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Objective: This study aims to assess the ability of state-of-the-art machine
learning algorithms to detect valvular heart disease (VHD) from digital heart
sound recordings in a general population that includes asymptomatic cases
and intermediate stages of disease progression.
Methods: We trained a recurrent neural network to predict murmurs from heart
sound audio using annotated recordings collected with digital stethoscopes from
four auscultation positions in 2,124 participants from the Tromsø7 study. The
predicted murmurs were used to predict VHD as determined by echocardiography.
Results: The presence of aortic stenosis (AS) was detected with a sensitivity of
90.9%, a specificity of 94.5%, and an area under the curve (AUC) of 0.979 (CI:
0.963–0.995). At least moderate AS was detected with an AUC of 0.993 (CI:
0.989–0.997). Moderate or greater aortic and mitral regurgitation (AR and MR)
were predicted with AUC values of 0.634 (CI: 0.565–703) and 0.549 (CI: 0.506–
0.593), respectively, which increased to 0.766 and 0.677 when clinical variables
were added as predictors. The AUC for predicting symptomatic cases was higher
for AR and MR, 0.756 and 0.711, respectively. Screening jointly for symptomatic
regurgitation or presence of stenosis resulted in an AUC of 0.86, with 97.7% of
AS cases (n=44) and all 12 MS cases detected.
Conclusions: The algorithm demonstrated excellent performance in detecting AS
in a general cohort, surpassing observations from similar studies on selected
cohorts. The detection of AR and MR based on HS audio was poor, but accuracy
was considerably higher for symptomatic cases, and the inclusion of clinical
variables improved the performance of the model significantly.
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Introduction

Valvular heart disease (VHD) is a major source of dysfunction, reduced quality of life,

early death, and increased healthcare costs (1–3). The prevalence of VHD in the United

States is estimated to be 2.2% in the general population and 13.3% among those aged

75 years or older (4). The prevalence of aortic stenosis (AS), the most common form of
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VHD in developed countries, which has a poor prognosis when left

untreated, was estimated to 12.4% in those 75 years or older based

on data from European countries and North America in 2013 (5).

Prevalence rates of mitral regurgitation (MR) and aortic

regurgitation (AR) are also strongly age-dependent (6, 7), and

with the projected growth of the elderly population and the rapid

increase of VHD prevalence with age, the societal burdens of

VHD are expected to increase considerably (2).

Although studies have indicated that a stethoscope can be a

cost-efficient screening tool for cardiovascular disease, its

potential utility is limited by the increasing time constraints

imposed on doctors, the declining skill of healthcare providers in

performing cardiac auscultation (8–10), and low interrater

agreement (11). While the echocardiogram is the gold standard

for detecting VHD, it is expensive (12) and requires highly

trained personnel to analyze its results and therefore cannot

replace the stethoscope as a front-line screening tool. Effective

treatment of VHD exists (13), which further highlights the need

for inexpensive and scalable screening methods. Deep learning

models have shown promising results in HS classification over

recent years (14, 15), and successful implementation of such

automated methods could offer several advantages over manually

performed auscultation. Machine learning algorithms have the

potential to improve upon auscultation performance in clinical

settings as they are not subject to many of the potential sources

of random error that influence human judgment, such as stress

or poor sleep. Algorithms can also minimize the influence of

random errors in training by extracting trends rather than

reproducing each label (i.e., overfitting); thus, they can not only

match but also potentially exceed the performance of the

annotators that generate the data, especially when multiple raters

are used since data aggregation can produce more reliable

ratings. Also, unlike humans, time available for practice is a non-

issue. Finally, algorithms can grant widespread access to the

performance of the most skilled practitioners in ideal settings

where they perform at their best.

Although impressive ML results in cohorts of patients with

known heart disease and healthy controls have been achieved, the

ability of state-of-the-art methods to effectively screen for VHD

using heart sounds in a general population has not been

demonstrated. Due to the rarity of significant VHD relative to the

large amounts of data required to train deep neural networks, the

standard practice in automated HS analysis research is to enroll

study participants from hospitals. It is plausible that this practice

results in a high prevalence of more detectable and/or symptomatic

cases, which in turn might bias test metrics (16). This is a potential

problem since the degree of detectability and the presence of

symptoms are not always reliable indicators of VHD severity (17–

19). As such, it is important to assess the impact of the procedure

for enrolling study participants on algorithm performance metrics.

Our primary aim was to explore this effect and investigate the

potential of machine learning technology as a front-line screening

tool for detecting undiagnosed VHD from heart sounds in a

general population. To assess this potential, we developed a

murmur detection algorithm using state-of-the-art methods, which

we then used to screen for left-sided VHD. We aimed to establish
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which pathological cases are reliably detected and how detectability

relates to disease severity and presence of symptoms. Since our

dataset uniquely had four murmur-annotated heart sound

recordings per person, we also investigated how to efficiently use

murmur grade predictions to predict AS through a multivariate

regression analysis where we take predicted murmur grades as

input variables. Finally, we aimed to establish whether combining

clinical variables with heart sound-based algorithm predictions can

improve VHD screening using a multivariate regression analysis.
Methods

Study design

The Tromsø study is an ongoing population-based prospective

study that was initiated in 1974 in the municipality of Tromsø,

Norway. The seventh and most recent survey was carried out in

2015 and 2016, which provided the data used in this study (20).

All inhabitants of Tromsø aged 40 years or older (age ranging

from 40 to 99 years) were invited to participate in the study. The

Tromsø study is the largest study of its kind in Norway, with

32,591 people invited to participate in its seventh iteration, of

which 64.7% participated. A randomly selected subset of the

participants underwent echocardiography examinations (n =

2,340) and physical examinations, which included cardiac

auscultation (n = 2,409) (21). In total, 2,132 participants

underwent both echocardiography and heart sound recording,

and these make up the dataset examined in this study. See

Figure 1 for a flowchart overview of the data collection.

All study participants received questionnaires by email, and from

the questionnaires, we collected information on the following

variables: breathlessness [breathlessness while (1) resting, (2) walking

calmly on level ground, and (3) walking up a hill], mMRC scale

(modified medical research council dyspnea scale from 0 to 4),

blood pressure, chest pain, angina pectoris, smoking status, and

diabetes. Questions on clinical conditions were of the form “Do you

or have you had ….” For all participants, we had access to their

gender, age, and body mass index (BMI), and from physical

examinations, we had access to their heart rate (prior to a

spirometry test) and pulse oximetry results. Percentages of data

missing for these variables were 4.24% (breathlessness while resting

or walking calmly on level ground), 6.03% (mMRC scale), 2.45%

(high blood pressure), 1.7% (chest pain), 4.0% (angina), 1.4%

(smoking status), 2.8% (diabetes), 6.12% (heart rate), and 5.93%

(pulse oximetry reading). More details on the tabular data are

provided in Supplementary Table S1. In the multivariate analysis

(see pages 19 and 20), missing questionnaire answers were filled in

using the most frequent answer. Given the low prevalence of missing

values, we did not believe this to be a significant source of bias.
Heart sound recording

In the Tromsø7 study, a microphone was attached (Sennheiser

MKE 2-EW) inside the tube of a stethoscope (Littmann Classic II),
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FIGURE 1

Data flowchart. Flowchart overview of how the final study dataset was formed and howmany samples were excluded due to noisy or incomplete data.
The values at the end show the number of usable (absence of considerable noise) recordings annotated with murmur grades and grades of AR, MR, AS,
and MS for each auscultation position. VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral regurgitation; AS, aortic stenosis; MS, mitral
stenosis.
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positioned 10 cm from the chestpiece. The microphone was

connected to a wireless system (Sennheiser EW 112-P G3-G) that

transmitted the sound signal to a computer via an external sound

card (Scarlett 2i2, Focusrite Audio). Heart sounds were recorded for

10 s. Audio files were recorded in the “.wav” format in a single

monophonic channel with a depth of 16 bits at a rate of 44,100 Hz.

