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Abstract. The rapid development of information and communication technology 

(ICT) and digitalization in the Industry 5.0 era have opened up new opportunities 

for reverse logistics management to become digitalized, smarter, more sustaina-

ble, and simplified by incorporating disruptive technologies, e.g., Internet-of-

things (IoT), artificial intelligence (AI), big data analysis, simulation, blockchain, 

etc. Digital twin is one of the most promising concepts in Industry 5.0, which can 

re-create a physical object or system in the digital world. In this paper, different 

from the widely practiced product-based definitions, we extend this concept to a 

system-oriented digital reverse logistics twin. Based on a conceptual framework 

allowing for a high level of system integration, we present the key enabling ele-

ments for a digital reverse logistics twin that can support decisions in a complex 

and uncertain environment. Through an illustrative example of a remanufacturing 

network design problem in Norway, the initial proof-of-concept illustrates how 

different systems and models can be combined in a digital reverse logistics twin 

in order to support different decisions. 

Keywords: Reverse Logistics, Digital Twin, Industry 5.0, Decision Support 

System, Simulation, Optimization. 

1 Introduction 

Nowadays, the accelerated pace of technological innovation and development has re-

sulted in an ever-faster pace of product renewal and shortened product life cycles, 

which, in consequence, leads to an exponential increase in the generation of end-of-life 

(EOL) and end-of-use (EOU) products [1]. Meanwhile, sustainable logistics and supply 

chains have been a major research subject in recent decades due to increased global 

awareness and concerns associated with economic, environmental, and social sustaina-

bility in socio-economic activities [2, 3]. To properly manage the increased waste 

streams, while simultaneously promoting resource recovery from both EOL and EOU 

products, reverse logistics is considered to be one of the most crucial steps for moving 

toward sustainable development and circular economy [4, 5]. Due to this reason, as a 

profitable and sustainable business strategy, reverse logistics has gained increasing at-

tention from worldwide companies and organizations. 
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The emerging concept of Industry 5.0 has shown a blueprint of the human-centric 

transition that predominantly focuses on the social and environmental dimensions of 

sustainable development. Several cutting-edge technologies of Industry 5.0 are driving 

firms to shift business strategies to be more sustainable [6, 7]. This process requires 

more information involved and the integration of interconnected smart components, 

real-time monitoring and control devices across the entire manufacturing network and 

logistics systems, which potentially enables virtual product and virtual process planning 

in order to provide better and more comprehensive decision support and system control 

[8]. As one of the most important enablers of Industry 5.0, digital twin is increasingly 

focused on by both industrial practitioners and academia. 

Even though the concept of digital twin has been widely discussed in the context of 

different industries and businesses, most of them, especially in reverse logistics, are 

mainly defined from the product perspective, e.g., a data-intensive digital model that 

can track the product conditions and information throughout its entire life cycle [9]. 

However, reverse logistics is a complex system, and there is a lack of definition and 

conceptualization of digital reverse logistics twin from the system-oriented perspective. 

Thus, considering smart reverse logistic features and, in particular, cyber-physical in-

tegration for effective system visualization and data-driven decision-making, we pro-

vide a systematic conceptual framework of the digital reverse logistics twin to fill the 

literature gaps. The initial proof-of-concept is provided by an illustrative example of a 

compressor remanufacturing network design from EOL refrigerators in Norway. The 

proposed framework aims at showing a clear roadmap for future system integration that 

allows a high level of interaction between the digital and physical worlds of a smart 

reverse logistic system, with which various decision-making problems can be better 

supported. 

The rest of the paper is organized as follows. Section 2 gives the theoretical back-

ground of reverse logistics management, Industry 5.0, and digital twin. Section 3 pre-

sents the methodology. Section 4 conceptualizes and shows a generic framework of 

digital reverse logistics twin. An initial proof-of-concept is presented in Section 5. Fi-

nally, Section 6 concludes the paper. 

