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Abstract
The field of artificial intelligence recently witnessed remarkable growth, leading
to the development of complex deep learningmodels that perform exceptionally
across various domains. However, these developments bring forth critical issues.
Deep learning models are vulnerable to inheriting and potentially exacerbating
biases present in their training data. Moreover, the complexity of these models
leads to a lack of transparency, which can allow biases to go undetected. This
can lead to ultimately hindering the adoption of these models due to a lack
of trust. It is therefore crucial to foster the creation of artificial intelligence
systems that are inherently transparent, trustworthy, and fair.

This thesis contributes to this line of research by exploring the interpretability of
deep learning through self-explainable models. These models represent a shift
towards more transparent systems, offering explanations that are integral to
the model’s architecture, yielding insights into their decision-making processes.
Consequently, this inherent transparency enhances our understanding, thereby
providing a mechanism to address the inadvertent learning of biases.

To advance the development of self-explainable models, this thesis undertakes
a comprehensive analysis of current methodologies. It introduces a novel algo-
rithm designed to enhance the explanation quality of one of the state-of-the art
models. In addition, this work proposes a novel self-explainable model that sur-
passes existing methods by generating explanations through a learned decoder,
facilitating end-to-end training, and addressing the prevalent trade-off between
explainability and performance. Furthermore, to enhance the accessibility and
sustainability of these models, this thesis also introduces a universal methodol-
ogy to transform any pre-trained black-box model into a self-explainable one
without the need for re-training.

Through the proposed methodology, this research identifies and counteracts
the learning of artifacts – spurious correlations – from the data, further em-
phasizing the need for transparent models. Additionally, this thesis expands
its scope to encompass the dimension of fairness for large language models,
demonstrating the tendency of these models to reinforce social biases.
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The results of this research highlight the efficacy of the proposed methodolo-
gies, thereby paving the way for artificial intelligence systems that are not
only accurate but also transparent, fair, and reliable, to facilitate widespread
adoption and trust in artificial intelligence technologies.
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1
Introduction
Machine learning (ML), a fundamental branch of Artificial Intelligence (AI),
leverages statistical techniques to enable computers to perform complex tasks
through the recognition of patterns within curated datasets [17]. Deep Learn-
ing (DL), a subset of ML characterized by neural networks with multiple layers,
further refines this capability, allowing for the analysis and interpretation of
high-dimensional data across numerous applications. These networks excel at
learning hierarchical representations, which is particularly beneficial for pro-
cessing unstructured data such as images, audio, and text [18]. Recently, due to
the availability of large datasets, as well as the ever expanding computing capa-
bilities, DL has gained extensive adoption [18, 19] revolutionizing a multitude
of fields such as computer vision [20, 21] and Natural Language Processing
(NLP) [22, 23]. In computer vision, ML algorithms have significantly advanced
the computer’s ability to process visual information, enabling progress in image
recognition and object detection [20, 24, 25]. In NLP, these algorithms, such
as Large Language Models (LLMs), have achieved a nuanced understanding
of language, improving tasks such as machine translation, sentiment analysis,
and the development of conversational agents [22, 23, 26].

As these models have evolved and their capabilities have become more so-
phisticated, they are beginning to be deployed within domains that are more
safety-critical [27, 28]. Such domains include healthcare, where ML models
are being developed to assist in patient diagnoses and treatment plans [27, 29,
30], finance, where ML is used for complex tasks such as credit scoring [31,
32] and algorithmic trading [33], affecting investment strategies and fraud
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2 chapter 1 introduction

detection systems [28] and autonomous driving, where these models process
and interpret sensor data to make real-time driving decisions [34, 35].

Nevertheless, this transition of DL into applications with significant safety and
ethical implications necessitates a deeper understanding of how these models
function andmake decisions [36]. However, the inherent complexity of DL mod-
els, with their deep, non-linear architectures and extensive parameters, often
results in opaque decision-making, posing challenges to achieving transparency
and interpretability [37]. Consequently, the field of Explainable Artificial Intel-
ligence (XAI) has emerged, focusing on developing techniques that render the
inner workings of DL models more accessible and understandable to humans,
thereby facilitating their responsible use in high-stakes scenarios.

Additionally, the efficacy of DL is subject to further challenges, apart from trans-
parency, that can impact model reliability and fairness. One of these concerns
is artifact learning, where DL algorithms may inadvertently learn intended or
unintended correlations or artifacts present in the training data, leading to
skewed results [38]. Furthermore, fairness of the decisions of these models
is also an important consideration in the development and deployment of DL
systems [39]. Biases in the training data can result in discriminatory outcomes,
unknowingly perpetuating existing inequalities. In the light of these challenges,
there is an increasing imperative to develop AI that is responsible, trustworthy,
as well as transparent [36, 40], ensuring that the deployment of DL maximizes
benefits while minimizing potential adverse impacts.

The focus of this thesis is to tackle these challenges by developing new method-
ologies in the field of trustworthy DL These challenges are presented in the
following section, and addressed in the included papers in this thesis.

1.1 Key Challenges and Opportunities

This thesis will specifically address three key challenges in DL: (1) Lack of
accurate and precise self-explainability methods, (2) Artifact learning in DL
models, (3) Fairness in LLMs.

Lack of accurate and precise self-explainabilitymethods DL models
often lack transparency and interpretability, making it challenging to under-
stand the reasoning behind their decisions. To address this challenge, recently,
the field of XAI has emerged [36, 37]. XAI focuses on developing methods that
can provide explanations for the decisions made by traditionally black-box DL
models. XAI has been developed recently in two parallel branches: post-hoc
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methods and Self-Explainable Models (SEMs) [1].

Post-hocmethods aim to explain the decisions of black-boxmodels retroactively.
These methods analyze the internal workings of an already trained model and
provide insights into which features or factors contributed to a particular de-
cision. While these have been useful in explaining the decisions of DL models,
they have demonstrated limitations in the fidelity and accuracy of the gener-
ated explanations [36], occasionally producing explanations that are imprecise
or potentially misleading [41]. On the other hand, SEMs are designed to in-
corporate the capability to provide explanations and decisions simultaneously.
These models are built with inherent interpretability, allowing them to gener-
ate decisions as well as their corresponding explanations simultaneously. SEMs
are considered more desirable as they eliminate the need for separate post-hoc
analysis while providing more faithful explanations [36]. However, current
SEMs still face challenges in generating precise explanations [1] and often lag
behind black-box models in terms of predictive performance [42].

Artifact learning in DL models DL algorithms, while effective at learn-
ing patterns and relationships from large datasets, can inadvertently pick up
artifacts present in the training data. These artifacts can lead to unintended cor-
relations and biases affecting the model’s decision-making process, hindering
their generalizability and potentially compromising their fairness and relia-
bility. One example of such artifacts is the Clever Hans effect [43–45], where
models learn to rely on unintended cues or correlations in the training data to
achieve the desired outcome, rather than truly understanding the underlying
concepts. This can result in models that appear to perform well during training
but fail to generalize to new, unseen data. Moreover, the presence of artifacts in
the training data can be exploited by adversaries to generate malicious attacks.
For instance, backdoor attacks can be designed to manipulate the model’s be-
havior by injecting specific patterns or triggers into the training data [46, 47].
These attacks can compromise the integrity and security of the model, leading
to biased or manipulated outcomes.

Transparency and interpretability in DL models are crucial for addressing arti-
fact learning. XAI methods can help identify biases, artifacts, and unintended
correlations [44]. By understanding how the model arrives at its decisions, we
can detect and mitigate the impact of artifacts, improving the fairness and
reliability of the model’s outcomes.

Fairness in LLMs LLMs have indeed gained significant popularity in recent
years, with models like Generative Pretrained Transformer (GPT) becoming
widely used in various applications [22]. The accessibility, usability, and success
of LLMs have led to their widespread adoption in real-world scenarios. However,
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it is important to recognize that these models are still relatively young, and
their reliability and trustworthiness have not been extensively studied. One
critical aspect to consider is the potential bias present in the training data used
to train LLMs. The data available online is known to be historically biased,
reflecting societal biases and prejudices [48]. Since LLMs are trained on vast
amounts of data, it is crucial to understand the fairness implications of these
models. Biases and stereotypes present in the training data can be learned
and perpetuated by LLMs, leading to biased or unfair outcomes in their de-
cisions [49]. Understanding and addressing biases and stereotypes in LLMs
is thus essential to enhance their fairness and accuracy, making them more
reliable and trustworthy.

By focusing on these key challenges, this thesis aims to contribute to the de-
velopment of responsible and trustworthy DL models. The research conducted
will explore innovative approaches to enhance self-explainability, mitigate un-
intended artifact learning, and investigate biases in LLMs. Ultimately, the goal
is to advance the field of DL and promote the adoption of transparent, safe and
fair AI systems.

1.2 Research Objectives

To address the key challenges above, this thesis proposes novel methodology
for DL, focusing mainly on XAI and trustworthiness. The main objectives of the
thesis are summarized as follows:

1. Enhancing transparency of AI systems: Addressing the gaps in devel-
opment of XAI by improving explainability of existing SEMs and devel-
opment of novel SEMs.

2. Enhancing reliability of AI systems: Identifying and mitigating the un-
intended artifact learning in DL models, thereby preventing their reliance
on erroneous features. Further, investigating the risks of artifact learning
in an application of healthcare, where such spurious correlations could
lead to severe repercussions.

3. Analysing un-/fairness of AI systems: Investigating fairness of large
language models, involving assessment of their outputs with respect to
biases across different demographics.
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1.3 Proposed Approaches

The methodology developed in this thesis addresses the first research objective
in three different ways: In Paper I, we investigate the quality of explanations of
one of the state-of-the-art SEM,Prototypical Part Network (ProtoPNet) [42] and
propose a methodology, called Prototypical Relevance Propagation (PRP), for
generatingmore accurate and precise explanations for prototypical SEMs. In Pa-
per III, we propose a novel SEM based on a Variational Autoencoder (VAE) [50]
backbone, where a mixture of VAEs are trained, each representing a different
class-prototype. This allows the model to incorporate the inherent capability
to generate class-based explanations in the input-space with the help of the
learned decoder without losing accuracy. Further, in Paper IV, we propose a uni-
versal method for converting any black-box method into a self-explainable one
without requiring re-training, thus promoting the accessibility of SEMs.

Research objective 2 is addressed in Paper I and Paper II. In Paper I, we tackle
the problem of artifact detection, specifically focusing on Clever Hans and back-
door artifacts. Utilizing the proposed PRP, we generate precise explanations for
training data for all prototypes. We then apply Multi-View Clustering (MVC)
on these multiple prototypical explanations to clean the data, thereby miti-
gating the possibility of artifact learning. In Paper II, we utilize PRP to reveal
potential biases inadvertently learned by DL models within the critical domain
of healthcare. Our findings indicate that models trained on data amalgamated
from various hospitals or sources may inherit and propagate biases, leading to
unreliable outcomes.

The research objective 3 is addressed in Paper V, where we extend our research
focus into the domain of LLMs. We scrutinize the propagation of existing de-
mographic biases in LLMs when applied to tabular tasks. This investigation is
crucial for assessing the fairness and impartiality of LLMs in practical applica-
tions.

1.4 Brief Summary of Included Papers

The thesis’ main contribution are the five included papers which are briefly
summarized in the following. Figure 1.1 provides an overview of the topics
considered in various papers.

[I] Srishti Gautam, Marina M-C Höhne, Stine Hansen, Robert Jenssen,
and Michael Kampffmeyer. “This looks more like that: Enhancing self-
explainingmodels by prototypical relevance propagation.” Pattern Recog-
nition 136 (2023), p. 109172.



6 chapter 1 introduction

Explainable
AI

Fair
AI

Reliable
AI

Self-Explainable
Models

Artifact
learning

Social biases
in LLMs

Papers I, III, IV

Papers I, II

Paper V

Trustworthy
AI

Figure 1.1: Overview of the topics that the various papers address.

[II] Srishti Gautam,Marina M-C Höhne, Stine Hansen, Robert Jenssen, and
Michael Kampffmeyer. “Demonstrating the risk of imbalanced datasets
in chest x-ray image-based diagnostics by prototypical relevance prop-
agation.” In: 2022 IEEE 19th International Symposium on Biomedical
Imaging (ISBI). IEEE. 2022, pp. 1–5.

[III] Srishti Gautam, Ahcene Boubekki, Stine Hansen, Suaiba Salahuddin,
Robert Jenssen, Marina Höhne, and Michael Kampffmeyer. “Proto-
vae: A trustworthy self-explainable prototypical variational model.”
Advances in Neural Information Processing Systems 35 (2022), pp. 17940–
17952.

[IV] Srishti Gautam,Ahcene Boubekki,Marina Höhne, andMichael C Kampff-
meyer. “Prototypical Self-Explainable Models Without Re-training.”
Under Review (2023).

[V] Yanchen Liu, Srishti Gautam, Jiaqi Ma, and Himabindu Lakkaraju. “In-
vestigating the Fairness of Large Language Models for Predictions on
Tabular Data.” Under Review (2023).

Paper I This paper tackles the challenges associated with inadvertent Clever
Hans artifacts and backdoor learning, proposing PRP as our solution. PRP is
able to generate more accurate and precise explanations for existing proto-
typical self-explainable methods. We focus on one of the state-of-the-art self-
explainable model, ProtoPNet, and demonstrate how PRP is able to capture
the learning of artifacts more precisely as compared to the original explana-
tions generated by ProtoPNet. Following this, we further propose to clean the
dataset using PRP explanations and MVC, thereby suppressing the possibility
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of artifact-learning by the models.

Paper II This paper focuses on the problem of Pneumonia detection in Chest
X-Ray images. Our investigation is particularly focused on the intricacies that
arise when combining data from multiple sources or hospitals, a scenario often
encountered in data-intensive DL models. We illustrate, with the aid of our
proposed PRP method, how a small source-related label imbalance is sufficient
for DL models to function more as “hospital detectors”. For example, when a
significant majority of Pneumonia cases originate from Hospital 1, these models
inadvertently shift their role from being “disease-detectors” to identifying the
source hospital instead. As a result, this research underscores the importance
of employing SEMs within safety-critical domains.

Paper III ProtoPNet, one of the early and state-of-the-art SEMs, relies on pro-
jecting the learned prototypes (vectors in the latent space) to the training data
for visualization. However, this creates a bottleneck in the end-to-end learning
of the whole model, thereby impacting accuracy. In this paper, we tackle this
issue by proposing a probabilistic and generative SEM based on a VAE back-
bone, called Prototypical Variational Autoencoder (ProtoVAE). ProtoVAE learns
a transparent prototypical space by training a mixture of VAEs, each sharing
the same encoder and decoder but, with a separate Gaussian prior centered
on different class prototypes. The decoder enables these class-prototypes to
be directly visualized in the input space. ProtoVAE achieves this transparent
decision-making through end-to-end training, eliminating the need for trade-
offs in accuracy often associated with other SEMs.

Paper IV In this paper we introduce K-Means Explainer (KMEx), a more gen-
eralized SEM, having the unique capability to transform any existing black-box
model into a self-explainable one without requiring re-training. It achieves this
by preserving the black-box model’s backbone, learning prototypes within the
latent space using 𝐾 -Means clustering, and replacing the final classification
layer with a 1-nearest-neighbor classifier based on the acquired prototypes. We
further propose a comprehensive quantitative evaluation framework for pro-
totypical SEMs, thereby highlighting key strengths and weaknesses of several
state-of-the-art SEMs.

Paper V In this paper, we extend our research focus into the domain of
LLMs, which have gained recent widespread usage, and delve into the fairness
achieved by these when applied to tabular tasks. These models differ from
traditional ML approaches in that they can interpret contextual information,
such as column names, within tabular data. This capability, however, raises
concerns about the potential for LLMs to amplify demographic biases. We un-
dertake a thorough examination to assess the fairness of LLMs by comparing
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different classification strategies for tabular data, including zero-shot learning,
few-shot in-context learning, and fine-tuning of pre-trained LLMs. This mul-
tifaceted approach underscores the persistence of bias-related challenges in
LLMs.

1.5 Other Contributions

During the course of this thesis, several works were contributed (as listed be-
low), majorly focusing on the prototypical learning. These contributions have
propelled advancements in AI, both through enhancements in theoretical under-
standing and through the demonstration of practical applications, particularly
in the analysis of medical images.

[6] Srishti Gautam, Marina M-C Höhne, Stine Hansen, Robert Jenssen,
and Michael Kampffmeyer. “This looks more like that: Enhancing self-
explaining models by prototypical relevance propagation.” National
Conference on Image Processing and Machine Learning (NOBIM) (2021).
Extended abstract and oral presentation.

[7] Stine Hansen, Srishti Gautam, Robert Jenssen, and Michael Kampff-
meyer. “Anomaly detection-inspired few-shot medical image segmen-
tation through self-supervision with supervoxels.” National Conference
on Image Processing and Machine Learning (NOBIM) (2021). Extended
abstract and oral presentation.

[8] Srishti Gautam,Marina M-C Höhne, Stine Hansen, Robert Jenssen, and
Michael Kampffmeyer. “Artifact Detection with Prototypical Relevance
Propagation.” Visual Intelligence Days (2021). Oral presentation.

[9] Srishti Gautam. “Self-Explainability and Artifact detection: Along with
applications to medical data.” COMP-7950-T04 – Advanced Machine
Learning Event, University of Manitoba, Canada (2021). Invited Talk.

[10] Srishti Gautam,Marina M-C Höhne, Stine Hansen, Robert Jenssen, and
Michael Kampffmeyer. “Demonstrating the risk of imbalanced datasets
in chest x-ray image-based diagnostics by prototypical relevance prop-
agation.” NORA Annual Conference (2022). Extended abstract and oral
presentation.

[11] Srishti Gautam,Marina M-C Höhne, Stine Hansen, Robert Jenssen, and
Michael Kampffmeyer. “Demonstrating the risk of imbalanced datasets
in chest x-ray image-based diagnostics by prototypical relevance prop-
agation.” Visual Intelligence Days (2022). Poster presentation.

[12] Stine Hansen, Srishti Gautam, Robert Jenssen, and Michael Kampff-
meyer. “Anomaly detection-inspired few-shot medical image segmenta-
tion through self-supervision with supervoxels.”Medical Image Analysis
78 (2022), p. 102385.
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[13] Suaiba Amina Salahuddin,Stine Hansen,Srishti Gautam,Michael Kampff-
meyer, and Robert Jenssen. “A self-guided anomaly detection-inspired
few-shot segmentation network.” CEUR Workshop Proceedings. 2022.

[14] Srishti Gautam. “Bias in Machine Learning.” Bias in Artificial Intelli-
gence Workshop at UiT – The Arctic University of Norway (2023). Invited
Talk.

[15] Stine Hansen,Srishti Gautam,Suaiba Amina Salahuddin,Michael Kampff-
meyer, andRobert Jenssen. “ADNet++: A few-shot learning framework
for multi-class medical image volume segmentation with uncertainty-
guided feature refinement.” Medical Image Analysis (2023), p. 102870.

[16] Yanchen Liu, Srishti Gautam, Jiaqi Ma, and Himabindu Lakkaraju. “In-
vestigating the Fairness of Large Language Models for Predictions on
Tabular Data.” NeurIPSWorkshop on Socially Responsible Language Mod-
elling Research (2023).

1.6 Reading Guide

This thesis is structured into five parts: I) Deep Learning Basics, II) Transparency
and Explainability, III) Responsible and Fair AI, IV) Summary of Research, and
V) Included Papers.

Deep Learning Basics provides the basic machine learning concepts (Chapter 2)
and deep learning theory (Chapter 3) relevant for this thesis. Transparency and
Explainability introduces Explainable AI (Chapter 4) with a brief overview of
existing approaches that are relevant for Papers I to 4 of this thesis. Respon-
sible and Fair AI discusses intentional and unintentional artifact learning in
DL (Chapter 5), followed by bias and fairness in LLMs (Chapter 6). Summary
of Research provides a summary of the four included papers, their scientific
contributions, and the specific contributions of the author (Chapter 7 – 11), fol-
lowed by concluding remarks of the work (Chapter 12). Included Papers lists
the included papers in the thesis.





Part I

Deep Learning Basics
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2
Machine Learning
ML, a significant subfield of AI, provides systems with the ability to learn from
data and make decisions. The primary aim of ML algorithms is to uncover
patterns in datasets, employing statistical methods to analyze and understand
complex information [17]. This capability facilitates the generation of predic-
tive insights, allowing these algorithms to make informed decisions based on
the data they process [51]. The broad applicability of ML is demonstrated by its
integration into various sectors, ranging from diagnostic procedures in health-
care [52, 53] to predictive analytics in finance [28, 32, 33], thereby continually
expanding the horizons of machine-driven problem-solving. An ML model is
built upon three essential elements: 1) the dataset that provides the basis for
learning, 2) the specific task the model aims to solve along with the chosen
ML algorithm for solving it, and 3) the performance metrics that evaluate the
effectiveness of the model.

• Dataset: This is the raw material from which knowledge is extracted. It
can come in various forms, such as images, text, or numerical values,
and is often divided into training and testing sets. The quality, quantity,
and relevance of the data directly influence the model’s ability to learn
effectively. Consider the case of a numerical data represented by the tu-
ple (𝑿 , 𝒀 ). In this instance, 𝑿 ∈ R𝑛×𝑑 denotes the input data, typically
organized into a feature matrix with 𝑛 instances and 𝑑 features per in-
stance, where each row is an individual observation and each column
corresponds to a specific attribute of the data and 𝒀 represents the ex-
pected outcome or target. While some datasets provide both the input

13
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Setosa Versicolor Virginica

Figure 2.1: Example of images from three classes of Iris dataset [54] (top left), the nu-
merical features available for this dataset (bottom left), and 2-dimensional
plots of selected features (right).

𝑿 and the corresponding targets 𝒀 , others may only include the input
data.

To exemplify, the Iris dataset [54] has been used as a benchmark in
ML [55, 56], encompassing a collection of morphological measurements
from three varieties of the Iris plant. It consists of 150 instances, each
characterized by four features: sepal length, sepal width, petal length, and
petal width. The provided target variable 𝒀 categorizes each instance into
one of three species: setosa, versicolor, or virginica. Figure 2.1 displays
samples from this dataset, showcasing the original flower images, the
extracted features, and feature-based plots.

• ML task and algorithm: The task defines the problem that the ML algo-
rithm is intended to solve. This could range from simple classification
or regression tasks to more complex challenges like NLP or image recog-
nition. The task not only informs the design of the algorithm but also
determines the type of output it is expected to produce. For example,
with the Iris dataset, the ML task is to classify each flower into one of
three species categories, utilizing the features provided. The algorithm’s
design is fundamentally influenced by the nature of the data it uses. If
the algorithm employs the target variable, 𝒀 within the dataset, then the
learning process is categorized as supervised. However, if the target vari-
able is not utilized, the learning falls under the category of unsupervised.

We define an ML algorithm as a function 𝒇𝜽 parameterized by 𝜽 . For
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a given input instance 𝒙𝑖 , the algorithm’s prediction is �̂�𝑖 , such that,
𝒇𝜽 (𝒙𝑖) = �̂�𝑖 holds. In an ideal scenario, the predicted outcome �̂�𝑖 would
be equal to the expected outcome (𝒚𝑖 for supervised learning), indicating
perfect performance by the ML algorithm. However, in practice, discrep-
ancies may occur. The goal is thus to minimize these differences by refin-
ing the parameters 𝜽 . This is accomplished by employing optimization
strategies that aim to minimize a predefined loss function L𝜽 , thereby
iteratively adjusting the parameters 𝜽 of the function 𝒇 to improve its
predictions.

• Evaluation: The performance of an ML model is quantified using various
evaluation metrics that are selected based on the nature of the task at
hand. Common metrics include accuracy, precision, and recall, which pro-
vide insights into the model’s predictive capabilities [57]. The evaluation
process is integral to the model development cycle, as it informs the selec-
tion of the most appropriate algorithm, guides the tuning of algorithm’s
parameters, and ultimately determines the efficacy of the ML application
in practical settings. For example, when working with the Iris dataset, a
key metric for evaluation would be the model’s accuracy, which measures
the proportion of instances that are correctly classified into the three
distinct species categories.

The following section will delve into the supervised and unsupervised ML
paradigms, examining their characteristics, the types of tasks they are suited for,
and providing examples of ML algorithms that can be employed to accomplish
these tasks.

2.1 Supervised learning

Supervised learning is a subcategory of ML, consisting of algorithms trained to
output the labels [58]. This approach involves using a predefined dataset with
known outcomes, denoted as𝒚𝑖 for each input 𝒙𝑖 , to teach the model a function
that maps inputs to desired outputs. Common examples of supervised learning
tasks include classification (classifying data into pre-defined categories) [59],
regression (predicting a continuous output value based on input) [60], object
detection (locating objects within images) [61], speech recognition (translating
spoken words into text) [62], among others. The subsequent sub-section will
concentrate on the topic of classification, a central theme across all papers
included in this thesis.
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Figure 2.2: An MLP with 2 hidden layers.

2.1.1 Classification

In a classification task, the ML model’s objective is to predict the class or cat-
egory of new, unseen data 𝑿 test, based on the knowledge gained from the
training data (𝑿 train, 𝒀 train), where the classes are known apriori. Such tasks
are prevalent in various applications, including the categorization of emails in
spam detection systems [63], the identification of objects in images [64], and
the diagnosis of diseases from medical imaging [52]. A multitude of ML algo-
rithms are suitable for classification, among which are multilayer perceptron
(MLP) [65], Support Vector Machines [66], and Decision Trees [67], each of-
fering distinct advantages and potential drawbacks. This sub-section will delve
into MLPs, given their relevance to the research discussed in this thesis.

Multilayer Perceptrons

MLPs are a category of artificial neural networks characterized by their layered
structure of nodes or neurons [65], as shown in Figure 2.2.

Architecture The architecture of an MLP, 𝒇𝜽 , typically includes an input
layer, one or more hidden layers, and an output layer (refer Figure 2.2).

1. Input Layer: This layer receives the input signal to be processed. Each
node in this layer represents an attribute or feature of the input data
𝑿 ∈ R𝑛×𝑑𝑖𝑛 , where 𝑛 is the number of samples and 𝑑𝑖𝑛 is the number of
input features.

2. Hidden Layers: These intermediate layers perform the majority of the
computation through a series of weighted connections. Each neuron in
a hidden layer transforms the values from the previous layer with a
weighted linear summation, weights represented by𝑾 ∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 , and
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biases 𝒃 ∈ R𝑑𝑜𝑢𝑡 , followed by a non-linear activation function, 𝒈 such as
the sigmoid, hyperbolic tangent, or Rectified Linear Unit (ReLU) func-
tion [68]. The forward pass through a single layer 𝑙 of an MLP, for a
sample 𝑖, is computed as:

𝒚𝑙𝑖 = 𝒈(𝒙𝑇𝑖 𝑾 𝑙 + 𝒃𝑙 ) (2.1)

3. Output Layer: The final layer produces the output of the network 𝒀 ∈
R𝑛×𝑘 . For classification tasks, this layer often includes a softmax func-
tion [68] to interpret the outputs to a probability distribution over pre-
dicted output classes, 𝑘.

Let us consider an MLP architecture with one hidden layer ℎ1 ∈ R𝑑𝑖𝑛1 ,𝑑𝑜𝑢𝑡1 ,
consisting of 16 neurons (𝑑𝑜𝑢𝑡1 = 16), for the Iris dataset. The choice of 𝑑𝑜𝑢𝑡1 is
made arbitrarily. However, it represents a hyperparameter of the model, which
could be adjusted for optimization. Accordingly, the input layer will have four
neurons to match the dataset’s four features, i.e 𝑑𝑖𝑛1 = 4, and the output
layer will have three neurons, each corresponding to one of the Iris species
classes.

Optimization Training an MLP involves using the training dataset, 𝑿𝑡𝑟𝑎𝑖𝑛

to adjust the network parameters 𝜽 that minimizes the difference between
the predicted output 𝒀 and the actual output 𝒀 . The MLP’s parameters can
represented as, 𝜽 = [𝑾1, 𝒃1, ...,𝑾𝐿+1, 𝒃𝐿+1], where 𝐿 are the total number
of hidden layers. Using Eq. 2.1, the forward pass for an input 𝒙𝑖 is computed
sequentially for all the layers to obtain the final predicted output vector 𝒚𝑖 .
Now, the model’s parameters are optimized, typically done using backpropaga-
tion [69], a method that calculates the gradient of the loss function L𝜽 with
respect to 𝜽 . The most commonly used loss function for classification is the
cross-entropy (CE) [70]:

L(𝒚𝑖,𝒚𝑖) = −
K∑︁

k=1

𝒚𝑘𝑖 log𝒚
𝑘
𝑖 (2.2)

CE increases as the predicted probability (𝒚𝑘𝑖 ) of sample 𝑖 for class 𝑘, diverges
from the actual label (𝒚𝑘𝑖 ). The optimization of L𝜽 (𝒀 , 𝒀 ) =

∑𝑛
𝑖=1 L𝜽 (𝒚𝑖,𝒚𝑖)

is performed in an iterative manner to update the weights in the opposite
direction of the gradient, i.e,

𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂∇𝜽 𝑡
L (2.3)

When the updates are applied using small subsets of the training data, known as
mini-batches, and with a constant learning rate 𝜂, the method is referred to as
Stochastic Gradient Descent (SGD) [69]. Other optimization techniques, such
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Figure 2.3: Visualization of decision boundaries learned by an MLP using two features
as input for Iris dataset.

as Adam, RMSProp and AdaGrad [71] provide more sophisticated mechanisms
to adapt learning rate techniques throughout training, leading to more efficient
convergence.

Building up on our example of the Iris dataset, we split the data into 80%
for training and 20% for testing. We train our three layer MLP model with
SGD. To aid in visualizing how the model makes decisions, we train additional
MLPs, each using only two of the four input features at a time. This allows us
to observe the decision boundaries that the models learn for different feature
combinations, as shown in Figure 2.3.

Evaluation Evaluating the performance of an MLP is a critical step in un-
derstanding its effectiveness for a given classification task. One of the primary
metrics used for this purpose is accuracy, which measures the proportion of
correct predictions made by the model out of all predictions [57, 72]. Accuracy
is calculated by dividing the number of correct predictions by the total number
of predictions, often expressed as a percentage, i.e

Accuracy =
Correct predictions
Total predictions

(2.4)

For the Iris dataset, for instance, accuracy would reflect how often the MLP
correctly identifies the species of iris flowers. For the MLP trained with one
hidden layer, the model performs with 97.5% of training accuracy and 96.6%
of test accuracy, signifying robust performance.

2.2 Unsupervised learning

Unsupervised learning is the branch of ML that operates on unlabeled data;
that is, only the input data 𝑿 is available without any corresponding output
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labels [73, 74]. Such paradigm is used for discovering inherent structures and
patterns within the data autonomously. Common techniques within unsuper-
vised learning include clustering [75], where the algorithm organizes data into
clusters based on similarity, and dimensionality reduction [76, 77], which sim-
plifies data by reducing the number of variables under consideration, while still
preserving the essential information. In this section, we will focus on clustering
due to its relevance to Papers I and IV of this thesis.

2.2.1 Clustering

Clustering, or cluster analysis, is a representative of the unsupervised ML tech-
niques that aims to organize a set of objects into groups, or clusters, such
that objects within the same cluster are more similar to each other than to
those in different clusters. The similarity is typically assessed based on the
features of the objects, which are represented by the input data. A variety of
clustering algorithms exist, each with distinct benefits suitable for particular
applications. This section will delve into two such algorithms, namely, 𝑘-means
clustering [78] and spectral clustering [79] owing their relevance to Papers
IV and I respectively. This is then followed by a brief introduction MVC [80],
which is pertinent to Paper I.

𝑘-means clustering

The 𝑘-means algorithm is a method that partitions a dataset into 𝑘 distinct
groups or clusters, aiming to minimize the total squared distance between the
points in each cluster and the cluster’s centroid [78]. The loss function for
𝑘-means is defined as:

L =

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑎𝑖 𝑗 | |𝒙𝑘𝑖 − 𝝁 𝑗 | |2 (2.5)

where 𝑛 represents the number of samples in the dataset, 𝑘 is the number of
desired clusters,𝑎𝑖 𝑗 is the assignment of sample 𝑖 to cluster 𝑗 (corresponding to 1
if 𝒙 𝑗 ∈ 𝑗 cluster and 0 otherwise),𝒙𝑖 is the 𝑖-th data point, and 𝝁 𝑗 is the centroid
of cluster 𝑗 . The algorithm begins by initializing 𝑘 centroids, 𝝁1, 𝝁2, ..., 𝝁𝑘 ∈ R𝑑 ,
and iteratively performs the following steps until convergence:

1. Assignment: Each data point 𝒙𝑖 is assigned to the closest centroid 𝑗 , based
on the minimum distance criterion:

𝑎𝑖 𝑗 = argmin
𝑗

| |𝒙𝑘𝑖 − 𝝁 𝑗 | |2 (2.6)
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Figure 2.4: Visualization of clusters learned by 𝑘-means using two features for Iris
dataset, with cluster centers represented by a ‘x’.

2. Update: The centroids are updated to be the mean of all points assigned
to their cluster:

𝝁 𝑗 =

∑𝑛
𝑖=1 𝑎𝑖 𝑗𝒙𝑖∑𝑛
𝑖=1 𝑎𝑖 𝑗

(2.7)

Applying 𝑘-means to the Iris dataset with 𝑘 = 3, we achieve an accuracy
of 88.6% across the entire dataset without the use of any labels for training,
thus showcasing the effectiveness of clustering algorithms in unsupervised
learning tasks. The clustering results for the Iris dataset, using two features for
visualization, are presented in Figure 2.4.

The 𝑘-means algorithm is recognized for its simplicity and computational ef-
ficiency. However, one of its limitations is the requirement to predefine the
number of clusters, 𝑘, which may not always be known a priori and can affect
the outcome of the clustering [81].

Spectral clustering

This technique uses the eigenvalues of a similarity matrix to reduce dimen-
sionality before clustering the data [79]. The process typically involves the
following steps:

1. Similarity Matrix Formation: Create a similarity graph where nodes rep-
resent data point and edges are weighted by a measure of similarity be-
tween the corresponding nodes. Construct an adjacency matrix 𝑨, from
the similarity graph using a function such as, a Gaussian kernel.

2. Laplacian Matrix Calculation: Compute the graph Laplacian matrix, as
𝑳 = 𝑫 −𝑨, where 𝑫 is a diagonal matrix where each diagonal element
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𝑑𝑖𝑖 is the sum of the weights of all edges connected to 𝑖.

3. Dimensionality Reduction: Perform eigenvalue decomposition of 𝑳, fol-
lowed by selecting a subset of the eigenvectors (based on the smallest
eigenvalues) to form a new feature space. The number of selected eigen-
vectors corresponds to the desired number of clusters.

4. Clustering in Reduced Space: Use the new feature space to perform clus-
tering. The clusters obtained in this reduced space are mapped back to
the original data points, providing the final clustering result.