Participants were sitting in a chair and were asked to breathe

normally. For each participant, recordings were collected in four

locations: aortic (second intercostal space, right parasternal line),

pulmonic (second intercostal space, left parasternal line), tricuspid

(fourth intercostal space, left parasternal line), and mitral positions

(fifth intercostal space, left midclavicular line), which in the

following will be referred to as positions 1–4 when convenient.

More details on the recording procedure can be found in the paper

by Andersen et al. (11).
Heart sound annotation and training target

The few cases of VHD in the study cohort meant that we did not

have enough statistical power in our data to both effectively develop

models and estimate performance, and we therefore decided to

train the deep learning model to predict murmur grades and

subsequently predict VHD based on prediction of this proxy target.

A comparison between models trained on VHD and murmur

grades is given in the Supplementary Materials under “Training

with VHD as label”. The heart sound recordings were annotated by

two general practitioners (GPs) (AD and SA) working on PhD
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projects on heart sounds. AD is a GP specialist with 2 years of

training in cardiology. Ahead of the annotation, the two GPs, a

professor of cardiology (HS) and a professor of general practice

(HM), independently annotated 400 recordings, discussed all

disagreements, and reached a consensus on the presence and

quality of murmurs. This training was reinforced at intervals

throughout the annotation process when the two annotators

discussed disagreements and pursued consensus on the presence of

murmurs. The consensus outcomes, to which HM and HS also

contributed, are not dealt with in this paper. The annotators

watched spectrogram visualizations of the recordings (using Adobe

Audition CS6) while classifying the heart sounds. They were blind

to the echocardiography results and other information about study

participants during the HS annotation.

Each recording was annotated as either normal, systolic murmur,

diastolic murmur, or noise (unable to tell whether there is a murmur

due to interference or low quality). Any perceived murmurs were

graded on a scale from 1 (faint) to 6 (distinct), referencing the

Levine scale, which is commonly used in clinical practice (22).

However, the scale is not directly transferable to recordings, as

grades 4–6 are associated with a palpable thrill. Therefore, in our

annotated set, grades higher than 3 only reflect increases in

murmur loudness and no other aspects associated with the Levine

scale. A total of 2,129 participants were annotated with both

murmur and VHD grades. Of these, five were removed due to

corrupted audio files, resulting in an effective sample of 2,124

participants and 8,496 annotated audio files (1,416 min of audio).

We trained the algorithm only on the recordings that both
frontiersin.org
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annotators had agreed were not noisy (recordings will hereafter

simply be referred to as noisy and non-noisy). In total, there were

129 (6.1%), 113 (5.3%), 60 (2.8%), and 150 (7.1%) noisy recordings

in positions 1–4, respectively. A total of 1.4% of participants had

noise in all four recordings, which were excluded from the analysis.

For single-recording-based prediction, only non-noisy recordings

were used. For predictions using several recordings, which could

have a mixture of noisy and non-noisy recordings (see the section

on AS prediction using multiple recordings), noisy recordings were

assigned grade 0 (murmur absent).

We used the average of the two annotators gradings to

represent the murmur grade of each position. In the following,

this variable is referred to simply as the murmur grade. By this

convention, the dataset contained 465, 280, 303, and 196 cases of

murmur grade > 0 in positions 1–4, respectively, and 1,244 audio

recordings for which at least one annotator perceived a murmur.
Echocardiography

The primary endpoint of this study was the presence of clinically

relevant VHD determined via echocardiography. All echocardiography

examinations were performed according to the American Society of

Echocardiography’s Guidelines using a GE Vivid E9 (GE Medical,

Horten, Norway) ultrasound scanner (23). The examination was

performed by an experienced echo technician before the heart

sounds were annotated, and a reading of the results was performed

by an experienced physician (MS) (21). AS and MS severity was

graded on a scale of 0 to 3 (absent, mild, moderate, and severe), and

AR and MR severity on a scale of 0 to 4 (absent, trace, mild,

moderate, and severe). AS was graded by the aortic valve mean

pressure gradient (AVPGmean) using cutoff values of 15 mm Hg

(mild), 20 mm Hg (moderate), and 40 mm Hg (severe) (24).
Algorithm development

The murmur detection algorithm was trained using all HS

recordings; we did not distinguish between their positions during

training (the model did not “know” which position a recording came

from). Network training and prediction were performed in MATLAB

using the MATLAB deep learning toolbox. The model and data

processing used in this study were based on a study by Latif et al., in

which state-of-the-art results were achieved for detecting abnormal

heart sounds on the PhysioNet 2016 challenge dataset using recursive

neural networks (RNNs) (15). For network architecture, we used a

two-layer (50 neurons each) long-short-term-memory (LSTM)

network, followed by a fully connected layer consisting of 30 neurons

(Supplementary Figure S1 shows the model architecture), which

finally connects to a regression layer that predicts murmur grades.

See the Supplementary Materials for a performance comparison

between models trained using binary and continuous labels. The

initial learning rate was set to 0.002 and was halved every five

epochs. To balance the ratio of murmur to non-murmur samples, we

resampled from the class with murmur grade≥ 1 until the ratio of

murmur grade≥ 1 to murmur grade < 1 was approximately 1:1.
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After performing spike removal [following the steps outlined in

a 2009 paper by Schmidt et al. (25)] and downsampling the signal

to a sampling rate of 2,205 Hz, each recording was segmented into

six overlapping (50%) blocks, each consisting of four cardiac cycles

(each cycle starting and ending at the start of the first heart sound,

S1). Detection of cardiac cycle boundaries was achieved using a

version of the segmentation algorithm of Springer et al. (26, 27)

that we modified to utilize information from multiple recordings

to obtain a more robust heart-rate estimate (detailed descriptions

of the modifications are given in the Supplementary Materials).

For each segment, the 13 first Mel frequency cepstral coefficients

(MFCCs) were computed, where we used the Hanning window

function with a step size of 25 ms and a window overlap of

10 ms for computation of the spectrogram. The input units to

the LSTM network were finally obtained by resizing the MFCC

matrix to 13 × 200 dimensions using cubic interpolation, followed

by subtracting the mean and dividing by the standard deviation

of the matrix. The median predicted murmur grade over the six

blocks was taken as the prediction for the whole audio recording.