2 Theoretical Backgrounds    

2.1 Reverse Logistics Management 

Reverse logistics refers to a set of value recovery operations regarding the process 

of shipping EOL and EOU products or parts from the consumer point for possible reuse, 

remanufacturing, recycling, or proper disposal of materials, components, and products 

[10, 11]. The effective management of these operations is not an easy endeavor due to 

the complexity of reverse logistics systems that need the participation and collaboration 

of various stakeholders [12]. Due to the unpredictability and large variations of the EOL 

and EOU products in the reverse flow, the uncertainty related to reverse logistics oper-

ations is substantially larger than that in forward logistics [13], which results in greater 

impacts on decision-making [14].  
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Furthermore, reverse logistics operations may be affected by many unpredictive 

events and disruptions. For example, the COVID-19 pandemic has posed considerable 

challenges to global logistics systems and supply chains. The border closure, city lock-

down, and reduced and limited transportation capacity have severely interrupted goods 

movements, increased logistics costs, and increased uncertainty of total transit time. In 

reverse logistics, the transborder movement of EOL and EOU products has been largely 

affected. Thus, the resilience and flexibility of logistics systems become increasingly 

important [15]. Furthermore, in an effort to overcome and minimize the negative im-

pacts of logistics operations, the pandemic has also spurred many businesses and com-

panies to adopt new technologies and methods from the latest industrial revolution to 

increase automation and reduce the need for human resources [16]. Therefore, there is 

a need to develop new solutions for reverse logistics management considering the 

emerging sustainable development challenges in the post-pandemic era under a highly 

uncertain and fluctuating global environment.      

2.2 Industry 5.0 

The fifth Industrial Revolution, namely, Industry 5.0, has the most potential to sub-

stantially optimize logistics in a strategic way [16], which offers new opportunities for 

smart and sustainable reverse logistics management by building up competitive and 

innovative business models and better managing the operations. While Industry 4.0 pri-

marily emphasizes the role of automation and digitization through connecting physical 

objects with the real world to enhance manufacturing productivity, intelligence, and 

flexibility, Industry 5.0 focuses, however, on the human-centric transformation in the 

age of augmentation [17, 18]. Enabled and empowered by disruptive technologies, the 

importance of personalization, environmental sustainability, and human-centric socie-

tal transition are simultaneously emphasized [19]. Compared with Industry 4.0, despite 

smartness, connectivity, digitalization, and autonomy are still the core elements of In-

dustry 5.0, the role of the human becomes most crucial in the transformation, where the 

potential of both human and technology can be largely exploited in a human-machine 

collaborative environment [16, 20].  

Industry 5.0 empowers human intelligence to work with cognitive computing and 

intelligent automation [21], which paves the way for enabling smart logistics systems 

through achieving proactive planning with big data, real-time decision-making, respon-

sive communications, better resource allocation, and smoother material flows [22, 23]. 

However, on the other hand, there are still numerous obstacles related to the implemen-

tation of new technologies in reverse logistics [24], e.g., the technological maturity and 

compatibility, the life-cycle environmental footprint of new technologies [25], etc. 

Thus, further research is needed to provide comprehensive decision support to better 

plan the smart reverse logistics transformation in the Industry 5.0 era.   

2.3 Digital Twin 

Digital twin is one of the most essential technologies in Industry 5.0 [19]. The ter-

minology was first put forward as a concept practiced in the aerospace and aviation 
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industry in the 1960s [26]. A “ twin” concept was developed by NASA to assess and 

simulate conditions onboard Apollo 13 so that the astronauts and the controlling center 

can monitor the spaceship's condition remotely and make decisions in an emergency 

event [27]. Digital twin was depicted as the “digital equivalent to a physical product” 

by Michael Grieves at the University of Michigan in 2003 [28]. Digital twin has become 

one of the top strategic technology trends since 2017 with a worldwide focus on digi-

talization. Research activities on digital twin have been dramatically increased by the 

explosion and rapid development of machine learning, wireless communication, and 

cloud computing [29]. The digital twin market is predicted to increase with an annual 

growth rate of 58 percent from USD 3.1 billion in 2020 to USD 48.2 billion by 2026 

[30]. 

