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Icing affects the infrastructure dramatically, especially in the cold region. Therefore, applying effective ice disaster 
management (IDM) to provide a systematic approach to dealing with atmospheric icing on power lines is essential. 
It includes preparedness, response, recovery, learning, risk assessment, and prevention. Integral to this management 
is the accurate prediction and modeling of icing, which is inherently complex and fraught with uncertainties. 
However, a significant gap exists in our understanding of these uncertainties, particularly due to climate change 
causing more complexity in uncertainties. This article tried to bridge this gap by providing a comprehensive 
overview of the uncertainties associated with atmospheric icing on power lines. By highlighting these uncertainties, 
it emphasizes the need for their precise consideration in icing management efforts. Furthermore, a range of methods 
for assessing and quantifying these uncertainties is proposed. Using these methods, decision-makers and researchers 
can gain valuable insights into the uncertainties inherent in atmospheric icing and make informed choices when 
devising mitigation strategies. 
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1. Introduction
Atmospheric icing on power lines holds immense 
importance due to its potential to severely impact 
power infrastructure, public safety, economies, 
and the environment. For instance, in 1998 a large 
region in eastern Canada and the northeastern 
United States, an ice storm caused widespread 
power outages, damage to infrastructure, and loss 
of lives (Rountree 2005). 

This phenomenon demands a 
comprehensive understanding and effective 
management strategies to mitigate its adverse 
effects, particularly in the Arctic region, a frontier 
with a scattered population and vulnerable power 
lines. Operation and maintenance of power lines 
in this harsh and remote area are very high. 
Moreover, extreme weather, such as atmospheric 

icing and freezing rain, can greatly affect power 
transmission lines in the Arctic regions. Such 
accidents may lead to disaster in a big area. It can 
cause lines loaded and lead transmission lines to 
break, the collapse of towers, flashovers, and 
other serious problems, which make dramatic 
economic losses (Hong, Tianzheng, and Min 
2016). For example, weather-related power 
transmission lines in the United States are 
estimated at around 40 billion USD annually 
(Abdelmalak, Thapa, and Benidris 2021). 

To reduce the consequences of such a 
disaster, it is essential to develop effective ice 
disaster management (IDM) in the early phase of 
design and then update it as the influence factors 
such as the population, industrial activity in the 
area, and equipment age. Disaster management 



generally has different steps, including Risk 
Assessment, Prevention, Preparedness, Response, 
recovery, and Learning (Christer 2017). Rød et al. 
developed a framework for risk and resilience 
assessment to enhance the performance and safety 
of infrastructures in the Arctic. Figure 1 presents 
the parallel and interlinked infrastructure risk and 
resilience management framework (Rød 2020). 

Figure 1. Framework for Risk and resilience 
assessment (Rød 2020) 

Such studies and frameworks rely 
significantly on data such as weather-related 
parameters, repair data, failure data, human 
behavior, frequency of icing, and other relevant 
information in the specific region, which was 
gathered over some decades (Seleznev, Vlasenko, 
and Prokhorova 2023; Panahi, Afenyo, and Ng 
2022). These data help to create a suitable model 
and predict the disaster to make an effective risk 
assessment, prevention, and preparedness. 
Nevertheless, these data are associated with 
different types of uncertainties. These 
uncertainties include ontological, epistemic, 
aleatoric, and stochastic uncertainty. For 
example, climate change leads us to face 
significant variations in the pattern of natural 
disasters and weather-related parameters (Sun et 
al. 2022) that lead us to different uncertainties. 
Contribution of climate change, societies face a 
new complex environment that needs different 
strategies, particularly related to different 
uncertainties. 

