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A B S T R A C T   

Due to the growing rate of energy consumption, it is necessary to develop frameworks for enhancing ship energy 
efficiency. This paper proposes a solution for this issue by introducing a digital twin framework for quantifying 
ship performance. For this purpose, extensive low-level clustering is performed using Gaussian Mixture Models 
(GMM) with the Expectation Maximization algorithm on a dataset of a selected vessel to detect the vessel’s most 
frequent operating regions. Then, a regression analysis is performed in each operating region, to identify their 
shapes using Singular Value Decomposition (SVD). The results of SVD make the basis for model development in 
digital twin applications. For this reason, a low-level clustering is performed so that a more accurate model can 
be developed in future. Moreover, based on the resulting cluster analysis, an energy efficiency index is devel
oped, and the energy efficiency of each cluster has been evaluated to identify the most efficient operating 
condition. Hence, the main contribution of this research is to develop a digital twin framework of a marine 
engine which can be utilized for green ship operations. The same contribution can facilitate the shipping industry 
to meet the International Maritime Organization energy efficiency requirements.   

1. Introduction 

The fourth industrial revolution, called Industry 4.0, is characterized 
by the integration of digital and physical systems in various industrial 
processes through data sets, which can help commercial companies 
improve their industrial performance (Coraddu et al., 2019). This rev
olution is taking place by utilizing state-of-the-art technologies and 
innovative applications such as robotics, Artificial Intelligence (AI), big 
data analytics, 3D printing, Internet of Things (IoT), cloud computing, 
cyber-physical systems and communication infrastructure into tradi
tional industrial applications (Li et al., 2017). Such technologies can 
offer several benefits, such as improved product quality while having 
higher productivity, energy-efficient performance, improved supply 
chain management, and reduced emission in the respective industries, 
also include decentralization of decision-making, enhanced flexibility, 
and increased system interconnectivity (Mohamed, 2018). For example, 
Namazi and Taghavipour (2021) developed a control strategy utilizing 
vehicle-to-vehicle as well as vehicle-to-infrastructure communication to 
improve traffic flow and reduce emissions in smart intersections that 
have intelligent capabilities by utilizing traffic data. The benefits of In
dustry 4.0 are introduced into industrial processes and products due to 

the advancements in computational power, communication capabilities 
that are equipped with information technology, and intelligent opera
tional capabilities (Xu et al., 2018). The benefits offered by the inte
gration of various technologies into industrial processes under the 
framework of Industry 4.0 contribute to economic sustainability by 
utilizing the available resources and materials, more effectively. This, in 
turn, leads to social and environmental sustainability dimensions (Bai 
et al., 2020; Jamwal et al., 2021). This industrial revolution has the 
potential to transform the world, significantly on a larger scale than the 
previous industrial revolutions due to its massive scale, data richness, 
AI, ML applications, and the rate of technology changes that it can bring 
about (Philbeck and Davis, 2018). 

Shipping 4.0, an extended version of Industry 4.0, reflects the 
development and adaptation of digitalization and automation applica
tions for the shipping industry. It can be considered a framework ex
pected to transform the shipping industry with economic growth and 
new technology innovations. This transformation can affect all aspects 
of the shipping industry, from port operations (Muhammad et al., 2018) 
to propulsion monitoring systems under ship energy management digital 
applications (Aiello et al., 2020b; Ang et al., 2017). The incorporation of 
various advanced digital technologies under the shipping 4.0 framework 
such as the IoT (Perera, 2017), cyber-physical systems (Ang et al., 2017), 
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cloud computing and blockchain (Lambrou and Ota, 2017; Perera and 
Czachorowski, 2019), AI, and robotics (Muhammad et al., 2018), 
advanced big data analytics (Bui and Perera, 2021), and augmented 
reality (Sepehri et al., 2022) offers a range of significant benefits. These 
large-scale data sets and data analytics make the path towards digital 
twin type applications, where the physical asset and its replica of digital 
asset, i.e. digital model, can be combined through the data flow, to 
update time-varying features of the digital models. The benefits of such 
digital twin technology include enhanced safety (Sepehri et al., 2022), 
increased operational efficiency, less environmental impacts (Aiello 
et al., 2020a), and the sustainability of shipping operations, along with 
the potential for developing new and innovative business models within 
the shipping industry (Lambrou and Ota, 2017; Lambrou et al., 2019). 

The shipping 4.0 framework, similar to its counterparts in industry 
4.0, is built upon a massive amount of online and offline data generated 
and stored in ocean-going vessels by onboard IoT. A larger amount of 
data can facilitate the development of predictive data-driven applica
tions (Rødseth et al., 2016). Conventional mathematical models based 
empirical ship performances and navigation models cannot process this 
amount of data/information online or offline. Other challenges in con
ventional mathematical models can be categorized as: system-model 
uncertainties, sensor noise and fault conditions, and complex param
eter interactions. As a result, such models may not predict actual ship 
performance and navigation behavior correctly, jeopardizing the val
idity of navigation and operation strategies and decisions taken after
ward (Perera and Mo, 2016). For this purpose, appropriate data analysis 
approaches should be utilized to extract information from the opera
tional conditions and environment. This is where data-driven methods 
such as Machine Learning (ML) techniques can be superior to conven
tional mathematical or empirical models. As an example, a linear con
stant velocity model is a method being used to predict ship’s future 
trajectories for collision avoidance purposes in many ship navigation 
systems (Xiao et al., 2019). However, this method is limited to 
non-complex behaviors. More sophisticated methods, such as kinematic 
motion models coupled with Extended Kalman Filter (Wang et al., 2022) 
for online data updates, can be utilized to predict future vessel behavior 
but in no more than a few minutes, despite the higher accuracy they 
propose. On the other hand Murray and Perera (2021) developed a deep 
learning framework that successfully predicts a selected vessel’s most 
likely future trajectories based on its past behavior, even for complex 
vessel motions, including trajectory outliers. This framework was 
developed based on Automatic Identification System (Lambrou et al.) 

data in different clusters as the ship trajectories with similar behavior 
characteristics in a selected geographic area. 

As a result, due to the flexibility, reliability, and accuracy in data- 
driven methods, the digital twin development has started gaining mo
mentum and attracted significant attention recently, particularly in ship 
design, construction, maintenance, and operation (Mauro and Kana, 
2023). The digital twin approach in system modeling (Pires et al., 2019) 
can be defined as developing a virtual representation of a physical sys
tem or a process, which can demonstrate the same behavior as the actual 
system or process in simulated conditions. The development of digital 
twins is an iterative process. In this process, the model evolves by vali
dating and adapting itself to new data from the real system to accurately 
mirror and predict its behavior over time. This iterative nature of the 
process necessitates communication and data transmission between the 
digital twin and the physical system (Assani et al., 2022). The developed 
digital twin framework can be used to monitor, control, and optimize the 
system performance with higher efficiency, since the model updates is 
being done by online data, continuously. As an example, (Lee et al., 
2022) propose a digital twin for online simulations of ship operations, 
decision-making, and navigation control in seaways based on data from 
a physics-based model of ship motions in different environmental 
conditions. 

1.1. Digital twin applications 

In the following, some important applications of data-driven 
methods and digital twin approaches in the shipping industry are dis
cussed under the respective categories. 