Spectral clustering is particularly useful when the structure of the individual
clusters is highly non-convex, or when the clusters are separated by non-linear
boundaries. It is also effective in identifying clusters based on the graph con-
nectivity properties rather than using the Euclidean distance, therefore not
necessarily conforming to assumptions of isotropic clusters that methods like
𝑘-means rely on.

Multi-View Clustering

MVC is an advanced ML technique that aims to integrate information from
multiple distinct feature sets, or “views”, to improve the quality of clustering by
utilizing multi-view data [80]. Each view represents a different set of features
that describe the data, and these views can originate from various sources or
modalities, such as text, images, or sensor data. The central premise of MVC
is that by leveraging the complementary information available across different
views, one can achieve a more robust and accurate partitioning of the data
into clusters than by using any single view alone. A large number of MVC al-
gorithms exist in literature methods such as co-training approaches [82, 83],
which refine clusters by maximizing inter-view agreement; multiple kernel
learning approaches [84, 85] that merge kernels from different views to en-
hance clustering; subspace learning approaches that seek a shared latent space
for joint data representation and clustering. [86, 87]; and DL based approaches
that employ neural networks to extract complex, non-linear features to achieve
MVC [88, 89].

In the next chapter,we will delve into more sophisticatedmodels known as deep
neural networks, expanding upon the foundational concepts of MLPs discussed
thus far.





3
Deep Learning
Deep Learning, a specialized branch of ML, which utilizes neural networks with
multiple layers—referred to as “deep” architectures—to uncover intricate pat-
terns within data [18]. These advanced models are designed to autonomously
learn high-level abstractions from raw inputs by progressively extracting fea-
tures at various levels of complexity. This hierarchical feature extraction process
has catalyzed significant breakthroughs across numerous domains, including
computer vision [90], NLP [23], and autonomous systems [34].

An MLP, as introduced in the preceding chapter, with multiple hidden layers,
serves as an instance of a deep neural network. Its depth is a function of the
number of hidden layers it contains; more layers signify a deeper network. This
depth enables the models to discern more complex relationships within the
data [18, 91]. To illustrate, consider the Iris dataset example from the previous
chapter: by increasing the number of hidden layers in an MLP from one to four
(ℎ1 to ℎ4) and adjusting the number of neurons to 𝑑𝑜𝑢𝑡1 = 8, 𝑑𝑜𝑢𝑡2 = 16, 𝑑𝑜𝑢𝑡3 =
8, 𝑑𝑜𝑢𝑡4 = 4 for the new layers, the network gains the ability to learn more
intricate decision boundaries, as depicted in Figure 3.1.

In this chapter, we delve into various DL architectures that are integral to the
research presented in this thesis. Specifically, we will discuss Convolutional
Neural Networks (CNNs) in Section 3.1, which are widely used for the classifi-
cation of spatial data such as images. This is followed by VAEs in Section 3.2,
which are generative models that use a probabilistic approach to encode in-
put data. Finally, we conclude with an overview of Transformers in Section 3.3,

23
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Figure 3.1: Visualization of decision boundaries learned by a shallow MLP with one
hidden layers (left) and a deep MLP with 4 hidden layers (right), using
two features as input for Iris dataset.

which are attention-basedmodels that have revolutionized the field of language
modeling [22].

3.1 Convolutional Neural Networks

CNNs are specialized neural networks, predominantly used for visual analy-
sis due to their ability to efficiently process and learn from image data [92].
Their proficiency in handling visual information has resulted in achieving high
accuracy in applications like image classification [93, 94] and object detec-
tion [25, 95]. The architecture of a CNN is designed to learn spatial hierarchies
of features from images through three main types of layers:

1. Convolution layer: These are the core building blocks of a CNN. They
apply a set of learnable filters to the input image to create feature maps.
As a filter slides (or convolves) across the image, a two-dimensional acti-
vation map is created that gives the responses of that filter at every spatial
position. Let𝑾 be a single filter matrix; the forward propagation for this
filter can be expressed as:

𝑦𝑙𝑖, 𝑗 = 𝒈

( (𝑎−1)/2∑︁
𝑚=−(𝑎−1)/2

(𝑏−1)/2∑︁
𝑛=−(𝑏−1)/2

𝑾 𝑙
𝑚+(𝑎−1)/2,𝑛+(𝑏−1)/2 𝑦

𝑙−1
𝑖+𝑚,𝑗+𝑛 + 𝒃𝑙

)
(3.1)

This illustrates that the output at a specific location (𝑖, 𝑗) in the 𝑙𝑡ℎ layer
is the sum of the element-wise multiplication of the filter matrix𝑾 of size
𝑎, 𝑏 and the region in the (𝑙 − 1)𝑡ℎ layer’s output (𝑦𝑙−1) corresponding
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Test
Image

Figure 3.2: Illustration of convolution operation on an image from Iris dataset. The
top row shows three filters of size 5 × 5, each possessing three channels
corresponding to the RGB channels of the input image. These are picked at
random from the first layer of a CNN consisting four convolutional layers
(number of filters = [32, 16, 8, 8]), three max-pooling layers, and three
fully connected layers (number of neurons = [1000, 100, 3]). The bottom
row shows the test image convolved with the filters.

to the filter’s location. 𝒃𝑙 corresponds to the bias term at layer 𝑙 and 𝒈
corresponds to the activation function. This process is repeated for every
spatial location on the input, resulting in a feature map that captures the
spatial hierarchies in the input image.

An example of convolution performed on an image from Iris dataset with
three filters, chosen randomly, of size 5×5 learned for each input channel
by the first convolutional layer of a CNN are shown in Figure 3.2.

2. Pooling layer: Following the convolutional layers, pooling layers reduce
the spatial size of the of the featuremaps. This reduction not only enlarges
the receptive field of subsequent layers but also instills a degree of spatial
invariance, as well decreasing the number of parameters in the model,
thereby enhancing the model’s ability to generalize. The most common
pooling operation is max pooling [96], represented as:

𝑦𝑙𝑖, 𝑗 =
(𝑎−1)/2
max

𝑚=−(𝑎−1)/2

(𝑏−1)/2
max

𝑛=−(𝑏−1)/2
𝑦𝑙−1𝑖+𝑚,𝑗+𝑛 (3.2)

Here, the output 𝑦 at a location (𝑖, 𝑗) in layer 𝑙 is the maximum value in
the spatial neighborhood of the corresponding location in the previous
layer (𝑙 − 1).

3. Fully connected layers: Subsequent to a series of convolutional (optionally
followed by pooling layers), fully connected layers, also known as MLPs,
are employed for high-level reasoning. These layers usually make the
final classification decision, utilizing the high-level features extracted by
the preceding convolutional and pooling layers.
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Figure 3.3: A CNN with three types of layers i.e, convolutional, pooling and fully
connected layers.
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Figure 3.4: Skip connection in the ResNet architecture.

An exemplar architecture with these three layers is shown in Figure 3.3. Ad-
ditional layers, such as batch normalization [97] and dropout [98], are also
often integrated into CNN architectures, enhancing the network’s efficacy and
its capacity for generalization.

Indeed, several CNN architectures [99] have gained prominence over the past
few years due to their performance in various computer vision tasks including,
LeNet-5 [100], AlexNet [93], VGGNet [101], GoogleNet [102], ResNet [103] and
DenseNet [104]. We briefly review ResNet in this section due to its relevance
to Papers I to IV of this thesis.

ResNet The ResNet architecture, developed by Kaiming He et al. [103], rep-
resents a significant breakthrough in the field of DL. Prior to ResNet, training
extremely deep networks was challenging due to issues such as vanishing gradi-
ents, where the gradient signal becomes too small to make meaningful updates
to the weights during backpropagation. ResNet addresses this problem by intro-
ducing the concept of residual connections. Instead of learning direct mappings
from input to output, ResNet layers learn residual functions with reference to
the layer inputs. This is achieved through the use of skip connections, which
bypass layers by performing identity mapping and adding their outputs to the
outputs of the stacked layers, as shown in Figure 3.4. Various ResNet architec-
tures, such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152,
have been developed [103], each differing in the number of layers and thus
offering a spectrum of complexities and performance levels for diverse applica-
tions.
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Figure 3.5: Schematic of a VAE.

3.2 Variational Autoencoders

VAEs belong to the category of generative models, which are a class of algo-
rithms capable of creating new data instances that resemble the input data [50].
These models have the ability to generate novel, yet realistic, data samples,
making them particularly useful in a wide range of applications, from image
synthesis [105, 106] to anomaly detection [107, 108]. The architecture of VAEs
is built upon the foundation of autoencoders, a type of artificial neural net-
work that aim to learn a compressed representation of the input data [109]. At
their core, autoencoders consist of two main components: an encoder 𝒇 and a
decoder 𝒈. The encoder’s role is to compress the input,𝑿 ∈ R𝑛×𝑑 , into a lower-
dimensional latent space, 𝒁 ∈ R𝑛×𝑘 , where 𝑛 are the number of examples in
the dataset, 𝑑 and 𝑘 are the dimensions in the input space and latent space,
respectively, and 𝑘 < 𝑑, i.e,

𝒛𝑖 = 𝒇𝜃 (𝒙𝑖) (3.3)

The decoder then attempts to reconstruct the input from 𝒁 ,

𝒙𝑖 = 𝒈𝜙 (𝒛𝑖) (3.4)

The entire network is trained end-to-end by minimizing the difference between
the input, 𝒙𝑖 and its reconstruction 𝒙𝑖 , typically using a loss function such as
mean squared error, i.e:

L𝜃,𝜙 =
1
𝑛

𝑛∑︁
𝑖=1
| |𝒙𝑖 − 𝒙𝑖 | |2 (3.5)

A notable variant of the traditional autoencoder is the convolutional autoen-
coder [110], which incorporates convolutional layers in both the encoder and
decoder components. These are particularly effective for tasks involving im-
age data, such as image denoising [111], as they leverage the spatial hierarchy
of features through convolutional operations, resulting in more efficient and
robust feature extraction.

Building upon the foundation of autoencoders, VAEs introduce a probabilistic
framework for the encoding process (Figure 3.5). Instead of encoding an input
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Generated from VAE

Figure 3.6: Images generated via the decoder of a VAE, trained on Iris dataset, for
interpolations between latent vectors of two input images (displayed on
the extreme left and right).

as a single point in the latent space, VAEs map the input to a distribution,
typically Gaussian, characterized by mean (𝝁) and variance (𝝈) parameters.
These parameters are thus the output of the encoder, 𝒇𝜃 (𝒙𝑖) = (𝝁𝑖,𝝈 𝑖). This
probabilistic encoding allows for the generation of new samples by sampling
from the latent space distributions and mapping them to the input space via
the learner decoder 𝒈𝜙 . The training of VAEs involves optimizing not only the
reconstruction loss but also a regularization term derived from the Kullback-
Leibler divergence (𝐷𝐾𝐿) [50], which encourages the learned distributions
to approximate a prior distribution, often chosen to be the standard normal
distribution. The loss function therefore looks like:

L𝜃,𝜙 = | |𝒙𝑖 − 𝒙𝑖 | |2 + 𝐷𝐾𝐿 (N (𝝁𝑖,𝝈 𝑖) | |N (0𝑘 , 𝑰𝑘 )) (3.6)

This results in a smooth and continuous latent space with good generalization
properties,making VAEs particularly powerful for generative tasks. To illustrate,
we present the samples generated from a VAE for the Iris dataset in Figure 3.6.
These samples are the result of latent vector interpolations between two images
from the training dataset.

3.3 Transformers

Attention-based models in DL have revolutionized the field by enhancing fo-
cus on pertinent parts of input data, especially for sequence processing. With
attention mechanisms [112], these models excel in tasks with long-range depen-
dencies, outperforming traditional sequential architectures like Recurrent Neu-
ral Networks (RNNs) and Long Short-Term Memory networks (LSTMs) [113].
The Transformer architecture exemplifies this, setting new benchmarks in NLP
and beyond due to its parallel processing capabilities and its effectiveness in
complex tasks such as machine translation and language modeling [114].

Transformers avoid the recurrent layers used in previous sequence-to-sequence
models and instead rely entirely on a mechanism known as self-attention to
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Figure 3.7: Schematic of the Transformer architecture.

draw global dependencies between input and output. It works by first creating
a Query (𝑸), Key (𝑲), and Value (𝑽 ) vectors from the embedding vectors of
the input (𝑿), using weight matrices𝑾𝒒,𝑾𝒌 , and𝑾𝒗 , respectively, via:

𝑸 = 𝑿𝑾𝒒, 𝑲 = 𝑿𝑾𝒌, 𝑽 = 𝑿𝑾𝒗 (3.7)

The self-attention is then calculated as:

Attention(𝑸,𝑲 , 𝑽 ) = softmax(𝑸𝑲𝑻

√
𝑑𝑘
)𝑽 (3.8)

where 𝑑𝑘 is the dimension of the key vectors. Self-attention allows each posi-
tion in a sequence to attend to all positions within the same layer, enabling
the model to dynamically weigh and integrate information from different parts
of the input, capturing intricate interdependencies regardless of their distance
in the sequence. This is particularly useful for tasks where understanding the
relationship between words in a sentence is crucial, such as language under-
standing. The architecture of Transformer consists of two main components
(Figure 3.7):

1. Encoder: The encoder maps an input sequence of symbolic representa-
tions, also called as tokens (i.e, words, phrases, or symbols, or other mean-
ingful elements of text) to a sequence of continuous representations. It is
composed of a stack of identical layers, each containing two sub-layers:
a multi-head self-attention mechanism and a simple, position-wise fully
connected feed-forward network.

2. Decoder: The decoder is also composed of a stack of identical layers. In
addition to the two sub-layers found in the encoder, the decoder inserts
a third sub-layer, which performs multi-head attention over the output
of the encoder stack. This allows each position in the decoder to attend
to all positions in the input sequence.



30 chapter 3 deep learning

Since their introduction, transformers have led to the creation of numerous
influential models such as Bidirectional Encoder Representations from Trans-
formers (BERT) [115] and GPT [22] for NLP, and extending their application to
images with adaptations like the Vision Transformer (ViTs) [116]). We discuss
GPT here, considering its relevance to Paper V.

3.3.1 GPT

The GPT series, developed by OpenAI [22], represents a set of advanced lan-
guage models using the transformer architecture, specifically its decoder com-
ponent, for a variety of NLP applications. GPT modifies the original architecture
by using only the transformer’s decoder stack for its tasks. Unlike the bidirec-
tional context used by the transformer encoder, GPT’s decoder operates in an
autoregressive manner, predicting the next token in a sequence given all the
previous tokens, making it inherently unidirectional. This setup aligns well
with language modeling and generation tasks, where the goal is to produce a
coherent continuation from a given text prompt. Pretrained on vast datasets,
GPT models gain extensive knowledge of linguistic patterns, enabling nuanced
understanding and creation of contextually rich text. With each iteration, from
GPT-1 throughGPT-4, the models have grownwith increases in parameter count,
complexity, and learning capabilities, resulting in progressively more advanced
text generation and better handling of diverse NLP tasks.

Various strategies have been employed to tailor GPT, as well as other pre-trained
LLMs [workshop2023bloom, 117], to execute several downstream tasks. These
include:

• Zero-shot learning: It refers to the model’s ability to understand and
execute tasks it has not been explicitly trained on, relying solely on its
pretraining to generalize from seen to unseen tasks [118]. This therefore
showcases the model’s generalization capabilities.

• In-context learning: It involves guiding the model using provided exam-
ples within the prompt to infer the task and generate appropriate re-
sponses without any gradient updates or further training [118, 119]. This
demonstrates the model’s ability to quickly adapt with minimal data.

• Fine-tuning: It is a more traditional approachwhere the pretrainedmodel
is further trained (i.e., its weights are updated) on a specific dataset to
specialize its responses to a particular domain or task.

The models addressed in this chapter are typically characterized by their com-
plexity, with their architectures often encompassing millions to trillions of
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parameters. This high dimensionality and intricacy render them unexplain-
able, posing a significant challenge in understanding their inner workings and
decision-making processes. The following chapter will delve deeper into this
area of research, exploring potential strategies and methodologies to enhance
the explainability of these complex models.
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4
Explainable AI
The intricate nature of DL models, characterized by millions of parameters,
often results in them being perceived as black-box entities. This lack of trans-
parency can give rise to numerous challenges, particularly in domains where
safety is paramount [120–122]. The inability to comprehend the basis of the
model’s decisions can lead to issues such as unpredictability, lack of trust, and
potential bias in decision-making [123]. These problems could have serious im-
plications, ranging from incorrect predictions to ethical concerns. This existing
gap in DL research has led to the advent of XAI [124]. XAI aims to make the
decision-making process of AI models transparent and understandable, thereby
enhancing the models’ reliability and accountability.

XAI methods are developed to answer the question of why in addition to the
original goal of the DL algorithm, for e.g., what in context of classification prob-
lems. The primary issue with black-box models is their complexity and the
incomprehensibility of their parameters, which are not in a form that humans
can easily understand. While the answer to what is often presented in a human-
understandable form, such as class probabilities, the why behind these deci-
sions also needs to be comprehensible. XAI strives to bridge this gap between
AI’s “language” and human understanding. An intuition of this is provided
in Figure 4.1. XAI methods typically accomplish this by identifying and high-
lighting the features or factors in the input space that influence the decision,
thereby making them understandable to humans. This approach demystifies
the decision-making process of AI models.

35
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Figure 4.1: Explainable AI expands the “language” of AI – what AI knows – to have
overlap with language of humans, thereby providing the reasoning of why
in addition to which in human-understandable form.

XAI approaches have been developed in two parallel branches of 1) post-hoc
methods, and 2) Self-Explainable Models (SEMs). Post-hoc methods aim to
elucidate the behavior of an existing black-box model after its operation, pro-
viding retrospective explanations [125, 126]. On the other hand, SEMs strive to
offer answers to both what and why concurrently, making them inherently in-
terpretable [42, 127]. However, these methods differ not only in their approach
but also in the type of explanations they provide. To understand this better, we
will first discuss the different kinds of explanations, particularly in the context
of image classification. Subsequently, we will review how different methods
employ diverse approaches to generate these explanations.

4.1 Explanations for deep learning models

To provide answers to the why question, it is crucial that the explanations are
delivered in a format that is easily understandable by humans. We start from a
broad perspective of locality of explanations and then go deeper to understand
several explanation methods. On the basis of said locality, the explanations
can be local or global. While local explanations focus on explaining the effect
of a prediction from a model on a single instance, global explanations aim to
provide general explanations for the model. Various methods to accomplish
this have been explored in recent literature, and these will be the focus of
our discussion in this section. We review several methodologies in this section,
followed by the review of post-hoc and self-explainable models in Sections 4.2
and 4.3, respectively, grounded in the argument of locality. A visualization of
the proposed taxonomy is provided in Figure 4.2.
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Figure 4.2: Taxonomy of XAI based on locality of explanations (from top to bottom)
and the nature of explanations (from bottom to top). While post-hoc ex-
planations produce local explanations, self-explainable models are capable
of generating both global as well as local explanations.

4.1.1 Local explanations

Local explanations focus on interpreting the impact of the model’s decision on
a specific individual sample or example [128]. These help answer the question
“why did the model make this particular prediction for this instance?” Local ex-
planations can produce feature-level attributions or sample-level explanations,
as explained below.
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Feature-level explanations

Feature-level explanations play a crucial role in understanding the decision-
making process of complex models. These explanations help in interpreting
and justifying the output of the model by identifying the specific features that
significantly influenced the prediction [129]. In image analysis, this often in-
volves assessing the impact of specific pixels or pixel clusters [130]. In NLP,
the focus shifts to the words or phrases that are most indicative of the model’s
decisions [131]. For tabular data, the analysis might examine how individual
columns in the dataset affect the outcome [132]. The upcoming discussion
will delve into a range of explainability techniques, starting with perturbation-
based methods that observe changes in predictions when input features are
altered. Following this, we will discuss propagation-based methods such as
gradient propagation, that trace the flow of information through the model,
with a specific focus on a method called Layer-wise Relevance Propagation
(LRP) which is the foundation for Paper I of this thesis. Lastly, we will exam-
ine attention-based methods, which are particularly prevalent in NLP [133] to
highlight influential parts of the input text.

• Perturbation-based: Local InterpretableModel-agnostic Explanation (LIME)
[126] trains a surrogate explainable model, such as a linear regression
or a decision tree, in the local neighborhood of an instance of interest,
thereby generating feature-based explanations. SHapley Additive exPla-
nations (SHAP) [134] quantifies the significance of each feature to a
model’s output. It assesses the individual impact of each feature as it
contributes along a pathway, aggregating all feature contributions before
averaging them. KernelSHAP uses a weighted local linear regression to
estimate SHAP values. KernelSHAP attempts to approximate the results
from a complex model using a simpler, interpretable model that is fit-
ted with respect to a kernel. Both LIME and SHAP are model-agnostic
XAI methods, operating independently of a model’s internal mechanics,
unlike other model-aware methods discussed below.

• Propagation-based: Multiple methods utilize the network’s gradients for
computing the effect of a prediction on a sample. For example, saliency
maps use backpropagation to compute gradients of the output with re-
spect to the input [135]. Guided backpropagation [136] enhances saliency
maps by filtering out negative gradients during the backpropagation pro-
cess. Integrated gradients [137] measure the cumulative influence of
input features on the model’s output prediction by integrating the gra-
dients along a straight path from a baseline input to the actual input.
Class Activation Maps [138] add a global average pooling layer after
the convolutional layers, which averages the features from all previous
layers. The resulting vector is then fed into a linear model to get the
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importance of each feature map to generate class-discriminative saliency
maps. Grad-CAM on the other hand, does not require any additional
layers to be added. Instead, it uses the gradients of the output neuron
with respect to the ReLU feature maps of a convolutional layer to approx-
imate the importance of each spatial location [139]. Guided Grad-CAM
is a technique that combines Grad-CAM and Guided Backpropagation to
provide fine-grained visual explanations along with class-discriminative
features [139]. Grad-CAM++ [140], an extension of the Grad-CAM, cal-
culates the weights by considering the first and second order derivatives
to capture the more detailed relationship between the neuron and the
class score. It helps to capture not just the ‘peak’ response but also the
‘distribution’ of related pixels thus providing more clarity on where the
model is looking to make decisions.

LRP [125] another backpropagation based method, is a key component
in Papers I and II of this thesis. It works by attributing the prediction of
a neural network to its individual input features. LRP stands out among
other backpropagation based methods due to its ability to redistribute
relevance scores in a layer-wise manner, therefore mitigating gradient
shattering effect. At each layer of the network, it computes a relevance
score for each neuron which represents the contribution of that neuron to-
wards the final prediction. These relevance scores are then accumulated
and assigned to each input feature to indicate their importance in the
prediction. The general rule for LRP can be represented as follows [125]:

𝑅 𝑗 =
∑︁
𝑘

𝑧 𝑗𝑘∑
𝑗 ′ 𝑧 𝑗 ′𝑘

𝑅𝑘 (4.1)

where 𝑅 𝑗 is the relevance of neuron 𝑗 , 𝑧 𝑗𝑘 is the contribution of neuron
𝑗 to neuron 𝑘, and the denominator is the sum over all neurons 𝑗 ′ that
contribute to neuron 𝑘.

Several variations of rules have been proposed, catering to different sce-
narios and different layers of a neural network [141], including, the LRP-𝜖
that introduces a stabilizing term in the denominator to avoid numerical
instabilities:

𝑅 𝑗 =
∑︁
𝑘

𝑧 𝑗𝑘 + 𝜖 · 𝑠𝑖𝑔𝑛(𝑧 𝑗𝑘)∑
𝑗 ′ (𝑧 𝑗 ′𝑘 + 𝜖 · 𝑠𝑖𝑔𝑛(𝑧 𝑗 ′𝑘 ))

𝑅𝑘 (4.2)

The LRP-𝛾 rule, another variant, introduces a weighting term 𝛾 to control
the balance between positive and negative contributions:

𝑅 𝑗 =
∑︁
𝑘

𝑧 𝑗𝑘 + 𝛾 · 𝑧−𝑗𝑘∑
𝑗 ′ (𝑧 𝑗 ′𝑘 + 𝛾 · 𝑧−𝑗 ′𝑘 )

𝑅𝑘 (4.3)
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Figure 4.3: Visualization of LRP relevance maps generated for the CNN trained on the
Iris dataset. The blue and red regions denote negative and positive rele-
vance to the ground truth class, respectively. As observed, LRP maps are
efficient in generating input-wise feature-based attributions, highlighting
the decision making of the black-box model.

The LRP-𝛼𝛽 rule is a more flexible variant that allows different weighting
for positive and negative contributions:

𝑅 𝑗 =
∑︁
𝑘

(
𝛼 · 𝑧+

𝑗𝑘∑
𝑗 ′ (𝛼 · 𝑧+𝑗 ′𝑘 )

−
𝛽 · 𝑧−

𝑗𝑘∑
𝑗 ′ (𝛽 · 𝑧−𝑗 ′𝑘 )

)
𝑅𝑘 (4.4)

In Figure 4.3, we visualize LRP maps for the CNN trained in the previous
chapter on the Iris dataset. For this example, we use the LRP-𝛼𝛽 rule for
convolutional layers with 𝛼 = 1 and 𝛽 = 0, and the LRP-𝜖 rule for the
fully connected layers. LRP offers several benefits over other techniques,
such as its versatility and applicability to numerous neural network archi-
tectures, along with the capability to provide fine-grained attributions by
assigning importance to each input feature. Furthermore, LRP adheres
to the ’conservation principle’, ensuring the sum of the input layer’s pre-
diction explanation matches the network’s pre-softmax output.

• Attention-based: Attention maps are a feature of certain types of ML mod-
els, particularly relevant in models like Transformers [114] and attention-
based RNNs used for sequence prediction tasks such as language trans-
lation and text generation. An attention map visually represents which
parts of the input data the model has ‘attended to’ or focused on while
making a particular prediction [133]. For local explanations, attention
maps are especially insightful. For instance, in a sequence-to-sequence
translation task, attention maps can vividly illustrate which words in the
source sentence the model paid attention to when translating it into the
target sentence. Thus, they assist in understanding how the model is
associating words or phrases across different languages.
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Sample-level explanations

Sample-level local explanations provide or generate data samples as explana-
tions for individual instances. For example, counterfactual explanations [142]
are a form of model interpretation that provides insights into how a model’s
output would change if the inputs were altered in specific ways. Consider the
instance of a model trained to classify images of animals. Given an image of
a dog misclassified as a cat, a counterfactual explanation would involve modi-
fying the image until the model correctly classifies it as a dog. Other methods
include influence functions, which can trace a model’s prediction back to the
training data, identifying which samples were most influential in determining
the outcome for a specific test instance [143].

4.1.2 Global explanations

Global explanations provide a broader understanding of the model’s behavior
and decision-making process across the entire dataset. Such explanations offer
insights into the overall trends, patterns, and feature importance that the model
has learned from the data. Methods like feature importance analysis [60],
class-representative extraction [42, 127], and rule extraction techniques [67,
144] can be employed to generate global explanations. These approaches help
identify the most influential features across the entire dataset, providing a
comprehensive understanding of how the model generally operates and what
features it deems significant for making predictions [128]. Global explanations
can be on the feature-level or sample-level, as described below.

Feature-level explanations

Linear regression [60] and decision trees [67] are two ML methods that inher-
ently provide global explanations of model predictions. In the case of linear
regression, the global explanation is provided through the model’s coefficients.
Each coefficient represents the average change in the output variable given a
one-unit change in the corresponding input feature, assuming all other features
are held constant. This provides a straightforward interpretation of the overall
importance of each feature in making predictions. On the other hand, decision
trees provide a global explanation via the structure of the tree itself [132]. The
decision tree algorithm chooses the features that best split the data at each
node based on a certain criterion (e.g., Gini impurity or entropy for classifi-
cation, variance reduction for regression). Features that appear closer to the
root of the tree generally have a more significant impact on the output variable,
thus providing an intuitive visual summary of the features’ importance in the
model’s decisions.



42 chapter 4 explainable ai

Additionally, in terms of global explanations, attention maps can be aggre-
gated over multiple instances to identify broader patterns in the model’s atten-
tion [145]. Similarly, to create a global perspective, SHAP values from multiple
instances can be combined to derive an overall importance for each feature.
This is typically visualized using summary plots that display the distribution of
SHAP values for each feature across all data points [134].

Sample-level explanations

As the name suggests, sample-level explanations provides ‘data samples’ as
proxies for explaining the learning of a model. For example, 𝑘-Nearest Neigh-
bor (𝑘-NN) [146] is a simple, intuitive ML algorithm that can serve as a global
explainer for understanding complex models. It works by classifying new in-
stances based on their similarity to existing instances in the training dataset.
In the context of interpretability, it can thus provide a global explanation by
showing how data points are grouped together based on their feature similari-
ties, and how these groupings relate to the output variable. Another method for
feature-visualization involves optimization based visualization. For example,
in activation maximization [147], a noisy image is optimized to maximize the
activation value of a specific neuron or class via techniques like gradient ascent
in the input space.

Prototypical explainable models are DL models that seek to provide explana-
tions for their predictions based on class-representatives or prototypes [42].
In the process of making a prediction, these models do not just map an in-
put to an output, instead, they also identify the prototype that is closest to
a given input data point, followed by basing the prediction on this prototype.
Using prototypes to explain predictions has a significant advantage as it relates
to how humans naturally understand categories. We often explain categories
and concepts to each other via exemplars or prototypical representations, thus
making prototypical explainable models highly interpretable and intuitively
comprehensible.

4.2 Post-hoc methods and local explanations

Post-hoc explanation methods are concerned with interpreting the decision-
making processes of already trained, black-box DL models. These techniques
are mostly oriented towards providing local explanations, which illuminate the
reasoning behind individual predictions made by the model. Among the array
of techniques explored in Section 4.1.1, with the exception of attention mecha-
nisms, local explanation strategies generally form a subset of post-hoc methods.
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These strategies are applied after the model’s training phase to demystify spe-
cific outputs rather than offering a global understanding of the model’s overall
behavior. However, while these methods can offer valuable insights, they can
sometimes be unreliable due to their detachment from the model’s actual de-
cision process. For instance, they may rely on approximations or assumptions
that do not fully capture the model’s complex internal dynamics, leading to
explanations that are not entirely faithful to the reasons behind a model’s pre-
dictions [148, 149]. Additionally, the quality of post-hoc explanations can be
sensitive to the choice of parameters or the specific data used, potentially result-
ing in inconsistent or misleading interpretations across different scenarios [36,
41, 150].

4.3 Self-Explainable Models: local and global
explanations

SEMs are inherently interpretable, integrating transparency within their archi-
tecture. This inherent transparency ensures that the explanations are directly
tied to the model’s computations. Thus, SEMs are designed as “glass-box” mod-
els, with their inner workings accessible and understandable, as depicted in
Figure 4.2. Since the decision-making process of SEMs mirrors human decision-
making, as opposed to the post-hocmodels, SEMs are considered to bemore reli-
able with less misunderstanding and easier control based on human inputs [36,
144]. Because the interpretability of SEMs is built-in, the explanations they
provide are more likely to accurately reflect the true reasoning of the model.
Further, SEMs offer consistent explanations since their interpretability is part of
their structure and not dependent on separate algorithms or additional param-
eters that can vary between uses, as is the case with post-hoc methods [151].
Using SEMs can simplify the workflow for developers and end-users, as there
is no need to apply and interpret separate post-hoc explanation methods. This
can reduce the complexity of deploying DL systems and make it easier for users
to trust and understand the model’s outputs. The transparency of SEMs can
facilitate debugging and model improvement. When developers can see how
the model arrives at its conclusions, they can more easily identify and correct
errors or biases in the model, as discussed in Chapter 5. In summary, SEMs offer
a more direct and reliable route to model interpretability, which can enhance
trust, compliance, and the overall utility of DL systems.

While most global explainers previously discussed in Section 4.1.2 fall into the
category of SEMs, some SEMs go beyond offering global insights and are also
capable of producing local, instance-wise feature attribution maps. These dual-
capabilitymodels provide a comprehensive understanding ofmodel predictions,
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both at the individual and aggregate levels.

Many SEMs have been proposed in the literature, for example, [144] learns deep
logic rule reasoning by leveraging global level human priors about rules (e.g.,
desirable form and property of candidate atoms) and generate explanations by
optimizing rule confidence, approximated using the training data. However, in
this work, the generation of atoms (smallest level of explanations, as proposed
by authors), remains manual, which can affect both the accuracy as well as the
interpretability of the model. Other line of work follows generalized additive
models [152], where each feature’s shape is learned independently, followed
by their addition to learn complex models. Following this, [153] introduces
Neural Additive Models which are trained jointly to learn a complex relation-
ship among several linear combination of neural networks that each attend to
a single input feature. However, these require deep neural networks with tens
of thousands of parameters. To remedy this, Radenovic et al. [154] proposes
Neural Basis Model, where shared basis functions are learned for all features,
thereby reducing computational complexity.

Other line of work in SEMs follow the learning of class-representative con-
cepts or prototypes for achieving interpretability [42, 127], referred to here as
Prototypical Self-Explainable Models.

4.3.1 Prototypical Self-Explainable Models

Prototypical SEMs are ML models that inherently provide explanations for their
predictions based on prototypes or representative examples. As an intrinsic part
of their architecture, they relate new instances to the prototypes they have
learned during training. This allows for interpretability, as their predictions are
based on comparing a new instance to these representative examples, providing
a recognizable point of reference. These prototypes are considered as global
explanations, while for generating instance-based local explanations, post-hoc
methodologies have been used in majority of the work in this field [42, 155,
156]. Since this thesis majorly focuses on prototypical SEMs, we delve deeper
into these models in this section.

SENN [127] was the first work to propose a general self-explaining neural
network architecture, consisting of a concept or prototype encoder, an input-
dependent parameterizer that generates relevance scores and an aggregation
function that produces a prediction. This structure has been followed by several
works on prototypical SEMs, such as ProtoPNet [42], Self Interpretable Tran-
formation Equivariant network (SITE) [156], and Framework to Learn with
Interpretation (FLINT) [155]. We discuss these in the following subsections,
considering their usability as baselines in Papers I to IV of this thesis.
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Figure 4.4: Schematic of ProtoPNet architecture.