Regarding an ice disaster, for example, the 
effect of climate change on the probability and 
consequence of icing needs to be addressed as 
ontological or epistemic uncertainty. However, 
the available studies mostly focus on the 
uncertainty associated with the ice accretion 
model, which will provide the data for risk 
assessment as one step of IDM. They mostly deal 

with aleatoric uncertainty, where the probability 
and severity of a phenomenon are known, while 
climate change is prone to different types of 
uncertainties, not only aleatoric. Hence, 
uncertainties associated with the IDM process 
must be better studied. Furthermore, the other 
issue is regarded as limited to assessing the 
uncertainties. Hence this paper aims to review and 
propose a holistic view of the different sources of 
uncertainties with may affect IDM related to 
atmospheric icing in the Arctic. 

This paper analyzed the relevant research on 
a different part of the disaster management cycle 
regarding ice disasters. It investigated gaps in 
uncertainties analysis in each step of IDM. Then 
considering the uncertainty concept introduced a 
framework to define and describe a holistic 
approach to uncertainty analysis.  

The rest of the paper is organized as follows. 
Section 2 discusses different challenges of icing 
in power lines. In section three, uncertainties in 
power line icing are considered. Section 4 
includes management of the uncertainties, and 
finally, section 5 concludes the paper.  

2. Atmospheric icing and power line
components
Mechanical design of electrical power systems in 
the complex arctic operational condition is 
challenging. For an effective design, all climatic 
loads on overhead power-line conductors induced 
by atmospheric icing, wind, or ice shedding must 
be addressed early in the design phase. After that, 
an effective de-icing or anti-icing approach must 
also be considered (Lifu He, Luo, and Zhou 
2021). Considering the unacceptable 
consequences of failure in the power line system, 
and to have the safe operation of power grids and 
prevent huge economic losses, ice accretion rate, 
ice type, and its mechanical characteristics on 
specific locations of transmission lines must be 
predicted effectively (J. Liu, Xue, et al. 2019).  

Different types of icing do not have the same 
effect on the power line distribution. Table 1 
shows a simple risk rating for atmospheric icing 
on different power line components developed 
using expert judgment. The score for the 
criticality of each power line component is a 
number between 1-10. The score for the criticality 
of Snow, Glaze, Rime, Frost, and Sleet are 10, 9, 
8, 3, and 1, respectively. For example, the risk 
rating for the impact of snow on the transmission 
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Figure 3. Over Head Power Line Components 
(Sørensen, Holbøll, and Mikkelsen 2010) 

According to the findings presented in Table 
1, various components of power lines exhibit 
distinct structures that offer differing resistance to 
icing conditions. It is important to note that most 
power line components are highly susceptible to 
different forms of atmospheric icing, as indicated 
by the red section. Consequently, many 
uncertainties arise due to the potential occurrence 
of diverse scenarios. Each type of component has 
the potential to create unique circumstances that 
can trigger a chain of events, ultimately resulting 
in a catastrophic outcome. In simpler terms, this 
complexity creates a highly uncertain 
environment. Also, many parameters play a role 
in the intensity of ice accretion, such as the liquid 
water flux in the cloud, temperature, wind speed, 
stability, depth of cloud, height above the cloud 
base, and distance from the coastline (Farzaneh 
2008). Figure 4 shows the interdependence of 
these parameters, as this figure shows that ice 
accretion is a complex phenomenon involving 
different factors. A more accurate ice accretion 
model must be used to estimate the associated risk 
with a different type of icing. 

Many parameters play a role in the intensity 
of ice accretion, such as the liquid water flux in 
the cloud, temperature, wind speed, stability, 
depth of cloud, height above the cloud base, and 
distance from the coastline (Farzaneh 2008). 
Figure 4 shows these parameters' 
interdependence, indicating that ice accretion is a 
complex phenomenon involving different factors. 
A more accurate ice accretion model must be used 
to estimate the associated risk with a different 
type of icing. 
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10 9 8 3 1 
Transmission 

pole 10 100 90 80 30 10 

Conductor 10 100 90 80 30 10 
Insulator 10 100 90 80 30 10 

Cross arm 10 100 90 80 30 10 
Jumper 9 90 81 72 27 9 

Earth wire 7 70 63 56 21 7 
Spacer 6 60 54 48 18 6 

Vibration 
Damper 6 60 54 48 18 6 

Corona Ring 5 50 45 40 15 5 
Power line 

marker 4 40 36 32 12 4 

In general, there are three main types of ice 
prediction models: physical models, statistical 
models, and intelligent prediction models. 
Physical models have some limitations because 
the required factors should be obtained in real 
conditions, which is not always available. (Ma et 
al. 2022).  