Port and Terminal Operations: Digital twins can be a part of port 
operations, giving the operators more insight into the ongoing activities. 
In this case, a digital twin can act as a part of a Decision Support System 
(DSS). Port operators can make more informed decisions through real- 
time data and analytics on various aspects of port operations provided 
by the digital twin (Zhou et al., 2021). This can be an effective tool to 
optimize operations and reduce congestion and delays at terminals, 
guaranteeing a safer operation. For instance, Pang et al. (2021) outline 
the development of a digital twin and digital thread framework for a 
shipyard aimed to improve the efficiency of shipyard operations through 
real-time data analysis, which enables efficient and effective 
decision-making processes in different scenarios. The models developed 
for this application are looking at the operations in a higher level. As a 
result, they may not be applicable for of energy efficiency enhancement 

Nomenclature 

E Expectation Operator 
f Gaussian Distribution 
h Mixture Density Model 
J Number of the Cluster 
L Log-Likelihood Function 
Pj Probability of jth Cluster 
Q Expectation Function 
V Singular Vector 
x Data Point (Observed Features) 
y Data Point with all Features (Including Cluster Number) 
θ Parameter Vector of the Gaussian Distribution 
Θ General Parameter Vector 
μ Mean Vector 
Σ Covariance Matrix 

ABBREVIATIONS 
AI Artificial Intelligence 
AIS Automatic Identification System 

ANN Artificial Neural Networks 
DSS Decision Support System 
EEI Proposed Energy Efficiency Index 
EEDI Energy Efficiency Design Index 
EEOI Energy Efficiency Operating Indicator 
EEXI Energy Efficiency Existing Ship Index 
EM Expectation Maximization 
EP Engine Power 
ES Engine Speed 
FC Fuel Consumption Rate 
GMM Gaussian Mixture Models 
IoT Internet of Things 
IMO International Maritime Organization 
KDE Kernel Density Estimator 
ML Machine Learning 
pdf Probability Density Function 
SOG Speed Over Ground 
SVD Singular Value Decomposition  
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of the shipping industry. 
Crew Training and Simulation: Digital twins can have the ability to 

support crew and port personnel training activities (Major et al., 2021) 
by simulating real-world scenarios in a safer environment. Seafarers can 
practice the proper reactions in case of an unforeseen incident and gain 
confidence, which improves operational efficiency, boosts performance 
safety, and reduces the risk of accidents such as vessel collisions (Arri
chiello and Gualeni, 2020). Models developed for crew training have a 
different purpose than investigating the vessel performance in detail and 
cannot be utilized for the purpose of ship energy efficiency. 

Ship Design: Digital twins can be used as a framework to simulate 
and test different designs, materials, and equipment configurations at 
different stages of the ship design process, from concept designing to 
prototyping, testing, and manufacturing (Lo et al., 2021). This can help 
manufacturing companies and engineers to optimize the expected per
formance of the ship to be built, reduce costs, and improve safety 
(Arrichiello and Gualeni, 2020) at the design stage. This approach can 
also be utilized to enhance the operation and maintenance of ship sys
tems, which can result in the efficiency and sustainability of ship oper
ations (Perabo et al., 2020). Models developed for this application are 
more focused on the ship design phase with simulated configurations 
with different vessel characteristics, and that may not be applicable for 
the ship operational phase. 

Condition Monitoring and Predictive Maintenance: Digital twins 
developed by ML algorithms can constantly analyze the online data 
gathered from sensors installed onboard the vessel and predict potential 
failures of different machinery and equipment. This can help organizing 
the maintenance schedule in a more effective way. As a result, methods 
based on digital twins can offer significant advantages over traditional 
condition monitoring methods by improving maintenance scheduling 
and preventing unexpected breakdowns. For example, (Johansen and 
Nejad, 2019) present a digital twin framework for real-time condition 
monitoring of drivetrains in marine applications to compensate for the 
inadequacy of traditional methods. This framework is developed using 
data from various sensors and system models, allowing for early 
detection of potential failures. Models used for predictive condition 
monitoring are trained to classify data points or series of behaviors into 
classes that lead to different system failures. This framework can predict 
the failure or give a warning if the probability of the system degradation 
is significant. In this framework, the model development is performed in 
a supervised approach, by using the prior knowledge and data about 
previous failures. However, similar approaches can be adopted towards 
studying energy efficiency in the shipping industry. 

Performance Monitoring, Prediction, and Evaluation: The digital 
twin has the potential to predict a ship’s behavior remotely by tracking 
sensor data from various systems onboard, such as propulsion and 
electrical systems (Major et al., 2021). Moreover, since the digital twin 
can simulate the ship’s behavior, it can be used for predicting its per
formance (Lee et al., 2022), such as fuel oil consumption (Gkerekos 
et al., 2019). Different configurations or effects of different parameters 
can be investigated by having a digital twin of a selected vessel. As an 
example, Taskar and Andersen (2021) investigates the accuracy of 
various methods for calculating added resistance in ship hydrodynamics 
using digital twin simulations and full-scale measurements. Coraddu 
et al. (2019) develop a data-driven digital twin for estimating the speed 
loss caused by marine fouling using Deep Extreme Learning Machine. 
The general architecture of the models used for this application reflects 
some similarities with the model used for energy efficiency evaluation in 
this research, while used for different purposes. However, most research 
topics are merely focusing on the model development itself and don’t 
discuss the process of feature selection, i.e., the variables used in model 
development. Moreover, many research topics in this area, don’t 
consider different localized states and operational modes of the vessel 
and that can be an important step in a digital development framework. 

1.2. Energy efficiency 

The shipping industry is the primary mode for global transport, ac
counting for transportation of around 80% of traded goods globally (Bui 
and Perera, 2021), which is constantly growing. Due to the rate of en
ergy consumption in this industry and its consequent emissions, Inter
national Maritime Organization (Gkerekos et al.) has established strict 
regulatory requirements to improve the energy efficiency of vessels, 
such as the Energy Efficiency Design Index (EEDI) for new ships, Energy 
Efficiency Operating Indicator (EEOI), and the Energy Efficiency Exist
ing Ship Index (EEXI) required to be calculated for every ship (Bazari, 
2020). A proper energy efficiency index (EEI) can be used to compare 
different ships’ performances and different behaviors, i.e., operating 
modes of a selected vessel. For these purposes, the use of onboard sen
sors and modern data acquisition systems provide an excellent oppor
tunity for researchers. However, the formidable side of ship 
performance and navigation data is its volume and complexity, which 
needs some novel approaches for correctly analyzing the structures 
behind the data, such as ML and Statistical Methods (Rødseth et al., 
2016). As a result, the combination of ML techniques and EEIs can form 
a powerful analysis tool for vessel performance. 

1.3. ML algorithms 

Data-Driven applications associated with ML algorithms have been 
extensively used in various transport means, such as Intelligent Trans
port Systems (ITS) (Zhang et al., 2011), and in the preceding years, it has 
also made its way into the shipping industry. ML techniques have been 
extensively used in the categories mentioned in the previous section 
(Munim et al., 2020) in digital twin development. A significant number 
of research topics are focused on ship performance predictions, 
including the fuel consumption of vessels using different ML/AI ap
proaches and techniques (Uyanık et al., 2020). Generally, ML applica
tions can be categorized into classification/clustering, and regression. 

In classification, the model is developed in a supervised framework 
to learn an existing pattern in the data. As an example, Kraus et al. 
(2018) presented an automated system for classifying ships and deter
mine their types based on their movement patterns and trajectory data 
using k-nearest neighbors, support vector machines, and random forests. 

On the other hand, clustering can be an unsupervised learning 
approach, and many algorithms have been used to perform it. As an 
example, Tran (2020) proposed a multicriteria decision making process 
based on fuzzy clustering method to achieve the optimal loading of the 
ship and fuel oil consumption of the main diesel engine. Bui and Perera 
(2021) proposed a big data analytics framework based on a two-step 
cluster analysis for ship performance monitoring under localized oper
ational conditions to quantify its performance in each of the respective 
conditions. 

From all the methods used for clustering the data, K-Means can be 
considered as a popular algorithm. For example, Yan et al. (2018) used a 
distributed parallel K-Means clustering algorithm to perform route di
visions for a vessel to enhance its energy efficiency and reduce emis
sions. However, K-Means impose a severe limitation in cluster shapes, i. 
e., the resulting clusters in K-Means are assumed to be spherical. On the 
other hand, the dataset in current research has complex conditions of 
data distributions, and the clusters may not essentially have a spherical 
shape. Moreover, in K-means each cluster is modeled only by its cen
troid’s position, and its geometric shape and volume are not measured in 
terms of its density. The reason for these issues is that the K-means al
gorithm works based on Euclidean distance between data points. As a 
result, the captured clusters’ boundaries have spherical forms if the 
cluster centers are far enough from each other, or the feature space is 
separated into different regions, which is known as Voronoi tessellation, if 
cluster centers are not far enough, and the cluster boundaries are 
straight lines (Raykov et al., 2016). Furthermore, K-Means is a deter
ministic approach, which means it assigns each data point to one and 
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only one cluster. To address the weaknesses and issues associated with 
K-Means, Gaussian Mixture Models (GMM) is selected to perform the 
clustering in this research study because of the nature of the dataset. On 
the other hand, since GMM is based on the Bayesian point of view, it 
gives the probabilities of belonging to each cluster for all data points. In 
this way, by having a membership function for each data point, the 
clustering results have more flexibility for function approximation for 
future prediction purposes and digital twin development. 

