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Biological timekeeping in polar environments: lessons from
terrestrial vertebrates
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ABSTRACT
The polar regions receive less solar energy than anywhere else on
Earth, with the greatest year-round variation in daily light exposure;
this produces highly seasonal environments, with short summers
and long, cold winters. Polar environments are also characterised
by a reduced daily amplitude of solar illumination. This is obvious
around the solstices, when the Sun remains continuously above
(polar ‘day’) or below (polar ‘night’) the horizon. Even at the solstices,
however, light levels and spectral composition vary on a diel basis.
These features raise interesting questions about polar biological
timekeeping from the perspectives of function and causal
mechanism. Functionally, to what extent are evolutionary drivers for
circadian timekeeping maintained in polar environments, and how
does this depend on physiology and life history? Mechanistically, how
does polar solar illumination affect core daily or seasonal timekeeping
and light entrainment? In birds and mammals, answers to these
questions diverge widely between species, depending on physiology
and bioenergetic constraints. In the high Arctic, photic cues can
maintain circadian synchrony in some species, even in the polar
summer. Under these conditions, timer systems may be refined to
exploit polar cues. In other instances, temporal organisation may
cease to be dominated by the circadian clock. Although the drive for
seasonal synchronisation is strong in polar species, reliance on
innate long-term (circannual) timer mechanisms varies. This variation
reflects differing year-round access to photic cues. Polar
chronobiology is a productive area for exploring the adaptive
evolution of daily and seasonal timekeeping, with many outstanding
areas for further investigation.

KEY WORDS: Polar, Seasonal, Circadian, Circannual,
Chronobiology, Arctic, Phenology, Photoperiodism

Introduction
Solar cycles driving polar biological rhythms
The Earth is approximately spherical; therefore, the intensity of solar
radiation reaching its surface declines with latitude (Fig. 1A); hence,
it is colder in the polar regions than at the Equator. Because the axis
of the Earth’s daily rotation is tilted∼23 degrees relative to the plane
of orbit around the Sun, there is an annual cycle of daily insolation
(i.e. energy input/unit area in a 24 h period), the amplitude of which
is strongest in the polar regions (Fig. 1B,C). Conversely, the daily
cycle of solar elevation declines in amplitude as one moves from the
Equator to the poles (Fig. 1D). This is most obvious around the

solstices at latitudes in excess of 66°N/S (Fig. 1E), which experience
at least one day each year when the Sun does not set (polar day) and
one day a year when the Sun does not rise (polar night). This
latitudinal definition of the polar regions contrasts with other
working definitions (e.g. the 10°C summer isotherm; Blix, 2005),
and focuses attention on the polar light environment.

Low-amplitude rhythms of daily illumination present
opportunities and challenges for animals living in the polar
regions. For example, during the polar day, there is the
opportunity for diurnal species to remain continuously active for
extended periods, whereas the same light conditions limit foraging
opportunity for nocturnal species. There is wide variation in daily
behavioural patterns in polar species: some species adhere to daily
patterns of behaviour, whereas others adopt activity patterns that are
continuous or ultradian (see Glossary).

The high-amplitude annual cycle of solar insolation in polar
regions results in strong environmental seasonality, characterised by
short, intense summer growing seasons separated by long, cold
winters. Thus, all animals exploiting the polar regions must meet a
seasonal energy challenge. They do so through strong seasonal
programmes of physiological and behavioural adaptation, allowing
exploitation of summer feeding opportunities and mitigation against
winter energy demands.

Chronobiology for innate control of temporal organisation
The field of chronobiology deals with internal timekeeping
processes through which daily and seasonal temporal synchrony
is maintained (Dunlap et al., 2004). Timekeeping involves three
connected elements (Fig. 2A): sensory systems that take cues from
the environment (especially light cues) for use as synchronising
signals or ‘zeitgebers’ (see Glossary); core timer systems, which
sustain ‘free-running’ rhythms (see Glossary) in the absence of
zeitgebers; and output pathways connecting timers to physiology and
behaviour. Modern circadian chronobiology can be traced to a set of
‘empirical generalisations about circadian rhythms’ defined by
Pittendrigh (1960), still accepted some six decades on. Pittendrigh
(1960) identified temperature-compensated (see Glossary), self-
sustained, free-running rhythmicity with a period of approximately
24 h (circadian; from the Latin circa dies; see Glossary) as a key
innate feature, widely observed in living organisms.

To investigate the properties of timekeeping elements,
chronobiologists have developed experimental paradigms using
highly unnatural lighting regimes (Fig. 2B). These include
continuous illumination/darkness to reveal innate oscillatory
characteristics; square wave on–off light–dark transitions applied
at different periodicities to explore how core oscillators (see
Glossary) couple to the external 24 h day, and ‘skeleton
photoperiods’ (see Glossary) used to define the importance of
light–dark transitions in entrainment (see Glossary). This toolbox
has powered our understanding of biological timekeeping and has
led to the wide acceptance of a non-parametric model for daily
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synchronisation of circadian systems (see Box 1; Pittendrigh and
Daan, 1976b) and day length (photoperiod) measurement
(Pittendrigh and Daan, 1976a). This model performs very well in

many settings; alternative, possibly superior, models that emphasise
chronic effects of light exposure as well as light–dark or dark–light
transitions have not yet been generally adopted (Roenneberg et al.,
2010) (see Box 1).

Despite its merits, the non-parametric model places emphasis on
light–dark/dark–light transitions, which contributes to the
misapprehension that animals living through the polar night and
the polar day are free running, in a natural version of the constant
conditions used by chronobiologists. This is too simplistic: even at
the summer solstice in the high Arctic, changes in solar elevation
maintain a daily cycle of light intensity (Fig. 1E). Additionally, the
daily cycle of solar position interacts with local topography (e.g. sea
cliffs; Huffeldt et al., 2020) to produce pronounced daily cycles
of sunlight/shade; this is potentially compounded by animal
behaviour (e.g. individuals may retreat into burrows; Hut et al.,
1999) to produce higher-amplitude daily cycles in light exposure
than otherwise expected. Furthermore, the spectral composition of
light depends on solar elevation, particularly when the Sun is close to
the horizon (Fig. 1F,G), providing further time-of-day information.
Accordingly, studies in mice provide direct evidence for colour as an
entraining signal (Mouland et al., 2019; Walmsley et al., 2015).
Hence, although the disappearance of dawn/dusk transitions in the
midsummer and midwinter periods is the defining feature of the polar
regions, it does not follow that polar animals lack light-based time of
day or photoperiodic information at these times.

The polar setting poses interesting chronobiological questions.
What determines whether a given polar species maintains daily
synchrony year round? In species that show year-round daily
synchrony, how is this achieved? In species that break away from
24 h periodicity in daily patterning, what happens to the core timer and
its coupling to output pathways? At the annual time scale, do polar
animals depend on the same day length-sensing systems as temperate
seasonal species, and how are these systems specialised to cope when
dawn and dusk transitions disappear? By addressing these questions,
polar chronobiology offers insights into mechanistic relationships
between light and biological clocks, and into the evolution of
biological clock mechanisms. At an applied level, understanding
seasonal timekeeping in Arctic species may help mitigate against
climate change-driven changes in phenology, while understanding the
effects of light at night in wild species adapted to prolonged natural
darkness may help reduce the effects of human Arctic colonisation.