4.3.2 Prototypical Part Network

Prototypical Part Network (ProtoPNet), introduced in the paper “This looks
like that” [42], is an example of a prototypical SEM designed to provide in-
tuitive and interpretable explanations for its decisions. It is one of the state-
of-the-art SEMs, which has been followed by several line of works [157–161].
It is a type of neural network trained to make predictions based on learned
prototypes. ProtoPNet learns a dictionary of 𝑚 prototypes for all classes 𝑘
𝑷 = {𝒑𝑘,𝑚

𝑐=1, 𝑗=1} ∈ Rℎ𝑝×𝑤𝑝×𝑑𝑝 , each with height ℎ𝑝 , width 𝑤𝑝 and depth 𝑑𝑝 ,
which are representative examples of different output classes. The architecture
of ProtoPNet consists of a convolutional backbone, referred to here as encoder
(𝒇 ), followed by prototypical layer, and finally a fully connected layer (𝒉) for
classification (refer Figure 4.4). During its training, the prototypes are replaced
by the closest training image patches, thereby maintaining direct interpretabil-
ity. ProtoPNet follows the following steps for classification of a new instance
𝒙𝑖 :

1. Encoding the input via the learned backbone, producing convolutional
output 𝒛𝒊 as:

𝒛𝒊 = 𝒇 (𝒙𝑖) (4.5)

2. Generating𝑚 × 𝑐 activation maps 𝒂𝑖 (𝑐, 𝑗) for 𝒛𝒊, corresponding to each
prototype, by calculating similarity between all patches, 𝒛𝑖 , of 𝒛𝒊 with
the same size as 𝑝, i.e

𝒂𝑖 (𝑐, 𝑗) = log
( | |𝒛𝑖 − 𝒑𝑐,𝑗 | |22 + 1
| |𝒛𝑖 − 𝒑𝑐,𝑗 | |22 + 𝜖

)
(4.6)

3. Computing similarity scores 𝑠𝑖 (𝑐, 𝑗) from 𝒂𝑖 (𝑐, 𝑗) using max pooling, i.e,

𝑠𝑖 (𝑐, 𝑗) = MaxPool(𝒂𝑖 (𝑐, 𝑗)) (4.7)
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4. Finally, converting the similarity scores into class probabilities using the
fully connected layer, i.e, 𝒚𝑖 = 𝒉(𝒔𝑖).

This process thus provides similarity of an instance with all prototypes, along
with activation maps, as well as the final class probabilities. This therefore
allows the network’s predictions to be understood and interpreted in simple
terms, i.e, this new instance was classified into this class because it closely
resembles that learned prototype. Additionally, the prototypes themselves can
be inspected in the input space and understood by domain experts, provid-
ing even deeper insights into how the model is making decisions. ProtoPNet
generates global explanations in terms of visualized prototypes in the input
space, and local explanations by upsampling the activation maps to the input
size.

However, ProtoPNet is not without its limitations. These include, the discon-
nected training process due to reliability of visualization using training images,
the loss in accuracy when compared to the corresponding black-box model
and the unreliable local explanations. We address these issues in this thesis by
proposing more faithful and precise local explanation method for ProtoPNet
in Paper I and novel SEMs in Paper III and IV.

4.3.3 Self Interpretable Tranformation Equivariant
network

SITE, the Self Interpretable Tranformation Equivariant network [156], also in-
troduces a novel paradigm where prototypes of input classes are learned while
ensuring the transformation-equivariant aspect of model interpretations. The
class prototypes are learned via a generative model (𝐺) that maps the latent
representation (𝑧) to instance-based prototypes (𝒑𝑛,𝑘

𝑖=1,𝑐=1), where each proto-
type corresponds to one specific class. The final classification is determined by
the inner product of the prototypes and the latent representation::

𝒚 = 𝜎 (𝐺 (𝒛)𝑇 𝒛) (4.8)

Here, 𝜎 represents the softmax activation, which is used to derive class prob-
abilities. The model achieves transformation equivariance by imposing con-
straints on the loss to ensure consistency in the explanations (i.e., the learned
prototypes) regardless of any transformations applied to the input. Since the
prototypes learned by this model are dynamic and generated for each test im-
age, this method is only able to provide local interpretations and lacks global
interpretations.
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4.3.4 Framework to Learn with Interpretation

Similarly to other prototypical models, the Framework to Learn with Interpre-
tation (FLINT) [155] also learns an attribute or prototype dictionary. However,
unlike previous models, it utlizes a dual-model architecture to achieve inter-
pretability. Its architecture consists of: the original predictive model, referred
to as FLINT-𝑓 , and a newly proposed interpreter model, denoted as FLINT-𝑔.
The role of the interpreter model (FLINT-𝑔) is to learn a dictionary of attribute
functions or prototypes (Φ) by utilizing the outputs of chosen hidden layers of
FLINT-𝑓 , typically selected from the latter layers. The output from the learned
attribute functions are then forwarded through an interpretable function (𝒉),
i.e, a single fully connected layer with weights𝑊 to get the predicted class
probabilities

𝒚𝑖 = 𝒉(Φ(𝒙𝑖)) = 𝜎 (𝑊𝑇Φ(𝒙𝑖)) (4.9)

where 𝜎 represents the softmax activation [68].

FLINT is able to generate both local as well as global explanations, achieved
via utilizing the activation maximization [147] method. However, a trade-off
between explainability and accuracy arises in FLINT as its interpreter model is
not able to perfectly replicate the performance of the predictor model.

In conclusion, XAI, with its ability to represent complex relationships with both
global as well as local explanations can significantly facilitate the creation of
transparent models. However, there might exist artifacts and biases in the data
which can hinder the development of responsible and fair AI. We discuss this
further in the next chapter.
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5
Artifact Learning
Artifact learning in DL refers to the scenario where a model inadvertently
learns from features within the training data that are irrelevant or misleading
— termed as “artifacts”. These artifacts can significantly distort the learning
process, leading themodel to base its predictions on spurious correlations rather
than on meaningful attributes [44]. This reliance on non-essential features can
result in a model that is not only less accurate but also less generalizable to
new data, as it may fail to recognize the correct patterns when the artifacts
are absent.

Consider an exemplar scenario in which a ML model is being trained to classify
images into categories of dogs and wolves. It might be observed that within
the training dataset, a majority of the wolf images are captured within snowy
environments, while images of dogs predominantly feature non-snowy settings.
If the model begins to associate the presence of snow with the classification
of an image as a wolf, it has inadvertently engaged in artifact learning. In
this context, the snow acts as an artifact rather than a salient feature for the
task of distinguishing between the two species. This model, therefore, acts as
a ‘snow detector’ instead of the intended dogs vs wolves detector [126]. This
misdirected learning underscores the importance of ensuring that models focus
on relevant features for prediction rather than extraneous contextual cues that
may lead to biased or incorrect generalizations. This scenario exemplifies the
implications of artifact learning: it can lead to high accuracy during training
or validation but can cause the model to perform poorly on new, unseen data
that does not follow the same pattern (for example, a picture of a wolf not in
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Prototype learned by
self-explainable model
ProtoPNet,
demonstrating the
learning of Clever
Hans artifact.
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Figure 5.1: Clever Hans artifact (a watermark in the Horse class) in Pascal VOC
dataset [166] captured by LRP, a post-hoc explanation method applied on
a black-box Fisher vector classifier (top) and ProtoPNet, a self-explainable
model (bottom). Top image is an example from Lapuschkin et al. [44].

the snow, or a dog in the snow).

Artifact learning can manifest both unintentionally, as a byproduct of the data
or model biases [38], and intentionally, often as a result of adversarial inter-
vention [46, 47, 162, 163]. This chapter delves into the multifaceted nature of
artifact learning, examining various scenarios where artifacts influence model
behavior.

5.1 Unintentional artifact learning

DL models are prone to learning unintentional artifacts in the training data [45,
164]. This tendency to gravitate towards simpler, more superficial solutions can
detract from the models’ or datasets’ ability to address the core complexities
of the problem statement [45, 165]. There are many ways in which models can
learn these unintended correlations, such as:
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• Spectral Bias: DL models tend to learn the low-frequency components of
a function before high-frequency ones, which can lead to a preference
for smoother functions that may not capture the true underlying patterns
[79].

• Dataset imbalances: When training datasets are not representative of
the real-world distribution or contain imbalances, models may develop
correlations that are artifacts of these imbalances rather than genuine
features of the data [164].

• Noise Artifacts: Sometimes, DL models learn the noise present in the
training data, which, too, would lead to poor generalization on novel, un-
seen data. This often happens when highly complex models are trained
on small datasets - the models end up learning the data’s noise and ran-
domness rather than the underlying patterns [167]. Further, label noise
can exist where inaccurate or inconsistent labeling can introduce mis-
leading correlations that DL models might learn, resulting in a divergence
from the true signal that the model is intended to capture [168].

• Confounding Variable Artifacts: These occur when the models learn a
correlation between the target and input features that is actually driven
by a hidden factor. A famous example of this is the “Clever Hans” artifact.

– Clever Hans artifact: The term “Clever Hans” artifact is derived from
a famous horse named Clever Hans that appeared to understand
complex human language, including solving mathematical prob-
lems, but was later discovered to be reacting to subtle cues from
his human handlers [43]. In DL, Clever Hans artifact learning refers
to scenarios where models seem to be doing the right thing for the
wrong reasons, thereby essentially reacting to unintended cues in
the data. For example, a model may be trained to classify images
of horses and it may have a high success rate in doing so. How-
ever, upon deeper investigation, it could be found that the model
is not identifying visual clues with respect to a horse, but rather
associating the background of the image (a watermark from the
photographer in this case) with the horse class [44] (see Figure 5.1).
Similarly, it was noticed by the authors in [44] that if the same
watermark is added on an image of a car, it is now classified as a
horse. These misleading cues can thus lead to poor generalization
to real-world, unseen data. Additionally, in safety-critical scenarios,
such as healthcare, this kind of artifact learning can lead to serious
complications when, as an example, a disease is predicted based
on ‘wrong’ or spurious correlations in the data [164]. This there-
fore emphasizes the use of XAI, such that these intended as well
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as unintended correlations do not go unnoticed. In Figure 5.1, we
demonstrate the capture of a Clever Hans artifact by a post-hoc XAI
method (LRP) and an SEM (ProtoPNet).

5.2 Intentional artifact learning

Intentional artifact learning in DL occurs when a model is purposefully com-
pelled to learn from certain artifacts. This deliberate process is often employed
in scenarios where understanding or mitigating the impact of these artifacts
is crucial. Examples include adversarial attacks [46, 47], where models are
exposed to subtly modified inputs designed to cause misclassification. By train-
ing on these adversarial examples, models can develop a resistance to such
attacks. Other instances might involve watermarking techniques for digital
rights management, where models need to detect specific patterns signify-
ing ownership or authenticity [169]. Additionally, intentional artifact learning
can be used in domain adaptation, helping models to recognize and adjust to
domain-specific cues that would otherwise be considered noise [170]. In the
following sub-section, we delve deeper into adversarial attacks, considering
the applicability of Backdoor attacks (a subset of adversarial attacks) to Paper
I of this thesis.

5.2.1 Adversarial attacks

A significant challenge in DL is the susceptibility of models to adversarial at-
tacks, a vulnerability that is exacerbated by the black-box nature of these mod-
els [46]. Adversarial attacks in DL involve the intentional and strategic manip-
ulation of input data with the aim of misleading machine learning models into
making erroneous predictions. These manipulations, known as adversarial per-
turbations, are typically designed to be subtle to evade human detection, yet
they are capable of inducing profound deviations in the model’s output [47]. Ad-
versarial attacks, with respect to intentional artifact learning in DL, encompass
a variety of techniques, including but not limited to:

1. Data Poisoning Attack: In this attack, the adversary introduces incorrect
data into the training dataset to skew the final results [171]. The main
aim of this attack is to impact the overall performance of the targeted
model.

2. Adversarial Examples: These are subtly modified inputs designed to con-
fuse ML models into making incorrect predictions [172]. An example
might be perturbing pixel values in an image just enough to trick an
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image classifier into mistaking a cat for a dog while remaining nearly
identical to the human eye.

3. Backdoor attacks: In the realm of ML, “backdoor” artifacts refer to the
specific vulnerabilities, patterns or features in a model, that are inten-
tionally designed or inserted by a malicious entity, as a covert way to
control the model’s decisions or behavior. These malicious entities can
be attackers who poison the training data by introducing these special
patterns or features, often known as “trigger" into the dataset. When a
model encounters this specific trigger in the inputs, it causes the model
to produce incorrect outputs or behave in ways that serve the attacker’s
intent [46]. For instance, in an image recognition system, a backdoor
artifact might be a specific logo hidden in the image. The model could
then be manipulated to incorrectly classify any image with this logo as a
specific category, regardless of the actual content. This can pose serious
security threats and cause reliability issues, particularly in critical sys-
tems like self-driving cars, where a stop sign can be manipulated to be
recognized as a speed limit sign [173], or facial recognition systems [174].
Therefore, it becomes crucial to deploy defenses and countermeasures
such as robust training methods and model interrogation techniques to
mitigate their impact.

5.3 XAI and artifact detection

XAI plays a pivotal role in addressing the challenge of artifact learning in ML
models. By providing transparency and interpretability, XAI enables researchers
and practitioners to understand the decision-making processes of complex mod-
els, uncovering the reasons behind specific predictions [42, 126, 141]. This in-
sight is crucial for identifying when a model has learned to rely on spurious
correlations or artifacts rather than the substantive characteristics that gen-
uinely inform the task at hand [44, 45, 164].

Recent research has concentrated on leveraging post-hoc explanations to de-
tect spurious learning, with several studies documenting the efficacy of these
methods [44, 45, 175]. Nonetheless, there is an ongoing debate regarding the
limitations of post-hoc explanations in accurately fulfilling this role [150]. Fur-
ther, given the concerns about the faithfulness of post-hoc explanations, this
thesis advocates for the adoption of SEMs as a more reliable alternative for
the detection of artifact learning. The effectiveness of SEMs in identifying and
mitigating artifact learning is demonstrated in Paper I and Paper II.

As an example, as shown in Figure 5.1, ProtoPNet, in particular, has the capa-
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bility to globally capture artifact learning, which facilitates the easier identi-
fication of artifacts across the model. This global perspective contrasts with
post-hoc explanation methods, which typically only provide local explanations
for individual predictions. Local explanations,while useful,may not always give
a comprehensive view of the model’s reliance on artifacts, potentially making
the detection process more laborious and less systematic.



6
Bias and fairness
Biases in DL represent systematic deviations that can significantly impact the
performance and fairness of neural network models [38]. These biases often
originate from the data used to train the models, which may encapsulate his-
torical disparities, societal stereotypes, or sampling that is not reflective of
the broader population [48, 176]. For example, a facial recognition system
trained predominantly on images of individuals from a single ethnic group
may exhibit reduced accuracy for people of other ethnicities, illustrating dataset
bias [177].

Algorithmic bias arises when the assumptions embedded within learning algo-
rithms inherently favor certain patterns or outcomes. This can lead to models
that are predisposed to specific decisions, irrespective of the representative
power of the data [178, 179]. This type of bias is thus introduced by the al-
gorithm itself, often through the assumptions made during the development
process. For example, an algorithm might be biased towards simpler patterns
if it has a complexity penalty [165].

Confirmation bias is another concern, where the preconceptions of researchers
or developers may inadvertently guide the selection of data or the fine-tuning
of models, thereby reinforcing existing beliefs or hypotheses [180, 181].

The ramifications of such biases are profound, especially in high-stakes domains
such as recruitment, credit scoring, and criminal justice, where they can lead
to outcomes that are unjust or discriminatory. Some real-world examples of AI
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doing harm due to biases include: Unlawful and unethical use of facial recogni-
tion software by UK police [182], amazon’s recruiting tool showing bias against
women [183], automated anti-blackness implemented by facial recognition AI
in New York [184], Apple’s credit card’s gender bias [185] and Microsoft’s chat-
bot learning racism through Twitter [186]. To combat these biases, the field
of DL necessitates meticulous approaches to data curation, algorithmic design,
and continuous monitoring to ensure that AI systems function in a manner that
is both equitable and ethical [39].

Promoting transparency in algorithmic decision-making and enhancing the
interpretability of ML models can aid in identifying, understanding and miti-
gating these biases [187]. In the next section, we focus on bias in LLMs which
is the main focus of Paper V of this thesis.

6.1 Bias in Large Language Models

Biases in LLMs, and other large-scale ML, are indeed often a reflection of the
datasets on which they are trained. These models, which are often trained on
extensive collections of text from the internet, books, articles, and other written
materials, can inadvertently learn and propagate the biases that are embedded
within those texts. The biases can be multifaceted, encompassing gender [188],
race [189], culture [190], and socio-economic status, among others [191, 192].
Fairness in LLMs, therefore, becomes a critical concern, as these biases can lead
to the reinforcement of stereotypes and unfair treatment of certain groups when
the models are used for tasks like text generation, conversation, or decision-
making aids [49].

To address these concerns, it is essential to implement strategies aimed at
mitigating bias in LLMs. This can include:

• Curating Diverse and Balanced Datasets: Ensuring that the training data
includes a wide array of perspectives and is representative of different
groups to reduce the risk of overfitting to biased samples. However, the
implementation of this strategy faces significant challenges, particularly
due to the vast amounts of data required for pre-training these mod-
els [22]. The sheer scale of data needed to effectively train LLMs means
that any comprehensive dataset is likely to contain biases, as historical
and existing data inevitably reflect the prejudices and inequalities present
in society.

• Bias Detection and Evaluation: Considering the infeasibility of the previ-
ous step, effectively detecting and evaluating bias becomes the first major



6.1 bias in large language models 59

step towards bias mitigation. This involves employing metrics and evalu-
ation frameworks specifically designed to detect and quantify biases in
model outputs [49, 193].

• Debiasing Techniques: Algorithmic interventions play a crucial role in mit-
igating biases in LLMs. An example of this includes counterfactual data
augmentation, which involves generating and incorporating synthetic
data that represents counterfactual scenarios with the aim to balance the
dataset thus enabling the model to learn to disentangle the protected
attribute from the prediction task [194].

• Transparency and Interpretability: Transparency and interpretability are
essential for understanding and addressing biases in . Leveraging XAI
to understand how models generate specific outputs can help identify
and correct biased decision-making pathways. Several methodologies
have been developed recently for generating explanations for , such as
chain-of-though reasoning [195], as well as post-hoc explanations such as
Vanilla Gradients, Gradient x Input and contrastive explanations [196].

To take an initial step in this direction, as a part of this thesis, we investigate
fairness exhibited by LLMs, tested rigorously on tabular data in Paper V. Tabular
data, often structured with clear attribute-value pairs, is a common format in
many real-world applications [197], such as finance, healthcare, and human
resources. It is crucial for LLMs to handle such data without perpetuating or
amplifying existing biases. To this end, we apply LLMs to tabular datasets and
scrutinize their outputs for signs of bias with respect to protected attributes
like gender and race.
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Paper I
This looks More Like that: Enhancing
Self-Explaining Models by Prototypical Relevance
Propagation

Srishti Gautam,MarinaM-CHöhne, Stine Hansen,Robert Jenssen,Michael Kampff-
meyer

Pattern Recognition, 2023

In this paper, we identify and address the main shortcomings of the explana-
tions generated by one of the state-of-the-art SEM, ProtoPNet [42]. Through
an extensive case study, we examine the performance of ProtoPNet when con-
fronted with various types of artifacts. Additionally, we propose a systematic
approach for the effective detection and elimination of such artifacts from the
training dataset.

We start by arguing that for prototypical SEMs, ideally artifacts in the training
data should be captured by some of the class prototypes, removal of which from
themodel should result in an artifact-freemodel. However,we demonstrate that
due to model-agnostic upsampling used by ProtoPNet, the local explanation
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Figure 7.1: (a) Horse image from PASCAL VOC [166], (b) Prototype learned by Pro-
toPNet, (c) Prototypical explanation by PRP, (d) Test image from horse
class, (e) Activation by prototype (b), (f) Fine and precise PRP explanation
obtained. Example from Paper I.

maps generated are coarse and spatially imprecise. To address this, we propose
a novel method called PRP, a backpropagation-based explanation method for
prototypes, inspired by LRP [125], which attains more accurate model-aware
explanations. Our aim is thus to maintain the advantage of the self-explanatory
architecture through prototypes as well as simultaneously improving the qual-
ity of prototypical explanations by adding a model-aware explanation strategy.
The improved explanations by PRP are shown in Figure 7.1.

We demonstrate the effectiveness of PRP in detecting Clever-Hans and Back-
door artifacts, which might go unnoticed otherwise. Additionally, in this work,
we go one step further and suppress the potential artifact learned by the models.
Since with the help of PRP we demonstrate that the artifact learning is entan-
gled in the whole model, we propose automated cleaning of the data instead of
pruning the prototypes. We filter out the artifact data using multi-view cluster-
ing applied on the multiple views generated from prototypical explanations. All
experiments were conducted on subsets of LISA traffic sign dataset [198].

This work, in addition to contributing by advancing XAI, demonstrates the im-
portance and efficiency of XAI for development of reliable AI by detecting as well
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as mitigating artifact learning, thereby increasing trust in ML systems.

Contributions by the author

• I developed the methodology in collaboration with my co-authors.

• I made all implementations and conducted all experiments.

• I wrote the original draft of the manuscript.
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Paper II
Demonstrating the Risk of Imbalanced Datasets
in Chest X-Ray Image-Based Diagnostics by
Prototypical Relevance Propagation

Srishti Gautam,MarinaM-CHöhne, Stine Hansen,Robert Jenssen,Michael Kampff-
meyer

IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022

Building on Paper I, in this work, we address the problem of unintentional ar-
tifact learning in the safety-critical area of healthcare, specifically, Chest X-Ray
analysis. In the era of data-driven DL models, the scarcity of labeled data is
commonly addressed by amalgamating datasets from various sources [199].
However, this can prompt the models to inadvertently learn source-based spuri-
ous correlations to solve the task [164]. In this work, we show that models can
rely on textual annotations within Chest X-Ray images, which includes source
metadata, to make predictions. This can lead to falsification of performance
statistics as the model appears to be working well when in reality failing to
capture class-related pathology-based characteristics.
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Figure 8.1: PRP maps of models with 90% (blue) and 60% (yellow) imbalance in
source-related pneumonia labels. Example from Paper II.

The experiments are performed on the combination of two commonly used
Chest X-Ray datasets, ChestX-Ray14 [200] and CheXpert [201] for the problem
of pneumonia detection. We deliberately introduce a gradual imbalance in the
prevalence of pneumonia images from one hospital system to assess the behav-
ior of the model. Additionally, and more importantly, we argue that this unan-
ticipated behavior can go unnoticed with black-box models, thus advocating
the use of XAI. We, therefore, illustrate how these spurious correlations can be
detected with the help of the proposed PRP from Paper I. Experimental results
demonstrate that the model learns source related text-annotations, as shown
in Figure 8.1. We therefore conclude that in the presence of source-related
disease imbalance, the DL methods quickly start acting as an unintentional
source-detector instead of the intentional disease-detector.

Contributions by the author

• I developed the methodology in collaboration with my co-authors.

• I made all implementations and conducted all experiments.

• I wrote the original draft of the manuscript.
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Paper III
ProtoVAE: A Trustworthy Self-Explainable
Prototypical Variational Model

Srishti Gautam,Ahcene Boubekki, Stine Hansen, Suaiba Salahuddin,Robert Jenssen,
Marina M-C Höhne, Michael Kampffmeyer

Advances in Neural Information Processing Systems 35 (NeurIPS), 2022

This paper addresses multiple shortcomings in existing prototypical SEMs. Cur-
rent approaches often simulate prototype transparency by visualizing nearest
training samples [127, 155], while some use actual training images as proto-
types, which obstructs end-to-end optimization and constrains model flexibil-
ity [42]. Moreover, existing methods fail to ensure inter and intra class diversity
of prototypes [42]. Additionally, there is often a trade-off between predictive
accuracy and self-explainability. [42, 158].

To overcome these limitations, we introduce ProtoVAE, a new prototypical
SEM built upon a VAE backbone. Specifically, the model learns a mixture of
VAEs, each having its own Gaussian prior centered on one of the prototypes,
while sharing the same encoder and the decoder, as shown in Figure 9.1. The
prototypes generated by ProtoVAE thus serve as genuine transparent global ex-
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Figure 9.1: Schematic of ProtoVAE from Paper III.

Figure 9.2: UMAP representation [202] of transparent prototypical space learned by
ProtoVAE for ‘MNIST’ dataset [203]. Bottom row shows interpolation be-
tween prototypes of the same class (2) and between prototypes of differ-
ent classes (2-7). Example from Paper IV.

planations, which can be decoded into the input space for visualization (Figure
9.2). Further, the local pixel-wise explanations are generated using PRP, the
methodology proposed in Paper I.

Additionally, we define three essential predicates for an efficient and compre-
hensible formalization of SEMs: transparency, diversity, and trustworthiness.
While transparency is inherent to the design of the model, diversity relates to
the quality of prototypes learned, and trustworthiness translates to the quality
of decisions, as well as explanations, achieved by the model. We demonstrate
that the proposed ProtoVAE is able to produce transparent, diverse, and trust-
worthy predictions, as well as explanations, while relying on an end-to-end
optimization. Empirically, ProtoVAE validates its trustworthiness by deliver-
ing robust performance as well as generating faithful explanations on several
open-source datasets.
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Paper IV
Prototypical Self-Explainable Models Without
Re-training

Srishti Gautam, Ahcene Boubekki, Marina M-C Höhne, Michael Kampffmeyer

Under Review, 2023

Existing SEMs incorporate complex designs, based on large DL models as back-
bones [42, 155]. This necessitates intricate training strategies, further associ-
ated with large computational requirements, thereby limiting their accessibility.
In this work, we propose a universal method, called KMEx, which is the first ap-
proach that aims to convert a trained black-box model into a prototypical SEM,
without requiring retraining. The class-representative prototypes are learned
from the latent representations extracted from a pre-trained model by utilizing
𝐾 -means clustering, as shown in Figure 10.1. The final classification is then
achieved by comparing the similarities of the input data with the prototypes
and utilizing a 1-nearest neighbor classifier, thereby maintaining transparency
in the decisions (10.1). The global explanations are achieved by visualizing the
nearest training example to the prototype, while the local explanations utilize
PRP, proposed in Paper I.
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Figure 10.1: Illustration of proposed KMEx, along with transparent decision making
shown on ‘STL-10’ dataset [204]. Example from Paper IV.

Additionally, we address the lack of comprehensive evaluation strategies for
prototypical SEMs by proposing quantitative measures for the predicates de-
fined in Paper III. This enables a comprehensive objective evaluation between
existing methodologies, as opposed to largely qualitative evaluations used un-
til now. Results on multiple open-source datasets demonstrates the efficacy of
KMEx in matching the performance of the corresponding black-box models,
while offering inherent interpretability without altering the embedding. This
makes KMEx an efficient benchmark for prototypical SEMs.

Further, our proposed evaluation framework uncovers several advantages and
disadvantages of existing prototypical SEMs. Specifically, we find that existing
methods have the tendency to ghost the prototypes, i.e, never utilizing them
for predictions, therefore rendering them useless. Further, the large variations
in the design and regularizations of other SEMs lead to drastically different
learned representation spaces, unlike KMEx. Finally, while diversity is ensured
in several existing SEMs using regularization of losses, it is not reflected in
the learned prototypes. We illustrate how KMEx can be leveraged, without the
need for retraining, to improve the prototype positioning, thereby achieving
better diversity, on already trained SEMs’s embeddings.

Contributions by the author

• I developed the methodology in collaboration with my co-authors.

• I made implementations and conducted experiments in collaboration
with Ahcene Boubekki.

• I wrote the first draft of the manuscript and refined it in collaboration
with my co-authors.
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Paper V
Investigating the Fairness of Large Language
Models for Predictions on Tabular Data

Yanchen Liu, Srishti Gautam, Jiaqi Ma, Himabindu Lakkaraju

Under Review, 2023

Tabular data, often structured in tables as a result of relational databases [205],
is widely used in critical decision-making processes [206]. Recent studies have
suggested employing LLMs for tabular predictions by converting tables into
natural language descriptions [197]. Contrary to traditional ML models, which
lack context such as column names or descriptions, LLMs can utilize this contex-
tual information, making them more perceptible to propagating demographic
biases. However, while fairness in traditional ML methods for tabular data has
been thoroughly investigated [207], the fairness implications of using LLMs
for such tasks remains rather unexplored.

In this paper, we delve into this vital issue, aiming to uncover the information
that LLMs depend on when making predictions from tabular data. Our goal is
to determine the extent to which LLMs may be influenced by societal biases
and stereotypes in their predictions.
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Figure 11.1: Exemplar of prompt template from Paper V for Adult dataset [208].

Our experiments with GPT-3.5 in a zero-shot setting, in comparison with tra-
ditional ML approaches, i.e neural networks and random forests [209], reveal
that LLMs indeed manifest significant social biases. This suggests that these
models inherit and leverage biases from their training data during prediction.
We also find that both few-shot in-context learning (example prompt shown
in Figure 11.1) as well as fine-tuning have a moderate impact on reducing
bias. Furthermore, our research shows that label-flipping of few-shot exam-
ples can improve fairness metrics across different demographic groups, albeit
with a trade-off in predictive accuracy, further highlighting the presence of
inherent biases. These findings emphasize on the need for more sophisticated
approaches, such as XAI techniques, to efficiently detect and mitigate biases
and promote fairness in LLMs deployments.

Contributions by the author

• I developed the methodology in collaboration with my co-authors.

• Together with Yanchen Liu, I implemented and conducted the experi-
ments.

• I contributed to the writing of the manuscript.



12
Concluding Remarks
This thesis contributes towards the enhancement of trustworthiness and de-
pendability of AI models. The research centered around three key objectives:
1) Enhancing transparency and interpretability of AI systems, 2) Enhancing
reliability of AI systems, and 3) Analysing un-/fairness of AI systems.

Focusing on enhancing transparency of AI systems, SEMs have been advanced in
this thesis, first by improving the explanations provided by an existing state-of-
the-art SEMmethod, ProtoPNet [42]. Leveraging the proposed method, PRP, in
the context of ProtoPNet, more spatially accurate and fine-grained local expla-
nations can be obtained. Additionally, novel SEMs were proposed, improving
both the predictive performance as well as the explanation quality compared to
existing methodologies. Specifically, a novel SEM was proposed, built on a VAE
as the backbone, thereby learning a transparent prototypical space visualizable
in the input space with the learnt decoder. The unique architecture enables end-
to-end training resulting in no loss in predictive performance when compared
to equivalent black-box models, unlike existing SEMs. Furthermore, a universal
method, called KMEx, was proposed, which is able to convert any black-box
model into a self-explainable one. KMEx achieves this inherent interpretability
without requiring re-training of the black-box model, unlike existing methods,
thereby enhancing the SEMs’ accessibility. Additionally, Paper III contributed
to the formalization of this relatively new domain of research by introducing a
set of predicates for SEMs which facilitate a thorough comparison of existing
models in terms of transparency, diversity, and trustworthiness. Paper IV fur-
ther advanced the field by proposing a comprehensive quantitative evaluation
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framework that leverages the predicates established in Paper III, thus allowing
for more effective comparative analysis.

In the intersection between research objective 1 and 2, for improving the relia-
bility of AI systems, the phenomenon of artifact learning was addressed through
using the proposed PRP method. This approach successfully identified Clever
Hans and Backdoor artifacts within the models by generating precise proto-
typical explanation maps for the datasets. Subsequently, these maps facilitated
the removal of instances containing such artifacts by employing multi-view
clustering technique. The efficacy of the PRP method was further evaluated in
a healthcare context, revealing that when DL models are trained on amalga-
mated source datasets, they tend to function as source detectors rather than
as intended disease detectors. This discovery underscores the critical role of
XAI in domains where safety and accuracy are paramount, highlighting their
need to ensure that models perform their intended tasks without being misled
by confounding artifacts.

Our research further explored the fairness of LLMs in the context of processing
tabular data. To assess fairness across multiple dimensions, a range of distinct
learning techniques was employed. Zero-shot learning was used to gauge the
model’s unbiased performance on unfamiliar tasks, in-context learning was
used to assess how context influences model predictions, and fine-tuning was
used to determine if further training could correct or worsen biases. Our stud-
ies of the GPT-3.5 [22] model revealed a tendency to perpetuate biases from
their training data, raising concerns about potential unfair outcomes based on
demographic attributes such as race and gender. These findings highlight the
necessity for rigorous fairness evaluations and bias mitigation in the develop-
ment and application of LLMs.

12.1 Limitations and Outlook

This section delves into the limitations of the studies incorporated within this
thesis. Furthermore, it outlines the potential paths for future work that build
upon the methodological foundation laid out in this thesis.

Paper I A drawback of Paper I is the necessity for manual examination of the
clusters to differentiate between the ‘artifact’ and ‘clean’ data clusters. While
this manual intervention did not present a substantial issue for the datasets
evaluated in this study, which contained only one type of artifact, it may not
be scalable for more complex datasets with multiple artifact types. To address
this challenge in more intricate datasets, advanced methods for ’artifact’ clus-
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ter identification could be employed, such as the approach suggested in [45].
Moreover, it is critical to assess how the clustering performs when confronted
with multiple artifacts within the same category. The design of explainable
approaches with the inherent capability to leverage artifactual data in addition
to clean data without capturing the artifact features would be ideal instead of
removing the data.

Paper II As Paper II builds upon the methodology proposed in Paper I, it
also inherits its limitations. Moreover, given that the artifacts in this study –
source-identifying annotations – are intrinsically embedded within the dataset,
the multi-view clustering method for excluding data containing artifacts proves
to be ineffective. Consequently, there is a call for a more refined strategy that
focuses on the unlearning of artifacts directly within the model’s design.

Paper III The current approach, proposed in III, assumes a fixed number of
prototypes for each class. This assumption potentially limits the representa-
tional capacity, as it enforces a uniform number of prototypes across classes,
regardless of their complexity. For instance, considering two classes from the Im-
ageNet [93] dataset, a class consisting of ‘motor scooter’ images might embody
more variability than a ‘balloon’ class, necessitating a more nuanced prototype
representation. A potential remedy could be a distance-based prototype prun-
ing method. Another prospective strategy can involve imposing a prior on the
prototypical similarity distribution, thereby selectively prioritizing prototypes
based on the frequency of their utilization in making predictions. Moreover, the
quality of our global explanations is fundamentally dependent on the perfor-
mance of the backbone VAE. However VAEs are commonly associated with the
generation of blurry images [210, 211]. Therefore, adoption of other advanced
methodologies, such as Very Deep VAEs [212] and normalizing flows [213],
needs to be explored to enhance the method’s applicability to more complex
datasets.

Paper IV Similar to Paper III, the proposed KMEx relies on predefining the
number of prototypes, a feature it has in common with other SEMs. It is also
important to acknowledge that the detailed quantitative evaluation framework
introduced is intended to complement, rather than replace, the qualitative
assessments of SEMs. We argue that both assessments are essential owing to
the subjective nature of explanations, which requires qualitative insights to
fully capture the effectiveness of the SEMs.

Paper V The findings discussed in Paper V pertain exclusively to a single
model GPT-3.5 [22], which may not reflect the broader landscape of LLMs. Fu-
ture research could broaden this scope by incorporating a variety of models,
including LLaMA [117] and BLOOM [214], to provide a more comprehensive as-
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sessment of fairness. The research is also limited to plain prompting methods;
experimenting with additional prompting methods, such as, Chain of Thought
prompting [195] could offer deeper insights into improving fairness. Further-
more, there is an opportunity to investigate sophisticated bias mitigation strate-
gies that could contribute to the development of more equitable LLMs.

