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Abstract—Monitoring sea ice in polar regions is critical for
understanding global climate change and supporting marine
navigation. Recently, researchers started to utilize machine/deep
learning methodologies to automate the separation of sea ice and
open water in synthetic aperture radar imagery. However, this
requires a large amount of reliably labeled training data. We
here propose an augmentation routine for Sentinel-1 data which
incorporates physical principles of radar backscatter into the
augmentation procedure. Firstly, we apply an incidence angle
aware algorithm to segment Sentinel-1 images into separate
clusters. We compute the corresponding slopes of backscatter
intensity with the incidence angle for each cluster. Secondly, the
slopes are used as prior information to project labeled pixels
and segments to different incidence angles and thus further
enrich the labeled data. We then apply a simplified U-Net
for pixel-wise classification of Sentinel-1 images into sea ice
or open water. The performance of our model is evaluated
by visual inspection as well as comparison with an available
product from the Chinese Academy of Science (CAS). The results
indicate that the physics-based data augmentation improves the
model performance compared to training with data without
augmentation. The inferred ice edge is in line with the inference
for other available data sets (CAS), but with a finer spatial
resolution. Finally, we also found the inference of our model
is highly correlated with the visual interpretation of overlapping
optical observations. Overall, the proposed methodology provides
an alternative for the automated separation of sea ice/open water
at fine spatial resolution.

Index Terms—Sea ice classification, data augmentation, deep
learning, polar region

I. INTRODUCTION

SEA ice is an important component of the earth climate
system and a sensitive indicator of climate change. It is

a threat to industrial offshore operations, as well as marine
navigation in polar areas. Since 1979, Arctic sea ice coverage
has decreased for all months of the year, with the largest
decline in the summer and early fall. In September, at the
end of melt season, the ice extent is now about half of
the 1979 extent [1]. This significant sea ice loss has sev-
eral climatological consequences: For instance, it leads to
wetter European summers [2] and more extreme Northern
Hemisphere winters [3]. Furthermore, it affects the Arctic
marine ecosystems, which is for example indicated by the
physiological adaptations of polar bears and narwhals [4],
and it makes the Arctic more easily accessible for shipping
and offshore operations [5]. Accurate and timely information
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about sea ice conditions is therefore crucial for safe Arctic
operations, for improving weather and climate models, and it
can be used to support policy makers in making local, regional
as well as global regulations to prevent deterioration of the
Arctic ecosystem.

Sea ice extent (SIE) and sea ice concentration (SIC) are
two main parameters to describe the state of the Arctic sea
ice cover. At present, passive microwave radiometer (PMR)
observations are the main data source for pan-Arctic mapping
of SIE and SIC. For instance, researchers from the University
of Bremen have developed a SIC product based on Advanced
Microwave Scanning Radiometer 2 (AMSR-2) data, using an
algorithm developed during the Arctic radiation and turbulence
interaction study (ARTIST) [6]. Similarly, the Bootstrap (BT)
algorithm [7] is being employed by NASA to provide a near-
real-time NOAA/NSIDC Climate Data Record of Passive Mi-
crowave Sea Ice Concentration (https://nsidc.org/data/g10016),
utilizing observations since 1978.

Both of these data sets are widely used by researchers for
sea ice climatology studies. However, the spatial resolution of
the PMR sensors is coarse, on the order of several kilometers.
This is not suitable for operational ice charting to support
marine navigation, which requires continuous information on a
much finer spatial resolution. Such information can only be re-
liably provided by spaceborne synthetic aperture radar (SAR)
observations, which are independent of sun illumination and
cloud coverage. The weather independent and reliable imaging
capability makes SAR the main data source in national sea
ice services around the world. At present, operational sea ice
charts are produced manually by visual interpretation of the
imagery by experienced sea ice analysts [8], a process that is
both subjective and time-consuming. Furthermore, the manu-
ally drawn ice charts do not always reflect the fine pixel-level
spatial detail of the underlying SAR imagery, as is for example
shown in the ice charts produced by the Danish Meteorological
Institute (DMI) in Fig.1) (https://data.dtu.dk/articles/dataset/
AI4Arctic ASIP Sea Ice Dataset - version 2/13011134).

Hence, a vast number of scholars have made efforts towards
automating the ice charting process from SAR at the pixel-
level. For instance, Lohse et al. [9] utilized a Bayesian
classifier for sea ice type mapping based on Sentinel-1 HH and
HV intensities, incidence angle (IA), and selected grey level
co-occurrence matrix (GLCM) texture features. Cristea et al.
[10] proposed an unsupervised sea ice segmentation algorithm
by integrating the target-specific IA-dependent intensity decay
rates into a non-stationary statistical model.



With the recent advancement of artificial intelligence tech-
nology, researchers also started to utilize machine learning
methods for sea ice mapping. Zakhvatkina et al. [11] utilized
a support vector machine (SVM) classifier, based on Radarsat-
2 HH and HV backscatter intensities as well as texture
features, to separate sea ice and open water. Park et al.
[12] developed a semi-automated sea ice classifier based on
a random forest algorithm, using sea ice charts to extract
training data. It is known that the input features used to
train classification algorithms (e.g. backscatter intensities or
texture features with selected parameter settings) affect the
generalization and performance. Traditionally, these features
are manually selected. In deep neural networks (DNNs), which
are now being extensively explored also for sea ice applica-
tions, the networks automatically learn the optimal features
through a hierarchy of computational layers. For instance,
Khaleghian et al. [13] developed a modified convolutional
neural network (CNN) architecture based on Visual geometric
Group 16-layer (VGG-16) for binary sea ice versus open
water classification. They also studied multi-class sea ice type
classification using the same architecture. Malmgren-Hansen
et al. [14] proposed a CNN architecture for fusing Sentinel-1
SAR imagery and AMSR-2 PMR data for ice charting, while
Stokholm et al. [15] used a modified U-Net architecture, where
they included the SAR noise correction scheme developed
by the Nansen Environmental and Remote Sensing Center
(NERSC) [16]. Wang and Li [17] utilized multiple U-Net
classifiers to map the Arctic sea ice cover from Sentinel-1
imagery and found a 5.55% difference compared with AMSR-
2 sea ice concentration data.