In this Review, we focus on terrestrial vertebrates biologically
adapted to polar environments; we exclude humans because of the
profound complicating effects of technological adaptation in this
species. Even within this restricted group, the body of laboratory
work on biological timekeeping in polar species is patchy, limiting
our capacity to test chronobiological formalisms. Indeed, there is a
recent preponderance of field-based studies within which it is
impossible to discriminate diel organisation (see Glossary) in the
presence of zeitgebers from true circadian rhythmicity, which
involves free-running organisation under constant conditions (and a
failure to acknowledge this fact). Attributing observations of weak
(i.e. low-amplitude or dampened) circadian rhythmicity to polar
adaptation often appears to be a form of confirmation bias,
occurring without reference to comparable temperate species. We
suggest that a framework considering the ultimate bioenergetic
drivers for temporal organisation and recognising the necessity for
controlled light experiments to define the role of innate timers is the
only effective way to navigate the extant literature and to structure
future research programmes in polar chronobiology.

We first consider circadian organisation, before shifting to
circannual rhythms and photoperiodism (see Glossary). For both

Glossary
Definitions are adapted from the Dictionary of Circadian Physiology
(www.circadian.org/dictionary.html).

Aschoff’s rule
This rule states that the endogenous free-running circadian period (tau,
τ), observed in constant darkness (DD), will shorten for diurnal animals
and lengthen for nocturnal animals when they are exposed to constant
light (LL).

Circadian
Occurring or functioning in cycles of approximately 24 h. For most
researchers, the definition of circadian requires endogenous generation
(as determined by the ability to free run under constant conditions).
Some researchersmake the additional demand that a circadian rhythm is
entrainable by a zeitgeber with a period in the circadian range
(approximately 19–28 h).

Circannual
Occurring or functioning in cycles of approximately one year. For most
researchers of biological rhythms, the definition of circannual must
include the requirement of endogenous generation (as determined by
the ability to free run under constant conditions): this is type 2 circannual
rhythmicity as defined by Goldman in Dunlap et al. (2004). Accordingly,
the use of the term circannual in connection with annual rhythms whose
endogenous nature has not been ascertained is acceptable only if there
is a justifiable assumption of endogenesis. Some researchers make the
additional demand that a circannual rhythm be entrainable by a zeitgeber
with a period in the circannual range (approximately 8–16 months).

Diel
Having the duration of a day (24 h).

Entrainment
The synchronisation of a self-sustaining oscillation (such as a circadian
rhythm) by a forcing oscillation (the zeitgeber). Under conditions of steady
entrainment, the period of the self-sustaining oscillation conforms to that of
the zeitgeber, and there is a stable phase relationship between the two.

Free-running
The state of a self-sustaining oscillation (rhythm) in the absence of
effective zeitgebers or other environmental agents that may affect the
period of the oscillation.

Oscillator
A functional entity capable of generating spontaneous rhythms.

Photoperiodism
The response of an organism to changes in day length (photoperiod).

Skeleton photoperiod
A light–dark cycle whose photophase consists of two brief episodes of
light exposure per cycle.

Subjective day
The segment of a circadian cycle during the free-running state that
corresponds to the illuminated segment during entrainment by a light–
dark cycle.

Subjective night
The segment of a circadian cycle during the free-running state that
corresponds to the dark segment during entrainment by a light–dark cycle.

Temperature compensation
The property of preserving the rate of a biological process as the
surrounding temperature changes.

Ultradian
Occurring or functioning with a frequency higher than circadian.

Zeitgeber
A synchronising agent (a stimulus capable of resetting a pacemaker or
synchronising a self-sustaining oscillation).
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areas, we start with a survey of the literature describing formal time-
keeping properties based on organism-level behavioural and
physiological monitoring before considering the state of knowledge
regarding the underlying molecular physiological mechanisms.

Circadian organisation
Circadian activity patterns in Arctic animals
In 1960, questions regarding the possible existence and biological
function of circadian rhythms in Arctic organisms were already on

the agenda; Pittendrigh (1960) noted that it was unclear whether
animals living in the Arctic were exposed to sufficiently strong daily
zeitgebers to maintain circadian entrainment, or whether adaptation
to Arctic life removed the selection pressures under which circadian
organisation evolved. Below, we assess how far we have progressed
from these reflections on Arctic circadian biology. We do not aim to
review all observations of activity patterns in polar animals; rather,
we focus primarily on those studies including controlled
experiments to evaluate circadian characteristics.
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Fig. 1. The polar light environment. (A) Solar radiation reaches the polar regions at an oblique angle, increasing the distance of travel through the
atmosphere and reducing irradiance intensity. (B) The tilt of the Earth’s axis leads to a strong annual cycle of insolation, the amplitude of which increases
with latitude (C). (D) There is a reduced amplitude of daily cycles of solar elevation in the polar regions, where the Sun is continuously above or below the
horizon at the solstices (E). Data are from the NOAA solar calculator. (F,G) Solar elevation compared with all-sky spectral composition in Ny Ålesund (78°N).
Data are shown for 21 March and 12 February, during the polar night. Note that on 12 February, the spectral composition is relatively bluer than at the
equinox. Data kindly provided by Tomasz Piotr Kopec, UiT.
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Rodents
Pittendrigh’s student Richard Swade studied locomotor activity in
Arctic rodents, combining field observations with trapping data and

controlled experiments on wild-captured animals (Swade and
Pittendrigh, 1967). Swade observed notable species differences in
the persistence of daily organisation of activity among Arctic rodents.
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In Arctic ground squirrels (Urocitellus paryii, formerly Spermophilus
paryii), daily activity is centred on midday in the field even in high
summer; this is matched by robust circadian patterns of wheel running
in captive animals exposed to constant light. Subsequent observations
of circadian organisation in free-living Arctic ground squirrels strongly
confirm these observations (Williams et al., 2012a,b, 2017a) and also
show that recovery of circadian organisation after the hibernation
season is enhanced by renewed exposure to the daily solar illumination
cycle (Williams et al., 2017a).

In contrast, tundra voles (Alexandromys oeconomus previously
known as Microtus oeconomus) trapped at Arctic locations in
Alaska reveal no evidence of 24 h rhythmicity at the summer
solstice, while outdoor-housed wild individuals only resume a
nocturnal pattern in August (Swade and Pittendrigh, 1967). This
solstitial loss of daily rhythmicity is also seen in red-backed voles
(Clethrionomys rutilus), while singing voles (Microtus miurus)
show individual variability in their response to solstitial conditions
(Swade and Pittendrigh, 1967).