Supplementary Figure S2 provides a schematic overview of the

steps that convert raw audio input to algorithm prediction.
Predicting AS using multiple auscultation
positions

We hypothesized that more accurate prediction could be achieved

by aggregating murmur grade predictions from all four recordings in a

linear multivariate predictive model rather than predicting AS using

audio from a single predetermined position. In the following, these

models are referred to as the multiposition model and single-position

model, respectively, and we refer to the prediction using the aortic

position for input as the first single-position model, and so on. As

there were only 45 cases of AS≥ 1 in the subset used for cross-

validation (CV), using AS classification accuracy for model selection

would likely result in overfitting. Therefore, we instead modeled

AVPGmean as a function of murmur grade predictions using linear

regression and based AS prediction on this model. As model

candidates, we considered linear regression models that contain up to

second-degree terms and noise indicator terms (taking values 0 and

1) that effectively adjust the weights of the non-noisy positions when

one or more positions have noisy recordings. Model selection was

performed by starting with a base model with one term for each

murmur grade prediction, and then terms with low p-values (p >

0.05) were stepwise added or eliminated to find the submodel with

the lowest Bayesian information criterion (BIC) value—a measure of

goodness of fit that penalizes high model complexity. After the best

model had been estimated by this procedure, we added, in a similar

manner, the noise indicator terms. After the model had been

selected, the parameters were re-estimated on the training set of each

cross-validation split.

To testwhether using all four recordings improved the predictionof

AVPGmean, we computed the AUC for the prediction of AVPGmean

> u across a range of thresholds (u = 7–30 mm Hg) using the multiple-

position model and compared it to each of the single-position models.

For comparison against the ith single-position model (the model that
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utilizes audio from position i to make predictions), we excluded

observations with noise in the ith position.
Performance estimation and model
comparison

Due to the small number of clinically relevant cases of VHD in the

dataset, we opted to rely primarily on eightfold CV to estimate

performance for all predictive models. Using the same dataset for both

model finetuning and performance estimation can result in

overestimating model performance. Prior to performing any data

analysis, we therefore set aside a holdout set containing data from 212

(∼10% of the data) participants, which contains a total of 91 cases (at

the audio level) of murmur grade≥ 1 and 55 cases murmur grade≥ 2.

We referred to the remaining set of 1,912 participants as the

development set that we used for CV and model development. The

tuning of the model and data-processing hyperparameters were made

on the basis of murmur prediction performance and not the

prediction of VHD. Finally, most decisions concerning model

architecture and data processing were based on a previous study, thus

minimizing overfitting as a result of fine-tuning the model to the

development set. After the models were developed and results

obtained, we retrained the murmur detection algorithm using the

whole development set and tested for potential overfitting on the

holdout set. All data splits were based on participant identification

numbers to ensure independence.
Combining clinical variables and heart
sound predictions

We wanted to see whether deep learning features derived from

heart sounds and traditional clinical variables combined could

produce more accurate VHD predictions than either type of

information in isolation. To this end, we created, for each VHD, a

multivariate logistic regression model that takes as input a set of

clinical variables as well as the VHD prediction by RNN models to

form a predictor that incorporates both sources of input. The clinical

variables we considered were age, gender, breathlessness during

various activities, smoking, pulse spirometry readings, and heart rate.

We also tested whether the increases in risk associated with the

increase in murmur grade varies between men and women by

including an interaction term. The predicted murmur grades were

aggregated and entered the models as follows: the AS model used the

output of the multiposition model described above, the MR model

used the grade predicted from the mitral position, and the MR and

MS models used the highest murmur grade for each set of four

recordings (the maximum murmur grade). The RNN predictions

were collected from the validation sets during cross-validations.
Influence of symptoms on detectability

To test the hypothesis that symptomatic cases of AR and MR are

more detectable in heart sounds than asymptomatic cases, we
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considered the prevalence of symptomatic cases in two subsets of AR

and MR cases: those that the algorithm correctly identified and those

that it missed (true positives and false negatives). If symptomatic cases

tend to be more easily detected in heart sounds, we expect to see a

higher prevalence of symptomatic cases in the correctly identified cases

than in the missed cases. Symptomatic cases were defined as perceived

breathlessness while resting or walking calmly on level ground or

mMRC≥ 2. Inferring this variablewaspossible forall butoneparticipant.
Joint screening for significant cases

Since a positive screening test must be confirmed with an

echocardiography examination, an important performance metric is

the ability to detect the presence of any significant VHD. To evaluate

the overall ability of the algorithm to direct clinical care, we screened

jointly for clinically significant cases using predicted murmur grades.

For simplicity, we aggregated the predicted murmur grades by taking

the maximum across the four positions and used this value as the

predictor of significant cases. We defined “significant VHD” in three

different ways to assess the sensitivity of performance metrics to how

this class is defined: (1) grade≥ 3 regurgitation or grade≥ 1 stenosis,

(2) grade≥ 4 regurgitation or grade≥ 1 stenosis, and (3) symptomatic

grade≥ 3 regurgitation or grade≥ 1 stenosis.
Statistical analysis

Algorithm performance was measured primarily using AUC,

sensitivity, and specificity. AUC is the preferred comparison

metric in this study, as it provides a summary of performance that

takes into account the rate of both true positives and true

negatives and is advantageous in underpowered studies where

there are few positive cases since it does not require estimation of

decision thresholds. Unless otherwise stated, murmur detection

metrics represent average performance across auscultation

positions, computed using data from all positions combined in a

single dataset with pairs of recording and murmur grade. All

confidence intervals (CI) and p-values reported in this paper

correspond to a significance level of 5%, and all statistical tests are

two-sided. The level of statistical significance is signified by (*),

(**), and (***), which corresponds to p-values within the intervals

(0.01, 0.05), (0.001, 0.01), and (0, 0.001), respectively.

We assumed that metrics computed on each CV validation set are

independent and identically distributed. CIs for sensitivities and

specificities were computed using exact methods based on the

corresponding binomial distributions. Decision thresholds were

automatically set (for each target separately) as the thresholds that

maximized sensitivity + specificity on the CV training set under the

condition that sensitivity should exceed 50%. As measures of interrater

agreement, we considered ratings across all recordings jointly without

distinguishing between positions and used percent agreement and

Cohen’s kappa to quantify agreement on murmur grade≥ 1. We also

calculated Cohen’s kappa for each position separately. To contextualize

the AUC for murmur detection achieved by the algorithm, we used
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the annotations of SA as a predictor ofwhich recordingsADhad rated as

murmur grade≥ 2 and calculated the AUC for this prediction.
Results

After removing participants with corrupt audio files, the

dataset we used in our analysis consisted of 2,124 participants

who had received echocardiogram examinations and had

annotated heart sounds. Table 1 shows study demographics for

the study cohort. A total of 150 (7.06%) participants had AR≥ 3

(20%), 292 (13.7%) had MR≥ 3, 51 (2.4%) had AS≥ 1, and 13

(0.612%) had MS≥ 1. A total of 408 (19.2%) participants had at

least one significant VHD and 44 (10.8%) of these reported

symptoms. Supplementary Table S1 in Supplementary Materials

provides more details on VHD prevalence and demographics.
Murmur prevalence and annotator
agreement

The prevalence of participants with murmur grade≥ 1 in at least

one position was 21.4% according to SA annotations and 20.1%

according to AD annotations. Increasing the murmur grade

threshold to ≥2, the prevalence decreased to 13.1% and 13.8%,

respectively. Murmurs were most prevalent in the aortic position,

with 18.6% (CI: 16.9%–20.2%) of recordings being graded as ≥1
(SA) in the aortic position compared to 11.0% (CI: 9.70%–12.4%) in

the pulmonic position (Supplementary Figure S3 provides a more

detailed overview of murmur annotation results for both

annotators). Using SA annotations to predict recordings AD had

classified as grade≥ 2, an AUC of 0.933 was obtained. For

agreement on murmur grade≥ 1 across all recordings, Cohen’s

kappa was 0.717 and percent agreement was 94.2%. For specific

positions, the highest Cohen’s kappa was 0.733, observed in the

aortic position, and the lowest was 0.666, observed in the mitral

position. When defining the presence of murmur as grade≥ 2, we

found that 45.8% of the murmurs detected were innocent in the

sense that they did not correspond to grade≥ 1 stenosis or grade≥
3 regurgitation. The proportion of innocent murmurs decreased to

26.9% when grade = 2 cases of regurgitation were considered relevant.
TABLE 1 Cohort characteristics stratified by VHD.