When the dataset is grouped into appropriate data clusters, the next 
step would be to understand the relationship, i.e. the correlations, 
among the respective parameters in the dataset. That can be done by 
implementing an appropriate regression approach. Regression can also 
be referred to as a statistical technique that finds a relationship among 
dependent variables based on the values of one or more independent 
variables. Various regression techniques are used in research studies for 
performance prediction purposes, such as Kernel-based support vector 
regression (Wang et al., 2020), LASSO regression (Wang et al., 2018), 
multiple linear regression, and Artificial Neural Networks (ANN) (Farag 
and Ölçer, 2020). In this regard, one of the algorithms that can be used 
to find the relationship between the variables and the shape of the data is 
Singular Value Decomposition (SVD). Preserving important information 
in the dataset, computational efficiency, and approximation with a 
lower-rank matrix make this method an attractive approach for 
dimensionality reduction and data compression (Perera and Mo, 2016), 
image processing (Hameed et al., 2020), fault detection (Li et al., 2019), 
and information extraction and retrieval applications (He et al., 2015). 

1.4. Contribution of the current research 

Many research topics in the recent literature have been investigating 
in relation to ship energy efficiency (Abebe et al., 2020; Gao et al., 
2023). These topics have different perspectives ranging from vessel 
design modifications to operational practices, policies, potential ad
vances in the shipping industry and their feasibility, and alternatives to 
existing systems, operational procedures, and policies (Barreiro et al., 
2022). In this regard, data-driven methods can provide a powerful tool 
for monitoring, modeling, and predicting ship performance, thus help
ing to optimize energy efficiency in the shipping industry. However, 
several studies currently focus on investigating the considerable po
tential of data-driven approaches with ML algorithms in this field 
(Jimenez et al., 2022). As an example, data-driven approaches can be 
adopted to calculate ships’ energy efficiency indicators, which can be 
used to assess the effects of different factors (Yuan et al., 2017) and 
routine procedures that can have an effect on ship energy efficiency 
(Shaw and Lin, 2021). These approaches can also be applied to develop 
data driven models for predicting ships’ speed (Abebe et al., 2020) and 
improving the quality of navigation strategies (Perera and Mo, 2017), 
potentially enabling route optimization and energy-efficient shipping. 
The potential of data-driven approaches with ML algorithms can 
enhance energy efficiency and sustainability of the shipping industry 
(Huang et al., 2022). Still, more advanced, localized, ship-specific, and 
reliable methods are needed to provide accurate models of vessel 
behavior, considering the individual characteristics of various vessels, 
with online model update capabilities, which can improve energy effi
ciency in the shipping industry. Most research studies present single 
models to cover the entire operating range of ocean-going vessels. As an 
example, Öztürk and Başar (2022) proposed a DSS for energy efficiency 
in shipping using a multiple linear regression approach and ANNs to 
predict the fuel consumption and emissions of a selected ship based on 
RPM, trim, ballast, and weather data gathered from voyage reports of 19 
container ships. Although the results show an acceptable fit for the data, 
using a single model for the entire operating region of 19 vessels raises 
questions about the validity and probable overgeneralization of the 
simulation, thus, the decisions made upon them. Therefore, the existing 
research topics utilizing data-driven and ML approaches are often 
inadequate for localized operational conditions, leading to inefficiencies 

and suboptimal performance (Bui and Perera, 2021). Zhang et al. (2019) 
also proposed a data-driven approach for analyzing and optimizing ship 
energy efficiency in Arctic waters, in which the proposed model has 
been developed using a simple ANN. Although, a more sophisticated and 
detailed model can provide a better basis for optimization purposes. 
Peng et al. (2020) developed ML-based models aim to predict the energy 
consumption of ships in ports, and propose reduction strategies, 
although the statistical deviations in data collection, limits the appli
cability of this framework. Despite many research topics in the litera
ture, a localized model development approach can fit into different 
vessel operational conditions, which can improve the accuracy of model 
predictions. 

As mentioned, Digital Twin model development can consist of ML 
algorithms involving data clustering and regression analysis. Of all these 
research topics and applications of ML and digital twin development, 
this research aims to develop a vessel-specific data-driven framework for 
energy efficiency improvement of the respective vessel with focus on 
data clustering. This distributed localized operational modes-based 
framework is intended to be utilized in an onshore operation center, 
where it can be utilized to facilitate the individual analysis of data 
transmitted from various vessels. For developing this framework, an 
unsupervised algorithm, i.e., clustering, has been performed on dataset 
of a vessel navigational and operational variables to find similar be
haviors, or in other words, different operating regions of the vessel. This 
way, a localized analysis of each operating region, e.g., engine opera
tional modes or trim-draft combined conditions, can be performed, 
acting as a key component of a digital twin for evaluating ship energy 
efficiency. The proposed distributed localized operational modes-based 
model can exhibit an acceptable performance since that can capture 
more localized vessel operational and navigation conditions. As a result, 
it is superior to approaches in which the same model is used for the 
whole operating region of the vessel with different configurations and 
characteristics. Since localized models are developed in this framework 
simulating the vessel’s behavior, this framework can also serve as a basis 
for DSSs, while supporting data anomaly detection, and recovery of 
missing data. 

The main contribution of this research study is to develop a digital 
twin framework, by utilizing machine learning algorithms, to find the 
most frequent operating regions of a selected vessel. That can also 
support investigating the Fuel Consumption rate (FC) behavior in the 
resulting operating regions and find the optimal operation and naviga
tion strategy for the vessel. For this purpose, extensive low-level clus
tering and subsequent cluster analysis have been performed in the 
maritime context to serve advanced green ship operations. The final 
clustering is performed based on the GMM approach in a 3D feature 
space with the main Engine Power (EP) in kW, Engine Speed (ES) in 
RPM, and Speed Over Ground (SOG) in kn as the features to find the 
respective data clusters, i.e., vessel operating regions. The Expectation 
Maximization (Parzen, 1962) algorithm is applied to calculate the pa
rameters of the cluster distributions (the respective mean and covari
ance values). The method for clustering presented in this research is 
built upon a preliminary work (Taghavi and Perera, 2022). Each cluster 
represents a different navigational and operational conditions. Finding 
the suitable number of clusters for a given dataset always presents a 
challenge, as it must be determined and provided as an input to the 
algorithm before its execution. In this research, a framework for 
selecting the proper number of clusters for the GMM algorithm is also 
presented. For this purpose, the separability measures are used to 
determine the proper number of clusters along with 1D and 2D KDE 
plots. After finding the number of data clusters, an SVD analysis is 
performed in each cluster to find the relationship between different 
variables and the dominant singular directions in each cluster. The 
presented SVD analysis, can build the basis for future dynamic model 
development, anomaly detection, and missing data recovery as a part of 
digital twin applications. In the final step of cluster analysis, two EEIs 
are defined, and the vessel’s performance in different data clusters is 
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compared, and the most efficient behavior and navigational strategy 
among all operating regions are determined. In the defined EEI, in the 
absence of cargo amount of the vessel, the draft value is utilized as a 
proximate measure for cargo amount. This proposed framework for 
developing digital twin applications in shipping is demonstrated in 
Fig. 1. The shipping industry can utilize the contributions of this 
research to meet the IMO energy efficiency requirements enforced by its 
regulations. 

The assumption in this research is that in the development of the 
digital twin, only datasets from the vessel are used, therefore no con
ventional mathematical or empirical ship performances and navigation 
models are extensively used. However, the respective domain knowl
edge in shipping is used to support data clustering and regression ap
proaches in this study. 

In the following, the proposed methodology for digital twin devel
opment is discussed in section 2. Section 3 presents computational re
sults and discussion, including the summary of the dataset used, the 
preprocessing steps taken, cluster number identification methods, 
feature selection, and data clustering. Finally, the conclusions are pre
sented in section 4. 

