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Abstract

We study varieties associated to hypergraphs from the point of view of projective geometry and matroid
theory. We describe their decompositions into matroid varieties, which may be reducible and can have arbi-
trary singularities by the Mnëv–Sturmfels universality theorem. We focus on various families of hypergraph
varieties for which we explicitly compute an irredundant irreducible decomposition. Our main findings in
this direction are threefold: (1) we describe minimal matroids of such hypergraphs; (2) we prove that the
varieties of these matroids are irreducible and their union is the hypergraph variety; and (3) we show that
every such matroid is realizable over real numbers. As corollaries, we give conceptual decompositions of
various, previously-studied, varieties associated with graphs, hypergraphs, and adjacent minors of generic
matrices. In particular, our decomposition strategy gives immediate matroid interpretations of the irre-
ducible components of multiple families of varieties associated to conditional independence (CI) models in
statistical theory and unravels their symmetric structures which hugely simplifies the computations.
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1 Introduction

This work develops new connections between conditional independence (CI) models in statistics [Stu05, DSS09,
Sul18], projective geometry [RG11, LV13], the theory of matroids [Oxl11, PW70] and their realization spaces
[Mnë85, Mnë88, Stu89], and determinantal varieties in commutative algebra [BC03]. In particular, we study
a family of varieties whose defining equations are indexed by the edges of some hypergraphs, and show that
their irreducible decompositions lead to well-structured configurations of points and lines. Moreover, we apply
our results to classes of conditional independence varieties which naturally arise in algebraic statistics. We also
analyze well-known results from the literature [HHH+10, Rau13, HS04, PS19, CMR20] and show, in these cases,
that the irreducible components of their concerned varieties have concrete interpretations in terms of matroids.

Our main object of study is the determinantal hypergraph variety 𝑉Δ which is associated to a hypergraph
Δ; see Definition 2.1. The defining equations of 𝑉Δ are the minors of a matrix 𝑋 of indeterminates and the
corresponding polynomial ideal 𝐼Δ generalizes many familiar families of determinantal ideals. For example,
given integers 𝑡 ≤ 𝑑 ≤ 𝑛 and the 𝑑 × 𝑛 matrix 𝑋 = (𝑥𝑖 𝑗 ) of indeterminates, the classical ideal 𝐼𝑡 (𝑋) studied by
Bruns and Conca [BC03] is the ideal of the hypergraph Δ whose edges are all 𝑡-subsets of [𝑛] := {1, . . . , 𝑛}.
These ideals, along with many other families [Stu90, HHH+10, EHHM13, MR18, PS19], are often studied using
Gröbner bases. When it is possible to find them, Gröbner bases are a powerful tool for understanding ideals.
For instance, if the initial ideal is square-free, then the original ideal is radical. However, when the hypergraph Δ

lies outside of one of the particularly nice families in the list above, finding a Gröbner basis becomes exceedingly
difficult. In this paper, we develop a general framework called the decomposition strategy for understanding the
properties of arbitrary hypergraph ideals, without computing their Gröbner bases, using matroid varieties.

A matroid is a combinatorial axiomatization of linear dependence in a vector space. We refer to [Oxl11]
for a complete introduction to matroids, however, it will now be useful for us to recall realizability and related
notions. Given a finite collection of vectors in a fixed vector space, the collection of linearly dependent sets
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of vectors defines a matroid. If this process can be reversed, i.e. for a given matroid 𝑀 we can find such a
collection of vectors, then we call these vectors a realization of 𝑀. We write Γ𝑀 for the space of realizations of
𝑀. The matroid variety 𝑉𝑀 of 𝑀 is the Zariski closure of the realization space; see Definition 2.3. Our main
tool to study hypergraph varieties is the Decomposition Theorem which provides a matroid stratification for
𝑉Δ. One can think of this theorem as an altered version of the stratification of the Grassmannian by matroids,
which was studied in [GGMS87].

Theorem (Theorem 3.1). The variety associated to the hypergraph Δ is the union of matroid varieties. The
union is taken over all realizable matroids 𝑀 whose dependent sets contain the edges of Δ.

Many of the matroid varieties appearing in the decomposition above are redundant. So, to refine this
decomposition, we introduce the notion of combinatorial closures of matroids; see Definition 3.3. More precisely,
the combinatorial closure 𝑉comb

𝑀
of a given matroid 𝑀 is the hypergraph variety associated to its set of circuits.

We recall that a minimally dependent matroid for a given hypergraph Δ is a realizable matroid 𝑀 whose
dependent sets contain Δ as a subset and is minimal among all such matroids. In other words, there does not
exist a realizable matroid 𝑁 such that Δ ⊆ D(𝑁) ⊊ D(𝑀).

Proposition (Proposition 3.10). The associated variety of a hypergraph Δ is the union of combinatorial closures
of matroid varieties, where the union is taken over all minimally dependent matroids for Δ.

We conjecture that combinatorial closures are sufficient to find the irredundant irreducible decomposition of
any hypergraph variety. In fact, we show that this is the case for some of the well-known examples of hypergraph
varieties such as those corresponding to binomial edge ideals [HHH+10, Rau13], conditional independence ideals
with hidden variables [CMR20, CMM21] and ideals of adjacent minors [HS04]. In all of these cases, each
combinatorial closure is equal to its central component which makes the computations easier. One of the
families of hypergraphs we study is the consecutive forest hypergraphs; see Definition 6.1. We will see that the
combinatorial closures have non-central components. To compute the irreducible decomposition of 𝑉Δ, we apply
the following method and note the corresponding sections for consecutive forest hypergraphs.

Decomposition Strategy §3.3.

(i) Identify minimally dependent matroids for Δ (§6.1).

(ii) For each minimally dependent matroid 𝑀, write the combinatorial closure 𝑉comb
𝑀

as a minimal union of
matroid varieties (§5).

(iii) For each matroid variety appearing in step (ii), show that it is irreducible (§4).

(iv) Determine redundancy of non-central components of combinatorial closures in the resulting decomposition
and show the matroids are realizable (§6.2 and §6.3).

We are able to completely go through this strategy for various family of hypergraphs in §4-§7. In particular,
for Step (iii) above, we show that the realization spaces of certain point and line configurations are irreducible;
see §4. These are a family of matroids whose varieties appear as irreducible components of many examples of
hypergraph varieties. We will prove Theorem 4.5 which allows us to inductively build up configurations with
irreducible varieties, and use this to show that all configurations with at most 6 lines have irreducible varieties.

Theorem (Theorems 4.2 and 4.5). Suppose that C′ is a point and line configuration with irreducible realization
space ΓC′ . If C is obtained from C′ by adding a single line passing through at most two intersection points of C′,
then ΓC is irreducible. In particular, the realization spaces of configurations with at most 6 lines are irreducible.

The conclusion of the decomposition strategy is the following characterization of the minimal irreducible
decomposition of the associated variety of each consecutive forest hypergraph.

Theorem (Theorems 5.14 and 6.20). The irredundant irreducible components of the consecutive forest vari-
ety 𝑉Δ𝐺

are in one-to-one correspondence with the minimally dependent matroids for the hypergraph Δ𝐺. In
particular, for each minimally dependent matroid, the non-central components of its combinatorial closure are
completely characterized and are redundant in the irreducible decomposition.

Our decomposition strategy gives immediate interpretations of the prime decompositions of families of ideals
for which it is not feasible to calculate an explicit Gröbner basis due to the time complexity of the algorithm and
the current available hardware. In [PS19], which is further explained in Example 3.12, the authors calculated
the prime decomposition of a hypergraph ideal which contains 16 edges of size 3. This computation is at the
limit of what is currently possible on available hardware. In this case, the prime components of this ideal have
a straight-forward interpretation in terms of configurations of 12 points in the projective plane.
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Moreover, in §7 we describe the hypergraphs Δ𝑠,𝑡 which arise from the study of conditional independence
(CI) statements; see §8 and [Fin11, CMR20, CMM21]. We give a summary of the known cases of 𝑉Δ𝑠,𝑡 in
Remark 7.2 and Table 2. The family of varieties 𝑉Δ𝑠,𝑡 for a fixed 𝑠, 𝑡 can be studied effectively by understanding
finite families of matroids. In Table 1, we count the number of combinatorial types of dependent matroids for
Δ𝑠,𝑡 . We show that as certain parameters increase, the number of combinatorial types eventually stabilizes which
simplifies the computational task. The associated variety of Δ𝑠,𝑡 determines a statistical model corresponding
to a collection of CI statements with hidden variables. The irreducible components of these varieties give
information about additional constraints satisfied by distributions within the given CI model. We describe the
irreducible components of these varieties in terms of so-called grid matroids. The first step to understanding
such decompositions is to find the set of minimally dependent matroids for Δ𝑠,𝑡 .

