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ABSTRACT 
Digital twin type models can be developed for physical 

systems that are complex nonlinear a system of systems (SoS). 

However, such models are usually difficult to represent by linear 

equations. Therefore, an adequate linearization technique 

should be introduced. Therefore, linear models as digital twins 

can be interpreted easily and need much less computational 

power when applied to various industrial applications. On the 

other hand, a linearization approach can increase the respective 

system-model errors and impose significant constraints on the 

models of SoS, i.e., since linear models can be applicable only in 

limited operating regions. This research study aims to combine 

positive characteristics of both linear and nonlinear modelling 

into a digital twin development framework by having the 

properties of linear digital twin models locally while the model 

framework is covering the whole operating region of the SoS. An 

industrial application of marine engines as an SoS is considered 

for this study, where the respective models have been used to 

predict engine fuel consumption.  

For this purpose, firstly, a dataset is selected from a marine 

engine of a selected ocean-going vessel. Then, several localized 

linear operational regions of the respective data set are 

identified using an unsupervised data-driven technique, i.e., on 

the engine propeller combinator diagram. For developing the 

localized models: firstly, the Gaussian Mixture Models method 

is used to cluster the data points into different operational 

regions of the engine propeller combinator diagram. Then, a 

nonlinear model of the relationship between features is 

developed in each cluster using the polynomial regression 

approach. Then, these models are combined using the Multiple 

Model Adaptive Estimation (MMAE) method to create an overall 

model for the marine engine as an SoS. The same model is 

utilized to predict the respective fuel consumption based on 

engine operational conditions.  

Keywords: Digital Twin, Clustering, Multiple Model 

Adaptive Estimation, Marine Engine 

1. INTRODUCTION
The commercial and economic importance of the shipping

industry is indispensable. This industry accounts for the 

transportation of around 90% of traded goods globally [1]. In 

2019, the international maritime trade volume was equal to 

11,076 million tons of loaded goods [2], which is constantly 

growing. International shipping accounts for 2.9% of the world's 

CO2 emissions. Due to this rate of energy consumption in this 

industry and its consequent emissions, the International 

Maritime Organization (IMO) has devised strict rules for 

extensive reduction of greenhouse gas emissions [3], such as the 

Energy Efficiency Design Index (EEDI) for new ships, the 

mandatory Ship Energy Efficiency Management Plan (SEEMP) 

for all ships, and the attained Energy Efficiency Existing Ship 

Index (EEXI) required to be calculated for every ship [4]. 

Furthermore, the SEEMP also provides an approach for shipping 

companies to manage the ship and fleet-level efficiency over 

extended periods, namely the voluntary use of the Energy 

Efficiency Operational Indicator (EEOI) for new and existing 

ships [5]. 

As a result, in devising strategies for the future of this 

industry, these imposed regulations, emission reduction, and 

improving its efficiency should be considered. Adapting to these 

regulations is not easily accessible with conventional methods, 

and technological innovations should be considered to meet 

these requirements, such as digital twin-type applications, i.e., 

digitalization and machine learning (ML)-based approaches [6]. 



Also, shipping requires advanced databases, analytics, decision 

support systems [6], and data handling frameworks, which 

makes digital twin-based approaches and techniques more 

attractive and desirable. The effectiveness and flexibility of these 

methods attracted a great deal of attention from researchers and 

have been applied to many industrial applications. However, the 

initial research studies done on various ML and AI approaches 

have made the pathway toward digital twin type applications. As 

an example, Petersen and Jacobsen [7] present a statistical model 

of fuel efficiency in ship propulsion systems through high-

quality sensory data sets, using a 10-fold ANN-based approach 

as a nonlinear supervised learning method for regression 

analysis. 