None of the above necessarily reflects adaptation to life under
Arctic illumination: Swade and Pittendrigh (1967) also explored the
effects of translocating a southern species of ground squirrel – the
antelope ground squirrel (Ammospermophilus leucurus) – to
Alaska, and found that this species maintains daily entrainment at
the Arctic summer solstice, similar to the Arctic ground squirrel.
The loss and restoration of circadian organisation as a consequence
of hibernation is also seen in temperate species of ground squirrel.
Weak diel patterning and a propensity towards ultradian activity is a
feature of temperate vole species, including A. oeconomus (Halle,
1995). Hence, Arctic rodents do not necessarily lose or maintain
diel synchrony under a weak zeitgeber, or exhibit robust or decayed
intrinsic circadian entrainment; interspecific differences seen in the
Arctic mirror those seen at temperate latitudes.

Large mammals
Here, we consider large mammals to include species for which
body mass exceeds 10 kg. There are no published data from
controlled experiments designed to determine whether any Arctic
ungulate exhibits intrinsic circadian rhythmicity. Activity rhythms
in high Arctic-resident (78°N) Svalbard reindeer (Rangifer
tarandus platyrhynchus) and in their counterparts (R. tarandus
tarandus) in Tromsø, north Norway (70°N) have been recorded
(van Oort et al., 2005, 2007). In both subspecies, Arctic summer
and Arctic winter are associated with loss of diel organisation,
and this is more pronounced in Svalbard, where no statistically
significant diel patterning is observed. More recently, Arnold
et al. (2018) used a similar approach to look at activity, heart rate
and rumen temperature in Svalbard reindeer; they concluded that
there is persistent diel organisation throughout the polar summer.
Although they term this organisation ‘circadian’, no animals were
held under the constant conditions required to determine innate
circadian rhythmicity. Rather, the authors’ inference of ‘circadian’
stems from detection of periodicity in their activity data, with a
period length not statistically different from 24 h, and therefore
indistinguishable from diel patterning. In fact, the strongest feature
of activity patterns presented in this study is ultradian rhythmicity,
entirely consistent with the earlier work of van Oort and colleagues
(2005, 2007).

Recently, studies of activity patterns in free-ranging Greenland
muskoxen (Ovibos moschatus; van Beest et al., 2020), wolverines
(Gulo gulo; Thiel et al., 2019) and lynx (Lynx lynx; Heurich et al.,
2014) reported ‘circadian’ rhythms of activity or body temperature,
which were strongest around the equinoxes. However, as for the
reindeer studies, no assessments under constant conditions were
undertaken, and in the solstitial phases, continuous or ultradian
activity patterning dominates. Ultradian activity patterning is a
characteristic shared with ungulates living at lower latitudes (Berry
et al., 1982; Owen–Smith and Goodall, 2014), probably reflecting
the dominant effect of ruminant metabolism on behaviour patterns
(Hazlerigg and Tyler, 2019).

Year-round monitoring of polar bear (Ursus maritimus) activity
in northern Alaska by a combination of GPS and accelerometry

Fig. 2. Polar perspectives on circadian organisation. (A) Circadian clocks
are entrained to the solar day by zeitgebers, especially light. The clock
drives daily and seasonal changes in physiology/behaviour through neural
and endocrine output pathways. (B) Schematic actograms showing how
responses of a diurnally active animal to artificial lighting reveal circadian
organisation. Horizontal lines indicate bouts of activity on successive days.
Two successive 24 h periods are shown for each actogram. Under constant
illumination, strongly circadian organisms show robust free-running rhythms.
Rhythms break down where circadian organisation is weaker. Skeleton
photoperiods maintain entrainment in circadian organisms but elicit a
masking response, i.e. the environmental light level directly drives the
behavioural response, in non-circadian organisms. (C) Patterns of temporal
organisation predicted by a circadian thermo-energetic framework (Hut et al.,
2012; van der Vinne et al., 2014). In the summer, arctic ground squirrels
(left) experience environmental temperatures below their lower critical
temperature (LCT) each day, favouring circadian-driven withdrawal into
burrows when solar elevation falls. Arctic reindeer (middle) experience
temperatures above their LCT even in the polar night, relaxing the thermo-
energetic drive for circadian patterning. Weak diel patterning at the
equinoxes may reflect crepuscular predation risk. In voles (right), alimentary
constraints lead to ultradian patterning year round, even in environments
with a strong diel cycle in ambient temperature. (D) Period alignment to cope
with polar zeitgebers. Redrawn based on Schmal et al. (2020). Individual
variation in circadian period (τ) leads to variable capacity to entrain to long or
short photoperiods. This yields an onion-shaped envelope for entrainment
limits, where the breadth at a given photoperiod (y-axis) represents the
range of values of τ that can entrain to an environmental period (T) of 24 h.
(E) A schematic diagram of the circadian molecular clockwork in mammals.
In reindeer, lack of selective pressure to maintain circadian organisation may
have been responsible for mutations in the per2 gene. The grey and black
lines represent the oscillation of per2 and bmal1 genes, respectively, in
fibroblast culture (based on Lu et al., 2010).

Box 1. Circadian entrainment
The mechanisms underlying the synchronization of clocks by light cues
have been discussed since the establishment of chronobiology as a
discipline (see Daan, 2000; Tackenberg et al., 2017). Historically, two
models of entrainment have been proposed: In the ‘parametric’ or
‘continuous’ entrainment model, the light intensity continuously
modulates the clock speed by accelerating or decelerating passage
through a limit cycle, and this leads to a sustained (tonic) adjustment of
the clock phase to the natural cycle. The ‘parametric’ nomenclature is
because the effects of light require a change in at least one of the
oscillator parameters (Aschoff et al., 1971; Daan, 2000; Roenneberg
et al., 2010; Tackenberg et al., 2017). In the ‘non-parametric’ or ‘discrete’
entrainment model, light is proposed to cause a rapid change to clock
phase (phase shift), and the magnitude of this change is dependent
upon when in terms of internal (‘subjective’) clock time the light exposure
occurs. Light exposure around ‘subjective dawn’ advances the circadian
clock, whereas light exposure around ‘subjective dusk’ serves to delay
the clock. Smaller phase shifting effects occur during the middle of the
‘subjective day’ or ‘subjective night’ (see Glossary). The resulting effect
is that light-resetting effects around dawn and/or dusk are particularly
important for circadian entrainment to the solar light–dark cycle (Daan,
2000; Pittendrigh, 1960; Roenneberg et al., 2010; Tackenberg et al.,
2017).
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shows diel organisation, even during the Arctic summer and winter
(Ware et al., 2020). Contrary to the authors’ assertion that bears
remain rhythmic ‘even during periods of constant conditions’, this
study presents no data collected under constant conditions, and
therefore none of the rhythmicity can be considered ‘circadian’
sensu strictu. Measured period lengths do not diverge significantly
from 24 h, although during the Arctic summer there is a tendency
for the measured period to be slightly longer (up to 24.5 h, see figure
5 in Ware et al., 2020) than it is around the equinoxes. This may
reflect a long-period circadian oscillator struggling to entrain to a
weak 24 h zeitgeber or possible tidal influences on foraging
behaviour; the data collected cannot be used to assess whether
circadian rhythms are free running. Overall, data on polar bears
show no clear departure from data on brown bears (Ursus arctos;
Thiel et al., 2022; Ware et al., 2012), and they maintain diel
synchrony through the Arctic summer. We cannot draw any strong
inferences about the characteristics of presumptive underlying
circadian oscillators.