When the dimension of the ambient space 𝑑 is low enough, we show that:

Theorem (Theorem 7.5). If 𝑡 ≤ 𝑑 ≤ 𝑠 + 𝑡 − 3, then there is a unique minimal matroid for Δ𝑠,𝑡 .

In particular, the minimal matroid from the above theorem corresponds to the special irreducible compo-
nent of the CI varieties studied in [CMR20, CMM21], which leads to the intersection axiom for CI models.
This component is particularly important for the inference problem in statistics, as it gives information about
additional constraints on distributions with full support which satisfy the given CI statements.

When there is no bound on 𝑑, we show that as the parameters for this hypergraph are allowed to become
large, we obtain every matroid among the minimally dependent matroids for Δ𝑠,𝑡 , up to a mild equivalence.

Theorem (Theorem 7.7). For every matroid 𝑀, there exists a hypergraph of the form Δ𝑠,𝑡 and a dependent
matroid 𝑀 ′ for Δ𝑠,𝑡 such that a restriction of 𝑀 ′ is isomorphic to 𝑀.

We prove this theorem using an algorithm from [MF14] to explicitly construct the matroid 𝑀 ′. This theorem
shows that understanding the varieties of a general CI model is very difficult since matroid varieties satisfy
various universality results. Similarly, determining the realizability of a CI model is difficult as the matroids of
its components might not be R-realizable. More generally, we propose the following computational problem.

Question 1.1. Find the irreducible components of 𝑉Δ𝑠,𝑡 and determine whether they contain a rational point.

We conclude by highlighting some of the difficulties arising in the study of Question 1.1, in particular in
determining the irreducibility of matroid varieties. Following [BS89, RG99], consider a collection of vectors
𝑣1, . . . , 𝑣𝑠 in a finite dimensional vector space 𝑉 over a field K, which realizes a matroid 𝑀. They also define a
hyperplane arrangement 𝐻𝑣1 , . . . , 𝐻𝑣𝑠 ⊂ 𝑉∗ in the dual vector space. The combinatorial type of this hyperplane
arrangement is defined by 𝑀, thus, one can think of the realization space Γ𝑀 as a parameter space of hyperplane
arrangements of fixed combinatorial type. In [Ryb11], Rybnikov constructs a pair of combinatorially equivalent
hyperplane arrangements whose complements have non-isomorphic fundamental groups. So, in general, it is not
possible to study matroid varieties by picking a single generic point in the variety.

Unfortunately, very little can be said about the geometry of matroid varieties in general. The Mnëv–
Sturmfels Universality Theorem shows that matroid varieties satisfy Murphy’s Law in Algebraic Geometry.
Specifically, given any singularity, appearing in a semi-algebraic set, there is a matroid variety with the same
singularity up to a mild equivalence; see [Mnë85, Mnë88, Stu89, LV13]. In fact, point and line configurations
already exhibit all singularities. More precisely, the equivalence above is defined on pointed schemes generated
by (𝑋, 𝑝) ∼ (𝑌, 𝑞) when there exists a smooth morphism (𝑋, 𝑝) → (𝑌, 𝑞). Then, the universality theorem states
that point and line configurations exhibit all equivalence classes of this relation called singularity types.

We also note that the defining equations of matroid varieties are in general very difficult to calculate. These
equations often arise from geometric constraints satisfied by the matroid. Some of them can be interpreted as
rank conditions on certain submatrices, however this is not true in general. Example 3.6 shows the smallest
matroid for which non-determinantal equations appear. Proving that such a polynomial constraint holds is often
achieved by finding an equivalent condition in the Grassmann-Cayley algebra [SJS17, STW21]. In the context
of CI models, such conditions give further constraints on distributions satisfying the given CI statements.

Outline of paper. In §2, we introduce the key concepts used throughout the paper. In particular, we fix our
notations for hypergraph, matroid varieties and introduce the dependence order on matroids. In §3, we prove the
decomposition theorem and introduce the combinatorial closures of matroid varieties. In §4, we define point and
line configurations and prove that, for certain families, their realization spaces are irreducible. In §5, we study
the family of forest-like point and line configurations. We give a complete characterization of the irreducible
components of their combinatorial closures using perturbation arguments. In §6, we apply the decomposition
strategy to the family of consecutive forest hypergraphs. As a result, we prove Theorem 6.20 which gives an
irredundant irreducible decomposition of the hypergraph variety. In §7, we introduce grid matroids and apply
them to describe the irreducible components of the variety of Δ𝑠,𝑡 ; see Tables 1 and 2. We then proceed to
use algorithmic procedures to prove Theorem 7.7. In §8, we show how the hypergraph Δ𝑠,𝑡 arises in algebraic
statistics in the study of CI statements with hidden variables. We conclude by explaining how our results may
shed light on a conjecture by Matúš in the context of CI models.
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2 Preliminaries

2.1 Hypergraph varieties. Let K be a field, 𝑑 ≤ 𝑛 be two positive integers, 𝑋 = (𝑥𝑖 𝑗 ) be a 𝑑 × 𝑛 matrix
of indeterminates and 𝑅 = K[𝑋] be the polynomial ring over K in the indeterminates 𝑥𝑖 𝑗 . It is often convenient
to write determinants of submatrices of 𝑋 as [𝐼 |𝐽]𝑋 where 𝐼 and 𝐽 are respectively the sets of rows and columns
of the submatrix. If 𝐼 = [𝑑], that is the submatrix covers all rows of 𝑋, then we write [𝐽] for [𝐼 |𝐽]𝑋. We denote
by 𝑥𝑖 the 𝑖

th column of 𝑋 and by 𝑋𝐹 the submatrix of 𝑋 with columns indexed by 𝐹 ⊆ [𝑛].

Definition 2.1. A (simple) hypergraph Δ on the vertex set [𝑛] is a subset of the power set 2[𝑛] . We assume
that no proper subset of an element of Δ is in Δ. The elements of Δ are called (hyper)edges.

• The determinantal hypergraph ideal of Δ is

𝐼Δ =
〈
[𝐴|𝐵]𝑋 : 𝐴 ⊆ [𝑑], 𝐵 ∈ Δ, |𝐴| = |𝐵 |

〉
⊂ 𝑅.

• The variety of Δ is the zero set of 𝐼Δ which is given by

𝑉Δ = {𝑋 ∈ C𝑑×𝑛 : Rank(𝑋𝐹) < |𝐹 | for each 𝐹 in Δ}.

The ideal 𝐼Δ and its variety 𝑉Δ depend on the value 𝑑, i.e. the dimension of the ambient space. However, to
keep our notation concise, we suppress 𝑑 from our notation. Unless otherwise stated, all results for hypergraph
ideals and their varieties hold for all 𝑑 as long as 𝑑 ≥ max{|𝐹 | : 𝐹 ∈ Δ}.

Problem 2.2. Find an irredundant irreducible decomposition of 𝑉Δ for any hypergraph Δ.

2.2 Matroid varieties. In this subsection, we recall the definitions of the realization space of a matroid
and its associated variety. We refer the reader to [Oxl11] for basic definitions concerning matroids.

Definition 2.3. Let 𝑀 be a matroid on [𝑛] of rank 𝑟 and let 𝑑 ≥ 𝑟. If K is a field, a realization of 𝑀 in K𝑑 is
a collection of vectors 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ K𝑑 such that

{𝑥𝑖1 , . . . , 𝑥𝑖𝑝 } ⊂ 𝑋 is linearly dependent ⇐⇒ {𝑖1, . . . , 𝑖𝑝} is a dependent set of 𝑀.

If such a collection of vectors exists, we say that the matroid is realizable over K. (Other words used inter-
changeably with realizable include representable and linear.) In this paper, if realizability is discussed without
specifying K, then K = C. The realization space of 𝑀 in C𝑑 is

Γ𝑀 = {𝑋 ⊂ C𝑑 : 𝑋 is a realization of 𝑀}.

So each element of Γ𝑀 is naturally identified with a 𝑑 × 𝑛 matrix over C.

Definition 2.4. The matroid variety 𝑉𝑀 = Γ𝑀 is the Zariski closure of the realization space of 𝑀. We denote
𝐼𝑀 = 𝐼 (𝑉𝑀 ) ⊆ C[𝑋] for the corresponding ideal where 𝑋 = (𝑥𝑖, 𝑗 ) is a 𝑑 × 𝑛 matrix of indeterminates.

Note that 𝐼𝑀 is a radical ideal. Similarly to hypergraph ideals and their varieties, we will always use 𝑑 to
denote the dimension of the ambient space. In order to simplify our notation, we suppress 𝑑 from the notation
of the realization space of matroids and their ideals and varieties.

