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Abstract  

In this cross-sectional study, we examined the extent to which features of the neighbourhood 

natural, built, and socio-economic environments were related to cognitive age in adults (N = 

3418, Mage = 61 years) in Australia. Machine learning estimated an individual’s cognitive age 

from assessments of processing speed, verbal memory, premorbid intelligence. A ’cognitive 

age gap’ was calculated by subtracting chronological age from predicted cognitive age and 

was used as a marker of cognitive age. Greater parkland availability and higher 

neighbourhood socio-economic status were associated with a lower cognitive age gap score 

in confounder- and mediator-adjusted regression models. Cross-sectional design is a 

limitation. Living in affluent neighbourhoods with access to parks maybe beneficial for 

cognitive health, although selection mechanisms may contribute to the findings. 

Keywords 
 
Cognitive age; Parkland availability; Neighbourhood socio-economic status; Machine 
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Highlights 
 

• Greater parkland availability predicts younger cognitive age in older adults. 

• Older adults from socially advantaged neighbourhoods have younger cognitive age. 

• Exposure to greenspace can be a population-level approach to preserve cognition. 

• Cognitive age gap can be a promising marker of cognitive health. 
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1. Introduction 
 

With population ageing, the global number of people aged 65+ years are projected to 

grow to ~ 1.5 billion in 2050 (World Health Organisation, 2022), resulting in increased 

government expenditure and demand for health services, diminished labour force 

participation, and increased rates of age-dependent and neurogenerative disorders 

(Friendship, 2021). Progressive decline in cognitive function is a hallmark of normal ageing, 

and age-related cognitive changes are associated with an increased risk of mortality (Duan et 

al., 2020), disability (Barberger-Gateau & Fabrigoule, 1997), loss of independence 

(Domenech-Cebrían et al., 2019), and poor quality of life (Bárrios et al., 2013). Long-term 

population-level strategies that maintain and promote cognitive health in mid-age and older 

adults are, thus, needed. One proposed strategy is the creation of activity-friendly community 

environments for ageing populations (Cerin et al., 2017; Van Cauwenberg et al., 2018).  

In accordance with the ecological model of cognitive health (Cerin, 2019, please see 

Fig. 1), neighbourhood natural (e.g., parks, blue spaces) and built environments (e.g., 

dwelling density, retail and shops) influence cognitive health directly and indirectly. A 

simplified version of the ecological model, which has been adapted to the present study, is 

presented in Fig. 2. 
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Fig.1. A simplified ecological model of how different neighbourhood attributes are related to 

cognitive health (Cerin, 2019). 

 

 

Fig. 2. A simplified ecological model of neighbourhood environmental influences on 

cognitive age gap. 
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The direct effect of the neighbourhood environment on cognition pertains to the 

exposure of residents to harmful factors, such as ambient air pollution (Cerin et al., 2021; 

Tham et al., 2022) and to relaxing and aesthetically-pleasing environments (e.g., greenery, 

natural sights) (Cherrie et al., 2018; de Keijzer et al., 2018) and/or complex visual and spatial 

layouts that require cognitive effort to navigate the neighbourhood (Cassarino & Setti, 2015; 

Watts et al., 2015). For example, air pollutants reach the brain via the olfactory nerve in the 

circulatory system, leading to high levels of oxidative stress, neuroinflammation and 

microglial activation – the processes that impair cognitive function and are associated with an 

increased risk of neurodegeneration (Chen et al., 2015; Elder et al., 2006; Jankowska-

Kieltyka et al., 2021). Further, beneficial effects of greenery on cognitive function might be 

accrued from psychological restoration, as after spending time in parks, individuals have been 

found to improve concentration and recover from stress and mental fatigue, which, in turn, 

influence cognitive function (Kaplan, 1995). 

The neighbourhood environment can also impact on cognitive health indirectly via its 

effects on cognition-enhancing lifestyle behaviours. For example, by providing access to 

natural environments (e.g., parks and blue spaces), residents are more likely to engage in 

leisure-time physical activity and social activities that are known to positively influence 

cognition (Cerin et al., 2021; Sylvers et al., 2022). As depicted in Fig. 1, dense, destination-

rich communities with good access to public transport encourage mid-age and older adults to 

walk, and engagement in physical activity is known to lead to improvements in memory 

performance and mental alertness, as well as reduced risk of dementia (Rachele et al., 2019; 

Roe et al., 2020; Sylvers et al., 2022). Socio-economically advantaged neighbourhoods tend 

to be associated with better cognitive health in older adults (Besser et al., 2017; Clarke et al., 

2012) and reduced risks of dementia (Pase et al., 2022) compared to neighbourhoods with 

lower socio-economic status, possibly because they provide many opportunities for 
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individuals to engage in physical, cognitive and social activities (Settels & Leist, 2021), and 

these are the well-known predictors of higher cognitive reserve in non-clinical populations 

(Barulli & Stern, 2013; Soloveva et al., 2018; Song et al., 2022). There is limited and 

inconsistent research in respect to how features of the neighbourhood natural, built, and 

socio-economic environments are conjointly related to cognitive function in multiple-

exposure models in mid-age and older adults (Cerin, 2019; Giles-Corti et al., 2022), with 

studies focusing on a single and/or a limited range of neighbourhood characteristics that 

relate to cognition. As an example – access to various services in the neighbourhood can be 

simultaneously beneficial (by promoting an active lifestyle) and detrimental to cognitive 

health (by exposing residents to air pollution and reducing exposure to greenery). Therefore, 

the omission of key neighbourhood characteristics that act as confounding or mediating 

variables is likely to result in a biased evaluation of environmental correlates of cognitive 

health (Cerin, 2019). Hence, there is a need to account for all key environmental attributes in 

the analysis. Further, research on whether certain environmental features are related to 

individual risk of cognitive deterioration is scarce and this is particularly relevant because 

trajectories of cognitive decline vary across adults, with some experiencing dramatic 

cognitive impairment relatively early in middle-late adulthood and others exhibiting only 

subtle cognitive changes in late life (Cloutier et al., 2015; Rocca et al., 2011). Thus, it is 

important to adopt a measure that can be used to adequately capture an individual’s overall 

cognitive health, as well as to predict an individual’s risk of cognitive decline. 

The cognitive age gap (CAG), known as the difference between an individual’s age 

predicted using scores in cognitive tests (predicted cognitive age) and their chronological age, 

has recently emerged as a potential marker of the cognitive ageing process (Anatürk et al., 

2021; de Lange et al., 2022). Specifically, negative and/or small CAG values indicate a 

younger, cognitively healthier brain, whereas positive and/or large CAG values are 
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suggestive of accelerated ageing. Predicted cognitive age is estimated using machine learning 

techniques, an analytical approach that builds regression models based on scores from 

standardised cognitive tests and is believed that it offers greater predictive accuracy in 

comparison to traditional statistical regression models (Park et al., 2020; Tzang et al., 2020).  