Birds
Field observations of diel behavioural patterning are available for a
variety of shore birds and other summer visitors to the polar regions
[e.g. Steiger et al., 2013; Daan and Tinbergen, 1979; Huffeldt et al.,
2020; Eichhorn et al., 2021 (in which behaviour is incorrectly
termed ‘circadian’)]. These show that behavioural activity can
remain synchronised to the solar day (period length not
significantly different from 24 h) or become essentially
continuous. Interestingly, biparental nest attendance can give rise
to rhythmical patterns of activity that appear quasi-circadian (Bulla
et al., 2015; Cresswell et al., 2003; Steiger et al., 2013), but the
observed duration of activity depends on the length of time each
parent sits on the nest; therefore, the available data can also be
interpreted as the result of two coupled interval timers.
In the Alaskan summer, Lapland longspurs (Calcarius

lapponicus) remain synchronised to the solar day; in light-
controlled aviaries, they express free-running circadian activity
(Ashley et al., 2014), which – in agreement with Aschoff’s rule (see
Glossary) (Aschoff, 1960) – is slightly shorter in birds held in
constant light (23 h) than in constant dark (23.7 h). Other lab-based
studies on the summer visitors to the Arctic (i.e. snow buntings and
bramblings) show that they can entrain to alternating cycles of
colour/spectral composition (Pohl, 1999) and to the relative position
of an orbiting light source (Krüll, 1976a). However, Lapland
longspurs do not entrain to diel changes in light intensity or colour
(Ashley et al., 2014). It has also been noted that the strength of the
zeitgeber (position or colour) in the absence of a light intensity
cycle appears to vary with seasonal reproductive status (Krüll,
1976a; Krüll et al., 1985). Clearly, there is considerable scope for
further studies to refine our understanding of the capacity of
passerine birds to find circadian zeitgebers during the polar summer.
The only Arctic resident bird to have been subjected to controlled

lighting experiments is the Svalbard ptarmigan (Lagopus muta
hyperborea). In birds held on a natural Arctic photoperiod, the
diurnal activity seen around the equinoxes disappears around the
solstices (Stokkan et al., 1986). Under artificial light–dark cycles,
Svalbard ptarmigan express diurnal activity and body temperature
(Tb) cycles, and both activity and Tb show clear anticipatory
increases prior to the lights-on signal (Appenroth et al., 2021b).
Direct switches from light–dark cycles into either constant bright
light or constant darkness lead to rapid breakdown of activity
rhythms but gradual dampening of Tb rhythms in ptarmigan
(Hofinger, 2021). Overall, these studies suggest that Svalbard

ptarmigan possess a dampened circadian timer, which allows non-
diel organisation to dominate around the solstices.

Willow ptarmigan (Lagopus lagopus; which are closely related to
Svalbard ptarmigan) born in Northern Alaska (68–69°N) and held at
64°N under natural light conditions show similar ‘continuous’
activity during the ‘near’ polar summer (West, 1968). Although
comparable studies on temperate ptarmigan species (Lagopus
lagopus and Lagopus muta spp.) are lacking, it seems plausible
that during the polar day and polar night, the escape from circadian
dominance into a more flexible around-the-clock foraging
behaviour is beneficial for Arctic and sub-Arctic grouse species.

Interpreting daily activity patterns through a circadian
thermo-energetic framework
The circadian thermo-energetic (CTE) hypothesis states that
circadian control of daily patterns of activity and rest manages the
trade-off between intake and expenditure of energy (Hut et al., 2012;
van der Vinne et al., 2014). Accordingly, withdrawal into insulative
nests at night minimises thermoregulatory costs during the coldest
part of the daily cycle, while thermoregulatory costs of feeding are
lowest in the warmer daytime phase. The key assumption is that for
part of the day, ambient temperature (Ta) falls below the lower
critical temperature (LCT) for thermoneutrality (i.e. the range of
temperatures within which energy expenditure is not required to
maintain homeothermy). Because the LCT for small rodents is
generally higher than Ta in the Arctic (Riek and Geiser, 2013), this
assumption generally holds in Arctic settings.

How then, do behaviour patterns in Arctic mammals align with
the CTE hypothesis? To answer this, it is necessary to consider
thermal energy constraints under field conditions. Studies using
Arctic ground squirrel pelt ‘mannequins’ to assess ‘effective
environmental temperature’ (Te, a measure factoring moisture and
wind speed into the estimation of temperature-dependent energy
dissipation), concluded that, even in the Arctic mid-summer, surface
conditions periodically fall below LCT for approximately 8 h every
day (Long et al., 2005). Hence, in the Arctic ground squirrel, the
observed diurnality and nocturnal withdrawal, even in the Arctic
summer, can be seen as predictable when considering the CTE
framework. By contrast, the LCT of the Svalbard reindeer remains
well below 0°C even when in summer pelage (Nilssen et al., 1984);
thus, the CTE framework predicts no diurnal constraint for this
species, and continuous (ultradian) activity throughout the 24 h
cycle becomes a favourable strategy (Hazlerigg and Tyler, 2019)
(Fig. 2C).

The maintenance of robust entrained rhythmicity implies that
circadian machinery must be preserved, as seen in robustly rhythmic
rodent species at lower latitudes. Arctic species that maintain robust
entrained rhythmicity must also be sensitive to the low-amplitude
daily cycle of solar light intensity that these animals experience. In
this regard, the use of burrows for withdrawal in the ‘subjective
night’ may serve to amplify the intensity of the signal to maintain
circadian resonance. It is also possible that, in some smaller Arctic
species, bioenergetic (CTE) constraints driving the maintenance of
entrainment under a weakened photic zeitgeber may influence the
characteristics of the core circadian machinery. In this regard,
Schmal et al. (2020) offer a strong theoretical treatment of
relationships between internal oscillator characteristics and
duration of the external photoperiod. They predict that, for the
polar regions, as the photoperiod tends towards the polar day or the
polar night, circadian entrainment can only be maintained if the
innate free-running oscillator period tends towards 24 h (Fig. 2D).
In other words, resonance between the internal biological oscillator
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and the environmental cues signalling the 24 h period becomes
increasingly important for circadian synchrony in the polar solstitial
phases.
Arctic ground squirrels showing diel synchrony during the polar

summer struggle to maintain synchrony when placed on artificial
square-wave photoperiods, but nevertheless maintain activity
rhythms with periods close to 24 h (Williams et al., 2017b).
Although this is broadly consistent with predictions of the Schmal
model (Schmal et al., 2020), it appears that in both Arctic and
European ground squirrels (Hut et al., 1999), changes in solar light
quality while animals are out of their burrows are critical for
maintaining synchrony. Further theoretical and experimental work
is required to define the extent to which changes in total irradiance
or spectral composition act as zeitgebers in these species.