2.3 Minimal matroids. We denote by ≤ the partial order on sets given by inclusion. We extend this
notion to matroids by identifying them with their collection of dependent sets. We will denote the collection
of dependent sets of a matroid 𝑀 by D(𝑀). So, given two matroids 𝑀1 and 𝑀2, if D(𝑀1) ⊆ D(𝑀2) then
we write 𝑀1 ≤ 𝑀2. This is the dependency order on matroids. However, we caution the reader that this is
precisely opposite of the weak order in the matroid literature [Oxl11, BS89]. Suppose that 𝑀 is a matroid on
ground set 𝐸 . For any given collection of subsets D of 𝐸 , we say that 𝑀 is dependent for D if D ⊆ D(𝑀) and
write D ≤ 𝑀. If there does not exist a matroid 𝑁 on 𝐸 such that D ⊆ D(𝑁) ⊊ D(𝑀), then we say that 𝑀 is
minimally dependent for D, i.e. 𝑀 is a smallest matroid such that D ≤ 𝑀.

Example 2.5. Any matroid 𝑀 is minimally dependent for its collection of circuits C. In this case, 𝑀 is the
unique such matroid. In general, there can be many different minimally dependent matroids for a collection D.
For example, if 𝐸 = [5], and D = {1234, 1235}, then the uniform matroid 𝑈3

5 , whose circuits are all 4-subsets of
𝐸 , and the matroid with a single circuit 123 are both minimally dependent for D; see Figure 1.

We will be interested in finding out the minimal matroids for a given collection of sets. In general, this is
difficult. However, we are able to do this for some specific families; see §6.

4



Figure 1: Geometric representations for two minimally dependent matroids for D = {1234, 1235}.

Notation. We denote the corresponding simple hypergraph of any collection D of subsets of [𝑛] as:

min(D) = {𝐷 ∈ D : no set 𝐷′ ∈ D exists such that 𝐷′ ⊊ 𝐷}. (1)

Remark 2.6. Let Δ′ be a simple hypergraph all of whose edges have size at most 𝑑, and let Δ = min(Δ′ ∪
( [𝑛]
𝑑+1

)
).

Note that 𝐼Δ′ = 𝐼Δ and that 𝑉Δ′ = 𝑉Δ. Moreover, Γ𝑀 = ∅ if 𝑀 has rank greater than 𝑑. Therefore, finding the
minimally dependent matroids of rank at most 𝑑 for Δ is equivalent to finding those for Δ′.

3 Matroid stratifications of hypergraph varieties

3.1 The general decomposition theorem. We now use our notation from §2 to decompose any hy-
pergraph variety into certain matroid varieties. In subsequent sections, we will investigate techniques which will
allow us to strengthen this statement to an irredundant irreducible decomposition. The following theorem may
be interpreted from the perspective of the stratification of Grassmannians by matroid varieties. See Remark 3.2.

Theorem 3.1 (Decomposition Theorem). Let Δ ⊆ 2[𝑛] be a hypergraph on [𝑛] and let M(Δ) be the collection
of realizable matroids whose collections of dependent sets contain Δ. Then,

𝑉Δ =
⋃

𝑀∈M(Δ)
𝑉𝑀 .

In particular, we have
√
𝐼Δ =

⋂
𝑀∈M(Δ) 𝐼𝑀 .

Proof. Let 𝑀 ∈ M(Δ). We begin by showing that 𝐼Δ ⊆ 𝐼𝑀 . By definition, 𝐼Δ is generated by minors, so let
𝑓 ∈ 𝐼Δ be any such minor. We may assume without loss of generality that 𝑓 is a maximal minor of the submatrix
𝑋𝐹 for some 𝐹 ∈ Δ. For each matroid 𝑀 ∈ M(Δ) and each point 𝐴 in the realization space Γ𝑀 , the columns
of 𝐴𝐹 are linearly dependent since 𝐹 is a dependent set of 𝑀. Thus 𝑓 vanishes on Γ𝑀 , and by definition, 𝑓
vanishes on its Zariski closure which is 𝑉𝑀 . Thus, we have that 𝑓 ∈ 𝐼 (𝑉𝑀 ) = 𝐼𝑀 , so 𝐼Δ ⊆ 𝐼𝑀 . Hence, 𝑉𝑀 ⊆ 𝑉Δ.
Let 𝐴 be any point in the variety 𝑉Δ. The matrix 𝐴 is a realization of a matroid, which we denote 𝑀𝐴, on [𝑛]
in C𝑑. For each 𝐹 ∈ Δ, the ideal 𝐼Δ contains all |𝐹 |-minors of 𝑋𝐹 , so all |𝐹 |-minors of 𝐴𝐹 vanish. Therefore, the
columns of 𝐴𝐹 are linearly dependent. Hence 𝐹 is a dependent set in 𝑀𝐴, so 𝑀𝐴 ∈ M(Δ). □

3.2 Combinatorial closure. In Theorem 3.1, we decomposed the hypergraph variety 𝑉Δ into matroid
varieties. But this decomposition may have redundant components, because 𝑉𝑀′ ⊂ 𝑉𝑀 for some 𝑀, 𝑀 ′ ∈ M(Δ).
To solve Problem 2.2, we must determine the matroids that are necessary in the decomposition. It is clear that all
matroids which are minimal with respect to the dependency order are necessary in the decomposition. One could
conjecture that these are enough. Unfortunately this is not true, as we will see in Example 3.6. Nevertheless,
we will define an alternative decomposition for which the minimal matroids correspond to irredundant parts of
a decomposition. We do this by introducing the combinatorial closure of a matroid. This is a generalization of
the weak realization space of a matroid [BS89, page 70] to an ambient space of dimension greater than the rank
of the matroid.

In the following remark we connect our setting to that of the stratification of the Grassmannian by matroids.

Remark 3.2. The Grassmannian Gr(𝑑, 𝑛+𝑑) admits a stratification Gr(𝑑, 𝑛+𝑑) = ⋃
M 𝑆M by matroids [GGMS87,

Stu89]. Here, 𝑆M := {𝑥 ∈ Gr(𝑑, 𝑛 + 𝑑) | M𝑥 = M} is the matroid stratum of M, where M𝑥 is the matroid
associated to the point 𝑥 ∈ Gr(𝑑, 𝑛 + 𝑑). Let us restrict to the standard affine open patch 𝑈0 of Gr(𝑑, 𝑛 + 𝑑)
where the matrices are of the form [𝑀 𝐼] such that 𝑀 is a 𝑑 × 𝑛 matrix and 𝐼 is the 𝑑 × 𝑑 identity matrix. We
identify the ambient space C𝑑×𝑛 with 𝑈0 as they are isomorphic. After this identification, we can see 𝑉 (𝐼Δ) as
the closed embedding of 𝑈0 given by the vanishing of the corresponding Plücker coordinates.

For example, take Δ = {12, 134} and 𝑑 = 3. Now 𝑉 (𝐼Δ), is a closed subset of the standard affine open
patch 𝑈0 of Grassmannian Gr(3, 7). The equations of 𝑉 (𝐼Δ) in terms of Plücker coordinates are given by

5



𝑃123 = 0, 𝑃124 = 0, 𝑃125 = 0, 𝑃126 = 0, 𝑃127 = 0, 𝑃134 = 0. So, 𝑉 (𝐼Δ) can be written in the following form:

𝑉 (𝐼Δ) ∩Gr(𝑑, 𝑛 + 𝑑) ∩𝑈0 =
⋃
M
𝑆M ∩𝑉 (𝐼Δ) ∩𝑈0.

In this setting, we may restate Theorem 3.1 as
⋃
M 𝑆M ∩𝑉 (𝐼Δ) ∩𝑈0 =

⋃
𝑀∈M(Δ) 𝑉𝑀 .

Definition 3.3. We define the combinatorial closure 𝑉comb
𝑀

of a matroid 𝑀 to be the union of all matroid
varieties 𝑉𝑀′ for which 𝑀

′ ≥ 𝑀. In other words,

𝑉comb
𝑀 =

⋃
𝑀′≥𝑀

𝑉𝑀′

We will denote the ideal of the combinatorial closure by 𝐼comb
𝑀

.

Remark 3.4.

(i) Note that 𝑉comb
𝑀

might not be a matroid variety itself. The inclusion 𝑉𝑀 ⊆ 𝑉comb
𝑀

holds in general, however
the equality might not hold. (See Example 3.6 below.) We will call 𝑉𝑀 the central component of 𝑉comb

𝑀

and matroid varieties which intersect the complement will be called non-central components.

(ii) The combinatorial closure is the closure of the union of realization spaces, i.e. 𝑉comb
𝑀

=
⋃

𝑀′≥𝑀 Γ𝑀′ . This
follows from the topological fact that a finite union of closures coincides with the closure of a union of sets.

The ideal of the combinatorial closure of a matroid 𝑀 can be seen as follows. The collection of circuits C(𝑀)
of 𝑀 can be considered as a hypergraph. So the hypergraph ideal 𝐼C(𝑀 ) for a given 𝑑, is defined as:

𝐼C(𝑀 ) =
〈
[𝐴|𝐵]𝑋 : 𝐴 ⊆ [𝑑], 𝐵 ∈ C(𝑀), |𝐴| = |𝐵 |

〉
.