To our knowledge, no previous studies have examined key categories of 

neighbourhood environmental correlates of CAG, as recommended by ecological models of 

neighbourhood features and cognitive health in ageing populations (Cerin, 2019; Finlay et al., 

2022). This study aimed to estimate the conjoint total and direct cross-sectional associations 

of features of the neighbourhood natural, built, and socio-economic environment with CAG 

in a large sample of mid-age and older adults in Australia (n = 3418). We used a gradient 

boosting machine to predict an individual’s cognitive age based on scores from standardised 

cognitive assessments of processing speed, verbal memory, and premorbid intelligence. 

Processing speed and verbal memory are facets of cognition that deteriorate early in the 

ageing process (Harada et al., 2013), while premorbid intelligence, is a well-known proxy of 

cognitive reserve (Stern, 2009), and has been shown to relate to younger cognitive age (i.e., 

smaller CAG values) (Anatürk et al., 2021). We hypothesised that residents of more socially 

advantaged and dense neighbourhoods, with lower exposure to air pollution and greater 

access to the natural environment and various destinations, would be cognitively younger 

than their counterparts.  

2. Methods 

2.1. Participants  

We used cross-sectional data from the third wave of the Australian Diabetes, Obesity 

and Lifestyle Study (AusDiab), a population-based, longitudinal survey aimed to examine the 

prevalence, incidence, and determinants of diabetes in Australian adults. Data was collected 

during 2011-2012 (Tanamas et al., 2013). Sampling procedure and power calculations are 
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described elsewhere (Dunstan et al., 2002). The study was approved by the Alfred Hospital 

Ethics Committee, Melbourne, Australia. Details about AusDiab data collection procedures 

are provided elsewhere (Abe et al., 2021; Anstey et al., 2015; Tanamas et al., 2013). Of note, 

AusDiab collected cognitive function data only in Wave 3. 

Participants were eligible to partake in AusDiab if they were: (1) aged 25 years and 

older; and (2) resided at their addresses for at least six months prior to the survey. A total of 

473 participants were excluded from the analyses because they did not reside in urban areas, 

defined as towns and cities of 10,000 people or more. The final analytical sample consisted of 

3418 participants (Table 1).  

Table 1. Sample characteristics (n = 3418).       
Characteristics Statistic Characteristics Statistic 

Socio-demographic characteristics   Environmental characteristics  
(1km radius street-network buffers), mean (SD)   

Age, years, mean (SD) 61.3 ± 
11.4 

Population density (persons/hectare) 17.5 
(10.3) 

Educational attainment, No. (%) 
 

Street intersection density (intersections/km2) 62.0 ± 
32.4 

  Up to secondary 1135 
(33.5) 

Percentage of commercial land use (% of area) 2.5 ± 6.1 

  Trade, technician certificate 
979 (28.9) 

Percentage of parkland (% of area) 11.6 ± 
12.5 

  Associate diploma & equivalent 505 (14.9) Percentage of blue space (% of area) 0.2 ± 2.0 
  Bachelor degree, post-graduate diploma 774 (22.8) Annual average NO2 (ppb) 5.5 ± 2.0 
  Missing data, No. (%) 25 (0.7) Annual average PM2.5 (µg/m3) 6.3 ± 1.7 
Living arrangements, No. (%)  Cognitive function  
  Couple without children 1642 

(49.6) Cognitive age gap, mean (SD) -0.5 ± 8.5 
  Couple with children 

896 (27) Missing data, No. (%) 
535 

(15.6) 
  Other 775 (23.4)   
  Missing data, No. (%) 105 (3.1)   
Residential self-selection - access to destinations, 
M ± SD 3.1 ± 1.4 

 
 

Missing data, No. (%) 313 (9.2) 
 

 

Residential self-selection - recreational facilities, 
M ± SD 3.1±1.5 

 

 
  Missing data, No. (%) 313 (9.2) 

 
 

Sex, No. (%)    
  Female 1901 

(55.6)   
  Male  1517 

(44.4)   
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Area-level IRSAD, M ± SD 6.4 ± 2.7   
Ethnicity, No. (%)    
  English-speaking background 3050 

(89.2) 

 

 
  Non-English-speaking background 368 (10.8) 

 
 

Household income, No. (%)  
 

 
  Up to $49,999 1128 

(34.1) 

 

 
  $50,000- $99,000 879 (26.6) 

 
 

  $100,000 and over 985 (29.8) 
 

 
  Does not know or refusal 316 (9.6) 

 
 

  Missing data, % 110 (3.2)     
Abbreviations. M, mean; SD, standard deviation; 
IRSAD, Index of Relative Socioeconomic 
Advantage and Disadvantage where higher 
IRSAD scores indicate higher area-level 
socioeconomic status; NO2, nitrogen dioxide; 
PM2.5 particulate matter <2.5 µm; environmental 
characteristics have no missing data.    

 
2.2. Measures 
 
2.2.1. Environmental measures 

Environmental exposure data consisted of aspects of the neighbourhood natural, built 

and socio-economic environment, and air pollution. Neighbourhood was defined as an area 

within a 1-km street-network distance from a participant’s residential address (Barnett et al., 

2018; Cerin et al., 2020). Natural features included percentage of parkland and blue space 

(within a neighbourhood). Data on these features were respectively derived from the 2011 

Australian Bureau of Statistics (ABS) Mesh Block data (ABS, 2011) and Geoscience 

Australia data on surface water features (Crossman, 2015). Built environmental attributes 

were population density (persons/ha) and percentage of commercial land use (retail, office 

space, excluding industrial use) derived from the 2011 ABS Mesh Block data, and street 

intersection density (intersections/km2) derived from the PSMA Australia’s 2012 Transport & 

Topography dataset (PSMA, 2012). The ABS Mesh Block data from the 2011 Census 

provided information on the Index of Relative Socio-Economic Advantage and Disadvantage 

(IRSAD) at the SA1 (Statistical Area 1) level for residential neighbourhoods. Air pollution 

exposures were annual average concentrations of nitrogen dioxide (NO2, units: ppb) and fine 
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particulate matter <2.5 µm in aerodynamic diameter (PM2.5, units: μg/m3). Exposures to both 

air pollutants were estimated at each residential address using satellite-based land-use 

regression (LUR) models (Knibbs et al., 2018; Knibbs et al., 2016; Knibbs et al., 2014). 