VHD subgroup Participants
in subgroup
(% of cohort)

Chest pain
or angina

(%)

Diabetes
(%)

High blood
pressure

(%)

VHD
(brea

No significant VHD 1,721 (81.0%) 141 (8.2%) 118 (7.0%) 601 (35.7%) 11

At least one VHD 403 (19.0%) 54 (13.5%) 21 (5.4%) 166 (42.6%) 43

AR≥ 3 150 (7.1%) 20 (13.3%) 8 (5.6%) 72 (49.0%) 20

MR≥ 3 292 (13.7%) 39 (13.4%) 13 (4.6%) 114 (40.7%) 33

AS≥ 1 45 (2.1%) 7 (15.6%) 6 (14.0%) 25 (56.8%) 10

MS≥ 1 13 (0.6%) 2 (16.7%) 2 (18.2%) 8 (66.7%) 3

The first column shows the number of participants in the Tromsø7 cohort within each V

by comparing the severity grade against the threshold values indicated in the correspo

condition or meeting the specified criteria within each VHD subgroup, and percentages

of breath lying down or walking calmly on level ground.

VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral regurgitation; AS, aort
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Most murmurs were systolic, as only nine participants had any

diastolic murmurs observed. There were 51 cases of at least mild

AS; the annotators observed a murmur in at least one location in

47 (92.2%) of these cases, and 18 (35%) had significant MR

(which can also produce a systolic murmur). Of the 47 AS cases

with a murmur, 17 (36%) also had MR. See Supplementary

Table S2 for more summary statistics on the relationship between

the VHD grade and the presence of murmur.
Murmur detection algorithm performance

The murmur detection algorithm detected murmur grade≥ 2

with an AUC of 0.969 (CI: 0.958–0.982), a sensitivity of 86.5%

(CI: 83.2%–89.7%), and a specificity of 95.2% (CI: 94.7%–95.7%).

For murmur grade≥ 1, the AUC decreased to 0.936 (CI: 0.931–

0.949). See Figure 2 for ROC curves for cutoff values of 1 and

2. Performance metrics for the prediction of murmur grade≥ 2

for each auscultation position is given in Table 2, which shows

that the ability to predict murmurs did not vary notably between

positions. The holdout-set AUC for the prediction of murmur

grade≥ 2 was 0.982 (n = 55) and 0.935 for the prediction of

murmur grade≥ 1(n = 91), which indicates that the cross-

validation results are reliable.
VHD prediction using the murmur detection
algorithm

The ability the of murmur detection algorithm to predict

clinically relevant VHD is summarized in Table 3, which shows

the AUC for predicting each disease for different disease cutoff

values. Supplementary Figure S4 shows ROC curves for

algorithm prediction of each VHD. AR≥ 3 was not reliably

detected by the algorithm, regardless of which position was used,

with AUC values ranging from 0.576 (mitral position) to 0.634

(using the highest predicted murmur grade across positions as a

predictor). Symptomatic AR was significantly more prevalent in

the detected cases than in the missed cases: 19.4% and 4.9% of

cases, respectively (p = 0.01). When the positive class was defined

as AR≥ 3 with symptoms, sensitivity increased from 54.9%

(±8.7%) to 82.4% (±19.8%; 14 of 17 cases detected), and the
symptoms
thless) (%)

BMI (mean)
(95% CI)

Heart rate
(mean) (95% CI)

Age (mean)
(95% CI)

Female (%)

1 (6.4%) 27.3 (27.1–27.6) 64.5 (64.0–65.0) 62.6 (62.1–63.2) 954 (55.4%)

(10.7%) 26.5 (26.1–26.9) 61.2 (60.2–62.2) 69.6 (68.7–70.6) 192 (47.6%)

(13.4%) 26.4 (25.7–27.1) 61.0 (59.4–62.5) 71.3 (69.8–72.8) 66 (44.0%)

(11.3%) 26.2 (25.8–26.7) 61.0 (59.8–62.3) 69.0 (67.8–70.1) 145 (49.7%)

(22.2%) 26.8 (25.5–28.2) 62.7 (59.3–66.0) 74.4 (72.0–76.7) 16 (35.6%)

(23.1%) 28.0 (25.1–31.0) 71.8 (64.9–78.6) 77.7 (74.7–80.7) 10 (76.9%)

HD subgroup; percentages are with respect to the whole cohort. VHDs are defined

nding row names. The other columns show the number of participants having the

are with respect to the VHD subgroup. Symptoms of VHD are defined as shortness

ic stenosis; MS, mitral stenosis.
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FIGURE 2

Murmur detection ROC curves. Receiver operator characteristics
curves illustrate the algorithm’s ability to predict murmur grades ≥1
(blue) and ≥2 (red). Recordings from all four auscultation positions
were used in producing the figure.

Waaler et al. 10.3389/fcvm.2023.1170804
AUC for this class was 0.756 (calculated for all CV predictions

jointly since some CV validation sets had 0 cases).

The AUC for predicting symptomatic cases was higher for AR

and MR: 0.756 and 0.711, respectively.

MR was the least detected disease, as MR≥ 3 was predicted

with an AUC of only 0.558 (CI: 0.506–0.593; mitral recording).

No consistent trends with regard to which position was most

predictive of MR were observed. As was the case for AR, the

detectability of MR was highly influenced by the presence of

symptoms. Symptomatic MR was significantly more prevalent in

the detected cases than in the missed cases: 14.8% and 5.6% of

cases, respectively (p = 0.02). The algorithm detected 69.2%

(±18.7%; 18 of 26 cases) of symptomatic cases, compared to

55.6% (±6.3%) for predicting all MR≥ 3 cases, and the AUC for

these cases was 0.711 (calculated for all CV predictions jointly).

MS≥ 1 was predicted with a sensitivity of 83.3% (CI: 51.6%–

98.0%), a specificity of 85.7% (CI: 84.0%–87.2%), and an AUC of

0.922 (CI: 0.858–0.987). None of the MS recordings had diastolic

murmurs, despite the characteristic MS murmur occurring

during diastole. Seven of the total 13 cases (53.9%) of MS also

had AS, indicating a considerable disease overlap. Of the 10
TABLE 2 Performance overview of the murmur detection algorithm.

Murmur grade≥ 2

Pos. 1 Pos. 2 Pos. 3 Pos.
Sensitivity (%) 86.3 (±5.4) 89.9 (±6.9) 88.0 (±7.1) 81.1 (±9

Specificity (%) 92.4 (±1.3) 96.1 (±0.9) 95.6 (±1.0) 96.6 (±9

AUC (%) 96.0 (±2.2) 97.3 (±1.6) 95.2 (±0.7) 96.9 (±0

Sensitivity, specificity, and area under the curve (AUC) for the prediction of various ta

murmur prediction algorithm outputs continuous positive values. Values in the AS c

section), while the other VHDs were predicted using the highest predicted murmur

the parenthesis.

VHD, valvular heart disease.

Frontiers in Cardiovascular Medicine 07
detected MS cases, four had no presence of AS and three were

not associated with any other VHD (excluding grade 1 or 2 AR

and MR, which were common in the dataset).