Molecular circadian clocks in Arctic animals
Circadian rhythms emerge from cell-autonomous transcriptional/
translational negative-feedback loops (TTFLs; Takahashi, 2017). In
mammals and birds, key components of the primary negative-
feedback loop are the transactivating proteins Clock and Bmal1,
and the transcriptional repressors Period (PER) and cryptochrome
(CRY). Clock–Bmal1 heterodimers promote transcription of
PER and CRY through E-box DNA response elements, while
PER–CRY heterodimers repress Clock–Bmal1 actions (Fig. 2E).
Protein degradation of PER and CRY proteins by E3 ubiquitin
ligases contributes to the emergence of transcriptional oscillations
from this feedback cycle. A secondary negative TTFL involving
the nuclear hormone receptors Rev-erb alpha and retinoic acid
receptor-related orphan receptors (ROR homologues) controls the
transcription of genes with ROR DNA response elements (RORE),
including Bmal1. These loops modulate cellular physiology
through large numbers of clock-controlled genes that contain
E-box elements or RORE in their promoter regions but do not feed
back on TTFL function. In mammals, circadian rhythms are
ultimately synchronised by a master clock located in the
suprachiasmatic nucleus (SCN; Hastings et al., 2018). In contrast,
birds apparently rely on a clock network involving the retina, pineal
gland and SCN (Cassone and Menaker, 1984; Gwinner and
Brandstatter, 2001).
In the context of Arctic species, the molecular circadian clock has

been described in Svalbard ptarmigan, Lapland longspurs, Arctic
ground squirrels and reindeer (Appenroth et al., 2021a; Ashley et al.,
2014; Hofinger, 2021; Ikeno et al., 2017; Lin et al., 2019; Lu et al.,
2010). In Svalbard ptarmigan, clock gene expression in the
mediobasal hypothalamus and pituitary is rhythmic under a light–
dark cycle and persists following transfer to constant light
(Appenroth et al., 2021a), supporting a typical role for circadian
organisation in tissues important for photoperiodic timekeeping.
Lapland longspurs also show persistent rhythms in per2 mRNA
expression within the eye (an avian master clock) for at least 48 h
after transfer to constant conditions, consistent with the conserved
rhythmic expression of per2 seen in other vertebrates (Ashley et al.,
2014). In Arctic ground squirrels, PER2 immunoreactivity in the
SCN shows a 24 h rhythm in animals held under a light–dark cycle,
but not in hibernating animals kept in constant darkness (Ikeno
et al., 2017). This probably reflects the suppressive effect of the
hibernation state per se on circadian clock gene rhythms, which has
been described previously (Revel et al., 2007).
In contrast to the Arctic birds investigated, the molecular

circadian clock of the reindeer is reportedly weakened or absent
(Lu et al., 2010), as shown using luciferase reporter experiments in
reindeer skin fibroblasts (Fig. 2E). bmal1- and per2-promoter

reporter constructs reveal robust circadian transcription in mouse
fibroblasts, whereas in reindeer fibroblasts, low-amplitude
rhythmicity is dampened within 2–3 cycles (Lu et al., 2010). The
basis for the weak circadian clock in reindeer has been suggested to
be a reindeer-specific mutation in the core clock gene per2
(P1172T), which reduces PER2 affinity for CRY1 (Lin et al.,
2019). These observations are not conclusive, however. The
promoters used by Lu et al. (2010) were based on the mouse per2
and bmal1 genes and may not faithfully report on transcriptional
rhythms in reindeer fibroblasts. Direct tests of the consequences of
the P1172 T mutation for circadian oscillation have not been
undertaken. Finally, it is possible that a ‘weak’ circadian system is a
feature of ungulates in general; therefore, until studies on other
ungulates are undertaken, this possibility cannot be excluded.

Overall, the persistence and dominance of circadian rhythms in
the Arctic broadly reflects what is observed in related temperate
species and is species specific. There is no clear evidence that the
molecular clockwork is ‘inoperable’ in polar settings. Thus, the
polar environment provides the opportunity to understand the limits
of entrainment of circadian systems and to understand how, even
under the polar night and day, entrainment can endure in some
species. The key to this may be daily changes in the spectral
composition of light (intensity, colour), as indicated in some bird
species (Krüll, 1976b; Pohl, 1999) and lab mice (Mouland et al.,
2019; Walmsley et al., 2015), but more studies in polar species are
required.

Photoperiodism and circannual organisation in
Arctic species
Eco-evolutionary drivers for circannual organisation and
photoperiodism
In his comprehensive analysis of the ecophysiology of reproduction,
Bronson (1989) summarised two major alternative strategies for
matching seasonal breeding to environmental energy supply:
‘opportunism’ – where the decision to breed reflects a direct
response to current energy availability as a driver – and the
‘predictor option’, where the decision to breed is based on
predictions of energy conditions over the forthcoming months.
Surveying different mammalian groups, Bronson (1989) showed
that use of the predictor option increases with latitude (i.e. it is
associated with predictable seasonality) and in species with higher
longevity (Fig. 3A). A striking demonstration of the predictor option
is seen in the seasonal breeding patterns of deer species from
different latitudes held at 51°N in London Zoo (Lincoln, 1985).
Here, despite year-round access to favourable nutrition and housing
conditions, a clear cline based on native latitude is observed, with a
narrowly constrained season in northern species (including
reindeer) and year-round breeding in southern variants (including
axis and sambar deer).

The observation of prediction or anticipation suggests innate
timing; indeed, in many species, there is evidence of a circannual
timer, analogous to a circadian timer, which persists in the absence
of external synchronising cues (Gwinner, 1986). The annual cycle
in the daily pattern of solar illumination (photoperiod) is the key cue
used to synchronise circannually timed processes to the annual
environmental cycle, a phenomenon known as ‘photoperiodism’
(Baker and Ranson, 1932; Marshall, 1936). Therefore, the predictor
option allows organisms to exploit photoperiod to synchronise
internal circannual programmes of physiological change so that
appropriate seasonal phenotypes (i.e. breeding, fattening, over-
wintering, white pelage/plumage) are expressed at appropriate
phases of the solar year.
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Even in species that rely on photoperiodism for annual
synchronisation, current energy status can modulate expression of
the seasonal phenotype. This is clearly shown for reproductive
maturation in sheep, where nutrition in the juvenile phase modulates
whether the onset of puberty occurs in late summer or autumn, and
can even delay puberty by a full year to the second autumn of life
(Foster et al., 1985). Hence, for seasonal breeding, a continuum exists
between fully opportunistic breeding and a fully photoperiodic
predictor option. This can be visualised as an energy status threshold
that may change over the course of the year (Fig. 3B). Where the
threshold is constant throughout the year (Fig. 3B, left), animals are
fully opportunistic breeders, whereas a square-wave function would
represent a rigidly deterministic photoperiodic predictor (Fig. 3B,
right). For most species, including those in the Arctic, it is realistic to
expect that this functionwould have a progressivewaveform (Fig. 3B,
centre), particularly for those phases of the year when phenotypic
transitions take place. Hence, the steepness of the slope function
represents the degree to which the circannual programme permits
plastic timing in the expression of seasonal phenotype.

