data retrieval from blockchain
networks.

5.3 frontend 35

1 const fetchUserDetails = async (accountAddress : string) => {
2 try {
3 const detailsTuple = await contract . methods .

getMyUserDetails ().call ({ from: accountAddress }) as
unknown as UserDetailsTuple ;

4 const details : IUserDetails = {
5 userAddress : detailsTuple [0],
6 name: detailsTuple [1],
7 phone: detailsTuple [2],
8 email: detailsTuple [3],
9 physicalAddress : detailsTuple [4],
10 did: detailsTuple [5],
11 };
12 setUserDetails (details);
13 } catch (error) {
14 console .error(’Error fetching user details :’, error);
15 }
16 };
17

Listing 5.4: fetchUserDetails

The fetchUserDetails function is an asynchronous operation employing an Ap-
plication Binary Interface ABI to interact with a predefined smart contract on
the Ethereum blockchain. The ABI serves as an interface between the smart con-
tract and the application, dictating how calls to the contract are structured and
interpreted. The ABI is a JSON file. All three smart contract has corresponding
ABIs.

Upon invocation, the function uses the account address to formulate a request
to the smart contract getMyUserDetails method. This method call is facili-
tated by the ABI, which specifies the necessary encoding of the call and the
expected response format. The response, assumed to be a tuple conforming
to the UserDetailsTuple structure, is then asynchronously retrieved from the
blockchain.

The response tuple is mapped to a strongly typed object IUserDetails. This
mapping is crucial for the type-safe representation of blockchain data within the
application, enhancing the robustness of the frontend code. Each attribute of the
user’s details—such as their blockchain address, name, contact information, and
physical address—is extracted from the tuple and assigned to the corresponding
fields within the IUserDetails object.

For successful data retrieval, the user’s details set the state using the setUserDe-
tails function. This state update triggers a reactive UI refresh, presenting the
fetched data to the user using the previously described useEffect. In the event
of an error during this data retrieval process, the exception is caught, and an

36 chapter 5 design and implementation

error message is logged to the console, indicating a fault in the data-fetching
operation.

In essence, the ABI is the critical component that defines the interaction pattern
between the frontend application and the Ethereum smart contract, enabling
the seamless retrieval and utilisation of on-chain data within the off-chain
application context.

5.3.2 Property Management Interaction

In the execution context of Ethereum, data retrieval operations are generally
free as they do not alter the blockchain state. The fetchAllProperties function
encapsulates a critical feature of the Aquilier platform, acquiring property list-
ings from the Ethereum blockchain. Leveraging the smart contract’s ABI, this
asynchronous function invokes the getAllProperties method, which retrieves
an array of property entries per the smart contract’s design.

1 const fetchAllProperties = async () => {
2 try {
3 const propertiesData = await contract . methods .

getAllProperties ().call () as unknown as Property [];
4 console .log(propertiesData);
5 setProperties (propertiesData);
6 } catch (error) {
7 console .error(’Error fetching properties :’, error);
8 }
9 };

Listing 5.5: fetchAllProperties

The fetchAllProperties function would not directly incur transaction fees or gas
costs. This method retrieves the entire dataset of properties in a single call.
While this is inherently not a gas-consuming operation, the underlying smart
contract aggregates the dataset, something we point out in section: 5.2.1 and
can potentially lead to a very costly operation. The design poses scalability chal-
lenges when considering a massive dataset, such as a million property listings.
Each property entry adds to the storage requirements and the computational
complexity of the retrieval operation on the blockchain. Furthermore, from a
frontend performance perspective, loading a vast amount of data simultane-
ously can result in significant latency, impacting user experience. To mitigate
such scalability issues, a more robust approach could involve paginated queries
or indexed searches that only fetch a subset of the data from the blockchain.
Alternatively, off-chain aggregation of the data set. This would provide a more
scalable and cost-effective solution that maintains performance and adheres to
the economic constraints of the Ethereum network.

5.4 smart home integration 37

While the fetchAllProperties function is a vital component of the system’s data
layer, its current implementation may not be optimised for the potential scale
of the property database. A strategic redesign would be essential to ensure the
platform’s viability.

Communication with the Ethereum blockchain is facilitated by Infura, a service
that provides a scalable and reliable API for interfacing with the Ethereum
network. The frontend leverages this connection to fetch real-time data from
the smart contracts, such as property details and user registry information,
without the overhead of running an Ethereum node.

The state management capabilities of React are used to handle the dynamic
updating of the user interface as blockchain data is retrieved. This ensures
that the platform remains responsive and the displayed information reflects
the current state on the blockchain.

Authentication is handled via MetaMask, which provides a secure and user-
friendly way to manage identity and sign transactions. When a user logs in,
MetaMask prompts them for permission to access their Ethereum account.

The integration with MetaMask also facilitates interaction with the smart con-
tracts. When a user performs an action that requires a transaction, such as
updating property information, the frontend constructs the transaction and
sends it to MetaMask for user approval and signature. MetaMask then broad-
casts the signed transaction to the Ethereum network via Infura.

5.4 Smart Home Integration

We have leveraged Home Assistant through a Docker container for the smart
home system, which provides an isolated, controlled, and reproducible environ-
ment for running applications. Utilising Docker ensures consistent performance
and streamlines deployment across different infrastructures without the hassles
of manual configurations. The actual lock component in this implementation is
a virtual lock defined inside the Home assistant container [40]. It can be either
locked or open and represents a physical door lock. We have set up the virtual
lock in a YAML file that the docker image uses while initiating the

38 chapter 5 design and implementation

HomeAssistant instance:

1 input_boolean :
2 virtual_lock :
3 name: " Virtual Lock"
4 initial : off
5 sensor :
6 - platform : template
7 sensors :
8 custom_virtual_lock :
9 friendly_name : " Custom Virtual Lock"
10 value_template : >
11 {% if is_state (’ input_boolean . virtual_lock ’, ’on ’) %}
12 Locked
13 {% else %}
14 Open
15 {% endif %}

We chose Home Assistant due to its leading position in smart home automation
platforms. Originating as an open-source project, it offers a wide variety of
functionalities that enable users to manage and automate their smart devices
seamlessly.

The Docker container for Home Assistant is derived from their official open-
source project [41].