Lemma 3.5. For any matroid 𝑀 we have that

𝑉comb
𝑀 = 𝑉C(𝑀 ) or equivalently 𝐼comb

𝑀 =
√︁
𝐼C(𝑀 ) .

Proof. Let 𝑋 ∈ 𝑉comb
𝑀

be a collection of vectors, then 𝑋 ∈ Γ𝑀′ for some 𝑀 ′ ≥ 𝑀. So, any 𝐵 ∈ C(𝑀) is a
dependent set of 𝑀 ′, and therefore [𝐴|𝐵]𝑋 = 0 for any 𝐴 ⊆ [𝑑] with |𝐴| = |𝐵 |. This shows that 𝑉comb

𝑀
⊆ 𝑉C(𝑀 ) .

Similarly, let 𝑋 be a point in 𝑉C(𝑀 ) , and let 𝑀𝑋 be the matroid represented by 𝑋. For any 𝐵 ∈ C(𝑀) and
any subset 𝐴 ⊆ [𝑑] with |𝐴| = |𝐵 |, we have [𝐴|𝐵]𝑋 = 0. Therefore, any 𝐵 ∈ C(𝑀) is also a dependent set of 𝑀𝑋,
hence 𝑀𝑋 ≥ 𝑀. This shows that 𝑉C(𝑀 ) ⊆ 𝑉comb

𝑀
. □

In general, the combinatorial closures of matroid varieties are reducible.

Figure 2: (Left) A realization of 𝑀 from Example 3.6. (Center and Right) Realizations of matroids corresponding
to the prime components of 𝐼Δ in Example 3.12.

Example 3.6. Let 𝑑 = 3, 𝑛 = 7 and Δ = min({123, 145, 167} ∪
([7]
4

)
). It is easy to check that Δ is the collection

of circuits for a matroid 𝑀, hence 𝑀 is the unique minimal matroid for Δ. By Lemma 3.5, the ideal of the
combinatorial closure is given by the radical ideal 𝐼C(𝑀 ) = 𝐼Δ = ⟨[123], [145], [167]⟩ ⊆ C[𝑥1,1, . . . , 𝑥3,7]. Using
Macaulay2 [GS], we find that 𝐼C(𝑀 ) has two prime components given by

𝐼C(𝑀 ) = 𝐼1 ∩ 𝐼2 = ⟨𝑥1,1, 𝑥2,1, 𝑥3,1⟩ ∩ ⟨[123], [145], [167], [234] [567] − [235] [467]⟩ .

By inspection, the ideal 𝐼1 is the ideal of the matroid 𝑀 ′ that has a single circuit 1. In this case, we say that 𝑀 ′

is obtained from 𝑀 by setting 1 to be a loop. On the other hand, 𝐼2 is the ideal of the matroid 𝑀 and is called
the central component of the combinatorial closure. The generator [234] [567] − [235] [467] of 𝐼2 is a geometric
condition satisfied by realizations of 𝑀. More precisely, it is a condition satisfied by six generic points which lie
on three lines that intersect at a common point, as shown in Figure 2.

In Lemma 5.13, we generalize this example to an arbitrary number of lines meeting at a point.
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Remark 3.7. We note that Example 3.6 has been studied in [BS89, Theorem 4.28] to resolve a problem of White,
by showing that there exists a matroid 𝑀 and a dependent matroid 𝑁 (Section 2.3) such that Γ𝑀 ∩ Γ𝑁 = ∅. In
Section 6, we provide a family of matroids 𝑀 and dependent matroids 𝑁 such that Γ𝑀 ∩ Γ𝑁 ≠ ∅. In particular,
the perturbation procedure (Lemma 5.9) allows us to approximate realizations of 𝑁 with realizations of 𝑀. This
gives a way to generate families of dependent matroids that give a positive answer to White’s problem.

We recall the definition of ideal quotients and saturation. See, e.g. [CLO15, §4] for more details.

Lemma 3.8. Consider a polynomial ring 𝑅 = K[𝑥1, . . . , 𝑥𝑛]. Let 𝐼 ⊂ 𝑅 be a radical ideal and 𝐽 ⊂ 𝑅 any ideal.
Then 𝐼 : 𝐽 = 𝐼 : 𝐽∞, where

𝐼 : 𝐽 = { 𝑓 ∈ 𝑅 : 𝑓 𝐽 ⊆ 𝐼} and 𝐼 : 𝐽∞ =
⋃
𝑖≥1
(𝐼 : 𝐽𝑖).

For a matroid 𝑀, let us define its bases ideal 𝐽𝑀 to be

𝐽𝑀 =

√︄ ∏
𝐵 basis of 𝑀

〈
[𝐴|𝐵]𝑋 : 𝐴 ⊆ [𝑑], |𝐴| = |𝐵 |

〉
.

If 𝑀 has rank 𝑑, then 𝐽𝑀 is generated by the product of all maximal minors of 𝑋 whose columns are bases of 𝑀.

Proposition 3.9. The ideal of the matroid variety can be obtained by saturating 𝐼 (𝑉comb
𝑀
) with respect to 𝐽𝑀 :

𝐼𝑀 = 𝐼 (𝑉comb
𝑀 ) : 𝐽∞𝑀 .

Proof. Geometrically, the saturation 𝐼 (𝑉comb
𝑀
) : 𝐽∞

𝑀
corresponds to the ideal of 𝑉comb

𝑀
\𝑉 (𝐽𝑀 ); see [CLO15, §4,

Theorem 10(iii)]. By Lemma 3.8, if 𝐼 is a radical ideal, then 𝐼 : 𝐽 = 𝐼 : 𝐽∞. So it is enough to show that the
difference 𝑉comb

𝑀
\𝑉 (𝐽𝑀 ) is the realization space Γ𝑀 . For this, notice that the variety 𝑉 (𝐽𝑀 ) consists of collections

of vectors for which at least one of the bases 𝐵 of 𝑀 is dependent. Therefore, the difference 𝑉comb
𝑀

\ 𝑉 (𝐽𝑀 )
consists of collections of vectors 𝑉comb

𝑀
for which all bases 𝐵 of 𝑀 are independent, which is by definition the

realization space Γ𝑀 . □

The above observation is shown in [STW21, Proposition 2.1.3] under the identification of C𝑑×𝑛 with an open
affine patch of the Grassmannian, as explained in Remark 3.2.

Proposition 3.10. Let Δ ⊆ 2[𝑛] be a hypergraph on [𝑛] and let M′ (Δ) be the collection of minimal realizable
matroids whose dependent sets contain Δ. Then√︁

𝐼Δ =
⋂

𝑀∈M′ (Δ)
𝐼comb
𝑀 or equivalently 𝑉Δ =

⋃
𝑀∈M′ (Δ)

𝑉comb
𝑀 .

Proof. Following the notation of Theorem 3.1, letM(Δ) be the collection of realizable matroids whose collections
of dependent sets contain Δ. We have that M′ (Δ) consists of the minimal matroids in M(Δ). We also have
that if 𝑀 ≤ 𝑀 ′ then 𝐼comb

𝑀
⊆ 𝐼comb

𝑀′ . So it follows that,⋂
𝑀∈M′ (Δ)

𝐼comb
𝑀 =

⋂
𝑀∈M(Δ)

𝐼comb
𝑀 .

And so the proof is complete by Theorem 3.1. □

3.3 Decomposition strategy. We can now make precise the decomposition strategy detailed in §1. By
Proposition 3.10, we have a decomposition of the hypergraph variety 𝑉Δ into combinatorial closures of minimally
dependent matroids for Δ. To upgrade this to an irreducible decomposition, there are several remaining steps.

First, one has to find the minimal collection of matroid varieties which cover 𝑉comb
𝑀

. In particular, one has to
show that the matroids appearing in this collection are realizable, since otherwise they are clearly redundant. In
general, these matroid varieties might not be irreducible, so one has to either prove their irreducibility (which we
will do in several examples) or find their irreducible decomposition. By going through these steps, we will obtain
such decompositions for various families of hypergraphs. It still might be the case that some of the components
are redundant. So to obtain the actual minimal decomposition, one has to check which ones are necessary. We
remark that step (ii) of the decomposition strategy, i.e. writing 𝑉comb

𝑀
as a minimal union of matroid varieties,

involves showing that the matroid varieties whose union is 𝑉comb
𝑀

are nonempty. In other words, we must show
that the matroids are realizable. In particular, if 𝑉comb

𝑀
= 𝑉𝑀 for each minimally dependent matroid 𝑀 of Δ,

then step (ii) can be accomplished by showing that all of the minimally dependent matroids for Δ are realizable.
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Figure 3: The Fano plane (left) and the configurations of the associated primes of its combinatorial closure.