The origins of digital twins describe replicating products [8]. One of the key features 

of digital twin is the capability of transmitting and providing diverse types of data and 

information in an interoperable and consistent format [31]. Digital twin has various 

industrial applications at different lifecycle stages including product design, manufac-

turing, service, and EOL products [28, 32]. Among others, the application of digital 

twin in manufacturing has gained predominant focus, which can effectively help with 

production planning and control, maintenance, and layout planning [8]. It is a funda-

mental enabler of a highly integrated and collaborative smart manufacturing environ-

ment, which can effectively respond to real-time customer needs and conditions in the 

factory [33]. For example, a simulation-based digital twin is used to support heat mon-

itoring and predictive maintenance of an automotive braking system in order to make 

prompt decisions and reduce accidental risks [34]. Digital twin, enabled by intelligent 

analytical tools, e.g., AI, simulation, optimization, etc., provides new opportunities for 

processing large volumes of data, achieving data-driven operation, realizing the real-

time interaction, communication, and integration between cyber and physical worlds, 

and diversifying value creation.  

3 Methodology  

The methodology of system integration for reverse logistics management involves the 

utilization of various analytical tools and the integration of a wide range of data from 

different sources and stakeholders. As shown in Fig.1, the integrated system combines 

different data analytics tools like AI algorithms, machine learning, deep learning, opti-

mization models, and simulations to facilitate strategic, tactical, and operational deci-

sion-making. This methodology is structured into three layers, namely, data collection, 

data processing and analytics, and decision support. The methodology of this paper 

builds upon the framework for system integration for smart reverse logistics manage-

ment proposed by Sun, et al. [35]. This paper aims to extend the framework by intro-

ducing the concept of digital reverse logistics twins, with an emphasis on representing 

a more comprehensive, human-centric, and inclusive approach to provide decision-

makers with more effective and robust decision support at different levels to improve 

sustainability in Industry 5.0 era. 
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Fig. 1.  System Integration for Smart Reverse Logistics Management [35] 

4 Digital Reverse Logistics Twin 

4.1 Human-centric Smart Reverse Logistics Transformation 

The increasing adoption of cutting-edge technologies in Industry 5.0 will eventually 

lead to a smart reverse logistics transformation in various aspects including the smart 

collection of EOU and EOL products, smart transportation, smart remanufacturing and 

recycling, and smart disposal [36, 37]. As illustrated in Fig.2, reverse logistics has ex-

perienced paradigm shifts from unstructured isolated activities to today’s highly struc-

tured, automated, and connected operations that aim at sustainable value recovery of 

EOL and EOU products and materials. Enabled by new technologies, e.g., IoT, AI, 

CPS, etc., the human-centric smart reverse logistics transformation has become the 

emerging hotspot in the Industry 5.0 era. For example, as an innovative business model, 

the collection activities of EOL and EOU products can be scheduled based on individ-

ual customer demands [38], where real-time truck utilization data and traffic data can 

be used to optimize routing and resource allocation. Besides, AI-enabled smart robots 

can be used in the sorting center to relieve human workers from harsh working condi-

tions, where, in a collaborative environment, human workers can help the robots to 

categorize different types of waste streams. This human-centric smart reverse logistics 

transformation requires a high level of system integration to connect the physical world 

with the digital world. In this regard, digital twin plays an essential role. 
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Fig. 2.  Smart reverse logistics transformation. 

4.2 Digital Twins for Reverse Logistics Operations 

Currently, the application of digital twin is still in the way of exploratory develop-

ment [39]. Among other reverse logistics activities, remanufacturing has become the 

most focused area of the adoption of digital twin [39], since it is becoming today’s 

mainstream practice for recovering the EOL components at high value [40]. In reman-

ufacturing, the concept of digital twin is defined from the product- or process-oriented 

perspective. A product-oriented digital twin tracks the product conditions through its 

entire lifecycle and provides valuable information for remanufacturing that usually suf-

fers from high uncertainties related to the quantity, quality, and demand of EOL prod-

ucts  [41]. In this regard, the primary enablers are to establish a cloud-based automatic 

data collection and sharing system with IoT, smart sensors, cloud technology, etc., as 

shown in Table 1.  