2. Methodology 

This section presents the methodology used for analyzing the 
respective data sets. As illustrated in Fig. 1, The initial development 
phase of this framework is data pre-processing. This step includes the 
removal of anomalies and missing values to ensure a high-quality data 
for subsequent use in the clustering algorithm. In this research GMM 
coupled with EM is employed for capturing the clusters. The execution 
of this clustering algorithm necessitates the pre-determination of the 
number of data clusters. In this research study the number of data 
clusters is determined by using 1D and 2D KDE plots, in conjunction 
with comparing separability measures of the cases with different cluster 
numbers. Subsequent to capturing the clusters, the cluster analysis step 
is performed, which encompasses two distinct phases. The first phase of 
the cluster analysis involves conducting SVD analysis within each cluster 
to find the relationships between variables. This SVD can serve as a basis 
for the dynamic digital twin development. The second phase focuses on 
evaluating the energy efficiency of the main operating regions, i.e. data 
clusters. For this purpose, two EEIs are proposed, and the performance of 
the vessel in different clusters is compared based on them, resulting in 
the identification of the most efficient operating region. 

Section 2.1 introduces the proximity measure used for measuring the 
similarity and distance among data points. Section 2.2 presents the 
GMM-EM algorithm, used for data clustering. In this section also the 
steps taken to implement GMM-EM and the respective equations are 
presented. In 2.3, the KDE plots and separability measure used for 
identifying the number of clusters in the datasets are discussed. Section 
2.4 discusses the SVD technique. Finally, the proposed EEIs used to 

quantify ship performance are introduced in Section 2.5. 

2.1. Proximity measures 

A dataset from a marine engine of a selected vessel has been 
considered for the clustering purpose, since that can create the basis for 
the proposed digital twin farmwork. As the first step of this study, this 
dataset is analyzed to identify the respective clusters that can represent 
the engine operational regions, i.e. the vessel’s operating regions. 

An unsupervised learning algorithm is used for the same purpose, 
where the general idea of clustering is based on the density of the data 
distribution. A dataset can consist of different clusters, it is assumed that 
data points that are in a near neighborhood of each other can be clas
sified as a data cluster. In other words, there can be proximities among 
such data points in the same cluster, and the dissimilarity can be 
maximum between data points in different clusters. In a majority of data 
analysis applications, proximity and dissimilarity are measured based on 
distance functions, such as Euclidian or Mahalanobis distances (Theo
doridis and Koutroumbas, 2006). The Euclidian distance between two 
points is simply the length of the direct line connecting them in an 
N-dimensional space. On the other hand, the Mahalanobis distance, dM,

measures the distance of a point with respect to an estimated mean value 
(or a point) in an N-dimensional space, such as x ∈ Rn, from a distri
bution D with mean vector μ∈ Rn and a covariance matrix Σ ∈ Rn×n using 
Eq. (1): 

dM(x,D)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − μ)T Σ− 1(x − μ)
√

(dM ∈R) (1) 

Based on the concept of proximity in clustering, it is logical to assume 
each operating region of the selected vessel forms a cluster based on the 
operational parameters, i.e., the engine follows the same behavior in 
each operating region. As a result, the term “cluster” is a representation 
of a specific operating region of the selected vessel in this research study. 
Based on this, since in this research study, GMM-EM is used to perform 
the clustering, i.e., in calculating the distance, the covariance matrix of 
each cluster is also considered, and the Mahalanobis distance is the 
measure for distance calculations. 

2.2. GMM-EM algorithm 

Clustering is an unsupervised learning algorithm that can be done by 
the GMM-EM algorithm, which is one of the most powerful clustering 
methods. GMM is a probabilistic clustering algorithm based on data 
distributions that can be updated in the context of the Bayesian 
approach. In this approach, all the data points are represented as sta
tistically random variables with a related probability density function 
(pdf) consisting of a mixture of a finite number of Gaussian distributions 
with unknown parameters (Bishop, 2006) for a large-scale dataset. In 
other words, a large-scale data distribution can be assumed as a com
bination of J separate multivariate Gaussian distributions, denoted by f 
(xq;θˆ(t)|j). These distributions, i.e., data dense regions, are considered as 
clusters in this research study, as the respective localized operation re
gions for the vessel. Hence, each data point in the dataset belongs to a 
cluster with a prior probability of Pj. As a result, the pdf of the dataset or 
mixture density model, h, can be written as Eq. (2). 

h(xq; Θ̂(t)) =
∑J

j=1
f (xq; θ̂(t)|j)Pj  

f (xq; θ̂(t)|j) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)n⃒⃒Σj
⃒
⃒

√ exp
(

−
1
2
(
xq − μj

)T Σ− 1
j

(
xq − μj

)
)

Fig. 1. The proposed framework for digital twin in shipping.  
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⎜
⎜
⎝
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P2

⋮

PJ

⎞

⎟
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⎟
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⎟
⎠

, θ=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ1

θ2

⋮

θJ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, θj =

(
μj
Σj

)

∑J

j=1
Pj = 1 (2) 

The parameter vector Θ contains two sets of parameters, θ, and P, 
which are going to be estimated using the EM algorithm. θj consists of 
the mean vector and covariance matrix of the jth cluster, and the value of 
Pj for each data point is the probability that this data point belongs to 
cluster j. As a result, the summation of all Pj values should be equal to 
one (Eq. (2)). Ultimately, each point is assigned to a cluster whose Pj is 
the maximum for that data point. One should be noted that the value of 
J, i.e., the number of data clusters, should be selected before imple
menting the GMM-EM algorithm. In section 2.3, the proposed ap
proaches in this research study to select a proper number of data clusters 
in a selected dataset are discussed. 

The nature of the GMM-EM algorithm is defining a joint distribution 
over the observed and latent variables. As a result, estimating the GMM 
parameters can be achieved via the EM algorithm. In the following 
formulations, vector x is the data point that is obtained from the ob
servations, i.e., sensor measurements. Additionally, a new set of vari
ables, y, is defined, with an observed part, x, and an unobserved part, j, 
which corresponds to the cluster number of the data point x. 

In this algorithm, the likelihood function describes the joint proba
bility of the observed data as a function of the parameters of the 
Gaussian distribution. The log-likelihood is the logarithm of the same 
likelihood function. In order to find the parameters, the likelihood or 
log-likelihood function is maximized. Based on this, the next step is the 
maximization of the likelihood function. Since the logarithm function is 
monotonically increasing, the log-likelihood function, defined as Eq. (3), 
is maximized using the EM algorithm to estimate the parameters. 

L(θ)=
∑Q

q=1
[lnf (yq; θ|xq)] (3) 

The EM algorithm is an iterative scheme consisting of two steps. The 
first step is the E-Step that calculates the expectation of the log- 
likelihood function. In the M-Step, as the second step, the derivative 
of the expectation of the log-likelihood function with respect to the 
parameters is calculated and set to zero. This way, the values for pa
rameters that maximize the log-likelihood function are found. In the EM 
algorithm iterative scheme, only in the distribution of θ in the E-step the 
last calculated values of θ(t) are used. This means that the parameter 
values in this section of the E-step are considered constant values. In the 
following, the equations for these steps are presented. 

2.2.1. E-step 
For this step, a new function, Q, is defined as Eq. (4), which calcu

lates the expectation of the log-likelihood function. As mentioned, in the 
distribution of this function, θ(t) is considered a constant, and the values 
calculated in the previous iteration are used. 

Q(θ; θ̂(t))=E{L(θ)|θ̂(t)}=
∑Q

q=1
[E{lnf (yq; θ|xq)|θ̂(t)}]

=
∑Q

q=1

∑J

j=1

[
ln
[
f (xq; θ|j).Pj

]
.P(j; Θ̂(t)|xq)

]

=
∑Q

q=1

∑J

j=1

[[

−
n
2

ln(2π) − ln
( ⃒
⃒Σj
⃒
⃒
)

−
1
2
(
xq − μj

)T Σ− 1
j

(
xq − μj

)
+ ln

(
Pj
)
]

.P(j; Θ̂(t)|xq)

]

(4)  

2.2.2. M-step 
In the M-step, the derivatives of function Q with respect to Σj, μj, and 

Pj are calculated and set to zero. The solution to the resulting equations 
is the values of Σj, μj, and Pj for the next iteration, which is presented in 
Eq. (5). As it can be seen in these equations, the resulting values are 
calculated based on the values for the previous iteration. This process is 
repeated until convergence. 