Since fuel cost is a significant portion of the vessel's 

operational cost, improving fuel efficiency can be attractive for 

all ship owners. However, an accurate estimation of the fuel 

consumption (FC) in ocean-going vessels can play an essential 

role in such a task. Several different ways of estimating the FC 

of vessels are presented in the literature. For instance, Beşikçi et 

al. [8] developed an ANN-based estimator for the FC of a 

selected vessel for various operating conditions to support 

energy-efficient ship operations. Uyanık et al. [9] compared 

different prediction models for FC estimation, i.e., Multiple 

Linear Regression, Ridge and LASSO Regression, Support 

Vector Regression, Tree-Based Algorithms, and Boosting 

Algorithms, and concluded that Multiple Linear Regression has 

the best performance among all. Also, Anan et al. [10] utilized 

AI and high-dimensional statistical analysis to visualize ship 

performance and improve fuel efficiency using weather data, 

along with vessel navigation and ship system operation data in 

onboard and onshore cloud/edge platforms. 

 Furthermore, the International Maritime Organization 

(IMO) adopted a mandatory Fuel Oil Data Collection System 

(DCS) for international shipping. Under such amendments to 

MARPOL Annex VI on the DCS for fuel oil consumption of 

ships, ships of 5,000 gross tonnages and above are required to 

collect FC data, as well as other additional, specified data, 

including proxies for transport work [11].  

The problem related to the mandatory DCS is that there are 

some operating points that the FC is not recorded for them, which 

can be an effect of faulty data acquisition systems or sensors, 

saturations or noise conditions of the sensors, or even human 

errors. As a result, in case of a missing FC value or anomaly 

values for FC, a methodology that can estimate the respective FC 

value for any given operating point can be valuable. This process 

can be approximated to a parameter interpolation or 

extrapolation process due to missing values. In other words, the 

missing data points of FC values should be identified. Then the 

FC can be estimated for them based on other operating 

parameters of a marine engine in such situations.  

In order to estimate the FC of a selected engine, one should 

have a model of the respective engine operations. There are 

different models, such as control-oriented models, in the 

literature developed to estimate different operating states of 

marine engines, but most of them require in-cylinder 

measurements, such as pressure and temperature values [12, 13, 

14]. Even though modern engines can produce such data sets, 

ship owners are hardly collecting and utilizing such data sets 

with higher sampling rates for energy efficiency applications in 

shipping. 

On the other hand, the aim of this research is to develop a 

model using an available dataset of a selected vessel, i.e., without 

using the in-cylinder properties values. In this research, the FC 

is estimated by a combination of algebraic equations using the 

operating conditions of a marine engine as variables, i.e., engine 

operation modes.  

These localized models, i.e., in engine operation modes, are 

combined and selected using the Multiple Model Adaptive 

Estimation (MMAE) algorithm. The MMAE algorithm is a 

powerful tool, using a bank of N parallel linear or nonlinear 

models. At any given operating point or region, it selects a single 

model or combination of models to generate the desired state. 

MMAE has been widely used for prediction purposes in recent 

literature. Barrios et al. used MMAE coupled with Adaptive 

Extended Kalman Filters (EKF) for predicting vehicle position 

using Global Positioning System (GPS) data [15]. Song et al. 

[16] used an improved MMAE approach coupled with Sage–

Husa adaptive unscented Kalman filter for integrated navigation

with time-varying noise levels. This approach improved the

system's robustness to various noise levels, which enhanced the

filter's performance in time-varying noisy measurements. Zhang

et al. [17] presented a new scheme of weighted MMAE in which

the conventional weighting algorithm is replaced by a dynamic

weighting signal generator algorithm that relaxes the

convergence conditions. The results confirmed that the proposed

MMAE scheme is effective for different parameter estimations

under various uncertainties.

The main contribution of this research study is to develop a 

data-driven framework for estimating the FC of a selected vessel 

using operational variables, i.e., available data sets, of a marine 

engine using ML techniques to develop the proposed digital twin 

type applications. For this purpose, firstly, a cluster analysis is 

performed, where 4 clusters, along with their mean and 

covariance values, are captured. In each cluster, a regression 

analysis is performed to find the respective functions of engine 

speed (ES) in RPM and FC in tons per day with main engine 

power (EP) in kW as the independent variables. Two polynomial 

regressions are performed in each data cluster, i.e., based on the 

data points in that cluster, one for finding the relationship 

between ES and EP and another for finding the relationship 

between the respective FC and EP. Then, based on the measured 

ES and EP, one of the developed models is utilized to estimate 

the future operational conditions of the engine. The model 

selection is based on the posterior probability calculated in the 

MMAE approach. At this stage, the MMAE has the role of 

selecting the best model among the developed cluster models 

based on their respective residual vector and covariance matrix.  