Example 3.11 (Fano plane). Let 𝑑 = 3 and consider the hypergraph Δ = {124, 136, 157, 235, 267, 347, 456}. It
is straightforward to check that Δ is the collection of circuits for a matroid 𝑀, which is called the Fano plane.
The matroid 𝑀 is not realizable over C so its realization space Γ𝑀 is empty. However its combinatorial closure
is non-empty and we can compute the associated prime ideals of 𝐼Δ in Macaulay2 [GS]. We find that 𝐼Δ has 22
associated primes which are all matroid varieties of 4 combinatorial types of point and line configurations; see
Figure 3. The configurations in the figure, from left to right, are:

• A single line with 7 points. The ideal is a hypergraph ideal 𝐼Δ0
where Δ =

([7]
3

)
.

• A quadrilateral set, see [RG11, §8], together with a loop. There are 7 associated primes of 𝐼Δ with this
combinatorial type which are parametrised by the point of the Fano plane to be taken as the loop.

• A line with 3 points together with a free point with 4-labels. There are 7 associated primes of 𝐼Δ with
this combinatorial type which are parametrised by the lines of the Fano plane.

• A line with 3 points together with a free point. Each point on the line has two labels. There are 7
associated primes of 𝐼Δ with this combinatorial type which are parametrised by the point of the Fano
plane to be taken as the free point.

Example 3.12. Let 𝑑 = 3 and 𝐸 = [9] ∪ {1̄, 2̄, 3̄}. Let Δ be the hypergraph

Δ = {123, 456, 789, 1̄2̄3̄, 147, 1̄14, 1̄47, 1̄17, 258, 2̄58, 2̄28, 2̄25, 369, 3̄69, 3̄39, 3̄36}

depicted in Figure 2. It is shown in [PS19, Theorem 4.1] that 𝐼Δ has two prime components such that:

• The first component is generated by all 3-minors of a generic 3 × 12 matrix. Hence, it corresponds to the
matroid 𝑀0 with dependent sets,

C(𝑀0) = {all 3-subsets of 𝐸}.

• The second component is generated by 44 polynomials of which 16 are the original generators of 𝐼Δ and
the remaining 28 generators are all homogeneous of degree 12.

Note that there exists a unique minimal matroid 𝑀 for Δ. The circuits of 𝑀 are elements of Δ and all
subsets of size 4 of 𝐸 , which do not contain an element of Δ. (For the proof of a more general statement,
see Theorem 7.5.) Therefore, by Proposition 3.10, we have

√
𝐼Δ = 𝐼comb

𝑀
, so the result of [PS19] describes the

decomposition of the combinatorial closure of 𝑀. This provides a geometric meaning of the second component
of the decomposition. In particular, it can be obtained by saturating

√
𝐼Δ as in Proposition 3.9; see Figure 2.

Therefore, we can give a geometric interpretation of the second component described above. More precisely,
the 28 non-determinantal generators are analogous to the geometric constraints of quadrilateral sets; see [RG11,
§8]. More precisely, given a generic collection of 12 points arranged in a 3× 4 grid in the projective plane, if we
project this configuration onto a line then there are constraints on the distances between the projected points.
The 28 polynomials describe precisely these constraints.

4 Irreducible point and line configurations

In this section, we will introduce point and line configurations. These are a family of matroids whose ideals
appear as prime components of many examples of hypergraph ideals. We will prove Theorem 4.5 which allows
us to inductively build up configurations with irreducible varieties. In particular, using this theorem, we will
show that all configurations with at most 6 lines have irreducible varieties; see Theorem 4.2.
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Notation. We write C = (P,L,I) for a configuration of points and lines in the plane, or simply a configuration.
The set P = {𝑝1, . . . , 𝑝𝑛} is the collection of points, L = {ℓ1, . . . , ℓ𝑘} is the collection of lines and I ⊆ P × L is
the set of incidences of points and lines. If the point 𝑝 lies on the line ℓ then (𝑝, ℓ) ∈ I and we say that 𝑝 is
incident to line ℓ, or ℓ passes through 𝑝. We assume that any two distinct lines meet in at most one point.

For each point 𝑝 ∈ P, we write L𝑝 ⊆ L for the set of lines which pass through the point 𝑝. With a slight
abuse of notation, we will often identify the line ℓ ∈ L with the set of points which lie on the line ℓ.

Definition 4.1. Let C = (P,L,I) be a configuration. For a line ℓ ∈ L we define C\ℓ = (P′,L\ℓ,I∩(P′×(L\ℓ))
to be the configuration where P′ is the collection of points of C which do not lie solely on ℓ.

For each configuration C = (P,L,I), there is a simple matroid of rank at most 3 associated to it. The
matroid has ground set P, and is defined such that a 3-subset 𝐷 ⊆ P is dependent if and only if there exists a
line ℓ ∈ L with 𝐷 ⊆ ℓ. The realization spaces for point and line configurations, are the realization spaces for
the matroid; see Definition 2.3. In the projective plane, any two distinct points determine a line and so any
pair of points in P can be taken to lie on a line. However, if there is not a third element of P on the line, then
this line does not give rise to any dependent set in the matroid. Therefore, in the remainder of this section, we
require that each line in L contain three or more points in P.

We note that configurations C are purely combinatorial objects. In particular, they need not be realizable,
i.e. we may have ΓC = ∅. For example, the Fano plane, see Example 3.11, is the smallest non-realizable
configuration over C. In the following sections, the purpose of using configurations is to give a parametrization
of the irreducible components of certain hypergraph ideals via their realization spaces ΓC . For these cases,
we may assume that the configurations are realizable. However, for families of configurations that we study
directly, such as forest-like configurations, we will prove that they are indeed realizable.

Theorem 4.2. For any configuration C with at most 6 lines, ΓC is irreducible with respect to the Zariski topology.

We prove this theorem using the Grassmann-Cayley algebra. We review some of its theory following [Stu08].

Definition 4.3. Let 𝑉 be a vector space of dimension 𝑑 over C and let
∧(𝑉) be the exterior algebra of 𝑉 . The

Grassmann-Cayley algebra is the vector space
∧(𝑉) together with the two operations ∧ and ∨. We denote by

𝑎1 ∨ 𝑎2 ∨ · · · ∨ 𝑎𝑘 ∈
∧(𝑉) the extensor of length 𝑘 which is also referred to as the join of 𝑎1, 𝑎2 . . . , 𝑎𝑘 . The meet

operation ∧ is a binary operation on two extensors 𝐴 and 𝐵 of length 𝑗 , 𝑘 with 𝑗 + 𝑘 ≥ 𝑑 as:

𝐴 ∧ 𝐵 :=
∑︁
𝜎

sign(𝜎) [𝑎𝜎 (1) , . . . , 𝑎𝜎 (𝑑−𝑘 ) , 𝑏1, . . . , 𝑏𝑘]𝑎𝜎 (𝑑−𝑘+1) ∨ · · · ∨ 𝑎𝜎 ( 𝑗 ) ,

where the sum is taken over all permutations 𝜎 of {1, 2, . . . , 𝑗}.

Any extensor 𝐴 = 𝑎1∨ · · · ∨ 𝑎𝑘 has an associated vector space 𝐴 = span(𝑎1, . . . , 𝑎𝑘) with following properties.

Lemma 4.4. Let 𝐴 and 𝐵 be two extensors. Then the following hold:

• Any extensor 𝐴 is uniquely determined from 𝐴 up to a scalar multiple [Stu08, Section 3.3].

• The meet of two extensors is again an extensor [Stu08, Theorem 3.3.2 (b)].

• We have that 𝐴 ∧ 𝐵 ≠ 0 if and only if 𝐴 + 𝐵 = 𝑉 . In this case 𝐴 ∧ 𝐵 = 𝐴 ∩ 𝐵 [Stu08, Theorem 3.3.2 (c)].

In order to prove Theorem 4.2, we will take cases on the possible configurations. We begin by proving the
following theorem which allows us to build new irreducible configurations from old. The cases in the following
theorem are depicted in Figure 4 and explained further in Example 4.6.

Theorem 4.5. Let C = (P,L,I) be a configuration and ℓ a line in L. Let 𝑆 = {𝑝 ∈ ℓ : |L𝑝 | ≥ 3} be set of the
points on ℓ which lie on at least 2 other lines. Suppose that |𝑆 | ≤ 2. If ΓC\ℓ is irreducible then so is ΓC.

