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Research in context  

Evidence before this study  

We searched MEDLINE for studies published in English between Jan 1, 2015, and Dec 31, 

2020, that included “breast cancer screening” or “mammography screening”, and “artificial 

intelligence” or “machine learning” in the title or abstract. No prospective trials were 

identified. There were several retrospective accuracy studies using screening data or enriched 

datasets. We found no systematic reviews on test accuracy. The retrospective studies, using 

different artificial intelligence (AI) software and mammography devices, indicated that AI 

could be used to differentiate between screening examinations with low and high probability 

of malignancy, which could potentially be used to improve the efficacy of screening and 

reduce the workload, especially the requirement for double reading.  

Added value of this study  

To our knowledge, this is the first randomised controlled trial investigating the use of AI in 

mammography screening. In this first report, the objective was to assess the safety of an AI-

supported screen-reading procedure, involving triage and detection support. AI-supported 

screening resulted in 20% more cancers being detected and exceeded the lowest acceptable 



limit for safety compared with standard double reading without AI, without affecting the false 

positive rate. The AI supported screen-reading procedure enabled a 44.3% reduction in the 

screen-reading workload. The results indicate that the proposed screening strategy is safe.  

Implications of all the available evidence  

The results from this randomised trial support the findings of earlier retrospective studies, 

indicating a general potential of AI to improve screening efficacy and reduce workload. The 

clinical safety analysis concludes that the AI-supported screen-reading procedure can be 

considered safe. Implementation of AI in clinical practice to reduce the screen-reading 

workload could therefore be considered to help address workforce shortages. The assessment 

of the primary endpoint of interval cancer rate, together with a characterisation of detected 

cancers in the entire study population, will provide further insight into the efficacy of 

screening, possible side-effects such as overdiagnosis, and the prognostic implications of 

using AI in mammography screening, taking cost-effectiveness into account. 

 

Summary 

Background Retrospective studies have shown promising results using artificial intelligence 

(AI) to improve mammography screening accuracy and reduce screen-reading workload; 

however, to our knowledge, a randomised trial has not yet been conducted. We aimed to assess 

the clinical safety of an AI-supported screen-reading protocol compared with standard screen 

reading by radiologists following mammography. 

Methods In this randomised, controlled, population-based trial, women aged 40–80 years 

eligible for mammography screening (including general screening with 1.5–2-year intervals 

and annual screening for those with moderate hereditary risk of breast cancer or a history of 

breast cancer) at four screening sites in Sweden were informed about the study as part of the 

screening invitation. Those who did not opt out were randomly allocated (1:1) to AI-supported 

screening (intervention group) or standard double reading without AI (control group). 

Screening examinations were automatically randomised by the Picture Archive and 

Communications System with a pseudo-random number generator after image acquisition. 

The participants and the radiographers acquiring the screening examinations, but not the 

radiologists reading the screening examinations, were masked to study group allocation. The 

AI system (Transpara version 1.7.0) provided an examination-based malignancy risk score on 

a 10-level scale that was used to triage screening examinations to single reading (score 1–9) 



or double reading (score 10), with AI risk scores (for all examinations) and computer-aided 

detection marks (for examinations with risk score 8–10) available to the radiologists doing the 

screen reading. Here we report the prespecified clinical safety analysis, to be done after 80 

000 women were enrolled, to assess the secondary outcome measures of early screening 

performance (cancer detection rate, recall rate, false positive rate, positive predictive value 

[PPV] of recall, and type of cancer detected [invasive or in situ]) and screen-reading workload. 

Analyses were done in the modified intention-to-treat population (ie, all women randomly 

assigned to a group with one complete screening examination, excluding women recalled due 

to enlarged lymph nodes diagnosed with lymphoma). The lowest acceptable limit for safety in 

the intervention group was a cancer detection rate of more than 3 per 1000 participants 

screened. The trial is registered with ClinicalTrials.gov, NCT04838756, and is closed to 

accrual; follow-up is ongoing to assess the primary endpoint of the trial, interval cancer rate. 

Findings Between April 12, 2021, and July 28, 2022, 80 033 women were randomly assigned 

to AI-supported screening (n=40 003) or double reading without AI (n=40 030). 13 women 

were excluded from the analysis. The median age was 54.0 years (IQR 46.7–63.9). Race and 

ethnicity data were not collected. AI-supported screening among 39 996 participants resulted 

in 244 screen-detected cancers, 861 recalls, and a total of 46 345 screen readings. Standard 

screening among 40 024 participants resulted in 203 screen-detected cancers, 817 recalls, and 

a total of 83 231 screen readings. Cancer detection rates were 6.1 (95% CI 5.4–6.9) per 1000 

screened participants in the intervention group, above the lowest acceptable limit for safety, 

and 5.1 (4.4–5.8) per 1000 in the control group—a ratio of 1.2 (95% CI 1.0–1.5; p=0.052). 