2. METHODOLOGY
The proposed framework is developed using data from a

selected vessel for two months. The data sampling time is 1 



minute, and the specifications of the selected vessel are presented 

in Table 1. 

TABLE 1: SHIP SPECIFICATIONS 

Ship Length 135 (m) 

Ship Beam  25 (m) 

Deadweight (at 

Designed Draft) 
 9500(tons) 

Main Engine Type 
Dual Fuel Engine with MCR 4500 (kW) 

at 720 (RPM) 

Gearbox Reduction 

Ratio 
7:1 

Propeller Type 
A Controllable Pitch Propeller with a 

5.5 (m) Diameter and 4 Blades. 

One should note that data sets of two months are considered 

for this study. The data set from the first month of the vessel's 

operation is selected for clustering and developing the model, 

including polynomials and the MMAE framework. The data set 

from the second month is used as new data values or test data set 

for evaluating the developed MMAE framework.  

The time series for EP and FC for the second month are 

plotted in Fig. 1. As it is obvious in this figure, there are many 

missing data points in which the engine was running, but the FC 

is not recorded. Some anomalies are also noted in the same data 

sets, where the FC has abnormally high values while the engine 

runs normally. In the current research, all missing data points are 

removed from the data set in the preprocessing step, but in future 

work, the values for FC for these data points will be recovered 

using the proposed framework. Since this research is to prove the 

proposed method works, only data sets with clean values, i.e., 

without anomalies and missing data, are used for the 

performance evaluation of the proposed digital twin. One should 

note that that could help improve the initial models developed to 

support MMAE since those models are based on high-quality 

data sets.  

FIGURE 1: TIME SERIES FOR EP AND FC FOR THE SECOND 

MONTH BEFORE PREPROCESSING 

In the following, the methodology for the clustering step is 

presented, then the general idea of the MMAE approach is 

briefly discussed.  

2.1 GMM-EM Basic Concepts and Ideas 
GMM can be considered as a probabilistic clustering 

algorithm [18]. In this method, it is assumed that the distribution 

of the data points can be estimated by combining J separate 

multivariate Gaussian distributions, f. Based on this, the total 

distribution of a random variable x in the dataset or Mixture 

Density Model (MDM), h, can be written as Eq. 1. The general 

parameter vector is Θ, which contains two sets of parameters, 𝜃, 
and 𝑃. 𝜃𝑗 contains the mean vector and covariance matrix of the

jth cluster, 𝜇𝑗 and Σ𝑗, and 𝑃𝑗 is the posterior probability of cluster

j. 
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For each data point, 𝑥𝑞, the probability of belonging to one

of the Gaussian distributions is higher, which is assumed to be 

the resulting cluster of that data point. 

The remaining step is to estimate the values for the model 

parameters. Estimating the model parameters can be achieved 

using the EM algorithm. For formulating the EM algorithm, a 

new set of variables, y, is defined, with an observed part, x, and 

an unobserved part, j. Vector x is the vector of parameters 

obtained from the measurements. In order to find the parameters, 

a likelihood function is formed, and the estimation is done based 

on the distribution of this likelihood function. Since the 

logarithm function is monotonically increasing, to make the 

calculations more straightforward, the log-likelihood function, 

𝐿(𝜃), is defined as Eq. 2 and can be maximized using the EM 

algorithm to estimate unknown parameters. In this equation, M 

is the number of data points in the data set. 