Further details on the data sources, measures, validations and justifications for including them 

in this study are provided elsewhere (Anstey et al., 2015; Bagheri et al., 2021; Cerin et al., 

2021; Knibbs et al., 2014). Socio-demographic and neighbourhood variables are described in 

Appendix A.  

2.2.2. Cognitive measures 
 

Symbol Digit Modalities Test (SDMT; Smith, 1982) was used to assess processing 

speed, referring to how fast an individual processes information on a cognitive task (Harada 

et al., 2013).  Participants were asked to match symbols to their corresponding numbers in 90 

seconds and were instructed to do so as fast as possible. The outcome measure was the total 

number of correct responses given by a participant (score range 0-60). 

The world list from the California Verbal Learning Test (CVLT; Delis et al., 

1987) was used to assess memory. Participants were shown a list of 16 common shopping list 

items five times (List A) and after the first trial were asked to repeat as many words as 

possible (immediate recall). After a delay of 20 minutes, the participants were asked to recall 

the list a second time (delayed recall). The total number of words recalled correctly was an 

outcome measure and scores ranged from 0 to 16. 

Spot the Word Test (STWT; Baddeley et al., 1993) is a lexical decision task that was 

used to assess premorbid intelligence. Participants were presented with 60 pairs of items 

comprising one real word and one non-word and they were required to identify the real word 

by underlining the item in each pair. One point was scored for every correct word (score 

range 0-60). 

2.3. Statistical analyses 
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2.3.1. Determining the Cognitive Age Gap (CAG) 

The caret package version 6.0-92 (Kuhn et al., 2008) for R version 4.2.0 

(https://www.r-project.org/) was used to develop a machine learning regression model (using 

Gradient Boosting Machine (GBM)) to predict age (model output) using scores from three 

cognitive assessments (model inputs). From the original dataset of 4141 participants, we 

excluded those (n = 723) that were used to train the GBM regression model of predicted 

cognitive age, resulting in a final analytical sample of 3418. We randomly selected 20% of 

cases (n = 723) from those with complete cognitive assessment data (n = 3606 from N = 

4141) to build a machine learning model of cognitive age. Ten-fold cross-validation with five 

repetitions was used during training. The trained GBM regression model was used to predict 

the cognitive age of individuals in the remaining 80% of the dataset comprising 2883 

individuals. Lastly, CAG was computed for each of these individuals by subtracting their 

chronological age from predicted cognitive age and was used for further statistical analyses.  

2.3.2. Main analyses: associations between neighbourhood environmental measures and 

CAG 

From the original dataset of 4141, nearly 16% of cases had missing data on at least 

one variable, 11% on at least two variables, and 3.5% on more than 3 variables. Under a 

missing at random assumption (Table S1, Figure S1 in Appendix B and Appendix C), twenty 

imputed datasets were, therefore, created for the multivariable regression analyses following 

recommended procedures (Van Buuren & Groothuis-Oudshoorn, 2011). Generalised additive 

mixed models (GAMMs; package ‘much’ version 1.8-40 in R) (Wood, 2017) with random 

intercepts at the SA1 level were used to estimate cross-sectional total and direct effects of 

environmental attributes on CAG to allow for possible curvilinear effects (Table S2 in 

Appendix D). Here, by total and direct effects we refer, respectively, to associations between 

specific environmental attributes and CAG unadjusted and adjusted for other environmental 

https://www.r-project.org/
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attributes deemed to mediate the associations. Directed acyclic graphs (DAGs) informed the 

selection of a minimal sufficient set of confounders and/or covariates (here defined as 

variables associated with the outcome) for the statistical analyses (Tables S3-S4, Figure S2 in 

Appendix E, Appendix F and Appendix G). Gaussian variance and identity link functions 

were used in GAMMs because CAG was approximately normally distributed. Potential 

multicollinearity was assessed by computing the Variance Inflation Factor (VIF) for each 

variable included in the GAMMs. All VIFs were smaller than 3, indicating no collinearity 

issues (Sheather, 2009). Multivariable regression analyses were also conducted on non-

imputed data (Tables S5-S6 in Appendix H and Appendix I).  

3. Results 
 
3.1. Demographics characteristics 

The average age of the sample was 61 years (SD = 11, range: 34-97 years) (Table 1). 

Nearly 90% of participants were of English-speaking background. Most were female and 

living with a partner but without children. There was substantial variability in educational 

attainment, household income and several neighbourhood environmental attributes. The 

average percentage of residential buffer area devoted to non-commercial land use (2.5%) and 

blue space (0.2%) was lower than that devoted to parks (11.6%). The annual average 

concentrations of air pollutants were relatively low, with NO2 and PM2.5 reaching 5.5 ppb and 

6.3 µg/m3, respectively. An overview of the complete data (n = 2883) is provided in Table S7 

in Appendix J. 

3.2. Determining CAG 

The GBM model developed using the training dataset (n = 723, age range of 36-92, 

Mage = 60.1 and SDage = 11.1) was successfully applied to estimate cognitive age of each 

participant from the testing dataset (n = 2883, age range of 35-97, Mage = 60.7, SDage = 11.1) 

yielding a linear regression model with satisfactory performance in predicting cognitive age 
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(Table S8, Figure S3 in Appendix K and Appendix L). CAG was, on average, -0.5 years and 

ranged from -31.3 and 29.4 years.  

Furthermore, to address the utility of machine learning, we have conducted a sensitivity 

analysis by testing whether a ML-based CAG as the outcome measure in this study is 

superior to a linear regression-based CAG. We have used individual standardised cognitive 

test scores to predict chronological age, which is referred to as predicted cognitive age. We 

found that models based on CAG as the outcome performed on all indicators equally or 

slightly superior in predicting chronological age from cognitive tests compared to traditional 

methodology (please see Tables S9-S10 in Appendix M and N).  

3.3. Neighbourhood environmental correlates of CAG 

The total and direct associations of neighbourhood environmental attributes with 

CAG are reported in Table 2 and Table 3. The linear model was a better fitting model for 

examining the relationships between aspects of natural, built and socio-economic 

neighbourhood environments with CAG (please see Table S2 in Appendix D). In the total-

effect models, higher percentage of parkland in a 1 km residential buffer and higher area-

level socio-economic status were associated with smaller CAG scores, indicating a 

cognitively younger brain in mid-age and older adults. Likewise, parkland availability and 

neighbourhood socio-economic status showed positive direct effects on CAG in mid-age and 

older adults. We observed the strongest evidence for the parkland-CAG association (p = 

.004). No other statistically significant associations were observed.   