Figure 4. Interdependence of various factors of the 
icing process caused by water droplets (ISO-
12494) 

The statistical models rely on a large amount 
of historical data, which is the most critical part. 
For example, the ice accretion on the wire in a 
power line can be calculated by (Zhao, An, and 
Zhao 2019): 
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(1) 

where the ambient temperature is t, the conductor 
load ratio is g1, and the lowest point stress is δ1; 
when the conductor load ratio becomes g2, the 
lowest point stress is δ2, Ɩ is the horizontal span.  

Intelligent prediction models, such as 
machine learning models, numerical weather 
prediction models, artificial neural networks, and 
decision trees, use different data types (such as 
temperature, humidity, and wind speed) to predict 
ice accumulation. These models can be trained on 
historical weather data and other environmental 
factors to predict the likelihood of icing 
conditions. Artificial neural networks (Luo et al. 
2012) can model the complex relationships 
between environmental factors and icing 
situations. Using real-time weather data, these 
models can predict icing conditions (Zheng and 
Liu 2014). Compared to neural networks, support 
vector machine models (Xiao-min et al. 2016) 
require fewer samples but have some practical 
issues that must be addressed (Ma et al. 2022). 
Different variations of support vector machine 
models have been developed, such as the least 
squares support vector machine (X. Huang et al. 
2014), wavelet support vector machine (L. Zhang, 
Zhou, and Jiao 2004), and weighted support 
vector machine regression (Xu et al. 2015).  

However, all these models require 
meteorological and geographic data, which can 
take a long time to gather and cover large areas, 
resulting in less accurate predictions. To improve 
the accuracy and reliability of predictions, 
gathering more comprehensive data over longer 
periods and across wider regions is necessary. 

A reliable atmospheric icing model is 
crucial for IDM, especially in predicting power 
line failure due to ice accumulation and planning 
preventative measures such as de-icing or 
structural reinforcement (Ma et al. 2022). 
However, as mentioned earlier, it is important to 
consider all sources of uncertainties associated 
with each model when selecting a specific one to 
use. 

3. Uncertainty and Atmospheric Icing on
Power Line
Uncertainty refers to insufficient information or 
knowledge regarding a particular event, 
circumstance, or hypothesis (Aven 2010). In the 

presence of uncertainty, when there is a lack of 
data, inadequate models, or unexpected events, 
making precise predictions may be impossible. 
Such situations make prevention a challenging 
process. In broad classification, uncertainties can 
be classified into two main categories: objective 
and subjective. Objective uncertainty corresponds 
to the "variability" that emerges from the 
stochastic characteristic of an environment, non-
homogeneity of the materials, time drifts, space 
variations, or other kinds of differences among 
components or individuals. And subjective 
uncertainty is the uncertainty that comes from 
scientific ignorance, uncertainty in measurement, 
the impossibility of confirmation or observation, 
censorship, or other knowledge deficiency 
(Campos, Neves, and de Souza 2007). Both 
uncertainties may be incorporated in IDM in the 
power line. For example, the effect of climate 
change on the ice accretion on the power line can 
be considered objective uncertainty, and missing 
data regarding the failure or repair data of the 
power line can be considered subjective 
uncertainty.  