Future directions The advent of SEMs marks a significant stride towards
achieving interpretability in AI systems. Nonetheless, the challenge of gen-
eralizing SEMs, such as to ensure their applicability across a wide range of
domains, tasks and model, especially in the context of LLMs, presents a po-
tential area with future research. By focusing on this aspect, we can make
substantial progress in not only enhancing the interpretability but also in pro-
moting the fairness of AI systems by identifying and mitigating biases. The
explainability of LLMs has been explored through natural language explana-
tions, such as Chain of Thought [195] and Tree of Thought methods [215], as
well gradient based post-hoc methods [196]. Subsequent research has delved
into the issues of unfaithfulness [216] and the perpetuation of social biases
in these explanations [217]. However, SEMs still remain a rather unexplored
category.

As we continue to refine SEMs, there is a compelling opportunity to designmore
sophisticated versions tailored for artifact mitigation. By integrating mecha-
nisms for detection and mitigation, SEMs can ensure that explanations and
decisions stem from pertinent and legitimate features. This would not only
improve the trustworthiness of AI systems but also enhance their robustness
against adversarial attacks or dataset biases that could otherwise compromise
their performance.

Further, to maximize the potential of SEMs, the development of comprehen-
sive evaluation tools is essential. While this thesis introduces detailed evalu-
ation frameworks for Prototypical SEMs, the broader spectrum of SEMs still
lacks robust evaluation mechanisms. Existing tools like Quantus [151] and
OpenXAI [218] provide extensive metrics and visualizations for post-hoc expla-
nations, yet similar frameworks for SEMs are notably lacking. Availability of
such tools can help enable a more systematic comparison between models and
facilitate the identification of best practices for generating self-explanations.
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Current machine learning models have shown high efficiency in solving a wide variety of real-world prob- 

lems. However, their black box character poses a major challenge for the comprehensibility and traceabil- 

ity of the underlying decision-making strategies. As a remedy, numerous post-hoc and self-explanation 

methods have been developed to interpret the models’ behavior. Those methods, in addition, enable the 

identification of artifacts that, inherent in the training data, can be erroneously learned by the model as 

class-relevant features. In this work, we provide a detailed case study of a representative for the state- 

of-the-art self-explaining network, ProtoPNet, in the presence of a spectrum of artifacts. Accordingly, we 

identify the main drawbacks of ProtoPNet, especially its coarse and spatially imprecise explanations. We 

address these limitations by introducing Prototypical Relevance Propagation (PRP), a novel method for 

generating more precise model-aware explanations. Furthermore, in order to obtain a clean, artifact-free 

dataset, we propose to use multi-view clustering strategies for segregating the artifact images using the 

PRP explanations, thereby suppressing the potential artifact learning in the models. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

When applying AI models, especially in safety-critical areas, 

such as medical applications, autonomous driving, or criminal jus- 

tice, we need to understand their underlying behavior to decide 

the model’s trustworthiness. Here, the field of explainable AI (XAI) 

has established itself, where methods are being developed to illu- 

minate the so-called black box models [1,2] . XAI serves as an es- 

sential support in ethical, legal, and social issues and ultimately 

also contributes to an increased acceptance by the end user [3] by 

revealing the input features that led to a certain model prediction. 

Using those XAI methods, recent work has shown that models 

can learn artifacts that are present in the training data [4] . Such 

artifacts can be based on a so-called selection bias in the training 

data, where, for example, objects of a class have a certain back- 

ground, and as a result the background is learned instead of the 

object. Furthermore, the training data can be manipulated by in- 
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E-mail addresses: srishti.gautam@uit.no (S. Gautam), mhoehne@atb-potsdam.de 

(M.M.-C. Höhne), s.hansen@uit.no (S. Hansen), robert.jenssen@uit.no (R. Jenssen), 

michael.c.kampffmeyer@uit.no (M. Kampffmeyer) . 

serting a special trigger called “backdoor” which, if present in a 

sample, always leads to the prediction of a specific target class - 

i.e. a “backdoor” to this target class [5] In addition, a phenomenon 

called “Clever Hans”, refers to an artifact that is correlated with 

a certain class in the training data and hence, used for classifica- 

tion such that the model could make a right prediction, but for the 

wrong - the artifact - reason [4] . In order to guarantee a faithful 

use of AI systems, it is important to find and suppress those arti- 

facts either from the model, i.e., from the learnt representations or 

from the data itself, thereby enabling the retraining of the model 

with a clean dataset. 

Recently, so-called post-hoc XAI methods, such as Layerwise 

Relevance Propagation (LRP) [6] were able to uncover this undesir- 

able behavior of AI models [4] . Post-hoc refers to the fact that the 

XAI method explains the prediction of the model after (post) the 

prediction is made. However, [7] suggested to use an influential 

alternative to post-hoc explainability, called self-explaining neu- 

ral networks, which can intrinsically explain their decision mak- 

ing process. Towards this goal, [8] recently proposed a network 

(ProtoPNet) that provides a transparent prediction by introducing 

a prototype layer between the final convolution layer and the out- 

put layer. This prototype layer consists of a fixed number of pro- 

https://doi.org/10.1016/j.patcog.2022.109172 

0031-3203/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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totypes for each class, which can be thought of as representative 

instances for each class of the training data. During the classifi- 

cation process, for each image that is passed through the network, 

prototype-specific activation maps are computed based on the sim- 

ilarity between the image and the prototypes. The visualization is 

performed by upsampling the activation maps to the input size, 

thus highlighting the most relevant pixels contributing to the clas- 

sification. Doing this procedure for both, the prototype (training) 

images and the test image, the regions of interest can be visual- 

ized, serving as a direct comparison for the user to capture the re- 

lation between the test image and the prototype images from the 

training set. This accordingly helps in comprehending the decision 

of the network by “this relevant feature of the test image looks like 

that relevant feature from the class-specific prototype image” ( This 

looks like that ). 

Recalling the artifacts issue, the solution now appears to be 

clear when using self-explaining neural networks, such as ProtoP- 

Net: If the model learned a feature corresponding to the artifact, 

then it must be reflected by at least one of the prototypes of the 

class consisting of such artifacts. Consequently, once the artifact 

prototypes have been identified, their influence on the prediction 

can be stopped by pruning. 

Interestingly, in this work we demonstrate that this idea of re- 

moving the artifact prototypes is not feasible owing to the coarse 

and spatially imprecise explanations provided by ProtoPNet, which 

is, due to its model-agnostic upsampling. Therefore, building on 

the principles of the post-hoc explanation method LRP, we pro- 

pose a novel method referred to as Prototypical Relevance Prop- 

agation (PRP) to attain more accurate model-aware explanations 

(example shown in Fig. 1 ). We demonstrate that PRP efficiently 

captures the learned artifact, which might go unnoticed otherwise. 

Additionally, in this work, we go one step further and suppress 

the potential artifact learned by the models: using PRP, we illus- 

trate that artifact information is entangled within the ProtoPNet, 

such that most prototypes capture artifact related features, mak- 

ing the above-mentioned pruning procedure not applicable. There- 

fore, we propose to clean the data instead of pruning the network. 

Knowing the ability of PRP of generating multiple views of the in- 

put in terms of learned prototypical explanations, we filter out the 

data points containing the artifact using multi-view clustering ap- 

proaches. Our presented approach preserves the strength yielded 

by ProtoPNet of obtaining “This looks like that ” explanations, while 

at the same time suppressing potentially learned artifacts. More- 

over, we show that utilising multiple views through multi-view 

clustering is more efficient than a single-view LRP-based cluster- 

ing approach, SpRAy [4] . 

Our main contributions are as follows: 

• We identify and address key issues with inaccurate explana- 

tions provided by the self-explaining model, ProtoPNet. 
• We propose a novel PRP method for enhancing ProtoPNet’s ex- 

planations by generating more precise model-aware explana- 

tions. 
• We compare PRP with ProtoPNet’s explanation heatmaps, both 

qualitatively and quantitatively and show that eradicating 

learned artifact features, such as the Clever Hans and Backdoor 

artifacts, from ProtoPNet is unfeasible. 
• We show the ability of PRP in utilizing multiple explanations 

from different prototypes, which can be utilized to suppress ar- 

tifacts from the data by using multi-view clustering. 

2. Related work 

2.1. Explainability methods 

Recently, there has been increased interest in both post-hoc 

explanation methods and self-explaining neural networks. Post- 

Fig. 1. (a) Visualization of a horse image from the PASCAL VOC 2007 dataset [9] , (b) 

activation for a prototype of class horse learned by ProtoPNet, and (c) its PRP expla- 

nation. A Clever Hans artifact is present in the form of a watermark at the bottom 

of the image. Both, the ProtoPNet and the PRP explanation yield relevance to the 

bottom of the image, however, in the case of ProtoPNet, it remains unclear if the 

green grass, the text, or both together, were relevant for the prediction. Whereas 

the PRP explanation clearly shows that the text was used as relevant feature for 

the model’s prediction. For a test image (d), the ProtoPNet’s explanation and the 

PRP explanation for the learned prototype (b) are given in (e) and (f), respectively. 

The PRP explanation again corroborates the emphasis on the watermark text as op- 

posed to ProtoPNet’s explanation which is more widely spread across the image. 

The ProtoPNet explanation in (e) thus exhibits ‘ This looks like that ’ behavior i.e ex- 

planation in (e) looks like prototype in (b). The PRP explanation in (f) exhibits ‘ This 

looks more like that ’ behavior i.e, enhanced explanation in (f) looks more like that in 

(c). . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

hoc explainability methods can be separated into two overarching 

categories: model-agnostic and model-aware approaches. Model- 

agnostic approaches [10] , such as LIME [11] and SHAP [12] , con- 

sider the models as black-boxes and are thus applicable to ar- 

bitrary model architectures and can be used to compare models 

based on the explanations that they produce. In contrast, model- 

aware approaches [13] take the internal structure of the model into 

account, yielding more precise model based explanations. Here LRP 

[6] has been widely used to explain the decisions of various deep 

neural networks, such as convolutional neural networks, recurrent 

neural networks and graph neural networks [14] . LRP assigns rel- 

evances to the input features by backpropagating the prediction 

score, i.e., the output relevance, successively layer by layer until 

it is distributed over the input features. Hence, the distribution of 

relevance is based on how much a particular node contributed to 

the output. 

Another new and promising category of explanation methods 

are self-explaining networks, which inherently explain the deci- 

sions they make, thereby making the models transparent by de- 

sign. These include networks that align the latent space to known 

visual concepts in order to increase transparency in the decisions 

[8,15] . These also include models that utilize attention mecha- 

nisms [16] and thus also provide some form of self-explainability. 

Other works consider self-explainability in terms of concept learn- 

ing [17,18] . Further, recently, some research has been originated to 

develop frameworks with a joint architecture consisting of an ex- 

2
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plainer and a classifier which learn in conjunction [19,20] . ProtoP- 

Net [8] proposes to learn a specific number of class based proto- 

types as a part of the architecture. These are then used for visu- 

alizing lower spatial dimensional concepts from the training im- 

ages, thus providing explanations during the decision process it- 

self. SENN [21] is a type of general self-explaining model that is 

fully transparent and designed by progressively generalizing linear 

classifiers to complex models. Although the self-explainable con- 

cepts in SENN are using prototypes similar to ProtoPNet, the for- 

mer only shows which training images are important for a deci- 

sion. ProtoPNet, on the other hand, additionally shows what part 

of the test image looks like which part of the training images, thus 

providing more comprehensible information. The Classification-By- 

Components (CBC) network [22] is designed based on Biederman’s 

theory in psychology, which assigns positive, negative, and indefi- 

nite reasoning to different components used for classification. Un- 

like CBC, ProtoPNet is more flexible in terms of i ) learning com- 

ponents (prototypes) of varying sizes in the input domain, and ii ) 

having the capability of being incorporated into any network archi- 

tecture. 

Inspired by ProtoPNet, XProtoNet [23] was recently introduced 

for automated diagnosis in chest radiography. It addresses the is- 

sue that ProtoPNet looks at fixed patch sizes in the feature map 

while computing its similarity with the prototypes. As a remedy, 

[23] adds an occurrence module in the network for learning fea- 

tures of dynamic size for the prototypes. However, the issues that 

we address in this work do remain in XProtoNet, making it prone 

to misleading explanations due to the model-agnostic upsampling 

used for prototype visualizations. 

2.2. Artifacts 

Real-world data used for training deep neural networks are 

prone to containing spurious, incomplete, or wrongly labeled sam- 

ples thus leading to unwanted artifactual data. In this work, we ac- 

knowledge this inherent problem and focus on two common arti- 

facts, Clever Hans and Backdoor, whose suppression is the focus of 

this work. Clever Hans artifacts refer to the unintentional spurious 

correlations present in the training data, which a model might use 

to base or strengthen their decisions on and is thus likely to fail 

in a real-world scenario, where the artifact is absent. This undesir- 

able setting has also been explored recently by [4] , in which they 

propose a semi-automated method, SpRAy, based on spectral clus- 

ter analysis on LRP maps, to discover prediction strategies based 

on an artifact. In other scenarios, the network might be forced to 

learn undesirable features based on the malicious addition of hid- 

den associations in the data with the goal to produce incorrect in- 

ference results, referred as backdoor attacks. These kinds of attacks 

— where, in contrast to the Clever Hans scenario, both the data 

and labels are intentionally modified — are addressed in detail in 

[5,24] . 

3. An evaluation of ProtoPNet 

While the effectiveness of post-hoc explainability methods has 

been investigated extensively [25,26] and their benefit has been 

questioned [7] , there is a significant gap in the research for the 

analyses of the effectiveness of self-explainable approaches regard- 

ing quantitative analysis of the provided explanations [27] . There- 

fore, in this section, we provide a detailed analysis of ProtoPNet 

and its inherent explanations using a case study of Clever Hans ar- 

tifact detection. As a representative for the self-explaining model, 

we focus on ProtoPNet as it claims to provide easily comprehen- 

sible case-based reasoning and is applicable to arbitrary CNN ar- 

chitectures by inserting a single prototype layer [8] . Additionally, it 

not only provides information about the features that the model’s 

decision is based on, but also links this information to similar fea- 

tures in the training data, captured by the prototypes, thus imitat- 

ing human decision making. 

3.1. ProtoPNet 

ProtoPNet introduces self-explanation in a deep learning net- 

work by incorporating a prototype layer between the last convolu- 

tional layer and the output layer. Thereby, each class is associated 

with a fixed number of prototypes. The output of the prototype 

layer is connected linearly to the output layer to generate class 

logits. The network is optimized by iterating the following three 

steps: 1) The whole network, except the last layer, is trained us- 

ing stochastic gradient descent. For each prototype, the squared L 2 
similarity between the patches of the convolutional output from 

the backbone and the prototype is calculated, thus generating an 

activation map. Global max pooling is applied to the activation 

map to generate a single similarity score corresponding to a single 

prototype. The loss function is a combination of the cross entropy 

loss, a cluster loss and a separation loss. The cluster loss encour- 

ages the training images to have a patch close to at least one of 

their own class prototypes. The separation loss, on the other hand, 

encourages the training image patches to be far from the proto- 

types of other classes [8] . For completeness, the losses are provided 

in the Appendix. 2) All prototypes are projected onto the patch of 

the training image from the same class as the prototype with the 

highest similarity score, thus maintaining inherent interpretabil- 

ity. These can be visualised in the input space by upsampling the 

activation map of the prototype image to the input size. 3) Fi- 

nally, a convex optimization of the last layer is performed to fur- 

ther improve accuracy, while keeping the learned prototypes fixed. 

The prototype activations are visualized by upsampling the simi- 

larity between the prototypes and the embedded input image to 

the input image size. This highlights the parts of the image which 

strongly activate the respective prototype, thus creating a concept 

of “this looks like that ” while making the decisions. 

3.2. Evaluation of ProtoPNet’s explanations 

Although self-explaining models as ProtoPNet appear promis- 

ing, as more transparent alternatives to the typical black-box neu- 

ral networks, we demonstrate that, atleast for ProtoPNet, the ex- 

planation capability still lacks precision. In the case of ProtoPNet, 

the relevant areas on which the model decision is based on do not 

concisely depict the relevant features of a prototype as shown in 

Fig. 1 . The original image (a) in Fig. 1 shows a horse image contain- 

ing a watermark in the lower left corner. One of the 10 prototypes 

for class Horse was learned by ProtoPNet from image 1 (a). The Pro- 

toPNet’s explanation for this prototype is shown in Fig. 1 (b). From 

1 (b), we can observe that the lower left corner was important for 

the model to predict the image as a horse. However, the exact 

pixels, that significantly contributed to the predictions remain un- 

known. Now, using the model-aware PRP method, we backpropa- 

gate the prototype information from the prototype layer through 

the network to the input image, which allows us to reveal and vi- 

sualize the model-aware, faithfully distributed relevance scores on 

the input image as shown in Fig. 1 (c). From the PRP explanation, 

we observe that high relevance (dark red pixels) was allocated to 

parts of the text. Thus, the PRP explanation leads to an increased 

understanding of the underlying behavior of the model. For a ran- 

domly chosen test image, shown in Fig. 1 (d), the activation for 

the learned prototype 1 (b) as visualized by ProtoPNet and PRP are 

given in Fig. 1 (e) and (f), respectively. The PRP explanation identi- 

fies the watermark (Clever Hans) as a relevant feature for predict- 

ing the horse class, in contrast to the ProtoPNet explanation, which 

3
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Table 1 

Comparison of the model accuracies for the stop sign class between the artifact test (artifacts in 100% test images) and clean test (artifacts in 0% test images) dataset for : 

1) CH-100, 2) CH-50 datasets, along with the accuracies for pruning artifact prototypes as well as retraining the last layer after pruning. 

Test set CH100 CH-100 Remove prototype 6 & 8 CH-100 Retraining last layer CH50 CH-50 Remove prototype 4 & 9 CH-50 Retraining last layer 

Artifact 100% 21.6% 88.8% 100% 100% 100% 

Clean 6.5% 38.2% 38.2% 94.6% 93.0% 94.5% 

is too crude to identify important features and is therefore widely 

spread across the entire image. 

Accordingly, we detect and address the following drawbacks of 

ProtoPNet: 

• The activation maps used for the prototype visualizations in 

ProtoPNet have a low resolution due to downsampling and 

feature aggregation functions in the network. From this sig- 

nificantly low resolution activation map, ProtoPNet performs 

model-agnostic upsampling using bilinear interpolation to the 

size of the input image, thus leading to very coarse explana- 

tions . 
• The effective receptive field of a position in the activation map 

tends to cover large parts of the image, which is not captured 

by the naive upsampling. Consequently, there is no truthful spa- 

tial localization of the relevance to the correct input area, lead- 

ing to spatially imprecise explanations . 

In the next subsection, we discuss in detail these drawbacks of 

ProtoPNet’s explanations using the Clever Hans artifact as an ex- 

ample. 

3.3. Case study: Clever Hans artifact detection with ProtoPNet 

Ideally, ProtoPNet should capture any artifact in the data as an 

“artifact prototype” if it is using the artifact for prediction. How- 

ever, due to its coarse and spatially imprecise explanations, the 

heatmaps of ProtoPNet hinder the detection of artifact prototypes. 

In the following, we investigate the behavior of ProtoPNet in the 

presence of Clever Hans artifacts in the data. 

We aim to detect the aforementioned artifact prototypes us- 

ing ProtoPNet’s explanations combined with the difference in clas- 

sification results in the presence and absence of artifacts in the 

test data. Following this, we prune the detected artifact prototypes, 

thus hypothetically suppressing the artifacts learnt by the model. 

However, due to its misleading explanations, we demonstrate ex- 

perimentally that ProtoPNet’s heatmaps are deficient in capturing 

and identifying the learned artifact by the model, thus proving 

the task of pruning artifact prototypes futile for making the model 

artifact-free. 

For considering a controlled environment, we use the 5-class 

version of the LISA traffic sign dataset [28] and place a Clever Hans 

artifact, a yellow square (see Fig. 2 ), in 100% of the training data 

of the stop sign class (dataset details are provided in Section 5.1 ), 

which we refer to as CH-100. We train the ProtoPNet (for imple- 

mentation details see 5.2 ), with 10 prototypes per class as in [8] for 

ease of comparison. 

To evaluate the impact of an artifact on the model, we evalu- 

ate the performance on two test data sets: an Artifact Test data 

set, where the Clever Hans, i.e., the yellow square, is inserted into 

100% of the images of the stop sign class ; and a Clean Test data 

set, which contains no yellow square. The accuracy results for both 

test data sets are shown in Table 1 . We can observe that the model, 

trained on the CH-100 dataset, has 100% classification accuracy on 

the artifact test data and only 6.5% on the clean test data. This 

large drop in the accuracy indicates that the model has learned 

the inserted artifact. 

In order to detect the prototypes that are responsible for this 

behavior, we visualize the 10 prototypes learned by the network 

for the stop sign class in Fig. 2 , where the upsampled activation 

heatmap is overlayed, such that the relevant areas of each proto- 

type can be identified visually. Although no prototype is clearly fo- 

cusing on the artifact, it appears that prototypes 6 and 8 might be 

learning a part of the artifact. By removing individual prototypes as 

well as combinations of prototypes for the stop sign class, we can 

confirm that prototypes 6 and 8 are the most responsible ones for 

detecting the artifact ( Fig. 3 ) — the accuracy for artifact test data 

only drops when prototypes 6 or 8 are removed, with the biggest 

drop of 78.39% when both of these are removed together. Also note 

that no retraining is done yet after pruning the prototypes. 

Now, trusting the explanations provided, we remove the artifact 

prototypes 6 and 8 and assume that this leads to the elimination 

of the artifact effect. As can be seen in Table 1 , the accuracy for 

the artifact stop sign class drops considerably after removing pro- 

totypes 6 and 8. However, this is not the case as seen after retrain- 

ing the last layer i.e, reweighing the connection of the prototypes 

to the final classification layer. The accuracy for the artifact stop 

sign class increases again to 88.8% once the last layer weights are 

retrained. Moreover, for clean test data, the accuracy remains the 

same, i.e, 38.2% before and after retraining the last layer, thus re- 

futing the potential learning of meaningful features for the stop 

sign class by the model after retraining. Hence, the results indicate 

that the remaining prototypes include artifact information as well, 

highlighting the lack of accurate explanations by ProtoPNet. 

Thus, as shown in the above experiment, the explanations pro- 

vided by the upsampling strategy of ProtoPNet are insufficient in 

order to reveal the model’s behavior and detect the artifacts faith- 

fully. 

4. Prototypical Relevance Propagation and enhanced 

suppression of artifacts 

In the following we will address the two main drawbacks of 

ProtoPNet’s visualizations, i.e., low resolution activation maps and 

spatially imprecise prototype explanations (as investigated in the 

section above), by our proposed method called Prototypical Rel- 

evance Propagation (PRP). Our aim is to maintain the advantage 

of self-explanatory architecture through prototypes and simultane- 

ously improve the quality of prototypical explanations by adding, 

inspired by LRP, a model-aware explanation strategy. 

4.1. Prototypical Relevance Propagation (PRP) 

The original prototype visualization step in ProtoPNet is 

achieved through upsampling and is therefore decoupled from the 

other steps in its end-to-end training. Instead of upsampling, in- 

spired by LRP, we suggest as a novel solution to use the knowledge 

of the inner workings of the network when backpropagating the 

similarity values of a prototype to the input, such that we obtain 

model-aware prototypical explanations. We refer to our method as 

PRP and the generated explanation maps as PRP maps. 

For the following considerations, let the input images be repre- 

sented as x and convolutional output from the backbone CNN as 

z ∈ R 

H×W ×D . Let P = { p m 

} n 
m =1 

be the n prototypes learned by the 

network, each with a shape of H 1 × W 1 × D . Following [8] , we set 

H 1 = W 1 = 1 and D = 128 . Moreover, let S = { s m 

} n 
m =1 

be the simi- 

larity scores and A = { a m 

} n 
m =1 

the activation maps for each proto- 
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Fig. 2. CH-100: Visualization of the prototypes learned for the stop sign class for the scenario where Clever Hans artifacts were inserted in 100% of the stop sign class 

images for the modified LISA dataset. As observed, while prototype 6 and 8 can be considered as artifact prototypes, none of the prototypes clearly highlight the artifact. 

Fig. 3. CH-100: Detection of artifact prototypes by removing individual stop-sign 

class prototypes (1 to 10) (diagonal) and their combinations (non-diagonal) for ar- 

tifact test data. The accuracies are represented as a drop from the base accuracy 

of 100% when no prototypes are removed. The highest drop of 78.39% is observed 

when prototypes 6 and 8 are removed together thus highlighting them as artifact 

prototypes. 

type. The forward computations in ProtoPNet, illustrated in Fig. 4 , 

are defined as follows: 

1. The computation from the input to the convolutional output is 

given by z = f (x ) , where the function f represents the trained 

backbone CNN. 

2. The activation maps are computed as squared L 2 similarities be- 

tween the last convolutional output layer and the prototypes in 

the prototype layer: 

a m 

= log 
(
(|| ̃  z − p m 

|| 2 2 + 1) / (|| ̃  z − p m 

|| 2 2 + ε) 
)

(1) 

where ˜ z are patches of z of the same size as the prototypes 

p m 

and ε = 10 −4 is a small constant introduced for numerical 

stability. 

3. The similarity score based on the activation maps is calculated 

as s m 

= max (a m 

) 

The similarity scores of the test image with prototypes are the 

inputs to the final fully connected layer, which produces the logits 

for all output classes. Hence, the final classification is based on a 

linear combination of the similarity scores of different prototypes. 

Now, to improve the precision of the prototype visualizations, 

we calculate a certain prototype m by propagating the relevance of 

this prototype back to the input features. Note that the relevance 

of a specific prototype is exactly its similarity score. Therefore, the 

first backpropagation step considers the redistribution of the sim- 

ilarity scores towards the activation map with respect to the max 

pooling layer: 

1. An activation map is computed by backpropagating the respec- 

tive similarity score with the LRP rule in the Max pooling layer: 

R 

(AM,S) 
mi j 

= 

{
R 

(S) 
m 

if argmax i j (a m 

) , 
0 otherwise 

(2) 

where S refers to the similarity score layer, AM to the activation 

map layer and i , j specify the spatial location in the respective 

layers. We define the relevance at layer S as R 

(S) 
m 

= s m 

. 

2. To distribute the relevance from the activation map back to the 

convolutional output, we need to incorporate the information 

from the forward pass. The forward computation as given in 

Eq. (1) computes the similarity between each prototype and 

each output patch of the convolutional layer ( CONV ), with both 

having D channels, thus compressing the channel dimension to 

1 in the activation map. In this step, we redistribute the rel- 

evance from the one channel activation map back to the D 

channels of the convolutional output, weighted by the corre- 

sponding channel-wise L 2 similarities computed during the for- 

ward pass. We define the channel-wise similarities between 

each CNN patch ̃

 z and the prototype p m 

as: 

γmc = 

1 

d mi jc + ε
(3) 

where, with d mi jc = || ̃  z c − p mc || 2 2 for each channel c. Afterwards, 

we use the LRP ε [6] rule to distribute relevances to convolu- 

tional output according to γmc : 

R 

(CONV,AM) 
mi jc 

= 

γmc 

D ∑ 

k =1 

γmk + ε

R 

(AM) 
mi j 

(4) 

3. Finally, the PRP maps are computed by distributing the rele- 

vance from the convolutional output to the input features with 

the LRP CoMPosite ( LRP CMP ) rule [29] : First, the LRP αβ rule is 

applied to the convolutional layers 

R 

(l ,l +1) 
i ← − j 

= 

(
α

z + 
i j 

z + 
j 

+ β
z −

i j 

z −
j 

)
R 

(l+1) 
j 

, (5) 

where z i j = x i w i j is the mapping of the input x from neuron 

i −→ j with weight w i j , z j = 

∑ 

i z i j , α + β = 1 and α ≥ 1 . Note 

that positive and negative activations are treated separately and 

we use α = 1 and β = 0 . 1 

Second, the Deep Taylor Decomposition based rule DTD z B 

[30] is applied to the input features 

R 

(l ,l +1) 
i ← − j 

= 

( z i j − l i w 

+ 
i j 

− h i w 

−
i j ∑ 

i z i j − l i w 

+ 
i j 

− h i w 

−
i j 

)
R 

(l+1) 
j 

, (6) 

where l i and h i are the smallest and largest pixel values. 

The algorithm for generating PRP maps is summarized in 

Algorithm 1 . 

4.2. Multi-view clustering 

In order to analyse the class-wise prediction strategies and re- 

veal potential strategies that are based on artifacts, [4] introduced 

SpRAy, a method that utilizes spectral cluster analysis to cluster 

LRP explanations into their key prediction strategies. Similar to 

SpRAy, we want to make use of the PRP maps to identify class spe- 

cific global discriminative features. However, we do have multiple 

explanations for each image, i.e., the prototype explanations, which 

can be thought of as multiple views of an image explanation. Thus, 

1 Note, for notation simplicity, we follow previous works [6,29] and consider the 

convolutional layers as fully-connected layers with shared weights. 

5
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Fig. 4. ProtoPNet: Forward propagation and backward propagation for PRP maps (green) and ProtoPNet Heatmaps (orange). The input image x is first passed through a CNN 

f , which computes f ( x ) to give output z . The squared L 2 similarity is then computed between z and individual prototypes p m to get activation maps a m . These are then 

upsampled to get ProtoPNet heatmaps. On the other hand, similarity scores s m are used to compute model-aware PRP heatmaps. All the parameters in the figure are depicted 

according to the experiment settings used in this work. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 5. CH-50: Top row depicts the learned prototypes 1 to 10 for the stop sign class with Clever Hans in 50% of the training data, the middle row depicts the ProtoPNet’s 

heatmaps corresponding to the respective prototypes for the test image shown on the left, while the bottom row shows the corresponding PRP maps, which, we can observe, 

capture more precise information. 

Algorithm 1: Psuedocode for the proposed PRP. 

Input : Model f , image x , prototype number m 

1 z = f (x ) ; /* Forward computation */ 
2 Compute a m 

; // Eq. 1 
3 R 

(S) 
m 

= s m 

= max (a m 

) ; 

4 Compute R 

(AM,S) 
mi j 

// Eq.2 ; /* Backward computation */ 

5 Compute R 

(CONV,AM) 
mi jc 

; // Eq. 4 
6 for l ∈ CONV − 1 , . . . , 1 do 

7 R 

(l ,l +1) 
i ← − j 

using LRP CMP rules; 

8 end 

Output : R 

(1) 

unlike SpRAy, which uses one LRP explanation for one image, our 

proposed method exploits multiple views of an image explanation. 

In ProtoPNet, each class is associated with a fixed number of 

class prototypes. These can be regarded as capturing, and thus 

searching for, different features in each input image. Consequently, 

if there are artifacts present in a class during training, the PRP ex- 

planation maps for this class’ prototypes will be able to reflect the 

contrast between artifact and non-artifact features learnt by the 

model. Therefore, interpreting the different prototype activations 

as various views of the same image, allows us to compare/cluster 

the prototype activations with multi-view clustering algorithms in 

order to detect global class-discriminative features in the data. Tra- 

ditional multi-view clustering methods include learning a common 

representation from multiple views of data followed by clustering 

[31] or learning adaptive representations based on clustering [32] . 

Further, several multi-view clustering algorithms have been pro- 

posed that build on spectral clustering and consider a consensus 

Laplacian matrix among all the views [33,34] . In contrast, deep- 

learning based multi-view clustering methodologies learn a com- 

mon encoding with the help of deep neural networks, which then 

can be leveraged by the clustering module [35] . Since a varia- 

tion in clustering results can be observed using different multi- 

view clustering methodologies, in this work, we demonstrate the 

performance with a recent deep learning based clustering method 

[35] and a representative spectral multi-view clustering algorithm 

[33] . 

The deep multi-view clustering in [35] first transforms each in- 

put into its representation using view-specific encoders. The fused 

representation for all views is then computed using the fusion 

weights, which are also learned during the end-to-end training. 

This representation is then passed through a fully connected net- 

work to obtain the final cluster assignments. Deep divergence 

based clustering (DDC) [36] losses are incorporated to optimize the 

model. This approach is termed as Simple Multi-View Clustering 

(SiMVC). Trosten et al. [35] then introduces an auxiliary method 

which incorporates selective contrastive alignment of representa- 

tions called Contrastive Multi-View Clustering (CoMVC) by adding 

a contrastive loss to the SiMVC framework. We provide the results 

with CoMVC in this work considering its additional advantage of 

aligning the representations at the sample level. 

6 
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The spectral multi-view clustering methods work on the gen- 

eral principle of computing a consensus Laplacian matrix among 

all views. Co-regularized Multi-view Spectral Clustering (Co-Reg 

[33] ) works by co-regularizing the clustering hypotheses. They ob- 

tain the combined Laplacian matrix by regularizing eigenvectors of 

the Laplacians through two schemes: 1) pairwise co-regularization, 

where they encourage the pairwise similarities across all views to 

be high and 2) centroid-based co-regularization, where they en- 

courage each view to be closer to a common centroid. 

5. Experiments & results 

In this section, we first discuss the dataset and implementa- 

tion details followed by detailed analysis of ProtoPNet and PRP 

heatmaps. Finally, we discuss in detail artifact suppression using 

multi-view clustering. 

5.1. Dataset 

In this work, we conduct experiments for both the Clever Hans 

and the Backdoor artifact using the LISA traffic sign dataset [28] . 

This dataset consists of video frames captured from a driving car. 

We follow the strategy of [5] , where we extract the frames and 

resize them to 224x224 to be compatible with the original ProtoP- 

Net architecture. The 47 classes in the dataset are partitioned into 

5 high-level classes, as proposed by Chen et al. [5] , consisting of 

restriction, speed limits, stop, warning, and yield signs (details pro- 

vided in the appendix). In addition, we use the PASCAL VOC 2007 

dataset [9] for evaluation as it naturally contains a Clever Hans ar- 

tifact. 2 

5.1.1. Clever Hans 

As artifact, we place a yellow post-it note, as shown in the in- 

put image in Fig. 5 , in 100%, 50% and 20% of the stop sign im- 

ages in the training data of the LISA traffic sign dataset to create 

the CH-100, CH-50 and CH-20 Clever Hans training datasets, re- 

spectively. We do not add Clever Hans artifacts to the PASCAL VOC 

2007 dataset since it inherently includes a watermark tag of the 

photographer in about 15–20% of the images in the horse class [4] . 

5.1.2. Backdoor 

According to the data manipulation scheme for backdoor at- 

tacks from [5] we insert the artifact, i.e., the yellow post-it, as 

shown in Fig. 5 (Input), in 15% of the stop sign images and assign 

them to the speed limit class. We refer to this corrupted training 

dataset as BD-15. 

In order to create both, an artifact and a non-artifact i.e., a clean 

test dataset of the LISA traffic sign dataset, we insert the artifact 

in either 100% or 0% of the stop sign images, referred as Artifact 

Test and Clean Test data, respectively. Those test datasets are used 

for evaluating our experiments on the Clever Hans (CH-100, CH-50 

and CH-20) as well as the Backdoor (BD-15) scenarios. 