AS≥ 1 was predicted by the multiposition model with an AUC

of 0.979 (CI: 0.963–0.995), a sensitivity of 90.9% (CI: 78.3–97.5%),

and a specificity of 94.5% (CI: 93.3–95.5%), whereas AS≥ 2 was

predicted with an AUC of 0.993 (CI: 0.972–0.996). By

comparison, the maximum (predicted) murmur grade predicted

AS≥ 1 with an AUC of 0.972 and AS≥ 2 with an AUC of 0.991.

Accuracy was in general higher for more severe AS, as can be

seen in Table 3 or Figure 6, which shows the AUC as a function

of the AVPGmean cutoff threshold. A positive test using the

multiposition model increased the risk of AS≥ 1 from 2.12% to

19.1%. For AS≥ 2, the risk increased from 1.27% and 17.1%. A

negative result was estimated to rule out the presence of AS with

>99% probability.

The pulmonic position was the position that produced the

most accurate prediction of both AS≥ 1 and AS≥ 2 (see Table 3

for the prediction performance associated with each position),

with an associated AUC value of 0.982 (±0.010) for the detection

of AS≥ 1. In contrast, prediction based on the aortic position

achieved a lower AUC of 0.967, although the difference was not

significant (p = 0.16). Screening for AS≥ 1 on the holdout set

using the multiposition model, all six cases were detected, the

specificity was 90.6%, and the AUC was 0.988.

Using the multiposition model to predict AS≥ 1 resulted in

four missed cases (of 45 cases), of which three were mild and

one was moderate (AVPGmean = 27.17 mm Hg). There were 102

false positive predictions, but of these cases, 20.1% of these

observations had AVPGmean > 10 mm Hg.
Joint screening for clinically relevant cases

We screened for clinically relevant VHD using three different

definitions based on different severity thresholds and

consideration of symptoms. In general, performance metrics

increased when the criteria for “clinically significant” was made

stricter, either by considering only symptomatic cases of

regurgitation as significant or by increasing the AR and MR

thresholds. Figure 3 shows the ROC curves for the prediction of

the three different clinical categories (outlined in the Methods

section), and Figure 4 shows the proportions of important

clinical subgroups that were identified. Participants with grade≥
VHD

4 AS≥ 1 MS≥ 1 AR≥ 3 MR≥ 3
.5) 90.9 (±9.6) 83.3 (±23.2) 54.9 (±8.7) 55.6 (±6.3)

.5) 94.1 (±1.1) 85.7 (±1.6) 65.1 (±2.3) 50.6 (±2.5)

.9) 97.9 (±1.6) 92.2 (±6.5) 63.4 (±6.9) 54.9 (±4.4)

rgets (after dichotomizing) using the murmur prediction algorithm. Note that the

olumn were obtained using the multiposition model (described in the Methods

grade across the auscultation positions. 95% confidence intervals are indicated in
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TABLE 3 AUC for detecting VHD with predicted murmur grades in each auscultation position.

AR MR AS MS

Grade≥ 3 Grade≥ 4 Grade≥ 3 Grade≥ 4 Grade≥ 1 Grade≥ 2 Grade≥ 1
With pos. 1 62.2 (±6.8) 68.1 (±5.1) 52.5 (±4.1) 57.3 (±8.1) 96.7 (±1.9) 98.4 (±2.1) 89.0 (±10.9)

With pos. 2 59.6 (±8.0) 62.1 (±11.3) 56.3 (±3.1) 57.6 (±13.5) 98.2 (±1.0) 98.7 (±0.5) 89.6 (±8.8)

With pos. 3 58.4 (±6.8) 58.7 (±7.6) 54.9 (±3.3) 61.3 (±10.4) 97.0 (±1.5) 98.4 (±0.8) 85.4 (±17.6)

With pos. 4 57.6 (±6.0) 56.1 (±10.7) 55.8 (±3.9) 55.8 (±11.0) 92.1 (±4.5) 97.6 (±1.5) 86.0 (±15.5)

Prediction based on all positionsa 63.4 (±6.9) 67.3 (±8.7) 54.9 (±4.4) 57.8 (±6.9) 97.9 (±1.4) 99.3 (±0.4) 92.7 (±7.8)

AUC of the murmur detection algorithm for predicting various VHD subcategories (defined by valve affected and threshold/grade defining significant cases) using

algorithm-predicted murmur grade for the aortic, pulmonic, tricuspid, or mitral position, in that order. The bold values indicate the positions associated with the

highest AUC in each column (disregarding values in the last row).

VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral regurgitation; AS, aortic stenosis; MS, mitral stenosis.
aThe last row shows values obtained using the highest murmur grade across positions as aggregate prediction, except for AS, which was predicted using the multiposition

model that converts the set of predicted murmur grades into predictions of the aortic valve pressure gradient through a regression model.

FIGURE 3

ROC curves for prediction of clinically relevant cases. Each receiver
operating characteristics curve corresponds to prediction of a
different definition of clinically relevant VHD, with definitions
shown in the legend. For the yellow curve, asymptomatic cases of
regurgitation were excluded from the positive class. The circles
show sensitivities and specificities for murmur grade decision
thresholds of 0.5, 1.0, and 2.0. The position with the highest
algorithm-predicted murmur grade was used as the predictor.
VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral
regurgitation; AS, aortic stenosis; MS, mitral stenosis.
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3 regurgitation or grade≥ 1 stenosis were detected with a

sensitivity of 56.3%, a specificity of 54.9%, and an AUC of 0.60

(CI: 0.55–0.66). In the process, the algorithm detected 97.7% (43

of 44) of AS cases, all 12 MS cases, 62.4% of AR cases, and

49.2% of MR cases. Screening for grade≥ 4 regurgitation or

grade≥ 1 stenosis, the algorithm achieved an AUC of 0.73 (CI:

0.66–0.80) and detected 68.9% and 55.4% of AR and MR cases,

respectively. Screening for symptomatic grade≥ 3 regurgitation

or grade≥ 1 stenosis, the AUC was 0.86 (CI: 0.82–0.90) and 65

of 76 cases were detected. When screening for grade≥ 3

regurgitation or grade≥ 1 stenosis on the holdout set, the

algorithm detected all six cases of the presence of AS, one of one

case of MS, nine of 15 cases of AR, and 15 of 36 cases MR and

achieved an AUC of 0.652 for overall detection of significant cases.
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Multiposition prediction of the aortic valve
mean pressure gradient

The multiposition linear regression model for the prediction of

the AVPGmean obtained after model selection and parameter

estimation was

AVPGmean ¼ 3:5þ 0:6 �MG2
A þ 1:1 �MG2

P þ 0:5 �MGT þ . . .

. . .þ 0:9 �MG2
A � noiseP þ 8:9 �MGM � noiseA � noiseP � noiseT :

Subindices A, P, T, andM refers to the aortic, pulmonic,

tricuspid, and mitral positions, respectively, MGi denotes the

predicted murmur grade of position i, and noisei is the indicator

variable that modifies the murmur grade weights if the recording

from position i is noisy (in which case MGi is set to zero). The

p-values for all model parameters were lower than 0.01.