These uncertainties may affect the severity 
and the probability of any accident and the 
effectiveness of any activities that need to be 
implemented to reduce the risk of such accidents. 
Managing uncertainty most of the time needs a 
mixture of quantitative and qualitative 
methodologies. Risk analysis and its developed 
methods and tools are a way to capture such 
uncertainties. Risk is the effect of uncertainty on 
objectives (ISO31000 2018), which can be 
formalized by (Aven 2010):  

𝑅𝑖𝑠𝑘 = (𝐴� 𝐶� 𝑈) (2) 
where A represents the events (initiating 

events, scenarios), C is the consequences of A, 
and U is the uncertainty about A and C (will A 
occur and what will the consequences C be). 
According to this definition, the uncertainties can 
be related to A, C, or both. For example, event A 
can be considered the ice accretion event of more 
than 20cm on the power line in northern Norway. 
Examples of C are the blackout time in hours in 
the area or economic loss due to such a blackout. 
Under this condition, four situations can arise: 
known-knowns, known-unknowns, unknown-
knowns, and unknown unknowns. Figure 5 
depicts the possible uncertainties and their 
associated defined risks.



Figure 5. Different types of uncertainties and their representative risk type 

Known-known is the case when the 
probability of A and C, as the consequences of A, 
are known. This uncertainty is called aleatoric 
uncertainty. Aleatory uncertainties or inherent 
uncertainties arise from the randomness and 
variability of natural phenomena, such as the 
atmospheric conditions that lead to icing on 
power lines. Aleatoric uncertainty cannot be 
eliminated or controlled. 

These uncertainties provide a risk for the 
object of our disaster management, which can be 
considered variability risks. Some examples of 
this kind of uncertainty are changes in 
atmospheric temperature and humidity, wind 
speed and direction, size and shape of ice crystals 
on the power lines, rate of ice accumulation, 
frequency and severity of freezing rain as well as 
the timing and duration of conditions giving rise 
to icing on power lines. Here, quantitative risk 
analysis is used to assess this type of uncertainty. 

Known-unknown is when the probability 
of A is known; however, C, as the consequence of 
A, is unknown. This can be due to incomplete 
knowledge, understanding, or information about a 
system or phenomenon, leading to reducible or 
epistemic uncertainty. Knowledge gaps or 
uncertainties in our understanding cause 
epistemological uncertainties. It is also known as 
systematic uncertainty; associated risk can be 
called ambiguity risks. This uncertainty can be 
addressed through improved knowledge and 
information. Ambiguity risks can be managed 
through better knowledge and understanding of 
icing and its effects.  

Unknown-known is when the probability of 
A is unknown; however, C as the consequence of 
A is known. It is a discoverable uncertainty, and 
it is related to event risks and is called stochastic 
uncertainty. For example, cascading failures and 
system-wide blackouts resulting from 
atmospheric icing events can be considered event 
risks. A systematic investigation and analysis 
process can help discover and reduce this 
uncertainty. Regularly monitoring and analyzing 
power transmission line performance over time 
and collecting and analyzing historical data on 
atmospheric icing events lead to addressing this 
uncertainty. Moreover, scenario analysis 
effectively assesses the potential impact of 
different atmospheric icing events. 

Unknown-unknown is when the 
probability of A and C are unknown; rare and 
unpredictable events cause ontological 
uncertainty. It refers to uncertainty about the 
nature of the world and the relationships between 
different entities and phenomena. While the 
impacts of atmospheric icing on power lines are 
well-documented, there is still much to be learned 
about the specific impacts on different types of 
power lines and the effects on the larger power 
grid and local infrastructure. This lack of 
understanding can lead to ontological uncertainty 
about the underlying mechanisms that drive the 
impacts of atmospheric icing and make it difficult 
to accurately predict the extent and severity of 
damage or power outages that may result. For 
example, in the context of atmospheric icing on 
power lines, ontological uncertainty might refer to 

Epistemic 
Uncertainty

Ambiguity risk

Variability risk

Event risk

Black Swan



the relationships between environmental factors 
such as temperature, humidity, wind speed, and 
precipitation and the likelihood and severity of 
icing on power lines. Ontological uncertainties or 
black swans are obvious with potential for 
unexpected or rare events. 