Recall rates were 2.2% (95% CI 2.0–2.3) in the intervention group and 2.0% (1.9–2.2) in the 

control group. The false positive rate was 1.5% (95% CI 1.4–1.7) in both groups. The PPV of 

recall was 28.3% (95% CI 25.3–31.5) in the intervention group and 24.8% (21.9–28.0) in the 

control group. In the intervention group, 184 (75%) of 244 cancers detected were invasive and 

60 (25%) were in situ; in the control group, 165 (81%) of 203 cancers were invasive and 38 

(19%) were in situ. The screen-reading workload was reduced by 44.3% using AI. 

Interpretation AI-supported mammography screening resulted in a similar cancer detection 

rate compared with standard double reading, with a substantially lower screen-reading 

workload, indicating that the use of AI in mammography screening is safe. The trial was thus 

not halted and the primary endpoint of interval cancer rate will be assessed in 100 000 enrolled 

participants after 2-years of follow up. 



Funding Swedish Cancer Society, Confederation of Regional Cancer Centres, and the 

Swedish governmental funding for clinical research (ALF). 

 

Introduction 

European guidelines recommend double reading of screening mammograms to ensure high 

sensitivity.1 A meta-analysis suggested that double reading resulted in 0.44 more cancers being 

detected per 1000 people screened than with single reading;2 however, this comes at the expense 

of a large screen-reading workload and can potentially increase false positives.3,4 Double 

reading can also be difficult to sustain because of a shortage of breast radiologists in many 

countries.5 In addition, despite double reading, some cancers might be missed and diagnosed as 

interval cancers.6 Interval cancers generally have a worse prognosis than screen-detected 

cancers, and the interval cancer rate is therefore an important  indicator  of  screening  

efficacy.1,6 In retrospective studies, about 20–30% of interval cancers have been shown to 

display highly suspicious signs of malignancy at the preceding screening mammogram,6–8 

suggesting that mammography alone could have been sufficient for detection—ie, without the 

need for supplementary imaging methods. Establishing a more efficient and effective 

mammography screening programme is therefore warranted.  

 

Recently developed image analysis tools based on artificial intelligence (AI) have promising 

applications in mammography screening, such as facilitating triage of screening examinations 

according to risk of malignancy or supporting detection with computer-aided detection (CAD) 

marks highlighting suspicious findings.9 Retrospective studies suggest that the accuracy of AI 

is similar to or better than that of breast radiologists.10–13 AI has also been shown to be able to 

identify examinations that were normal (ie, true negatives), and, since the vast majority of 

women who attend screening do not have breast cancer, adapting single and double reading to 

AI risk scores could allow more efficient screen reading.14–17 Additionally, AI has been shown 

to retrospectively classify screening examinations as high risk before a diagnosis of interval 

cancer, and could, therefore, help radiologists to reduce false negative screening results when 

used as detection support.16,18,19 Taken together, the evidence suggests that use of AI could 

potentially benefit mammography screening by reducing the screen- reading workload and the 

number of interval cancers, but randomised trials are needed to assess the efficacy of AI-

supported screening.13 

 



In the randomised, controlled Mammography Screening with Artificial Intelligence trial 

(MASAI), we investigate an AI-supported screen-reading procedure involving triage of 

screening examinations to single or double reading, along with detection support. Here we 

report a prespecified safety analysis, the objective of which was to assess the safety of using 

AI-supported screening compared with standard double reading by determining the effect on 

cancer detection, which could be used to inform new trials or programme-based evaluations. In 

addition, we compared recalls, false positives, positive predictive value of recalls, and screen- 

reading workload for the two screen-reading procedures. 

 

Methods 

Study design and participants 

The MASAI trial was designed as a randomised, parallel, non-inferiority, single-blinded, 

controlled, screening accuracy study to compare AI-supported mammography screening with 

standard double reading without AI. The study was done within the Swedish national screening 

programme and participants were recruited at four screening sites in southwest Sweden 

(Malmö, Lund, Landskrona, and Trelleborg). Screen reading and further assessment of recalled 

participants were done at a single site, the Unilabs Mammography Unit at Skåne University 

Hospital (Malmö, Sweden). 

