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Abstract: Multi-spectral quantitative phase imaging (MS-QPI) is a label-free technique to 
determine the morphological changes, refractive index variations, and spectroscopic 
information of the specimens. The bottleneck to implementing this technique to extract 
quantitative information is the need for more than two measurements for generating MS-
QPI images. We propose a single-shot MS-QPI technique using a highly spatially sensitive 
digital holographic microscope (DHM) assisted by a deep neural network (DNN). There are 
three different wavelengths used in our method: λ=532, 633, and 808 nm. The first step is to get 
the interferometric data for each wavelength. The acquired datasets are used to train a generative 
adversarial network (GAN) to generate multi-spectral quantitative phase maps from a single 
input interferogram. The network was trained and validated on two different samples: the optical 
waveguide and MG63 osteosarcoma cells. Validation of the present approach is performed by 
comparing the predicted multi-spectral phase maps with numerically reconstructed (FT+TIE) 
phase maps and quantify with different image quality assessment metrices.  

1. Introduction 
Quantitative phase imaging (QPI) is a prominent label-free technique to measure morphological 
changes of biological cells that are transparent in nature[1-3]. Over the last few decades, QPI 
has been evolved both experimentally and computationally to resolve complexity of system and 
reconstruction for the accurate measurement and classification of various parameters of 
biological cells and tissues, such as surface profile, refractive index, dry mass density, cell 
membrane fluctuations, among others[4-12]. In QPI, morphological and dynamical information 
about the samples can be extracted by measuring the path length shift (∆𝜙) associated with the 
objects, which contains information about the refractive index (n!) and thickness (d) of the 
specimens. For the improvement in the specificity of QPI, image acquisition with additional 
dimensions of measurements, such as sample rotation, angle, and wavelength, is required, 
which results in 3D QPI[13, 14]. 

In addition, a number of optical properties such as absorption, scattering, reflection, refractive 
index, phase (coupled information of refractive index and thickness), etc. in a cell or tissue 
which are wavelength dependent and affect the diagnostic applications [15]. The ability of light 
to penetrate, interact, and transmit the cell or tissue organelles is the key to diagnosis, and 
mainly depend on the cell’s morphology and variation of refractive index and thickness inside 
the cell or tissue. Thus, a technique which can provide refractive index and thickness variation 
inside the cells or tissues is essential to increase the accuracy of diagnosis. Multispectral 
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quantitative phase imaging (MS-QPI) is such an imaging technique used for the quantitative 
analysis of phases that depend on a cell's refractive index and thickness. 

In the past, different methods such as diffraction phase microscopy [16, 17], quantitative 
dispersion microscopy[18] , quantitative phase spectroscopy[19], and dynamic spectroscopic 
phase microscopy[20], swept-source diffraction phase microscopy [21] etc. have been 
developed for phase measurement at multiple wavelengths. These methods have been utilised 
to overcome issues such as phase noise, phase unwrapping, and determination of refractive 
index dependence on the illumination wavelength. The acquisition of such multi-spectral (MS)-
QPIs can be done either in a) sequential mode [22-25] i.e., multi-wavelength frames are 
recorded one after another by wavelength switching or b) in simultaneous mode [26-28] i.e., 
single frame recorded on a multi-chip color camera which digitally separates out later. The 
conventional MS-QPI’s have certain limitations and complications as per optics perspective, 
that are mainly. 

1. In sequential illumination mode, firstly a costly wavelength switching light source with 
additional optical component is required [29], that makes system costly and bulky. 
Secondly, multiple frames corresponding to individual wavelength are recorded either 
by manual or mechanical switching of the light source that makes system complex and 
time consuming. 

2. On the other hand, in simultaneous illumination mode, a multiwavelength broadband 
light source with dispersion compensation mechanism and high-cost multi-chip color 
camera or multiple single-chip cameras are required, which results in complex system 
with color cross talk problem [23, 26, 30-32]. 