Black swan events could occur and cause 
severe disruptions to a power grid. Although the 

occurrence of those events is unpredictable, 
having such strategies can help mitigate the 
impact of these events on the power grid 
infrastructure. Developing comprehensive risk 
management strategies incorporating scenario 
and contingency planning can address ontological 
risks. Table 2 shows some sources of these 
uncertainties.  

Table 2. Some examples of different types of uncertainties on power-line 

Uncertainty Example 

Known - Knowns 
(Aleatoric) 

Variability Risk 

Changes in atmospheric temperature and humidity, wind speed and direction, size, and shape 
of ice crystals on the power lines, rate of ice accumulation, frequency and severity of freezing 
rain as well as the timing and duration of conditions (Fu, Farzaneh, and Bouchard 2006; Z. 
Zhang et al. 2023). 

Known 
Unknowns 
(Epistemic) 

Ambiguity Risk 

Insufficient data on the specific location and conditions and incomplete knowledge of weather 
patterns (Zarnani et al. 2012; Z. Zhang et al. 2023). 
Lack of understanding about the complex interactions between the atmosphere, power lines, 
and icing (Fu, Farzaneh, and Bouchard 2006; Z. Zhang et al. 2023). 

The effectiveness of strategies for mitigating the effects of icing due to the conditions and 
location of the power lines (Hrabovský et al. 2017; Tao et al. 2022). 

The effect of influence factors includes the duration of the icing, the type of power line, and 
the local infrastructure (Peng et al. 2022; Z. Zhang et al. 2023). 

Response of human operators and maintenance crews to atmospheric icing events (Bao et al. 
2018; Haugen et al. 2018). 

The behavior of power lines under icing conditions depends on the type of power line, its age 
and condition, and the local infrastructure (Y. Huang, Jiang, and Virk 2021; Fan and Jiang 

2018; Z. Zhang et al. 2023). 
Unknown 
Knowns 

(Stochastic) 
Event Risk 

Difficulty in predicting the exact weather conditions in a particular location. Random 
temperature, humidity, and wind speed variations affect icing (Chen et al. 2021). 

The size and shape of the ice particles, the velocity and direction of the wind, and the surface 
characteristics of the power lines (Bretterklieber et al. 2016; Zarnani et al. 2012). 

Unknown 
Unknowns 

(Ontological) 
Black Swan 

Cyber-attacks on the power grid. 

Extreme weather events include major ice storms or severe winds (Solomon 2023). 

Insufficient knowledge about physical processes, the complex interactions between the 
atmosphere, power lines, and icing (Solangi 2018). 

Lack of knowledge about how power lines behave and respond to different types and 
amounts of icing (Rossi et al. 2020; Ling He et al. 2022). 

Lack of understanding of the effectiveness of mitigation measures in different types of icing 
conditions and on different types of power lines (Rønneberg et al. 2019; Mishra et al. 2020). 
The long-term impacts of atmospheric icing on power lines (Neumayer, Bretterklieber, and 

Flatscher 2018; X. Liu, Chen, et al. 2019). 
Large geomagnetic storms or solar flares may affect atmospheric icing events (Jasiūnas, 

Lund, and Mikkola 2021). 

4. Uncertainty Management and Modeling
Approaches for IDM
Figure 6 shows the disaster management cycle for 
atmospheric icing. As this figure showed, based 
on the risk assessment result, suitable prevention 
and pre-crises management should be designed, 

followed by preparedness, monitoring, and early 
warning and, in the case of disaster by, response 
and consequence management, learning, and 
post-crisis evaluation. This circle shows that an 
accurate and trustable risk assessment is critical 
for an effective IDM. Hence, all uncertainty needs 



to be identified then an accurate model needs to 
be implemented to capture the identified 
uncertainties. Another loop is considered in the 
risk assessment, which includes i) data collection, 
ii) uncertainty detection, and iii) uncertainty
modeling using appropriate models. The first part
of the methodology is data collection, where all
relevant data, such as humidity, wind aspects, the
shape of structures, and all other influencing
factors, need to be collected. The aim is to collect
the data to represent the upcoming condition in
the system's life cycle. Hence, all previous