Successful sea ice classification based on DNN algorithms
requires a large number of high-quality training data with
known class labels. Several such training data sets are publicly
available. However, most of these data sets are based either
on manual/visual analysis of the SAR imagery or on sea
ice charts produced by the national ice services (which are
eventually also based on manual analysis). Consequently, the
class labels often lack detailed spatial information at the SAR
pixel level. This is the case for the previously mentioned
DMI data set (Fig.1) as well as for example for the UiT
data set (https://zenodo.org/record/4683174#.Yk7kVshBwuV)
shown in Fig.2. To increase the objectivity and robustness of
DNN sea ice mapping algorithms, more high-quality training
data at pixel-level resolution is required. While the manual
selection of such training data is possible, it will be even more
time-consuming than the generation of ”traditional” training
data sets with less spatial detail (Fig.1 and Fig.2). Hence, less
human intervention in training set generation is desirable.

Data augmentation is a method to increase the quantity of
training samples without human intervention. It is a fairly new
methodology, which has proven successful to overcome the
challenge of small data sets [18] or data sets with imbalanced
class abundances [19] [20]. Such imbalance can be a problem
in the case of ice type mapping, where sea ice and water may
not be evenly distributed or the number of pixels for various
ice types may vary. Data augmentation also reduces the over-
fitting phenomenon and increases the generalization ability of
CNNs. Hence, it provides an alternative option in cases when

a small labelled data set already exists. Many researchers have
explored various data augmentation methods. For instance,
operations such as rotating, flipping, enlarging the contrast
among pixels, and blurring have been widely implemented in
computer vision related tasks, and were adopted by Khaleghian
et al. [13] for sea ice applications. Zhang et al. [21] utilized the
convex combination of multiple samples and labels to create
new samples, increasing the diversity of the sampling and the
robustness of the model performance. Furthermore, variants of
generative adversarial networks (GAN) have been proposed by
Salimans et al. [22] and been adopted to data augmentation
for imbalanced data sets via transformation [23], [24]. Apart
from the above methods for data augmentation, a number of
researchers have utilized physics-based data augmentation in
training deep learning networks [25], [26], [27].

Motivated by the aforementioned works, we propose in this
manuscript a new physics-based data augmentation approach
for extending the training data used for training a DNN to
separate sea ice and open water at the individual SAR pixel
level. In the model, we take advantage of the physics that the
IA dependence of the radar backscatter intensity is different
for sea ice and open water, which is being demonstrated by
several research papers [9], [10], [28].

This article is organized as follows: Section II describes
the selected study area, as well as the utilized data set.
Section III presents the methodology, including the training
data generation with physics-based augmentation, the CNN
model architecture, and the configuration of the training pro-
cess. Section IV presents the performance of the proposed
augmentation approach by depicting classification results, with
error metrics of the model, as well as comparison with other
ice chart products. Section V discusses the problem of noisy
pixels over transition areas in the scenes as well as the open
water inference. Meanwhile, possible future solutions to these
issues are proposed. The main findings are concluded in
section VI, giving several perspectives on the current model
performance and further steps to take in future work.

II. STUDY AREA AND SATELLITE DATA

A. Study area

In this study we focus on the geographic region between
Greenland and Svalbard (22°W-25°E, 69°N-83°N). The air
temperature at 2m above the surface increases from March to
June and then decreases afterwards. The lowest temperature
can reach to -39.1◦C on March 10th, while the temperature
reach at a peak of 13.4◦C on June 30th according to Dan-
markshavn station’s measurements carried out by DMI over
2020 (https://confluence.govcloud.dk/display/FDAPI).

This region is characterized by large open water areas as
well as variable and highly dynamic sea ice conditions. From
East to West (Svalbard to Greenland), the region generally
shows a transition from predominantly open water conditions
close to Svalbard, via a marginal ice zone (MIZ) with SIC
between 0.2 and 0.8, towards dense drift ice and finally
landfast sea ice close to the East Greenland coast. The landfast
ice area largely consists of rough and strongly deformed rubble
fields, which are built up from drift ice that was locked in
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Fig. 1. HH (a,d) and HV (b,e) intensity (in dB) for selected regions of two S1 example images (scene NO.9 and 10 in Table I), together with SIC (c,f) from
the corresponding DMI ice chart. Note the differences in spatial detail (indicated by red rectangles) between the original SAR images and the manually drawn
ice charts. The SAR images contain more spatial information than what is captured in the ice chart. If the classifier is expected to reproduce these details,
they must be included in the training.

Fig. 2. HH and HV intensity (in dB) for a selected region of an S1 example image (scene NO.11 in Table I), together with the corresponding ice-water labels
from the UiT data set. While the ice-water mask captures a fair amount of spatial detail, it does not reflect the pixel-level spatial information that is visible
in the SAR imagery, especially in the area close to the ice edge.



place and became landfast. These rubble fields are intersected
by regions of very smooth and level landfast ice, which formed
in-situ under wind- and wave-protected conditions. In the drift
ice area, a mix of first- and multi-year ice can be found,
intersected by ridges and rubble fields as well as leads that can
either show open water conditions or be covered by thin nilas
or young ice. The open water area closer to Svalbard provides
a large fetch for wind and can therefore show variable SAR
backscatter intensity due to changing sea surface state caused
by varying wind and ocean current conditions. Overall, with
its diverse sea ice conditions in combination with its strategic
importance for Arctic operations, the selected area provides a
suitable and challenging test region for our present study.

B. Satellite data

1) Sentinel-1 SAR data: Sentinel-1 is a SAR mission with
global observation coverage and is part of the European Space
Agency’s (ESA) Copernicus program. It currently consists of
two satellites, with Sentinel-1A launched on 3 April 2014 and
Sentinel-1B on 25 April 2016, respectively. Each individual
satellite has a 12-day repeat cycle at the equator, which
results in a combined 6-day repeat cycle for both satellites.
The revisit frequency increases from low to high latitudes,
resulting in a temporal resolution of 1-3 days in Arctic regions.
It should be noted that the Sentinel-1B mission ended on
23 Dec 2021 due to a failure in the instrument electronics
power supply. Sentinel-1 data is freely available and can for
example be downloaded via the Copernicus open access hub
(https://scihub.copernicus.eu/).