5.4.1 Proxy

The Proxy serves as the crucial bridge between the smart contract and the
Home Assistant application. Implemented in Golang, it continuously monitors
and listens to events emitted by the smart contract, focusing on those from the
booking management contract. To ensure efficient and secure communication,
the Proxy is deployed on a node that resides within the same network as the
Home Assistant container. This strategic placement facilitates real-time respon-
siveness and minimises potential network-related delays or disruptions.

When the Proxy receives an event from the booking management contract,
it acts on this by calling the method unlockVirtualLock. Before unlocking the
virtual lock, the Proxy has to parse and validate the event. It does so by creating
a filter that is then used in the query to subscribe to the event [42, 43]. The
code facilitates both Infura and Ganache event subscribers, meaning that it is
compatible with both local virtual blockchains via Ganache or any Ethereum
network via Infura. In our case, we listen on the Sepolia network.

5.5 tools and framework 39

5.5 Tools and framework

We utilised Ganache, a component of the Truffle suite, for local blockchain simu-
lation in our development process. Ganache offers a personal, local blockchain
environment essential for deploying contracts, developing applications, and
running tests efficiently. In this project, we utilised both its desktop application
for its user-friendly interface and the command-line tool for greater flexibility
in automated tasks.

Ganache significantly accelerated our development cycle, allowing for rapid de-
ployment iterations and enabling easy inspection of transactions and blockchain
states. Its dual functionality enhanced our development agility, providing both
visual insights and scripting capabilities essential for an Ethereum-based project.
In essence, Ganache’s local blockchain environment proved critical for our ap-
plication’s development, ensuring a fast, flexible, and efficient testing and de-
velopment process.

6
Evaluation
This chapter will present the evaluation of our devised system Aquilier. We will
present the results and findings encountered during the process. For simplicity
and readability during the evaluation, we will refer to several hashes that will
only be referenced as hash and can be found in the footnote. Each hash can
be traced on any blockchain lookup tool. During the evaluation, we will use
etherscan1. The primary objective of this project is to rigorously assess the
feasibility of employing smart contracts and blockchain technology for the
secure and reliable transfer of property access rights to tenants. We investigated
this by implementing and developing a decentralised application, Aquilier, that
harnesses the Ethereum blockchain to facilitate secure and transparent booking
transactions, explicitly focusing on the mechanism granting property access
via a smart door lock.

The Aquilier system comprises a suite of three smart contracts Booking Manage-
ment, Property Registry, and User Registry, each written in Solidity. Together,
these contracts facilitate the systematic creation, management, and oversight
of users, properties, and the booking process, leveraging the robust features of
Solidity for optimal contract performance and security.

1. etherscan: https://sepolia.etherscan.io

41

https://sepolia.etherscan.io

42 chapter 6 evaluation

We deployed the contracts on three platforms during the development: the
Ethereum Test net Sepolia, Remix Shanghai virtual machine and Ganach local
VM. We will walk through all deployments in the evaluation since they pro-
vided different insights and played a role in the assessment. During the initial
stages of development, the smart contracts were deployed in a controlled local
environment, utilising the Truffle Suite for deployment and testing purposes,
along with Ganache as a personal blockchain for Ethereum development. This
setup allowed for rapid prototyping and testing, offering a simulated blockchain
environment where transactions could be executed instantly without the costs
associated with actual network deployment. This phase was critical for ver-
ifying the basic functionality and integrity of the smart contracts, enabling
thorough debugging and refinement before moving to a more public and real-
istic blockchain test network.

The deployment of the contracts was also executed on Remix and the Shanghai
virtual machine. This choice was motivated due to the sophisticated debugging
capabilities and the opportunity for detailed inspection of the contracts’ execu-
tion processes offered by these platforms. Such strategic deployment ensures
an enhanced analysis and optimisation of contract performance, contributing
to a more robust and reliable system implementation.

When deploying locally on Ganache or to the Shanghai VM provided by Remix,
the gas consumed is purely virtual; thus, deployment can be conducted infinite
times without incurring any economic impact on these networks. Later, when
the contracts were deployed to the Sepolia testnet, it had an actual cost in
the form of Sepolia Ethereum, which must be generated, unlike the tokens on
the two virtual networks that can be replenished by simply restarting the net-
works. The Sepolia network operates as a persistent and interconnected web
of nodes executing the Ethereum protocol, maintained by consensus within a
community of developers. It is only by community consensus that this network
is designated for testing and that the tokens within have no real-world value.
The deployment of all three contracts on the Sepolia network was success-
ful. The BookingManagement contract, for example, can be reviewed at the
address2. The Proxy is designated to listen for events from the Booking Man-
agement smart contract, specifically for the event that signals when a tenant is
granted access. This Proxy is implemented in Golang, leveraging the robustness
and efficiency of a compiled language. Initially, the Proxy was programmed
to monitor transactions solely on the local Ganache blockchain. Subsequently,
it was extended to track the activity on the Sepolia network. This transition
presented a challenge, as the Sepolia network’s distributed and decentralised
nature meant that without operating a full node, we lacked a direct entry point
or knowledge of the network nodes’ IP addresses. To address this, we utilised

2. address: 0x127f3D4914724011D4e59431397DDB85DE32B0c8

https://sepolia.etherscan.io/address/0x127f3D4914724011D4e59431397DDB85DE32B0c8

6.1 deployment 43

the Infura service as an intermediary to establish a connection with the Sepolia
network. Consequently, the Proxy was extended to monitor the local blockchain
environment and the external Sepolia network through the Infura connection.
The Proxy is designed to be deployed on the same local network as the Homea-
siste network, and the smart door lock is to secure the communication between
them and lower the risk of malicious attacks

6.1 Deployment

Two approaches were adopted to verify the correct functionality of the con-
tracts. Initially, tests were written in JavaScript, leveraging the capabilities
provided by the Truffle framework. Subsequently, a script was developed to
be executed within the Truffle console for direct interaction with the deployed
contracts. This script is designed to engage with the BookingManagement con-
tract: it deploys an instance, sets up start and end dates for a booking (a week
apart), creates a new booking, and finally, attempts to grant access for the
specified booking ID. The script used for this testing process:

1 let instance = await BookingManagement . deployed ();
2

3 let startDate = Math.floor(Date.now () / 1000);
4 let endDate = startDate + (7 * 24 * 60 * 60); // One week from

the current time
5 let createTx = await instance . createBooking (1, startDate ,

endDate);
6 let bookingId = createTx .logs [0]. args. bookingId . toNumber ();
7

8 let accessTx = await instance . grantAccess (bookingId);

Listing 6.1: Test script

This practical approach adds an extra dimension of validation, ensuring that
the smart contracts perform as expected in an environment that closely mirrors
the real-world operations on the live blockchain network.