Table 1. Table Comparison between the product-oriented digital twin and the system-oriented 
digital twin in reverse logistics. 

 Product-oriented digital twin System-oriented digital twin 

Scope 
Management of the entire product 

lifecycle 

Management of the entire reverse lo-

gistics system 

Data 
Product condition throughout the 

entire lifecycle 

System or process information at dif-

ferent locations and routes 

Applications 

Data and Information supports, 

e.g., EOL product quality, predic-

tion of equipment failure, etc.  

Decision support at strategic, tactical, 

and operational levels, e.g., real-time 

routing, proactive maintenance, oper-

ational planning, etc. 

Key enablers Connectivity enablers 
Both connectivity and intelligence 

enablers 

 

A process-oriented digital twin is similar to a system-oriented digital but with a 

smaller scope that focuses on a specific reverse logistics operation or activity, e.g., 
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equipment maintenance, demand forecasting, etc. For example, a big data-driven hier-

archical digital twin can be used for predictive remanufacturing planning [42]. Market 

demand can be predicted using big data analytics so that rapid reconfiguration of sus-

tainable products and remanufacturing processes can be achieved. Ghorbani and 

Khameneifar [43] developed a digital twin to predict the repair volume in the remanu-

facturing of damaged aero-engine blades. Simulation is a core element in a process- or 

system-oriented digital twin [44]. For instance, a simulation-based digital twin can be 

used to predict maintenance needs and potential equipment failures in remanufacturing 

operations [45]. Combining real-time data simulation with decision evaluation, a data-

driven disassembly process can be achieved [46]. 

4.3 Digital Reverse Logistics Twin 

Even though product- and process-oriented digital twins have been investigated in 

reverse logistics, there is still a lack of conceptualization of a system-oriented digital 

reverse logistics twin. Thus, this paper investigates the concept of digital reverse logis-

tics twin from the system perspective. A digital reverse logistics twin is a data-based 

digital avatar of the entire logistics system, which combines both physical smart de-

vices, i.e., IoT-sensors and intelligent robots, and cyber intelligence, i.e., AI, big data 

analytics, advanced optimization algorithms, and simulation tools, so it can be consid-

ered a high-level of CPS that enables effective system visualization and data-driven 

decision making with better proactive planning and real-time reactive adjustments. To 

support decision-making at different levels, data-driven analytics and decision-support 

models need to be effectively combined [47], which requires a high level of system 

integration to provide comprehensive decision support in a complex and uncertain en-

vironment [35]. 

A digital reverse logistics twin can be used to simulate dynamic processes or behav-

iors of reverse logistics operations and comprehensively assess the impact of dynamic 

situations. AI and big data analytics can be used to build data-driven forecasting sys-

tems in the proactive phase before EOL/EOU products enter the value recovery phase, 

which helps reduce uncertainties and generate adequate and more accurate data as the 

input for optimization and simulation models for further decision supports, e.g., reman-

ufacturing planning, transportation scheduling, etc. Then, based on the needs of differ-

ent decisions, a single method or a combination of both optimization and simulation 

methods will be selected to conduct various data-driven analyses with historical data 

and real-time data adjustment. 

For example, in the proactive planning phase of an EOL product collection system, 

AI-based data analytics can be used at the initial step for reducing uncertainties based 

on historical data to accurately predict the generation of EOL products and the required 

maintenance in each period. The predicted results can be directly converted to the input 

of the corresponding optimization models for resource assignment, routing, collection 

schedule, and vehicle maintenance. Furthermore, the optimized setups and decisions 

can also be automatically converted to the simulation environment for analyzing system 

dynamics under various scenarios, e.g., traffic congestion, accidents, etc., based on 

which reactive strategies can be formulated and tested. With the help of the real-time 
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data collected from various smart devices and information portals, the prediction results 

can be updated and the short-term operational decisions, e.g., routing and collection 

schedules, can be dynamically optimized to improve the overall system performance in 

terms of operating costs, fuel consumption, emissions, working hours, and service lev-

els. Thus, based on the discussions above, we define a digital reverse logistics twin 

from the system perspective as follows:   

Digital Reverse Logistics Twin is a data-based digital representation of a real-world 

reverse logistics system, which forms a multi-architecture and high-level integrated 

information platform by integrating different stakeholders, data, and analytical tools 

to support various proactive and/or reactive decisions. 