Proof. Let 𝑛 be the number of points in C\ℓ and ℓ1, . . . , ℓ𝑚 be the lines of C\ℓ which intersect ℓ in L at a unique
point. That is, if ℓ𝑖 intersects ℓ at the point 𝑝, then there are no other lines through 𝑝, i.e. L𝑝 = {ℓ, ℓ𝑖}. For
each line ℓ𝑖 we fix two distinct points 𝑝𝑖,1 and 𝑝𝑖,2 in P\ℓ which lie on ℓ𝑖. For each realization 𝛾 ∈ ΓC\ℓ we write
𝛾1, . . . , 𝛾𝑛 ∈ C3 for the points of 𝛾 and 𝛾ℓ1 , . . . , 𝛾ℓ𝑚 ⊆ C3 for the 2-dimensional linear subspaces corresponding
to the lines. Note that the subspace 𝛾ℓ𝑖 is the linear span of the points 𝛾𝑝𝑖,1 and 𝛾𝑝𝑖,2 . We denote by 𝑟 the
number of points of C which lie on ℓ and no other lines. We proceed by taking cases on |𝑆 | ∈ {0, 1, 2}.
Case 1. Assume that |𝑆 | = 0. We define the space

𝑋 = ΓC\ℓ ×HomC (C2,C3) × (C2)𝑟 × C𝑚,

where HomC (C2,C3) denotes the set of linear maps from C2 to C3. Here, we think of a linear map 𝜙 ∈
HomC (C2,C3) as a 3 × 2 matrix with entries in C. We define the subset 𝑋 ′ ⊆ 𝑋 to be the collection of
(𝛾, 𝜙, (𝑦1, . . . , 𝑦𝑟 ), (𝜆1, . . . , 𝜆𝑚)) ∈ 𝑋 such that the following conditions hold:
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(a) rank(𝜙) = 2,

(b) for each 𝑖 ∈ [𝑛], the point 𝛾𝑖 does not lie in 𝜙(C2) ⊆ C3,

(c) for each 𝑖 ∈ [𝑟], the point 𝜙(𝑦𝑖) does not lie in any of the subspaces 𝛾ℓ1 , . . . , 𝛾ℓ𝑚 ,

(d) for any 𝑖, 𝑗 ∈ [𝑟], if 𝜙(𝑦𝑖) = 𝜙(𝑦 𝑗 ) then 𝑖 = 𝑗 .

Since ΓC\ℓ , (C2)𝑟 and HomC (C2,C3) are irreducible, we have that 𝑋 is a product of irreducible varieties over
an algebraically closed field. Hence, 𝑋 is also irreducible. By construction, each of the conditions for the subset
𝑋 ′ ⊆ 𝑋 above is a rank constraint on certain submatrices. Explicitly we have that:

• rank(𝜙) ≠ 2 if all of the 2-minors of 𝜙 are zero,

• Assuming that rank(𝜙) = 2, a point 𝛾𝑖 lies inside 𝜙(C2) if the 3-minor [𝛾𝑖 , 𝜙(1, 0), 𝜙(0, 1)] is zero,

• A point 𝜙(𝑦𝑖) lies inside the subspace 𝛾ℓ𝑖 if the 3-minor [𝜙(𝑦𝑖), 𝛾𝑝𝑖,1 , 𝛾𝑝𝑖,2 ] is zero,

• If rank(𝜙) = 2 then it follows that 𝜙 is injective.

Therefore 𝑋 ′ ⊆ 𝑋 is an open subset which implies that 𝑋 ′ is also irreducible.
Now, for each (𝛾, 𝜙, (𝑦1, . . . , 𝑦𝑟 ), (𝜆1, . . . , 𝜆𝑚)) ∈ 𝑋 ′ and for each 𝑖 ∈ [𝑚] we fix a non-zero point 𝑞𝑖 ∈ C3

which lies in the intersection of 𝛾ℓ𝑖 and 𝜙(C2). Note that the ambient space is C3, hence any pair of 2-
dimensional linear subspaces intersect. By construction of 𝑋 ′, we have that 𝜙(C2) and 𝛾ℓ𝑖 do not coincide.
Hence, dim(𝜙(C2) ∩𝛾ℓ𝑖 ) = 1 and 𝑞𝑖 is unique up to a non-zero scalar multiple. We give an explicit formula for 𝑞𝑖
using the Grassmann-Cayley algebra as follows. Recall that 𝛾ℓ𝑖 is the span of 𝑎1 := 𝛾𝑝𝑖,1 , 𝑎2 := 𝛾𝑝𝑖,2 and 𝜙(C2) is
the span of 𝑏1 := 𝜙(1, 0), 𝑏2 := 𝜙(0, 1). Since the spaces 𝛾ℓ𝑖 and 𝜙(C2) do not coincide, they must span the entire
space C3. Since dim(𝜙(C2)∩𝛾ℓ𝑖 ) = 1, by Lemma 4.4, we have that 𝑞𝑖 := [𝑎1, 𝑏1, 𝑏2]𝑎2−[𝑎2, 𝑏1, 𝑏2]𝑎1 ∈ 𝛾ℓ𝑖∩𝜙(C2)
is a non-zero vector lying in the intersection. We define the map

𝜓 : 𝑋 ′ → (C3)𝑛+𝑚+𝑟 : (𝛾, 𝜙, (𝑦1, . . . , 𝑦𝑟 ), (𝜆1, . . . , 𝜆𝑚)) ↦→ (𝛾, 𝜆1𝑞1, . . . , 𝜆𝑚𝑞𝑚, 𝜙(𝑦1), . . . , 𝜙(𝑦𝑟 )).

By construction, 𝜙 is a linear map and the coordinates of the points 𝑞𝑖 ∈ C3 are polynomials in the entries of
𝛾. Thus 𝜓 is a polynomial map and so it is continuous.

It remains to show that ΓC is an open subset of the image of 𝜓. It is easy to see that the image of 𝜓 contains
ΓC since any realization of C can be viewed as a realization of ΓC\ℓ together with some additional points on
ℓ. To show that ΓC is open in the image of 𝜓, we note that the image of 𝜓 is contained in the combinatorial
closure 𝑉comb

C . So ΓC is obtained from the image of 𝜓 by removing the vanishing locus of the bases ideal of 𝐽C ;
see Proposition 3.9.

Case 2. Assume that |𝑆 | = 1 and write 𝑆 = {𝑠} where 𝑠 is the corresponding point of intersection in C and C\ℓ.
For any 𝛾 ∈ ΓC we denote by 𝛾𝑠 ∈ C3 the coordinates of the point corresponding to 𝑠. We define the space

𝑋 = {(𝛾, 𝜙, (𝑦1, . . . , 𝑦𝑟 ), (𝜆1, . . . , 𝜆𝑚)) : 𝜙(1, 0) = 𝛾𝑠} ⊆ ΓC\ℓ ×HomC (C2,C3) × (C2)𝑟 × C𝑚

where the condition 𝜙(1, 0) = 𝛾𝑠 on a matrix 𝜙 ∈ HomC (C2,C3) is equivalent to the condition that the first
column of 𝜙 is equal to 𝛾𝑠. So, we have that 𝑋 � ΓC × C3 × (C2)𝑟 × C𝑚 which is irreducible. We define the
subset 𝑋 ′ ⊆ 𝑋 identically to Case 1, except that we allow 𝛾𝑠 ∈ 𝜙(C2) in condition (b). Note that 𝛾𝑠 ≠ 0 and so
by the same argument, 𝑋 ′ ⊆ 𝑋 is an open subset. The remainder of the argument from Case 1, including the
construction of the points 𝑞1, . . . , 𝑞𝑚 ∈ C3 and the map 𝜓, follows identically.

Case 3. Assume that |𝑆 | = 2 and write 𝑆 = {𝑠1, 𝑠2} for the corresponding points of intersection lying in both C
and C\ℓ. For any 𝛾 ∈ ΓC we denote by 𝛾𝑠1 , 𝛾𝑠2 ∈ C3 the coordinates of the points corresponding to 𝑠1 and 𝑠2,
respectively. We define the space

𝑋 = {(𝛾, 𝜙, (𝑦1, . . . , 𝑦𝑟 ), (𝜆1, . . . , 𝜆𝑚)) : 𝜙(1, 0) = 𝛾𝑠1 , 𝜙(0, 1) = 𝛾𝑠2 } ⊆ ΓC\ℓ ×HomC (C2,C3) × (C2)𝑟 × C𝑚

where the conditions 𝜙(1, 0) = 𝛾𝑠1 and 𝜙(0, 1) = 𝛾𝑠2 on a matrix 𝜙 ∈ HomC (C2,C3) are equivalent to the
conditions that the first column of 𝜙 is equal to 𝛾𝑠1 and the second column of 𝜙 is equal to 𝛾𝑠2 , respectively.
Thus 𝑋 � ΓC × (C2)𝑟 ×C𝑚, which is irreducible. We define the subset 𝑋 ′ ⊆ 𝑋 identically to Case 1, except that
we allow 𝛾𝑠1 , 𝛾𝑠2 ∈ 𝜙(C2) in condition (b). Note that 𝑠1 and 𝑠2 are distinct points of C so rank(𝜙) = 2. By the
same argument as in Case 1, 𝑋 ′ ⊆ 𝑋 is an open subset. The remainder of the argument from Case 1, including
the construction of the points 𝑞1, . . . , 𝑞𝑚 ∈ C3 and the map 𝜓, follows identically. □
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Case 1. Case 2. Case 3.

Figure 4: Configurations in Example 4.6. The left and middle figures are obtained from the figure immediately
to their right by removing the line ℓ.