 

The inclusion criterion was women (defined here as people registered with a female Swedish 

personal identity number indicating female gender, which can include trans women who have 

changed their legal gender) eligible to participate in population-based mammography 

screening, which also includes those with moderate hereditary risk of breast cancer and those 

with a history of breast cancer. No exclusion criteria were applied. The Swedish population-

based mammography screening programme invites women aged 40–74 years for screening at 

intervals of 1.5–2 years. Those younger than 55 years are first screened at 1.5-year intervals, 

and those aged 55 years or older are screened at 2-year intervals. Annual screening is done for 

people considered to have a moderate hereditary risk of breast cancer (lifetime risk 18–29%) 

and for those with a history of breast cancer (for 10 years after surgery, with an upper age limit 

of 80 years). Information about the study was included in screening invitation letters and in 

SMS text message reminders before scheduled appointments, with a link to a website 

containing detailed study information in Swedish and English. People eligible for screening 

who did not wish to participate in the trial were asked to opt out at the time of the screening 



visit and received standard of care. Information about the race or ethnicity of participants was 

not collected. 

 

The study was approved by the Swedish Ethical Review Authority (2020-04936), which also 

waived the need for written informed consent. The study protocol (versions 1.1 and 1.2) and 

the statistical analysis plan are available at the Lund University website. The protocol was 

updated to improve clarity; there were no changes in the trial procedures nor analyses in the 

statistical analysis plan from those described in the first and updated protocol versions. 

 

 

Randomisation and masking 

Randomisation was based on a single sequence of random assignments (1:1). After screening 

mammograms were acquired, examinations were automatically randomised in the Picture 

Archive and Communications System (PACS; Sectra, Linköping, Sweden) to AI- supported 

screening (intervention group) or standard double reading without AI (control group) with a 

pseudo- random number generator. The people screened and the radiographers acquiring the 

screening examinations were masked to study group allocation, since the automatic 

randomisation was not visible on the radiographer’s PACS interface. The screen readers were 

not masked to the results of the allocation. 

 

Procedures 

A single-vendor mammography system was used for the screening examinations (Senographe 

Pristina, GE Healthcare, Freiburg, Germany). Standard screening examination included two 

views per breast with the addition of implant-displacement views for people with breast 

implants. The examinations randomised to the intervention group were analysed using 

Transpara version 1.7.0 (ScreenPoint Medical, Nijmegen, Netherlands). This system uses deep 

learning to identify and interpret mammographic regions suspicious for cancer. It was 

developed with more than 200 000 examinations for training and testing, which were obtained 

from multiple institutions in more than ten countries covering a range of populations, modality 

manufacturers, and variations in screening and diagnostic workflows. Annotations of more 

than 10 000 cancers in the database are based on biopsy results and include regions marked in 

previous mammograms in which cancers were visible but not detected by radiologists. 

https://portal.research.lu.se/en/projects/mammography-screening-with-artificial-intelligence
https://screenpoint-medical.com/


 

The AI system provided an examination-based malignancy risk score on a continuous scale 

ranging from 1 to 10. The risk scores were also presented on a discrete 10-level scale, 

calibrated to assign approximately a tenth of screening examinations to each risk score. 

Examinations were considered to be low risk (risk score 1–7), intermediate risk (risk scores 8 

and 9), or high risk (risk score 10). Cancer prevalence increases sharply in the group with a 

risk score of 10, and retrospective studies using the same AI version as in this trial have 

reported 87–90% of screen-detected cancers and 45% of interval cancers to be in this 

group.16,17 The AI system also provided CAD marks at suspicious regional findings of 

calcifications and soft-tissue lesions, with a regional risk score on a discrete scale from 1 to 

98. To limit the number of CAD marks that could potentially disturb the screen reading or 

lead to an increase in false positives, the AI system was preconfigured for CAD marks to be 

available only for examinations with risk scores of 8, 9, and 10, accounting for approximately 

30% of all examinations (regional risk score threshold >42). The AI system was also 

configured to analyse implant-displacement views in screening examinations of people with 

breast implants. The PACS was customised with separate worklists for single and double 

reading. Examinations with the highest 1% risk, classified as extra high risk, were flagged in 

the high-risk worklist as 10H. A risk score threshold of 9.8, which was determined from the 

observed risk score distribution in the screening population, was used to select this group. 

Screening examinations in the control group were not analysed with AI at any timepoint.  