Sentinel-1 operates at C-band frequency and offers four
exclusive acquisition modes with different swath widths:
Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide
swath (EW), and Wave (WV) mode. In this study, we use
EW data in ground range detected (GRD) format at medium
resolution. The EW mode is the standard observation mode
over open water and has a swath width of approximately 410
km. It covers roughly 10,000 × 10,000 pixels in total with
each pixel corresponding to approximately 40 × 40 m on
the ground. Meanwhile, the incidence angle across the swath
ranges from 18.9° at near-range to 47.0° at far-range. Several
studies have shown that the noise floor has a strong influence
on Sentinel-1 observations of sea ice [29]. To mitigate noise
effects, we apply the de-noising procedure proposed by the
Nansen Environmental and Remote Sensing Center (NERSC)
[16]. After noise correction, we clip the HH and HV intensity
values to intervals ranging from −30 to 0 dB and −35 to −5
dB, respectively, to remove the outliers.

Each Sentinel-1 scene can be uniquely identified by its name
string. For the easier readability of this paper, we use a running
ID number for all S1 images that we explicitly refer to in the
text. A list that matches the running IDs with the unique name
strings of the corresponding S1 images is given in Table I of
the supplementary information.

In this work, 8 S1 EW images acquired between January
and March 2021 (see NO.1-8 of Table I for scene IDs) are
selected to generate the training data for later usage (see green
rectangles in Fig.3). The selection of these images is based

Fig. 3. Overview of all image footprints used for either training (green) or
inference (red) in this study.

on the criteria that they should cover different geo-locations,
varying sea ice conditions, as well as both ascending and
descending image acquisitions. The footprints of all training
images as well as all images used for inference and validation
in this study are shown in Fig. 3.

2) Sentinel-2 optical data: Like Sentinel-1, Sentinel-2 is
part of ESA’s copernicus program and currently consists of
two satellites, Sentinel-2A (launched on 23 June 2015) and
Sentinel-2B (launched on 7 March 2017). Both satellites carry
a MultiSpectral Instrument (MSI) that samples 13 spectral
bands, with the central wavelength of the individual bands
ranging from 443 nm to 2190 nm at a spatial resolution of
10 m, 20 m, or 30 m. Sentinel-2 provides a swath width
of 290 km and the twin satellites give a combined revisit
frequency of five days at the equator. Detailed configuration
can be found via (https://sentinels.copernicus.eu/web/sentinel/
technical-guides/sentinel-2-msi/msi-instrument) and data can
freely be download via the Copernicus open access hub.

Operating in the visual and near-infrared part of the electro-
magnetic spectrum, Sentinel-2 is affected by natural sunlight
and cloud conditions. It is therefore not suitable as a primary
sensor for operational sea ice charting, but can be highly useful
as complementary data. In this study, we use Sentinel-2 data
as auxiliary data to evaluate and judge the performance of our
deep learning algorithm, which is based purely on Sentinel-1
imagery.

III. METHOD

In this section we describe the details of our study method.
We first give a short and concise overview of the experiment
setup, then we describe the details of the different experiments,
including training data selection and data augmentation, model



TABLE I
S1 SCENE IDS AND CORRESPONDING INTERNAL SCENE NUMBER IN THIS MANUSCRIPT

scene number purpose scene ID
1 train S1B_EW_GRDM_1SDH_20210101T074539_20210101T074639_024958_02F86C_D497
2 train S1A_EW_GRDM_1SDH_20210102T073823_20210102T073923_035956_043634_DE5A
3 train S1A_EW_GRDM_1SDH_20210104T072154_20210104T072254_035985_043735_D4FF
4 train S1B_EW_GRDM_1SDH_20210105T071250_20210105T071350_025016_02FA36_6592
5 train S1B_EW_GRDM_1SDH_20210209T175419_20210209T175519_025533_030AD7_84BD
6 train S1A_EW_GRDM_1SDH_20210301T070437_20210301T070537_025818_031425_6693
7 train S1B_EW_GRDM_1SDH_20210304T072924_20210304T073024_025862_03159B_D26A
8 train S1B_EW_GRDM_1SDH_20210309T073735_20210309T073835_025935_0317F0_F5F5
9 evaluation S1A_EW_GRDM_1SDH_20190110T183531_20190110T183635_025419_02D0D0_E2AC
10 evaluation S1B_EW_GRDM_1SDH_20180421T080246_20180421T080346_010579_0134BA_95A0
11 evaluation S1A_EW_GRDM_1SDH_20181016T072958_20181016T073058_024158_02A460_DA8F
12 evaluation S1B_EW_GRDM_1SDH_20190110T080052_20190110T080152_014429_01ADC3_DDBE
13 evaluation S1A_EW_GRDM_1SDH_20190417T075536_20190417T075636_026827_0303EB_ADF6
14 evaluation S1A_EW_GRDM_1SDH_20190717T074617_20190717T074717_028154_032E13_D688
15 evaluation S1A_EW_GRDM_1SDH_20191019T080241_20191019T080341_029525_035C27_393
16 evaluation S1A_EW_GRDM_1SDH_20220404T081913_20220404T082013_042621_0515B_D75F
17 evaluation S1B_EW_GRDM_1SDH_20200601T072921_20200601T073021_021837_02972D_1C76
18 evaluation S2B_MSIL1C_20220404T143749_N0400_R039_T29XMH_20220404T151309

structure selection, hyper-parameter settings, and performance
evaluation metrics.

A. Experiment setup

We investigate three scenarios for different training data
sets:
(1) Scenario 1: Full training data
(2) Scenario 2: 10% of the original training data set
(3) Scenario 3: Expand the 10% of the original training data
set by using our physics-based data augmentation

In scenario 1, we use the full set of training data, which is
generated by manual labelling of the physics-aware Gaussian
Mixture Model (GMM) ( [10], [30]) clustering results. In
scenario 2, we use only 10% of the full training data set to
simulate a situation where just a small number of labelled
training samples is available, e.g. an ice analyst has just
delineated a few polygons. Finally, in scenario 3, we augment
the training set from scenario 2 to investigate if we are able
to achieve similar accuracy as in scenario 1.

Since both scenario 2 and scenario 3 use only 10% of the
original data set, we are able to carry out ten independent
experiments and provide an uncertainty estimation for the
algorithm performance. More information about the different
scenarios is given in Table II. Meanwhile, the detailed proce-
dure for generating the training data for these three scenarios
is described in the following section.