3. In addition, microbiological organelles are more reliable for imaging in NIR-IR 
wavelength range. Since in the UV or visible spectral range, some proteins such as 
hemoglobin (Hb), hemoglobin dioxide (HbO2), etc. inside the cells or tissues absorb 
lower wavelength lights more[33-36]. On the contrary, the water and lipids inside the 
cells or tissues absorb higher wavelength light radiation more [33-35]. Thus, the 
intermediate optimized condition for imaging with less damage and high penetration 
is in NIR-IR range (800-1100 nm) for the biological cells or tissues. The traditional 
MSQPI systems are limited for visible light spectrum (400-700 nm) range. The wide 
spectral source containing visible-NIR wavelength range require high-cost source and 
visible-IR sensitive cameras for data acquisition in traditional MSQPI that makes 
system bulky and costly. 

Thus, a technique is required which overcomes these aforementioned limitations with 
significant time reduction and precision, we have proposed the idea of single-shot MS-QPI 
assisted with DNN to extract out multispectral parameters. 

In the current study, we present a single-shot MS-QPI technique assisted by a deep neural 
network (DNN) to extract multispectral phase images of industrial and biological samples. For 
this purpose, we used a partially spatially coherent (PSC) light-based digital holographic 
microscopy (DHM) system to obtain multi-spectral phase maps from a single input 
interferogram. The interferometric images are acquired using the Linnik interferometer 
sequentially by wavelength switching and processed for the extraction of phase maps of the 
sample for each wavelength, respectively. These phase maps are used to train the generative 
adversarial network (GAN). We used two different classes of samples for our proposed 
work: 1) optical waveguide as an industrial sample and 2) MG 63 osteosarcoma cells as a 
biological sample. The reason for choosing two different classes of samples is to train and test 
the network with both homogeneous and heterogeneous sample configurations. For this, we 
apply the concept to a more controlled homogeneous sample, such as an industrial sample 
whose geometry and configuration are fixed, and to an inhomogeneous sample, such as a 
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biological sample whose shape is not fixed and changes depending on the sample's position and 
refractive index. Initially, for the validation of our approach, we used only two wavelength 
datasets for the optical waveguide, i.e., green and red. The reason to choose only two 
wavelengths for the optical waveguide is to check how network trained and performs for a 
simple homogeneous sample. After successful adaptation of the network with two wavelengths 
for the optical waveguide, we have used three wavelengths, i.e., green, red, and NIR, for the 
biological sample. The phase maps retrieved from the experimentally recorded interferograms 
for both the samples are compared with the trained GAN generated phase maps to evaluate the 
performance of the network. Therefore, our framework performs both phase reconstruction 
from interferogram and multi-spectral estimation in an integrated manner without resorting to 
the conventional reconstruction approach. This implies that our network learns the physics of 
reconstruction and encodes the spectral properties of piece-wise homogeneous materials in the 
overall inhomogeneous samples. In addition, in the proposed study, by overcompensating the 
usual requirement of traditional MS-QPI methods we aimed the significant time reduction along 
with cost and experimental system management. Indeed, it assumes that the training dataset has 
sufficient representatives of the structural and spectral variation expected in the sample. 
However, it reduces the experimental and computational demands of performing MS-QPI in the 
conventional manner.  

2. Experimental Setup 
The experimental setup of the proposed framework to acquire the single-shot MS-QPI is shown 
in Fig. 1. Lasers can't be used directly for MS-QPI because speckles and reflections from 
multiple layers of the sample or the optical components produce spurious and parasitic fringes 
that don't belong to the sample[25, 37, 38]. These speckles and spurious fringes reduce the 
resolution as well as the features of the reconstructed phase maps[25, 39]. Therefore, we realise 
a partially spatially coherent (PSC) light source, i.e., temporally high but spatially low coherent, 
by passing the laser light through a rotating diffuser (RD) and a multi-multimode fibre bundle 
(MMFB). The multi-multimode fibre bundle (MMFB) is made up of N∼6400 multimode fibres 
having a core diameter of ∼50μm of each with a numerical aperture of 0.65 (Wuzhou Aokace 
Technology Co., Ltd). The length and the active diameter of MMFB is 1.8m and 4mm, 
respectively. The RD scatters photons into various directions and creates a temporally narrow 
and wide angular spectral source, which is further coupled into the input of the MMFB. Spatial, 
temporal, and angular diversity can help reduce the speckles of coherent laser light sources [39]. 