Table 2. Total effects of environmental attributes on cognitive age gap.    
Environmental Attribute b (95% CI) p value 

   

Population density (persons/hectare) -0.005 (-0.025, 0.015) .60 

Street intersection density (intersections/km2) 0.004 (-0.003, 0.011) .26 

Percentage of commercial land use (% area in residential buffer) 0.017 (-0.015, 0.049) .29 

https://www.mdpi.com/2305-6304/10/1/23/htm#table_body_display_toxics-10-00023-t002
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Percentage of parkland (% of area in residential buffer) -0.023 (-0.039, -0.007) .004 

Percentage of blue space (% of area in residential buffer) -0.028 (-0.119, 0.064) .56 

Area-level IRSAD -0.096 (-0.177, -0.014) .02 

Annual average NO2 exposure (ppb) -0.031 (-0.160, 0.098) .64 

Annual average PM2.5 exposure (µg/m3) -0.046 (-0.172, 0.080) .47 

Abbreviations. b, regression coefficient; CI, confidence intervals.  
Effects in bold are statistically significant at a probability level of  
0.05.  

 

Table 3. Direct effects of environmental attributes on cognitive age gap   
Environmental Attribute b (95% CI) p value 

   

Population density (persons/hectare) -0.005 (-0.035, 0.024) .71 

Street intersection density (intersections/km2) 0.001 (-0.007, 0.008) .86 

Percentage of commercial land use (% area in residential buffer) 0.017 (-0.016, 0.049) .31 

Percentage of parkland (% of area in residential buffer) -0.020 (-0.036, -0.004) .01 

Percentage of blue space (% of area in residential buffer) -0.028 (-0.120, 0.063) .54 

Area-level IRSAD -0.093 (-0.177, -0.009) .03 

Annual average NO2 exposure (ppb) -0.031 (-0.160, 0.098) .64 

Annual average PM2.5 exposure (µg/m3) -0.046 (-0.172, 0.080) .47 

Notes. b, regression coefficient; CI, confidence intervals.  
Effects in bold are statistically significant at a probability level of  
0.05.  

 
 
4. Discussion  

 
As hypothesised, we found that residents living in neighbourhoods with higher socio-

economic status and with greater parkland availability were cognitively younger than their 

counterparts. The strength of the relationships between parkland availability, neighbourhood 

socio-economic status and CAG is similar to those found in studies of environmental 
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correlates of health-related behaviours (Sallis et al., 2020). Contrary to our expectations, built 

environmental indicators and air pollution were not significantly associated with CAG.   

Our study is the first to illustrate that higher percentage of parkland within a 1 km 

residential buffer was associated with younger cognitive age, as evidenced by smaller CAG 

scores. This novel finding is consistent with cross-sectional (Cerin et al., 2021) and 

longitudinal studies (Besser et al., 2021a; de Keijzer et al., 2018; Jimenez et al., 2022) 

showing associations of greater availability of local greenness with better cognitive function 

in older adults, and with lower odds of neurodegenerative conditions (Rodriguez-Loureiro et 

al., 2022). Importantly, the significant effect was observed in both the total- and direct-effect 

regression models, and after adjusting for known confounders of neighbourhood-cognition 

associations (e.g., neighbourhood self-selection, ethnicity, household income), highlighting 

that, in urban settings, parkland availability may play an important role in promoting 

cognitive health. 

Furthermore, no significant association was observed between availability of blue 

space and CAG, which we believe is partly due to only ~4.5% (n = 186) of adults having 

access to blue space within their 1 km residential areas and, among these participants, over 

half having less than 2.25% of their neighbourhood covered by blue space. In support, the 

authors previously showed (McDougall et al., 2021) that mid-age and older adults (< 65 

years) were 3.5% less likely to be prescribed antidepressant medication when exposed to a 

high freshwater blue space coverage (>3%); however, no positive effect on medication 

prescriptions was observed in residents living in a neighbourhood with no and/or limited 

availability of blue space (~ 0-0.25%), suggesting that the effects of exposure to blue spaces 

on CAG could depend upon on the amount of neighbourhood area that is devoted to natural 

environments. Further research is needed to establish whether there is a minimum percentage 
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of parkland and/or blue space that is required to positively affect cognitive age in mid-age 

and older adults. 

No significant associations were found between population density, street intersection 

density, commercial land use and CAG; however, past studies have shown that land use mix 

(Chan et al., 2022; Wu et al., 2015), access to local amenities (post office, libraries) and 

recreational sites (Clarke et al., 2015; Finlay et al., 2021), population density (Cerin et al., 

2021; Saenz et al., 2018), public transport accessibility (Chan et al., 2022; Clarke et al., 

2012), neighbourhood walking destination density (Besser et al., 2021b) and street 

intersection density (Watts et al., 2015) were associated with better cognitive function in 

older adults. A possible explanation for the finding might be that the built environment 

measures used in this study might have been too crude, failing to provide sufficiently detailed 

information on relevant destination types that support cognition-enhancing activities (Cerin et 

al., 2021; Poudel et al., 2022). Furthermore, the selected built environment features might 

have been too distal to observe significant associations between them and CAG. Mediation 

analyses focusing on the potential mechanisms explaining the nexus between the built 

environment and CAG, such as the type and frequency of physical activity and/or social 

contacts, might have yielded positive indirect effects (Cerin et al., 2022; Cerin et al., 2021; 

Jimenez et al., 2022). For example, the positive associations of population density with 

memory and processing speed performance in mid-age and older adults were in part 

explained by transportation walking (Cerin et al., 2021). Densely populated neighbourhoods 

with good access to public transport may encourage older adults to walk, and engagement in 

physical activity is associated with better cognitive health (Sylvers et al., 2022).  Lastly, the 

examined built environment characteristics may only relate to specific cognitive functions 

(e.g., memory, alertness, inhibition) (Besser et al., 2021b), as opposed to an individual’s 

overall cognitive ageing. These issues need to be clarified in future studies.  
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We found that higher neighbourhood socio-economic status, as indicated by higher 

IRSAD scores, was associated with younger cognitive age in mid-aged and older adults.  This 

finding is in line with other studies, showing that affluent neighbourhoods relate to better 

cognitive health (Besser et al., 2017; Shih et al., 2011) and are associated with lower risks of 

age-dependent conditions (Pase et al., 2022). One of the underlying mechanisms that explains 

the association is that residents who live in affluent neighbourhoods are more likely to benefit 

from physical and leisure activities, social engagement, and cognitive stimulation (Besser et 

al., 2017; Sisco & Marsiske, 2012). Ihle and colleagues (2022) found that approximately 

42.5% of the negative relationship between neighbourhood socio-economic status and older 

adults’ rate of cognitive decline over a 6-year period was mediated by more frequent 

engagement in leisure activities, supporting the notion that neighbourhoods affect cognitive 

processes through increasing opportunities for a cognitively-enhancing lifestyle. Thus, 

neighbourhood socio-economic status is an important determinant of cognitive health and is 

supported by our finding that higher IRSAD predicts smaller CAG scores in mid-age and 

older adults.  