B. Training data generation

1) Incidence angle dependence of SAR backscatter: The
radar backscatter from any surface is determined by both
radar and surface parameters. The most important surface
parameters are the dielectric properties of the material and
the surface roughness, the main radar parameters include
frequency, polarization, and local incidence angle (IA). While
frequency and polarization are fixed for a given sensor and
imaging mode (in our case Sentinel-1 EW mode) the local

IA varies across the swath. It is known that backscatter
intensity decreases with increasing IA, and several studies have
shown that this decrease is approximately linear for backscatter
intensity in decibel (dB) (for example [28], [31], [32]). The
linear slope for σ0

HH versus IA is generally larger than the
slope for σ0

HV versus IA.
Furthermore, it has been shown that the variation of

backscatter intensity with IA is dependent on the surface type
[28], [31]. In particular, sea ice and open water can have
significantly different slopes, on the the order of 0.2 dB/1◦ for
sea ice and up to 0.7 dB/1◦ for open water [32]. Hence, a good
IA correction must take the surface type into account. Lohse
et al. [9] and Cristea et al. [10] have proposed classification
and clustering methods for sea ice classification that include
the per-class IA dependence.

2) Training data generation stage 1 - GMM clustering:
Cristea et al. [10] proposed an automatic and unsupervised
segmentation algorithm for SAR image clustering by inte-
grating the IA dependence. Each cluster is described by a
”Gaussian tube” in the intensity-IA space, as the mean value of
the Gaussian distribution decreases linearly with IA. A GMM
is sequentially applied, using the expectation–maximization
(EM) algorithm, with an increasing number of the clusters.
After each EM convergence, the goodness-of-fit (GoF) of the
individual clusters is tested using Pearson’s chi-squared test
and the least well-fitting one is split. When all clusters are
considered good-fits, or a maximum number of clusters is
reached, the algorithm stops. The final hard cluster labels
are assigned according to their associated maximum posterior
probabilities. Several parameters can be tuned to affect the
final segmentation result. In our work, we used 0.99 as the
confidence level, maximum number of clusters is 15, sub-
sampling to 9000 samples during the iterations, as this usually
achieved around ten clusters which were considered simple
enough to interpret. These unsupervised segmentation clusters
are manually labelled as either ”sea ice” or ”open water”
with the help of expert analysis, visual interpretation, and
interpretation of the slope values per cluster.



Fig. 4. S1 example image (scene NO.3 in Table I), showing HH (a) and HV (b) backscatter intensity (in dB), GMM segmentation result (c), and the
corresponding classes (d) after manually labelling segments as sea ice (white) or open water (blue).

An illustrative example of this clustering and labelling
process is given in Fig.4 and Fig.5. Fig.4 shows HH and HV
backscatter intensity together with the corresponding GMM
segmentation result and the manually assigned cluster labels
for a S1 scene captured on January 4th, 2021. For this scene,
15 total clusters are obtained by the GMM, although only
the main four are easily visible. In Fig.5, the HH intensity in
dB is shown against against IA for three main clusters and the
corresponding IA linear slopes (obtained by linear least-square
fitting) are identified as well. Both the visual interpretation of
the intensity images in Fig.4 and the interpretation of the IA
linear slope steepness in Fig.5 lead us to the labelling of the
green and the red classes as sea ice and the blue class as open
water.

As we are targeting binary ice-water classification, separate
ice clusters (see Fig.4 (c)) are merged into one single sea ice
class. Similarly, different open water clusters (see Fig.4 (c))
are merged into one single open water class (Fig.4 (d)). The
criterion for merging classes is mainly based on (1) the linear
slope (shown in Fig.5) where ice has a shallow linear slope
while water has a steep linear slope, and (2) further consulting
with ice experts. Meanwhile, the IA linear slopes of all the
clusters as found by the segmentation algorithm are recorded
independently. For the following steps, the segmentation re-
sults are further sub-divided into patches of size of 224×224
pixels (roughly 9 x 9 km) in our study. The patch size of 224 x
224 pixels is selected as this patch size is used by most CNN-
based models (for instance, AlexNet developed by Krizhevsky
et al. [33], VGG16 proposed by Simonyan and Zisserma [34],
Resnet developed by He et al. [35]).

3) Training data generation stage 2 - IA linear slope-
based data augmentation: In the next step, the individual
IA linear slopes captured in stage 1 of the training data
generation are utilized to augment the training data set. For
this purpose, we define a transformation function that adjusts
the IA values of the original reference patch to any target
IA range between 19° and 47°. Taking the original patch
labels, clusters, and cluster-dependent IA linear slopes into

Fig. 5. Example of slopes of backscatter intensity with IA for different
clusters. The clusters correspond to the GMM segmentation shown in Fig.4c
(here, red and green indicate different ice classes, while blue is the water
class)

account, each pixel’s backscatter values are then projected
along the corresponding slope to the new IA value. Since
this transformation makes use of the physics-based principle
of per-class backscatter variation with IA, we refer to it as
physics-based data augmentation. The augmentation is defined
by the following equations:

IAnew
i,j = IAref

i,j +m ∗ int (1)

HHnew
i,j = HHref

i,j + (IAnew
i,j − IAref

i,j ) ∗ Sk
HH (2)

HV new
i,j = HV ref

i,j + (IAnew
i,j − IAref

i,j ) ∗ Sk
HV (3)

where int is the predefined IA interval (here we choose
1°) and m is the multiplication factor for the shifting the IA



Fig. 6. Example of a 224×224 pixel patch before and after physics-based aug-
mentation. The top row shows backscatter intensities and IA from the original
image (stage 1 training generation). Rows 2 and 3 show backscatter intensities
and IA after data augmentation (stage 2 training generation). Backscatter
values are projected along the respective slopes of their corresponding clusters
to IA values with 4 degrees below (row 2) and 4 degrees above (row 3) the
reference IA.

values. IAref
i,j and IAnew

i,j represent the IA of the reference
pixel and its corresponding pixel after the augmentation.
Similarly, HHref

i,j (and HV ref
i,j ) and HHnew

i,j (and HV new
i,j )

represent the backscatter intensities of the reference pixel
and its corresponding pixel before and after augmentation.
Sk
HH and Sk

HV denote the IA linear slopes of the cluster
k to which the pixel (i, j) belongs. In Fig.6, a sample for
original reference patch and new patch after physics-based
augmentation is illustrated.