𝐿(𝜃) = ∑[𝑙𝑛𝑓(𝑦𝑞; 𝜃|𝑥𝑞)]

𝑀

𝑞=1

(2) 

The EM algorithm is an iterative scheme that consists of two 

steps. In the first step, or the E-Step, the expectation of the log-

likelihood function is calculated. One should note that in the 

calculation of the expectation, and only in the distribution of 𝜃, 

the last values of 𝜃 are used. In the second step, which is the 

maximization step, the derivative of the expectation of the log-

likelihood function with respect to the parameters is calculated 

and set to zero to find the optimal values for the model 

parameters. The second step of the EM algorithm is called the 

M-Step. For the E-step, a new function, Q, is defined as Eq. 3,

which calculates the expectation of the log-likelihood function

with the assumption mentioned earlier.
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In the M-step, the derivatives of function Q with respect to 

Σ𝑗, 𝜇𝑗, and 𝑃𝑗 are calculated and set to zero. The results, which

are presented in Eq. 4, are the values of Σ𝑗, 𝜇𝑗, and 𝑃𝑗 for the next

iteration [18].  
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Eq. 4 shows the iterative nature of the EM algorithm, in 

which the values of Σ𝑗, 𝜇𝑗, and 𝑃𝑗 in each iteration are calculated

based on the previous iteration values. The initial values for the 

parameters of this algorithm are selected randomly. This iterative 

process is terminated after the convergence of parameters to 

stable values in GMMs is achieved. Additional criteria can be 

selected for terminating the proposed iterative scheme in the EM 

algorithm. In this research study, when the parameters' values do 

not change more than 2% in two successive steps, it is assumed 

the algorithm is converged.  

In this research, the following parameters are used for the 

cluster analysis: 

- Main Engine Power (kW) (EP)

- Fuel Consumption Rate (Tons per Day) (FC)

- Engine Speed (RPM) (ES)

In the following section, the steps to fit a polynomial to each 

cluster in the dataset are presented, then the concepts of MMAE 

and its implementation based on the developed polynomials are 

presented. 

2.2 Localized Model Development 

As mentioned earlier, in each data cluster, a polynomial is 

considered for estimating FC and ES based on EP. In order to fit 

the polynomials, their coefficients, 𝑏𝑗s should be estimated using

the respective data points. For this purpose, the steepest descent 

algorithm is used to estimate the constants of the polynomial. 

ℎ(𝑥) is the function or hypothesis assumed as the model, i.e., the 

polynomial. 𝐽(𝑎) is the cost function for this hypothesis. ℎ(𝑥) 

and 𝐽(𝑎) are defined in Eq. 5. 
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𝑚
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In order to find the coefficients of the hypothesis, the 

steepest descent algorithm is used. This algorithm is an iterative 

scheme based on the rule in Eq. 6. 

𝑏𝑗 ≔ 𝑏𝑗 − 𝛼
𝜕𝐽

𝜕𝑏𝑗

(6) 

Where ≔ sign means the old value will be overwritten by 

the new value on the right side. In this equation, 𝛼 is the step 

size. As a result, the update rule for the coefficients can be 

written as: 

𝑏𝑗 ≔ 𝑏𝑗 + ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖 − 𝑏2𝑥𝑖
2)

𝑚

𝑖=1

𝑥𝑖
𝑗

(7) 

2.3 MMAE Framework 
This section presents the framework for selecting and 

combining the models from a model bank, i.e., the models 

developed in each cluster. Firstly, the general concepts and ideas 

behind the MMAE approach are presented, then the 

implementation of MMAE for the current research study is 

discussed. 

2.3.1 MMAE Basic Concepts and General Idea 
A physical system that generates data can be approximately 

modeled as one of the N possible models, which can also be 

expended towards the digital twin model development steps. The 

MMAE algorithm uses a bank of N parallel linear or nonlinear 

models, and at any given situation, it selects a model or 

combination of models to generate the output or desired state of 

a digital twin. The selection of a model or a combination of 

models to generate the final estimate, as a part of the general 

digital twin model, is decided based on the posterior probabilities 

of each model with respect to the measured variable. At each 

step, one or more variables/states are measured, which is denoted 

by 𝑦(𝑘), and based on the resulting estimation error with respect 

to the measurement, the posterior probabilities are calculated for 



this digital twin application. The posterior probabilities 

determine which model has the best estimate among all models 

in a digital twin application. In other words, the posterior 

probabilities are defined as follows: 