 

In the intervention group, examinations with risk scores of 1–9 (low and intermediate risk) 

underwent single reading and examinations with risk scores of 10 (high risk) underwent 

double reading (figure 1). Double reading was done by two different breast radiologists. The 

second reader had access to the first reader’s assessment (unblinded double reading), which is 

the standard of care in the regional screening programme in the Skåne region. Readers were 

aware of the examination risk score (for all examinations), presented both in the PACS 

worklists and on the image monitor. Readers first read the examination without CAD marks 

and then with CAD marks, if available (ie, for examinations with risk scores of 8–10). The 

readers were instructed to recall cases with the highest 1% risk, except for obvious false 

positives. In the control group, screening examinations were read with standard unblinded 

double reading without AI. The outcomes of the screen reading were either no suspicion of 

malignancy or recall. Participants could be recalled due to mammographic findings or self- 



reported symptoms. Current practice in the screening programme is to recall participants with 

self-reported symptoms, such as a lump, when the mammogram cannot safely be classified as 

normal. Before the final decision, readers had the option of referral to a consensus meeting or 

to a technical recall (eg, due to poor image quality), or both. Consensus meetings are common 

practice in screening programmes with double reading; in these meetings, difficult or 

equivocal findings are reassessed by two radiologists, with a joint decision made to recall or 

clear of suspicion of malignancy.3 The images acquired at technical recall were by default 

randomised de novo due to the technical setup; however, participants were assessed according 

to their originally assigned group. Screening examinations allocated to the intervention group 

that failed to be processed by AI underwent standard-of-care reading. 

 

16 breast radiologists at the Unilabs Mammography Unit at Skåne University Hospital were 

involved in the screen reading, of whom 15 had more than 2 years of experience in breast 

imaging and 14 had more than 5 years of experience. 12 of the radiologists had a yearly reading 

volume of at least 5000 cases. Three radiologists had a yearly reading volume of 1000–3000 

cases, and one radiologist read on average 700 cases per year. Based on the group composition, 

only readers with more than 2 years of experience were allowed to read from the single-reading 

worklist. Before each screen-reading session, the radiologist rolled a six-sided die to randomly 

allocate themselves to either of the two groups: numbers 1–3 allocated them to the control group 

and 4–6 to the intervention group. 

 

Participants could withdraw from the study at any time, at which point all personal data would 

be removed and they would be excluded from analyses. True positive cases were initially 

identified through linkage with the Regional Cancer Registry (on Sept 12, 2022); to compensate 

for a delay in registry reporting, all recalled participants were manually assessed with use of 

patient records, and true positives were validated by histopathology reports on surgical samples 

or core-needle biopsies. 

 

Outcomes 

The primary outcome measure of the MASAI trial is interval cancer rate, which will be assessed 

after the full study population of 100 000 screened participants have had at least a 2-year follow-

up (estimated December, 2024). Secondary outcome measures are early screening performance 

(cancer detection rate, recall rate, false positive rate, and positive predictive value [PPV] of 



recall), screen-reading workload (number of screen-readings and consensus meetings), 

detection in relation to tumour type and stage, proportion of interval cancers by cancer type and 

stage, sensitivity and specificity, and incremental cost-effectiveness ratio. In the current clinical 

safety analysis, the secondary outcome measures of early screening performance of cancer 

detection rate (number of cancers detected per 1000 participants screened), recall rate 

(proportion of screened participants who were recalled), false positive rate, PPV of recall, type 

of detected cancer (invasive or in situ), and screen-reading workload were assessed. The screen-

reading workload was reported as the sum of all screen readings, including those made at 

consensus meetings. The number and proportion of screenings that resulted in a consensus 

meetings (consensus meeting rate) were also reported separately. 

 

Statistical analysis 

The intention-to-treat population comprised all participants who underwent breast screening. 

The modified intention- to-treat (mITT) population comprised participants with a complete 

screening examination, excluding those who were asked to attend a technical recall but did not 

attend. Participants recalled due to bilateral enlarged lymph nodes and diagnosed with 

lymphoma were also excluded from the mITT population, since they were not recalled due to 

suspicion of breast cancer. Participants were analysed in their allocated group regardless of the 

actual reading procedure (treatment policy strategy). 

 

The hypothesis for the primary analysis was the non- inferiority of AI-supported 

mammography screening compared with standard double reading, in terms of interval cancer 

rate, with a secondary hypothesis of superiority. Considering the interplay of screen-reading 

workload and the number of interval cancers, the non- inferiority margin for the primary 

endpoint was set at the intervention yielding at most 20% more interval cancers than in the 

control group. The sample size calculations were done with use of Fisher’s exact test to 

compare the risk ratio based on the observed interval cancer rate in the current screening 

programme. A total sample size of 100 000 (intention-to-treat population) was expected to 

have at least 80% statistical power to show that the ratio of the interval cancer rate is at most 