We perform the proposed two-stage training data generation
routine for eight S1 EW images acquired between January
and March 2021. 500 boundary pixels in the upper, lower, left
and right edges of the scenes have been removed before the
procedure, as these pixels are more likely to be affected by
noise or boundary effects. In the end, we are able to generate
5910 patches for stage 1, based on the aforementioned proce-
dure of GMM clustering and expert analysis of the clusters.
Following the 80% vs 20% rule for training and validation
separation, we randomly select 4731 patches for training and
1179 for validation, as shown in Table II. The patches allocated
in the training set are used to learn the hyper-parameters of the
classifier, whereas the validation data is used to independently
assess its performance.

This data set is being considered the complete data set and
will be used for training in our scenario 1 experiment. Mean-
while, to simulate a situation with fewer available training
patches, we split the 4731 training patches into 10 equal-sized
partitions, such that each partition consists of 470 training
patches. Taking each of these 10 sub-sets in combination

with the complete 1179 patches for validation, we generate
10 training and validation data set couples. These form the
basis for our experiments in scenario 2.

Finally, we apply the physics-based data augmentation on
the 10 training sets from scenario 2 to generate the training sets
for scenario 3. Hereby, we are able to generate a large amount
of training data and make sure that all example training classes
are evenly distributed across the whole IA range of the S1 EW
mode. We are able to generate approximately 11,000 training
patches for each training sub-set by moving the patches at 1°
steps within the IA range between 19° to 47°. The resulting
10 enriched training and validation patch couples are the basis
for our scenario 3 training configuration. Detailed information
for three scenarios are listed in Table II.

C. Model structure selection
Various models for semantic segmentation applications are

being developed in the community, including FCN developed
by Long et al. [36], U-Net [37], Deeplabv3 [38], and their
variants including U-Net++ [39], deeplabv3+ [40], etc. Among
these methods, FCN normally shows the worst performance
compared with others, since it employs the most simple
architecture with only two or three levels of up-sampling,
which might not be able to capture enough details. Similarly,
Deeplab V3 and Deeplabv3+ only implement one or two up-
sampling levels, which is sufficient for images with large
homogeneous areas. However, in the case of SAR imagery,
pixel backscatter values often vary strongly. Hence, using U-
Net or its variants appears to be most beneficial. As our
starting point for selecting the model architecture, we therefore
choose the U-Net, which has more encoder (down-sampling)
and decoder (up-sampling) layers.

U-Net employs a symmetric encoder–decoder structure in
which the encoder part is trying to extract the features in
various levels and the decoder part is utilized to re-construct
the segmentation masks based on integrating the features in
different levels. The encoder part can be divided in to 4 similar
blocks where each block consist of a sequence of two 3×3
convolutional layers followed by a batch normalization (BN)
procedure and the rectified linear unit (ReLU) activation
function is added in the end. Following these, max-pooling
operations with 2×2 window are used for down-sampling to
reduce the feature size. Correspondingly, in the decoder part, a
bi-linear up-sampling operation is employed. In the last step,
the kernel size is set as 1×1 to ensure it has the same size
as original image. The original number of filters are 64, 128,
256, and 512 for the four levels. Using this architecture as a
starting point, we further designed a simplified U-Net for our
study by reducing the number of layers as well as the filters
from the original U-Net, which leads to a three layers U-Net
with the numbers of 32,128,256 filters in the three levels. The
detailed architecture for our simplified U-Net architecture is
shown in Fig.7. Note that we utilize three channels (HH, HV,
IA) as input into the modified U-Net.

D. Model performance evaluation metric
Various metrics can be considered to evaluate the perfor-

mance of separation of sea ice and open water. For instance,



(224 X 224)
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Fig. 7. Illustration of the modified U-Net architecture for sea ice/water segmentation used in this study.

Park et al. [12] utilized the confusion matrix for the results
of their random forest classifier, while Stokholm et al. [15]
adopted R2 to assess the accuracy of their output SIC maps.
In this manuscript, we will follow the commonly used error
metrics in the field of semantic segmentation, which is mean
Intersection over Union (MIoU). The computation of MIoU
is given in the following equations, where k is the number of
classes and pij is the element of the confusion matrix at row
i and column j.

IoUi =
pii

k∑
j=0

pij +

k∑
j=0

pji − pii

(4)

MIoU =

k∑
i=1

IoUi

k
(5)

E. Hyper-parameter settings

For all the scenarios, the same configuration of the hyper-
parameters is implemented for the training process of the
simplified UNET. The detailed configuration for the training
is: Learning rate is set to 1e-4, maximum training epoch is
set to 200, and the batch size is configured with 64 which
is maximum size for the environment (NVIDIA Quadro RTX
5000 graphic processing unit (GPU)). Note that we utilize the
focal loss [41] to compensate the class imbalance as well as
the difference of difficulty to distinguish sea ice and open
water classes. In particular, the parameters α and γ are set to
0.9 and 2, respectively. Using this configuration, the training
procedure takes 181, 31 and 396 minutes for scenario 1, 2 and
3, respectively (shown in Table II). The complete processing
and inference of a new S1 image takes approximately 10
minutes, most of which is used for feature extraction and
cropping the of the image into 224x224 pixel patches. The

actual inference of these patches takes only approximately 20
seconds.

IV. RESULTS

A. General model performance

The performance results (based on the validation patches) of
the three different scenarios are summarized in Table II. Recall
that we have split the complete training set and carried out 10
experiments each for scenario 2 and scenario 3. Clearly, the
highest accuracy is achieved in scenario 1, where we use the
complete training set. Furthermore, we find that the physics-
based data augmentation of training data improves classifi-
cation accuracy. This is indicated by the MIoU improved
from 91.72% - 92.71% to 92.48% - 92.96%. Meanwhile, the
standard deviation for the scenario 2 results is 0.24% for
MIoU, while the standard deviation of MIoU for scenario 3 is
0.16% . The lower variance for scenario 3 accuracy compared
to scenario 2 accuracy indicates that the model performance
is more robust and stable with scenario 3, owing to the benefit
of physics-based data augmentation. The overall higher score
achieved in scenario 1 can be attributed to the fact that the
reduced training data of both scenario 2 and scenario 3 covers
fewer and less diverse sea ice situations than the full training
of scenario 1. Hence, while physics-based data augmentation
improves the results, it cannot fully substitute the manual
labelling of additional training data.