After selecting the model, we performed cross-validation to

estimate how well the multiposition model predicted the high

AVPGmean compared to the single-position models across a range

of cutoff thresholds using AUC for the prediction of AVPGmean≥
threshold as comparison metrics. Figure 5 shows the results for

each position, with significant differences indicated by *. For

AVPGmean cutoff = 10 mm Hg, the multiposition prediction

outperforms each of the single-position predictions by amounts

corresponding to p-values of 0.09, 0.02, 0.40, and 0.01, respectively.
VHD prediction with clinical variables

An overview of the multivariate logistic regression models is

provided in Table 4, which also shows the AUCs for the prediction

of each VHD (as defined by severity grade cutoff values) obtained

using cross-validation. The estimated coefficients of each model are

listed in Table 5. SpO2, smoking, and diabetes were therefore not

taken into account as their impacts were not significant.

Inclusion of clinical variables in addition to predicted murmur

grades improved screening performance significantly for both AR

(AUC from 63.4 to 0.747, p = 0.002) and MR (AUC from 55.8 to

0.672, p = 0.007). The prediction of both AS≥ 1 and MS≥ 1 was

improved but not significantly, with AUCs increasing from 0.979
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FIGURE 4

Joint screening for clinically relevant cases. The diagram that shows numbers and proportions of clinically significant cases detected in the process of
screening jointly for all clinical cases using the murmur detection algorithm and the prevalence of false positive predictions. The highest algorithm-
predicted murmur grade was used as the predictor of clinical cases. A positive prediction was counted as a true positive if the participant had a
significant grade for at least one VHD. Included in the pathological VHD categories are grade≥ 1 stenosis and AS≥ 1 regurgitation. The red boxes
represent subgroups of participants who had or used to have symptoms (shortness of breath while walking calmly on a flat surface or resting).
VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral regurgitation; AS, aortic stenosis; MS, mitral stenosis.
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to 0.982 (p = 0.30) and from 0.922 to 0.938 (p = 0.33), respectively.

AS≥ 2 was detected with an AUC of 0.995 (CI: 0.991–0.998, up

from 0.993, p = 0.17), a sensitivity of 96.3% (CI: 81.0%–96.3%),

and a specificity of 96.7% (CI: 95.7%–97.4%). AS≥ 1 was

detected with a sensitivity of 88.6% and a specificity of 95.0%. Of

the false positives, 35.9% had either at least moderate AR, at least

moderate MR, or AVPGmean > 10 mm Hg.

In all models except the AS model, age and heart rate were

significant predictors. The interaction between gender and

murmur grade was highly significant (p-value < 0.0001).
Discussion

We trained an RNN to detect and grade heart murmurs in heart

sound audio and used these predicted grades to predict clinical

VHD. We demonstrated for the first time that even mild AS can

be predicted accurately by ML algorithms from heart sounds in a

general population. AR and MR were poorly predicted from

algorithm-predicted murmurs but accuracy increased significantly

when only symptomatic cases were considered significant. We also
Frontiers in Cardiovascular Medicine 09
found evidence that utilizing heart sound recordings from multiple

auscultation positions can be beneficial for the prediction of the

mean aortic valve pressure gradient. Finally, we used the RNN

and multivariate logistic regression to combine cardiac

auscultation and clinical data and showed that incorporation of

both kinds of data is highly beneficial in screening for AR and

MR. The improvement in AS and MS prediction was not quite

significant, but the highly significant p-values of the coefficients

indicated that this could be due to an underpowered dataset. The

adjusted association between the murmur grade and AS was

stronger for men than for women.
Comparison with clinicians

A sensitivity of 90.9% and a specificity of 94.5% for detecting

AS≥ 1 compare favorably against metrics on clinician accuracy we

found in the literature. In a study by Jaffe et al. (28), severe AS was

detected by clinicians with a considerably lower sensitivity of 83%

and specificity of 79%. In a 2021 study by Chorba et al. (29), three

expert cardiologists classified recordings primarily from the aortic
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FIGURE 5

Multiposition model vs. single-position AUC for AVPGmean prediction. Each panel shows AUC for the prediction of cases where AVPGmean > u for
thresholds u ranging from 7 to 30 mm Hg for the single-position (dashed line) and multiposition (solid line) model. Each single-position model uses
only data from the index position to make predictions, whereas the multiposition model uses data from all four positions. Significant differences are
marked with *. AUC, area under the curve; AVPGmean, aortic valve mean pressure gradient.
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position into the presence or absence of murmur, and these

classifications were subsequently used to predict moderate to severe

AS in a selected cohort of confirmed pathological cases (moderate

to severe) and healthy controls. The highest performance (in terms

of sensitivity + specificity) achieved via this prediction scheme was a

sensitivity of 82.5% (CI: 69.6%–93.6%) and a specificity of 90.2%
TABLE 4 Multivariate regression models that include clinical variables.

Prediction
target

AUC Model

AR≥ 3 0.747 (±0.035) AR∼murmur grade + age + gender + breathless
uphilla + heart rate

MR≥ 3 0.672 (±0.039) MR∼murmur grade + age + heart rate

AS≥ 1 0.982 (±0.019) AS∼murmur grade + gender + (gender: murmur
grade)

MS≥ 1 0.938 (±0.041) MS∼murmur grade + age + heart rate

The table shows the variables that were included in the logistic regression models

that use clinical variables and predicted murmur grades to predict VHD and the

AUC for each model obtained in cross-validation. Interaction between variables

is denoted by a “:” symbol. As auscultation-based prediction input, the AR and

MS models use the maximum murmur grade, the MR model uses the mitral

position murmur grade, and the AS model uses the predicted AVPGmean.

VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral regurgitation; AS,

aortic stenosis; MS, mitral stenosis.
aBreathless when walking rapidly on level ground or up a moderate slope.

Frontiers in Cardiovascular Medicine 10
(CI: 83.1%–-96.3%), and the average sensitivity and specificity

across annotators were 90.0% and 71.1%, respectively, which our

algorithm outperformed by a considerable margin. Note that the

sensitivity and specificity for AS≥ 2 were not computed in cross-

validation because one of the eight validation sets ended up not

containing any cases, as stratification ensured only an even

distribution of AS≥ 1. As can be seen in Figure 6, there is a clear

trend for detectability to increase with higher pressure gradient

thresholds, so the sensitivity and specificity of our models would

likely be higher for moderate or severe AS.
Comparison with the literature on
automated HS analysis

We found only two studies on automated HS analysis that could

be meaningfully compared to our study. Aside from these studies,

the performance metrics for specific VHDs were not presented or

the data that were used had too little noise to be reasonably

representative of a day-to-day clinical setting. Of the literature we

identified, our study presented the highest accuracy for the

prediction of AS. Makimoto et al. predicted severe AS with an

AUC of 0.968 when training directly on AS using convolutional
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FIGURE 6

AUC as a function of the aortic stenosis cutoff threshold. AUC for the
prediction of AVPGmean > u across a range of thresholds u using the
multiposition model on the subset with noise in up to three out of
four auscultation positions. Confidence intervals were obtained
using bootstrapping. Recordings annotated as noisy in all four
positions were excluded from the analysis. AVPGmean, aortic valve
mean pressure gradient; AUC, area under the curve.
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neural networks and three auscultation positions (30). The study by

Chorba et al. (29) offered an interesting comparison, as their

methodology is very similar to ours. They trained a deep

convolutional neural network to predict murmur grades, achieving

an AUC of 0.958 for predicting murmur grade≥ 2, which we

outperformed with an AUC of 0.969 (±0.12). Furthermore, they

achieved 93.2% sensitivity (CI: 86.9%–98.5%), 86.0% specificity

(CI: 80.9%–91.0%), and 0.952 AUC for the prediction of moderate

to severe AS based preferentially on the aortic recording, which we

exceeded with an AUC of 0.967 when using the aortic recording

for prediction. We improved the prediction of AS further by

combining all four algorithm-predicted murmurs in a

multiposition model, obtaining AUC values of 0.978 (CI: 0.961–

0.994) and 0.992 (CI: 0.988–0.997) for the prediction of at least

mild and at least moderate AS, respectively. We note that Chorba

et al. preferred using the aortic recording (which is often

recommended for detecting the AS murmur) for the prediction of

AS using the pulmonic position as a secondary choice, yet our

results and those of Makimoto et al. suggest that the pulmonic

recording might be more suitable for detecting AS.
TABLE 5 Estimated parameters of clinical variable models.