Contrary to our hypothesis, annual average concentrations of PM2.5 and NO2 were not 

significantly associated with CAG in mid-age and older adults. While unexpected, these 

findings may be due to levels of air pollutants in our study possibly being too low to affect 

cognitive ageing, with mean NO2 and PM2.5 being 5.5 ppb and 6.3 µg/m3, respectively. 

Significantly higher concentrations of air pollutants were observed in other countries. For 

example, some studies have reported values ranging from 10.54 to 12.6 µg/m3 for PM2.5 and 

10.43 to 21.5 ppb for NO2 in the U.S (Christensen et al., 2022; Wang et al., 2021), where 

worsened cognitive performance was observed among those living in more polluted areas.  

4.1. Strengths and Limitations 
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This study has several strengths, such as utilising a large dataset (N = 3418) of 

Australian adults, with good geographical coverage and sample diversity. Unlike previous 

studies, we used a quantifiable and promising indicator (CAG) of normal cognitive ageing, 

estimated using supervised machine learning, to disentangle the conjoint linear and 

curvilinear effects of characteristics of the neighbourhood natural, built, and socio-economic 

environment in conjunction with ambient air pollution on cognitive age. Importantly, 

machine learning demonstrated equally or slightly superior predictive accuracy in predicting 

CAG over traditional methodology in a full and in a sub-sample of individuals aged 50+ 

years, which can be indicative of cognitive ageing (Appendix M and N). Though it is also 

important to note that machine learning would have demonstrated far greater superiority in 

comparison to traditional statistical regression models if a more comprehensive 

neurocognitive battery was used in predicting cognitive age.  

Further, better performing individuals may be more likely to move to affluent 

neighbourhoods, as they may have higher education and occupation, or because they seek to 

have facilities within walking distance from home, and good access to physical activity 

infrastructure and health services (Besser et al., 2021b). We addressed the issue of reverse 

causality arising from neighbourhood self-selection (choosing to live in areas that support 

their lifestyle) by adjusting for this factor (captured by a neighbourhood self-selection 

questionnaire) in the regression models. We carefully considered any plausible associations 

among many other factors in the form of DAGs (Figure S2 in Appendix G).   

Limitations include the cross-sectional nature of the study and the use of coarse 

measures of destination accessibility, which could have limited our ability to adequately 

examine the associations between urban environments and CAG and estimate causal effects. 

For example, an early life exposure to parkland and/or greater accumulation of parkland 

availability over the individual’s life course could have contributed to younger cognitive age 
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in adults (Clarke et al., 2014). Moreover, in our study, we cannot distinguish cognitive ageing 

from individual differences in cognitive performance at baseline (prior to declines due to 

ageing), as the data we used were cross-sectional. Another limitation is that we did not 

consider the potential variability of exposure to air pollution, as some participants could have 

experienced more days in which the air quality was dangerous to cognitive health. Lastly, our 

prediction of cognitive age may have been improved with a larger training dataset. Future 

research should address these limitations by conducting longitudinal studies to capture the 

trajectory of CAG changes across time, as there are different time windows of susceptibility 

to environmental exposures, and by more accurately characterising urban environments to 

delineate the impact of urbanicity on CAG. Future studies should also look into the role of 

relevant mediators, such as physical/social activities, to explain the complex relationships 

between the neighbourhood environment and CAG, and to advance our understanding of the 

relationship between air pollution and CAG. Future work is critical to improve the potential 

methodological and/or theoretical limitations of available age-prediction models. Lastly, we 

did not include a measure of overall brain health, and this is relevant, as positive associations 

between brain processes and cognitive performance were observed in past studies (Boyle et 

al., 2021; Chen et al., 2022).  

4.2. Conclusions  

We have shown that mid-age and older adults living in neighbourhoods with a higher 

socio-economic status and greater parkland availability are cognitively younger than their 

counterparts, as evidenced by smaller CAG values. Importantly, by examining CAG, it is 

possible to assess whether an individual’s cognitive health is declining more quickly or more 

slowly than is typical for healthy individuals of the same chronological age, thereby, enabling 

early intervention. Furthermore, our results suggest urban environments that support a 

physically- and socially-active lifestyle may be beneficial for cognitive health. Specifically, 
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green space exposure can be a feasible population-level approach to preserve cognitive health 

in ageing populations. There is a need to address the potential methodological and/or 

theoretical limitations of age-prediction models. Future longitudinal studies are needed to 

understand how urban built environmental attributes are related to the trajectory of CAG in 

mid-age and older adults and investigate causal relations among the variables of interest.  
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Supplementary Materials 

Appendix A. 

Socio-demographic characteristics: Participants were asked to self-report their age, sex, 

educational attainment, living arrangement status (living with partner and no children; living 

with partner and children; living alone; other arrangements), annual household income before 

taxes and ethnicity (English-speaking background vs. non-English-speaking background). 

Neighbourhood self-selection: Participants were asked to report on a 5-point Likert-type 

scale the perceived importance of moving to their neighbourhood for the following reasons: 

closeness to open space (1 item); closeness to job or school (1 item); closeness to public 

transportation (1 item); desire for nearby shops and services (1 item); and closeness to 

recreational facilities (1 item). 

 

Appendix B. 
 