To illustrate changes during the training process of the
model, we plot the evolution of error metrics of the training
for scenario 1 together with experiment 5 of both scenario 2
and scenario 3 in Fig.8. The upper panel (Fig.8 (a)) shows
the change of MIoU with training epochs, the lower panel
(Fig.8 (b)) shows the loss evolution with training epochs. It can
be seen that when using physics-based augmentation, the loss
for the training and validation process drops faster compared
to the training without data augmentation. Furthermore, the
training converges to 0.018 when we include physics-based



TABLE II
SETTINGS AND MIOU (CALCULATED BASED ON THE VALIDATION

PATCHES) FOR THE DIFFERENT SCENARIOS

scenario time (′′) training patches MIoU
scenario 1 10847 4731 94.29%

scenario 2

1 1879 473 92.30%
2 1868 473 91.72%
3 1853 473 92.12%
4 1855 473 92.27%
5 1833 473 92.18%
6 1810 473 92.29%
7 1809 473 92.28%
8 1821 473 92.71%
9 1828 473 92.32%
10 1830 474 92.28%

mean 92.25 ± 0.24%

scenario 3

1 23695 10871 92.62%
2 23898 10988 92.69%
3 23875 11001 92.82%
4 23939 11020 92.79%
5 23562 10781 92.96%
6 24155 11074 92.48%
7 23935 10970 92.79%
8 23929 11015 92.84%
9 23706 10821 92.49%
10 22668 10352 92.83%

mean 92.73 ± 0.16%

data augmentation (experiment 5 of scenario 3), which is
close to the value of 0.014 when using the complete data set
(scenario 1) and better than the convergence of experiment 5
from scenario 2, which converges to 0.021. This shows that
we are able to achieve a better performance during training by
including physics-based data augmentation. Lastly, the training
process of scenario 3 is stabilized at the epoch of 130-140,
which is same as using the complete data set in scenario 1, but
much earlier than for the training without data augmentation
in scenario 2, which stabilizes at the epoch 170-180.

B. Comparison with CAS product

To further evaluate the performance of our model both with
and without physics-based data augmentation, we compare our
model inference with other existing products. Several studies,
for example Andersson et al. [42] or Stokholm et al. [15],
generate automated ice charts which provide SIC at a rather
coarse resolution (in the order of km). These products are
difficult to use for comparison with our model inference since
the spatial resolution of our inference is 40 m. We therefore use
the sea ice mapping produced by Wang and Li from Chinese
academic science (CAS) for the comparison in this study. The
CAS data set is based on an ensemble prediction of multiple U-
Net models [17]. Its spatial resolution is 400 x 400 m, resulting
from a 10 x 10 pixel averaging window that was applied during
processing. In contrast, our algorithm provides output labels
at the original S1 EW pixel level of 40 x 40 m. Meanwhile,
the CAS data set is based on training from 167 S1 scenes
distributed over all seasons, while we use only 8 S1 scenes
acquired during winter conditions.

A visual comparison of the inference results for 4 different
S1 images (scene NO.12-15, Table I) is shown in Fig.9. Note
that we compare to the results from our model in scenario 1

Fig. 8. Evolution of MIoU (a) and loss (b) for training and validation of
different scenarios (scenario 1, experiment 5 of scenario 2 and scenario 3)

(full data set), as well as one selected sub-set from scenario 2
and scenario 3 (experiment 5). Overall, our model inference
matches well with the CAS classification. However, several
differences in the inference can be found, some of which are
highlighted by colored rectangles in Fig.9.

For example, in all 4 examples shown here, artifacts from
the patch edges (224x224 pixels) are visible in the inference
from scenario 2 (red rectangles in Fig.9 (d), (j), (p), (v)). At
these edges, open water is mis-classified as sea ice. The issue
is resolved in the inference from scenario 3, where physical
data augmentation is applied.

Furthermore, there is considerable mis-classification of open
water as sea ice at the boundary between the EW1 and
EW2 swaths of the S1 images, highlighted by the purple
rectangles in Fig.9(d),(e),(j),(k). This is a commonly known
issue in ice-water classification caused by the noise proper-
ties of S1 imagery [9] and has already been recognized as
problematic by different researchers, who suggested several
methods to address this issue ( [16], [43], [44]). As can be
seen in Fig.9(c) and (i), the CAS algorithm is able to classify



correctly around the swath boundary, while both our models
from scenario 2 (Fig.9(d), (j))and scenario 3 (Fig.9(e), (k))
output mis-classified pixels. Hereby, we explore the potential
of adding more training samples to overcome these noise
issues. Instead of adding new training patches by physics-
based data augmentation, we can also re-train our model
using the complete data set (scenario 1), shown in the last
column of Fig.9. It can clearly be seen that using the complete
training set that contains more diverse sea ice situations, the
noisy pixels in transitional area can be removed significantly
(see purple rectangle in Fig.9(f), (l)). It appears that in this
case the physics-based data augmentation cannot improve
the inference as much as additional, completely new and
independent training labels. Meanwhile, the remaining noisy
pixels across the swath boundary can be easily removed by
applying a spatial filter. Generally, better noise estimation
as well as de-noising methods by using physical models or
deep learning models could be considered in the future. It can
also be seen in Fig.9(f), that using the complete training set
(scenario 1) enables us to delineate the ice edge even better
(see purple rectangle). The resulting ice edge matches better
with the edge from the CAS data set (Fig.9(c)).

Thus, we conclude that a diverse training set is essential
to resolve noise-related classification errors for the separation
of sea ice and open water. Furthermore, post-processing tech-
niques to clean the false alarms after inference are recom-
mended.

Further differences between the CAS data set and our model
inference are highlighted by the green and blue rectangles in
the 1st, 2nd, and 4th row of Fig.9. For example, the green rect-
angle in 2nd row of Fig.9, highlights an area close to the ice
edge, which is identified as open water by the Fig.9(i), while
both scenario 2 (Fig.9(j)) and scenario 3 (Fig.9(k))inference
find more sea ice. Without additional information, such as
optical data or in-situ ground truth observations, it is not
straightforward to conclude which algorithm is more accurate.
The area is characterized by lower backscatter values than
the surrounding sea ice, which can be an indication of either
relatively calm open water areas or comparatively smooth
newly-formed sea ice. The discrepancy between the CAS
labels and our inference in this case may be emphasized by the
difference in spatial resolution. Similar considerations apply
for the area marked by the green and the blue rectangles
in the 4th row of Fig.9, where our model inference shows
slightly more open water compared to the CAS labels. In
green rectangle in particular, the CAS labels (Fig.9(u))shows
a small portion of water with a sharp vertical line, whereas
our inference from both scenario 2 and scenario 3 shows a
smooth ice-water boundary.