P(j; Θ̂(t)|xq)=
f (xq; θ̂(t)|j)P̂j(t)
∑J

i=1
f (xq; θ̂(t)|i)P̂i(t)

μ̂i(t+ 1)=

∑Q

q=1
P(i; Θ̂(t)|xq)xq

∑Q

q=1
P(i; Θ̂(t)|xq)

Σ̂i(t + 1) =

∑Q

q=1
P(i; Θ̂(t)|xq )(xq − μ̂i(t + 1) )(xq − μ̂i(t + 1) )T

∑Q

q=1
P(i; Θ̂(t)|xq )

P̂i(t+ 1)=
1
Q
∑Q

q=1
P(i; Θ̂(t)|xq) (5)  

After deriving the equations for the parameters, the iterative scheme for 
the EM algorithm can be implemented. For this purpose, the algorithm 
starts from initial estimated values of Σj, μj, and Pj. Then, parameter 
values are calculated based on Eq. (5) for subsequent iterations. This 
iterative process is repeated until the convergence of all parameters. In 
other words, when the change in parameters in two successive iterations 
are negligible it can be assumed that the algorithm is converged. Since 
any change in the parameter values will be mirrored in the likelihood 
function, the absolute difference in the log-likelihood function between 
two successive iterations is less than a specified threshold. Typically, if it 
is less than 1%, then it is assumed that the convergence is achieved, and 
the iterative algorithm is terminated. 

2.3. Data cluster identification 

Since in GMM algorithm the cluster labels for the data points are not 
given in advance, there is no information on the number of clusters in 
the dataset. The number of clusters as the first step is determined in the 
clustering step, where several techniques can be used. This research 
study proposes two approaches to ensure the proper number of clusters 
is selected and those methods can complement to each other to verify the 
selected number of clusters, appropriately. 

2.3.1. KDE plots 
As the first method to find a proper number for the clusters, 1D and 

2D Kernel Density Estimator (KDE) diagrams of different operating pa
rameters are used. Using this approach, an initial idea about the number 
of different clusters, i.e., the operating regions of the vessel, can be 
achieved. The respective KDE diagrams are plotted based on the Parzen 
Density Estimation approach (Parzen, 1962), i.e., a statistical approach 
that considers the variables as stochastic variables and is used to find the 
distribution of a given dataset. In these diagrams, the joint pdf of the 
respective variables is plotted. The regions with higher densities are 
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represented as peaks in 1D KDE diagrams with the denser regions in 2D 
KDE diagrams. These regions with higher data densities can be assumed 
to be clusters due to their data concentrated regions, and that can be a 
measure of the number of clusters in the whole dataset. 

2.3.2. Separability measure 
Apart from the KDE plot, which provides an overview of the data 

distribution and gives an initial estimation on the respective number of 
clusters from the observations, another approach is needed to calculate a 
quantitative index for comparing the result of clustering with different 
cluster numbers and finding a proper number of clusters. For this pur
pose, to compare different cluster configurations, a separability measure 
based on cluster scatter matrices is used (Theodoridis and Koutroumbas, 
2006). This measure evaluates the clustering result based on how the 
clusters are compact in their structure as well as separated from other 
clusters. In other words, this measure is based on the concept that the 
data points in a cluster should be closer to each other and data points in 
different clusters should be as far as possible from the same data points. 
This separability measure is generally a ratio of the distance between 
points in a selected cluster vs. the distance between other clusters. 

To define the separability measure, the following terms should be 
introduced. 

The within-class scatter matrix, Sw, is defined as: 

Sw =
∑M

i=1
PiΣi (6)  

where Σi is the covariance matrix of cluster ωi. 

Σi =E
[
(x − μi)(x − μi)

T] (7)  

And Pi is the ratio of the number of data points in cluster ωi, ni, and the 
total number of data points, N, and is calculated as: 

Pi = ni/N (8) 

Based on this definition, Sw can measure the average covariance and 
variance of all the features over all classes. 

The between-class scatter matrix, Sb, is defined as: 

Sb =
∑M

i=1
Pi(μi − μo)(μi − μo)

T (9)  

where Pi can be derived from the previous equation, and μo is the global 
mean vector calculated using Eq. (10). 

μo =
∑M

i=1
Piμi (10)  

In this formulation, trace{Sb} can be interpreted as a measure of the 
average distance of the mean of all classes from the global mean value. 

The mixture scatter matrix, Sm, is defined as: 

Sm =E
[
(x − μo)(x − μo)

T] (11)  

In other words, Sm is the covariance matrix with respect to the global 
mean. It can be shown that: 

Sm =Sw + Sb (12)  

Since comparing two matrices is impossible, an operator or a function 
that maps each matrix to a number should be selected. For this purpose, 
different operators, such as trace and determinant, can be used to form 
the final criterion. In this research study, the following criterion, SM, is 
used since it is invariant under linear transformations: 

SM = trace
{

Sw
− 1Sm

}
(13) 

This criterion takes larger values when samples in the feature space 

are well separated as data clusters and the respective data points are 
clustered around their mean values. 

In order to use this separability measure, SM, to find the proper 
number of data clusters, a clustering algorithm is implemented with 
different cluster numbers, then a separability measure using scatter 
matrices is utilized to understand cluster distributions. The proper 
number of data clusters is decided by comparing the separability mea
sures of all scenarios. 

2.4. Singular Value Decomposition (SVD) 

SVD analysis on a matrix is one of the most powerful algorithms in 
linear algebra used for analysis of multivariate data. This technique is 
based on decomposing a matrix into three separate matrices and finding 
the singular values and singular vectors of the matrix. Given an l × n 
matrix X of rank r, using SVD it can be represented as the product of 
three matrices: U, Y, and V of the dimensions l× l, l× n, and n × n 
respectively so that: 

X =U

[
Λ

1
2 0

0 0

]

VH or Y ≡

[
Λ1

2 0

0 0

]

=UHXV (14)  

where subscript H denotes the Hermitian operation, that is, complex 
conjugation and transposition. Λ1

2 is the r × r diagonal matrix with ele
ments 

̅̅̅̅
λi

√
, and each λi is a nonzero eigenvalue of the associated matrix 

XHX. U and V are unitary matrices that transform X into the special di
agonal structure of Y. This equation can be rewritten as Eq. (15) by 
assuming ui and vi, the eigenvectors corresponding to the nonzero ei
genvalues of the matrices XXH and XHX, as the column vectors of 
matrices U and V. 

X = [ u0 u1 ⋯ ur− 1 ]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̅̅̅̅̅
λ0

√

̅̅̅̅̅
λ1

√
0

0

⋱
̅̅̅̅̅̅̅̅
λr− 1

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vH
0

vH
1

⋮
vH

r− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Ur Λ
1
2 VH

r

(15)  

where Ur, called the left singular vectors, denotes the l × r matrix that 
consists of the first r columns of U, and Vr, called right singular vectors, 
denotes the r × n matrix formed by the first r columns of V. Ur represent 
the directions in the input space with the highest variances. Vr represent 
the directions in the projected space associated with the left singular 
vectors. 

For a symmetric matrix X, the left singular vectors and right singular 
vectors are identical because the transpose of an orthogonal matrix is 
itself. As a result, the columns of the matrix U, which represent the left 
singular vectors, can be interpreted as the principal components of the 
data, and can provide valuable insights into the structure, shape, and 
properties of the data. As mentioned, for each singular vector, there is 
also a singular value. The magnitude of the singular value represents the 
amount of information in the respective covariance direction of a 
selected data cluster. 

2.5. Energy efficiency index (EEI) 

Two EEIs are defined in this research study based on EEXI, with 
focusing on FC of the selected vessel considering the availability of the 
performance and navigation variables in the dataset. The proposed EEIs 
calculate the FC rate per distance. For this purpose, from the vessel’s FC, 
which is tons per day, the average rate of FC in tons per minute is 
calculated by dividing by 1440. On the other hand, it is assumed that the 
vessel’s speed is constant during each minute since the data sampling 
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rate is 1 min. As a result, from SOG values, the distance the vessel moved 
every minute can be calculated. Based on these values, the first proposed 
EEI, namely EEI1, can be defined as the amount of fuel consumed per 
nautical mile, in tons, and is calculated by dividing an average rate of FC 
in tons per minute by the distance traveled per minute in nautical miles 
as described in Eq. (16). 