Table S1. Influx and outflux statistics (n = 3418).  
Variable pobs influx outflux 
SA1 1 0 1 

Area-level IRSAD 1 0 1 

Age 1 0 1 

Sex 1 0 1 

Living arrangements 0.97 0.02 0.69 

Ethnicity 1 0 1 

Educational attainment 0.99 0.01 0.96 

Household income 0.97 0.03 0.68 

Residential self-selection - access to destinations 0.91 0.08 0.31 

Residential self-selection - recreational facilities 0.91 0.08 0.31 

Spot the Word Test  0.95 0.04 0.66 

Symbol Digit Modalities Test  0.97 0.01 0.77 

California Verbal Learning Test  0.97 0.02 0.76 

Street intersection density (intersections/km2) 1 0 1 

Population density (persons/hectare) 1 0 1 

Commercial land use (%) 1 0 1 

Parkland availability (%) 1 0 1 
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Blue space availability (%) 1 0 1 

Annual average NO2  1 0 1 

Annual average PM2.5   1 0 1 

Cognitive age gap 0.84 0.14 0  

Note: pobs = proportion of observed data; influx = is equal to the number of variable pairs (Yj, Yk) with 
Yj missing and Yk observed, divided by the total number of observed data cells. Influx of a variable 
with no missing data is 0, while variables with 100% of missing data have influx 1. For two variables 
with the same proportion of missing data, the variable with higher influx might be easier to impute 
because it is better connected to the observed data. Outflux is equal to the number of variable pairs 
with Yj observed and Yk missing, divided by the total number of incomplete data cells. Outflux is an 
indicator of the potential usefulness of Yj for imputing other variables. Outflux of a variable without 
missing data is 1 and that of a variable with 100% missing data is 0. For two variables having the 
same proportion of missing data, the variable with higher outflux may be more useful for imputing 
other variables because it is better connected to the missing data. 
 
Appendix C. 

 
Fig. S1. Patterns of missingness (n = 3418). Data were assumed to be missing at random after 
examination of patterns of missingness. 
 

Appendix D. 
 
Table S2. Akaike information criterion values of generalised additive mixed 
regression models with linear and curvilinear regression terms. 
  
Environmental attribute Linear Model Curvilinear Model 
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Population density (persons/hectare) 17690.37 17692.37 
   

Street intersection density (intersections/km2) 17690.18 17694.18 
   

Percentage of commercial land use (% area in residential 
buffer) 17690.06 17694.06 

   
Percentage of parkland use (% of area in residential buffer) 17682.41 17688.41 

   
Percentage of blue space use (% of area in residential buffer) 17692.27 17696.27 

   
Area-level socio-economic status 17682.37 17689.33 

   
Annual average NO2 (ppb) 17684.07 17696.07 

   
Annual average PM2.5 (µg/m3) 17684.07 17696.07 

   
Abbreviations. ppb, parts per billion; NO2, nitrogen dioxide; PM2.5, particulate 
matter with diameters of 2.5 micrometres or smaller.  
Smaller Akaike information criterion values indicate a better fitting model. 
Regression analyses performed on complete cases (n = 2883).  

 
Appendix E. 
 
Table S3. Outline of regression analyses: Estimation of total effects of 
environmental attributes on cognitive age gap. 

Step Exposure(s) / effect(s) 
Confounders and 
covariates Regression models 

1Ta Population density (persons/hectare) Age, sex, English-speaking 
background, living 
arrangements, educational 
attainment, residential self-
selection related to access to 
destinations and recreational 
facilities, household income 

Two GAMMs (one GAMM 
with a linear and another 
with a smooth term for 
each environmental 
attribute).  
GAMMs with Gaussian 
variance and identity link 
functions were used for 
the regression analyses.        

1Tb Street intersection density 
(intersections/km2) 

Age, sex, English-speaking 
background, educational 
attainment, household 
income, living arrangements, 
population density, residential 
self-selection related to 
access to destinations and 
recreational facilities 

As above 

      

1Tc Percentage of commercial land use  
(% area in residential buffer) 

Age, sex, English-speaking 
background, household 
income, living arrangements, 
educational attainment, 
population density, residential 
self-selection related to 
access to destinations and 
recreational facilities 

As above 



38 
 

      

1Td Percentage of parkland  
(% of area in residential buffer) 

Age, sex, English-speaking 
background, educational 
attainment, household 
income, living arrangements, 
population density, 
percentage of commercial 
land use, residential self-
selection related to 
destinations and recreational 
facilities 

As above 

      

1Te Percentage of blue space  
(% of area in residential buffer) 

Age, sex, English-speaking 
background, educational 
attainment, residential  
self-selection related to 
destinations and recreational 
facilities, household income, 
living arrangements, 
population density 

As above 

Step Exposure(s) / effect(s) 
Confounders and 
covariates Regression models 

 

  
      

1Tf Area-level socio-economic status 
(SES) 

Age, sex, living 
arrangements, household 
income, percentage of blue 
space, percentage of 
commercial land use, English-
speaking background, 
educational attainment, 
percentage of parkland use, 
population density, street 
intersection density, 
residential self-selection 
related to destinations and 
recreational facilities 

As above 

      

1Tg Annual average NO2 (ppb) Age, sex, English-speaking 
background, household 
income, living arrangements, 
educational attainment, 
population density, area-level 
SES, street intersection 
density, percentage of 
commercial land use, 
percentage of parkland, 
residential self-selection 
related to destinations and 
recreational facilities 

As above 

      

1Th Annual average PM2.5 (µg/m3) Age, sex, English-speaking 
background, household 
income, living arrangements, 
educational attainment, 
population density, area-level 
SES, street intersection 
density, percentage of 
commercial land use, 

As above 
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percentage of parkland, 
residential self-selection 
related to destinations and 
recreational facilities 

Abbreviations. GAMM, generalised additive mixed model; ppb, parts per billion. 
"T" in the Step refers to "total effect". 
 
Appendix F. 
 
Table S4. Outline of regression analyses: Estimation of direct effects of 
environmental attributes on cognitive age gap. 

Step Exposure(s) / effect(s) Confounders and covariates Regression models 
2Da Population density 

(persons/hectare) 
Age, sex, English-speaking background, 
living arrangements,  
educational attainment, residential self-
selection related to access to 
destinations and recreational facilities, 
household income, annual average NO2 
and PM2.5, area-level SES, percentage 
of blue space, percentage of commercial 
land use, percentage of parkland use, 
street intersection density 

Two GAMMs (one 
GAMM with a linear and 
another with a smooth 
term for each 
environmental attribute).  
GAMMs with Gaussian 
variance and identity 
link functions were used 
for the regression 
analyses.         