Prediction target of model Age Murmur grade Murmur g
AR≥ 3 0.0034*** 0.0390***

MR≥ 3 0.0052*** 0.0120

AS≥ 1 — 0.0247***

MS≥ 1 0.0004* 0.0200***

The table shows the estimated coefficients of the variables included in the multivariab

explanatory variable derived from murmur grade predictions; the AR and MS mod

position predicted murmur grade, and the AS model uses the output from the mu

variables is denoted by the “:” symbol. Statistical significance of the estimated param

(0.01–0.05), (0.001–0.01), and (0–0.001), respectively.

VHD, valvular heart disease; AR, aortic regurgitation; MR, mitral regurgitation; AS, aort
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A caveat to the above comparison is that Chorba et al. and

Makimoto et al. referenced existing guidelines for echocardiography

but did not describe in full detail how they graded AS. Thus,

differences in performance could be due to differences in the AS-

grading convention. In particular, defining AS in terms of the

AVPGmean could result in a target that is easier to predict, as it

may exclude cases where the pressure gradient is low due to low

cardiac output, which might be harder to detect. However, a 2012

study tracking the progression of AS in a cohort representative of

the general Norwegian population found that accounting for

systolic left ventricular dysfunction after initial grading based on

the AVPGmean did not change the classification of any

participants. We therefore believed it is unlikely that we missed a

significant number of cases (13). Differences in the prevalence of

“low-flow low-gradient” cases cannot be disregarded as a source of

performance difference, however.

The higher AS and murmur detection rates discussed above

might in part be attributable to the particularly rigorous

annotation procedure that produced our murmur annotations,

resulting in a Cohen’s kappa for agreement on the presence of

murmur grade≥ 1 of 0.717 and agreement on the presence of

any murmur in 94.2% of recordings. In contrast, assessing

cardiologist agreement on the presence of any murmur, a study

by Andersen et al. found a median Cohen’s kappa of 0.69 and a

mean proportion of interrater agreement of 84% (from pairwise

comparisons), with lower values for GPs and medical students

(11). Chorba et al. reported a Fleiss kappa of 0.478 (three

cardiologist raters), which is lower than the Fleiss kappa of 0.69

observed by Andersen et al. for their eight cardiologist raters.

Thus, it is likely that our raters had substantially higher inter-

rater agreement than that seen in Chorba et al.’s study.
Literature comparison for MR detection

While we detected AS and murmurs more accurately than in

Chorba et al.’s study, our results for detection of at least moderate

MR were dramatically worse, as they predicted these cases with an

AUC of 0.865 (29 cases, 62 healthy controls), while our prediction

was barely better than chance. Given that we trained our

algorithms to predict the same target (murmur) and achieved very

similar performances in murmur detection, this wide performance

gap cannot be explained by differences in model performance,

suggesting that significant MR in cohorts consisting of patients
rade : gender (interaction) Gender Breathless Heart rate
— 0.0330* 0.0270* −0.0017**
— — — −0.0033***

0.0248*** −0.0848*** — —

— — — 0.0008***

le logistic regression models. The Murmur grade column shows the effect of the

els use the predicted maximum murmur grade, the MR model uses the mitral

ltiposition model. Reference category for gender is female. Interaction between

eters is denoted by (*), (**), and (***), which indicates p-values within intervals

ic stenosis; MS, mitral stenosis.
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and healthy controls is more discernible than in unselected cohorts.

Consistent with this observation is the fact that detection rates for

both AR and MR increased significantly within our study when

only symptomatic instances of diseases were treated as prediction

targets. Supporting this conclusion further is a 2018 study by

Gardezi et al. (9) in which they tested the accuracy of auscultation

in a population of asymptomatic patients aged 65 > years and

found that a diagnosis of significant VHD by auscultation was not

significantly better than chance. Myerson et al. found similar

results in their 2017 study of asymptomatic participants aged≥ 65

years with no previous VHD diagnosis, where GPs identified

significant VHD (moderate to severe regurgitation or at least mild

stenosis) with an AUC of only 0.56 (31). Taking all of this into

account, it seems likely that the observed poor performance for

detecting MR may be due to a lack of clearly discernible disease

features in the heart sounds and not poor algorithm performance.

It is also possible that murmurs alone simply are not reliable

predictors of MR in general populations and that reasonable

performance could be achieved if models were instead trained

directly on MR, assuming a dataset with sufficiently many

examples. The inclusion of simple clinical variables yielded

considerable boosts in accuracy, and we suspected that exploring

models that incorporate a variety of data sources might be a more

fruitful approach when it comes to screening for AR and MR in a

general population.
Optimal utilization of positions for AS
predictions

The multiposition model seems the overall preferred model for

predicting AS, as it generally outperformed the single-position-

based predictions. This conclusion is supported by research of

Makimoto et al., who also found that using multiple positions

improved the prediction of AS (30). We compared models on

their ability to separate high from low AVPGmean (measured by

AUC) and varied the threshold defining the “high” category.

Comparing it to the position with the highest AS detection

accuracy, the pulmonic position, it performed equally well for

discerning very high pressure gradients (separation thresholds

between 15 and 30 mm Hg) but was significantly more accurate at

distinguishing AVPGmean in the normal range from only slightly

elevated AVPGmean (separation thresholds between 7 and

10 mm Hg). More accurate identification of slightly elevated

pressure gradients might be of clinical interest, as a general cohort

study by Eveborn et al. found that the group of participants with

10≤AVPGmean < 15 mm Hg at baseline identified about half of

those who developed AS in the following 7 years (32). Another

advantage of the multiposition model is that it is not limited to

cases with clean pulmonic or aortic recording; we have

demonstrated its high accuracy on a set that includes samples with

noisy recordings in up to three positions. Although the AUC

analysis was not entirely consistent in terms of statistical

significance, the highly significant p-values (<0.01) of the fitted

model parameters suggested that all positions contribute

significantly to the prediction of the pressure gradient, and we
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therefore suspected that having more cases of AS would show a

significant benefit to AS detection. Note that some of the detected

AS murmurs might have been caused by MR due to disease

overlap, but given how strongly AS was related to murmurs

relative to MR, this overlap seems unlikely to explain a significant

number of AS murmurs, and a positive prediction should be

followed up with an echocardiographic examination in any case.
Clinical implications

Our results clearly demonstrate the high potential of machine

learning algorithms for AS screening in a general population. A

digital stethoscope that automatically analyzes the recorded audio

using our algorithms could serve as a low-cost, easy-to-use,

accurate, and highly available screening tool for detecting AS, and

its implementation into routine clinical practice could substantially

reduce costs from unnecessary echocardiography examinations.