𝑝𝑖(𝑘) =  Probability[𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒|𝑦(𝑘)] (8) 

As a result, the posterior probabilities are used to weigh 

local estimates to generate the final estimated values for the 

respective model parameters. The posterior probability of the ith 

model at time k is denoted by 𝑝𝑖(𝑘), which is the probability that

the parameter estimated by the ith model, 𝑥̂(𝑘), is the estimated 

value of the respective parameter, 𝑥(𝑘). As a result, 𝑝𝑖(𝑘) should

satisfy the following constraints: 

𝑝𝑖(𝑘) ≥ 0, ∑ 𝑝𝑖(𝑘)

𝑁

𝑖=1

= 1 (9) 

The posterior probabilities are calculated by the Posterior 

Probability Evaluator (PPE). Each linear or nonlinear model has 

its own estimate, residual vector, and error covariance matrix. 

The PPE evaluates the posterior probability for each model based 

on the residual vector and its covariance matrix.  

To calculate the posterior probability, the first step is to 

calculate the residual vector. The residual vector for each model 

is defined as the difference between the measured vector, 𝑦(𝑘), 

and the estimated vector, 𝑦̂𝑖(𝑘), of the digital twin application

from that model for the same variable(s). Thus, the residual 

vector is calculated based on the following equation. 

𝑟𝑖(𝑘) = 𝑦(𝑘) − 𝑦̂𝑖(𝑘) (10) 

The covariance matrix of the same variable(s) is, by 

definition, the expected value of the squared residual value. 

𝑆𝑖(𝑘) = 𝑐𝑜𝑣[𝑟𝑖(𝑘)] = 𝐸[𝑟𝑖(𝑘). 𝑟𝑖(𝑘)𝑇|𝐻𝑟]

= 𝐸 [(𝑦(𝑘)

− 𝑦̂𝑖(𝑘))(𝑦(𝑘) − 𝑦̂𝑖(𝑘))
𝑇

|𝐻𝑟]

= ∫ (𝑦(𝑘)

+∞

−∞

− 𝑦̂𝑖(𝑘))(𝑦(𝑘) − 𝑦̂𝑖(𝑘))
𝑇

𝑝(𝑦(𝑘)|𝐻𝑖) 𝑑𝑦

(11) 

Where 𝐻𝑖  is the hypothesis or model i, and 𝑝(𝑦(𝑘)|𝐻𝑖) is

the probability density function of the ith model for vector 𝑦(𝑘). 

The last equation is the same as the definition of the covariance 

in a multivariate probability density function. As a result, 𝑆𝑖(𝑘)
is the same as the covariance matrix of the ith model.  

As mentioned in the clustering section, it is assumed that all 

clusters have Gaussian distributions, therefore the dynamic 

probability evaluation 𝑝𝑖(𝑘) for the ith model at iteration, k is

calculated based on Eq. 12. 

𝑝𝑖(𝑘) = (
𝛽𝑖(𝑘)𝑒−

1
2

𝜔𝑖(𝑘)

∑ 𝛽𝑗(𝑘)𝑒−
1
2

𝜔𝑗(𝑘)
𝑝𝑗(𝑘 − 1)𝑁

𝑗=1

) 𝑝𝑖(𝑘 − 1)
(12) 

Where, 

𝛽𝑖(𝑘) =
1

(2𝜋)
𝑚
2 √det(𝑆𝑖(𝑘))

𝜔𝑖(𝑘) = 𝑟𝑖(𝑘)𝑇𝑆𝑖(𝑘)−1𝑟𝑖(𝑘)

(13) 

After calculating the posterior probabilities, 𝑝𝑖(𝑘), the final

variable estimates, 𝑥̂(𝑘), can be calculated as the sum of each 

model variable estimates, 𝑥̂𝑖(𝑘), multiplied by the associated

posterior probabilities. 