5.2. Implementation 

We train ProtoPNet with ResNet34 as backbone architecture, 

fixing the number of prototypes to 10 for each class. Note that all 

training parameters have been set according to Chen et al. [8] . The 

network is trained for 10 0 0 epochs, where a projection (push) of 

the prototypes is done every 10 epochs. After each push, the last 

layer is trained for 20 epochs. The learning rate is reduced by a 

2 Since in PASCAL VOC 2007, one image can belong to several classes, we deliber- 

ately remove the person class from this dataset to decrease ambiguity. The person 

images overlap to a large extent with the images of the other classes, leading to a 

lot of duplicate images in multiple classes. 

factor of 0.1 every 5 epochs and the training is stopped when the 

training accuracy converges and the cluster loss becomes smaller 

than the separation loss on the training set [8] . While ProtoPNet 

uses bilinear interpolation for visualization, which takes 0.001 s on 

average, computed for 10 0 0 images, PRP has an additional over- 

head of 0.71 s for one backward pass to generate the heatmaps. 

Note, given that heatmaps are produced only after training the 

model, this overhead can be considered negligible. The code is 

implemented using PyTorch and the experiments were run on 2 

GeForce RTX 2080 Ti GPUs. 3 

5.3. PRP maps vs ProtoPNet heatmaps 

In the following, we conduct an experiment, where we add a 

Clever Hans feature to the training dataset to investigate the dif- 

ference between the heatmaps of ProtoPNet and the ones that PRP 

generates. Therefore, we add the Clever Hans artifact to 50% of the 

stop sign images in the training data (CH-50). The 10 prototypes 

for the stop sign class, learned by the ProtoPNet trained on the ma- 

nipulated dataset, are shown in the first row of Fig. 5 . Given a test 

image, shown at the very left of Fig. 5 , the heatmaps of ProtoPNet 

and the PRP heatmaps for the image are shown in the middle and 

bottom row of Fig. 5 . Corroborating our earlier observations, we 

again note here that the ProtoPNet heatmaps are coarse, highlight- 

ing wider areas in the test image, and that neighboring regions of 

the artifact are focused upon, rather than the precise location of 

the artifact. In contrast, from the PRP maps, we can clearly observe 

that all prototypes are focusing precisely on the Clever Hans fea- 

ture, some more (prototypes 2, 3, 4, 5, 7, 9, 10) and some less (pro- 

totypes 1, 6, 8). It is shown later that prototypes 6 and 8 are in fact 

not learning any significant features and even react strongly to ran- 

dom noise. With the new insight into the model behavior gained 

through the PRP maps, we can shed new light on the hypothesis 

from Section 3.3 . The idea was to remove the prototypes that had 

learned the Clever Hans, retrain the last layer and thus eliminate 

the Clever Hans effect. Given the original prototype explanation, 

this made sense, as only 2 of the 10 prototypes had learned the 

Clever Hans feature. With the PRP maps, however, we gain new 

knowledge and can see that all prototypes (some more, some less) 

take into account the Clever Hans feature. 

We also note here that ProtoPNet heatmaps are highlighting all 

pixels in the image activated by different prototypes (before Max 

Pooling). If they were highlighting only the maximally activated re- 

gion (after Max Pooling), they would only be able to depict con- 

nected regions in the image space, considering the naive upsam- 

pling heavily based on spatial location correspondence between 

the activation map and the input image. On the other hand, PRP 

maps represent the maximally activated pixels and are still able to 

highlight disjointed areas in the image, as can be seen in the PRP 

map for Prototype 5 in Fig. 5 , where both the artifact and “ST” in 

the stop sign are indicated as relevant. 

Fig. 6 illustrates the difference between PRP maps and ProtoP- 

Net heatmaps for a stop sign image with no artifact. PRP maps, as 

shown in the bottom row, are of higher resolution and, as noticed 

in this case, tend to show more accurate information than the nor- 

mal upsampled heatmaps from ProtoPNet. PRP maps also contain 

higher variability, as shown by explanations for Prototype 2 and 4 

in Fig. 6 , which therefore yields more information from the original 

prototypes to explain the test pattern. 

In the following, we quantitatively evaluate the faithfulness of 

the PRP maps and ProtoPNet heatmaps regarding their ability to 

capture the most discriminative class-wise information. For this, 

we follow the strategy presented in [37] , referred to as the Rel- 

3 The source code is available at https://github.com/SrishtiGautam/PRP . 

7 



S. Gautam, M.M.-C. Höhne, S. Hansen et al. Pattern Recognition 136 (2023) 109172 

Fig. 6. PRP Maps vs Activation Map Upsampling for CH-50 (left) and PASCAL VOC 

2007 (right). The top 3 activated prototypes for the stop sign class and the top 4 

activated prototypes for the horse class for the respective input images are shown 

in the second row in descending order of similarity scores (last row). The third 

row shows the heatmaps generated by ProtoPNet and the last row shows the cor- 

responding PRP maps. 

Fig. 7. CH-50: Quantitative evaluation of PRP Maps vs ProtoPNet Heatmaps via rel- 

evance ordering test. The results are shown as an average over all the prototypes 

and averaged over the same images without (left) and with artifact (right). 

evance ordering test, where we start from a random image and 

monitor both the similarity scores as we gradually add the most 

relevant pixels to the image. 

Primarily, we are interested in the trustworthiness of the Pro- 

toPNet heatmaps and PRP maps with regard to their calculated 

pixel relevance for activating the prototypes. Therefore, first, for 

an input image, the PRP maps and the ProtoPNet heatmaps are 

computed, followed by sorting the pixels in descending order of 

their assigned relevance by PRP and ProtoPNet explanations, re- 

spectively. We then compute the similarity scores for different pro- 

totypes of the stop sign images while gradually adding the pixel 

with the next highest relevance to a random image. We compute 

this for 50 randomly chosen clean images from the stop sign class 

and compute the average across all images followed by an aver- 

age over all prototypes. The same experiment is repeated with the 

same images, this time adding the Clever Hans artifact. The aver- 

age results for all prototypes of the stop sign class are shown in 

Fig. 7 . The x-axis represents the percentage of pixels that are re- 

placed by the relevant pixels of the test image and the y-axis rep- 

resents the corresponding similarity scores. As a baseline, we start 

from a random image and gradually replace a percentage of ran- 

domly chosen pixels by their test image pixel values and refer to 

this as the Random approach. From Fig. 7 we can observe that for 

both test case scenarios, i.e, the stop sign images with and with- 

out the artifact, adding the most relevant pixels, based on the PRP 

explanations, results in a significantly steeper slope (blue) than us- 

ing the ProtoPNet heatmaps (orange). Therefore, conclusively, we 

can state that the relevance of the important discriminate features 

distributed by PRP is more accurate than by ProtoPNet explana- 

tions. These quantitative results also uncover ineffective prototypes 

which are not learning anything specific from the training images 

Fig. 8. CH-50: Relevance ordering test results shown for prototypes 6 and 8 of the 

stop sign class for the artifact test images. Both of these are not learning anything 

specific, therefore having high similarity with even random data. 

and are reacting very highly even to random noise, as shown in 

Fig. 8 . This behavior is observed in both test scenarios of clean and 

artifact data, with the results depicted for artifact test images in 

Fig. 8 for prototypes 6 and 8. 

5.4. Assessing the network behavior with PRP maps 

So far, we have established the drawbacks of ProtoPNet, which 

are the lack of higher resolution and spatially precise explanations, 

which hinder the user in identifying the most relevant discrimi- 

native features. Accordingly, we proposed a method — PRP — to 

overcome this lack of precise explanations. Our proposed PRP maps 

provide a higher level of fine grained explanations while keep- 

ing the benefit of “this-looks-like-that” behavior of the ProtoPNet, 

as shown in Fig. 9 for both LISA (CH-50) and PASCAL VOC 2007 

datasets. Therefore, we still have inherent interpretability, where 

each class is being represented by a fixed number of prototypes. 

This exponentially reduces the need for the manual laborious task 

of analysing individual ad-hoc explainability heatmaps for assess- 

ing deep neural networks. Additionally, this also reduces the need 

to use semi-automated methodologies like SpRAy [4] to find pat- 

terns in a model’s explanations with a huge number of explanation 

maps. 

We can now directly visually identify the strategies learned by 

the network by only looking at a few representative prototypes for 

each class. For instance, we manually cluster the PRP maps of the 

stop sign class for the LISA dataset, as shown in Fig. 10 . We can 

observe, that aside from learning the artifact, the network is also 

relying on the textual part of the stop signs as well as on the cor- 

ner features. Note, that we have excluded prototypes 6 and 8 from 

the assessment since they did not capture any useful information 

(see Fig. 8 ). 

Following this, we investigate the performance of PRP and Pro- 

toPNet explanations on the PASCAL VOC 2007 dataset in order 

to uncover relevant features learned by the networks for pre- 

dicting the class horse. First, we show a few prototypes (top 4 

activated) that were learned by the model for the horse class 

along with their ProtoPNet heatmaps and PRP Maps, shown in 

Fig. 6 (right). Here, we can observe that PRP explanations cap- 

ture the relevant features in a more fine grained manner and 

are able to identify a Clever Hans strategy used by the model 

where it tends to focus on the text in the watermark in proto- 

type 3, rather than on the horse. In contrast, the information in 

ProtoPNet’s heatmaps in the second row of Fig. 6 is ambiguous 

since prototype 3 is allocating relevance to a broader background 

area. The strategies learnt by the network for recognizing a horse 

are grouped manually and visualized in Fig. 10 . The four effective 

groups, disregarding the insignificant gray cluster, which focuses 

on the background features, represent the horse class in terms of 

a horse’s face, legs, presence of a rider, and finally the Clever Hans 

watermark. 
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Fig. 9. This looks more like that : Enhanced ProtoPNet self-explainability with PRP for a LISA stop sign image from the CH-50 dataset (left) and a PASCAL VOC horse image 

(right). 

Fig. 10. Representing cluster of prototypes for the stop sign class (left) and Horse class (right). For the stop sign class, the red cluster predominantly highlights the artifact, 

the green cluster indicates the text, while the yellow cluster captures the corner features. For the Horse class, red cluster looks at the “Clever-Hans” i.e, the watermark in 

the images, the yellow cluster highlights the features of the horse’s mouth, the blue cluster indicates the presence of horse-type legs, the green cluster looks if there is a 

rider present, and the gray cluster captures the background features and is thus insignificant. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

5.5. Multi-view clustering for suppressing artifacts 

Artifacts in the data can be learned by the model, which sub- 

sequently might lead to the model exhibiting undesirable behav- 

ior, as shown in [4] and demonstrated above in case of the self- 

explaining network ProtoPNet. Consequently, it is essential to ei- 

ther remove the artifacts from the data, or to ensure that the 

model is not using those spurious attributes present in the data 

for prediction. We tried the latter in the introductory experiments 

on ProtoPNet — identifying and removing the artifact prototypes. 

However, as we observed, this is not possible since the artifact is 

not always perceivable by the ProtoPNet heatmaps even if the ar- 

tifact was learned by a particular prototype. Using our suggested 

method, we are now able to find the prototypes that are activated 

by the artifact. It was further discovered using PRP in the previous 

sections, that almost all the prototypes incorporate the artifact fea- 

tures, thus suggesting the entanglement of the artifact information 

within the whole network. Therefore, instead of pruning the arti- 

fact prototypes, we propose to detect the samples in the training 

dataset that activate the artifact prototypes, which can be subse- 

quently removed from the training data set before retraining the 

ProtoPNet on the cleansed dataset. 

Using PRP, we obtain k PRP maps corresponding to the artifact- 

containing class for each image, where k corresponds to the num- 

ber of learned prototypes for that class. We can consider these PRP 

maps as k different views of the same image and can thus build on 

existing multi-view clustering methodologies to automatically clus- 

ter the training images and thereby discover clusters correspond- 

ing to artifact-containing images. In this work, we cluster the im- 

ages into 2 clusters, an artifact and a clean data cluster. 

To demonstrate the efficiency of PRP in detecting artifacts in 

the data, we test different multi-view clustering methodologies on 

the LISA dataset with 50% and 20% Clever Hans features added to 

the stop sign images. We further use the same methodologies for 

backdoor detection thereby demonstrating PRP’s efficiency in mul- 

tiple artifact scenarios. We also compare our clustering approach 

with SpRAy, which performs spectral clustering analysis on single 

view LRP maps, and demonstrate that our approach is able to cap- 

ture better information in PRP maps, especially in the setting with 

multiple views. 

5.5.1. Clever Hans type artifacts in 50% training data 

The accuracy for CH-50 for the artifacts in the stop sign class in 

100% (artifact test) and 0% (clean test) data is shown in Table 1 . 
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Table 2 

Accuracy (ACC) and F1-scores (F1) for different data scenarios with several multi-view clustering methodologies on PRP maps along 

with comparison with SpRAy on both PRP and LRP maps. Best and insignificantly different results, computed using t -test, are marked 

in bold. 

SpRAy-LRP [4] SpRAy-PRP [4] CoMVC [35] Co-Reg [33] 

ACC (%) F1 ACC (%) F1 ACC (%) F1 ACC (%) F1 

CH-50 54.06 ±1.62 0.68 ±0.01 53.52 ±0.75 0.68 ±0.04 99.99 ±0.00 0.99 ±0.00 99.57 ± 0.00 0.99 ±0.00 

CH-20 75.92 ±1.11 0.08 ±0.03 81.98 ±1.55 0.28 ±0.03 82.27 ±20.52 0.75 ±0.24 94.54 ±0.00 0.86 ±0.00 

BD-15 83.18 ±5.76 0.21 ±0.24 85.72 ±3.87 0.30 ±0.15 66.85 ±6.91 0.76 ±0.06 99.42 ±0.00 0.98 ±0.00 

As we can observe, the accuracy for the stop sign class drops 

from 100% to 94.6% when there is no artifact in the test data. 

From Fig. 5 , prototypes 4 and 9 can be considered as “artifact”

prototypes according to ProtoPNet heatmaps. But as can be seen 

in Table 1 , there is no effect on the artifact test accuracy when 

removing those two prototypes. The same holds when we re- 

move the prototypes followed by a retraining of the model. On 

the other hand, a decrease in the accuracy for the clean test 

data is observed. This additionally supports our assertion of im- 

precise and even misleading information provided by ProtoPNet’s 

heatmaps. 

In order to obtain a clean data set, we aim to identify the 

samples that contain an artifact in the first place in order to re- 

move them from the training set. Assuming that the information 

on whether an artifact is present in a data point is recognizable 

in the PRP maps, we cluster the PRP maps in two clusters. For 

comparison, we use a set of representative algorithms to cluster 

the data, including SpRAy [4] , CoMVC [35] and Co-Reg [33] . We 

downsample the heatmaps to a size of 80 × 80 , as this had neg- 

ligible impact on the results and led to a reduced computation 

time. 

The results for accuracy and F1-scores for the artifact cluster 

for different clustering methods are given in Table 2 . We follow 

the experiments in [35] and train CoMVC for 100 epochs for 20 

runs and report the results from the run resulting in the lowest 

unsupervised cost-function value. We repeat this 5 times and re- 

port mean and standard deviation. 

As observed from Table 2 , CoMVC is working very efficiently to 

separate the artifact images from the clean images. We also report 

the results for multi-view spectral clustering algorithm Co-Reg in 

Table 2 . Although being more computationally expensive, Co-Reg 

is able to cluster the data effectively. Co-Reg always obtains an ac- 

curacy of above 94% in separating the artifact data, and thus prove 

to be highly successful in detecting the artifacts. CoMVC on the 

other hand performs with almost 100% accuracy when the artifact 

and non-artifact classes are balanced, i.e, in the current setting of 

CH-50. 

To compare against the multi-view clustering approaches, we 

apply SpRAy [4] , on the LRP maps for the true class (SpRAy-LRP) 

as well as PRP maps for the prototypes of the true class (SpRAy- 

PRP). For SpRAy-LRP, we compute LRP maps using the rules in 

Section 4.1 , followed by LRP ε for the last layer and a combina- 

tion of relevance for all prototypes. More details are provided in 

the Appendix. Accordingly, we obtain one LRP map for each im- 

age, which is scaled down to 80 × 80 and flattened before applying 

SpRAy. For SpRAy-PRP, we combine the PRP map images by sum- 

ming them across the channels and concatenating all 10 PRP maps 

for each image to get a 10 × 80 × 80 map. We then flatten it and 

apply SpRAy. 

The results for both are shown in Table 2 . As observed, SpRAy 

fails in clustering the artifacts in CH-50 data using both LRP 

and the concatenation of PRP maps. This behavior is expected 

since both SpRAy-LRP and SpRAy-PRP do not capture dependen- 

cies among multiple views of the same objects as opposed to other 

multi-view clustering methodologies. 

Table 3 

Accuracy on the artifact test (backdoor in 100% of the images in the stop 

sign class test data) and clean test data for BD-15, along with corre- 

sponding accuracies after removing the artifact prototype and retraining 

the last layer. 

Test set BD-15 Remove prototype 4 Retraining last layer 

Artifact 1.0% 6.5% 2.5% 

Clean 96.0% 96.0% 95.6% 

5.5.2. Clever Hans type artifact in 20% training data 

In the following, we want to capture the scenarios when less 

Clever Hans artifacts are included in the training data. Therefore, 

we evaluate the efficiency of multi-view clustering methodologies 

on the unbalanced dataset CH-20. The stop sign class accuracy for 

artifact and clean test data is 99.7% and 95.8%, respectively. This 

depicts that the stop sign class is still affected by the Clever Hans 

effect. 

Applying the multi-view clustering methodologies to this sce- 

nario, we report the accuracy and F1-score in Table 2 . Results show 

that SiMVC is performing best with 97.99% accuracy, with com- 

parable performance by almost all the other multi-view clustering 

methods. SpRAy fails again with a very low F1-scores of 0.04 and 

0.08 on LRP and PRP maps, clustering almost all images into one 

cluster. 

5.5.3. Backdoor type artifact in 15% training data 

Similar to the experiments above, we examine the backdoor 

setting, using the generated BD-15 dataset. The prototypes and 

their corresponding heatmaps for the speed limit class are shown 

in Fig. 11 . The test accuracy for the case that the artifact is present 

in 100% of the stop sign test images is given in Table 3 . Most of 

the stop sign images are now classified as speed limits and only 

1% of the stop sign images are classified correctly. 

The prototypes of the speed limit class, as learned by ProtoPNet, 

show that only one prototype has learned the backdoor artifact, 

while all the remaining 9 prototypes correspond to the speed limit 

class, as shown in Fig. 11 . As per ProtoPNet’s explanations, remov- 

ing prototype 4 of the speed limit class should solve the problem 

of backdoor attacks. We remove the prototype and retrain the last 

layer and report the accuracies in Table 3 . 

We can observe that removing the backdoor prototype has only 

a minor effect on the accuracy of the stop sign class, which in- 

creased from 1.0% to 6.5%. However, after retraining the last layer 

it again drops to only 2.5%. This behaviour of the network thus em- 

phasizes the inherent learning of the backdoor artifact by the net- 

work, which is not limited to only learning a specific backdoor pro- 

totype, as incorrectly suggested by ProtoPNet visualizations. Here, 

the PRP explanations decode the behavior of the model as well - 

they indicate that almost all prototypes are activated by the arti- 

fact, even if those prototypes refer to the speed limit signs. 

We therefore use multi-view clustering to clean the data of 

the backdoor feature and report the results in Table 2 . SiMVC 

and CoMVC are still performing better than SpRAy-PRP with F1- 

scores of 0.60 and 0.57 respectively, as opposed to 0.02 F1-score of 
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Fig. 11. BD-15: Top row depicts the learned prototypes 1 to 10 for the speed limit class with the Backdoor in 15% of the stop sign images (labeled as speed limit), the middle 

row depicts the ProtoPNet’s heatmaps corresponding to the respective prototypes for the test image shown on the left and the bottom row shows the corresponding PRP 

maps for the prototypes, which capture more precise information. 

SpRAy-PRP. Although, SpRAy-LRP is performing well in this setting 

with a F1-score of 0.91, this is due to the fact that LRP maps con- 

sist of negative relevances from the stop sign class in addition to 

the positive relevances from the speed limit class. This helps in ac- 

centuating the difference between speed limit and backdoor stop 

sign images. Furthermore, all the multi-view spectral clustering- 

based algorithms are able to separate these clusters efficiently, 

with the best being Co-Reg with an accuracy of 99.42% and a F1- 

score of 0.98. 

6. Conclusion 

Considering the success of machine learning algorithms in di- 

verse safety-critical applications, it is instrumental to verify the be- 

havior of these models. In this work, we assess the faithfulness of 

the explanations provided by a well known self-explainable net- 

work, ProtoPNet, which has subsequently been utilized as a base- 

line for a variety of works [23,38] . We provide an in-depth assess- 

ment of ProtoPNet’s behavior in the presence of a range of arti- 

facts. Our results indicate that, despite the attractiveness of Pro- 

toPNet owing to its self-explaining characteristic, it is still very far 

from achieving the required quality of explanations. Considering 

this, we propose a model-aware method, PRP, to generate more 

precise and higher resolution prototypical explanations. These en- 

hanced explanations help in uncovering more credible decision 

strategies, while keeping the self-explainability intact. We further 

show that these explanations are able to uncover the spurious arti- 

fact features learned by the model, which are then efficiently iden- 

tified and removed via our proposed multi-view clustering strat- 

egy. 

While PRP has been analysed extensively in this work, it needs 

to be explored further for variations of datasets as well as arti- 

facts. So far, a limitation is the requirement of the manual analysis 

of clusters to distinguish the model and data heuristics despite the 

effective clustering performed by the proposed methodology. The 

behavior of the clustering further needs to be analysed in the fu- 

ture work in the presence of multiple artifacts per class. The design 

of explainable approaches with the inherent capability to leverage 

artifactual data in addition to clean data without capturing the ar- 

tifact features would be ideal instead of removing the data and is 

therefore a main focus of future work. Finally, the benefit of using 

PRP in combination with other prototypical self-explainable mod- 

els will be explored further in the future work. 

The insights obtained in this work highlight the importance 

of evaluating the quality of self-explaining machine learning ap- 

proaches and will pave the way towards the development of more 

robust and precise models, thereby increasing their trustworthi- 

ness. 
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ProtoPNet: Cost function 

The overall cost function for ProtoPNet is: 

L total = L CE + λclst L clst + λsep L sep (A.1) 

L CE is the cross entropy (CrsEnt) loss, L clst is the cluster loss and 

L sep is the separation loss, defined as: 

L CE = min 

W 

1 

N 

N ∑ 

i =1 

CrsEnt ( ̂  y i , y i ) (A.2) 

L clst = 

1 

N 

N ∑ 

i =1 

min 

m : p m ∈ P y i 
min ˜ z 

|| ̃  z − p m 

|| 2 2 (A.3) 

L sep = − 1 

N 

N ∑ 

i =1 

min 

m : p m / ∈ P y i 
min ˜ z 

|| ̃  z − p m 

|| 2 2 (A.4) 

where N are the total number of training images, y i is the true 

label for image i , ˆ y i is the predicted label, W represents the learn- 

able parameters of the whole network, P y i are all the prototypes 

belonging to class y i and 

˜ z are the patches of the convolutional 

output which are of the same size as the prototypes. 

SpRAy-LRP 

For SpRAy based on LRP maps, we first backpropagate the out- 

put relevances i.e, class scores to the similarity score layer. We fol- 

low the LRP CMP rule and use the LRP ε rule [29] : 

R 

(l ,l +1) 
i ← − j 

= 

z i j 

z j + ε . sign (z j ) 
R 

(l+1) 
j 

(A.5) 
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Table A.1 

Combination of classes from LISA dataset for 5-class CH-100, CH-50, CH-20 and BD-15 datasets. 

Restriction signs noRightTurn, keepRight, thruMergeLeft, thruMergeRight, thruTrafficMergeLeft, doNotPass, noLeftTurn, doNotEnter, 

rightLaneMustTurn 

Speed limits speedLimit40, speedLimit25, speedLimit35, speedLimit50, speedLimit45, truckSpeedLimit55, speedLimit65, 

speedLimit55, speedLimit30, speedLimit15, schoolSpeedLimit25 

Stop signs stopAhead, stop 

Warning signs turnLeft, signalAhead, zoneAhead25, school, curveLeft, pedestrianCrossing, curveRight, rampSpeedAdvisory50, 

rampSpeedAdvisoryUrdbl, dip, rampSpeedAdvisory40, merge, turnRight, slow, roundabout, speedLimitUrdbl, 

zoneAhead45, intersection, laneEnds, rampSpeedAdvisory45, rampSpeedAdvisory20, rampSpeedAdvisory35, 

addedLane 

Yield signs yield, yieldAhead 

For the rest of the network, the rules for PRP are used. Consider- 

ing that we are now computing relevance corresponding to all the 

prototypes, we combine them to get the relevance at CONV layer 

as: 

R 

(CONV,AM) 
i jc 

= 

n ∑ 

m =1 

R 

(CONV,AM) 
mi jc 

(A.6) 

LISA 5 class dataset 

An overview of the classes that were combined in the LISA 

dataset can be found in Table A.1 . 
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Abstract

The need for interpretable models has fostered the development of self-explainable
classifiers. Prior approaches are either based on multi-stage optimization schemes,
impacting the predictive performance of the model, or produce explanations that
are not transparent, trustworthy or do not capture the diversity of the data. To
address these shortcomings, we propose ProtoVAE, a variational autoencoder-
based framework that learns class-specific prototypes in an end-to-end manner
and enforces trustworthiness and diversity by regularizing the representation space
and introducing an orthonormality constraint. Finally, the model is designed to
be transparent by directly incorporating the prototypes into the decision process.
Extensive comparisons with previous self-explainable approaches demonstrate the
superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse
explanations, while not degrading predictive performance.

1 Introduction

Despite the substantial performance of deep learning models in solving various automated real-world
problems, lack of transparency still remains a crucial point of concern. The black-box nature of these
high-accuracy achieving models is a roadblock in critical domains such as healthcare [1, 2], law [3], or
autonomous driving [4]. This has led to the emergence of the field of explainable artificial intelligence
(XAI) which aims to justify or explain a model’s prediction in order to increase trustworthiness,
fairness, and safeness in the application of the complex models henceforward.

Consequently, two lines of research have emerged within XAI. On the one hand, there are general
methodologies explaining a posteriori black-box models, so-called post-hoc explanation methods
[5, 6, 7]. While on the other hand, there are models developed to provide explanations along with
their predictions [8, 9, 10]. The latter class of models, also known as self-explainable models
(SEMs), are the focus of this work. Recently, many methods have been developed for quantifying
post-hoc explanations [11]. However, there is still a lack of a concise definition of what SEMs should
encompass, thus a lack of comparability of recent methods [12].

Methodologically, a large number of SEMs follow the approach of concept learning, analogous to
prototype or basis feature learning, where a set of class representative features are learned [8, 9]. In
this paper we gauge SEMs through the prism of three properties. First and foremost, the prototypes
should be visualizable in the input space, and these transparent concepts should directly be employed
by a glass-box classification model. Many of the existing approaches try to imitate prototype
transparency by using nearest training samples to visualize the prototypes [8, 13], while some flatly
use training images as prototypes preventing an end-to-end optimization and limiting the flexibility
of the model [9, 14]. Secondly, the prototypes should exhibit both inter-class and intra-class diversity.
Methods failing to ensure this property [9] are prone to prototype collapse into a single point which
necessarily undermines their performance. Finally, SEMs should perform comparable to their black-
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box counterparts while producing robust and faithful explanations. Previous approaches have a
tendency to achieve self-explanability by sacrificing the predictive performance [9, 14, 13].

To address the aforementioned shortcomings of current SEMs, we introduce ProtoVAE, a prototypical
self-explainable model based on a variational autoencoder (VAE) backbone. The architecture and the
loss function are designed to produce transparent, diverse, and trustworthy predictions, as well as
explanations, while relying on an end-to-end optimization. The predictions are linear combinations of
distance-based similarity scores with respect to the prototypes in the feature space. The encoder and
decoder are trained as a mixture of VAEs sharing the same network but each with its own Gaussian
prior centered on one of the prototypes. The latter are enjoined to capture diverse characteristics of
the data through a class-wise orthonormality constrain. Consequently, our learned prototypes are truly
transparent global explanations that can be decoded and visualized in the input space. Further, we are
able to generate local pixel-wise explanations by back-propagating relevances from the similarity
scores. Empirically, our model corroborates trustworthiness both in terms of performance as well as
the quality of its explanations.

Our main contributions can be summarized as follows:
• We define three properties for SEMs, based on which we present a novel prototypical self-

explainable model with a variational auto-encoder backbone, equipped with a fully transparent
prototypical space.

• We are able to learn faithful and diverse global explanations easily visualizable in the input space.
• We provide an extensive qualitative and quantitative analysis on five image classification datasets,

demonstrating the efficiency and trustworthiness of our proposed method.

2 Predicates for a self-explainable model

For the benefit of an efficient and comprehensible formalization of SEMs, we here define three
properties that we consider as prerequisites for SEMs.

Definition 1 An SEM is transparent if:
(i) its concepts are utilized to perform the downstream task without leveraging a complex black-box

model;
(ii) its concepts are visualizable in input space.

Definition 2 An SEM is diverse if its concepts represent non-overlapping information in the latent
space.

Definition 3 An SEM is trustworthy if:
(i) the performance matches to that of the closest black-box counterpart;

(ii) the explanations are robust, i.e., similar images yield similar explanations.
(iii) the explanations represent the real contribution of the input features to the prediction.

Note that these definitions echo properties and axioms found in other works. However, the view
of such properties is diverse across the literature which leads to failure of encompassing the wide
research of SEMs in general. For example, transparency is known as ‘completeness’ in [15] and
‘local accuracy’ in [16]. In the next section, we provide a comparison of existing SEMs based on the
fulfillment of the proposed predicates.

3 Categorization of related self-explainable works

Self-explainable models optimize for both explainability and prediction, making the network in-
herently interpretable. As our main contribution is a prototypical model, we review and categorise
existing prototypical SEMs according to the above-mentioned properties.

SENN [8] introduces a general self-explainable neural network designed in stages to behave locally
like a linear model. The model generates interpretable concepts, to which sample similarities
are directly aggregated to produce predictions. This generalized approach has been followed by
most of the prototypical and concept-based self-explainable methods, and is also mirrored by our
approach. SENN, however uses training data to provide interpretation of learned concepts, therefore
approximating transparency, unlike our model which by-design has a decoder to visualize prototypes.
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Table 1: Summary of the SEM properties satisfied by the baselines. The optimization scheme is also
indicated. The symbol ∼ indicates that the concepts cannot be directly visualized in the input space
and that the nearest training data serve as ersatz.

Transparency Diversity Trustworthiness Optimization

SENN[8] ∼ ✓ ✓ End-to-end

ProtoPNet[9] ✓ Alternating

TesNET[14] ✓ ✓ Alternating

SITE[17] ✓ ✓ End-to-end

FLINT[13] ∼ ✓ End-to-end

ProtoVAE ✓ ✓ ✓ End-to-end

ProtoPNet [9] is a representative of a line of works [9, 14, 18, 19, 20], where a prototypical layer is
introduced before the final classification layer. For maintaining interpretability, the prototypes are
set as the projection of closest training image patches after every few iterations during training. Our
method is closely related to ProtoPNet with the distinction of decode-able learned prototypes yielding
a smooth and regularized prototypical space, thus allowing more flexibility in the model. TesNet
[14] extends ProtoPNet and improves diversity at class level using five loss terms. Similarly to our
approach, they distribute the base concepts among the classes and include an orthonormal constraint.
However, the basis concepts are still projections from the nearest image patches, which leads to loss
in predictive performance, similar to ProtoPNet. SITE [17] generates class prototypes from the input
and introduces a transformation-equivariant model by constraining the interpretations before and after
transformation. Since the prototypes are dynamic and generated for each test image, this method only
provides local interpretations and lacks global interpretations. FLINT [13] introduces an interpreter
model (FLINT-g) in addition to the original predictor model (FLINT-f ). Although FLINT-f has
been introduced by the authors as a framework that learns in parallel to the interpretations, it is not
an SEM on its own. Therefore, we focus on FLINT-g, henceforward referred to as FLINT. FLINT
takes as input features of several hidden layers of the predictor to learn a dictionary of attributes.
However, the interpreter is not able to approximate the predictor model perfectly, therefore losing
trustworthiness. Unlike prior approaches, ProtoVAE is designed to fulfill all three SEM properties.
We summarize the discussed methods and their categorization in Table 1.

4 ProtoVAE

In this section, we introduce ProtoVAE, which is designed to obey the aforementioned SEM properties.
Specifically, transparency is in-built in the architecture and further enforced along with diversity
through the loss function. Also, we describe how our choices ensure the trustworthiness of our
method.

4.1 Transparent architecture

In a transparent self-explainable model, the predictions are interpretable functions of concepts
visualizable in the input space. To satisfy this property, we rely on an autoencoder-based architecture
as backbone and a linear classifier. In order to have consistent, robust, and diverse global explanations,
we consider prototypes in a greater number than classes. Unlike previous prototypical methods [9,
14], which update the prototypes every few iterations with the embeddings of the closest training
images, ProtoVAE is trained end-to-end to learn both the prototypes in the feature space and the
projection back to the input space. This gives ProtoVAE the flexibility to capture more general
class characteristics. To further alleviate situations where some of the optimized prototypes are
positioned far from the training data in the feature space, possibly causing poor reconstructions and
interpretations, we leverage a variational autoencoder (VAE). VAEs are known to learn more robust
embeddings and thus generate better reconstructions from out-of-distribution samples than simple
autoencoders [21]. A schematic representation of the network is depicted in Fig. 1.

Details of the operations The downstream task at hand is the classification into K > 0 classes of the
image dataset X = {(xi,yi)}Ni=1, where xi ∈ Rp is an image and the one-hot vector yi ∈ {0, 1}K
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Figure 1: Schematic representation of the architecture of ProtoVAE. The input image x is encoded
by f into a tuple (µ,σ). A vector z is sampled from N (µ,σ) which, on one side, is decoded by g
into the reconstructed input x̂ and, on the other side, is compared to the prototypes ϕkj resulting in
the similarity scores s. The latter are passed through the classifier h to get the final prediction ŷ.

encodes its label. The network consists of an encoder f : Rp → R
d ×Rd, a decoder g : Rd → R

p

(d < p), M prototypes per class Φ = {ϕkj}k=1. .K
j=1. .M , a similarity function sim : Rd → R

M and a
glass-box linear classifier h : RM → [0 , 1]K . An image xi is first transformed by f into a tuple
(µi,σi) = f(xi) which, in the VAE realm, are the parameters of the posterior distribution. A feature
vector zi is then sampled from the normal distribution N (µi,σi) and is used twice. On the one hand,
it is decoded as x̂i = g(zi). On the other hand, it is compared to the prototypes. We use the same
similarity function as in [9] and obtain the resulting vector si ∈ RK×M as:

si(k, j) = sim(zi,ϕkj) = log

( ||zi − ϕkj ||2 + 1

||zi − ϕkj ||2 + ϵ

)
, (1)

with 0 < ϵ < 1. Finally, si is used to compute the predictions: ŷi = h(si). Moreover, the similarity
vector si captures the distance to the prototypes but also indicates the influence of each prototype on
the prediction.