6.1.1 Deployment Cost Estimation

Deploying the contracts Sepolia test-net was an essential step, as it closely
mirrors a production environment and serves as a proxy for the Ethereum
mainnet, offering a controlled setting for realistic deployment scenarios.

For deployment to the Sepolia network, it is necessary to have a wallet. We
chose MetaMask [44] due to its widespread adoption and integration capabili-

44 chapter 6 evaluation

Figure 6.1: Screenshot of the MetaMask Wallet

ties. Figure 6.1 shows the logged-in view. The funds used on the network do
not have any real value; we utilised a faucet to generate funds for the deploy-
ment [45]. We discovered that the Remix development environment provided
a user-friendly and straightforward approach to deploying the contracts. We
monitored the deployment transactions, documenting all associated costs and
execution details.

From our observations, the transaction for deploying the contract had a cost
equivalent to 158,109 gas units. To project this expense onto the Ethereum
mainnet, it is necessary to consider the fluctuating nature of gas prices, which
are influenced by network demand and are typically higher than those on
testnets. Gas, a fundamental unit of computational measure on the Ethereum
network, remains a constant value for a given transaction, irrespective of the
network it is executed on. Therefore, the computational work, quantified as the
gas used, would be identical on the Sepolia testnet and the Ethereum mainnet.
The variable that distinguishes the cost between the two networks is the gas
price, denoted in Gwei.

6.2 event listener 45

The cost of a transaction can be calculated with the formula:

Transaction Cost = Gas Used × Gas Price (6.1)

For the specific transaction conducted on the Sepolia testnet with a gas usage of
158,109 and a gas price of 2.500000018 Gwei, the transaction fee was computed
as follows:

158, 109 × 0.000000002500000018 ETH = 0.000395272502845962 ETH
(6.2)

To simulate the same transaction on the Ethereum mainnet, the average gas
price recorded on November 7, 2023, at 31.7641 Gwei, serves as a reference.
Utilising this metric, the estimated cost on the main net would be:

158, 109 × 0.0000000317641 ETH ≈ 0.005019528749 ETH (6.3)

This exercise underscores the economic considerations of deploying and oper-
ating smart contracts on the Ethereum blockchain, particularly the implications
of gas prices that directly impact transaction fees. These costs are only to make
the contracts available, and they are only applied one time or every time we
deploy the contracts.

6.2 Event listener

In the booking management smart contract, we have implemented the grantAc-
cess method. This method is responsible for emitting the AccessGranted event,
but only after verifying two key criteria: first, that the booking in question
is active, and second, that the current time falls within the specified booking
period. The code employs two required statements if active and within the
designated time period as defined in 5.2.3. If both criteria are satisfied, the
AccessGranted event is triggered, emitting the necessary information such as
the booking ID, user address, and property ID.

The method ensures access is granted to the correct user at the right time.
When an event is emitted, it is verifiable since it is written to the tamperproof
ledger. From Figure 5.1, we can see that the user is triggering the grantAccess
method and how the Proxy listens to events and requests the home assistant
to unlock the door. In our recent series of tests designed to assess the costs
associated with Ethereum operations, we evaluated the expenses incurred from
granting access to a property via the blockchain. From our latest experiment
conducted on December 6, 2023, we observed a transaction cost amounting to
0.00005185471484204 ETH.

46 chapter 6 evaluation

Figure 6.2: Screenshot of the transaction on Sepolia Testnet

As shown in Figure 6.2, the transaction with hash3 was successfully included
in block number 4834612 on the Sepolia Testnet. This transaction invoked a
contract method, identified by the signature 0x7ca14563, originating from our
wallet hash at address⁴ and targeting the contract at hash⁵.

Notably, the transaction transferred zero Ether as part of the contract interac-
tion. The incurred cost for executing the transaction is accurately measured
at: 0.00005185471484204 ETH, calculated based on the fully utilised gas limit
of 32,120 and a gas price of 1.614405817 Gwei. Adhering to the EIP-1559 stan-
dard [46], the transaction fees were composed of a base fee of 0.114405817
Gwei, a maximum fee of 1.66213676 Gwei, and a priority fee of 1.5 Gwei. The
nonce for the transaction was 34, indicating its sequence in our wallet trans-
actions, and it was the 30th transaction in the block, reflecting its order of
processing.

3. hash: 0xa66941285bb8e3584848c8c90e6276f278333cadd4de0cc1c8ac5f1a03a0f607
4. Wallet hash address: 0x033b07896F47FAd54A549B39ac44BD46c6bd182c
5. Contract hash: 0x127f3D4914724011D4e59431397DDB85DE32B0c8

https://sepolia.etherscan.io/tx/0xa66941285bb8e3584848c8c90e6276f278333cadd4de0cc1c8ac5f1a03a0f607
https://sepolia.etherscan.io/address/0x033b07896F47FAd54A549B39ac44BD46c6bd182c
https://sepolia.etherscan.io/address/0x127f3D4914724011D4e59431397DDB85DE32B0c8

6.3 issues 47

The input data, starting with 0x7ca14563...00000001, represents the en-
coded parameters for the smart contract function call. On December 6, 2023,
the Ethereum to US Dollar exchange rate was recorded at 2,269.27 USD per
ETH [47], providing a basis for calculating the fiat monetary cost of blockchain
operations conducted in Ethereum.

The specific transaction in question incurred a cost of 0.00005185471484204
ETH. Exchange rate, the cost in US Dollars is computed as follows:

Transaction Cost (ETH)×Exchange Rate (USD/ETH) = Transaction Cost (USD)
(6.4)

0.00005185471484204 × 2, 269.27 = 0.12 USD (6.5)

Therefore, the transaction executed to unlock the door on December 6 2023,
amounted to an estimated USD 0.12.