𝑥̂(𝑘) = ∑ 𝑝𝑖(𝑘)𝑥̂𝑖(𝑘)

𝑁

𝑖=1

(14) 

In the case of a scalar system, the residual vector is replaced 

by the residual value, and the covariance matrix is replaced by 

the variance value of the respective parameter. 

2-3-2- MMAE Framework Development for FC
Estimation

As mentioned in this research, the MMAE approach is used 

for combining the models found in each data cluster. Two 

polynomial regressions are performed in each cluster based on 

the respective data points, one step for finding the relationship 

between ES and EP values, and another for finding the 

relationship between the respective FC and EP values. MMAE is 

used to find and combine the best models among these 

polynomials for estimating the FC values based on the posterior 

probabilities, where that approach has been categorized as the 

development steps for digital twin. Adapting the MMAE 

approach for the current research goals is presented in this 

section, and the general steps of this process are shown in Fig. 2. 

FIGURE 2: MMAE DIAGRAM 



As mentioned earlier, the idea behind this framework is that, 

firstly, a cluster analysis is performed to find the operating 

regions of a marine engine using an existing dataset of the 

selected vessel. Then, the offline models are developed for ES-

EP and FC-EP in each cluster using polynomial regression. In 

estimating the future states for a new dataset, only the ES and EP 

values are assumed to be recorded, and the FC will be estimated 

based on the selected models. For this purpose, the recorded ES 

values at the respective EP values are compared to the estimated 

ES values by the respective ES-EP polynomials. This 

comparison is made in each cluster, and their associated residual 

values will be calculated. The PPE calculates the posterior 

probability for each model based on the residual value and the 

variance for EP in each cluster. The final value for FC is the 

weighted sum of the estimated values for FC calculated using 

each model of this proposed digital twin framework. 

In the proposed framework, the following points should be 

mentioned: 

- Since in the selected approach, the models for each

cluster are developed in advance, and there is no model

update at each time step, the covariance matrix of each

model is the same throughout time steps and 𝑆𝑖(𝑘) =
𝑆𝑖 = 𝑐𝑜𝑣𝑖 .

- Moreover, in the proposed method, only one feature is

recorded, and one feature is to be estimated. Based on

this, all the residual and covariance equations are

written in a scalar form. As a result, the covariance

matrix and residual vector are replaced by the variance

and residual value for the measured variable,

respectively.

- The normalized dataset formed by mapping all the

features into [-1, 1] intervals is used for the clustering

to prevent bias in favor of features with higher values.

As a result, all the calculations and estimations in the

MMAE framework are also performed in the

normalized feature space.

- The data set for one month is used to perform the

clustering and polynomial regression, and the FC

estimation is performed for the data set for the

following month, where the estimated FC is compared

with the measured FC. The data set for the second

month, for which the FC is known, is selected as the test

data to evaluate the proposed model. For future

reference, the data set for the second month will be

called the query points.

As mentioned, the clusters are formed using the GMM-EM 

approach, and all the clusters are assumed to have Gaussian 

distributions. In the covariance matrix of each data cluster, the 

diagonal elements are the variance values of each feature.  

3. RESULTS AND DISCUSSION
In this section, the results of the clustering algorithm and

then the estimation step are presented. 

3.1 Clustering Results 
The detailed implementation and results of the proposed 

clustering algorithm for a dataset of one month of the selected 

vessel are presented in [19]. Based on these results, 4 clusters or 

operating regions are identified for this vessel using the selected 

operating parameters of the marine engine. It is worth 

mentioning that data points with missing values and anomalies 

are removed from the dataset before performing the clustering 

during the preprocessing step. Also, the data points associated 

with the times when the engine was not functional, and no power 

was being generated are also removed from the dataset since this 

research aims to analyze and develop a model for the operating 

region of the engine. Therefore, some selected data anomalies 

are removed from this data set during the preprocessing step.  

In Fig. 3, all the data points are plotted in a 3-D space with 

different colors for each cluster. The percentage of data points 

belonging to each cluster is calculated and presented in Table 2. 

As shown in this table, the dominant cluster or operating region 

is the third one, and nearly 56% of the data points are from this 

cluster. In other words, the vessel operated for nearly 56% of the 

time in this data cluster or operating region.  