4.2 Diversity and trustworthiness

Unlike transparency, diversity cannot be achieved solely through the architectural choices. It needs to
be further enforced during the optimization. Our architecture implies two loss terms: a classification
loss and a VAE-loss. Without further regulation, our model is left vulnerable to the curse of prototype
collapse [14, 22] which would undermine the SEM diversity property. We prevent such a situation
with a third loss term enforcing orthonormality between prototypes of the same class. The loss
function of ProtoVAE can thus be stated as follows:

LProtoVAE = Lpred + Lorth + LVAE. (2)

We detail now each term and discuss how they favor diversity and trustworthiness.

Inter-class diversity through classification Although the prototypes are assigned to a class, the
classifier is blind to that information. Thus, the prediction problem is a classic classification that we
solve using the cross-entropy loss.

Lpred =
1

N

N∑

i=1

CE(h(si);yi). (3)

Since h is linear, the loss pushes the embedding of each class to be linearly separable, yielding a
greater inter-class diversity of the prototypes.

Intra-class diversity through orthonormalization The inter-class diversity is guaranteed by the
previous terms. However, without further regularization, the prototypes might collapse to the center
of the class, obviating the possibilities offered by the extra prototypes. To prevent such a situation
and foster intra-class diversity, we enforce the prototype of each class to be orthonormal to each other
as follows:

Lorth =
K∑

k=1

||Φ̄T
k Φ̄k − IM ||2F , (4)
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where IM is the identity matrix of dimension M × M and the column-vectors of matrix Φ̄k are
the prototypes assigned to class k minus their mean, i.e., Φ̄k = {ϕkj − ϕ̄k, j = 1 . . M} with
ϕ̄k =

∑M
l=1 ϕkl. Beyond regularizing the Frobenius norm ||.||F of the prototype, this term favors the

disentanglement of the captured concepts within each class, which is one way to obtain intra-class
diversity.

Robust classification and reconstruction through VAE The VAE architecture ensures the ro-
bustness of the embedding and of the decoder. In its original form, the VAE loss considers a single
standard normal distribution as a prior and is trained to minimize:

||x− x̂||2 +DKL

(
pf (z|x)||N (0d, Id)

)
, (5)

where Id is the identity matrix of dimension d × d. Such an objective enjoins the embedding to
organize as if generated by a single Gaussian distribution, thus making it difficult to split it with the
linear classifier h. To help the classifier, we consider instead a mixture of VAEs sharing the same
network each with a Gaussian prior centered on one of the prototypes. Since, each prototype has a
label, only data-points sharing that label are involved in the training of the associated VAE. The loss
function of our mixture of VAEs is (derivation in the supplementary material Sec. S2):

LVAE =
1

N

N∑

i=1

||xi − x̂i||2 +
K∑

k=1

M∑

j=1

yi(k)
si(k, j)∑M
l=1 si(k, l)

DKL

(
N (µi,σi)||N (ϕkj , Id)

)
. (6)

In addition to training the decoder, this loss enjoins the embedding to gather closely around their
class prototypes.

4.3 Visualization of explanations

ProtoVAE is designed to have the inherent capability to reconstruct prototypes via the decoder, which
is trained to approximate the input distribution. Additionally, to generate faithful pixel-wise local
explanation maps, we build upon the concepts of Layer-wise relevance propagation (LRP) [23] which
is a model-aware XAI method computing relevances based on the contribution of a neuron to the
prediction. Following [12], we generate explanation maps, where for each prototype, the similarity of
an input to the prototype is backpropagated to the input image according to the LRP rules. For an
input image xi, the point-wise similarity between the transformed mean vector µi with a prototype
ϕkj is first calculated as:

γikj =
1

dikj + η
with dikj = (µi − ϕkj) ∗ (µi − ϕkj), (7)

where ∗ is the Hadamard element-wise product and η > 0. The similarity γikj is then backpropagated
through the encoder following LRP composite rule, which is known as best practice [24] to compute
local explanation maps. Following this, the LRPαβ rule is applied to the convolutional layers and the
Deep Taylor Decomposition based rule DTDzB [25] is applied to the input features.

5 Experiments

In this section, we conduct extensive experiments to evaluate ProtoVAE’s trustworthiness, trans-
parency, and ability to capture the diversity in the data. More specifically, we demonstrate the
trustworthiness of our model in terms of predictive performance in Sec. 5.1. Qualitative evaluations
are then conducted in Sec. 5.2 to verify the diversity and transparency properties, followed by a
quantitative evaluation of the explanations corroborating its trustworthiness. Additionally, we provide
an ablation study for the terms in Eq. 2 and further study the effect of the L2 norm in Eq. 6 on the
prototype reconstructions in the supplementary material in Sec. S6.1 and Sec. S6.9, respectively.

Datasets and implementation: We evaluate ProtoVAE on 5 datasets, MNIST [26], FashionMNIST
[27] (fMNIST), CIFAR-10, [28], a subset of QuickDraw [29] and SVHN [30]. We use small encoder
networks with 4 convolution layers for MNIST, fMNIST and CIFAR-10, 3 for QuickDraw and
8 for SVHN. These convolution layers are followed by 2 linear layers which gives us the tuple
(µi,σi) for each image i. The decoder mirrors the encoder’s architecture. Similar to [9], we fix
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Table 2: Performance results of ProtoVAE compared to other state-of-the-art methods (measured in
accuracy (in %)). The reported numbers are means and standard deviations over 4 runs. Best and
statistically non-significantly different results are marked in bold. *Results for SITE are taken from
the original paper and thus based on more complex architectures.

Black-box encoder FLINT [13] SENN [8] *SITE [17] ProtoPNet [9] ProtoVAE

MNIST 99.2±0.1 99.4±0.1 98.8±0.7 98.8 94.7±0.6 99.4±0.1
fMNIST 91.5±0.2 91.5±0.2 88.3±0.3 - 85.4±0.6 91.9±0.2
CIFAR-10 83.9±0.1 79.6±0.6 76.3±0.2 84.0 67.8±0.9 84.6±0.1
QuickDraw 86.7±0.4 82.6±1.4 79.3±0.3 - 58.7±0.0 87.5±0.1
SVHN 92.3±0.3 90.8±0.4 91.5±0.4 - 88.6±0.3 92.2±0.3
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Figure 2: Visualization of learned prototypes for different classes for MNIST, fMNIST, SVHN and
CIFAR-10.

the prototypes per class, M , to 5 for MNIST and SVHN and 10 for the other datasets. Further
details about the datasets and additional implementation details, such as the detailed architecture and
hyperparameters, are provided in the supplementary material Sec. S3 and S4. Our code is available at
https://github.com/SrishtiGautam/ProtoVAE.

Baselines To ensure a fair comparison, we modified the publicly available code of ProtoPNet,
FLINT and SENN to use the same backbone network as ProtoVAE and when relevant the same
number of prototypes per class as used for ProtoVAE. We also provide the results for the predictive
performance of SITE as reported in [17], since the code is not publicly available. We also report
the performance of our model with a ResNet-18 backbone in the supplementary material Sec. S6.2.
Further, we compare ProtoVAE using FLINT’s encoders as provided in [13] for both FLINT and
SENN in Sec. S6.3 in the supplementary material. Finally, we also compare with the black-box
counterpart of our model, i.e, a classical feed-forward CNN based on the same encoder as ProtoVAE
but followed by a linear classifier and trained end-to-end with the cross-entropy loss. This black-box
encoder model is thus free from all regularization necessary for self-explainability.

5.1 Evaluation of predictive performance

In the Table 2, we can observe that ProtoVAE surpasses all other SEMs in terms of predictive
performance on all five datasets, which is based on its increased flexibility in the architecture. For
ProtoPNet, we observe a gap in performance, which is due to the low number of optimal class-
representatives in the actual training data. This creates a huge bottleneck at the prototype layer and
therefore limits its performance. Further, and more importantly, when compared to the true black-box
counterpart, ProtoVAE achieves no loss in accuracy and is even able to perform better on all the
datasets. We believe this is due to an efficient over-clustering of the latent space with the flexible
prototypes, as well as the natural regularizations achieved through the VAE model. These results
strengthens the trustworthiness of ProtoVAE in terms of the predictive performance.

5.2 Evaluation of explanations

Qualitative evaluation The demonstrated results in this section strengthen the fulfilment of the
transparency property by providing human-understandable explanations for ProtoVAE. We visualize
the decoded prototypes for different datasets, which act as global explanations for the corresponding
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Figure 3: UMAP representations for the prototypical space for MNIST (left), decoded prototypes
overlayed for classes 2, 4 and 7 (right), and interpolation between prototypes of the same class (2)
and between prototypes of different classes (2-7) (bottom).

classes, in Fig. 2 1. The prototypes for MNIST demonstrate that class 2 consist of 2’s with flat
bottom line or with rounded bottom lines. For fMNIST, the sandals class consists of both heels and
flats. The class prototypes thus directly help visualizing the components of the classes by looking
at a fixed number of prototypes per class instead of all the training data. Interestingly, although
SVHN often contains multiple digits of different classes in the same training image, our prototypes
efficiently capture only one digit representing its class. Moreover, a blurring effect is observed in
our prototypes which captures more variability and therefore suggests efficient representation of
the true “mean" of a subset of a given class, as opposed to other methods [9, 14, 13] which show
the closest training images and are therefore sharper. This behavior supports our claim of more
flexibility in the network, therefore enhancing predictive capability along with the ability to provide
more faithful explanations. This blurring effect is observed to be more prominent in CIFAR-10,
which is due to the high complexity in each class in the dataset and can be reduced by using a larger
number of prototypes per class.2 Additionally, to provide more clear visualization of the learned
transparent prototypical space, we show UMAP representations of the prototypes and the training
data for MNIST in Fig. 3. This visualization further illustrates the inter-class as well as the intra-class
diversity of the prototypes. Moreover, due to the regularized prototypical space, we are efficiently
able to interpolate between prototypes both within a class and between classes, therefore making the
latent space fully transparent. In Fig. 3, we interpolate between 2 different prototypes of class ‘2’
and from a prototype of class ‘2’ to a class ‘7’ prototype.

The local explanability maps for a test image according to the three closest, i.e. most similar,
prototypes for both ProtoVAE and ProtoPNet are shown in Fig. 4, along with the corresponding
similarity scores. As seen, different prototypes of the same class activate different parts of the same
test image, which therefore helps in achieving better performance. The ProtoPNet maps are extremely
coarse which therefore makes them challenging to interpret. Therefore, we overlay the heatmaps
over the input image for ProtoPNet. As observed, the most activated prototypes do not belong to
the same class as the test image. This might happen because of ProtoPNet focusing on patches in
prototypes, therefore losing contextual information. The 3 closest prototypes shown for the image
‘apple’ belong to class ‘lion’. Further, an uninformative training image, which is not seen in the
ProtoVAE prototypes, has been selected by ProtoPNet to represent 5 out of 10 prototypes for class
‘lion’. The remaining 5 prototypes are represented by 1 other same training image. This effect is seen
predominantly in ProtoPNet where the prototypes of the same class collapse to one point and are thus
represented by the same training image, therefore dissatisfying the diversity property, as opposed
to ProtoVAE. The prototypes for class ‘lion’ for both the models are included in the supplementary
material in Sec. S6.4.

1As a reference to gauge the quality and sharpness of the pictures of Fig. 2, reconstructions of test images are
provided in Sec. S6.11.

2We demonstrate this behavior in Sec. S6.8 and show in Sec. S6.7 how local explainability maps can be used
to gather additional information about pixel-wise relevances thereby counterbalancing blurry prototypes.
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Figure 4: Three maximally activated prototypes, the corresponding prototypical activations, and
corresponding similarity scores for a test image of class 5 (for MNIST) and apple (for QuickDraw),
for both ProtoVAE and ProtoPNet models.
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Figure 5: Maximally activated prototypes from three random classes, along with the prototypical
explanations for MNIST (left) and QuickDraw (right) datasets.

We also show the closest prototypes from 3 different random classes and their corresponding ex-
plainability maps to demonstrate the behavior of explanations for different class prototypes in Fig. 5.
Interestingly, the ‘dog’ image from the QuickDraw dataset resembles an ‘ant’ prototype for the legs,
an ‘apple’ prototype for the face and a ‘cat’ prototype for the ears. This information provided by the
local explainability maps thus aligns well with human-understandable concepts.

To compare the efficacy of the mapping to the input space learned by our decoder, to methodologies
with training-data projection of prototypes [9, 14], we show prototypes along with the 3 closest
training images for different datasets in Fig. 6. The prototypes are observed to be the representative
of a subset of the respective class. For example, the prototype shown for class ‘4’ of MNIST is
representing the subset of ‘4’ with an extended bar, while the ‘banana’ prototype represents the
left facing ‘banana’ subset, and the ‘dog’ prototype represents the subset of white dogs on a darker
background.

Finally, in order to demonstrate the scalability of ProtoVAE and its applicability on complex higher-
resolution real world datasets, we provide an analysis on the CelebA dataset [31] in Sec. S6.10. Note
that the less important and fairly diverse features (such as background) appear blurry, while the more
important features (skin color, hair color, hair style or age) are crisp and clearly visible.

Quantitative evaluation To quantify the trustworthiness of the explanations provided by the
proposed model, we calculate the Average Drop (AD) and Average Increase (AI) with respect to local
explanation maps and similarity scores for all prototypes [32, 2]. The AD measures the decrease in
similarity scores with respect to each prototype when the 50% least important pixels are removed
from the images, while AI estimates the ratio of increasing similarity scores. A low AD and a high
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Figure 6: The three closest training images to the learned prototypes for MNIST (class ‘4’), Quick-
Draw (class ‘Banana’), fMNIST (class ‘Sandals’) and CIFAR-10 (class ‘Dog’), proving our prototypes
representing a “real mean" of subset of classes.

Table 3: AD and AI for quantitative evaluation of explanations of ProtoVAE and ProtoPNet. The re-
ported numbers are means and standard deviations over 5 runs. Best and statistically non-significantly
different results are marked in bold.

MNIST fMNIST CIFAR-10 QuickDraw SVHN
AD AI AD AI AD AI AD AI AD AI

ProtoPNet 3.4±0.3 0.6±0.0 7.2±0.4 0.5±0.0 11.6±0.2 0.5±0.0 2.6±0.1 0.7±0.0 5.4±0.0 0.7±0.0
ProtoVAE 0.4±0.0 0.6±0.0 5.1±0.0 0.8±0.0 6.6±0.0 0.7±0.0 0.1±0.0 0.9±0.0 6.1±0.1 0.7±0.0

AI suggest better performance. These scores are computed as follows:

AD =
100

NKM

N∑

i=1

K∑

k=1

M∑

j=1

max
(
0, si(k, j)− s50%

i (k, j)
)

si(k, j)
, AI =

N∑

i=1

K∑

k=1

M∑

j=1

[[si(k, j) < s50%
i (k, j)]]

NKM
,

where si(k, j) is the similarity score of an image i with prototype j of class k (see Eq.1) and
s50%i (k, j) is the similarity score after masking the 50% least activated pixels according to the
prototypical explanation map of prototype j. Also, [[ · ]] are the Iverson brackets which take the value
1 if the statement they contain is satisfied and 0 otherwise.

We report the mean and standard deviation for AD and AI computed over 5 random subsets of
1000 test images for ProtoVAE and ProtoPNet in Table 3. For the grayscale datasets, MNIST and
fMNIST, the masked pixels are replaced by 0. For CIFAR-10 and SVHN, they are replaced by random
uniformly sampled values. ProtoVAE achieves considerably lower AD and higher or comparable AI
for all the datasets. For SVHN, ProtoPNet performs well which we believe is due to the abundance of
representative patches in the dataset, thereby improving its explanations.

Finally, we perform a relevance ordering test [33, 12], where we start from a random image and
monitor the predicted class probabilities while gradually adding a percentage of the most relevant
pixels to the random image according to the local explanation maps. We take 100 random test images
and report the average results of change in predicted class probability for all the prototypes in the
model. The rate distortion graphs are shown in Fig. 7 for MNIST, QuickDraw and SVHN. We also
include two baselines, Random-ProtoPNet and Random-ProtoVAE, where the pixel relevances are
ordered randomly. Larger area under the curve indicates better performance. As shown, ProtoVAE’s
local explanations are able to capture more relevant information than ProtoPNet for all three datasets.
Further, for MNIST, ProtoPNet is performing even worse than Random-ProtoPNet, highlighting the
lack of trustworthiness in ProtoPNet’s explanations.

6 Conclusion and Discussion

In this work, we define three properties that act as prerequisites for efficient development of SEMs,
namely, transparency, diversity, and trustworthiness. We then introduce ProtoVAE, a prototypical
self-explainable method, based on a variational auto-encoder backbone, which addresses these three
properties. ProtoVAE incorporates a transparent model and enforces diversity and trustworthiness
through the loss functions. In addition to providing faithful explanations, ProtoVAE is able to achieve
better predictive performance than its counterpart black-box models.
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Figure 7: Relevance ordering test for ProtoPNet and ProtoVAE, along with the respective random
baselines (Random-ProtoPNet and Random-ProtoVAE). Higher curve suggests better performance of
ProtoVAE for all 3 datasets of MNIST, QuickDraw and SVHN.

The main limitation of ProtoVAE is the fixed number of prototypes. This means that the model has
to grasp simple as well as more complex classes with the same number of prototypes. For example,
in MNIST, there are more variations to be captured by the prototypes in the class ‘4’ than in class
‘1’. A simple but effective solution is a distance-based pruning procedure, which will be explored
in future works. Another approach in sight is to use a prior on the distribution of the prototypical
similarities and prioritize some prototypes by controlling the frequency with which each prototype is
used in the predictions. Finally, since our global explanations can only be as good as the decoder, one
more promising research direction is to leverage more expressive generative models, such as "Very
Deep VAEs" [34] and normalizing flows [35] to further improve the scalability of the method to more
complex datasets.
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Abstract

Explainable AI (XAI) has unfolded in two distinct research directions with, on the one
hand, post-hoc methods that explain the predictions of a pre-trained black-box model and,
on the other hand, self-explainable models (SEMs) which are trained directly to provide
explanations alongside their predictions. While the latter is preferred in most safety-critical
scenarios, post-hoc approaches have received the majority of attention until now, owing to
their simplicity and ability to explain base models without retraining. Current SEMs instead,
require complex architectures and heavily regularized loss functions, thus necessitating
specific and costly training. To address this shortcoming and facilitate wider use of SEMs,
we propose a simple yet efficient universal method called KMEx (K-Means Explainer), which
can convert any existing pre-trained model into a prototypical SEM. The motivation behind
KMEx is to push towards more transparent deep learning-based decision-making via class-
prototype-based explanations that are guaranteed to be diverse and trustworthy without
retraining the base model. We compare models obtained from KMEx to state-of-the-art
SEMs using an extensive qualitative evaluation to highlight the strengths and weaknesses of
each model, further paving the way toward a more reliable and objective evaluation of SEMs.

1 Introduction

XAI has become a key research area with the primary objective of enhancing the reliability of deep learning
models (Yosinski et al., 2015; Tjoa & Guan, 2021). This domain has notably evolved along two parallel
trajectories in recent years. One focuses on post-hoc methods (Ribeiro et al., 2016; Selvaraju et al., 2017),
where the algorithms aim to explain the behavior of the black-box models after they have been trained. The
other promising branch focuses on SEMs (Rudin, 2019), where the models are strategically designed and
trained to generate explanations along with their predictions.

The easily employable post-hoc techniques have become widely adopted in recent works due to their ability
to offer insights into any black-box models without retraining (Bodria et al., 2023). Nevertheless, the need
for inherently interpretable models has taken some momentum fueled by the unreliability and high variability
of these post-hoc methods which inhibits their usability for safety-critical applications (Rudin, 2019). SEMs
offer explanations that align with the actual computations of the model, thus proving to be more dependable
which is crucial in domains such as criminal justice, healthcare, and finance (Rudin, 2019). However, existing

1

ar
X

iv
:2

31
2.

07
82

2v
1 

 [
cs

.L
G

] 
 1

3 
D

ec
 2

02
3



SEMs rely on complex designs based on large deep-learning backbones and require intricate training strategies.
The associated computational and time costs limit their accessibility and sustainability.

We tackle this limitation by introducing a simple but efficient method called KMEx (K-Means Explainer),
which is the first approach that aims to convert a trained black-box model into a prototypical self-explainable
model (PSEM). PSEMs provide inherent explanations in the form of class-representative concepts, also called
prototypes, in the latent space that can be visualized in the human-understandable input-space (Kim et al.,
2021). These prototypes serve as global explanations of the model (this looks like that (Chen et al., 2019b)),
and their visualization provides knowledge about their neighborhood in the learned embedding. KMEx keeps
the trained encoder intact, learns prototypes via clustering in the embedding space, and replaces the classifier
with a transparent one. This results in an SEM with similar local explanations and performance to the
original black-box model and such enables the reuse of existing trained models.

Comparing models obtained using KMEx to existing PSEMs requires a comprehensive evaluation strategy
which, for this fairly new field, is still lacking. Differing from conventional black-box classifiers, PSEMs
yield global (prototypes’ visualization) and/or local (activation of individual prototypes by input images)
explanation maps, alongside the predicted class probabilities. Yet, the assessment of SEMs until now has
been limited to comparing the predictive performance to the black-box counterpart with the same backbone
architecture as the SEM, followed by quantifying the robustness of local explanation maps and qualitative
evaluation of global explanations Wang & Wang (2021); Parekh et al. (2021). We argue that this approach
overlooks crucial facets of SEM explainability, failing to establish a standardized framework for thorough
analysis and comparison of existing models. For example, we observe that most of the prototypes learned by
recent SEMs might never be used by their classifier, which challenges the rationale of a transparent model.
Further, the diversity captured by different prototypes in the embedding space, while being a driving force
behind the development of several SEMs (Wang et al., 2021), has traditionally only been validated by highly
subjective visual inspection of the prototypes.

We, therefore, present a novel quantitative and objective evaluation framework based on the three properties
that arose as predicates for SEMs (Gautam et al., 2022): transparency, diversity, and trustworthiness. The
rationale is not to rank models but to highlight the consequences of modeling choices. Indeed, in some
applications, having robust local explanations might be more valuable than diverse prototypes. Yet, this
behavior needs to be quantified in order to support practitioners in choosing the best model for their use case.

Our main contributions are thus as follows:
• We propose a simple yet efficient method, KMEx, which converts any existing black-box model into a

PSEM, thus enabling wider applicability of SEMs.
• We propose a novel quantitative evaluation framework for PSEMs, grounded in the validation of SEM’s

predicates (Gautam et al., 2022), which allows for an objective and comprehensive comparison.

Our key findings are as follows:
• Experiments on various datasets confirm that KMEx matches the performance of the black-box model

while offering inherent interpretability without altering the embedding, making it an efficient benchmark
for SEMs.

• Most existing PSEMs tend to ghost the prototypes, i.e., never utilize them for prediction, which gives a
false sense of needed concepts but also undermines the rationale formalized by the predicates, especially
transparency.

• Unlike KMEx, the large variations in the design and regularizations of other SEMs lead to drastically
different learned representation spaces and local explanations.

• While many SEMs incorporate measures to obtain diverse prototypes, these efforts are not necessarily
reflected in terms of captured input data attributes. We illustrate how KMEx can be leveraged, without
the need for retraining, to improve the prototype positioning on the SEM’s embeddings and to better
cover the attributes and their correlations.
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Table 1: Design strategies used by state-of-the-art SEMs.
Similarity Measure Classifier Prototypes Diversity Loss

ProtoPNet Distance based Linear Layer Projected from training data Min/max intra/inter-class distance
FLINT Linear Layer Linear Layer Weight of the network Min/max similarity entropy
ProtoVAE Distance based Linear Layer Learned ad-hoc parameters Orthonormality + KL Divergence
KMEx Distance based Nearest Neighbor k-means Clustering

2 Prototypical self-explainable models

In this section, we review the recent literature on PSEMs for the task of image classification, which is the
focus of this work, emphasizing their design considerations as well as evaluation approaches.

PSEMs for image classification typically consist of four common components: an encoder, a set of prototypes,
a similarity function, and a transparent classifier. The encoder is typically sourced from a black-box model,
thereby making the latter the closest (to the SEM architecture) natural baseline for comparison until now.
Prototypes are class-concepts that live in the embedding space and serve as global class explanations, i.e.,
representative vectors, that eliminate the necessity to examine the entire dataset for explaining the learning
of the model. The similarity function compares features extracted from the input to those embodied in the
prototypes. Ultimately, a transparent classifier transforms the similarity scores into class predictions. The
fact that the final classification revolves around the prototypes makes them a critical component of SEMs.
In addition to these, other modules have also been utilized in the literature to facilitate the learning of
prototypes, such as a decoder to align the embedding space to the input space (Parekh et al., 2021; Gautam
et al., 2022), or a companion encoder to learn the prototypical space (Parekh et al., 2021).

2.1 Predicates for SEMs

PSEMs are designed to learn inherently interpretable global class concepts. Three principles arise from the
literature to form a framework for their construction: transparency, diversity, and trustworthiness (Gautam
et al., 2022).
• A model is said to be transparent if the downstream task involves solely human-interpretable concepts and

operations.
• The learned concepts are diverse if they capture non-overlapping information in the embedding space and,

therefore, in the input space.
• Trustworthiness comes in several dimensions. An SEM is deemed faithful if its classification accuracy and

explanations match its black-box counterpart. In addition, local and global explanations should be robust
(similar inputs yield similar explanations) and truly reflect the important features of the input with respect
to the downstream task.

2.2 Related work

The first general framework to compute interpretable concepts was SENN (Alvarez Melis & Jaakkola, 2018),
which relies on a complex architecture and loss function to ensure interpretability. Following this, several
SEMs have emerged, one of the most popular being ProtoPNet (Chen et al., 2019b). The latter introduces a
learnable prototype similarity layer with a fixed number of prototypes per class. Several methods have followed
to address the limitations of ProtoPNet. For example, ProtoPShare (Rymarczyk et al., 2021), ProtoTree
(Nauta et al., 2021) and ProtoPool (Rymarczyk et al., 2022) proposed learning of shareable prototypes across
classes, (Donnelly et al., 2021) proposed adaptive prototypes which change their spatial location based on the
input image and TesNet (Wang et al., 2021) introduced a plug-in embedding space spanned by basis concepts
constructed on the Grassman manifold, thereby inducing diversity among prototypes.

In parallel to ProtoPNet and its extensions, several other SEMs have been proposed. FLINT (Parekh
et al., 2021) introduces an interpreter network with a learnable attribute dictionary in addition to the
predictor. SITE (Wang & Wang, 2021) introduces regularizers for obtaining a transformation-equivariant
SEM. ProtoVAE (Gautam et al., 2022) learns a transparent prototypical space thanks to a backbone based
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Figure 1: Schematic representation of KMEx: The black-box classifier is removed and replaced by a nearest
neighbor classifier based on prototypes learned using k-means in the embedding space. The UMAP (McInnes
et al., 2018) representation is the projection of the learned embedding space for STL-10, along with prototypes,
depicted by squares weighted by their respective importances (1 − Dtsp). The prototypes are visualized in
the input space using the closest training images.

on a variational autoencoder, thereby having the capability to reconstruct prototypical explanations using
the decoder.

While all the existing SEMs have demonstrated effective generation of explanations alongside comparable
accuracies, they invariably demand significant architectural modifications and integration of multiple loss
functions. This often introduces several additional hyperparameters to achieve satisfactory performance.
For instance, in the case of ProtoPNet, a three-step training process involves encoder training, prototypes
projection for explainability, followed by last-layer training. Furthermore, as highlighted in FLINT (Parekh
et al., 2021), a simultaneous introduction of all losses can lead to suboptimal optimization. Their workaround
strategy involves distinct loss combinations for fixed epochs. These intricate training strategies, combined
with the challenge of training large deep learning architectures, complicate the accessibility of SEMs, thereby
emphasizing the demand for more resource-efficient alternatives. KMEx, a universally applicable method
that necessitates no re-training, no additional loss terms for training the backbone, and minimal architectural
adjustments for learning the prototypes, presents an efficient solution to this challenge. Considering our
general contributions to SEMs, we use ProtoPNet, a representative approach encompassing all its extensions,
as a baseline in this work. Additionally, we also consider FLINT and ProtoVAE, which cover the diversity of
the SEM’s literature in terms of backbones, similarity, and loss functions. A summary of these baselines is
given in Table 1, along with KMEx, which is presented in the following section.

3 KMEx: a universal explainer

In this section, we introduce our resource-efficient and universal method, KMEx, which transforms a black-box
model into an SEM, fulfilling all the aforementioned predicates. Note that to enhance legibility, KMEx may
refer in the following to both the method and the transformed model.

3.1 KMEx

Let us consider a trained model made of an encoder and a classifier. It can be converted into a self-explainable
model using the following procedure:

1. Learn prototypes for each class using k-means on the embedding of the training data.
2. The classifier returns now the class of the closest prototype using as similarity measure:

s(z, pk) = log
(
(||z − pk||2 + 1)/(||z − pk||2 + ϵ)

)
.
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The resulting model is referred to as the K-Means Explainer (KMEx) of the original model. A schematic
representation of the operations is depicted in Figure 1. Note that the KMEx conversion is not a post-hoc
explainability method. Although a trained encoder is re-used, the predictions are computed differently.
Additionally, given the central role of the prototypes, the inherent nature of the KMEx model is now
interpretable.

We further highlight that k-means is computed per class and on the embedding space, which usually has
a reasonable number of dimensions (512 for ResNet34). Hence, the computational cost is limited and
manageable by classic implementations, irrespective of the complexity of the data. For very large datasets,
it can be approximated by computing k-means on a subset of the training set or by using other efficient
implementations (Johnson et al., 2019).

3.2 KMEx is an SEM

Visualisation of explanations The explanations for a PSEM are two-fold. Global explanations involve
visualizations of prototypes in the input space, providing insights into the model’s acquired knowledge. Local
explanations, on the other hand, entail pixel-level explanations for input images, revealing which portions
of an image are activated by each prototype. For KMEx, we provide global explanations by visualizing the
training images that are closest to the corresponding prototypes in the embedding space. This approximation
is justified by the problem solved by k-means, which makes it unlikely for a prototype to be out of distribution.
For local explanations, we adhere to previous works and employ Prototypical Relevance Propagation (PRP),
a technique demonstrated to be efficient and accurate for ProtoPNet (Gautam et al., 2023).
Transparency The nearest prototype classifier of KMEx allows backtracking of the influence of a prototype
on the predictions, which relates to a distance in the embedding space, thus embodying transparency.
Trustworthiness of the predictions If the original trained model learned to separate well the classes in
the embedding, there should be enough inter-class distance for the linear partition of k-means to yield KMEx
prototypes that also correctly separate the classes and thus achieve classification performance akin to that of
the trained model.
Trustworthiness of the explanations The only difference between a black-box and its KMEx is how
the predictions are derived from the embedding. Therefore, considering identical weights in both models’
encoders, most of the operations involved in the generation of local explanation maps are common to both,
thus similar explanations are expected, regardless of the technique chosen to generate local explanations.
Diversity The purpose of the prototypes is to serve as representatives of their neighborhood in the
embedding space. The diversity predicate implicitly requires that they also spread over the embedding.
To satisfy this predicate without compromising their function, we aim to position the prototypes on the
accumulation points of the embedding. These are captured as the modes of a Gaussian density estimate.
Computing such a model for a high dimensional and sparse dataset is costly, hence we approximate it using
k-means. Finally, given that k-means employs a uniform prior on the cluster probabilities, this method has
the advantage of covering as much of the data in the embedding space as possible, thus fostering diversity.

4 Evaluations

As stated earlier, existing SEMs build upon three shared predicates but adopt varied strategies to ensure
their fulfillment. Transparency is assumed based on architectural choices and, at best, confirmed through
visualization of prototypes using different strategies, such as upsampling (Chen et al., 2019b), activation
maximization (Parekh et al., 2021; Mahendran & Vedaldi, 2016) and PRP (Gautam et al., 2023), accompanied
with similarity scores. The trustworthiness predicate is the most quantifiable one. The faithfulness of the
performance with respect to the “closest” black-box is often reduced to a comparison of accuracies, and
the robustness of the explanations is evaluated via recent measures such as Average Increase (AI), Average
Drop (AD), and Relevance Ordering (RO) test (Lee et al., 2021; MacDonald et al., 2019; Hedström et al.,
2022). Nonetheless, the quantification of disparities between local explanations generated by an SEM and its
nearest black-box model has been largely disregarded. We emphasize that this aspect grows in significance,
particularly as we transition to techniques that transform existing black-box models into interpretable ones
without re-training, a domain where KMEx stands as the first approach. Finally, prototypical diversity
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Table 2: Evaluation strategies for the predicates used by state-of-the-art SEMs. Proposed evaluation
framework is italicised.

Transparency Trustworthiness Diversity
Baseline Faithfulness Robustness

ProtoPNet Visualization Black-box Accuracy - -
FLINT Visualization Black-box Accuracy - -
ProtoVAE Visualization Black-box/SEM Accuracy AI/AD/RO Reconstruction

visualization
Proposed
Evaluation

Ghosting Black-box/SEM/KMEx Accuracy/KL Divergence AI/AD/RO Inter-prototype
similarity

Table 3: Prediction accuracy for SEMs demonstrating the effectiveness of KMEx as an SEM baseline.
Reported numbers are averages over 5 runs along with standard deviations.

MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA
ResNet34 99.4±0.0 92.4±0.1 92.6±0.2 85.6±0.1 91.8±0.1 86.5±0.1 98.5±0.0

R34+KMEx 99.4±0.0 92.3±0.1 92.4±0.1 85.3±0.1 91.9±0.2 86.6±0.2 98.3±0.0

FLINT 99.2±0.1 91.8±0.5 91.1±0.7 82.2±1.1 87.5±0.6 87.3±0.2 97.2±0.3

ProtoPNet 99.4±0.1 92.4±0.2 94.4±0.1 84.9±0.2 88.1±0.6 87.8±0.2 98.1±0.0

ProtoVAE 99.4±0.0 92.7±0.5 93.8±0.6 83.0±0.2 85.6±1.1 85.1±0.8 98.6±0.0

has been largely overlooked in prior research, with evaluations, if conducted, being primarily qualitative in
nature (Gautam et al., 2022).

In this section, we first evaluate KMEx following the evaluation protocols used in the original papers of the
selected baselines, which are summarized in Table 2. Following this, we propose our full quantitative evaluation
framework based on the predicates for SEMs, highlighting the gaps in the evaluation of SEMs existing until
now, also summarized in Table 2. Additionally, we present a quantitative study of the diversity and subclass
representation captured by the prototypes learned by existing SEMs and their KMEx counterparts.