accidents and icing phenomena in the area must 
be investigated in detail. However, by the effect 
of climate change, the severity and frequency of 
phenomena may be affected significantly. Then 
the collected data is assessed to reveal every kind 
of uncertainty. Such a process can be named 
uncertainty detection. After that, based on the 
type of uncertainty, an appropriate approach 
needs to be selected to address the identified 
uncertainties, and finally, the risk evaluation 
should be formed. This risk evaluation later 
provides the necessary input for IDM. 

Figure 6. The crisis management cycle( Adapted from (Christer 2017))

Figure 7 shows the relationship between 
different types of uncertainties. The aim is to 
change unknown quantities to known quantities 
using appropriate tools. Statistical methods like 
Monte Carlo simulation can be used with aleatoric 
uncertainties (Rezaei et al. 2017; Pohya, Wicke, 
and Kilian 2022). This process involves 
generating multiple scenarios that account for the 
variability of input variables and quantifying the 
range of potential outcomes and the probability of 
each outcome occurring. In the presence of 
epistemic uncertainty, Bayesian inference, 
exploring and experimenting, prototyping, and 
benchmarking seeks expert input that can be used 
to turn the unknown probability into a known 
quantity (Nagel 2019; Acar et al. 2021). Here, 
using sensitivity analysis, variables with the 
greatest impact on the model outcome can be 
identified. This method prioritizes areas where 

additional research or data collection may be 
needed to reduce uncertainty and Bayesian 
inference to incorporate prior knowledge and 
update the model as new data becomes available. 
Discoverable uncertainties or stochastic 
uncertainties arise when the potential for new 
knowledge or data becomes available over time 
(Aven 2010; Doyle et al. 2019). Hence, there is a 
need for a model that accounts for the inherent 
randomness and variability in the data. Here the 
aim is to understand the nature of the phenomena 
or the relationships between different entities and 
phenomena. For example, using the Bayesian 
neural networks process, the consequence of 
phenomena can be estimated. One way is adding 
additional parameters to a model that capture the 
data distribution or using Bayesian neural 
networks to estimate the uncertainty in the model 
parameters (Ebrahimi et al. 2019). 



Figure 7: Uncertainties modeling in IDM(Adapted from(Amoroso, Moncada-Paternò-Castello, and Vezzani 
2017))

Different methods can be used to handle 
ontological uncertainty depending on the 
available data, the circumstances, the knowledge 
required, and other at-hand information. As 
Figure 7 shows, there are three different ways to 
convert unknown to known. It means using 
probabilistic modeling techniques that explicitly 
model the uncertainty in the data. For example, 
scenario analysis can identify the impact of 
extreme events on the power distribution system. 
By developing multiple scenarios, it can consider 
different levels of severity and likelihood for the 
Black Swan events (Lyon and Popov 2022). 
Epistemic uncertainty can also be handled by 
developing effective continuity management, 
environmental scanning, resilience, and 
flexibility (Settembre-Blundo et al. 2021). 

5. Conclusion
Atmospheric icing on power lines can severely 
impact power grid infrastructure and cause 
significant economic and social losses. Managing 
such risks requires a comprehensive 
understanding of the uncertainties associated with 
atmospheric icing and their potential 

consequences. These uncertainties include 
aleatory, epistemological, stochastic, and 
ontological uncertainties. Each type of 
uncertainty requires a unique approach to 
management, ranging from quantitative risk 
analysis to improved knowledge and information, 
regular monitoring and analysis, and contingency 
planning. This paper has developed a review of 
the different approaches that can be used to model 
different types of uncertainty. Using an effective 
approach to uncertainty modeling provides a 
more comprehensive understanding of the 
hazards associated with atmospheric icing and 
makes better-informed decisions about mitigation 
management.  
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