 
Fig. 1. The multispectral quantitative phase imaging (MS-QPI) system is depicted schematically. Three different 
LASERs were used (green DPSS (λ=532 nm), He-Ne (λ=633 nm), and near infrared (λ=808 nm).BS1, BS2 and BS3: 
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beam splitter; MO: microscopic objectives (10X, 0.25 NA); RD: rotating diffuser; MMFB: multi multimode fibre 
bundle; L1, L2 and L3: lenses; RM: reference mirror; CCD: charge-coupled device (INFINITY2, Lumenera). (a) 
speckled interferogram due to high spatial coherence of direct laser illumination. (b) interferogram without 
speckles using partially spatial coherent light source. 

Here, we use laser light sources of three different wavelength, namely green (DPSS, λ1= 532 
nm), red (He-Ne laser, λ2= 633 nm), and NIR (laser diode dot module, λ3= 808 nm). For speckle 
free imaging, these sources are sequentially passed through a microscopic objective (MO1), RD, 
and MMFB. The light from the MMFB is coupled at the input port of the Linnik interferometer. 
The output beam from MMFB is collected by the lens L" which is first collimated and then 
focused by lens L# into the back focal plane of two identical microscope objectives, MOobj 
(sample arm) and MOref (reference arm) by using the 50/50 beam splitter (BS$). The focused 
light is passed through the MOobj which uniformly illuminates the sample. The back reflected 
light beam from the sample that holds the sample information interferes with the reference beam 
at the beam splitter plane. The interference signal is further collimated and projected into the 
charged coupled device (INFINITY2, Lumenera) camera plane using the tube lens L3.  

Further, the light sources are switched to record multi-wavelength interferograms, which are 
used for phase reconstruction of the sample using the Fourier transform (FT) algorithm. The 
reason to choose FT over other phase reconstruction algorithm such as phase-shifting is its 
single frame requirement for reconstruction that comparatively limits the data acquisition in our 
proposed work. The mathematics and detailed discussion about the FT reconstruction is 
provided in Supplementary Note 1 of the supplement file 2. The unwrapping (continuous) of 
the phase map is incorporated by applying the transport of intensity equation (TIE) 
algorithm[40, 41]. The TIE approach is fast and simpler for the biological cells and tissues as 
compared to the other unwrapping methods in QPI. The high fringe density interferograms at 
the camera plane are achieved by tilting the reference mirror (RM). The approach of this study 
is to generate simultaneous multi-spectral phase maps from a single input interferogram. To 
achieve this purpose, we train a generative adversarial network (GAN), which is basically a 
DNN for the execution of the study. In our proposed study, we were using three different 
wavelength light sources thus, 3X time is required for one set of data acquisition with sequential 
switching. After training of the proposed MSQPI+DNN framework, no further data acquisition 
required anymore thus, comparatively the time reduction will be expected more than 3-fold than 
the traditional acquisition time. 

3. The Architecture of Generative Adversarial Network (GAN)  
GAN is made up of two models: Generator (G) and Discriminator (D)[42]. The generator 
generates some mapped images G (IR), which are then compared to the ground truth (target) 
images by the discriminator. Ground truth (GT) images are final output images that have been 
experimentally processed and then sent into the network for training. The training of these two 
models and the training datasets determines GAN's overall performance. An increase in the 
number of training datasets leads to improved network training. GAN's architecture is depicted 
in Fig. 2. In Fig. 2 (a), (b), we showed the U-net architecture of the generator[42, 43], which 
comprises encoders and decoders, and the PatchGAN architecture of the discriminator, 
respectively [42, 44].  
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Fig. 2. The architecture of a generative adversarial network (GAN) to generate multispectral quantitative phase 
images. (a) architecture of generator (G), (b) architecture of discriminator (D). 