Lastly, areas of landfast ice close to the East Greenland
coast (Fig.9(c)-(f), blue and green rectangles) prove to be
challenging for all presented algorithms. At the time of the
image acquisition (January 2019), the highlighted area is en-
tirely covered by landfast sea ice. However, when the landfast
ice forms thermodynamically in-situ, it will produce a very
smooth surface that results in low backscatter intensity of the
SAR signal. This can be mis-interpreted as calm open water.
This issue is demonstrated in more detail in Fig.10 and the

following section.
Overall, our model inference matches well with the CAS

labels. Noise issues and transitions at swath boundaries, as
well as large areas of young ice and very smooth landfast ice,
can cause mis-classification. Without additional information or
complementary data, it is not always possible to assess which
model is more accurate. The CAS model performs better in
noisy open water areas, but it requires more computational
resources (recall that it is based on ensemble prediction of
multiple UNET models) and offers coarser spatial resolution.
Some network-related artifacts (patch boundaries) from our
model can be mitigated by physics-based data augmentation.

C. Comparison with optical imagery

We also compare the model inference with optical imagery
from Sentinel-2. During cloud-free conditions, optical data
allow for straightforward separation of sea ice and open water
based on image brightness. However, in the marginal ice zone,
sea ice drift and differences in image acquisition time make
it difficult to use optical images for pixel-wise validation of
our model inference. In Fig.10, we therefore show an area
along the edge of the landfast ice close to East Greenland.
The Sentinel-1 SAR image was acquired on April 4th 2022 at
08:19:13 UTC, the optical Sentinel-2 image at 14:37:49 UTC
in the same day.

For most of the image, the model inference is correct. Some
errors occur, indicated by the red rectangles in Fig.10, where
very smooth and level landfast ice is mis-classified as open
water. This classification error was already observed in the
previous section. While much of the landfast ice in the region
is formed in other areas and gets locked in place as highly
deformed rubble fields, some of the ice forms in-situ under
very protected conditions. This results in unusually smooth
and undeformed sea ice, which is classified incorrectly by our
model. The green rectangles in Fig.10 mark polynya regions,
in which new sea ice is formed. As the overall ice drift is
towards the south, the northern parts of the polynyas is ice
free, and ice thickness gradually increase in southern direction
within the polynya. The model inference captures the transition
between open water and young ice in the polynya very well.

Additional comparisons with more optical data would be
desirable, in particular in the marginal ice zone. However, sea
ice conditions close to the ice edge are highly dynamic and
the structural patterns of the ice change so quickly that ice
drift compensation in this area is not feasible. In this section,
we therefore restrict ourselves to the one example discussed
above. For future work, a better approach for more and easier
comparison of classification results and optical data close to
the ice edge would be beneficial.

V. DISCUSSION

A. Seasonal variation for sea ice and water segmentation

Apart from some remaining ambiguities (young ice and very
smooth and level landfast ice), the results of this study show
that our model is able to correctly classify open water and sea
ice during the winter season for both calm and windy water
conditions (Fig.9 (g)-(r)). However, as we only include training



Fi
g.

9.
Fr

om
le

ft
to

ri
gh

t:
H

H
,

H
V,

C
A

S
la

be
ls

,
m

od
el

in
fe

re
nc

e
(s

ce
na

ri
o

2)
,

m
od

el
in

fe
re

nc
e

(s
ce

na
ri

o
3)

,
an

d
m

od
el

in
fe

re
nc

e
(s

ce
na

ri
o

1)
fo

r
fo

ur
S1

ex
am

pl
e

im
ag

es
(s

ce
ne

N
O

.
12

-1
5,

Ta
bl

e
I)

.
N

ot
e

th
e

co
ar

se
r

sp
at

ia
lr

es
ol

ut
io

n
of

th
e

C
A

S
da

ta
se

t(
40

0m
co

m
pa

re
d

to
40

m
).

R
eg

io
ns

of
pa

rt
ic

ul
ar

in
te

re
st

ar
e

hi
gh

lig
ht

ed
by

co
lo

re
d

re
ct

an
gl

es
(a

rt
ifa

ct
s

fr
om

th
e

pa
tc

h
ed

ge
s

ar
e

id
en

tifi
ed

by
th

e
re

d
re

ct
an

gl
e,

pu
rp

le
bo

x
in

di
ca

te
s

th
e

tr
an

si
tio

n
ar

e
be

tw
ee

n
sw

at
h

E
W

1
an

d
E

W
2,

gr
ee

n
an

d
bl

ue
bo

xe
s

in
di

ca
te

ot
he

r
ar

ea
s

w
hi

ch
ar

e
be

in
g

id
en

tifi
ed

di
ff

er
en

tly
by

C
A

S
la

be
l

an
d

ou
r

in
fe

re
nc

e)
an

d
re

fe
rr

ed
to

in
th

e
te

xt
.W

at
er

is
bl

ue
,i

ce
is

w
hi

te
,a

nd
la

nd
is

m
as

ke
d

ye
llo

w
.



Fig. 10. Comparison of Sentinel-1 (left, false-color composite of R:HV, G:HH, B:HH), inference (middle) (scene NO.16 in Table I), and Sentinel-2 visual
channels (right) (scene NO.18 in Table I). Red rectangles indicate areas where very smooth and level landfast ice close to East Greenland is mis-classified as
open water. Green triangles indicate areas where the algorithm successfully identifies polynya areas that are opening up and partly covered with young ice.

Fig. 11. HH (dB) and HV (dB) intensity together with the inference result for a selected example image that was acquired in the summer (scene NO.17 in
Table I). The colored rectangles in (c) indicate areas with incorrect inference and referred in the text. Such errors are expected, as the current version of the
model is trained on winter scenes only.

data from the winter (January to March), the inference for the
melt and summer season is expected to be more challenging.
An example image acquired on June 1st 2020 (scene NO.17
in Table I) is shown in Fig.11, with wrongly classified areas
highlighted by colored rectangles.

For this example image, the surface properties of the ice
and snow have been altered by warm temperatures, resulting
in mis-classification of sea ice areas as open water (green and
purple rectangles in Fig.11). Additionally, there is considerable
mis-classification of wind-affected water as sea ice (red rect-
angle in Fig.11). Overall, the ice edge is not well delineated.
The most straightforward way to obtain a reasonable inference
for images acquired during melting conditions is to include
similar imagery captured in the summer in the training data
set and retrain the model carefully.