 

 
Fig. 3. Digital reverse logistics twin. 

 

Fig. 3 shows a generic framework of digital reverse logistics twin, which aims to 

digitize the physical entities and activities of a reverse logistics system into a cloud-

based virtual environment, where smart devices, data, and analytical models can be 

used for proper needs. It requires three layers including the physical system layer, the 

cyber-physical layer, and the smart analytical layer. The first two layers link the phys-

ical world to the cyber world, which allows data collection, treatment, and processing 

from the physical devices, sensors, and processes, and the third layer supports critical 

decisions with AI, optimization, and simulation models in an interactive way. In addi-

tion, the product-orient digital twin is also considered a key enabler for this generic 

framework. For example, these digital twin models established for individual products 

throughout their entire lifecycle, e.g., electronic products, vehicles, etc., provide key 

data for various reverse logistics activities. Besides, the end-users can easily provide 

updated information related to these products via digital platforms, which will be used 

for a better organization of respective value recovery activities in a sustainable reverse 

logistics system. 

As can be seen, data is the most essential element in the digital reverse logistics twin, 

which is the bridge connecting the physical world and the cyber world. The accuracy 

of data represents the fidelity of the digital model. Furthermore, data connects different 

analytical tools in the smart analytical layer, with which different analytical models can 
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be seamlessly connected and implemented in the decision-making of specific reverse 

logistics planning problems. However, this is one of the major challenges of system 

integration since AI, optimization, and simulation are usually performed as ad-hoc pro-

cesses and implemented in different environments, so further development is needed to 

promote a high level of system integration in a digital reverse logistics twin [35].   

5 Initial Proof-of-Concept 

In this section, we use an illustrative example of a remanufacturing network design 

problem in Norway to show the initial proof-of-concept and potential applications of 

digital reverse logistics twin. In this example, a compressor remanufacturing network 

from EOL refrigerators is planned. The compressors are mainly collected from 16 cities 

in the southern part of Norway, and 3 candidate locations are selected for opening the 

remanufacturing plant. The un-remanufactured parts and components can be treated by 

three waste management companies, and Fig.4 shows the locations of the respective 

actors. The experimental data is estimated based on Statistics Norway and the European 

Commission's database. 

A digital reverse logistics twin model is built to optimize network decisions under 

various scenarios. Conventionally, formulating such a decision-making problem starts 

with the establishment of a mathematical model, based on which relevant data is col-

lected and tested. Afterward, these network decisions may further be evaluated with a 

dynamic simulation model with more realistic operating rules. However, this is usually 

an ad-hoc process, and the re-use of the analytical models in other scenarios may re-

quire large efforts to modify the model’s structures, elements, and setups. Furthermore, 

implementing these models may require different software, programming languages, 

and data structures [39]. Thus, this is an inefficient process that suffers from a lack of 

universal applicability.  

Establishing a digital reverse logistics twin takes an opposite perspective, where a 

highly integrated information platform is required to connect the GIS system, AI algo-

rithms, analytical optimization models, dynamic simulation elements, as well as other 

physical and cyber components to support different decisions. Feeding real-world data, 

the physical system can be digitized into the virtual world by combining with different 

analytical tools, where the level of data accuracy shows the fidelity of the digital reverse 

logistics twin. As shown in Fig.5, based on the physical remanufacturing network struc-

ture, we converted the relevant facility operating data, transportation data, collection 

data, and market data into a comprehensive data model in anyLogistix, through which 

the remanufacturing network is digitized by automatically selecting different modeling 

elements. The analytical optimization and dynamic simulation can then be seamlessly 

connected and interacted with via the automatic data conversion to different levels of 

required aggregation. For example, the optimized remanufacturing network can be eas-

ily evaluated under various operational policies with a realistic planning horizon and 

lower data aggregation in the simulation environment.  
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         Collection center         Remanufacturing plant        Disposal plant 

Fig.4. The locations of respective reverse logistics actors. 