Example 4.6. Let C be the configuration in Case 1 of Figure 4 and ℓ the line indicated in the diagram. It is
shown in [CMM21] that all configurations with at most 4 lines have irreducible realization spaces. In particular,
ΓC\ℓ is irreducible. For each point 𝑝 on ℓ we have that |L𝑝 | = 2, thus ΓC is irreducible by Theorem 4.5. Note
that, in the proof, the points 𝑝1,1, 𝑝1,2, as shown in the diagram, are used to give coordinates on the line ℓ1,
which allows us to give an explicit formula for the intersection point 𝑞1 of ℓ and ℓ1.

In the figure, the configurations labelled Case 2 and Case 3 show examples of configurations, and the line
ℓ, corresponding to their respective cases in the proof of Theorem 4.5. The points which lie in the set 𝑆 are
labelled by 𝑠, 𝑠1, 𝑠2. In particular, each of the realization spaces for these configurations is irreducible.

The proof of Theorem 4.2 follows easily from the above theorem.

Proof of Theorem 4.2. We show that ΓC is irreducible by taking cases on the number of lines in C. If C
contains at most 4 lines then it is irreducible by [CMM21, Corollary 4]. On the other hand, if C contains 5 or
6 lines, then we will show that Theorem 4.5 applies, and so we reduce to a line configuration with fewer lines.

Let ℓ be any line of C and let 𝑆 = {𝑝 ∈ ℓ : |L𝑝 | ≥ 3}. We show that |𝑆 | ≤ 2 by contradiction. Assume that
|𝑆 | ≥ 3. So there are three distinct points 𝑝1, 𝑝2, 𝑝3 ∈ ℓ such that |L𝑝𝑖 | ≥ 3 for each 𝑖 ∈ [3]. Note that a pair of
lines can intersect in at most one point. So if ℓ′ ≠ ℓ is a line passing through 𝑝1 then it does not pass through
𝑝2 or 𝑝3. Since |L𝑝𝑖 | ≥ 3 for each 𝑖, the total number of distinct lines passing through 𝑝1, 𝑝2 and 𝑝3 is at least
7, a contradiction. By induction, ΓC\ℓ is irreducible. So by Theorem 4.5 we have that ΓC is irreducible. □

Remark 4.7. The proof of Theorem 4.2 shows that Theorem 4.5 applies to all line configurations with at most 6
lines. However, for configurations with 7 lines, consider the Fano plane depicted in Figure 3. This configuration
contains 7 points each of which belongs to 3 lines. Therefore, Theorem 4.5 does not apply.

5 Combinatorial closures of configurations

In this section, we will focus on point and line configurations whose underlying graph is a forest. As in the
previous section, if C = (P,L,I) is a point and line configuration, then each line in L contains at least three
points in P, unless stated otherwise.

We will give a complete description of their combinatorial closures by describing their components. Our
main tool for this section is the perturbation argument which gives a way to determine when a particular point
in the combinatorial closure belongs to a specific realization space. Let us begin by making precise our notation.

Let C = (P,L,I) be a point and line configuration with the ordered set of points P = {𝑝1, . . . , 𝑝𝑛}. Let 𝐺C
be a graph with vertex set P and edges {𝑝𝑖 , 𝑝 𝑗 } such that

• both points lie on the same line ℓ ∈ L (which is necessarily unique) and

• there is no point 𝑝𝑘 lying on ℓ with 𝑖 < 𝑘 < 𝑗 (or 𝑗 < 𝑘 < 𝑖).

Intuitively, 𝐺C is obtained from C by making points into vertices and lines into paths. Moreover, every edge
of 𝐺C is in exactly one of these paths. Each pair of paths intersects in at most one vertex, and this occurs if
and only if the corresponding lines intersect in a point of P.

Definition 5.1. A configuration C is forest-like if the corresponding graph 𝐺C is a forest, i.e. it has no cycle.

Note that the graph 𝐺C depends on the choice of ordering of the points in P. However, the condition for 𝐺C
to be a forest is independent of this choice. Essentially, swapping the order of two points on a line corresponds
to simply “flipping” an edge of 𝐺C . We now make this more precise.
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Lemma 5.2. If C is forest-like, then any ordering of its points P makes 𝐺C a forest.

Proof. Let P = {𝑝1, . . . , 𝑝𝑛} be an ordering of P such that 𝐺C is a forest. Inductively, it suffices to show that
the order {𝑝1, . . . , 𝑝𝑖−1, 𝑝𝑖+1, 𝑝𝑖 , 𝑝𝑖+2, . . . , 𝑝𝑛} gives rise to a forest.

If 𝑝𝑖 and 𝑝𝑖+1 do not lie on the same line, then there is no change to 𝐺C . So it suffices to consider the case
where 𝑝𝑖 and 𝑝𝑖+1 lie on a line ℓ ∈ L. Then {𝑝𝑖 , 𝑝𝑖+1} is an edge in 𝐺C . Let us call these vertices of the graph
𝑣 and 𝑤. Let 𝐴(𝑣) be the set of vertices of 𝐺C , adjacent to 𝑣, whose corresponding points in C lie on some line
ℓ′ ≠ ℓ, and define 𝐴(𝑤) similarly. Then swapping the order of 𝑖 and 𝑖 + 1 corresponds to replacing the edges in
{{𝑥, 𝑣} : 𝑥 ∈ 𝐴(𝑣)} ∪ {{𝑥, 𝑤} : 𝑥 ∈ 𝐴(𝑤)} with the edges in {{𝑥, 𝑣} : 𝑥 ∈ 𝐴(𝑤)} ∪ {{𝑥, 𝑤} : 𝑥 ∈ 𝐴(𝑣)}. One can see
that this resulting graph is still a forest if 𝐺C was a forest. □

Because of Lemma 5.2, Definition 5.1 is well-defined for point and line configurations with unordered sets
of vertices. So, we say that C is forest-like if there exists an ordering of its vertices such that the resulting
configuration is forest-like.

The next result will also be helpful.

Lemma 5.3. If C = (P,L,I) is a forest-like configuration with L ≠ ∅, then there exists a line ℓ which intersects
C \ ℓ in at most one point of P.

Proof. Because two lines intersect in at most one point, it will suffice to show that there exists a line ℓ which
intersects C \ ℓ (at a point of P) in at most one line. Suppose otherwise for a contradiction. Then every line
intersects with at least two other lines. Let ℓ1, ℓ2, . . . be a sequence of lines in C such that ℓ𝑖 intersects both ℓ𝑖−1
and ℓ𝑖+1. Since there are only finitely many lines, eventually there will be a repeated element ℓ𝑘 of the sequence.

Since these lines correspond to paths in 𝐺C , there is a cycle in 𝐺C whose set of edges includes at least
one edge from each path corresponding to the lines in the sequence ℓ𝑘 , ℓ𝑘+1, . . . , ℓ𝑘 . This cycle contradicts the
assumption that 𝐺C is a forest. □

It is perhaps worth noting that forest-likeness is a rather restrictive condition for a matroid of rank 3.
However, forest-like configurations are not regular (realizable over every field) matroids. For example, no line
with four or more points is a regular matroid. Each forest-like configuration is realizable over all infinite fields.
To show this, it will be useful to recall the matroid-theoretic notion of freely adding an element to a flat of a
matroid. Intuitively, this operation takes a new element of the ground set and adds it to a flat as “freely” as
possible, that is, we keep as many sets independent as possible; see [Cra65] and [Oxl11, Section 7.2]. We will
also use this notion in Section 6.3.

Definition 5.4. Let 𝐹0 be a flat of a matroid 𝑀 with rank function 𝑟𝑀 . We say that 𝑀 ′ is the single-element
extension obtained by freely adding 𝑒 to 𝐹0 if the flats of 𝑀 ′ fall into the following disjoint classes:

• flats 𝐹 of 𝑀 that do not contain 𝐹0,

• sets 𝐹 ∪ 𝑒 where 𝐹 is a flat of 𝑀 that contains 𝐹0, and

• sets 𝐹 ∪ 𝑒 where 𝐹 is a flat of 𝑀 that does not contain 𝐹0, and there is no flat 𝐹′ of 𝑀 of rank 𝑟𝑀 (𝐹) + 1
such that 𝐹 ⊆ 𝐹′ and 𝐹0 ⊆ 𝐹′.

The following results are fairly well-known. In particular, Lemma 5.5 follows from a result of Piff and Welsh
[PW70]; see also [Oxl11, Proposition 11.2.16]. We provide a more direct proof to keep the paper self-contained.

Lemma 5.5. Let F be an infinite field, and let 𝑀 ′ be a matroid obtained by freely adding an element to a flat
𝐹 of a matroid 𝑀. Then 𝑀 ′ is F-realizable if and only if 𝑀 is F-realizable.