EEI1 =
FC ÷ (1440)

SOG ÷ 60
=

FC
SOG × 24

(16) 

The loading condition can significantly affect ship resistance, thus 
the FC of a vessel at a certain speed can be increased due increased ship 
resistance. However, the dataset used in this study does not consist of the 
loading condition of the selected vessel for different data points. In this 
research study, to account for this effect, the vessel’s draft values are 
considered as a measure for the loading condition of the vessel, i.e., the 
ship cargo amount. As a result, to cancel the effect of draft value, i.e., the 
loading condition of the vessel, on FC, the proposed index in Eq. (16) has 
been revised by dividing it by the draft value, which is defined as EEI2 in 
Eq. (17). This way, the effects of cargo conditions on the vessel are 
approximately taken into account by considering its draft values. The 
vessel energy efficiency in different operating regions can be compared 
under this proposed index. In other words, EEI2 can compare the energy 
consumption per unit distance for a similar loading condition. 

EEI2 =
FC

SOG × draft × 24
(17) 

The proposed EEIs are calculated for all the main clusters, i.e., the 
main operating regions, to determine the most energy efficient config
urations of navigational and operational parameters of the selected 
vessel. 

3. Computational results and discussion 

In this section, the outcomes of data analysis are presented. In section 
3.1, the dataset used in this research study is introduced. Section 3.2 
discusses the preprocessing steps. In section 3.3, the results of ap
proaches taken for determining the number of data clusters are pre
sented. In section 3.4, the feature selection step is discussed. In section 
3.5, the final data clustering results are presented. In section 3.6, the 
result of SVD analysis for different operating regions are presented. 
Finally, in section 3.7, the energy efficiency evaluation of the vessel in 
different operating regions is represented. 

3.1. Dataset summary 

The proposed framework is developed using engine datasets from a 
selected ocean-going vessel described in Table 1. The data points were 
recorded almost every minute, so the total number of data points is 
499,920. The respective ship performance and navigation variables are 
represented by their statistical distributions to identify the operational 
modes using GMM. 

3.2. Data preprocessing 

As mentioned, a ship navigation and operation dataset consisting of 
12 months of the selected vessel is used. However, not all these data 
points can be used in the clustering process because some time intervals 
do not consist of engine operational data due to data erroneous condi
tions or not utilization of the marine engine. Since the scope of this 
research study is to investigate the operating regions of the vessel, only 
high-quality data points associated with vessel operational conditions 
are considered. Fig. 2 shows the marine engine operational data, how
ever the time periods, when the engine is not operating are also noted in 
the same figure. In this figure, the EP time series for about 70 days, i.e., 
100,000 min or data points of the ship’s operation, is plotted along with 
vessel positions, i.e., longitude and latitude. The figure reveals that 
when the engine is not generating any power, the vessel position re
mains constant, indicating that the ship is stationary probably in a port. 

The data points that have approximately zero values of EP, SOG, and 
EP are removed from the dataset. As a result, 277,160 data points 
remain for analysis and the cluster analysis is performed on the resulting 
dataset. 

The dataset is normalized so that the differences in values of different 
variables do not cause a bias in the analysis and put more importance on 
the variables with higher magnitudes. In this way, all the features 
contribute similarly to the log-likelihood function, and the convergence 
is achieved faster. 

3.3. Appropriate data cluster number identification 

The methods used for selecting the appropriate number of clusters 
and their outcomes are discussed in this section. 

3.3.1. KDE plots 
As the first step, the KDE diagrams are used to get the initial infor

mation to determine the respective number of data clusters. For this 
purpose, 1D and 2D KDE diagrams of the current dataset with EP and ES 
values are plotted and are shown in Fig. 3. Based on the 1D and 2D KDE 
plots in this figure, at least 7 regions with denser regions are observed. 
The centers of these dense regions are connected with red lines to their 
associated peaks in 1D KDE plots. Hence, it can be concluded that the 
entire feature space of the pdf of the dataset is a combination of at least 7 
dense data distributions, each can be approximated to a cluster. One 
should note that KDE plots for combinations of other variables are used 
to find the number of existing data clusters, but here, just one of them is 
presented. 

3.3.2. Separability measure 
The second method for determining the number of data clusters and 

confirm the findings from the previous section involves utilizing the 

Table 1 
Ship specifications.  

Parameter Particulars 

Ship Type Chemical Tanker 
Ship Length 135 (m) 
Ship Beam 25 (m) 
Deadweight (at Designed 

Draft) 
9500 (tons) 

Main Engine Type Dual Fuel Engine with MCR 4500 (kW) at 720 (RPM) 
Gearbox Reduction Ratio 7:1 
Propeller Type A Controllable Pitch Propeller with a Diameter of 5.5 

(m) and 4 Blades  
Fig. 2. Time Series Plots of EP and Vessel position in Longitudes and Latitudes 
for 70 Days. 
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separability measure outlined in section 2.3.2. For this purpose, the 
GMM-EM algorithm is implemented for different cluster numbers, and 
the introduced separability measure is calculated for each case. In the 
clustering and separability measure calculations, a 7D feature space has 
been considered to make sure all the aspects of the vessel’s operation 
have been considered and maximum separability is achieved. The 
following ship performance and navigation parameters are considered 
for this analysis: EP, SOG, ES, Average Draft, Trim, Relative Wind Speed 
and Direction. 

The separability measure, SM, values for different cluster numbers 
are plotted in Fig. 4. As seen from this figure, the highest value for the 
separability measure is achieved for 7 clusters after passing the initial 
maximum at 3 clusters. One should note that the 3-cluster situation 
represents a situation, where the respective dataset can be approximated 
into 3 operational regions. That can be a high-level overview of the 
vessel operations. However, this study is interested in low-level vessel 
operational conditions, therefore the 7-cluster situation is considered as 
a more suitable situation, where more localized ship performance and 
navigation information can be preserved. Furthermore, this result con
firms the number of data clusters observed in KDE plots (see Fig. 3). As 
mentioned in 2.3.1, the KDE plots already show 7 peaks in 1D KDE and 7 
dense regions associated with them in 2D KDE, which represent existing 
clusters. The same results have been observed using a 3D feature space 
with EP, ES, and SOG as the variables, as shown in Fig. 5. In this figure 
also, 7 clusters have the highest separability measure among all cluster 
numbers after passing the first peak. 

One should note that the clustering results performed in this research 
will serve as a basis for digital twin development in the future study. This 

digital twin development can consist of both clustering/classification 
and regression approaches. Hence, having a more detailed and low-level 
clustering as the main focus of this study increases the model’s accuracy. 
In clustering with higher cluster numbers, the vessel’s behavior is more 
similar in data points of a selected cluster, and it is easier to fit a model to 
each cluster with higher accuracy. In contrast, in a more general cluster, 
there may be difficulties in fitting one model into the diverse behaviors 
of the vessel in subclusters, which can lead to lower accuracy. To avoid 
this, a two-step clustering may be necessary. For example, in case of 
selecting 3 as the cluster number, another clustering step should be 
performed in each resulting cluster to investigate the vessel operations 
in more detail, classify the data points in more similar operational 
conditions, and develop a more accurate localized model. This way, 
their subclusters, representing various vessel operation modes, can be 
found. For example, (Bui and Perera, 2021) performed a second clus
tering step in the primary clusters to find the subclusters. However, 
two-step clustering imposes more computational costs on the algorithm. 
As a result, 7 is selected as the best option for cluster number to avoid a 
second clustering step. 

Based on different criteria discussed previously, it is concluded to 
perform the clustering algorithm to find 7 clusters or operating regions 
of the vessel for this dataset. 

3.4. Feature selection 

In previous sections, it was mentioned that for increasing the sepa
rability of the clusters, a higher dimension had been considered for 
identifying the number of clusters and concluded that the proper num
ber of clusters is 7. However, the computational cost is higher for clus
tering in a 7D data space, while the clustering result doesn’t change 
proportionally to the computational cost imposed on the algorithm. As a 
result, the simpler model with the 3D feature space is selected to have a 
faster approach for online applications in both model development and 
necessary model updates. To ensure that choosing 3 features does not 
affect the results considerably, the resulting cluster centers and similar 
elements in covariance matrices for 3D and 7D clustering are compared, 
and no considerable difference is observed. This means adding more 
features to the model will not necessarily result in a more accurate 
model. Based on this, the 3D cluster with the following operational 
features of the vessel is selected for further analysis, and the results for 
this feature space are presented: EP in kW, ES in RPM, and SOG in Kn. 