Datasets, implementation and baselines We evaluate all methods on 7 datasets, MNIST (Lecun et al.,
1998), FashionMNIST (Xiao et al., 2017) (fMNIST), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky,
2009), STL-10 (Coates et al., 2011), a subset of QuickDraw (Parekh et al., 2021) and binary classification
for male and female for the CelebA dataset (Liu et al., 2015). We use a vanilla ResNet34 (He et al., 2016)
as the encoder for all the models and fix the number of prototypes per class as 20 for CelebA and 5 for
all other datasets. Further implementation details are provided in Appendix A.2. For baselines, we train
ProtoPNet (Chen et al., 2019b), FLINT (Parekh et al., 2021), and ProtoVAE (Gautam et al., 2022) for
learning image-level prototypes. For ProtoPNet, we use average pooling to generate image-level prototypes.
For FLINT, we use the interpreter network FLINT-g.

4.1 Traditional evaluation of KMEx

In this section, we evaluate KMEx following previous lines of works (Wang & Wang, 2021; Gautam et al.,
2022). We start with comparing the predictive performance of KMEx, which is then followed by an evaluation
of explanations consisting of visualization of prototypes and evaluating the robustness of explanations.

4.1.1 Predictive performance

We report the accuracy achieved by KMEx, as well as selected baselines in Table 3. As can be observed,
KMEx performs on par with its corresponding ResNet34 black-box base model, thereby validating the change
of classifier. On the other hand, other SEMs, i.e., FLINT, ProtoPNet, and ProtoVAE, suffer some loss of
accuracy for some datasets when compared to the black-box.
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Figure 2: Qualitative evaluation of KMEx: Prototypes learned by KMEx for MNIST for class ‘7’ (left) and
STL-10 for class ‘bird’ (right) are shown at the top, demonstrating global explainability. This looks like that
behavior for test images are shown at the bottom, along with PRP maps demonstrating the regions activated
by closest prototypes for the test images, exhibiting local explainability.

4.1.2 Evaluation of explanations

In previous works, the evaluation of explanations is in two folds: 1) Qualitative evaluation of prototypes and
2) Evaluation of robustness of prototypical explanations. For qualitative evaluation, we visualize prototypes
learned by KMEx for MNIST and STL-10 datasets in Figure 2 (top row). We further demonstrate the “this
looks like that" behavior exhibited by KMEx for test images in the bottom row, along with their corresponding
PRP maps, demonstrating the regions activated in the test images by their closest prototypes. As observed,
for the MNIST dataset, the activations are in response to the shape of the digit in the prototype. Similarly,
for STL-10, the closest prototype has emphasized key features of a bird, such as the head, beak, and eyes, as
well as a portion of the sky in the background.

We evaluate the robustness of the local explanations using the AD, AI of the similarity scores, as well as
RO test (Lee et al., 2021; Gautam et al., 2023). AD estimates the average decrease in similarity scores with
respect to each prototype when the 50% least important pixels are set to zero for black and white images
and to random noise for colored datasets, respectively. AI corresponds to the frequency with which the
similarly disturbed input increases the similarity. A low AD and a high AI suggest robustness. We report in
Table 4 average AI and AD scores and standard deviation over 1000 test images and five runs. The RO test
(MacDonald et al., 2019; Gautam et al., 2022), where the most important pixels from the PRP maps are
added gradually in an image to measure the change in predicted class probability. The RO curves are shown
in Figure 3 for MNIST, CIFAR-10, and CelebA, along with the respective random baselines (MacDonald
et al., 2019). A larger area-under-the-curve suggests more robustness. The curves are computed as mean
for 1000 test images selected at random, averaged over 5 runs. We employ PRP maps for generating local
explanation maps for all baselines and tests, thus ensuring equitable and consistent analysis across all SEMs.
FLINT is excluded here because of the lack of clear PRP rules for such an architecture.

First, except for CelebA, none of the results of Table 4 are statistically different. Overall, ProtoPNet returns,
on average, the lowest AD scores (except for STL-10). As for AI scores, the highest averages alternate
between ProtoPNet and ProtoVAE. Although KMEx’s AD scores remain worse than that of the black-box
ResNet34, the AI scores of both models are overall very similar, with an average difference of about 0.030%.
This behavior is also visible in Figure 3, where the curve of ResNet34+KMEx (orange) stays very close to
the black-box baseline (blue), while other SEMs show different behaviors. These results suggest that KMEx
does not produce more robust explanations on its own. This is anticipated as KMEx aims to facilitate the
interpretation of a learned latent representation but does not enforce robustness or stability of the prototypes
during the training process, unlike other SEMs.

4.2 Quantitative evaluation of SEMs

Having demonstrated the traditional evaluation of the proposed KMEx, we now address the lack of a
comprehensive evaluation framework for SEMs that quantitatively evaluates the predicates. First, we expose
for the first time how transparency is often undermined by unused prototypes (ghosting) and measure the
phenomenon. Next, we objectively quantify the faithfulness of local explanations and the diversity of the
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Table 4: AI and AD scores for robustness of explanations.
AD similarity (lower is better)

MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA
ResNet34 0.076±0.142 0.121±0.155 0.136±0.158 0.130±0.153 0.096±0.129 0.085±0.134 0.399±0.155

R34+KMEx 0.121±0.234 0.156±0.207 0.178±0.213 0.167±0.189 0.117±0.172 0.150±0.201 0.662±0.158

ProtoPNet 0.045±0.113 0.095±0.138 0.025±0.083 0.010±0.038 0.125±0.276 0.036±0.114 0.099±0.101

ProtoVAE 0.157±0.352 0.146±0.297 0.083±0.232 0.102±0.221 0.051±0.138 0.054±0.157 0.573±0.454

AI similarity (higher is better)
ResNet34 0.650±0.434 0.466±0.492 0.416±0.474 0.386±0.480 0.478±0.4946 0.592±0.426 0.032±0.168

R34+KMEx 0.638±0.420 0.461±0.495 0.434±0.474 0.348±0.469 0.509±0.4957 0.514±0.418 0.003±0.026

ProtoPNet 0.765±0.422 0.530±0.480 0.834±0.367 0.889±0.312 0.742±0.4309 0.834±0.371 0.363±0.479

ProtoVAE 0.774±0.417 0.684±0.461 0.761±0.422 0.710±0.450 0.669±0.4690 0.851±0.343 0.375±0.484

Figure 3: Relevance Ordering curves computed on different datasets and with different architectures, along
with the respective random baselines (dashed).

prototypes without resorting to visual inspection. Again, the rationale is to propose a framework to assess
objectively each model’s strengths and weaknesses.

4.2.1 Notations

Let us consider an image dataset X = {(xi, yi)}N
i=1 made of N > 0 images split into C > 0 classes, where

xi ∈ RW ×H×J is an image of width W >0, height H >0, and with J >0 channels, and yi ∈ [1 . . . C] encodes
its label. We consider a set of K > 0 prototypes {p1 . . . pK}⊂RD that are vectors of the embedding space
R

D. Any model in the following contains both an encoder f such that zi = f(xi) ∈RD and a similarity
measure s between vectors of the embedding space that returns larger values to pairs of vectors deemed
similar.

4.2.2 Transparency and concept ghosting

The transparency predicate allows the user to backtrack the influence of the learned concepts on the predictions
and is usually enforced through architecture design. However, we observe for state-of-the-art SEMs that, in
practice, some learned prototypes are not reachable from the predictions. More specifically, they are never
activated by any training data point of their class, i.e., they are never the most similar prototype of any
training data. This so-called ghosting of the prototypes not only gives a false sense of needed concepts but
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Table 5: Transparency: frequency of ghosted prototypes by SEMs.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet 0.580±0.060 0.528±0.027 0.300±0.076 0.164±0.056 0.232±0.083 0.156±0.050 0.670±0.141

FLINT 0.160±0.101 0.188±0.254 0.060±0.025 0.112±0.076 0.240±0.077 0.228±0.409 0.215±0.411

ProtoVAE 0.0±0.0 0.004±0.009 0.0±0.0 0.0±0.0 0.760±0.037 0.552±0.070 0.155±0.060

KMEx 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

also undermines the notion of transparency itself, as the link between prototypes and prediction can not be
fully trusted.

In the case of a distance-based similarity measure (Gautam et al., 2022; Chen et al., 2019b), if k =
argmaxl s(zi, pl), then prototype pk is the closest to zi. If several points activate pk, this indicates that the
data embedding aggregates around a concentration point close to pk. In contrast, if pk never maximizes any
s(zi, ·), then there might be no data in its neighborhood. The prototype is either out-of-distribution or lies in
an area of low density. In the case of a dot-product-based similarity measure (Parekh et al., 2021), if pk is
activated by zi, then zi and pk are aligned. Assuming that zi is not the only maximizer of s(·, pk), then pk

carries a direction along which the data accumulates. In contrast, if pk never maximizes any s(zi, ·), then the
data does spread along its direction and may represent either a variation within a class or, in the worst case,
noise.

We propose to quantify this ghosting phenomenon based on the average activation frequencies over the
prototypes on the training set:

Dtsp = 1 −
K∑

k=1

#{i, argmax1≤l≤K

(
s(zi, pl)

)
= k}

KN
, (1)

where # stands for the cardinal of the set. The values of Dtsp range between 0 and 1, with lower values
indicating less ghosting.

In Table 5, we report average Dtsp scores (Equation 1) with standard deviation over five runs. We observe
that ghosting affects all models but, unsurprisingly, not KMEx. Indeed, for such a low number of prototypes,
relative to the size of the data, k-means is unlikely to create an empty cluster. Interestingly, ProtoVAE
almost never ghosts any prototype on four out of the seven datasets, suggesting that SEMs with geometrical
constraints are more robust to ghosting.

4.2.3 Trustworthiness and faithfulness

According to its definition, the trustworthiness predicate encompasses two major axes. The first is the faith-
fulness of the predictions, which we have quantified in terms of accuracies. The second aspect concerns
the robustness of the explanations, which we measured using AI, AD, and RO (Lee et al., 2021; Gautam et al.,
2022). An often overlooked aspect of the trustworthiness predicate is the faithfulness of the explanations.
Indeed, SEMs differ from black-box models in their architecture and training and, therefore, also in their local
explanations. However, as we move towards methods that convert black-box models into self-explainable, it
becomes crucial to quantitatively evaluate this discrepancy. We propose to use the Kullback-Leibler (KL)
divergence (DKL) between the Layer-wise Relevance Propagation (LRP) maps (Bach et al., 2015) for the
prediction probabilities produced by the SEM and the black-box baseline. Since the divergence acts on
distributions, the relevance maps need to be normalized. The use of LRP aligns with the previous utilization
of PRP. Other methods could be used, yet our intention here is not to evaluate the SEMs with respect to
these methods but rather with respect to the predicates.

Let us denote the output of the local explanation method for an input x as e(x)∈RW×H×C . The corresponding
normalized relevance en(x)∈RW×H is defined as:

en(x)= maxj=1...J |e(x)|(·, ·, j)∑
w=1...W

∑
h=1...H maxj=1...J |e(x)|(w, h, j) (2)
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Table 6: Faithfulness of explanations: divergence of LRP explanation maps from the black-box.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet 0.438±0.173 0.279±0.182 0.316±0.183 0.225±0.146 0.455±0.168 0.689±0.441 0.800±0.318

ProtoVAE 0.829±0.239 0.678±0.221 0.838±0.033 1.106±0.420 0.361±0.086 0.953±0.649 0.828±0.721

KMEx 0.086±0.141 0.169±0.163 0.199±0.159 0.159±0.163 0.354±0.109 0.082±0.141 0.554±0.219

The divergence of en(x) with respect to the normalized local explanation maps produced by the black-box
backbone ebbox

n (x) is measured by Dfdl defined as follows:

Dfdl =
W∑

w=1

H∑

h=1
en(x)(w, h) log

(
en(x)(w, h)

ebbox
n (x)(w, h)

)
(3)

The KL divergence is zero if, and only if, the distributions are equal. Consequently, Dfdl can be null if, and
only if, the SEM and the black-box models always produce the same explanations.

In Table 6, we report the average Dfdl based on LRP and standard deviation over five runs for each SEM
on 1000 images of each dataset. FLINT is excluded here because of the lack of clear LRP rules for such
an architecture. Despite the quite large standard deviations, KMEx produces the most faithful feature
importance maps. This is expected since most of the operations happen in the encoder, which originates
from the black-box model. It is closely followed by ProtoPNet. On the other hand, ProtoVAE, which has the
most different architecture, also yields the most different local explanations.

4.2.4 Interpreted diversity

The abundance of existing strategies to guarantee the diversity of an SEM reflects the subjectivity of the
notion. Thus, it is not obvious how to evaluate this predicate in the input space, especially given that very
few public image datasets provide attributes describing the image. Thus, the evaluation has to be done in the
embedding space. However, using a metric based on distances in the embedding space would disadvantage
methods relying on a dot-product-based similarity measure and the other way around. We therefore propose
to evaluate SEMs on the basis of their own interpretation of diversity and to base our diversity metric on the
models’ own similarity function. In other words, the idea is to assess the extent to which models achieve
diversity on the basis of their own model choices.

The overarching objective of existing approaches for diversity is to prevent prototype collapse. In such a case,
the information captured by the prototypes highly overlaps, yielding inter-prototype similarities (s(pk, pl)
with k ̸= l) as high as prototypical self-similarities (s(pk, pk)). On the other hand, if prototype collapse is well
alleviated, the inter-prototype similarities are low, while the self-similarities remain high. This observation
motivates the use of the entropy function.

Accordingly, we quantify the diversity of a set of class concepts using Ddvs defined as the class average of the
normalized entropy of the similarities between each prototype of the class. The computation is done per class
and without discarding the ghosted prototypes, as they may indicate a collapse.

Ddvs = 1
K

K∑

k=1

H (Softmax (s(pk, p·)))
log(K) , (4)

where H is the entropy function. The log(K)-normalization restricts the measure to [0, 1] and allows
comparisons between different runs, number of prototypes, as well as models. Large values indicate more
similarity between the clusters and, thereby, less diversity.

In Table 7, we report the average Ddvs (Equation 4) score with standard deviations over five runs for
each SEM on each dataset. Recall that Ddvs estimates how well a model satisfies its own interpretation of
diversity. Following this, ProtoVAE and FLINT are, respectively, the most and the least satisfying models.
We emphasize here that a low diversity doesn’t reflect the caliber of the learned embedding space and
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Table 7: Interpreted diversity: quantitative evaluation of diversity for different SEMs.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet 0.691±0.067 0.717±0.020 0.708±0.031 0.768±0.081 0.548±0.052 0.687±0.102 0.741±0.158

FLINT 0.941±0.010 0.943±0.013 0.911±0.025 0.930±0.020 0.989±0.002 0.901±0.047 0.918±0.023

ProtoVAE 0.367±0.050 0.301±0.044 0.349±0.101 0.186±0.012 0.215±0.042 0.147±0.025 0.445±0.081

KMEx 0.453±0.067 0.402±0.083 0.389±0.087 0.399±0.058 0.373±0.071 0.374±0.085 0.443±0.068

only suggests an important overlap of information between the representative prototypes learned for the
embeddings.

4.2.5 Summary

In Figure 4, we summarize the results of Tables 3, 4 and 5 to 7 using an average radar plot for each model.
Axes are inverted when necessary such that a larger polygonal area is better. This visualization makes it easy
to identify the strengths and weaknesses of each SEM and thus determine the most suitable model according
to the problem statement at hand.

Figure 4: Summary of each model’s
strengths and weaknesses.

KMEx suffers the least of ghosting (good transparency) and is the
most faithful model with respect to the original black-box both in
terms of accuracy and explanation. ProtoPNet performs well in
terms of predictions and robustness of the local explanations, but
it underperforms in terms of diversity. This is due to the lack of
an inter-class diversity constraint in the ProtoPNet’s design. On
the other hand, ProtoVAE leads in terms of diversity, but its expla-
nations resemble the black-box base model explanations the least.
This is due to the utilization of a VAE backbone, which deviates
a lot from the architecture of the black-box baseline. FLINT, for
which local explanations could not be evaluated, is satisfactory in
terms of ghosting and fidelity of its predictions. On the other hand,
despite having an entropy constraint for promoting diversity of
the attributes, it obtains the worst results in terms of measured
diversity.

4.3 Diversity and embedding

In this section, we show that for the same embedding learned by an SEM, the KMEx paradigm for prototypes
may also be used to improve both the measured and qualitative diversity without retraining or altering the
embedding.

KMEx improves measured diversity We evaluate first how changing the paradigm of an SEM to KMEx
may improve the quantified diversity (Ddvs). We report in Table 8 average scores and standard deviations
over five runs for the KMEx of each SEM baseline and the average difference with Table 7. We observe that
KMEx almost always improves Ddvs scores (negative Diff.). The most significant gain is for FLINT, which,
after transformation, returns the lowest scores for several data sets. Recall that Ddvs can only serve as an
internal evaluation, therefore any further analysis of the prototypes requires an external criterion.

KMEx improves minority subclass representation We further study here the diversity of the
prototypes in light of the representation of the attributes they capture. We interpret the notion of a fair
subclass representation for SEMs as whether prototypes are able to capture the information about the
underrepresented subclasses. For this experiment, we trained ResNet34+KMEx, ProtoPNet, ProtoVAE,
FLINT, and their KMEx on the CelebA dataset for male and female classification with varying numbers of
prototypes. Prototypes are represented in the input space by their nearest training images, which come with
40 binary attributes as annotations.
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Table 8: Diversity with KMEx: Quantitative evaluation of diversity by applying KMEx to learned SEM
embeddings.

MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA
ProtoPNet+KMEx 0.698±0.073 0.649±0.024 0.640±0.040 0.688±0.030 0.401±0.018 0.641±0.068 0.742±0.062

Diff. 0.007 −0.068 −0.068 −0.080 −0.147 −0.046 0.001
FLINT+KMEx 0.205±0.039 0.161±0.014 0.109±0.015 0.138±0.029 0.313±0.077 0.180±0.051 0.228±0.019

Diff. −0.737 −0.782 −0.803 −0.793 −0.675 −0.721 −0.691
ProtoVAE+KMEx 0.331±0.052 0.244±0.069 0.208±0.072 0.127±0.017 0.520±0.067 0.067±0.007 0.434±0.075

Diff. −0.037 −0.057 −0.141 −0.059 0.305 −0.080 −0.012

Figure 5: Analysis of the attributes captured by SEMs for different numbers of prototypes for CelebA.

To put the observations in the other figures into perspective., we plot first in Figure 5.a the number of
prototypes ghosted against the number of prototypes trained. We see here clearly the depth of the issue for
FLINT and ProtoPNet. The two following plots (Figure 5.b) depict the number of captured attributes given
a number of trained prototypes, including ghosted ones. The left plot shows the results for the baselines and
the right one for their KMEx. FLINT starts and ends with fewer captured attributes, and it seems unstable
with a large number of prototypes. As for ProtoPNet, it caps at 32 attributes when trained with 12 or more
prototypes. On the other hand, the KMEx of any method (right plot), including ResNet34+KMEx (red),
always captures more attributes as the number of prototypes increases. The last experiment aims to evaluate
how many combinations of attributes are captured using the mean absolute error (MAE) between the attribute
correlation matrices computed from the training set and the prototypes. (Figure 5.c). The correlations based
on ProtoPNet’s prototypes are the most divergent, whereas ProtoVAE and ResNet34+KMEx consistently
come closer to the ground truth as the number of prototypes increases. Again, the attribute correlation
computed for any KMEx consistently improves as more prototypes are available.

Overall, KMEx of FLINT improves the most its original model in both criteria: the number of captured
attributes and the faithfulness of the attributes correlations. This observation reinforces the intuition that
FLINT learns an embedding with much more potential in terms of global explanations than it is able to
leverage through the prototypes it learns.

5 Conclusion

In this paper, we introduce KMEx, the first approach for making any black-box model self-explainable. KMEx
is a universally applicable, simple, and resource-efficient method that, unlike existing methodologies, does not
require re-training of the black-box model. Furthermore, we reconsider the subjective evaluation practices for
SEMs by introducing a quantitative evaluation framework that facilitates objective comparisons among SEM
approaches. The proposed framework adopts a set of novel metrics to quantify how well SEMs adhere to
the established predicates. An extensive evaluation with the help of the proposed framework highlights the
strengths and weaknesses of existing SEM approaches when compared to the models obtained from KMEx.
This work, therefore, additionally serves as a foundational step towards an objective, comprehensive, and
resource-efficient advancement of the SEM field.
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One notable limitation of the proposed KMEx is its reliance on selecting a priori the number of prototypes, a
characteristic it shares with current state-of-the-art SEMs (Parekh et al., 2021; Gautam et al., 2022; Chen
et al., 2019b). Additionally, note that the proposed detailed quantitative evaluation framework is meant to
provide an additional perspective and not replace qualitative evaluations of SEMs, which are still required
due to the subjective nature of explanations.
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A Appendix

In this section, we provide additional details for the proposed evaluation framework. First, we provide
additional dataset and implementation details. We then provide qualitative results for the faithfulness
of explanations for completeness. Further, we provide preliminary results on a more complex dataset
CUB200 (Welinder et al., 2010), followed by additional qualitative results for KMEx.

A.1 Dataset details

All datasets used in this work are open-source. For all datasets, we use the official training and testing splits,
except for QuickDraw (Ha & Eck, 2018) for which we use a subset of 10 classes that was created by (Parekh
et al., 2021). This subset consists of the following 10 classes: Ant, Apple, Banana, Carrot, Cat, Cow, Dog,
Frog, Grapes, Lion. Each of the classes contains 1000 images of size 28×28 out of which 80% are used for
training and the remaining 20% for testing. The MNIST (Lecun et al., 1998), fMNIST (Xiao et al., 2017),
CIFAR-10 (Krizhevsky, 2009) datasets consist of 60,000 training images and 10,000 test images of size 28×28,
28×28 and 32×32, respectively. The MNIST, fMNIST and QuickDraw images are resized to 32×32 to obtain
a consistent latent feature size. SVHN (Netzer et al., 2011) consists of 73,257 training images and 26,032
images for testing of size 32×32. STL-10 (Coates et al., 2011) consists of 5000 images for training and 8000
for testing of size 96×96. All datasets have 10 classes, except for CelebA (Liu et al., 2015) for which we
perform binary classification of male vs female. Number of training and testing images for CelebA are 162,770
and 19,962, respectively, of size 224×224. The licenses for the datasets are provided in Table 9.

For preprocessing, every dataset’s respective mean and standard deviation for training data is used for
normalization. For MNIST, fMNIST, SVHN and QuickDraw, no augmentations were performed. For STL-10,
CIFAR-10 and CelebA, we apply a horizontal flip with a probability of 0.5 followed by random cropping after
zero-padding with size 2 was applied for augmentation.

Table 9: Licenses for datasets used in this work. N-C is used to denote that the data is free for non-commercial
use.

MNIST fMNIST SVHN CIFAR-10
License CC BY-SA 3.0 MIT CC0 1.0 MIT

STL-10 QuickDraw CelebA
License N-C CC BY 4.0 N-C

A.2 Implementation details

The experiments in this work were conducted on an NVIDIA A100 GPU. The backbone network used for all
models as well as all datasets consists of an ImageNet (Deng et al., 2009) pretrained ResNet34 (He et al., 2016).
The size of the latent vector is 512 and the batch size is 128 for all datasets as well as models. Stochastic
gradient descent (SGD) is used as the optimizer for training ResNet34 with momentum 0.9 for CelebA and
0.5 for all other datasets. For ProtoVAE and FLINT, an Adam (Kingma & Ba, 2015) optimizer is used.
Other hyperparameters including learning rate, number of epochs and number of prototypes are mentioned
in Table 10. Note that unlike other SEMs, KMEx requires tuning of only one additional hyperparameter i.e.,
the number of prototypes per class, compared to the closest black-box model.

17



Table 10: Hyperparameter values for KMEx, ProtoPNet, FLINT and ProtoVAE for all the datasets.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

KMEx

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs 10 10 10 30 30 30 10
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ProtoPNet

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs
•warm 5 5 5 5 5 5 5
•train 15 15 15 15 15 15 15
•push interval 5 5 5 5 5 5 5
Learning rates
•joint, warm,
last layer
& prototypes

0.001 0.001 0.001 0.001 0.001 0.001 0.001

Loss weights
•Cross entropy 1 1 1 1 1 1 1
•Clustering 0.8 0.8 0.8 0.8 0.8 0.8 0.8
•Separation -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08
•l1 0.004 0.004 0.004 0.004 0.004 0.004 0.004

FLINT

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs 10 10 10 30 30 30 10
Loss weights
•Cross entropy 0.8 0.8 0.8 0.8 0.8 0.8 0.8
•Input fidelity 0.8 0.8 0.8 0.8 0.8 0.8 0.8
•Output fidelity 1.0 1.0 1.0 1.0 1.0 1.0 1.0
•Conciseness 0.1 0.1 0.1 0.1 0.1 0.1 0.1
•Entropy 0.2 0.2 0.2 0.2 0.2 0.2 0.2
•Diversity 0.2 0.2 0.2 0.2 0.2 0.2 0.2

ProtoVAE

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs 20 20 20 60 60 60 20
Loss weights
•Cross Entropy 1 1 1 1 1 1 1
•Reconstruction 0.1 0.1 0.1 0.1 0.1 0.1 0.1
•KL Divergence 1 100 100 100 100 100 100
•Orthogonality 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A.3 Faithfulness of explanations

In this section, we qualitatively evaluate the faithfulness of explanations generated by an SEM to the closest
black-box. For this, as mentioned in the main text, we compute Layer-wise Relevance Propagation (LRP)
maps (Bach et al., 2015) for prediction probabilities. In Figure 6, we visualize the LRP maps for random
images from the CIFAR-10, CelebA and MNIST datasets. The LRP maps for the black-box ResNet34
and SEMs ProtoPNet, ProtoVAE and KMEx are shown. For MNIST, we also show LRP maps for a CNN
backbone. The CNN architecture used is from (Gautam et al., 2022). As observed, instead of producing non
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robust explanations, KMEx remains most faithful to the black-box. This makes KMEx the SEM closest to
the corresponding black-box, thereby proving to be an efficient baseline.

CIFAR-10

CelebA

MNIST with a ResNet34 backbone

MNIST with a CNN backbone

Figure 6: Normalized LRP maps computed on different datasets and with different architectures.

A.4 Preliminary results for CUB200

We report here preliminary results for the CUB200 (Welinder et al., 2010) dataset. The data consists of 6000
images of 200 classes of birds. We also present a naive extension of KMEx at the patch level. The idea is to
compute the patch prototypes right before the final average pool (7 × 7 = 49 patches per image). The class
prediction for an image are then derived as the majority vote of the KMEx predictions for each patch.

We report accuracy in percentage in Table 11 for a ResNet34 and its KMEx based on the full images and
patches both with 10 prototypes per class. Similarly to (Chen et al., 2019b), we show in Figure 7 the patch
prototypes for 10 classes as red rectangles in the closest training image. Note, some prototypes capture
background regions, indicating that the model has learned to exploit background cues.

The drop in accuracy when using patches is not surprising, since the task is more complex. Yet, the results
are encouraging and highlight the versatility of KMEx.
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Table 11: Classification performance on CUB200 dataset.

ResNet34 ResNet34+KMEx
Full images Patches

Accuracy 78.6 78.4 70.0

Figure 7: Patch prototypes labeled with class id, importance and patch id.

A.5 Additional qualitative results

As mentioned in the main text, quantitative evaluation is not meant to replace the qualitative evaluation
of SEMs. Therefore, in this section, we provide qualitative results including prototype visualizations for
KMEx. We also show visual classification strategy used by KMEx using the prototypes for different test
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examples, thereby exhibiting this (image) looks like that (prototype). We show this for both correctly and
incorrectly test examples to further understand the decision making process of our SEM. Additionally, we
also qualitatively compare the diversity of prototypes for different SEMs.

A.6 Prototypes learned by KMEx

We visualize the prototypes of KMEx as the images in the training set that have the closest embedding in
the latent space to the prototypes. The prototypes are shown for MNIST, fMNIST, SVHN and STL-10 in
Figure 8. It can be observed that the prototypes are very diverse and therefore efficiently represent different
subgroups of classes.

A.6.1 KMEx: This looks like that

We now visually demonstrate the decision making process of the proposed SEM. In Figure 9, for random test
examples, we show the closest prototype for the MNIST, fMNIST, CelebA, SVHN, STL-10 and CIFAR-10
datasets. It can be observed that the images look very similar to the closest prototypes, which illustrates
that representative prototypes are learned. Additionally, we also demonstrate this behavior for misclassified
examples (marked by a red rectangle) in Figure 9. As can be seen, the misclassified test images look very
similar to prototypes from different classes. Therefore, the simple this looks like that behavior exhibited by
KMEx is able to provide meaningful and transparent decisions.

A.6.2 Diversity of prototypes: qualitative evaluation

We now compare the prototypes of different SEMs, thereby qualitatively comparing the diversity of the
prototypes. For consistency and fair comparison, we visualize the closest training images for all the models.
In Figure 11, we visualize the prototypes learned by KMEx and ProtoPNet for the MNIST dataset. As
observed, ProtoPNet’s prototypes lack diversity, which is especially visible for classes 1, 4 5 and 7. Applying
KMEx on ProtoPNet’s embeddings drastically improves the diversity, as shown in Figure 11 (right). Similarly,
we compare the prototypes for KMEx and ProtoVAE in Figure 12 for the STL-10 dataset and for KMEx and
FLINT in Figure 10. In all the cases, KMEx efficiently improves the diversity of the prototypes.
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Figure 8: Prototypes learned by KMEx for several datasets. The class label is written on the top of each
prototype image along with its importance in the brackets.
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Figure 9: This looks like that behavior exhibited by KMEx for MNIST, fMNIST, QuickDraw, SVHN, STL-10
and CIFAR-10 datasets. The classification is based on 1 nearest neighnor, therefore only the closest prototype
for each input image is required as the explanation. Misclassified examples are marked in red.
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CelebA dataset. KMEx generates more diverse prototypes and is again additionally able to improve the
prototypes learned over FLINT’s embeddings.
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ABSTRACT

Recent literature has suggested the potential of using large language models
(LLMs) to make predictions for tabular tasks. However, LLMs have been shown
to exhibit harmful social biases that reflect the stereotypes and inequalities present
in the society. To this end, as well as the widespread use of tabular data in many
high-stake applications, it is imperative to explore the following questions: what
sources of information do LLMs draw upon when making predictions for tabular
tasks; whether and to what extent are LLM predictions for tabular tasks influ-
enced by social biases and stereotypes; and what are the consequential implica-
tions for fairness? Through a series of experiments, we delve into these questions
and show that LLMs tend to inherit social biases from their training data which
significantly impact their fairness in tabular prediction tasks. Furthermore, our in-
vestigations show that in the context of bias mitigation, though in-context learning
and fine-tuning have a moderate effect, the fairness metric gap between different
subgroups is still larger than that in traditional machine learning models, such
as Random Forest and shallow Neural Networks. This observation emphasizes
that the social biases are inherent within the LLMs themselves and inherited from
their pre-training corpus, not only from the downstream task datasets. Besides, we
demonstrate that label-flipping of in-context examples can significantly reduce bi-
ases, further highlighting the presence of inherent bias within LLMs.

1 INTRODUCTION

Many recent works propose to use large language models (LLMs) for tabular prediction
(Slack & Singh, 2023; Hegselmann et al., 2023), where the tabular data is serialized as natural lan-
guage and provided to LLMs with a short description of the task to solicit predictions. Despite
the comprehensive examination of fairness considerations within conventional machine learning ap-
proaches applied to tabular tasks (Bellamy et al., 2018), the exploration of fairness-related issues in
the context of employing LLMs for tabular predictions remains a relatively underexplored domain.

Previous research has shown that LLMs, such as GPT-3 (Brown et al., 2020), GPT-3.5, GPT-
4 (OpenAI, 2023) can exhibit harmful social biases (Abid et al., 2021a; Basta et al., 2019), which
may even worsen as the models become larger in size (Askell et al., 2021; Ganguli et al., 2022).
These biases are a result of the models being trained on text generated by humans that presumably
includes many examples of humans exhibiting harmful stereotypes and discrimination and reflects
the biases and inequalities present in society (Bolukbasi et al., 2016; Zhao et al., 2017), which can
lead to perpetuation of discrimination and stereotype (Abid et al., 2021a; Bender et al., 2021).

Considering that tabular data finds extensive use in high-stakes domains (Grinsztajn et al., 2022)
where information is typically structured in tabular formats as a natural byproduct of relational
databases (Borisov et al., 2022), it is of paramount importance to thoroughly examine the fairness
implications of utilizing LLMs for predictions on tabular data. In this paper, we conduct a series of
investigation centered around this critical aspect, with the goal of discerning the underlying infor-
mation sources upon which LLMs rely when making tabular predictions. Through this exploration,
our investigation aims to ascertain whether, and to what degree, LLMs are susceptible to being
influenced by social biases and stereotypes in the context of tabular data predictions.
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Through experiments using GPT-3.5 to make predictions for tabular data in a zero-shot setting, we
demonstrate that LLMs exhibit significant social biases (Section 4). This evidence confirms that
LLMs inherit social biases from their training corpus and tend to rely on these biases when making
predictions for tabular data.

Furthermore, we demonstrate that providing LLMs with few-shot examples (in-context learning)
or fine-tuning them on the entire training dataset both exhibit moderate effect on bias mitigation
(Sections 5.1 and 6.1). Nevertheless, the achieved fairness levels remain below what is typically
attained with traditional machine learning methods, including Random Forests and shallow Neural
Networks, once again underscoring the presence of inherent bias in LLMs. Additionally, our in-
vestigation further reveals that flipping the labels of the in-context examples significantly narrows
the gap in fairness metrics across different subgroups, but comes at the expected cost of a reduction
in predictive performance. This finding, in turn, further emphasizes and reaffirms the indication of
inherent bias present in LLMs (Section 5.2). Additionally, we further show that while resampling
the training set is a known and effective method for reducing biases in traditional machine learn-
ing methods like Random Forests and shallow Neural Networks, it proves to be less effective when
applied to LLMs (Section 6.2).

These collective findings underscore the significant influence of social biases on LLMs’ performance
in tabular predictions. These biases significantly undermines the fairness and poses substantial po-
tential risks for using LLMs on tabular data, especially considering that tabular data is extensively
used in high-stakes domains, highlighting the need for more advanced and tailored strategies to ad-
dress these biases effectively. Straightforward methods like in-context learning and data resampling
may not be sufficient in this context.

2 RELATED WORK

Fairness and Social Biases in LLMs Fairness is highly desirable for ensuring the credibility
and trustworthiness of algorithms. It has been demonstrated that unfair algorithms can reflect so-
cietal biases in their decision-making processes (Bender et al., 2021; Bommasani, 2021), primarily
stemming from the biases present in their training data (Caliskan et al., 2017; Zhao et al., 2017).
LLMs, pre-trained on vast natural language datasets, are particularly susceptible to inheriting these
social biases and have been shown to exhibit biases related to gender (Lucy & Bamman, 2021), reli-
gion (Abid et al., 2021b) and language variants (Ziems et al., 2023; Liu et al., 2023a). These social
biases can lead to perpetuation of discrimination and stereotype (Abid et al., 2021a; Bender et al.,
2021; Weidinger et al., 2021). While recent literature has made strides in addressing these issues,
there still exists a significant gap in comprehensively assessing fairness in LLMs and its mitigation
strategies for tabular data.