2Db Street intersection density 
(intersections/km2) 

Age, sex, English-speaking background, 
educational attainment, household 
income, living arrangements, population 
density, residential self-selection related 
to access to destinations and 
recreational facilities, annual average 
NO2 and PM2.5, area-level SES, 
percentage of blue space, percentage of 
commercial land use, percentage of 
parkland use 

As above 

  
 

   

2Dc Percentage of commercial land 
use  
(% area in residential buffer) 

Age, sex, English-speaking background, 
household income, living arrangements, 
educational attainment, population 
density, residential self-selection related 
to access to destinations and 
recreational facilities, annual average 
NO2 and PM2.5, area-level SES, 
percentage of blue space, percentage of 
parkland use, street intersection density 
  

As above 

2Dd Percentage of parkland  
(% of area in residential buffer) 

Age, sex, English-speaking background, 
educational attainment, household 
income, living arrangements, population 
density, percentage of commercial land 
use, residential self-selection related to 
destinations and recreational facilities, 
annual average NO2 and PM2.5, area-
level SES, percentage of blue space, 
street intersection density 

As above 
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2De Percentage of blue space  
(% of area in residential buffer) 

Age, area-level SES, sex, English-
speaking background, educational 
attainment, residential self-selection 
related to destinations and recreational 
facilities, household income, living 
arrangements, population density, 
percentage of commercial land use, 
percentage of parkland use, street 
intersection density 

As above 

      

2Df Area-level socio-economic status 
(SES) 

Age, sex, living arrangements, 
household income, percentage of blue 
space, percentage of commercial land 
use, English-speaking background, 
educational attainment, percentage of 
parkland use, population density, street 
intersection density, residential self-
selection related to destinations and 
recreational facilities, annual average 
NO2 and PM2.5 

As above 

  
 

   

2Dg Annual average NO2 (ppb) Age, sex, English-speaking background, 
household income, living arrangements, 
educational attainment, population 
density, area-level SES, street 
intersection density, percentage of 
commercial land use, percentage of 
parkland, residential self-selection 
related to destinations and recreational 
facilities 

As above 

      

2Dh Annual average PM2.5 (µg/m3) Age, sex, English-speaking background, 
household income, living arrangements, 
educational attainment, population 
density, area-level SES, street 
intersection density, percentage of 
commercial land use, percentage of 
parkland, residential self-selection 
related to destinations and recreational 
facilities 

As above 

Abbreviations. GAMM, generalised additive mixed 
model; ppb, parts per billion. "D" in the Step refers 
to "direct effect".  

 

Appendix G. 
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Fig. S2. Directed acyclic graph (DAG) depicting the hypothesised relations between environmental 
attributes, socio-demographic factors and cognitive age gap Through the DAG, we identified which 
covariates to include in the statistical analyses to sufficiently control for potential confounders. This 
particular DAG was used to inform the model of the total effect of percentage of parkland in the 
environment on cognitive age gap. Variables with red circles denote the set of potential confounders. 
A minimal sufficient set of confounders (included in the regression models) is a subset of this set of 
variables. 

A causal DAG is a graph with arrows that show the direction of hypothesised causal effects 

(e.g., from parkland availability to CAG). We constructed fourteen DAGs (seven for total and 

seven for direct effects) to estimate conjoint total and direct effects of each neighbourhood 

environmental attribute on cognitive age gap and, thus, help us identify a minimal set of 

variables that are required to be accounted for in regression models (e.g., education, gender, 

income and/or other environmental attributes) to ensure that estimates are unbiased. DAGs 

display assumptions about relationships between variables in the form of colourful nodes (  

= exposure variable,  =  adjustment variable,  blue = outcome variable and   = 

mediator) and arrows going from one node to another (red arrows represent biasing paths and 

green arrows indicate direct paths). The lack of an arrow represents an assumption that there 

is no direct causal relationship between those variables, whereas the presence of an arrow 

between two variables suggests that there is a direct relationship between the variables. The 

assumptions we make in DAGs are based on theory and empirical evidence; this particular 

DAG was used to inform the model of the total effect of percentage of parkland (exposure 

variable) in the neighbourhood environment on cognitive age gap (outcome variable). For 

example, there is evidence to suggest that outdoor air pollution adversely affects cognitive 

function (Peters et al., 2019), therefore, we need to draw an arrow from the air pollution node 

to the cognitive age gap node. Another example is that we have an arrow going from the 

Gender node to the Income node because past research has shown that, on average, men earn 

more than women (e.g., Forrester et al., 2020) and we have an arrow from the English-

speaking background node to the CAG node, as past studies have shown the role of ethnicity 

in cognitive function (Meyer et al., 2021). We further hypothesised that neighbourhood 
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population density and percentage of commercial land use would be positively related to 

CAG, as they provide opportunities for physical, social and cognitive activities to residents 

(Besser et al., 2017). The effects of percentage of parkland and blue space in the 

neighbourhood on CAG were expected to be positive (Besser et al., 2017; Cerin et al., 2021) 

and those of air pollution negative (Peters et al., 2019). Street intersection density may 

promote active transport (a potentially beneficial factor for cognitive health) (Besser et al., 

2017) and, thus, result in lower levels of traffic-related air pollution (a harmful influence) 

(Zhang et al., 2019). Socio-economically advantaged neighbourhoods are associated with 

better cognitive health in older adults (Besser et al., 2017) and reduced risks of dementia 

(Pase et al., 2022) compared to neighbourhoods with lower socio-economic status. These 

positive associations are expected because affluent neighbourhoods provide many 

opportunities for individuals to engage in physical, cognitive, and social activities, and these 

are well-known predictors of better cognitive function (Barulli & Stern, 2013).  

 
Appendix H. 
 

Table S5. Total effects of environmental attributes on cognitive age gap (non-
imputed data). 

Environmental attribute b (95% CI) p value 

Population density (persons/hectare) -0.011 (-0.032, 0.009) .28 

Street intersection density (intersections/km2) 0.006 (-0.002, 0.013) .14 

Percentage of commercial land use (% area in residential buffer) 0.025 (-0.007, 0.057) .13 

Percentage of parkland (% of area in residential buffer) -0.026 (-0.042, -0.009) .002 

Percentage of blue space (% of area in residential buffer) -0.015 (-0.107, 0.076) .75 

Area-level socio-economic status -0.094 (-0.179, -0.009) .03 

Annual average NO2 (ppb) -0.023 (-0.156, 0.110) .74 

Annual average PM2.5 (µg/m3) -0.035 (-0.167, 0.096) .60 
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Abbreviations. b, regression coefficient; CI, confidence intervals; ppb, parts per billion.  
Effects in bold are statistically significant at a probability level of 0.05.  
Regression analyses performed on complete cases (n = 2883). 

 

Appendix I. 
 
Table S6. Direct effects of environmental attributes on cognitive age gap (non-
imputed data). 
 