In the present study, the generator takes a single interferogram as an input IR, while the 
discriminator takes generated phase maps from the generator (G(IR)) along with ground truth 
(GT) as shown in Fig. 2 (a) and (b). The function of the discriminator is to discriminate between 
the generated and the ground truth images [45]. At the time of training, network optimises the 
losses between the generated and ground truth images after each epoch. The upgraded loss is 
then fed back into the generator and discriminator for fine tuning of the network. The detailed 
information about the working of GAN can be found in the supplement 1. 
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4. Cell culturing process of MG63 osteosarcoma cells:  
The preparation of MG63 osteosarcoma cells was carried out at the Centre for Biomedical 
Engineering, IIT Delhi, India, and the optical waveguide was developed at UiT, The Arctic 
University of Norway. The MG63 osteosarcoma cells are malignant bone cancer cells with 
abnormalities in their cellular structure. The cells were cultured using high-glucose DMEM 
media with 10% fetal bovine serum (FBS) and 1% antibiotic antimycotic solution and incubated 
in a humidified atmosphere containing 95% air and 5% CO2 at 37°C. Before seeding, silicon 
wafers were sterilised using UV and ethanol treatments for 10 min each. Cells were seeded on 
a sterilised silicon wafer in a 24 well plate and incubated for more than 48 hours in a 
CO2 incubator. Later, the samples were washed gently with phosphate-buffered saline (PBS) 
and fixed with 4% paraformaldehyde. To perform the experiment, PBS-dipped cells were 
placed under the proposed MS-QPI system for data recording. 

5. Workflow of the framework: Data acquisition, network training, and network 
testing 

The workflow of the present MS-QPI+DNN framework for the generation of simultaneous 
multispectral phase maps from a single input interferogram (i.e., single-shot MS-QPI) is shown 
in Fig. 3. The current framework is made up of three parts: data acquisition and processing, 
training, and testing of the network itself. 

 

Fig. 3. Workflow of the MS-QPI+DNN framework: (a) data acquisition process where IG, IR, INIR, and PG, PR, PNIR, 
are the three wavelength interferograms and their corresponding phase maps for λ=532 nm (green), λ	= 633nm (red), 
and λ=808nm (NIR), respectively using MS-QPI system. (b) block diagram for the training process of DNN. (c) block 
diagram of network testing for multispectral phase map generation. 

During data acquisition, we recorded multi-spectral interferograms by switching the light 
sources as shown in Fig. 3 (a). The optical waveguide and MG63 cell data were acquired using 
the MS-QPI system by employing two identical microscope objectives (MOobj = MOref). For the 
experimentation we have used a planar strip waveguide of Ta2O5 (ncore=2.1) guiding layer 
having thickness of 4-220 nm etched over SiO2 and Si (n=1.45) with varying strip width of 
1.3µm-200µm. The recorded interferometric images of samples were reconstructed using the 
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Fourier transform (FT) and the TIE unwrapping algorithm. As shown in Fig. 3 (b), we trained 
the network using a single input interferogram and three phase maps (ground truth images) 
corresponding to different ‘λi’. During training, a single interferogram was taken as an input to 
the generator to generate some mapped images. The discriminator discriminates between the 
generated and ground truth images and calculates a loss which can be fed back to the generator 
and discriminator for fine tuning of the network. After several iterations, the generator had 
enough training to generate the same images as the ground truth, i.e., loss reaches a minimum. 
As shown in Fig. 3, (c), the trained network was used for testing. Although, for network training, 
multiple interferometric images corresponding to each wavelength is required. But, after 
successful training of the network, multi wavelength interferograms are not required to predict 
the multispectral phase map of the samples. Interestingly, MS-QPI assisted with deep learning 
help us to extract multispectral phase information about the sample from a single wavelength 
interferogram. 