Formal properties of circannual timer systems and entrainment by
photoperiod
Circannual programmes differ between species in the extent to
which they progress through complete cycles in the absence of

external synchronising cues. Type 1 circannual rhythms (e.g.
seasonal breeding in Syrian hamsters) require photoperiodic input
for complete cycles of the circannual programme to continue; in
contrast, type 2 circannual rhythms continue independently of
photoperiodic change and use photoperiodic change as a zeitgeber
to maintain synchrony with the solar year (Fig. 3C; Dunlap et al.,
2004). Examples of type 2 rhythms include the hibernation cycles of
some species of ground squirrel and chipmunk (Pengelley et al.,
1976), and moult, body mass and gonadal status in red knots
(Piersma et al., 2008). Experiments to define the properties of
circannual rhythms, including possible type 2 rhythmicity, require
animals to be held under constant photoperiods for long durations
(i.e. years), and expression of endogenous rhythms may depend on
the fixed photoperiod to which individuals are exposed (Gwinner,
1986); there is therefore a much sparser literature on this topic than
on circadian rhythms.

Fig. 3D considers how the strength of environmental seasonality
and the availability of photoperiodic cues shape the evolution of
type 1 or type 2 circannual rhythmicity. Type 2 circannual rhythms
appear to be a feature of organisms that exploit highly seasonally
predictable environments, but that seasonally withdraw from
these environments, generating photoperiodic discontinuity. For
example, withdrawal may happen through either hibernation or
translatitudinal migration, both of which are discussed below. A
further possibility is that – even for resident year-round active Arctic
species, e.g. Svalbard reindeer – type 2 timing is favoured because
of weak photoperiodic information in the solstitial phases.

Photoperiodism
Whether animals exhibit type 1 or type 2 circannual rhythmicity, a
general expectation is that photoperiodic synchronisation depends
on a circadian-based mechanism for measurement of day length
(often called the Bünning Hypothesis; Saunders, 2005). Stemming
from seminal work by Bünning (1960), the concept is that
photoperiodic timers interpret day length through a circadian
rhythm of photoinducibility. According to this model, light has two
effects: (1) it synchronises the circadian system, and (2) if it is present
during the ‘photoinducible phase’ (φi), it directly stimulates a long-
day response (Fig. 3E). Because the photoperiodic response depends
on whether light coincides with φi, this is known as a coincidence
timer model, variants of which have been discussed extensively
elsewhere (Goldman, 2001; Pittendrigh and Daan, 1976a).

Several formal approaches have been developed to test the
involvement of coincidence timing, and these generally involve use
of short light pulses (‘light break experiments’; Bünning, 1960) or
non-24 h photoperiodic cycles (Nanda and Hamner, 1958) to reveal
circadian rhythms of photoinducibility (Fig. 3E). These approaches
have been used in a wide variety of birds (e.g. quail: Follett and
Sharp, 1969; whited crowned sparrow: Follett et al., 1974; Fig. 3F)
and mammals (e.g. Syrian hamster: Elliott et al., 1972; sheep:
Ravault and Ortavant, 1977) from temperate latitudes, and they
consistently support the involvement of circadian coincidence
timing in photoperiodic time measurement. Whether this also
applies to Arctic species is presently unknown, and attempts to use
the necessary formal approaches have only been undertaken in the
Svalbard ptarmigan (Appenroth et al., 2021a).

Photoperiodic responsiveness may be quantified using
experimental assessment of a parameter known as critical
photoperiod, defined as the photoperiod necessary to stimulate a
specified seasonal response (e.g. the photoperiod above which a
bird in winter condition is stimulated to reactivate the gonadal axis).
In practice, definition of the critical photoperiod requires that

Fig. 3. Polar perspectives on circannual organisation. (A) Effect of
latitude on seasonal temporal organisation (Bronson, 1989). As latitude
increases, the length of the breeding season decreases (green triangle) and
the use of the predictor option increases (purple and grey triangles). The
purple triangle represents short-lived species, e.g. voles. The grey triangle
represents long-lived species, e.g. cervids. (B) Seasonal gating of
reproduction by a circannually programmed energy threshold. In
opportunistic species, breeding can occur at any point in the year, provided
energy requirements for breeding exceed an internally defined threshold (red
line). In circannual species, the internal threshold for reproduction becomes
permissive in a limited time window. The slope linking low (permissive) and
high (restrictive) levels for the internal threshold defines seasonal plasticity
(faded shading) in response to yearly variation in energy supply.
(C) Contrast between type 1 (photoperiod sustained, e.g. ptarmigan, Syrian
hamster) and type 2 (self-sustained, e.g. golden mantled ground squirrel, red
knot) circannual rhythmicity. τ is the free-running period of the circannual
rhythm. SP, short photoperiod; LP, long photoperiod. (D) Relationship
between circannual cue availability, environmental seasonality and seasonal
breeding strategy. Continuous cues and weakly seasonal environments
favour opportunistic breeding. Strong predictable seasonality, combined with
intermittent cue availability (migration/hibernation), favours type 2 circannual
rhythmicity. (E) Coincidence timer model for photoperiodic time
measurement, based on Bünning (1960). A circadian rhythm in light
sensitivity, represented as a sinusoidal waveform, generates a
‘photoinducible phase’ (φi, pale teal shading), during which exposure to light
provokes a long-day response. Exposure to a 24 h light–dark cycle with a
short photoperiod (top) or long photoperiod (middle) synchronises the
circadian rhythm of light sensitivity to produce different photoperiodic
responses. Under short photoperiod, exposure to light does not coincide
with φi, and short-day physiology is maintained. Under long photoperiod,
light coincides with φi (dark teal shading), stimulating a long-day
photoperiodic response. An artificial discontinuous photoperiod including a
‘light break’ (bottom) can trigger a long-day response by coincidence with φi.
(F) Example of a light-break experiment in white-crowned sparrows (redrawn
based on Follett et al., 1974). A series of different light treatments are shown
in which a light break (white rectangles) is applied at progressively longer
intervals after ‘dawn’ (the start of the first light bar in each row). Note how the
corresponding reproductive response (plasma concentration of luteinising
hormone, LH) changes periodically through the different protocols. This
reflects the light break moving in and out of phase with φi as described
E. (G) Local evolution of the critical photoperiod response. (H) Evidence for
heritable variation in critical photoperiod from cross-breeding between
ptarmigan sub-species (redrawn based on Sharp and Moss, 1981).
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responses to a range of photoperiods are measured, so that the
photoperiod necessary for a half-maximal response can be
calculated; this is effectively a photoperiod dose–response
analysis (Fig. 3G). Theoretical consideration of temperature–
photoperiod relationships (Bradshaw and Holzapfel, 2007; Hut
et al., 2013) predicts that critical photoperiod will increase with
latitude. Critical photoperiod analyses require large numbers of
individuals and may be confounded by issues of photoperiodic
history. This means that the body of experimental literature on this
subject is dominated by studies of insect diapause; these studies
generally show increases in critical photoperiod with latitude
(Bradshaw, 1976; Lehmann et al., 2015; Tauber and Tauber, 1972).
For mammals and birds with distributions extending into the Arctic,
we are aware of only three studies from which it is possible to make
critical photoperiod estimates: one on tundra voles (van Delum
et al., 2023) and two on ptarmigan (Appenroth et al., 2021a; Sharp
and Moss, 1981; Fig. 3H).