1.2 in the intervention group compared with the control group. The mITT population among 

the 100 000 enrolled participants will be used in the primary analysis. The sample size 

calculation for the clinical safety analysis was based on a worst case scenario of the 

intervention yielding a cancer detection rate of 3 per 1000 screened participants (based on the 



assumption that single reading could lead to reduced detection), at which rate the study could 

be halted, compared with a detection rate of 5 per 1000 screened participants in the control 

group (reflecting the observed rate in the current screening programme). According to Fisher’s 

exact test, a sample size of 80 000 (intention-to-treat population) was needed to show with a 

power greater than 80% that the proportion of detected cancer did not reach the worst case 

scenario. The mITT population among the 80 000 enrolled participants was used in the clinical 

safety analysis. Throughout the study, the overall recall rate was monitored as part of the 

institutional quality assurance reports to ensure that the recall rate did not drop below what 

was observed in the clinic 6 months before the start of the trial (average recall rate 2.1%), 

which could indicate a reduction in cancer detection. The number of enrolled participants was 

monitored monthly. Trial data were extracted from PACS on Sept 12, 2022, which was 1.5 

months after roughly 80 000 participants had been enrolled, to ensure sufficient time for the 

screen reading and initial investigations of recalled participants. Participants were matched 

with the Regional Cancer Registry on the same day as data extraction and a rapid preliminary 

analysis of cancer detection was available 1 week later, which was used to inform the decision 

to continue the trial. 

 

Descriptive statistics were used to summarise study population characteristics. Frequencies 

and percentages were calculated for categorical data. 95% CIs were calculated with the 

Clopper-Pearson method. The cancer detection rate, recall rate, false positive rate, and PPV of 

recall were calculated separately for the intervention and control groups. The cancer detection 

rate was compared with Fisher’s exact test and the ratio of the proportions with corresponding 

95% CIs were reported. A two-sided p value of less than 0.05 was considered to indicate 

statistical significance. The numbers of screen readings and consensus meetings were 

calculated separately for the intervention and the control groups. 

 

In a post-hoc analysis, the distribution of AI risk scores by screening examinations, screen-

detected cancers, recalls, and PPV of recall were reported with descriptive statistics. This 

analysis was included to describe AI performance and no inferential statistical analyses were 

done. 

 

All statistical analyses were done with Stata IC 17.0 software and Python 3.8.5. The trial is 

registered with ClincialTrials.gov, NCT04838756. 



 

 

Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. 

 

 

Results 

Between April 12, 2021, and July 28, 2022, 80 160 women presented for screening and 127 

(0.2%) opted out of the trial. 80 033 participants were randomly assigned: 40 003 (50.0%) to 

undergo AI-supported screening (intervention group) and 40 030 (50.0%) to undergo double 

reading without AI (control group). 39 996 participants in the intervention group and 40 024 

in the control group were included in the clinical safety analysis (mITT population; figure 2). 

The median age of participants in the mITT population was 54.0 years (IQR 46.7–63.9). The 

age distribution and indication for screening was similar between groups (table 1). The AI 

system did not to provide a risk score for 306 (0.8%) of 39 996 participants in the intervention 

group. There were 38 (0.1%) technical recalls among 40 003 participants in the intervention 

group and 46 (0.1%) among 40 030 participants in the control group. 

 

Early screening performance and workload measures are presented in table 2. Based on the 

rapid preliminary analysis of cancer detection internally reported on Sept 20, 2022, among the 

39 996 participants screened with AI, 244 cancers were detected and 861 participants were 

recalled. Among the 40 024 participants in the control group, 203 cancers were detected and 

817 participants were recalled. The cancer detection rate was 6.1 (95% CI 5.4–6.9) per 1000 

participants for AI-supported screening (ie, above the lower safety limit) and 5.1 (4.4–5.8) per 

1000 for double reading without AI, a ratio of 1.2 (95% CI 1.0–1.5; p=0.052). The absolute 

difference in cancer detection per 1000 screened participants was 1.0 (95% CI 0.0–2.1). The 

false positive rate was the same in both groups. 36 886 fewer screen readings were done in the 

intervention group than in the control group, representing in a 44.3% reduction in the screen-

reading workload. 

 

Of the 244 cancers detected in the intervention group, 184 (75%) were invasive, among which 

152 (83%) were stage T1 (tumour diameter ≤20 mm). In the control group, 165 (81%) of 203 



cancers were invasive, of which 129 (78%) were stage T1. In situ cancers constituted 60 (25%) 

detected cancers in the intervention group and 38 (19%) in the control group. 