The optical waveguide dataset was trained with 54,414,979 trainable parameters in the 
generator model and 2,768,641 trainable parameters in the discriminator model. The model 
was trained with 4080 data sets with an input image size of 256×256, batch size 1, and a 
buffer size of 400 (for data randomization) for the optical waveguide. For complex 
structures like MG63 cell datasets, a total of 11,556 data items were employed to train the 
network. For the MG63 cell dataset, 66,999,939 trainable parameters in the generator 
model and 2,768,641 trainable parameters in the discriminator model were used. This 
model was trained with an input image size of 512×512, batch size 1, and a buffer size of 
400. The optimized epoch was set at 70 by evaluating the training characteristics. The training 
time used for 100 epochs was 27.76 hours with inference time 108ms ± 26.3ms per run (mean 
± std. dev. of 10 runs). We used 80% of total datasets for training and validation, while 20% of 
the dataset for testing purpose. The network has not reached over-learning during the training 
we have provided the training and validation vs. epoch curves in the Supplementary Figure 7 
in the supplement file 2. The ablation study regarding NN, why we ended up with this net 
structure and this number of layers is provided in the Supplementary Note 2 in the supplement 
2. 

The network was programmed in Python (version 3.8.0) and implemented using TensorFlow-
GPU (version 2.6) and Keras (version 2.2.0) library functions on an Anaconda Jupyter 
notebook. Network was trained at NVIDIA DGX-A100 server (AMD EPYC 7742 CPU, 
NVIDIA A100 40GB GPU) processor. 

6. Results and Discussion 
In the present work, we have shown the comparison between the experimentally processed 
phase maps and the network generated results of the optical waveguide and MG63 cell dataset. 
The network is optimised and trained for both datasets individually. Since the model is trained 
about the sample’s specific properties such as geometry, dry mass, refractive index variation, 
thickness, and density etc., and these properties vary sample to sample. Thus, the trained 
network used for multispectral phase map data generation is sample dependent i.e., for 
multispectral quantitative phase imaging of a new sample, network should be trained from 
scratch for the accurate mapping of biological parameters. 

Figure 4 shows the comparison of numerically (FT+ TIE algorithm based) reconstructed and 
network generated multispectral phase map data of the optical waveguide. The input 
interferogram corresponding to λ=633 nm is shown in Fig. 4 (a). Figure 4 (b) and (c) are 
numerically reconstructed 2D and 3D phase maps corresponding to λ=532 nm and λ=633 nm, 
respectively, for experimentally recorded interferograms. Figure 4 (d) and (e) are the network 
generated 2D and 3D phase maps corresponding to λ=532 nm and λ=633 nm, respectively, from 
a single input interferogram. The comparison shows that there is a wavelength dependent phase 
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map variation predicted by the network that is similar to the experimental reconstructed phase 
maps. Since the phase map is inversely proportional to the illumination wavelength, the phase 
value decreases as the wavelength increases. This is also predicted by the network, which can 
be seen in through colormap variation that signifies training of the wavelength dependency by 
the network for phase prediction. 

 