Main Engine FC values are also in the dataset but are not selected as 
the primary variable in the clustering process. The main reason is that EP 
and FC have a high correlation in the whole operating range, as shown in 
Fig. 6. Therefore, selecting a low-dimensional data space that has the 
most important information can improve the convergence of data clus
tering. The scatter plots of EP and FC with SOG and ES are presented in 
Figs. 7 and 8 respectively, representing a data space with complex 
shapes of data clusters. On the other hand, it can be seen that EP can 

Fig. 3. 2D KDE plot of EP and ES  

Fig. 4. Separability measure J3 values for different numbers of clusters for 
7D feature space. 

Fig. 5. Separability measure J3 values for different numbers of clusters for 
3D feature space. 
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provide almost all the information FC can provide, since scatter plots 
with FC are almost the same as scatter plots with EP. As a result, using FC 
as a feature does not increase the separability between clusters signifi
cantly. In other words, adding FC as the fourth feature does not add 
much information compared to the computational costs it adds to the 
algorithm, since that can introduce additional complexity into the 
clustering algorithm. Another reason for not considering FC as the fourth 
feature is that more than 20% of the data points have missing values for 
FC, and removing this amount of data points can reduce the accuracy 
and generalization property of the clustering process significantly. 

After finding the operating regions using the clustering algorithm, 
the FC in tons per day will be introduced to the dataset as the fourth 
feature along the same data clusters to investigate the energy efficiency 
and FC of each cluster. It should be mentioned that the data points where 
the FC is not recorded are separated from the dataset for energy- 
efficiency evaluation to improve the accuracy of the respective calcu
lations. In the resulting 4D dataset, an SVD analysis is also performed to 
find the correlation between features and the dominant singular di
rections in each cluster. The results of the 3D clustering using the GMM- 
EM approach are presented in the next section. 

3.5. Data clustering 

In this section, the results of the clustering algorithm are presented. 

As mentioned earlier, 7 clusters are considered for this analysis, repre
senting the vessel’s operating regions. Since estimating the parameters 
of the GMM is achieved by maximizing the log-likelihood function, the 
EM can be considered as an optimization algorithm whose purpose is to 
maximize the log-likelihood function. Thus, the change in the log- 
likelihood function’s value at each iteration is usually taken as a mea
sure of the convergence of the EM algorithm. The log-likelihood function 
for each iteration of the EM algorithm is plotted and presented in Fig. 9. 
It can be seen from this figure that the algorithm has converged before 
150 iterations. 

The result of the cluster analysis and characteristics of the resulting 
clusters, i.e., the operating regions are presented in Table 2. As shown in 
this table, there are 3 major clusters or dominant operating regions of 
the vessel, in which the vessel was operating for more than 78% of the 
time. Other clusters correspond to transient regions or when the vessel is 
starting its journey from a stationary condition and leaving the port. 

All the resulting clusters are presented in two 3D scatter plots from 
different angles in Fig. 10, in which their size and orientation can be 
observed and compared. In this figure, different clusters are determined 
by different colors. 

Each cluster is also plotted separately in Fig. 11. The main clusters, 
which correspond to the dominant operating regions of the vessel, can 
be observed individually in Fig. 11 (a), (b), and (c), respectively. Scatter 
plots in Fig. 11 (d), (e), and (f) correspond to the regions where the 
vessel started from a stationary point, i.e., zero SOG, moving towards 
entering one of the main operating regions. For further reference, these 
clusters are called acceleration regions. Because at some points in the 
acceleration regions, the SOG is zero and GPS coordinates are constant, 
these regions are the time when the vessel is at the port, and the engine is 
used for feeding other power requirements, e.g., using for auxiliary 
systems such as generators. As a result, the engine generates power, but 
the ship’s SOG is zero. When the vessel leaves the port, the SOG won’t 
increase suddenly to the cruise speed, and there should be a period with 
positive acceleration from the stationary point to the cruising speed. 
Because the acceleration is not that high, the increase in speed is not 
very sharp. One should note that the two acceleration regions have two 
different RPMs and EPs. The ES in cluster 7 is higher than the ES in 
cluster 4. This difference indicates that a different path has been taken 
for increasing the speed in each accelerating region, which can be due to 
different gear configurations or loading conditions of the ship propul
sion system. 

Cluster 6 corresponds to the transient region of the vessel operations. 
The transient region can be defined as the points that the vessel transits 
between data clusters, i.e., localized operational modes. In order to 

Fig. 6. EP-FC scatter plot.  

Fig. 7. FC-SOG & EP-SOG scatter plots.  

Fig. 8. FC-ES & EP-ES scatter plots.  

Fig. 9. Log-likelihood function for the 3D feature space.  
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move from one cluster to the other, the vessel should pass through a 
continuous range, therefore the transient regions have emerged. For this 
purpose, it must go through points that cannot fit in any other cluster. It 
is the least used operating region, in which the ship was only operated 
less than 110 h in the whole year. This cluster is shown in Fig. 11 (g). As 
it is obvious in this figure, data points of this cluster are distributed over 
a wide range of EP, ES, and SOG values. 

3.6. Singular Value Decomposition (SVD) analysis results 

Another observation from the acceleration region scatter plots is that 
data points are closely located on planes parallel to the SOG-EP plane. As 
can be seen in Fig. 11 (d), (e), and (f), the difference between the highest 
ES from the ES mean value is less than 3% for cluster 4 and less than 1% 
for clusters 7 and 5, which is no more than about 5 RPM. As a result, the 
vessel’s behavior in these regions can be considered as constant speed. 
This difference can be due to the sensor measurement noise. The in
tensity of the data points around the ES mean value is higher in these 
plots. Moreover, the distribution of these points is similar to a Gaussian 
distribution in the ES direction, which is a logical and common 
assumption for the measurement noise. 

Another observation from this figure is that the distribution of the 
data points in the ES direction in the acceleration regions shown in 
Fig. 11 seems to be discrete, although ES is, in nature, a continuous-time 
signal. The reason for these gaps in the ES values is the discretization 
error for the measurement and recording of the data, i.e., zero order hold 
(Ogata, 1995). 

In Fig. 12 (a), ES as a time series is plotted for 2 acceleration regions, 
clusters 7 and 4, to demonstrate the constant speed in these clusters. As 
shown in this figure, the acceleration regions have a constant ES, indi
cating that they are located on a 2D surface rather than a 3D surface (see 

Fig. 12(b)), which means they can be represented in a lower dimension 
space. 

To investigate the shape of the clusters, the FC values are first added 
to the data points; then an SVD analysis is performed in each cluster’s 
new 4D feature space. The resulting singular vectors, i.e., principal 
components found by the SVD analysis, singular values, and percentage 
of information are presented in Table 3. As mentioned earlier, the 
magnitude of the singular value represents the amount of information in 
the respective direction. Based on the values presented in this table, 
more than 95% of the information is stored in the first two singular 
vectors, which means 95% of the information is located on a plane made 
by the first two singular vectors. As a result, this data can be compressed 
using singular vectors without losing any notable information, which 
means lower memory is needed for storing them. 

3.7. Energy efficiency analysis 

This section presents the results of energy efficiency assessment of 
the main clusters, i.e., the main operating regions. For this purpose, both 
EEIs presented in section 2.5 are calculated for the operating regions of 
the vessel, and the most energy-efficient operating region is observed. 

The results of the EEI1 calculation for all the data points in all the 
main operating regions are plotted in Fig. 13. It is evident from this 
figure that operating region 1 has the best EEI1 among the main oper
ating regions and operating region 2 has the higher FC per distance. 

As mentioned in section 2.5, to consider the effects of vessel cargo, 
draft value has been selected as an approximate indicator of the vessel 
load. In order to verify the effect of draft on FC, 2D scatter plots of SOG 
and the calculated EEI1 with the draft value color bar for the main 
operating regions are plotted. These plots are shown in Fig. 14. In these 
plots, darker regions are associated with higher draft values. As shown in 
this figure, at any speed, the points with higher draft values have higher 
EEI1, which shows the draft has a monotonic relationship with the 
calculated EEI1. As a result, EEI2 can be considered as a more compre
hensive index for the energy efficiency evaluation of the vessels. 