 

The distribution of AI risk scores in the intervention group and early screening performance 

measures per risk score are presented in table 3 (post hoc). The cancer detection rate in the high-

risk group (ie, those with a risk score of 10 that underwent double reading) was 72.3 per 1000 

participants screened (208 of 2875 participants), a frequency of one cancer per 14 screening 

examinations. In the high-risk group, 11 (2.6%) of 416 recalls were due to self-reported 

symptoms. Of the 490 screening examinations flagged as extra high risk by AI (highest 1% 

risk), 189 (38.6%) were recalled—ie, 22.0% of all 861 recalls in the intervention group. Of the 

189 recalled participants classified as being extra high risk, 136 had cancer (PPV of recall 

72.0%), resulting in a cancer detection rate of 277.6 per 1000 screening examinations in the 

extra- high-risk category. Thus, the 1.2% of screening examinations flagged as extra high risk 

contained 55.7% of all screen-detected cancers in this group. 36 815 (92.0%) of 39 996 

screening examinations were those with risk scores of 1–9 (which underwent single reading), 

among which there were 440 (1.2%) recalls (51.1% of all 861 recalls), including 114 (25.9%) 

recalls based on self-reported symptoms. 36 cancers were detected by screening in the single-

reading with AI group (14.8% of all 244 screen-detected cancers), with an overall cancer 

detection rate of 1.0 per 1000 participants screened. There was a considerable difference in 

cancer detection rate between those with risk scores of 1–7 (0.2 per 1000 participants screened; 

six cancers detected among 30 464 participants) and those with risk scores of 8–9 (4.7 per 1000; 

30 cancers detected among 6351 participants), meaning that, to detect one cancer, radiologists  

had to read 5000 examinations in the group with scores of 1–7 and 212 examinations in the 

group with scores of 8–9. 

 

Discussion 

This clinical safety analysis showed that a screen-reading procedure using an AI tool to triage 

screening examinations to single or double reading and with use of AI as detection support in 

mammography screening was safe, because the cancer detection rate (6.1 per 1000 participants 

screened) was above the prespecified lower limit for safety, and was similar to that of double 

reading without AI (5.1 per 1000). The use of AI did not influence the rates of recalls, false 

positives, or consensus meetings, while the screen-reading workload was reduced by almost 

half. 



 

The MASAI trial aims to answer two key questions on the use of AI in mammography 

screening. The first question regards whether AI can be safely used to reduce the screen-reading 

workload with sustained performance, which we addressed in the current report. The second 

key question regards the effect on screening outcome, with a primary outcome of interval cancer 

rate, a central indicator of screening efficacy.1,6 The full study population of 100 000 screened 

participants and a 2-year follow-up is needed to investigate this endpoint. 

 

The MASAI trial proposes one of several possible strategies of integrating AI in the screen-

reading pathway.13,20 In European screening programmes, in which double reading is standard, 

AI has been suggested to replace one of the readers, to be used as a standalone reader for 

examinations with low AI risk scores, to force examinations with high AI risk scores to a 

consensus meeting or to arbitration, or to automatically recall cases above a specific threshold. 

Different strategies can also be considered regarding reader access to AI information: having 

it available at the time of screening or, for example, only at the consensus meeting to limit 

automation bias. Our strategy was to use AI to triage examinations to single or double reading 

and to let radiologists have access to AI information in the form of risk scores and CAD marks 

at the time of screen reading. The rationale underlying this design was to take advantage of 

the bias introduced by AI. We hypothesised that, in addition to the benefit of CAD marks as 

detection support, knowledge of disease prevalence would influence radiologists’ operator 

point and thereby reduce false positives when reading low-risk examinations (in addition to 

single reading itself leading to fewer false positives4) and reduce false negatives when reading 

high-risk examinations.21 Access to risk scores and CAD marks did not seem to introduce a 

detrimental automation bias, since the false positive rate remained unchanged. This finding 

emphasises the importance of radiologists having the final decision to recall, which, besides 

reducing false positives, constitutes a practical approach to meeting established medicolegal 

requirements, as opposed to the current ethical and legal uncertainties of using AI as a 

standalone reader. However, if results from prospective studies show that use of AI in screen 

reading is safe, it could potentially lead to over- reliance on AI and cause an increased risk of 

detrimental automation bias over time. In our study, access to AI information also enabled the 

fast and safe handling of screening examinations with a very high probability of cancer. These 

examinations were flagged in the PACS worklist and could therefore be prioritised for a timely 

and scrutinised screen reading. This approach was effective as indicated by the findings that 



the 1.2% of screening examinations flagged as extra high risk contained 55.7% of all screen-

detected cancers in this group. 

 

AI-supported screening resulted in 20% more cancers (244 vs 203) being detected than with 

standard screening. 152 stage T1 invasive cancers were detected in the intervention group 

compared with 129 in the control group, which might indicate an increase in early detection 

without the need for supplementary imaging methods. The incremental increase was, however, 

not as large as that observed with digital breast tomosynthesis screening in a previous study.22 

Still, the higher cancer detection with tomosynthesis compared with mammography in 

screening has not convincingly been shown to translate into a reduction of interval cancers,22 

which could question its clinical importance since it is also a more resource-demanding 

technique. The clinical significance of the additional detected invasive cancers in our study 

remains to evaluated. The evolution of AI over time could affect all available tests for breast 

cancer screening, but the use of AI in tomosynthesis screening has not yet been evaluated in a 

prospective study. 