 

 
Fig. 5. Digital reverse logistics twin for remanufacturing network design. 

 

The successful implementation of a digital reverse logistics twin requires a high level 

of system integration of both physical and cyber components, whose maturity is evalu-

ated by seven key indicators, namely, cyber-physical structure, cloud-based system, 

shared database, large model database, user-friendly interface, and flexible models and 

networks [35]. In this example, the use of digital reverse logistics twin is shown through 
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supporting strategic network decisions, where key implications can be obtained through 

combining optimization and simulation with historical data. With the help of automated 

data conversion, strategic remanufacturing network decisions can be further analyzed 

and evaluated considering and incorporating, e.g., different inventory policies, sourcing 

policies, transportation policies, triggered events, the dynamics and operation logic, etc. 

At tactical and operational levels, the data model can be further developed by, for in-

stance, connecting with the company’s business intelligence (BI) and smart devices to 

support real-time operational decisions, e.g., vehicle routing.  

6 Conclusion 

With the focus on human-centricity and sustainable development in Industry 5.0, 

technological enablers are increasingly emphasized for promoting a smart digital tran-

sition, which will shift the paradigms of many industries and businesses. Digital twin 

is one of the most promising Industry 5.0 enablers, which has been extensively focused 

on during the last decade. In reverse logistics management, the concepts of digital twin 

are mainly studied from the product- and process-oriented perspectives. Thus, in this 

paper, we extend the scope of this concept and define the digital reverse logistics twin 

from the system perspective. The generic definition and framework summarize the most 

essential features of the digital reverse logistics twin, which can be adapted for a wider 

range of applications. For example, the product- and process-oriented digital twin ap-

plications can be considered important elements and enablers within this concept.  

In a digital reverse logistics twin, data plays the most crucial role to link different 

physical and cyber elements, with which the system performance can be monitored, 

and the respective decisions can be dynamically optimized. An initial proof-of-concept 

is given based on a remanufacturing network design problem in Norway. Through a 

common and shared data model, the network optimization and dynamic simulation can 

be seamlessly connected to optimize the reverse logistics network configuration and 

evaluate the performance under different scenarios. The result shows the effectiveness 

of integrating different analytical tools via data model in a smart and sustainable digital 

reverse logistics twin.  

The results of this research provide a decision-making framework that contributes to 

both increased knowledge and its valuable implication in practice in the field. More 

specifically, this research expands the existing understanding of system integration for 

smart reverse logistics management. It builds upon the framework proposed by Sun, et 

al. [35] and extends it by introducing the concept of a digital reverse logistics twin. This 

new concept adds value to the field by leveraging digital technologies to enhance re-

verse logistics processes and operations. 

From the managerial perspective, the research has yielded a practical decision-mak-

ing framework that facilitates the effective management of reverse logistics operations. 

This framework presents a systematic methodology that can be readily applied in prac-

tical situations. Its implementation empowers decision-makers to improve their choices 

and optimize different facets of reverse logistics management, i.e., product returns, re-

cycling, reprocessing, and remanufacturing.  
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This research serves as a bridge connecting theoretical concepts with practical ap-

plications. It also aims to provide practitioners with a tangible decision-making tool 

that enhances the efficiency and effectiveness of reverse logistics processes within or-

ganizations. However, it is important to note that the current framework has a limitation 

due to restricted access to data, as it does not consider the need to process large datasets 

that are prevalent in real-life scenarios. Consequently, future efforts will be directed 

towards integrating additional data analytics, e.g., AI algorithms, into the framework to 

address this limitation. 
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