B. Young ice and smooth landfast ice areas

As clearly indicated in Fig.10, areas of smooth and level
landfast ice are challenging for automated separation of sea
ice and open water. Although it achieves slightly better results,

this is also true for the CAS algorithm (Fig.9). While further
investigation of this issue is beyond the scope of the present
study, there are several approaches that could help to improve
the classification of these regions. The high-resolution SAR
observations can be merged with low-resolution PM obser-
vations to a multi-modal data set. PMR is less sensitive to
surface roughness and would help to correctly identify landfast
ice regions as sea ice. However, merging these different data
sources comes with the challenge of their different spatial
resolution, as well as differences in acquisition time, which
will be problematic in drift ice areas. Alternatively, the SAR-
based classification could potentially be combined with ice
drift algorithms, which are capable to identify landfast ice
areas. Further research in this area is required in future studies.

C. Effect of the training size on physics-based augmentation

A main focus of the present study was the investigation
of our proposed physics-based data augmentation for classi-
fication of sea ice and open water. The results presented in
Table II show that the data augmentation leads to a significant



Fig. 12. MIoU and processing time for training with different fractions of the
full data set. (Note that the MIoU is plotted against first y axis and processing
time (logarithmic scale) is plotted against second y axis.)

TABLE III
SETTINGS AND MIOU (CALCULATED BASED ON THE VALIDATION

PATCHES) FOR TRAINING WITH DIFFERENT FRACTIONS OF THE FULL DATA
SET, WITH AND WITHOUT DATA AUGMENTATION

scenario fraction (%) time (′′) training patches MIoU

no augmentation

10 1839 473 92.25%
30 3855 1458 93.15%
50 5749 2309 93.86%
70 7740 3303 94.02%
100 10847 4731 94.29%

with augmentation

10 20739 10889 92.73%
30 77231 36315 93.66%
50 130212 60525 94.00%
70 177877 84736 94.09%
100 253255 121051 94.47%

improvement in classification accuracy, when a small subset
of 10% of the full training set is used. However, it remains
unclear whether the augmentation is also beneficial when the
original data set is already larger. To investigate this question,
we performed our proposed data augmentation repeatedly on
differently sized training sets, corresponding to subsets of
30%, 50%, 70%, and 100% of the full training data set (4731
patches). The resulting performances are shown in Fig.12 and
summarized in Table III.

Fig.12 shows that the performance with data augmentation
is always better than without data augmentation. However,
the MIoU gain achieved by the data augmentation is larger
when only a small fraction of the full data set is used. For
a larger fraction of the full data set the performance gain
is smaller. More specifically, the gain in MIoU of training
with augmentation using 10% of the full data set is 0.48%
(from 92.25% to 92.73%), while the gain of augmentation
with larger training sets, i.e. 50%, 70%, and 100% of the
available training data, will result in a gain of 0.14%, 0.07%
and 0.18%, respectively. We also note that when training
with the full data set (100%, i.e. all 4731 patches), the model
achieves an MIoU of 94.29%. The training procedure for

this case takes approximately 3 hours. However, to achieve
a similar performance with data augmentation, we need to
use already 70% of the full training set. Hence, we need a
very large number of training patches, consequently resulting
in a long training process, taking more than 49 hours. Note
the training time (in seconds) on the logarithmic y-axis in
Fig.12. Considering the large amount of computer resources
required for such long training processes, we conclude that
it is preferable to manually label additional training data,
whenever this is possible. However, as the manual labeling
is time-consuming for an expert, this is not always a viable
option. In such cases, our proposed physics-based data
augmentation provides an alternative way to improve the
algorithm performance.

VI. CONCLUSION

In this study, we have introduced a novel, physics-based
data augmentation routine to increase the amount of training
data for ice-water separation in SAR imagery. Our proposed
method utilizes the per-class dependency of backscatter in-
tensity (in dB) with IA to shift training patches with known
class labels to different IA ranges. To test this method, we
have implemented a modified U-Net model to classify sea
ice and open water in S1 images. We have trained different
versions of the model, first using our full training data set and
then using subsets of the full data set, both with and without
data augmentation. Overall, we find that our proposed method
for physics-based data augmentation increases the accuracy
of the classification. Using a subset training size of 10% of
the full training set, we find that MIoU increases by 0.48%
(92.73% compared with 92.25%). We also find that including
the new data augmentation results in earlier convergence and
stabilization during the training phase of the model (at epoch
130-140 compared to epoch 170-180). Further experiments
with larger subsets of the full training set show that the effect
of the data augmentation is largest when the amount of original
training data is small, and decrease with an increasing amount
of labeled samples. Finally, it should be noted that the data
augmentation leads to a highly increased training time of the
model. Meanwhile, the best accuracy overall is still achieved
when using the full training set, as it covers most diverse
sea ice situations. Hence, adding additional manual training
patches is preferable to data augmentation whenever possible.
When the training set is limited or more manual labeling is
not possible though, our proposed method can help to increase
classification performance.

We tested the overall performance of our model by com-
paring the inference for several S1 images with corresponding
ice-water labels from the CAS sea ice data set. The comparison
shows that our model produces similar results to the CAS data
set, indicating that it can provide detailed separation of sea
ice and open water at fine spatial resolution (original 40x40 m
pixel spacing of the S1 EW GRDM format). While the overall
delineation of the sea ice edge corresponds well with the
CAS labels, our training process is much less computationally
expensive. We also find several limitations of our current



model, the most important ones being the mis-classification
of open water as sea ice at the boundary between the S1
sub-swaths EW1 and EW2, and the mis-classification of very
smooth and level landfast ice with low backscatter values
as open water. Thus, more effort is required to handle these
situations. Suggestions for future improvement of the model
include adding more training data for ice situations that are
known to be particularly difficult to classify and applying
post-processing filters to smooth results in parts of the im-
age that are affected by noise. Alternatively, different input
features (for example texture features or intensity ratios) can
be integrated into the model for better separating ambiguous
classes. In addition, transformer-based network architectures,
which can exploit long-range information effectively with the
self-attention mechanism, should be further considered. These
could be combined with pure CNN based networks, which
are more robust in understanding short-range information
due to the intrinsic locality of the convolution operations.
For instance, TransUNet [45] and Swin-UNet [46] will be
implemented and tested in the future.
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