Subsequently, applying the same conversion rate, we observed that the prior
transaction for creating the booking, accessible via this link, incurred a cost
of USD 0.51. This expense is a prerequisite for granting access to the prop-
erty.

6.3 Issues

We encountered several obstacles when connecting the Proxy to the local
Ganache service. The library web3 we used in the Proxy implementation has
connectivity incompatibilities regarding event subscribers towards local in-
stances like Ganache. We observed a virtualisation issue despite both com-
ponents being configured to listen on the same port and network. The Proxy
consistently failed to detect the AccessGranted event emitted by the smart con-
tract. This problem has proven to be quite tedious and remains unresolved.
We suspect this issue might stem from inherent limitations in Ganache’s event
emission capabilities, which could restrict its ability to dispatch certain types of
contract events reliably. The issue was not resolved but bypassed by deploying
and debugging the contract on Remix, where the Proxy immediately detected
the event. Subsequently, this resolution was also confirmed on the Sepolia
testnet.

6.3.1 Dilemma of Block Time in Booking Transactions

Another significant challenge was managing time-related aspects within the
EVM. While the booking system is naturally expressed in standardised, real-
world time, the EVM operates solely on the concept of block time 2.3. This

https://sepolia.etherscan.io/tx/0xc8f7fb0a9be60e3b525e92eb1f7f7db991ccb5c7f2bb1c96f32f40cddc093b1f

48 chapter 6 evaluation

exposed a unique challenge: effectively translating or synchronising block time
with real-world time standards. Since the EVM lacks a direct concept of now.
time, as is commonly used in conventional programming environments, finding
a method to convert or relate block time to regular time has been a hurdle that
impacts accuracy and functionality.

7
Discussion
When considering the use of smart contracts for controlling access, a funda-
mental question arises: Is it necessary to record every lock and unlock action on
a tamperproof ledger? Initially, it may seem excessive. However, this capability
ensures verifiable actions by tenants or service personnel, which can be cru-
cial in certain scenarios. Further exploration into specific use cases where this
verification level is indispensable would be beneficial, as opposed to scenarios
where simpler solutions could be adequately effective.

Another important reflection during this implementation is the potential of
smart contracts in creating a unified interface for rental agreements. Utilising
smart contracts could streamline property registration and management, offer-
ing transparency and ease of use. For instance, property owners could register
their properties on Aquilier, which becomes a central, transparent interface
accessible by various listing services such as Airbnb and Booking.com. This
integration could significantly simplify the property listing process, addressing
issues like double booking and inconsistent pricing. Utilising Aquilier and the
inherent transparency from a blockchain system would also support regulations
and governments to tax rental agreements directly. Such utilisation’s technical
and operational feasibility, including challenges and potential barriers, calls for
a detailed discussion.

This approach could revolutionise property management on digital platforms,
but it is essential to critically examine how blockchain technology can specifi-
cally address and resolve these issues beyond the conceptual advantages. The

49

50 chapter 7 discussion

discussion should, therefore, also focus on the technical specifics, operational
challenges, and real-world implications of integrating blockchain with existing
property listing platforms.

7.1 Advantages and Challenges

As we showed in our analysis and presented during the introduction to this
thises 1 The inherent transparency of blockchain ensures openly recorded and
traceable transactions, aiding tax collection and enforcement. Smart contracts
on blockchain platforms can automatically enforce regulatory requirements.
The immutable ledger provides a reliable, tamperproof record that is indispens-
able for audits and compliance. These are all features that potentially could
answer the open question from the EU research publication [1].

Integrating blockchain with existing systems presents compatibility challenges.
Scalability is crucial for handling large volumes of transactions. Balancing trans-
parency with data privacy is a key concern. Constant changes in the regulatory
environment and local variance pose barriers to adoption. Gaining public trust
and acceptance is also critical.

7.2 Security and Privacy Concerns

Addressing the privacy and security risks associated with the emission of events
by smart contracts in Aquilier, several issues have been identified, some imple-
mented, and some left for future work. The anonymisation of data is crucial.
By ensuring that the data emitted by these events is anonymised, we effec-
tively prevent the possibility of identifying specific houses or locations, thereby
safeguarding the privacy of users and properties.

Restricting who can subscribe to or access the event logs is essential. In this
context, the use of a private or permissioned blockchain emerges as a suitable
solution, offering controlled access while maintaining the benefits of blockchain
technology.

Another vital strategy is the introduction of a layer of abstraction. This approach
ensures that lock/unlock events are processed and stored securely before being
recorded on the blockchain. This layer acts as a buffer, enhancing the security
and integrity of the data.

The encryption of data within these events is critical. Encrypting this informa-

7.2 security and privacy concerns 51

tion ensures that only authorised individuals or systems can interpret the event
data. This step is crucial in enhancing the system’s overall security, ensuring
that sensitive information remains confidential and accessible only to those
with the necessary permissions.

Together, these strategies form a comprehensive approach to mitigating the in-
herent risks in blockchain-based event logging, ensuring that Aquilier operates
with the highest standards of privacy and security.

7.2.1 Potential Risks

When a smart contract associatedwith a home locking system emits events each
time a door is locked or unlocked, these events are recorded on the blockchain.
In a public blockchain scenario, this information becomes accessible to anyone
who can query the blockchain. This raises significant privacy and security con-
cerns, as malicious entities could potentially track these patterns to infer when
a house is most likely unoccupied.