EEI2 values for the main operating regions are plotted in Fig. 15. As 
shown in this figure, the mean value for EEI2 for operating region 1 is the 
smallest, which means this operating region has a better energy effi
ciency among all other main operating regions. Among all the main 
operating regions, number 2 has the highest EEI2 value, which makes it 
the least efficient operating region among the main operating regions. 

Table 2 
Characteristics of the operating regions of the vessel.  

Cluster 
Number 

Operating 
Hours 

Average EP 
(kW) 

Average SOG 
(kn) 

Average ES 
(RPM) 

1 922.40 1555.92 11.20 549.40 
2 1272.12 2447.19 13.05 624.52 
3 1446.82 1397.22 6.21 719.61 
4 252.10 2642.22 12.63 631.30 
5 327.60 3624.99 14.85 718.72 
6 109.88 635.00 6.34 475.04 
7 289.65 2058.89 7.10 608.47  

Fig. 10. Scatter plots of all the clusters.  
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Fig. 11. Scatter plots of different clusters.  

Fig. 12. (a) Clusters 4 and 7 ES time series (b) clusters scatter plots.  
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4. Conclusions 

This research study proposes a methodology for developing a 
framework designed to assess the energy efficiency of a selected vessel 
under various operating conditions. The developed framework can be 
generalized and adapted to different vessels, allowing the creation of a 
digital twin framework for each, given sufficient data recorded from 
them. However, due to limitations in data availability, this framework is 
used only for a single vessel in this research to demonstrate the 

feasibility of developing digital twins capable of incorporating detailed 
information of the respective vessel. 

The main contribution of this research is finding the operating re
gions of the selected vessel, investigating the FC behavior in different 
operating regions, which can support the optimal operation and navi
gation strategy for a selected vessel based on its previous behavior. The 
findings of this research can help ship navigators to plan their voyages in 
a more energy-efficient way. 

In this research, a cluster analysis is performed using the GMM-EM 
approach in a 3D feature space with EP in kW, ES in RPM, and SOG in 
kn to find the operating regions of the vessel. It is also observed that 
adding more features to the model will not necessarily result in a more 
accurate model. This is due to the reason that the important parameter 
correlations are preserved within the limited feature space. This 
approach captures 7 clusters, i.e., operation regions of the vessel. The 
engine’s most frequent and dominant operating regions and, more 
importantly, their shapes are detected. Each cluster represents a 
different navigational and operational condition. Some clusters corre
spond to main operational regions, and others are associated with 
transient regions. 

Two approaches, namely KDE plots and a separability measure, have 
been presented in this research for determining the proper number of 
clusters for the GMM-EM algorithm. These methods can be used for 
other applications and create a concrete and quantitative basis for 
selecting the proper number of clusters in a dataset. 

There are 3 major clusters, i.e., dominant operating regions of the 
vessel, in which the vessel was operated for more than 78% of its 
operating time for the selected vessel. The cluster analysis proposed in 
this research also builds the initial basis for the digital twin framework, 
where the knowledge can be used to develop model evaluation condi
tions. In this framework, the variables are represented as statistical 
distributions, which are later used in the structure identification step. 
The novelty of this investigation is that this study considers dataset has 
complex conditions of data distributions with various clusters or oper
ating regions of a selected vessel. 

An SVD analysis is performed to find the dominant singular di
rections in each cluster and investigate the behavior of each cluster and 
the correlation between ship performance and navigation variables. The 
result of the SVD analysis can be utilized in model development and 
finding the relationship between different variables in each cluster. 
Based on the SVD analysis, it is observed that each data cluster is located 
on a lower dimensional feature space. This observation gives the op
portunity for data compression without losing any considerable 
information. 

In order to find the most efficient operating region of a selected 
vessel, an EEI called EEI2 is defined based on the vessel’s FC, SOG, and 
draft values. The most efficient cluster is selected based on the calcu
lated EEI2 for each cluster. Ship owners can use the approach presented 
here to find the most optimal configuration for the navigational and 

Table 3 
Singular vectors found by SVD for each cluster.  

Cluster 
Number 

Singular Vector Singular 
Value 

Percentage of 
Information 

Cluster 1 V1 [0.996758, 0.080344, 
0.004182] 

1.401341e- 
02 

89.93 

V2 [0.003702, 0.006120, 
− 0.999974] 

1.293317e- 
03 

8.30 

V3 [0.080367, − 0.996748, 
− 0.005803] 

2.723988e- 
04 

1.75 

V4 [0.080367, − 0.996748, 
− 0.005803] 

3.095186e- 
06 

0.02 

Cluster 2 V1 [9.999934e-01, 
-3.565913e-03, 
-5.683130e-04] 

4.799843e- 
02 

88.72 

V2 [3.565749e-03, 
9.999936e-01, 
-2.897690e-04] 

5.212245e- 
03 

9.63 

V3 [-5.693427e-04, 
-2.877406e-04, 
-9.999998e-01] 

8.829149e- 
04 

1.63 

V4 [0.080367, − 0.996748, 
− 0.005803] 

7.768488e- 
06 

0.02 

Cluster 3 V1 [9.973184e-01, 
7.309133e-02, 
3.699815e-03] 

1.285398e- 
02 

95.28 

V2 [3.630880e-03, 
1.075987e-03, 
-9.999928e-01] 

4.288604e- 
04 

3.18 

V3 [7.309479e-02, 
-9.973246e-01, 
-8.077163e-04] 

2.026303e- 
04 

1.50 

V4 [0.080367, − 0.996748, 
− 0.005803] 

5.459539e- 
06 

0.04 

Cluster 4 V1 [0.998191, 0.060013, 
0.003577] 

2.991752e- 
02 

93.43 

V2 [0.003830, − 0.004106, 
− 0.999984] 

2.094001e- 
03 

6.54 

V3 [0.059997, − 0.998189, 
0.004328] 

2.196780e- 
06 

0.02 

V4 [0.080367, − 0.996748, 
− 0.005803] 

7.794754e- 
06 

0.01 

Cluster 5 V1 [0.996758, 0.080344, 
0.004182] 

3.922104e- 
03 

65.21 

V2 [0.003702, 0.006120, 
− 0.999974] 

2.064051e- 
03 

34.32 

V3 [0.080367, − 0.996748, 
− 0.005803] 

3.962610e- 
06 

0.41 

V4 [0.080367, − 0.996748, 
− 0.005803] 

2.483428e- 
05 

0.06 

Cluster 6 V1 [0.996758, 0.080344, 
0.004182] 

9.426789e- 
02 

69.27 

V2 [0.003702, 0.006120, 
− 0.999974] 

3.389410e- 
02 

24.91 

V3 [0.080367, − 0.996748, 
− 0.005803] 

7.866624e- 
03 

5.78 

V4 [0.080367, − 0.996748, 
− 0.005803] 

5.564750e- 
05 

0.04 

Cluster 7 V1 [0.996758, 0.080344, 
0.004182] 

4.734389e- 
02 

92.93 

V2 [0.003702, 0.006120, 
− 0.999974] 

3.589138e- 
03 

7.05 

V3 [0.080367, − 0.996748, 
− 0.005803] 

4.697735e- 
06 

0.01 

V4 [0.080367, − 0.996748, 
− 0.005803] 

5.363718e- 
06 

0.01  

Fig. 13. Results of the EEI1 based on Eq. (16). for Main Operating Regions.  
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operational variables of the vessel and make their voyages more energy 
efficient. 

A more accurate analysis of the energy efficiency can be conducted if 
data on the vessel’s cargo load is available. In this research study, 
however, the draft value is utilized as a proximate measure for cargo 
amount. Future research could benefit from actual cargo data instead of 
draft value to enhance the presented EEI2. 

Since the GMM-EM algorithm is an iterative algorithm based on data, 
an increase in the size of the dataset necessitates more computational 
time. Nevertheless, given a moderate-quality dataset, an acceptable 
framework can be developed employing the methodology presented in 
this research study. 

As a subsequent phase of this research study, life cycle cost analysis 
can be integrated into the developed framework. Moreover, including a 
predictive dynamic model of the vessel within the framework can form a 
decision support system for the onshore operation center. 
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