FIGURE 3: FINAL CLUSTER CONFIGURATION FOR THE 3D 

SPACE 

TABLE 2: PERCENTAGES OF DATA POINTS BELONGING TO 

CLUSTERS IN THE 3D FEATURE SPACE 

Number of 

Clusters 
Data point density (%) 

1 6.45 

2 17.03 

3 55.63 

4 20.89 



The resulting cluster centers or cluster mean values for the 

selected feature space are presented as follows. The first row in 

all the mean value vectors is the EP mean value, the second is 

the FC mean value, and the third is the ES mean value. 

𝜇1 = [
1760.14

7.65
719.62

],    𝜇2 = [
642.52

3.03
475.01

], 

𝜇3 = [
2702.72

10.73
614.11

],   𝜇4 = [
2993.81

11.87
662.63

] 

For the clustering algorithm, all the data points are 

normalized, so the algorithm is not biased in favor of the features 

with the higher values. The covariance matrices of the captured 

clusters for the normalized data can be written as follows: 

𝑐𝑜𝑣1 = [
0.00120847 0.00127509 −1.5828e − 05
0.00127509 0.0014179 −1.87791e − 05

−1.5828e − 05 −1.87791e − 05 1.46093e − 05
] 

𝑐𝑜𝑣2 = [
0.0571969 0.053608 −2.57862e − 05
0.053608 0.0502977 −2.68347e − 05

−2.57862e − 05 −2.68347e − 05 1.15797e − 05
] 

𝑐𝑜𝑣3 = [
0.0150404 0.0151152 0.015841
0.0151152 0.0152681 0.0159561
0.015841 0.0159561 0.0184682

] 

𝑐𝑜𝑣4 = [
0.00542729 0.0049016 0.00105455
0.0049016 0.00540206 0.00112822

0.00105455 0.00112822 0.00268443
] 

The diagonal elements of these covariance matrices are the 

variance values for the respective operational parameters. 

Now that the clusters have been captured by the GMMs and 

EM algorithm, the next step is to develop a model for each 

cluster and use MMAE to combine these localized models to 

generate a general model to cover the whole engine operating 

region.  

3.2 Estimation Step Results 
In the following, the results of the polynomial fitting to the 

dataset in each cluster are presented, then the implementation of 

MMAE based on the developed polynomials is discussed. 

3.2.1 Polynomial Regression Results and Discussion 
Using the NumPy toolbox in Python, a 2nd order polynomial 

is fitted to data points in each cluster. The resulting polynomials 

for each data cluster using the mentioned algorithm are presented 

in Tables 3 & 4. In each cluster, one polynomial is fitted for 

calculating ES from EP, and another one is found for estimating 

FC from EP. 