 

We also found increased detection of in situ cancers with AI-supported screening compared 

with standard screening (60 vs 38), which could be concerning in terms of overdiagnosis. The 

risk of overtreating an in situ cancer is more likely with low-grade cancers, since they might 

never progress into a clinically relevant event during the patient’s lifetime.23 Hence, the planned 

characterisation of detected cancers in the full study population will bring some clarity to 

possible overdiagnosis with AI-supported screening. Fenton and colleagues showed a 34% 

increase in the detection of in situ cancers (from 1.17 to 1.57 per 1000 screening mammograms, 

p=0.09) after the implementation of conventional CAD in screening but without a parallel 

increase in the detection of invasive cancer.24 Conventional CAD was also shown to increase 

false positives and related costs, and its use in screening could ultimately not be justified.2,24–27 

AI thus seems to have improved performance compared with that of conventional CAD, but 

could still have hypersensitivity to calcifications, a typical presentation of in situ cancers.13 

Subsequent screening will show whether the relatively higher detection observed in our trial is 

a result of screening with a more sensitive technique for the first time (ie, a prevalence effect), 

causing an initial high incidence that levels out during subsequent screening rounds.28 

 

We found that the benefit of AI-supported screening in terms of screen-reading workload 



reduction was considerable. The actual time saved was not measured, but, if we assume that a 

radiologist reads on average 50 screening examinations per hour, it would have taken one 

radiologist 4.6 months less to read the 46 345 screening examinations in the intervention group 

compared with the 83 231 in the control group. There was concern about whether AI would 

lead to an increase in cases referred to consensus meetings, considering the eventual need to 

discuss CAD findings and the possible reader anxiety arising from single reading. Consensus 

meetings constitute an important step to increase the specificity, but are resource demanding.3 

Contrary to expectations, the proportion of screenings that led to a consensus meeting was not 

affected by the use of AI. 

 

These results are promising and can be used to inform new trials and programme-based 

evaluations to address the radiologist shortage. However, we still need to improve our 

understanding of what the implications are for patient outcome—most importantly, the effect 

on interval cancer rates. We also need to investigate whether the higher detection of small 

invasive cancers will lead to a subsequent reduction of prognostically significant cancers and 

whether the frequency of in situ cancers detected will be reduced at subsequent screenings. An 

analysis of the prognostic characteristics of cancers detected in the full study population of the 

MASAI trial is underway. Furthermore, AI systems come at a financial cost, and, while the 

market and its business models might develop, the willingness to pay to reduce the workload 

must be determined. Cost- effectiveness can be determined only when the downstream cost of 

the intervention has been assessed. 

 

The MASAI trial is, to our knowledge, the first randomised trial investigating AI in 

mammography screening and can thus provide evidence for clinical implementation. A strength 

of the study is the close resemblance to a real screening setting, since no exclusion criteria were 

applied and few people invited for screening opted out. The main limitation of this study is that 

it was conducted at a single centre in the Swedish screening programme. The study was also 

limited to the combination of one type of mammography device and one AI system. AI system 

performance will inevitably vary with technical factors such as AI algorithms and image 

processing,12 but will probably be of less importance than the variability of radiologists. Our 

screening strategy emphasises the central role of the radiologist to make the final decision to 

recall a patient, and the present results are dependent on the performance of the participating 

radiologists. The radiologists participating in this trial were, overall, moderately to highly 



experienced in breast imaging, which could also limit the generalisability of our findings to 

some settings (eg, those with predominantly less- experienced screen readers, which have been 

shown to have a higher rate of false positives29), and the qualification for single reading with 

AI is likely to require revision. Only readers with more than 2 years of experience were allowed 

to conduct single reading in the intervention group, which could have introduced a bias in reader 

performance in relation to the control group. Because only one of the 16 participating 

radiologists had less than 2 years of experience, we do not believe this factor would have had a 

major influence on the results. Another limitation of the reported results was that the true false 

positive rate requires a follow-up period in case of later interval cancer diagnosis. Because this 

is an uncommon event, we do not expect the false positive rate to change substantially. 

 

Results from this study must be considered in the context of AI being a constantly evolving 

field with continuously updated algorithms and machine learning models, and the related 

challenge of the transparency of these updates.30 To mitigate the implications of these updates 

and estimate the effect on screening performance, mammograms from the MASAI trial will be 

stored in a data warehouse to enable a reanalysis with updated algorithms using the trial 

outcome data as a reference. More importantly, implementing AI systems would require having 

a monitoring system of algorithm performance in place. 