To illustrate this, consider the following code snippet from our proxy server
used to subscribe and listen for events from a smart contract:

1 func EventSubscriber (contractABI abi.ABI , WsUrl string ,
ContractAddrHex string) error {

2 client , err := ethclient .Dial(WsUrl)
3 if err != nil {
4 return fmt. Errorf (" failed to connect to the WebSocket

Ethereum client : %v", err)
5 }
6 contractAddress := common . HexToAddress (SepoliaContract)
7 query := createFilterQuery (contractAddress , client)
8 defer client .Close ()
9 subscribeToEvents (client , query , contractABI)
10 return nil
11 }

Listing 7.1: Event subscription setup function

This function allows a client to connect to an Ethereum node via Infura and
subscribe to events emitted by a specified smart contract. It demonstrates how,
with basic knowledge of Ethereum and the appropriate tools, anyone can listen
to events emitted by a public smart contract. Such ease of access underlines the
potential risk: if the events contain identifiable information about lock/unlock
actions, it could be exploited to track when a property is vacant. This scenario
underscores the need for careful consideration of privacy and security measures
in the design of blockchain-based home automation systems and the need
for future work and elaboration on the security features for Aquilier. It also

52 chapter 7 discussion

highlights the imperative for continued research and development, particularly
in enhancing the security features of the Aquilier system. This is crucial for
ensuring that such systems provide convenience and efficiency and maintain
the highest security and user privacy standards.

Blockchain’s Unique Value Proposition
While the immediate utility of blockchain for routine actions like door locking
may not be apparent, its role in enhancing security and trust is undeniable.
Blockchain’s immutable ledger provides a definitive record of actions, crucial
in scenarios where proof of access is required. This technology could be partic-
ularly valuable in high-security environments or where transparency in access
control is a priority.

7.3 Cost Analysis of Smart Contract Operations

The feasibility of using blockchain for every lock and unlock action hinges on
a careful analysis of cost versus benefit. Given the transaction costs associated
with blockchain, particularly on platforms like Ethereum, evaluating whether
the enhanced security justifies the expense is essential. We will delve into this
topic during this section. We unlocked the door on the 6th of December 2023
at 0.12 USD as we showed in chapter 6.2.

The bookingmanagement smart contract incorporates a method called grantAc-
cess, which is the one that calls the smart lock and unlocks the door. This
method adheres to strict checks before allowing property access; it verifies
the booking status and ensures the access request aligns with the booking
timeframe. These verifications are crucial for maintaining the integrity and
reliability of the system. It is only three lines of optimises. We must consider
that we pay pr executed code. The smart contract enforces these rules via the
require statements, which serve as guardrails to prevent unauthorised ac-
cess 5.2.3. Only upon successful validation does the AccessGranted event get
emitted. That the proxy then picks up on and calls the unlockVirtualLock.
The immutability of the blockchain ledger where this event is recorded ensures
that the access grant is tamperproof and auditable.

The associated transaction cost is a critical aspect of deploying smart contracts
on the Ethereum blockchain. Our observed analysis on the 6th of December,
2023, revealed a transaction cost of 0.00005185471484204 ETH for invoking
the grantAccess method.

Cost (USD) = Cost (ETH) × Exchange Rate (USD/ETH) (7.1)

Cost (USD) = 0.00005185471484204 × 2269.27 ≈ 0.12 (7.2)

7.3 cost analysis of smart contract operations 53

7.3.1 Economic Feasibility

Given the transaction cost of approximately 0.12 USD to grant access and con-
sidering the previous decentralised transaction cost of 0.51 USD, we can assess
the economic feasibility of smart contract operations for property access man-
agement. The total cost of 0.63 USD for a complete booking and access cycle
is relatively minimal, suggesting that implementing such blockchain-based sys-
tems could be economically viable for commercial applications. It is important
to note that the cost efficiency stems from the low operational expenses of run-
ning smart contracts and the EIP-1559 transaction pricing mechanism, which
optimises fee structures [46].

In this example, we have only unlocked the door once the grant access cost of
0.12 USD would have to be applied each time the door needs to be locked or un-
locked. The cost of creating the booking was 0.51; in this case, the booking was
for the entire December 2023. We have previously discussed the feasibility of
doing off-chain transactions. For example, all door access can be off-chain and
only written once daily or once per booking. This would lower the transaction
considerably.

7.3.2 Practical Implications

The findings indicate promising potential for integrating blockchain technology
in real-world applications such as property management systems. The ability to
execute secure transactions with verifiable access control at a low cost provides
a strong case for adopting such systems. It is imperative to continuously monitor
the fluctuating transaction fees on the Ethereum network to maintain the
solution’s cost-effectiveness.

Network Congestion and Transaction Cost
Gas prices can escalate rapidly during periods of high demand on the Ethereum
network, such as during a significant market event or when any popular decen-
tralised finance application is processing numerous transactions. An exemplary
case of this phenomenon was observed on the 1st of May, 2022. That day, the
network experienced considerable congestion, propelling the gas prices to an
unusual high.

Given the gas price of 78.999 Gwei, as recorded on the date above, and the stan-
dard gas amount of 32,120 required for executing the grantAccess method,
we can approximate the transaction cost in Ethereum and subsequently convert
it to USD.

54 chapter 7 discussion

Transaction Cost (ETH) = Gas Used × Gas Price (ETH) (7.3)

32, 120 × 78.999 × 10−9 = 0.00253744788 ETH (7.4)

The calculation above shows the transaction cost in ETH. To convert this cost
to USD, we use the exchange rate at the time of the transaction. On the 1st of
May, 2022, the exchange rate was approximately 2730 USD per ETH.

Transaction Cost (USD) = Transaction Cost (ETH)×Exchange Rate (USD/ETH)
(7.5)

Transaction Cost (USD) ≈ 0.00253744788×2730 = 6.92723271USD (7.6)

With the given gas price and exchange rate, the cost to execute the grantAccess
transaction on the 1st of May, 2022, would have been approximately 6.92 USD.
This theoretical exercise highlights the impact of network congestion influenc-
ing transaction costs on the Ethereum blockchain and underscores the need
for strategic transaction timing to mitigate expenses.

Blockchain technology’s inherent transparency and robust security features
significantly contribute to building trust in digital access control systems. Trust
comes with associated costs of the variable nature of market-driven expenses,
such as transaction fees in blockchain networks. As we decentralise and anonymise
the workload for everyday transactions, these costs will inevitably vary accord-
ing to market fluctuations. Despite this, the trade-off may lead to a more se-
cure and uniform solution, offering enhanced interoperability across different
platforms and systems. This potent, decentralised, interoperable, and secure
framework makes blockchain a compelling option for future digital access con-
trol solutions. In conclusion, the successful deployment and operation of the
booking management smart contract on the Sepolia Testnet demonstrate the
practicality and affordability of blockchain-based access control systems. The
cost analysis underscores the potential for widespread adoption, especially as
blockchain technology evolves and matures.