Tabular Tasks and LLM for Tabular Data Tabular data extensively exist in many domains
(Shwartz-Ziv & Armon, 2021). Previous works propose to utilize self-supervised deep techniques
for tabular tasks (Yin et al., 2020; Arik & Pfister, 2021), which, however, still underperform en-
sembles of gradient boosted trees in the fully supervised setting (Grinsztajn et al., 2022). This dis-
parity in performance can be attributed to the locality, sparsity and mixed data types of tabular
data. In recent times, LLMs have undergone intensive training using vast amounts of natural lan-
guage data, which has enabled them to exhibit impressive performance across various downstream
tasks (Brown et al., 2020; OpenAI, 2023), even with little or no labeled task data. Therefore, re-
cent approaches by Hegselmann et al. (2023); Slack & Singh (2023) suggests serializing the tabular
data as natural language, which is provided to LLM along with a short task description to generate
predictions for tabular tasks.

However, tabular data plays a crucial role in numerous safety-critical and high-stakes do-
mains (Borisov et al., 2022; Grinsztajn et al., 2022), which makes the fairness particularly crucial
when employing LLMs for making predictions on tabular data, especially considering the inherent
social biases present in LLMs. Despite the importance, this still remains largely unexplored. To the
best of our knowledge, we regard our work as one of the most comprehensive investigations into the
fairness issues arising when using LLMs for predictions on tabular data.
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In-Context Learning Significant improvements for various tasks have been achieved by provid-
ing in-context examples to LLMs (Brown et al., 2020; Liu et al., 2022; 2023b). However, previous
research by Min et al. (2022); Wei et al. (2023b); Lyu et al. (2023) illustrate that the effective perfor-
mance of in-context learning largely hinges on semantic priors rather than learning the input-label
mapping (Akyürek et al., 2022; Xie et al., 2022; Von Oswald et al., 2023) and the labels of the in-
context examples might not play a crucial role in in-context learning, with flipped or random labels
sometimes having minimal impact on performance. Despite these findings, the predominant focus
of existing investigation of in-context learning remains on conventional natural language processing
tasks (Zhao et al., 2021; Min et al., 2022; Wei et al., 2023a;b), largely overlooking the domain of
tabular data. Furthermore, the fairness of in-context learning and the impact of flipped labels on this
fairness is yet to be thoroughly investigated.

3 EXPERIMENTAL SETUP

In this section, we outline the general setup of the experiments conducted in our work.

3.1 MODELS

In our work, we focus our experiments on GPT-3.5 (engine GPT-3.5-turbo) - an LLM released
by OpenAI, trained with instruction tuning (Sanh et al., 2022; Wei et al., 2022) and reinforcement
learning from human feedback (RLHF) (Ouyang et al., 2022), aligning LLMs with human prefer-
ences. Furthermore, we also compare its performance with conventional machine learning models
in order to gain insight into the propagation of biases found within LLMs, which are likely mirrored
in traditional models as well, consequently, offering valuable additional perspectives on the biases
inherent in the training of LLMs. For this, we employ two widely used models for tabular data
i.e, Random Forests (RF) and a shallow Neural Network (NN) of 3 layers. We provide additional
implementation details for these two models in the Appendix B.

3.2 DATASETS AND PROTECTED ATTRIBUTES

To explore the fairness of LLMs in making predictions for tabular data, we utilize the following
three widely used tabular datasets for assessing the fairness of traditional ML models: Adult In-
come (Adult) Dataset (Becker & Kohavi, 1996), German Credit Dataset (Dua & Graff, 2019),
and Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) Dataset
(Larson et al., 2016). In this section, we introduce each dataset and discuss its associated protected
attributes.

Adult The Adult Income dataset (Adult) is extracted from the 1994 U.S. Census Bureau database.
The task is to predict whether a person earns more than $50,000 per year based on their profile
data (greater than 50K or less than or equal to 50K). The original Adult Income Dataset contains
14 features. Following previous work (Slack & Singh, 2023), we retain only 10 features: “work-
class”, “hours per week”, “sex”, “age”, “occupation”, “capital loss””, “education”, “capital
gain”, “marital status”, and “relationship”. Our analysis on Adult primarily focuses on sex as the
protected attribute, and female is acknowledged as a disadvantaged group.

German Credit The German Credit dataset is used to classify individuals based on their profile
attributes as good or bad credit risks (good or bad). The raw dataset comprises 20 attributes. Con-
sistent with previous work, we only retain the following features: “age”, “sex”, “job”, “housing”,
“saving accounts”, “checking account”, “credit amount”, “duration”, and “purpose”. Same with
Adult, sex is considered as a protected attribute in the German Credit dataset and female as the
marginalized group.

COMPAS The COMPAS dataset comprises the outcomes from the Correctional Offender Man-
agement Profiling for Alternative Sanctions commercial algorithm, utilized to evaluate a convicted
criminal’s probability of reoffending. Known for its widespread use by judges and parole officers,
COMPAS has gained notoriety for its bias against African-Americans. The raw COMPAS Recidi-
vism dataset contains more than 50 attributes. Following the approach of Larson et al. (2016), we

3



Preprint

perform necessary preprocessing, group “race” into African-American and Not African-American,
and only consider the features “sex”, “race”, “age”, “charge degree”, “priors count”, “risk” and
“two year recid” (target). We frame the task as predicting whether an individual will recidivate in
two years (Did Not Reoffend or Reoffended) based on their demographic and criminal history. For
the COMPAS dataset, we consider race as the protected attribute.

A detailed description for each feature of the considered datasets is provided in Appendix A.

3.3 SERIALIZATION AND PROMPT TEMPLATES

To employ the LLM for making predictions on these tabular datasets, each data point is first seri-
alized as text. Following previous works on LLM for tabular predictions (Hegselmann et al., 2023;
Slack & Singh, 2023), we format the feature names and values into strings as “f1 : x1, . . . , fd : xd”,
and prompt to LLM along with a task description, as illustrated following:

You must predict if income exceeds $50K/yr. Answer with one of the
following: greater than 50K | less than or equal to 50K.
Example 1 -
workclass: Private
hours per week: 20
sex: Male
age: 17
occupation: Other-service
capital loss: 0
education: 10th
capital gain: 0
marital status: Never-married
relationship: Own-child
Answer: less than or equal to 50K
...

workclass: Private
hours per week: 40
sex: Female
age: 24
occupation: Sales
capital loss: 0
education: Some-college
capital gain: 0
marital status: Never-married
relationship: Own-child
Answer:

Figure 1: Prompt Template for Adult Dataset.

The example above is from Adult dataset, where text in blue represents the task description, text in
green denotes optional few-shot examples (only used in in-context learning), and text in red indicates
the test example. We provide the prompt templates for the other two datasets in Appendix C.

3.4 EVALUATION METRICS

To assess fairness in the aforementioned datasets, we examine the disparity between different sub-
groups of protected attributes using the following common fairness metrics: accuracy, F1 score,
statistical parity and equality of opportunity. Here, we briefly explain each evaluation metric.

Accuracy and F1 As the most basic metric, assessing accuracy among different subgroups en-
sures that the model delivers consistent performance across all groups, without undue favor to any
particular subgroups. Considering that the evaluated datasets may be imbalanced, especially among
different subgroups, the F1 Score computes the harmonic mean of precision and recall, offering a
balanced perspective between these two metrics.
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Statistical Parity Statistical parity is attained when positive decision outcomes (e.g., being pre-
dicted as a good credit risk) are independent of the protected attributes. This metric assesses whether
different subgroups receive similar treatment from the model. For each subgroup zi of each protected
attribute Z , we calculate

P (Ŷ = 1|Z = zi).

Then we calculate the Statistical Parity Difference (SPD) of this protected attribute as

SPD = P (Ŷ = 1|Z = z1) − P (Ŷ = 1|Z = z2),

where z1 is the minority group and z2 is the majority.

Equality of Opportunity Equality of opportunity requires that qualified individuals have an equal
chance of being correctly classified by the model, regardless of their membership in a protected
group. This metric ensures equal true positive rates between different subgroups, providing equal
opportunities for each subgroup. Similar as statistical parity, for equality of opportunity, we calculate
the Equal Opportunity Difference (EOD) as

EOD = P (Ŷ = 1|Y = 1, Z = z1) − P (Ŷ = 1|Y = 1, Z = z2).

Each of these metrics offers a different perspective on fairness. For each subgroup from each pro-
tected attribute, we will compute every aforementioned metric. A model demonstrating good fair-
ness should show minimal gaps in these fairness metrics between different subgroups. Considering
them together can provide a more comprehensive evaluation of the model’s fairness across different
subgroups, ensuring that individuals are not unfairly disadvantaged based on their membership in a
protected group.

4 ZERO-SHOT PROMPTING FOR TABULAR DATA

To explore the fairness of LLMs when making predictions on tabular data, we first conduct experi-
ments in a zero-shot setting. We assess the fairness metrics of the outcomes and examine whether
LLMs without any finetuning or few-shot examples would be influenced by social biases and stereo-
types for tabular predictions. We run all the experiments 5 times and compute the mean and standard
deviation.

In Tables 1-3, we present the evaluation of four fairness metrics, namely accuracy (ACC),
F1 score (F1), statistical parity (SP), and equality of opportunity (EoO), for GPT-3.5 (engine
GPT-3.5-turbo), RF and NN models on the Adult, German Credit and COMPAS datasets,
respectively. For the Adult and German Credit datasets, the subgroups female and male are assessed
regarding the protected attribute sex, identifying female as a disadvantaged group. In the COM-
PAS dataset, we evaluate race as protected attributes, recognizing African American (AA) as the
disadvantaged group.

It is notable that when utilizing LLMs to make predictions for tabular data directly, without any
fine-tuning or in-context learning, a significant fairness metric gap between the protected and non-
protected groups is observed for GPT-3.5 (highlighted in red). For instance, the EoO difference
between male and female on the Adult dataset reaches 0.483, indicating a substantial disadvantage
for the female group. Additionally, when compared with traditional methods like RF and NN, the
bias in zero-shot predictions made by GPT-3.5 is significantly larger for the Adult dataset. This
observation suggests an inherent gender bias in GPT-3.5. For COMPAS dataset, the racial bias in
zero-shot setting is comparatively lower than RF and NN but is still effectively high.

Exceptionally, GPT-3.5 is extremely biased for German Credit dataset where it classifies almost
everything into ‘good credit’ class in the zero-shot setting, thus rendering the difference in SP and
EoO for both subgroups to be near 0. The accuracy for each subgroup is near to 50%, performing
similar to random guessing. The possible reason might be that the German Credit dataset is too
challenging for making tabular predictions with LLMs (especially, the features of German Credit
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

f 0.898 0.001 0.711 0.002 0.065 0.001 0.357 0.000
m 0.742 0.002 0.727 0.002 0.464 0.003 0.840 0.004
d 0.157 0.002 -0.016 0.002 -0.399 0.003 -0.483 0.004

Fe
w

-s
ho

t Regular
f 0.899 0.002 0.735 0.003 0.082 0.002 0.429 0.000
m 0.781 0.003 0.749 0.002 0.339 0.003 0.700 0.003
d 0.118 0.004 -0.014 0.004 -0.257 0.005 ↓ -0.271 0.003 ↓

Label-flipping
f 0.682 0.004 0.590 0.003 0.396 0.006 0.800 0.013
m 0.614 0.002 0.605 0.002 0.545 0.001 0.763 0.003
d 0.068 0.004 -0.015 0.004 -0.148 0.006 X 0.037 0.014 X

Fi
ne

tu
ni

ng

Regular
f 0.915 0.014 0.773 0.036 0.079 0.002 0.476 0.048
m 0.799 0.005 0.754 0.005 0.269 0.036 0.613 0.053
d 0.116 0.009 0.020 0.039 -0.190 0.035 ↓ -0.137 0.098 ↓

Oversampling
f 0.913 0.016 0.770 0.042 0.081 0.004 0.476 0.067
m 0.813 0.007 0.780 0.003 0.310 0.038 0.702 0.048
d 0.100 0.013 -0.010 0.041 -0.229 0.030 -0.226 0.077

Undersampling
f 0.912 0.015 0.770 0.046 0.086 0.006 0.488 0.084
m 0.794 0.006 0.751 0.001 0.285 0.031 0.631 0.044
d 0.118 0.021 0.018 0.046 -0.200 0.025 -0.143 0.040

R
F

Regular
f 0.914 0.002 0.767 0.006 0.075 0.003 0.457 0.010
m 0.822 0.005 0.783 0.005 0.269 0.004 0.652 0.004
d 0.092 0.004 -0.015 0.005 -0.195 0.003 -0.195 0.012

Oversampling
f 0.912 0.006 0.770 0.011 0.084 0.005 0.486 0.012
m 0.824 0.002 0.785 0.002 0.270 0.003 0.656 0.006
d 0.087 0.005 -0.015 0.01 -0.185 0.004 -0.170 0.011

Undersampling
f 0.917 0.004 0.776 0.011 0.075 0.001 0.471 0.018
m 0.814 0.003 0.771 0.004 0.263 0.002 0.627 0.009
d 0.103 0.005 0.005 0.011 -0.187 0.001 -0.156 0.018

N
N

Regular
f 0.917 0.003 0.778 0.019 0.081 0.016 0.490 0.068
m 0.819 0.006 0.773 0.015 0.250 0.045 0.614 0.079
d 0.098 0.005 0.006 0.009 -0.169 0.032 -0.123 0.033

Oversampling
f 0.916 0.004 0.794 0.013 0.100 0.016 0.562 0.058
m 0.813 0.012 0.774 0.008 0.286 0.044 0.663 0.056
d 0.103 0.011 0.020 0.018 -0.186 0.030 -0.102 0.038

Undersampling
f 0.904 0.005 0.748 0.014 0.084 0.007 0.452 0.030
m 0.813 0.006 0.774 0.005 0.283 0.023 0.659 0.031
d 0.090 0.006 -0.026 0.014 -0.199 0.018 -0.206 0.031

Table 1: Fairness evaluation for Adult dataset. This table depicts the evaluation of accuracy
(ACC), F1 score (F1), statistical parity (SP), and equality of opportunity (EoO) metrics for the
subgroup - female (f ) and male (m) as well as the difference (d) between them. We list the protected
group first. The significant fairness disparities are highlighted in red. Both in-context learning
and finetuning can lead to bias reduction (indicated by ↓), and label-flipped in-context learning can
further minimize bias (indicated by X).

are ambiguous and vague). This also suggests that, when using LLM to make predictions on tabular
data, a potential description of table feature names is favorable.

These findings demonstrate the tendency of LLMs to rely on social biases and stereotypes inherited
from their training corpus when applied to tabular data. This implies that using LLMs for predictions
on tabular data may incur significant fairness risks, including the potential to disproportionately
disadvantage marginalized communities as well as exacerbate social biases and stereotypes present
in society. This is particularly concerning given the widespread application of tabular data in high-
stake contexts, further magnifying the potential for harm.

5 FEW-SHOT PROMPTING FOR TABULAR DATA

As demonstrated in Section 4, employing LLMs for predictions on tabular data reveals significant
social biases in a zero-shot setting. Instead of directly utilizing LLMs for zero-shot tabular predic-
tions, this section explores whether including few-shot examples during prompting will reduce or
amplify these biases. To delve deeper into the influence of few-shot examples during in-context
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

f 0.471 0.011 0.359 0.021 0.980 0.011 1.000 0.000
m 0.556 0.000 0.357 0.000 0.984 0.000 0.972 0.000
d -0.084 0.011 0.002 0.021 -0.004 0.011 0.028 0.000

Fe
w

-s
ho

t Regular
f 0.610 0.013 0.593 0.013 0.348 0.027 0.453 0.029
m 0.606 0.007 0.603 0.008 0.337 0.007 0.450 0.012
d 0.003 0.012 -0.010 0.011 0.011 0.027 0.003 0.026

Label-flipping
f 0.614 0.011 0.606 0.012 0.695 0.011 0.842 0.000
m 0.559 0.013 0.538 0.011 0.638 0.013 0.672 0.023
d 0.056 0.021 0.067 0.021 0.057 0.012 0.170 0.023

Fi
ne

tu
ni

ng

Regular
f 0.571 0.067 0.567 0.062 0.619 0.101 0.711 0.186
m 0.548 0.011 0.539 0.023 0.532 0.123 0.569 0.098
d 0.024 0.079 0.029 0.085 0.087 0.022 0.141 0.088

Oversampling
f 0.536 0.017 0.532 0.012 0.607 0.084 0.658 0.112
m 0.532 0.011 0.523 0.020 0.548 0.079 0.569 0.059
d 0.004 0.028 0.009 0.033 0.060 0.006 0.088 0.053

Undersampling
f 0.548 0.034 0.547 0.033 0.571 0.034 0.632 0.074
m 0.556 0.000 0.555 0.000 0.444 0.000 0.500 0.000
d -0.008 0.034 -0.008 0.033 0.127 0.034 0.132 0.074

R
F

Regular
f 0.581 0.024 0.580 0.025 0.519 0.028 0.611 0.054
m 0.600 0.019 0.588 0.020 0.597 0.022 0.672 0.021
d -0.019 0.016 -0.008 0.016 -0.078 0.044 -0.062 0.061

Oversampling
f 0.576 0.018 0.575 0.018 0.505 0.018 0.589 0.021
m 0.568 0.032 0.552 0.034 0.616 0.025 0.661 0.037
d 0.008 0.034 0.023 0.035 -0.111 0.013 -0.072 0.041

Undersampling
f 0.586 0.024 0.585 0.024 0.533 0.024 0.632 0.047
m 0.575 0.031 0.555 0.037 0.635 0.033 0.683 0.022
d 0.011 0.024 0.031 0.031 -0.102 0.041 -0.052 0.039

N
N

Regular
f 0.533 0.024 0.533 0.024 0.519 0.028 0.558 0.026
m 0.556 0.017 0.544 0.017 0.584 0.012 0.622 0.022
d -0.022 0.037 -0.012 0.036 -0.065 0.031 -0.064 0.026

Oversampling
f 0.548 0.040 0.547 0.040 0.552 0.028 0.611 0.026
m 0.562 0.026 0.547 0.024 0.603 0.048 0.644 0.057
d -0.014 0.037 0.000 0.035 -0.051 0.061 -0.034 0.065

Undersampling
f 0.529 0.049 0.524 0.047 0.467 0.051 0.495 0.042
m 0.495 0.025 0.490 0.023 0.524 0.047 0.517 0.054
d 0.033 0.063 0.035 0.059 -0.057 0.033 -0.022 0.061

Table 2: Fairness evaluation for German Credit dataset. This table depicts the evaluation of
accuracy (ACC), F1 score (F1), statistical parity (SP), and equality of opportunity (EoO) metrics for
the subgroup - female (f ) and male (m) as well as the difference (d) between them.

learning, we not only consider the regular in-context learning approach as detailed in Section 5.1,
but we also experiment by flipping the labels of the few-shot examples to further examine their effect
on the biases, as discussed in Section 5.2.

Again, for robustness, each experiment is conducted 5 times, with the mean and standard deviation
reported.

5.1 REGULAR IN-CONTEXT LEARNING

Previous works have demonstrated that LLMs can learn the input-label mappings in context
(Akyürek et al., 2022; Xie et al., 2022; Von Oswald et al., 2023). However, the influence of in-
context learning on the fairness has not been thoroughly examined. For in-context learning, the
test example and task description, along with a few-shot examples, are provided to the LLMs for
generating the final predictions. The few-shot examples are inserted before the test example in the
prompt, as outlined in Section 3.3. We set the number of in-context examples as 50. For each
dataset, we randomly select the in-context examples from the training set for each test example.

In Tables 1-3, we demonstrate that for two of the evaluated datasets (except for COMPAS), the
incorporation of few-shot examples brings about performance improvements. Additionally, we ob-
serve that incorporating few-shot examples into prompting reduces the fairness metric gap between
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ACC F1 SP EoO
G

PT
-3

.5
-t

ur
bo

Z
er

o-
Sh

ot

AA 0.657 0.005 0.656 0.004 0.395 0.001 0.560 0.002
nAA 0.663 0.002 0.588 0.003 0.817 0.002 0.893 0.001

d -0.006 0.005 0.068 0.006 -0.423 0.003 -0.334 0.002
Fe

w
-s

ho
t Regular

AA 0.633 0.002 0.626 0.002 0.362 0.003 0.495 0.004
nAA 0.642 0.001 0.623 0.002 0.614 0.002 0.709 0.002

d -0.008 0.003 0.003 0.003 -0.252 0.003 ↓ -0.214 0.005 ↓

Label-flipping
AA 0.482 0.004 0.482 0.004 0.499 0.003 0.481 0.004

nAA 0.412 0.003 0.408 0.003 0.471 0.002 0.404 0.003
d 0.070 0.005 0.074 0.005 0.028 0.005 X 0.077 0.007 X

Fi
ne

tu
ni

ng

Regular
AA 0.611 0.016 0.610 0.016 0.464 0.031 0.576 0.034

nAA 0.616 0.013 0.586 0.016 0.657 0.032 0.724 0.029
d -0.005 0.017 0.024 0.024 -0.193 0.030 ↓ -0.148 0.027 ↓

Oversampling
AA 0.609 0.007 0.608 0.007 0.494 0.071 0.605 0.066

nAA 0.625 0.020 0.583 0.024 0.706 0.037 0.771 0.036
d -0.016 0.016 0.025 0.018 -0.212 0.037 -0.166 0.046

Undersampling
AA 0.591 0.010 0.591 0.012 0.513 0.053 0.605 0.047

nAA 0.641 0.008 0.612 0.009 0.663 0.035 0.749 0.037
d -0.050 0.016 -0.021 0.022 -0.150 0.033 -0.144 0.039

R
F

Regular
AA 0.662 0.004 0.662 0.004 0.496 0.006 0.660 0.007

nAA 0.671 0.004 0.617 0.002 0.767 0.008 0.859 0.009
d -0.009 0.007 0.045 0.005 -0.271 0.011 -0.199 0.014

Oversampling
AA 0.660 0.005 0.660 0.005 0.493 0.010 0.655 0.013

nAA 0.671 0.002 0.624 0.002 0.743 0.003 0.839 0.004
d -0.010 0.006 0.037 0.006 -0.250 0.012 -0.184 0.016

Undersampling
AA 0.648 0.002 0.647 0.002 0.491 0.004 0.639 0.004

nAA 0.667 0.005 0.614 0.007 0.761 0.006 0.851 0.006
d -0.020 0.007 0.033 0.008 -0.270 0.009 -0.211 0.008

N
N

Regular
AA 0.666 0.003 0.665 0.002 0.462 0.034 0.630 0.034

nAA 0.662 0.003 0.613 0.006 0.742 0.019 0.831 0.017
d 0.005 0.006 0.052 0.007 -0.280 0.019 -0.201 0.018

Oversampling
AA 0.656 0.001 0.653 0.012 0.507 0.090 0.665 0.101

nAA 0.643 0.013 0.580 0.034 0.757 0.107 0.828 0.091
d 0.013 0.014 0.073 0.043 -0.249 0.049 -0.163 0.046

Undersampling
AA 0.660 0.019 0.657 0.023 0.477 0.078 0.638 0.097

nAA 0.657 0.013 0.602 0.026 0.757 0.051 0.839 0.040
d 0.003 0.024 0.055 0.043 -0.280 0.041 -0.202 0.064

Table 3: Fairness evaluation for COMPAS dataset for the subgroup - African American (AA), and
Non African American (nAA) as well as the difference (d). The significant fairness disparities are
highlighted in red. Both in-context learning and finetuning can lead to bias reduction (indicated by
↓), and label-flipped in-context learning can further minimize bias (indicated by X).

different subgroups. However, a significant fairness issue still persists. Moreover, for the Adult
and COMPAS datasets, the disparity in fairness metrics of in-context learning is more notable when
compared to traditional models, such as RF and NN. This highlights the inherent biases embedded
within LLMs, which are not solely derived from the task datasets.

5.2 LABEL FLIPPING

To delve deeper into the sources of biases within LLMs, we further examine the impact of the labels
of in-context examples on fairness. As depicted in Tables 1-3, label flipping significantly reduces
biases across all evaluated datasets. And for all evaluated datasets, the difference in statistical parity
(SP) and equality of opportunity (EoO) is minimized with label-flipped in-context learning. For
example, the absolute gap of EoO on the Adult dataset decreases from 0.483 in zero-shot prompting
to 0.037, almost completely eliminating the bias. These findings further corroborates the existence
of inherent biases in LLMs.

However, flipped labels lead to a significant drop in predictive performance. Though previous re-
search suggests that the effectiveness of in-context learning predominantly stems from semantic pri-
ors, rather than learning the input-label mappings (Min et al., 2022; Wei et al., 2023b) and demon-
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strate that the performance of in-context learning is barely affected even with flipped or random
labels for in-context examples, the focus of these works lies mainly on traditional natural language
processing tasks.

In contrast, we observe that the labels of in-context examples hold substantial influence over pre-
dictive performance in our unique setup, where LLMs are deployed for predictions on tabular data.
This could be attributed to the limited exposure of these models to tabular data during pre-training,
thereby amplifying the role of input-label mapping of in-context examples.

6 FINETUNING FOR TABULAR DATA

6.1 REGULAR FINETUNING

Finally, we extend our investigation to assess if finetuning the models on the entire training set could
aid in diminishing the social biases in LLMs. For GPT-3.5, fine-tuning is executed using the publicly
released API from OpenAI. For RF and NN, we provide the training details in Appendix B. We still
run all the experiments 5 times and compute the mean and standard deviation.

In Tables 1-3, we show that finetuning effectively reduces unfairness in all datasets, making them
comparable and sometimes significantly better in terms of SP and EoO when compared to RF and
NN. For example, the absolute difference in EoO after finetuning on Adult dataset is 0.0714, which
is lower than 0.123 difference of a NN.

6.2 RESAMPLING

We further explore the potential of resampling, a method frequently employed to enhance fairness
in machine learning model training, particularly in scenarios where there is a significant class im-
balance or bias in the data. To this end, we evaluate two approaches: oversampling the minority
group and undersampling the majority group. As depicted in Tables 1-3, resampling fails to miti-
gate the social biases in LLMs when making tabular predictions, even though we demonstrate that
oversampling generally reduces social biases for both RF and NN, except for a few instances such
as, oversampling in NN for adult dataset worsens the fairness.

Our finetuning experiments show that the social biases inherited from LLM’s pre-training data which
are evident when making predictions on tabular data, can sometimes be mitigated through finetuning.
Nevertheless, unlike the consistent outcomes typically seen in traditional machine learning models,
like RF and NN, data resampling does not consistently produce similar results for finetuning LLMs.

7 CONCLUSION

In this work, we thoroughly investigate the under-explored problem of fairness of large language
models (LLMs) for tabular tasks. Our study unfolds in several phases. Initially, we assess the
inherent fairness displayed by LLMs, comparing their performance in zero-shot learning scenarios
against traditional machine learning models like random forests (RF) and shallow neural networks
(NN). Furthermore, we investigate how LLMs learn and propagate social biases when subjected
to few-shot in-context learning, label-flipped in-context learning, fine-tuning, and data resampling
techniques.

Our discoveries shed light on several key insights. We find that LLMs tend to heavily rely on the
social biases inherited from their pre-training data when making predictions, which is a concerning
issue. Moreover, we observe that few-shot in-context learning can partially mitigate the inherent
biases in LLMs, yet it cannot entirely eliminate them. A significant fairness metric gap between
different subgroups persists, and exceeds that observed in RF and NN. This observation underscores
the existence of biases within the LLMs themselves, beyond just the task datasets. Additionally,
label-flipping applied to the few-shot examples effectively reverses the effects of bias, again cor-
roborating the existence of inherent biases in LLMs. However, as expected, this leads to a loss in
predictive performance. Besides, our work reveals that while fine-tuning can sometimes improve
the fairness of LLMs, data resampling does not consistently yield the same results, unlike what is
typically observed in traditional machine learning models.
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A DESCRIPTION FOR EACH FEATURE IN EACH DATASET

We provide a detailed description of each feature from the datasets evaluated in our paper.

A.1 ADULT

The original Adult Income Dataset contains 14 features an the target Income, as described in Table
4. Following prior work (Slack & Singh, 2023), we omit Education-Num and Fnlwgt as they are not
crucial for income prediction, along with Race and Native-Country, to center our attention on Sex as
the protected attribute.

Feature Type Description
Age Continuous Represents the age of an individual.

Workclass Categorical Indicates the type of employment, such as pri-
vate, self-employed, or government.

Fnlwgt Continuous Stands for “final weight” and is a numerical
value used in sampling for survey data.

Education Categorical Specifies the highest level of education attained
by the individual, such as high school, bache-
lor’s degree, etc.

Education-Num Continuous Represents the numerical equivalent of the edu-
cation level.

Marital-Status Categorical Describes the marital status of the individual,
including categories like married, divorced, or
single.

Occupation Categorical Indicates the occupation of the individual, such
as managerial, technical, or clerical work.

Relationship Categorical Specifies the individual’s role in the family,
such as husband, wife, or child.

Race Categorical Represents the individual’s race or ethnic back-
ground.

Sex Categorical Indicates the gender of the individual, either
male or female.

Capital-Gain Continuous Refers to the capital gains, which are profits
from the sale of assets, of the individual.

Capital-Loss Continuous Represents the capital losses, which are losses
from the sale of assets, of the individual.

Hours-Per-Week Continuous Denotes the number of hours worked per week
by the individual.

Native-Country Categorical Specifies the native country or place of origin of
the individual.

Income (target) Binary The target variable indicating whether an in-
dividual’s income exceeds a certain threshold,
typically $50,000 per year.

Table 4: Features in the original Adult dataset. Those not used in our work are shown in italics.

A.2 GERMAN CREDIT

The original German Credit Dataset contains 20 features, as detailed in Table 5. For simplicity
and consistency with prior work, only the features not shown in italics are retained in our work.
Furthermore, we extract Sex as an additional protected attribute from the Personal Status and Sex
feature.

A.3 COMPAS

The raw COMPAS Recidivism dataset contains more than 50 attributes. Following the approach of
Larson et al. (2016), we carry out the necessary preprocessing. More specifically, we group the race
attribute into African-American and Not African-American, and consider only the features sex, race,
age, charge degree, priors count, risk, and two-year recid (target). We frame the task as predicting
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Feature Type Description
Credit Amount Continuous The amount of credit requested by the applicant.

Duration Continuous The duration of the credit in months.
Installment Rate Ordinal The installment rate in percentage of disposable

income.
Residence Since Ordinal The number of years the applicant has lived at

their current residence.
Age Continuous The age of the applicant.

Number of Existing Credits Ordinal The number of existing credits at this bank.
Number of Dependents Ordinal The number of dependents of the applicant.

Checking Account Status Categorical The status of the applicant’s checking account,
such as “no checking, “<0 DM,” “0-200 DM,”
or “no known checking.”

Credit History Categorical The credit history of the applicant, including
categories like “critical/other existing credit,”
“existing paid,” “delayed previously,” etc.

Purpose Categorical The purpose of the credit, such as “radio/tv,”
“education,” “new car,” etc.

Savings Account Categorical The status of the applicant’s savings ac-
count/bonds, including categories like “un-
known/none,” “<100 DM,” “500-1000 DM,”
etc.

Employment Since Categorical The duration of the applicant’s current employ-
ment, such as “unemployed,” “<1 year,” “4-7
years,” etc.

Personal Status and Sex Categorical The personal status and sex of the applicant, in-
cluding categories like “male single,” “female
div/dep/mar,” etc.

Other Debtors/Guarantors Categorical Indicates the presence of other debtors/guaran-
tors, such as “none,” “guarantor,” “co appli-
cant.”

Property Categorical Describes the type of property owned by the ap-
plicant, such as “real estate,” “life insurance,”
“car or other,” etc.

Other Installment Plans Categorical The presence of other installment plans.
Housing Categorical The housing situation of the applicant, such as

“own,” “for free,” “rent.”
Job Categorical The type of job held by the applicant, including

categories like “skilled,” “unskilled resident,”
“high qualif/self emp/mgmt,” etc.

Telephone Binary Indicates whether the applicant has a telephone
(yes/no).

Foreign Worker Binary Indicates whether the applicant is a foreign
worker (yes/no).

Risk (target) Binary The target variable indicating credit risk
(good/bad).

Table 5: Features in the original German Credit dataset. Those not used in our work are shown in
italics. Additionally, from the original feature Personal Status and Sex, we extract Sex as a protected
attribute.

whether an individual will recidivate within two years (Did Not Reoffend or Reoffended), based on
their demographic and criminal history. Due to page limitations, we provide descriptions for only
the features used in our work in Table 6.

B RF AND NN HYPERPARAMETERS

For RF, we fix number of trees to 100 for all datasets as well as models. For NN, we use a 3
hidden-layered network with hyperparameters described in Table 7.
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Feature Type Description
Sex Categorical The gender of the individual.

Race Categorical The race of the individual, grouped into
African-American and Not African-American.

Age Continuous The age of the individual.
Charge Degree Categorical The degree of the charge against the individual.
Priors Count Continuous The number of prior convictions or charges.

Risk Categorical The risk assessment for recidivism.
Two-Year Recid (target) Binary The target variable indicating whether an indi-

vidual recidivated within two years.

Table 6: Features in the COMPAS Recidivism Dataset (Preprocessed).

h1 h2 h3 lr batch size epochs
Adult 16 64 16 0.07 128 300

German Credit 64 64 32 0.07 128 300
COMPAS 64 128 64 0.09 128 300

Table 7: Hyperparameters for all datasets for a 3 layer neural network, where h1, h2 and h3 represent
the number of neurons in first, second and third hidden layers respectively, lr represents the learning
rate, and is followed by the batch size and number of epochs the models are trained for.

C PROMPT TEMPLATES FOR EACH DATASET

Beyond the Adult dataset, we provide the serialization and prompt templates utilized in our work
for the German Credit and COMPAS datasets here.

C.1 GERMAN CREDIT

Predict the credit risk of a German bank customer based on their profile
data. Answer with one of the following: bad | good.
Example 1 -
Age: 25 - 45
Sex: female
Job: highly skilled
Housing: rent
Saving accounts: little
Checking account: little
Credit amount: 2606
Duration: 21
Purpose: radio/TV
Answer: good

Age: 25 - 45
Sex: male
Job: skilled
Housing: own
Saving accounts: little
Checking account: little
Credit amount: 1345
Duration: 18
Purpose: radio/TV
Answer:

Figure 2: Prompt Template for German Credit Dataset.

C.2 COMPAS
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Predict whether an individual will recidivate with in two years based on
demographic and criminal history. Answer with one of the following: Did
Not Reoffend | Reoffended.
Example 1 -
sex: Male
race: African-American
age cat: 25 - 45
c charge degree: F
priors count: 0
risk: Low
Answer: Did Not Reoffend

sex: Male
race: African-American
age cat: 25 - 45
c charge degree: M
priors count: 13
risk: High
Answer:

Figure 3: Prompt Template for COMPAS Dataset.
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