The need for such a tool was demonstrated by a study by d’Arcy

et al., who found a 1.3% prevalence of newly diagnosed AS in a

general population of individuals aged≥ 65 years (33). Automated

HS analysis also creates opportunities for remote patient

monitoring, meaning that heart sounds can be monitored

frequently and consistently without subjecting vulnerable patients

to the risks and challenges associated with hospital visits.

Another important implication of our study is the possibility of

detecting AS in the general population before symptoms become

apparent, and various studies indicate that our algorithms could

be especially useful for identifying a subset of this group who are

likely to benefit from close monitoring or aortic valve surgery

prior to the onset of symptoms. Rosenhek et al. found that a

peak aortic jet velocity≥ 5.5 m/s in patients with very severe

asymptomatic AS was associated with a very poor prognosis

(event-free survival rate≤ 44 ∓ 8% at 1 year, where events were

aortic valve surgery or death), and the peak aortic jet velocity

was in general a strong predictor of the rate of event-free

survival (18). Rosenhek et al. and Otto et al. found similar results

in their studies on asymptomatic AS and, in addition, observed

that a rapid increase in jet velocity was an independent predictor

of clinical outcomes (aortic valve surgery or death) in a

multivariate analysis (19, 34). Since the jet velocity is closely

related to the pressure gradient, our models could potentially be

used to detect a high rate of change in jet velocity.

To put the screening performance of our algorithms into

perspective, we assumed a 1.3% prevalence of undiagnosed AS in

those aged≥ 65 years (assuming that ours and their definition of

the presence of AS matches reasonably well) and estimated that

given a population size of 10,000 elderly individuals, our

multivariate risk-factor algorithm would detect 115 of the

expected 130 individuals with undiagnosed mild or greater AS, at

the cost of producing ∼495 false positives. If we reclassify 35.9%

of false positives due to the presence of other VHDs or

AVPGmean > 10 mm Hg (32) (see the section on the clinical

factor models), the expected number of false positives decreases

to 178. To our knowledge, no existing low-cost procedure is

capable of providing such screening performance. Point-of-care
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ultrasound has been launched as a potential solution, but it will

take many years before most GPs are fully trained in this; studies

show no improvement in AS detection over auscultation (35–37),

and adding this procedure to the physical examination will not

help with the time constraints on healthcare professionals.

Beyond diagnosing and monitoring AS, there are data to suggest

that a murmur detection algorithm could help identify high-risk

subgroups that are not typically considered for auscultation. A

recent 35-year follow-up study demonstrated that murmur grade 2

or higher in seemingly healthy middle-aged men was associated

with an 89.3-fold (CI: 39.2–211.2) age-adjusted risk of undergoing

aortic valve replacement later in life and a 1.5-fold (CI: 0.8–2.5)

age-adjusted increased risk of CVD death (38). Thus, even in

subgroups not typically considered for cardiac auscultation,

screening for murmurs could provide clinically valuable information.

An interesting finding in the multivariate analysis of predicted

heart sounds and risk factors was a highly significant (p < 0.0001)

positive interaction between the predicted murmur grade and male

gender in predicting AS risk, indicating that a unit increase in the

predicted murmur grade for men is associated with a larger increase

in AS risk than it is for women. In terms of unadjusted risk ratios,

we found that men with a mean (human annotated) murmur

grade≥ 2 had a 126 times greater risk of AS compared to men with

murmur grade < 2, whereas the corresponding value for women was

77. It might therefore be appropriate to take gender into

consideration when deciding clinical thresholds for follow-up or

incorporate gender into the risk calculations in multivariate models.
Study and algorithm strengths and limitations

The biggest limitation of our study is that the models have not

been tested in external datasets, and we do not know how robust

the models are to changes in the environment in which the data

are collected. In particular, we do not know how well the AS

detection performance will hold in hospital settings and other

geographical areas that may have a greater prevalence of low-flow,

low-gradient cases. We are currently planning to collect external

data with a higher prevalence of VHD to test the algorithm

externally and assess whether model performance (in clinical and

general populations, respectively) can be improved by training on

AR and MR in a dataset that contains more significant cases.

A practical limitation of the murmur algorithm is that it does

not automatically detect noise, which means that the user of the

algorithm is relied upon to decide which recordings are of

sufficient quality. This is not an issue when the user is a clinician,

but it could be an issue when the user is a patient performing the

procedure at home. The main limitation of our murmur

prediction into the VHD prediction approach is that features other

than the murmur grade that might help to discern pathologies,

such as loudness or softness (absolute or relative) of S1 or S2,

cannot be learned and utilized. The accuracy with which the

algorithm detects a disease is therefore limited by the degree to

which it is associated with the subjectively rated murmur grade.

The other study limitations are related to the small number of

VHD cases and a resulting lack of statistical power in various
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analyses. Decisions on which covariates to include in the clinical-

variable models were made on the basis of predicting a relatively

small number of pathological cases, which increases the risk of

false positive results. The dataset was also arguably

underpowered (depending on which metric is considered) for

establishing if using multiple position results is more accurate AS

prediction than the pulmonic position. We were also limited in

terms of model development, as we had to restrict ourselves to

exploring a small set of fairly simple models to limit the risk of

overfitting. Finally, we note that the recordings used in this study

were collected in a more controlled setting than can be expected

in a rushed clinical environment, and further work is likely

necessary to improve robustness to noise and interference.

A strength of the algorithm is that we have demonstrated its

accuracy on a dataset containing samples with noise in up to three

positions and that it utilizes information from all four standard

positions to improve the performance of state-of-the-art audio

segmentation algorithms, which in turn improves murmur

detection performance. Only 1.4% of the dataset was excluded

from analysis due to all recordings containing noise (except when

analyzing prediction of MR from heart sounds, where we used

only the mitral position), so the performance metrics we present

are unlikely to be substantially biased due to the exclusion of

noisy samples. Another strength of the algorithm is the relatively

small size of the model used to predict the murmur grade, which

entails fast computation and less time required for

experimentation. We also believe its size makes it less prone to

overfitting than deeper neural networks that are often employed in

automated heart sound classification research, as their enhanced

flexibility might predispose them to adapt to features that are

specific to the development set, such as the type of stethoscope used.

The main novelty and strength of our study lies in the

unfiltered nature of the dataset—a unique feature in automated

heart sound classification research that offered us the

opportunity to get a realistic assessment of the ability of machine

learning to screen for undetected VHD. Another feature novel to

this field is the simultaneous access to murmur annotation,

results from echocardiography, and data on various clinical

variables. Finally, the HS annotations used in this study were

obtained using a rigorous procedure in which considerable effort

was put into ensuring consistent data annotation and high

interrater agreement, and we believe this has resulted in

particularly high-quality training data which in turn contributes

to high algorithm prediction performance.
Conclusions

In this study, we developed a murmur detection algorithm that

detects mild or greater AS in a general population with an accuracy

similar to or exceeding previously reported metrics from similar

studies that were based on selected cohorts. The prediction

accuracy of AS benefited from using a model that utilized audio

from all four standard auscultation positions, achieving high

accuracy on a dataset that excluded only the samples that had

noisy audio in all four positions. AR and MR were not reliably
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detected, but detection accuracy increased significantly when only

symptomatic cases were targeted and when age, gender, heart

rate, and dyspnea were included as predictors. Our results

indicate that automated HS analysis could be a highly cost-

effective screening tool for detecting undiagnosed VHD.
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