Alternatives and Hybrid Approaches
Ensuring security and trust should be considered, especially for routine actions.
A hybrid approach could be more practical,where blockchain is reserved for crit-
ical transactions, and conventional methods are used for everyday actions. This
approach could balance the benefits of blockchain with operational efficiency.
Additionally, exploring advanced blockchain solutions like Layer 2 protocols or
alternative, less costly blockchains might offer a more viable.

7.4 automated economic security in booking management 55

7.4 Automated Economic Security in Booking
Management

Automated Economic Security in Booking Management via Ethereum In decen-
tralised applications, Ethereum-based smart contracts offer innovative solutions
for booking management and tenant transactions. Utilising Ethereum for these
purposes introduces a system where tenants can be charged automatically, en-
suring seamless and secure financial transactions. In Babel et al. [48] research
titled "Clockwork Finance: Automated Analysis of Economic Security in Smart
Contracts", he underscores the necessity of automated tools to analyse poten-
tial economic vulnerabilities, particularly in contracts handling tenant charges
and booking logistics.

7.5 Etherum node vs service

The use of Infura as a designated service is a strategic choice, providing stable
and continuous access to the Ethereum network. This eliminates the complexity
of maintaining our blockchain nodes, ensuring the reliability and scalability
of our DApp. Incorporating smart lock technology is the final piece in our
system, enabling the physical enactment of digital permissions granted by our
smart contracts. This convergence of digital authorisation and physical access
minimises the innovative essence of ourDApp, positioning it as a comprehensive
solution for modernising and securing property rentals.

7.6 Future Work

As Aquilier continues to evolve, several avenues for future development and
research have emerged, each offering potential enhancements and utilising to
the current system.

Privacy and Anonymising data
A multifaceted approach is essential in addressing the privacy and security
challenges posed by blockchain-based home automation systems. A key strategy
involves anonymising or blurring event data within the blockchain. By masking
sensitive details, we can prevent the direct association of lock/unlock events
with specific properties or times, thereby enhancing privacy. Simultaneously,
exploring permission-based blockchains or off-chain transactions is a viable
solution for sensitive event logging.

56 chapter 7 discussion

These specialised blockchain environments restrict access to authorised partic-
ipants, significantly reducing the risk of public data exposure.

Additionally, integrating advanced encryption protocols plays a crucial role
in securing data transactions within the blockchain. This encryption ensures
that any data emitted in blockchain events remains secure and indecipherable
to unauthorised parties. Furthermore, refining the design and logic of smart
contracts is crucial. By modifying these contracts to log events and incorpo-
rate privacy-preserving elements selectively, we can significantly minimise the
emission of sensitive information.

Collectively, these strategies form a comprehensive approach to mitigate the
inherent privacy and security risks in blockchain-based home automation sys-
tems, ensuring that the system remains functional and secure and adheres to
the highest standards of user privacy and data protection.

Advanced User Authentication Methods
Implementing more sophisticated authentication mechanisms, like biometric
verification ormulti-factor authentication, could further strengthen the security
of property access within Aquilier. Upgrade the design to aquilier, including
its own node or multiple chain nodes running on the proxy server. This would
allow users to, for example, scan a QR code and authenticate themselves at the
door or via the phone.

Cost Efficiency
Implement off-chain transactions that can enable the user to choose the fre-
quency of committing transactions to the ledger, for example, every day or
month, alternatively on request. Continuous efforts to optimise the scalability
and performance of Aquilier will be crucial, especially as the user base grows
and transaction volumes increase.

Integration features
Offer a designated API that can easily provide the same service as Aquilier to
other platforms.

Interoperability alternative Smart Home Systems
Expanding Aquilier’s compatibility with a broader range of smart home systems
could greatly increase its market adoption and user convenience.

Decentralised Governance Models
Investigating decentralised governance mechanisms for platform management
could offer a more democratic and transparent way of handling updates and
changes to the system.

7.6 future work 57

Legal and Regulatory compliance
Further research into the legal and regulatory aspects of using blockchain in
the rental market will be vital, particularly as laws and norms around digital
transactions and property rentals evolve.

Environmental Impact Analysis
Assessing and minimising the environmental impact of blockchain technology,
especially in terms of energy consumption, aligns with growing concerns over
sustainable digital solutions. The system itself might contribute to environmen-
tal impact, for example, in areas where restrictions are applied or where the
more efficient way of utilising homes might decrease the environmental impact
due to lower demand for designated short-term rental units.

Each of these areas presents an opportunity to enhance Aquilier’s functionality,
security, and market relevance, ensuring that the application remains at the
forefront of technological innovation in the rental market.

8
Conclusion
In this thesis, we stated that Utilising Ethereum smart contracts to transfer
property access can automate property management and enhance security
and operational efficiency. We confirm through the development of Aquilier
that utilising Ethereum smart contracts to transfer property access is feasible.
The adaptation of smart contracts brings inherited features such as security and
transparency. Consequently, this approach further automates and integrates
with smart home systems as we prove that blockchain technology is technically
feasible and economically viable.

Given the requirements in chapter 4, Our devices system Aquilier fulfilled the
technical requirement 1. A user should be able to request access to a property
they have booked. We showed how this feature is implemented in 5.2.3 and
evaluated its execution in 6.2. As a result of the initial requirements, Aquilier
also fulfilled all other functional requirements. Our evaluation shows that using
blockchain to unlock the door would cost, on average, approximately 0.12 USD.
Suppose every access to the ledger is committed immediately, considering the
worst-case scenario. In that case, one can afford to open the door 83 times a
month or 2,6 times a day before reaching the stated threshold of 10 USD amonth
in our requirements 9. This cost can be further improved by implementing off-
chain transactions as discussed in future work 7.6 and only committing daily
or monthly bulk transactions to the Ethereum network, significantly reducing
the cost.

59

60 chapter 8 conclusion

By implementing authentication via MetaMask, we securely fulfilled require-
ments 3 and 6. We also assure privacy by authenticating users. At the same
time, we exposed an important issue regarding data privacy. If each access is
written to the public ledger, anyone can listen to the event on the blockchain
and see when one is home. We discussed this in chapter 7.2.1 and proposed
significant improvement in our section future work 7.6.