 

In summary, this clinical safety analysis of the MASAI trial, in which an AI system was used 

to triage screening examinations to single or double reading and as detection support, showed 

that AI-supported mammography screening can be considered safe, since it resulted in a 

similar rate of screen-detected cancer—exceeding the lowest acceptable limit for safety—

without increasing rates of recalls, false positives, or consensus meetings, and while 

substantially reducing the screen-reading workload compared with screening by means of 

standard double reading. 
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Table 1. Baseline population characteristics.  

Characteristics  Intervention 

(N = 39 996) 

Control 

(N = 40 024) 

Age   

Age (mean, SD, min-max) – yr 55·3 (10·2) [39·6, 80·1] 55·3 (10·2) [39·5, 79·9] 

<45 – no. (%) 7568 (18·9) 7607 (19·0) 

45–49 – no. (%) 7 155 (17·9) 7209 (18·0) 

50–54 – no. (%) 6505 (16·3) 6559 (16·4) 

55–59 – no. (%) 5021 (12·6) 4822 (12·0) 

60–64 – no. (%) 5007 (12·5) 5214 (13·0) 

65–69 – no. (%) 4345 (10·9) 4265 (10·7) 

>70 – no. (%) 4395 (11·0) 4348 (10·9) 

Screening indication   

General screening — no. (%) 
38 969 (97·4) 38 951 (97·3) 

Previous history of breast cancer  — no. (%) 984 (2·5) 1017 (2·5) 

Moderate hereditary risk – no. (%) 
43 (0·1) 56 (0·1) 

 

 

 

Table 2. Early screening performance and workload measures. 

 Intervention 

(N = 39 996) 

Control 

(N = 40 024) 

Early screening performance    

Recalls – no. 861 817 

Recall rate – % (95% CI) 2·2 (2·0, 2·3) 2·0 (1·9, 2·2) 

Screen-detected cancers – no. 244 203 

Cancer-detection rate per 1000 screens – % (95% CI) 6·1 (5·4, 6·9) 5·1 (4·4, 5·8) 

False-positive rate – % (95% CI) 1·5 (1·4, 1·7) 1·5 (1·4, 1·7) 

PPV-1 – % (95% CI) 28·3 (25·3, 31·5) 24·8 (21·9, 28·0) 

Workload   

Screen readings – no. 46 345 83 231 

Consensus meetings – no. 1584 1576 

Consensus rate – % (95% CI) 4·0 (3·8, 4·2) 3·9 (3·8, 4·1) 



 

 

Table 3. Distribution of artificial intelligence examination risk scores and early screening performance measures.  

Risk scores 

Screened women 

(N = 39 996) 

No. (%) 

Recalls 

(N = 861) 

No. (%) 

Screen-detected 

cancers 

(N = 244) 

No. (%) 

Positive-predictive 

value of recalls 

 

% 

10 2875 (7·2) 416 (48·3) 208 (85·2) 50·0 

9 3212 (8·0) 116 (13·5) 23 (9·4) 19·8 

8 3139 (7·8) 65 (7·5) 7 (2·9) 10·8 

7 3075 (7·7) 36 (4·2) 1 (0·4) 2·8 

6 3193 (8·0) 41 (4·8) 1 (0·4) 2·4 

5 3503 (8·8) 52 (6·0) 0 (0·0) 0·0 

4 3697 (9·2) 35 (4·1) 1 (0·4) 2·9 

3 4247 (10·6) 30 (3·5) 1 (0·4) 3·3 

2 4368 (10·9) 31 (3·6) 1 (0·4) 3·2 

1 8381 (21·0) 34 (3·9) 1 (0·4) 2·9 

Missing 306 (0·8) 5 (0·6) 0 (0·0) 0·0 

 

 

 

 

 

Figure legend: 

 

Figure 1: Overview of trial intervention 

Figure 2: Trial profile 
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Figure 2 

80 160 women underwent

mammography screening

127 declined to participate

39 996 were included in the final

analysis

40 003 were allocated to AI-

integrated screening

24 received SoC at technical recall

306 were not analysed by AI due

to software failure and received SoC

40 024 were included in the final

analysis

40 030 were allocated to double

reading without AI

26 received AI at technical recall

80 033 underwent

randomisation

7 were excluded from analysis

4 declined technical recall

1 with current breast cancer was

invited to screening by mistake

1 was recalled due to enlarged

lymph nodes diagnosed with

lymphoma

1 withdrew consent

6 were excluded from analysis

5 declined technical recall

1 was recalled due to enlarged

lymph nodes diagnosed with

lymphoma