TABLE 3: RESULTING 2ND ORDER POLYNOMIALS FOR 

CALCULATING ES FROM EP FOR EACH CLUSTER 

Cluster 1 
𝐸𝑆 = 9.510 × 10−2 × 𝐸𝑃2 − 4.460 × 10−2 × 𝐸𝑃

+ 0.135

Cluster 2 
𝐸𝑆 = 3.966 × 10−4 × 𝐸𝑃2 − 9.058 × 10−4 × 𝐸𝑃

+ 0.972

Cluster 3 𝐸𝑆 = −0.187 × 𝐸𝑃2 − 1.308 × 𝐸𝑃 − 8.311 × 10−2

Cluster 4 𝐸𝑆 = −8.263 × 10−2 × 𝐸𝑃2 + 0.225 × 𝐸𝑃 + 0.661

TABLE 4: RESULTING 2ND ORDER POLYNOMIALS FOR 

CALCULATING FC FROM EP FOR EACH CLUSTER 

Cluster 1 𝐹𝐶 = 0.728 × 𝐸𝑃2 + 0.812 × 𝐸𝑃 + 8.903 × 10−3

Cluster 2 
𝐹𝐶 = 2.313 × 10−2 × 𝐸𝑃2 + 0.915 × 𝐸𝑃

+ 5.529 × 10−2

Cluster 3 𝐹𝐶 = 0.105 × 𝐸𝑃2 + 0.875 × 𝐸𝑃 + 2.717 × 10−2

Cluster 4 
𝐹𝐶 = −1.193 × 10−2 × 𝐸𝑃2 + 0.928 × 𝐸𝑃

+ 5.427 × 10−2

3.2.2 MMAE Implementation Results 
The first step in implementing MMAE is to calculate the 

residual values between the measured and the estimated values 

of the respective variables of each cluster. Fig. 4 shows the 

absolute residual values for different cluster models for all the 

query points, i.e., data points from the second month. Also, the 

minimum residual values among these four models are presented 

in Fig. 5. This figure shows that the minimum residual value 

among all the clusters is below 0.05 for the majority of the data 

points, which shows a good fit for the polynomial regression. 

The average value for the minimum residual value is 0.026.  

FIGURE 4: CLUSTER MODELS RESIDUALS FOR DIFFERENT 

CLUSTER MODELS FOR ALL THE QUERY POINTS 

FIGURE 5: MINIMUM CLUSTER MODELS RESIDUALS FOR 

ALL THE QUERY POINTS 



Fig. 6 plots the estimated FC values from all cluster models 

in the same diagram. One should note that at each point, one 

model or a combination of them can be selected to generate the 

final value for FC. As mentioned before, this selection is 

performed based on the posterior probability of each cluster 

model. The posterior probabilities of each model for all the query 

points are plotted in Fig. 7. As seen from this figure, the model 

from cluster 3, the dominant cluster in the first month, is 

responsible for estimating the FC values more than any other 

model. This means that in the second month, the 3rd cluster also 

defines the dominant operating region of the selected vessel. 

FIGURE 6: ESTIMATED FC VALUES FROM ALL CLUSTER 

MODELS 

FIGURE 7: POSTERIOR PROBABILITIES OF EACH MODEL 

FOR ALL THE QUERY POINTS 

The result of using MMAE for combining the models for 

estimating the FC for the query points is presented in Fig. 8. In 

this figure, the estimated FC and the measured FC from the 

dataset are plotted in the same diagram. As demonstrated in this 

figure, a reasonable estimation of the FC has been performed 

using the proposed approach. The estimation error is also 

calculated and plotted in Fig. 9. The average value of the 

absolute error of the estimated FC for the query points is equal 

to 0.011, which is 2.5% of the mean value for the measured FC 

for the same query points.  

4. CONCLUSION AND FUTURE WORKS
This section presents the conclusions of the proposed

framework for estimating the FC of the selected vessel based on 

digital twin type applications. This framework consists of data 

clustering using the GMM-EM algorithm coupled with the 

MMAE approach for digital twin type model development. 

Based on the results presented in the previous section, the 

following points can be concluded: 

- In this research, EP is used as the independent variable,

ES as the measured variable/state, and FC is estimated

for any given query point with known EP and ES. The

results show this approach has a small error in

estimating FC for a given EP and ES.

- In each cluster, two polynomials are fitted for

approximating ES and FC as a function of EP. These

polynomials are the models developed in each cluster.

Based on the measured ES, MMAE is used to determine

the model from which cluster should be used to estimate

and generate the FC for the query point.

- MMAE is a powerful and effective approach for

function approximation and model development of

marine engines, and that can further be implemented

under digital twin type frameworks.

- The proposed framework can be used for estimating the

missing values not only for FC but also for any other

operating variable of the engine. This framework can

also be very effective for preparing the dataset in the

preprocessing step.

- In this research, only EP, ES, and FC are considered as

the features for analyzing the engine performance. If

more features, such as speed over ground, trim, draft,

loading condition, and weather conditions, are

included, more accurate results can be achieved, and a

more comprehensive digital twin framework can be

developed.

FIGURE 8: ESTIMATED FC AND MEASURED FC FOR THE 

QUERY POINTS 



FIGURE 9: ESTIMATION ERROR FOR FC OF THE QUERY 

POINTS 
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