Environmental attribute b (95% CI) p value 

Population density (persons/hectare) -0.017 (-0.047, 0.014) .29 

Street intersection density (intersections/km2) 0.002 (-0.006, 0.009) .62 

Percentage of commercial land use (% area in residential buffer) 0.023 (-0.010, 0.057) .17 

Percentage of parkland (% of area in residential buffer) -0.023 (-0.040, -0.006) .01 

Percentage of blue space (% of area in residential buffer) -0.018 (-0.109, 0.074) .71 

Area-level socio-economic status (SES) -0.093 (-0.180, -0.006) .04 

Annual average NO2 (ppb) -0.026 (-0.160, 0.107) .70 

Annual average PM2.5 (µg/m3) -0.035 (-0.167, 0.096) .60 

Abbreviations. b, regression coefficient; CI, confidence intervals; ppb, parts per billion.  
Effects in bold are statistically significant at a probability level of 0.05. 
Regression analyses performed on complete cases (n = 2883). 
 
 

Appendix J. 

Table S7. Sample characteristics (n = 2883). 
  

Characteristics Statistic Characteristics Statistic 

Socio-demographic characteristics   
Environmental characteristics  

 (1km radius street-network buffers), 
mean (SD)   

Age, years, mean (SD) 60.7 ± 
11.1 

Population density (persons/hectare) 17.3 (1.0) 

Educational attainment, No. (%) 
 

Street intersection density (intersections/ 
km2) 

62.1 
(32.8) 

  Up to secondary 924 
(32.0) 

Percentage of commercial land use (% of 
area) 2.6 (6.2) 

  Trade, technician certificate 835 
(29.0) 

Percentage of parkland (% of area) 11.7 
(13.0) 

  Associate diploma & equivalent 444 
(15.4) 

Percentage of blue space (% of area) 0.3 (2.0) 
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  Bachelor degree, post-graduate diploma 680 
(23.6) 

Annual average NO2 (ppb) 5.5 (2.0) 

Living arrangements, No. (%)  Annual average PM2.5 (µg/m3) 6.3 (1.7) 
  Couple without children 1423 

(49.4) 

 
 

  Couple with children 799 
(27.7)   

  Other 661 
(22.9)   

Residential self-selection - access to 
destinations, M ± SD 3.1 ± 1.4 

 
 

Residential self-selection - recreational 
facilities, M ± SD 3.1±1.5 

 

 
Sex, No. (%)    
  Female 1611 

(55.9)   
  Male  1272 

(44.1)   
Area-level IRSAD, mean (SD) 6.4 ± 2.7   
Ethnicity, No. (%)    
  English-speaking background 2621 

(90.9)   
  Non-English-speaking background 262 (9.1)   
Household income, No. (%)    
  Up to $49,999 953 

(33.1)   
  $50,000- $99,000 794 

(27.5)   
  $100,000 and over 905 

(31.4)   
  Does not know or refusal 231 (8.0)     
Abbreviations. M, mean; SD, standard 
deviation; IRSAD, Index of Relative 
Socioeconomic Advantage and 
Disadvantage; NO2, nitrogen dioxide; 
PM2.5, particulate matter <2.5 µm; 
environmental characteristics have no 
missing data.    

 

Appendix K. 
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Fig. S3. Scatterplot of the correlation between predicted cognitive age and chronological age based 
on the testing dataset (n = 2883) The predicted value represents the prediction of cognitive age using 
a combination of Symbol Digit Modalities Test, California Verbal Learning Test, Spot the Word Test.  
 
Appendix L. 
 
Table S8. Gradient boosting machine model accuracy.  

Model R² RMSE MAE r 
Predicted Cognitive Age 0.42 8.51 6.80 0.65 

Abbreviations. Average R², coefficient of determination; 
RMSE, root mean square error; MAE, mean absolute 
error; r, correlation coefficient; CI, confidence intervals. 
Effects are statistically significant at a probability level of 
0.001.          

 

In the neuroimaging literature, the typical accuracy for the prediction of brain age varies from 

2 years to 10 years in terms of mean absolute error (MAE) (Cole et al., 2017). Based on the 

testing dataset (n = 2883), we revealed a large correlation between predicted cognitive age 

and chronological age (r = 0.65) and MAE = 6.80 years, which is consistent with previous 

work on brain age and cognitive age (e.g., Anatürk et al., 2021). 

Appendix M. 
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Table S9. Performance metrics of machine learning for modelling predicted cognitive age 
with chronological age. 
      
Full Sample    

 MSE 72.40 
 MAE 6.80 
 RMSE 8.51 
 R2 0.42 

  r 0.65 
Sub-sample   
 MSE 53.98 

 MAE 5.88 
 RMSE 7.35 
 R2 0.35 

  r 0.59 
 

Appendix N. 

Table S10. Performance metrics of machine learning vs linear regression. 
    Machine Learning Linear Regression 
    

 MSE 72.40 74.00 
 MAE 6.80 6.86 
 RMSE 8.51 8.60 
 R2 0.42 0.40 

  r 0.65 0.64 
 

Appendix O. 

 

Table S11. Direct effects of environmental attributes on cognitive age gap.   

Environmental Attribute b (95% CI) p value 
Population density (persons/hectare) -0.009 (-0.040, 0.023) .59 
Street intersection density (intersections/km2) 0.002 (-0.006, 0.009) .68 
Percentage of commercial land use (% area in residential buffer) 0.027 (-0.007, 0.061) .12 
Percentage of parkland (% of area in residential buffer) -0.020(-0.037, -0.003) .02 
Percentage of blue space (% of area in residential buffer) -0.001 (-0.094, 0.093) .99 
Area-level IRSAD -0.131 (-0.218, -0.044) .00 
Annual average NO2 (ppb) -0.072 (-0.208, 0.063) .30 

Annual average PM2.5 (µg/m3) -0.028 (-0.161, 0.105) .68 
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Abbreviations. b, regression coefficient; CI, confidence intervals. 
Effects in bold are statistically significant at a probability level of 0.05.  
  

  

Table S12. Total effects of environmental attributes on cognitive age gap.    

Environmental Attribute b (95% CI) p value 
Population density (persons/hectare) 

-0.010 (-0.031, 0.011) .37 

Street intersection density (intersections/km2) 
0.007 (-0.001, 0.014) .08 

Percentage of commercial land use (% area in residential buffer) 
0.028 (-0.005, 0.061) .09 

Percentage of parkland (% of area in residential buffer) 
-0.025 (-0.041, -0.008) .00 

Percentage of blue space (% of area in residential buffer) 
-0.002 (-0.096, 0.092) .97 

Area-level IRSAD 
-0.138 (-0.223, -0.054) .00 

Annual average NO2 (ppb) 
-0.075 (-0.210, 0.060) .28 

Annual average PM2.5 (µg/m3) 
-0.028 (-0.161, 0.105) .68 

Abbreviations. b, regression coefficient; CI, confidence intervals.  
Effects in bold are statistically significant at a probability level of 0.05.  
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