On days when no access has been requested, write operations would not be
necessary, further reducing the cost. Additionally, with an off-chain solution,
the user could control the cost themself if the frequency of writing transactions
could be configured to the user’s preference, for example, once per tenant in
a short-term rental agreement or when the user requests to write the trans-
actions. One of the inherent advantages of using smart contracts in property
management is their enhanced security and transparency. The immutable and
cryptographic security features of blockchain are an important aspect that
brings added value, something we listed as a requirement in the chapter 6. We
also see the transparency that comes with a public ledger system ensures that all
transactions are traceable and auditable, fostering a trustworthy environment
for all parties involved in the rental market.

While blockchain offers significant advantages in terms of security and trust,
Its application in routine actions such as door access control must be carefully
considered,weighing the costs, benefits, and impacts on user experience. Future
advancements in blockchain technology could potentially make the application
more practical and widespread in smart home systems. While the Aquilier
design method is feasible, it is imperative to investigate alternatives and hybrid
solutions where off-chain transactions might be an option.

9
Appendix
The code of our devised system Aquilier can be found on
GitHub repo: https://github.com/niklasstrand/Aquilier

61

https://github.com/niklasstrand/Aquilier

Bibliography
[1] European Parliament. Blockchain and the General Data Protection Regu-

lation: Can distributed ledgers be squared with European data protection
law? Accessed: 2023-11-18. 2023. url: https://www.europarl.europa.
eu/RegData/etudes/BRIE/2023/739334/EPRS_BRI(2023)739334_EN.
pdf.

[2] Municipal Research and Services Center. Affordable Housing and the
Impact of Short-Term Rentals. Accessed 2023-11-18. 2021. url: https://
mrsc.org/stay-informed/mrsc-insight/december-2021/affordable-
housing-and-the-impact-of-short-term-re.

[3] Federal Trade Commission. Rental Listing Scams. Accessed: 2023-12-01.
n.d.

[4] Primavera De Filippi, Morshed Mannan, andWessel Reijers. “Blockchain
as a confidence machine: The problem of trust challenges of gover-
nance.” In: Technology in Society 62 (2020), p. 101284. issn: 0160-791X.
doi: https://doi.org/10.1016/j.techsoc.2020.101284.

[5] Nguyen. Truong et al. “A blockchain-based trust system for decentralised
applications: When trustless needs trust.” In: Future Generation Com-
puter Systems 124 (2021), pp. 68–79. issn: 0167-739X. doi: https:
//doi.org/10.1016/j.future.2021.05.025.

[6] Anne Håkansson. Portal of Research Methods and Methodologies for Re-
search Projects andDegree Projects. Tech. rep. Kista, Sweden: Department
of Software and Computer Systems, The Royal Institute of Technology
KTH, 2013.

[7] Nayan B. Ruparelia. “Software Development Lifecycle Models.” In: SIG-
SOFT Softw. Eng. Notes 35.3 (May 2010), pp. 8–13. issn: 0163-5948.
doi: 10.1145/1764810.1764814.

[8] Infura. Documentation. https://docs.infura.io/. Accessed: 2023-11-
28. 2023.

[9] Aakash Sharma et al. “Capturing Nutrition Data for Sports: Challenges
and Ethical Issues.” In: 29th International Conference on MultiMedia Mod-
eling. 2023.

[10] Håvard D. Johansen et al. “Scalable Infrastructure for Efficient Real-
Time Sports Analytics.” In: Companion Publication of the 2020 Interna-
tional Conference on Multimodal Interaction. ICMI ’20 Companion. Vir-

63

https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739334/EPRS_BRI(2023)739334_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739334/EPRS_BRI(2023)739334_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739334/EPRS_BRI(2023)739334_EN.pdf
https://mrsc.org/stay-informed/mrsc-insight/december-2021/affordable-housing-and-the-impact-of-short-term-re
https://mrsc.org/stay-informed/mrsc-insight/december-2021/affordable-housing-and-the-impact-of-short-term-re
https://mrsc.org/stay-informed/mrsc-insight/december-2021/affordable-housing-and-the-impact-of-short-term-re
https://doi.org/https://doi.org/10.1016/j.techsoc.2020.101284
https://doi.org/https://doi.org/10.1016/j.future.2021.05.025
https://doi.org/https://doi.org/10.1016/j.future.2021.05.025
https://doi.org/10.1145/1764810.1764814
https://docs.infura.io/

64 BIBLIOGRAPHY

tual Event, Netherlands: Association for Computing Machinery, 2020,
pp. 230–234. isbn: 9781450380027. doi: 10.1145/3395035.3425300.

[11] Tor-Arne S. Nordmo et al. “Dutkat: A Multimedia System for Catching
Illegal Catchers in a Privacy-Preserving Manner.” In: Proceedings of the
2021 Workshop on Intelligent Cross-Data Analysis and Retrieval. ICDAR
’21. Taipei, Taiwan: Association for Computing Machinery, 2021, pp. 57–
61. isbn: 9781450385299. doi: 10.1145/3463944.3469102.

[12] Nick Szabo. Smart Contracts. Accessed: 2023-10-31. 1994. url: https:
//www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.
html.

[13] Nick Szabo. “Formalizing and Securing Relationships on Public Net-
works.” In: First Monday 2.9 (1997).

[14] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decen-
tralized Application Platform. Accessed: 2023-10-30. 2014. url: https:
//ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-
_Buterin_2014.pdf.

[15] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Ac-
cessed: 2023-10-30. 2008. url: https://bitcoin.org/bitcoin.pdf.

[16] Everett Hildenbrandt et al. “KEVM: A Complete Formal Semantics of
the Ethereum Virtual Machine.” In: 2018 IEEE 31st Computer Security
Foundations Symposium (CSF). 2018, pp. 204–217. doi: 10.1109/CSF.
2018.00022.

[17] Loi Luu et al. “Making Smart Contracts Smarter.” In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM. 2016, pp. 254–269.

[18] Ying Fu et al. “EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Test-
ing.” In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2019. Tallinn, Estonia: Association for
Computing Machinery, 2019, pp. 1110–1114. isbn: 9781450355728. doi:
10.1145/3338906.3341175.