Neuroendocrine mechanisms of the photoperiodic response
In the last three decades, the study of photoperiodic control of
reproduction has seen extensive progress in defining the neural
pathways connecting opsin-based photoreception to seasonal
changes in endocrine regulation, and hence to the seasonal
phenotype (Hazlerigg and Simonneaux, 2015). In mammals,
night-time production of melatonin by the pineal gland relays the
photoperiodic signal to the pars tuberalis (PT, part of the pituitary
gland; Fig. 4A). Melatonin-dependent production of thyrotropin by
PT cells (Hanon et al., 2008; Ono et al., 2008) then drives alterations
in thyroid hormone conversion in the adjacent tanycytes of the
hypothalamus, leading to seasonally altered autonomic and
reproductive endocrine outputs. The mechanism in birds is also
PT–tanycyte based (Nakao et al., 2008), but here the
photoperiodic message is thought to reach the PT via opsin
photoreceptors in the diencephalon (Davies et al., 2012; García-
Fernández et al., 2015; Halford et al., 2009; Nakane et al., 2010,
2014). The same pathway is also linked to seasonal body weight
changes and the expression of torpor in mammals (Murphy et al.,
2012). Seasonal control of prolactin secretion – and hence the
pelage mammalian cycle – occurs through a less well-defined
intra-pituitary mechanism (Lincoln and Clarke, 1994).
The melatonin dependence of photoperiodism in mammals

links daily (circadian) and annual (circannual) synchronisation, and
this is emphasised by considering the molecular pathways within
the PT controlling production of thyroid-stimulating hormone
(TSH): melatonin acts through transcriptional control loops
involving canonical clock genes (per, cry) and clock-controlled
genes (e.g. tef, dec1) and associated co-activators (EYA3; Dardente
et al., 2010; Masumoto et al., 2010; Wood et al., 2015, 2020;
Fig. 4B,C).
Our understanding of themechanisms described above comes from

studies of domesticated lab-amenable species native to temperate
latitudes (sheep, hamsters and Japanese quail) chosen for their strong
expression of photoperiodic responses. This leaves many unanswered
questions. For example, how do photoperiodic synchronisation and
circannual timing mechanisms operate in wild species? By what
mechanism are photoperiodic cues integrated with other signals such
as food availability and temperature? Below, we summarise
knowledge on these topics from an Arctic perspective.

Arctic mammals
Although there has been extensive observation of strong seasonality
in the field across muskoxen, reindeer, Arctic ground squirrels,

Arctic rodents and polar bears (e.g. Flood and Tedesco, 1997;
Leader-Williams, 1988; Ramsay and Stirling, 1986; Sheriff et al.,
2011; Stevenson et al., 2009), experimental studies exploring innate
circannual timing are generally lacking. A recent exception is a
study on Arctic ground squirrels, which explored spontaneous exit
from hibernation under controlled constant conditions (Chmura
et al., 2022). This was paralleled by spontaneous changes in TSH
and hypothalamic deiodinase gene expression in the PT during the
hibernation season, as seen in earlier studies in circannually
hibernating European hamsters (Sáenz de Miera et al., 2014). Given
that temperate ground squirrel species show strong type 2 circannual
rhythms in body weight, hibernation and reproductive activation
(Pengelley et al., 1976), the available data suggest that Arctic ground
squirrels express type 2 circannual rhythms under PT–tanycytic
control.

Experimental exploration of photoperiodic influences on
seasonal physiology has been undertaken in one other Arctic
mammal, the reindeer (Hazlerigg et al., 2017). Although this
species remains active year round, and breeds in the autumn, it
undergoes a pronounced seasonal cycle of body fattening and
voluntary food intake, with the latter reaching a nadir in mid-winter.
When reindeer are brought indoors and transferred to constant
darkness or constant light, they undergo an accelerated increase in
food intake, moult and antler development compared with animals
kept on a simulated natural photoperiod (Hazlerigg et al., 2017).
This effect might be due to an escape from the delaying effects of
short photoperiod exposure. The melatonin profile in reindeer under
natural photoperiods shows a clear night-time peak of secretion at
the equinoxes, but in the Arctic summer and winter, melatonin
secretion becomes continuous (Stokkan et al., 2007); moreover,
melatonin secretion appears to be directly light responsive, as
opposed to a circadian output signal (Lu et al., 2010). These results
suggest that synchronising effects of melatonin on circannual
physiologymainly occur in the spring or autumn equinoctial phases.
Programmed melatonin infusion experiments in pinealectomised
sheep demonstrate that artificial melatonin signals representing only
3 month segments of the year-round signal can act as circannual
zeitgebers (Woodfill et al., 1994; Fig. 4C). We speculate that
analogous mechanisms in reindeer and muskoxen (Tedesco et al.,
1992) maintain year-round seasonal synchrony.

Birds
Photoperiodic effects on seasonal traits have been studied in three
distinct groups of polar birds: year-round Arctic residents (willow
ptarmigan and Svalbard ptarmigan: Appenroth et al., 2020, 2021a;
Stokkan and Sharp, 1980; Stokkan et al., 1982, 1986), long distance
trans-latitudinal migrants that breed in the Arctic (the red knot:
Piersma et al., 2008) and passerines whose summer breeding range
extends northwards into the Arctic (the common redpoll and the
white-crowned sparrow: Hahn et al., 2004). For the passerines, the
Arctic represents a northward extension of a high-temperate
breeding range, whereas, in the case of red knots, summer
breeding involves a long-distance translocation to the Arctic light
environment.