Fig. 4. Showing comparison between numerically (FT+ TIE algorithm based) reconstructed and network generated 
multispectral phase map data generated from a single input hologram on an optical waveguide. (a) is the experimentally 
recorded input red wavelength interferogram (b), (c) are the numerically reconstructed 2D and 3D phase maps for 
experimentally recorded green and red wavelength interferograms, respectively. (d), (e) are the network generated 2D 
and 3D phase maps corresponding to green and red wavelength, respectively. In order to support the robustness of the 
network for multispectral phase map data generation form a single hologram, image quality assessment between the 
numerically (FT+ TIE algorithm based) reconstructed and network generated multispectral phase maps is performed. 
The SSIM, DSSIM, FSIM, MSE, RMSE, SNR, and PSNR value of two images (the numerically reconstructed and 
network predicted) corresponding to each wavelength are listed in Table in Fig. 4. 
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In order to quantify the performance of MS-QPI+DNN, we calculated Structure Similarity 
Index Measure (SSIM) [46, 47], Structural Dissimilarity (DSSIM)[47], Features Similarity 
Index Matrix (FSIM)[47], Mean Square Error (MSE)[47], Root Mean Square Error 
(RMSE)[47], Signal-to-Noise Ratio (SNR), and Peak Signal-to-Noise Ratio (PSNR)[47] 
between numerically reconstructed and network generated phase maps. The SSIM lies [0 1], 0 
correspond to least similarity in structure while 1 corresponds to two images are similar to each 
other.  The values for FSIM lies [0   1], maps the features and measures the similarities between 
two images. The high value of SSIM and FSIM signifies that the similarity in structure between 
the network generated and numerically reconstructed phase maps is of good resemblance. 
Hence, the network is well trained for the MS-QPI with higher similarity in structure and feature 
for multi-spectral data generation. The slight difference in SSIM and FSIM value be caused by 
network artefacts during data training, such as data conversion, data processing, and so on. In 
human perception other than SNR and PSNR, SSIM or FSIM provides better results since it is 
normalized between [0 1], so more understandable than absolute errors like in MSE or 
PSNR[47]. The errors DSSIM, MSE, and RMSE tending to zero signifies minimum error 
between the two images and high values of SNR and PSNR signifies better the quality of 
generated images.  

In support of the network performance, the histogram plot of MSE, SSIM and PSNR over the 
complete test dataset, few more reconstructed results and quantifying parameters are provided 
in the Supplementary Figure 1, 2 and 3 on the Supplement file 2.  

 
Fig. 5. Illustration of comparison between numerically (FT+ TIE algorithm based) reconstructed and network generated 
multispectral phase map data from a single input interferogram on MG63 osteosarcoma cells. (a) is the experimentally 
recorded input red wavelength interferogram. (b), (c) and (d) are the numerically reconstructed phase maps for 
experimentally recorded green, red, and NIR wavelength interferograms, respectively. (e), (f) and (g) are the network-
generated multispectral phase maps corresponding to green, red, and NIR wavelengths, respectively. In order to support 
the robustness of the network for multispectral phase map data generation form a single hologram, image quality 
assessment between the numerically (FT+ TIE algorithm based) reconstructed and network generated multispectral 
phase maps is performed. The SSIM, DSSIM, FSIM, MSE, RMSE, SNR, and PSNR value of two images (the 
numerically reconstructed and network predicted) corresponding to each wavelength are listed in Table in Fig. 5.  
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Wavelength
Image Quality Assessment

SSIM DSSIM FSIM MSE RMSE SNR PSNR

Green 0.9182 0.0409 0.9568 0.0837 0.2894 10.4873 10.7708

Red 0.9464 0.0268 0.9533 0.0389 0.1973 11.8082 14.0994

NIR 0.9565 0.0217 0.9641 0.0149 0.1221 10.9321 18.2668
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Figure 5 shows the comparison of numerically (FT+ TIE algorithm based) reconstructed and 
network generated multispectral phase map data from a single input interferogram on MG63 
cell dataset. The NIR wavelength λ =808 nm is chosen since it has low absorption of biological 
molecules in this region[48]. Furthermore, NIR imaging is superior for thicker biological 
samples because it allows the better penetration at low illumination intensities, reducing the risk 
of photobleaching, achieving improved contrast and resolution, and reducing the possibility of 
crosstalk between channels. The input interferogram corresponding to λ=633 nm is shown in 
Fig. 5 (a). Figure 5 (b), (c), and (d) are the numerically reconstructed 2D phase maps 
corresponding to λ=532 nm, λ=633 nm and λ=808 nm, respectively. Figure 5 (e), (f), and (g) 
are the network-generated 2D phase maps that correspond to λ=532 nm, λ=633 nm, and λ=808 
nm, respectively. The comparison shows the close match between network-generated and 
experimentally reconstructed phase maps. The network, like in the case of the optical waveguide 
dataset, predicts that the phase map will change with wavelength.  