[19] Ethereum. Gas and fees. Accessed: 2023-09-21. 2023. url: https://
ethereum.org/en/developers/docs/gas/.

[20] Renlord Yang. “Empirically Analyzing Ethereum’s Gas Mechanism.” In:
arXiv preprint arXiv:1905.00553 (2019).

[21] Ethereum.org. Blocks. Accessed: 2023-11-30. 2023. url: https : / /
ethereum.org/en/developers/docs/blocks/ (visited on 11/30/2023).

[22] Clemens Brunner et al. “DID and VC:Untangling Decentralized Identi-
fiers and Verifiable Credentials for theWeb of Trust.” In: ICBTA ’20. Xi’an,
China: Association for Computing Machinery, 2021, pp. 61–66. isbn:
9781450388962. doi: 10.1145/3446983.3446992.

[23] Airbnb. https://www.airbnb.com. Accessed: 2023-09-21.
[24] Booking.com. https://www.booking.com. Accessed: 2023-09-21.

https://doi.org/10.1145/3395035.3425300
https://doi.org/10.1145/3463944.3469102
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/3338906.3341175
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/blocks/
https://doi.org/10.1145/3446983.3446992
https://www.airbnb.com
https://www.booking.com

BIBLIOGRAPHY 65

[25] Rentalia. https://rentalia.com/. Accessed: 2023-09-21.
[26] Home2Book. https://www.home2book.com/. Accessed: 2023-09-21.
[27] VRBO. https://www.vrbo.com. Accessed: 2023-09-21.
[28] Expedia. https://www.expedia.com. Accessed: 2023-09-21.
[29] HomeAway. https://www.homeaway.com. Accessed: 2023-09-21.
[30] TripAdvisor Rentals. https://www.tripadvisor.com/Rentals. Accessed:

2023-09-21.
[31] FlipKey. https://www.flipkey.com. Accessed: 2023-09-21.
[32] Agoda Homes. https://www.agoda.com/homes. Accessed: 2023-09-21.
[33] TUI Villas. https://www.tuivillas.com. Accessed: 2023-09-21.
[34] Homestay.com. https://www.homestay.com. Accessed: 2023-09-21.
[35] Zillow Rentals. https://www.zillow.com/rent/. Accessed: 2023-09-21.
[36] Trivago. https://www.trivago.com. Accessed: 2023-09-21.
[37] HomeToGo. https://www.hometogo.com. Accessed: 2023-09-21.
[38] Airbnb. Airbnb 2023 Winter Release: Smart Lock Integration. Accessed:

2023-11-08. 2023. url: https://news.airbnb.com/product-releases/
airbnb-2023-winter-release/.

[39] Booking.com. Smart home technology for your short-term rental. Ac-
cessed: 2023-11-15. url: https : / / partner . booking . com / en - gb /
help/legal- security/security/protecting- your- home- property-
security-devices.

[40] Home Assistant. Common Tasks for Container. https : / / www . home -
assistant.io/common-tasks/container/. Accessed: 2023-10-26.

[41] Home Assistant. Home Assistant Core: Open Source Repository. https:
//github.com/home-assistant/core. Accessed: 2023-10-26. 2023.

[42] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A Survey of At-
tacks on Ethereum Smart Contracts SoK.” In: Proceedings of the 6th
International Conference on Principles of Security and Trust - Volume
10204. Berlin, Heidelberg: Springer-Verlag, 2017, pp. 164–186. isbn:
9783662544549. doi: 10.1007/978-3-662-54455-6_8.

[43] Leyla Moctar M’Baba et al. “Extracting Artifact-Centric Event Logs From
Blockchain Applications.” In: 2022 IEEE International Conference on Ser-
vices Computing (SCC). 2022, pp. 274–283. doi: 10.1109/SCC55611.
2022.00048.

[44] ConsenSys Software Inc.MetaMask - A crypto wallet & gateway to blockchain
apps. Accessed: 2023-09-21. 2023. url: https://metamask.io/.

[45] Sepolia Faucet. Accessed: 2023-09-21. url: https://sepolia-faucet.
pk910.de/#/.

[46] Yulin Liu et al. “Empirical Analysis of EIP-1559: Transaction Fees,Waiting
Times, and Consensus Security.” In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’22. ACM,
Nov. 2022. doi: 10.1145/3548606.3559341.

[47] Ethereum Price. Accessed: 2023-12-06. Crypto.com. url: https : / /
crypto.com/price/ethereum.

https://rentalia.com/
https://www.home2book.com/
https://www.vrbo.com
https://www.expedia.com
https://www.homeaway.com
https://www.tripadvisor.com/Rentals
https://www.flipkey.com
https://www.agoda.com/homes
https://www.tuivillas.com
https://www.homestay.com
https://www.zillow.com/rent/
https://www.trivago.com
https://www.hometogo.com
https://news.airbnb.com/product-releases/airbnb-2023-winter-release/
https://news.airbnb.com/product-releases/airbnb-2023-winter-release/
https://partner.booking.com/en-gb/help/legal-security/security/protecting-your-home-property-security-devices
https://partner.booking.com/en-gb/help/legal-security/security/protecting-your-home-property-security-devices
https://partner.booking.com/en-gb/help/legal-security/security/protecting-your-home-property-security-devices
https://www.home-assistant.io/common-tasks/container/
https://www.home-assistant.io/common-tasks/container/
https://github.com/home-assistant/core
https://github.com/home-assistant/core
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1109/SCC55611.2022.00048
https://doi.org/10.1109/SCC55611.2022.00048
https://metamask.io/
https://sepolia-faucet.pk910.de/#/
https://sepolia-faucet.pk910.de/#/
https://doi.org/10.1145/3548606.3559341
https://crypto.com/price/ethereum
https://crypto.com/price/ethereum

66 BIBLIOGRAPHY

[48] Kushal. Babel et al. “Clockwork Finance: Automated Analysis of Eco-
nomic Security in Smart Contracts.” In: 2023 IEEE Symposium on Secu-
rity and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society,
May 2023, pp. 2499–2516. doi: 10.1109/SP46215.2023.10179346.

https://doi.org/10.1109/SP46215.2023.10179346