In ptarmigan, exposure to increasing photoperiods or transfer to
constant light initiates a summer programme (plumage change,
reproductive activation and loss of body fatness; Sharp and Moss,
1981). This is followed by spontaneous progression to an autumn
programme (reproductive inactivation, moult, body fattening), even
if exposure to long photoperiods continues (Stokkan et al., 1982).
This phenomenon of ‘photorefactoriness’ develops at shorter
photoperiods in temperate red grouse than in Arctic willow
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ptarmigan (Stokkan et al., 1982). Exposure to short photoperiods
does not appear to accelerate the expression of autumn phenotypic
characteristics in ptarmigan, and in Svalbard ptarmigan, the short
breeding season ends before any decline in photoperiod. Hence, in
ptarmigan, the timing of the summer life-history phase depends on
innate timekeeping, which is evolutionarily adapted to Arctic
photoperiodic conditions. Ptarmigan can be viewed as a type 1
circannual species, given that ptarmigan held under short
photoperiods for extended periods do not spontaneously revert to
a spring phenotype (Appenroth et al., 2020; Stokkan, 1979).
Nevertheless, exposure to short photoperiods re-establishes
sensitivity to photostimulatory long photoperiods. Overall, this
pattern of long photoperiod-induced photostimulation followed by
photorefractoriness and then maintenance of the winter phenotype
and restoration of photoperiodic sensitivity is commonly seen in
birds (Sharp, 2005), and is similar to observations made in white-
crowned sparrows and redpolls (Hahn et al., 2004).
To our knowledge, only one study reports a quantitative

difference in photoperiodic sensitivity in an Arctic resident bird
compared with its temperate counterpart (Sharp and Moss, 1981;
Fig. 3H). Here, the photoperiodic response of willow ptarmigan
from northern Norway (Lagopus lagopus) was compared with that
of Scottish red grouse (Lagopus lagopus scotticus) and with willow
ptarmigan–red grouse hybrids. Spring reproductive endocrine
characteristics appear at shorter photoperiods in red grouse than in
willow ptarmigan, whereas hybrids show intermediate response
characteristics. Hence, Arctic adaptation in Lagopus appears to
include genetic adjustment of the photoperiodic response.
Passerine and galliform birds use a circadian-based system to

respond to changes in photoperiod (Sharp, 2005). Skeleton
photoperiod experiments in Svalbard ptarmigan, using pre-breeding

behaviour and neuroendocrine gene expression changes as readouts
for seasonal phenotype, suggest that this mechanism is also operative
in a high-Arctic resident species (Appenroth et al., 2021a). Within the
limitations of this work, the critical photoperiod appears to be ∼14 h
(Appenroth et al., 2021a), i.e. slightly longer than values estimated for
red grouse andNorwegianwillow ptarmigan (Sharp andMoss, 1981).
Overall, the available data offer no evidence for qualitative
distinctiveness in the circannual programmes in Arctic-breeding
birds compared with their temperate counterparts; nevertheless, the
data from ptarmigan species support the idea that quantitative
refinement of photostimulatory and photorefractory responses
maintain Arctic seasonal synchrony.

Long-distance migratory red knots, which breed in the high
Arctic, are noteworthy for their expression of type 2 circannual
rhythms in plumage moult and body mass change (Karagicheva
et al., 2016; Piersma et al., 2008). In some individuals,
high circannual rhythm stability is maintained for over 8 years
of exposure to a constant photoperiod and temperature (Piersma
et al., 2008). Unusually for type 2 circannual rhythms (Gwinner,
1986), these rhythms are slightly longer than a year, possibly
reflecting the extension of spring-to-summer phase processes (e.g.
spring weight gain; Karagicheva et al., 2016). Transfer of birds
that were held on a cycle of 12 h of light and 12 h of dark
conditions (LD 12:12) for 7 years to constant light conditions for
1 year had a highly disruptive effect, effectively blocking the
expression of the spring-phase characteristics throughout the
period of constant light exposure (Karagicheva et al., 2016). It is
difficult to draw strong inferences about the underlying circannual
timer function from these remarkable data, but the apparent
importance of LD 12:12 for expression of type 2 rhythmicity in red
knots echoes the results of studies on passerine species from
temperate and tropical latitudes, including starlings and stonechats
(Gwinner, 1986).

Conclusions and perspective
Modern comparative chronobiology is concerned with the evolution
of timekeeping mechanisms, firmly connecting physiology to
ecology. The polar setting is not a natural version of the
experimental photoperiod treatments used to reveal innate timer
processes, but rather is a light environment that provides special
challenges to timer synchronisation, as well as extreme cyclical
bioenergetic challenges to survival and reproduction. To fully
understand the effects of evolution on innate timers in polar species,
it is necessary to take animals out of their natural setting and explore
their physiology and behaviour under controlled conditions. This
has been done in a very limited number of studies, and the overall
impression is that no simple generalisations can be made about the
Arctic adaptation of daily or seasonal timer mechanisms. Although
it would be interesting to understand the causes of weakened overt
circadian rhythmicity and breakdown of diel organisation, the
current literature fails to provide definitive explanations for this
phenomenon. Even less is known about how daily synchrony during
the solstitial periods is maintained in species such as the Arctic
ground squirrel, and further work on core oscillator characteristics,
spectral effects as zeitgebers and behavioural reinforcement of
zeitgeber exposure are all potentially fruitful avenues. Data on
seasonal synchronisation mechanisms are extremely limited;
generally, it appears that, although current models based on
temperate mammals and birds also apply for Arctic species, local
adaptation may have increased reliance on innate long-term
(circannual) processes to allow animals to cope with weakened
seasonal zeitgebers around the solstices. Therefore, polar

Fig. 4. Substrates for the synchronisation of circannual rhythms.
(A) Model for seasonal synchronisation through the hypothalamo-pituitary
complex. In both birds and mammals, photoperiodic information is
processed in the pars tuberalis of the pituitary, leading to daylength-
dependent production of thyrotropin (TSH). See text for details. The figure
includes in situ hybridisation images for tshβ and dio2 gene expression in
long and short photoperiod-housed sheep. 3V, 3rd ventricle; ARC, arcuate
nucleus; VMH, ventral medial hypothalamus; ME, median eminence; TSH-
R, thyrotropin receptor. (B) Model for circadian-based induction of a
photoperiodic response within the mammalian pars tuberalis (Dardente
et al., 2010; Masumoto et al., 2010; Wood et al., 2020). Left: the circles
represent 24 h, white is the light phase and grey is the dark phase. The left
circle represents short photoperiod, and the right circle represents long
photoperiod. The phase of cry1 expression in the pars tuberalis is at the
onset of darkness, and per1 expression is induced at the onset of light. The
white triangles represent the expression level of cry1 and per1. eya3
expression is induced on long photoperiods when light is coincident with the
photoinducible phase (yellow shading on white background); the level of
eya3 expression is represented by the blue triangle. If it is dark in the
photoinducible phase (yellow shading on grey background), EYA3 protein
expression is presumed to be low. When light coincides with the
photoinducible phase, EYA3 is expressed under the control of CLOCK,
BMAL1 and BMAL2. In the presence of melatonin (dark), eya3 expression is
repressed by DEC1. Right: EYA3 along with TEF and SIX1 bind to D-box
elements in the tshβ gene and co-activate tshβ expression. TSH-β protein
and α-GSU protein form TSH, which is transported to the tanycytes in the
mediobasal hypothalamus. (C) Circannual synchronisation of sheep through
partial melatonin signals. Redrawn based on Woodfill et al. (1994). Each
panel shows the time of year when ewes are in oestrus (thick horizontal
lines) over a 3 year experiment in a natural photoperiod (sine wave). Intact
ewes show synchronised breeding, whereas pinealectomised ewes, unable
to produce melatonin, show disorganised breeding seasons. Artificial
restoration of a melatonin signal (red bar, M) for only 3 months per year
restores synchronous breeding. PX, pinealectomy; X, death of animal.
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chronobiology offers an opportunity to deepen our understanding of
how internal timers are synchronised to the environment.
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