Further, to quantify the performance of MS-QPI+DNN, we performed image quality 
assessment with SSIM, DSSIM, FSIM, MSE, RMSE, SNR, and PSNR value of two images (the 
numerically reconstructed and network predicted) corresponding to each wavelength. The 
SSIM shown between the numerically reconstructed and network-generated results 
validates the similarity in cell structures for the MG63 cell dataset. The high value of SSIM 
and FSIM close to 1, signifies that the similarity in structure and feature between the network 
generated and numerically reconstructed phase maps corresponds to λ=532 nm, λ=633 nm, 
and λ=808 nm, respectively. The phase map comparison results and the image quality 
assessment values between numerically reconstructed and network generated phase maps 
signify that the proposed MS-QPI+DNN framework is trained for MS-QPI with a higher 
similarity in structure, feature and good quality with minimum error for multi-spectral phase 
map data generation. To show the difference between the reconstructed image and the 
network output image more directly, a one-dimensional plot of the same area for 
comparison is provided in the Supplementary Figure 8. In support of the network 
performance, the histogram plot of MSE, SSIM and PSNR over the complete test dataset, few 
more reconstructed results and quantifying parameters are provided in the Supplementary 
Figure 4, 5 and 6 on the Supplement file 2.  

Table. 1 Time comparison between conventional and proposed DL based MS-QPI method 

System Specification 
Time required for 
reconstruction in 

conventional MS-QPI 

Time required in MS-
QPI+DNN framework 

NVIDIA DGX-
A100 server (AMD 
EPYC 7742 CPU, 

NVIDIA A100 
40GB GPU) 

 

3348.48ms ± 0.7657 per 
run (mean ± std. dev. of 10 

runs) 

a. Training time (time 
for 100 epochs): 

(Batch Size 1): 
27.76 hours 

b. Inference time: 
108ms ± 26.3ms 
per run (mean ± std. 
dev. of 10 runs) 

In addition, we compared the conventional imaging method (FT+TIE) with our proposed DL 
based single-shot MS-QPI. Interestingly, our presented MS-QPI+DNN framework provides 
31X of significant time reduction from the conventional imaging platform as shown in Table 1. 
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7. Conclusion 
In the present manuscript, we have demonstrated a partially spatially coherent (PSC) light-
based single shot multi-spectral quantitative phase imaging (MS-QPI) technique assisted 
by a deep neural network (DNN). A trained DNN is used to generate three multi spectral 
phase maps corresponding to λ=532 nm (green), λ=633 nm (red), and λ=808 nm (NIR) 
from a single input interferogram (λ=633 nm (red)). Initially, we only used two wavelength 
datasets for the optical waveguide, green and red, to validate our method. Following the 
successful adaption of the network with two wavelengths for the optical waveguide, we used 
three wavelengths i.e., green, red, along with NIR for the biological sample. The performance 
of the network is tested on the optical waveguide as an industrial object and MG63 
osteosarcoma cells as a biological sample. Hence, the proposed approach can be useful for both 
type of samples.  

The comparison results shown in Fig. 4 and 5 indicate that the network generated phase map 
matches closely with experimentally reconstructed phase maps. To quantify the network 
performance, image quality assessment is performed with SSIM, DSSIM, FSIM, MSE, RMSE, 
SNR, and PSNR between the predicted and ground truth images. The errors DSSIM, MSE, and 
RMSE tending to zero signifies minimum error between the two images and high values of 
SSIM, FSIM, SNR and PSNR signifies higher similarity in structure, feature and good quality 
with minimum error for multi-spectral phase map data generation. The proposed deep learning 
based MSQPI system, overcomes the limitations of traditional MS-QPI approaches and 
provides significant performance, 3X of significant time reduction along with significant 
resource and cost reduction management. The present method can be useful for the single shot 
MS-QPI of biological cells and tissues such as human RBCs and cancer tissues where label-
free imaging is important in disease diagnosis and the identification of cancer margins.  
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