Proof. Realizability over a field is closed under deletion. Therefore, if 𝑀 ′ is F-realizable, then so is 𝑀.
For the converse, let 𝑀 be F-realizable, and let 𝑟 be the rank function of 𝑀. A flat 𝐹 of 𝑀 corresponds to a

linear subspace of F𝑟 (𝑀 ) of dimension 𝑟 (𝐹). To construct a representation of 𝑀 ′ we must find a point 𝑝 in the
subspace corresponding to 𝐹 that is not contained in any subspace corresponding to a flat 𝐹′ of 𝑀 that does
not contain 𝐹. For any such flat 𝐹′, the rank of 𝐹 ∩𝐹′ is strictly less than 𝑟 (𝐹). Therefore, since F is an infinite
field, there are infinitely many such points 𝑝. □

Lemma 5.6. Let 𝑀 ′ be obtained by adding a coloop to an F-realizable matroid 𝑀. Then 𝑀 ′ is F-realizable.

Proof. Let 𝐴 be a matrix whose columns form a realization of 𝑀. We construct a matrix realizing 𝑀 ′ by adding
a row and column to 𝐴 such that all entries of this row and column are 0 except for the entry contained in both
the row and column. □

Proposition 5.7. Let C = (P,L,I) be a forest-like point and line configuration, and let 𝑀 be the simple
matroid of rank at most 3 associated with it. Then 𝑀 is realizable over all infinite fields.
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Proof. We proceed by induction on the number of lines in L. If |L| = 0, then 𝑀 is the uniform matroid 𝑈𝑟 , | P | ,
where 𝑟 = min{3, |P |}. For all positive integers 𝑛, it is clear that 𝑈𝑛,𝑛 is realizable over all fields. If 𝑛 > 3, then
𝑈3,𝑛 is obtained from 𝑈3,3 by repeatedly freely adding elements to the rank-3 flat of the matroid. Therefore, by
Lemma 5.5, 𝑈𝑟 , | P | is realizable over all infinite fields for all values of 𝑛.

Now, suppose that we have shown that the result holds for all forest-like configurations with at most 𝑘 − 1
lines and we wish to prove the result for C = (P,L,I), where |L| = 𝑘. By Lemma 5.3, there is a line ℓ in L
that intersects with at most one of the points in C \ ℓ. By the induction hypothesis, the matroid associated
with C \ ℓ is realizable over all infinite fields.

First, we consider the case where ℓ intersects with a point 𝑣 in C \ ℓ. Let 𝑤 be an additional point in ℓ, and
let 𝑇 = ℓ \ {𝑣, 𝑤}. The matroid 𝑀\𝑇 is obtained from C \ ℓ either by adding 𝑤 as a coloop or by freely adding
𝑤 to the unique rank-3 flat (depending on the rank of C \ ℓ). Then 𝑀 is obtained from 𝑀\𝑇 by freely adding
the points in 𝑇 to the rank-2 flat defined by 𝑣 and 𝑤.

Now, we consider the case where ℓ and C \ ℓ have no points in common. Let 𝑤1 and 𝑤2 be points in ℓ,
and let 𝑇 = ℓ \ {𝑤1, 𝑤2}. The matroid 𝑀\(𝑇 ∪ {𝑤2}) is obtained from C \ ℓ either by adding 𝑤1 as a coloop or
by freely adding 𝑤1 to the unique rank-3 flat (depending on the rank of C \ ℓ). Then 𝑀\𝑇 is obtained from
𝑀\(𝑇 ∪ {𝑤2}) by freely adding 𝑤2 to the unique rank-3 flat. Then 𝑀 is obtained from 𝑀\𝑇 by freely adding
the points in 𝑇 to the rank-2 flat defined by 𝑤1 and 𝑤2.

In either case, Lemmas 5.5 and 5.6 imply that 𝑀 is realizable over all infinte fields. □

One can see that the last line ℓ to be added to a forest-like configuration in the inductive process described
in the proof of Proposition 5.7 has the property that |{𝑝 ∈ ℓ : |L𝑝 | ≥ 3}| ≤ 1. In particular, the only point 𝑝 ∈ ℓ
that might have the property that |L𝑝 | ≥ 3 is the one point that was on at least one of the other |L| − 1 lines
in L.

So, we have the following straightforward corollary of Theorem 4.5.

Corollary 5.8. The realization space of a forest-like configuration is irreducible with respect to Zariski topology.

The following proof introduces the perturbation procedure which we will use throughout this section.

Lemma 5.9 (Perturbation procedure). Let C be a forest-like configuration with realization space ΓC ⊆ C𝑑.
Assume that |L𝑝 | ≤ 2 for every 𝑝 ∈ P. For every 𝜖 > 0 and for any 𝐴 ∈ 𝑉comb

C \ΓC there exists 𝐴′ ∈ ΓC such

that | |𝐴 − 𝐴′ | | < 𝜖, where | | · | | is the Euclidean norm on C𝑑×𝑛.

Proof. We think of 𝐴 as a realization of a configuration C𝐴. As 𝐴 ∈ 𝑉comb
C \ΓC and the rank of the corresponding

matroid is at most 3, the dependencies satisfied by the configuration C𝐴 that are not in C are the following:

• A point of C may be a loop in C𝐴,

• Two distinct points of C may coincide in C𝐴,

• Two distinct lines in C may coincide in C𝐴,

• A triple of non-collinear points in C may lie on a common line in C𝐴.

We now construct the realization 𝐴′ by induction on the number of lines. For the base case, assume that the
configuration C𝐴 has no lines. Let us form 𝐴′ by going through the points in order 𝑝1, . . . , 𝑝𝑟 and perturbing
the corresponding vector in 𝐴 by at most 𝜖/𝑟. For each 𝑖 ∈ [𝑟], the vector corresponding to point 𝑝𝑖 is perturbed
such that it forms no dependencies, listed above, with subsets of points from {𝑝 𝑗 : 1 ≤ 𝑗 ≤ 𝑖}.

For the induction step, let us assume that for any forest-like configuration C′ = (P′,L′,I′) with at most
𝑛− 1 lines, we have that for all 𝜖 > 0 and any point 𝑥 ∈ 𝑉comb

C′ there exists 𝑥′ ∈ ΓC′ such that | |𝑥 − 𝑥′ | | < 𝜖 . Since
the graph 𝐺C is a forest, we may take ℓ ∈ L to be a line which intersects C\ℓ in at most one point. By the
inductive hypothesis, we can perturb vectors in 𝐴 corresponding to the configuration C\ℓ so that no additional
dependencies are satisfied. It remains to show that the points on the line ℓ may be perturbed to remove all
additional dependencies. We proceed by applying some or all of the following steps in order. In particular, after
each step we ensure that no new dependencies are introduced which would be removed in a previous step.

(a) Suppose that the line ℓ intersects a point 𝑝 in C𝐴 which does not belong to ℓ in C. We may perturb the
line ℓ in 𝐴 to produce 𝐴′ so that ℓ does not pass through the point 𝑝. In particular, if ℓ contains 𝑘 points
which are not 𝑝, then we perturb each point by at most 𝜖/𝑘.

(b) Suppose that the line ℓ coincides with another line ℓ′ in C𝐴. Since ℓ intersects C\ℓ in at most one point,
we may rotate the line ℓ in 𝐴 (i.e. perturb each point along the line) by small amount to obtain 𝐴′ so
that ℓ does not coincide with any other line. In particular, if ℓ contains 𝑘 points which do not lie on the
intersection of ℓ and ℓ′ in C, then we perturb each point by at most 𝜖/𝑘.
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Figure 5: Depiction of the steps in the perturbation procedure: (a) line ℓ is perturbed away from point 4, (b)
points 2, 3 ∈ ℓ′ are perturbed off ℓ, (c) coincident points 1, 2, 3 are perturbed away from each other along ℓ and
(d) point 1 is perturbed along ℓ away from the intersection.

(c) Suppose that two points in ℓ coincide or some of the points are loops. We may perturb these points away
from each other so that they remain on the line ℓ. Similarly if any of the points are loops, then we can
perturb these points away from zero by the same method. In particular, if a point 𝑝 in C𝐴 is a loop then
we recall that 𝑝 is incident to at most two lines. If it is incident to exactly two lines ℓ, ℓ′ in C, then we
may perturb 𝑝 along ℓ ∩ ℓ′. Otherwise if 𝑝 is incident only to ℓ in C then we may perturb it to some
non-zero point on ℓ.

(d) Suppose that for some point 𝑝𝑖 in ℓ, there are two distinct points 𝑝 𝑗 , 𝑝𝑘 in C\ℓ such that 𝑝𝑖 , 𝑝 𝑗 and 𝑝𝑘
lie on a line ℓ′ in C𝐴 but do not lie on a line in C. By the step (a) of the procedure, we have that ℓ and ℓ′

are distinct lines. For this case, it is useful to consider all lines of C𝐴, including those which contain only
two points. The points of intersection between ℓ and all other distinct lines of C𝐴 is a finite set. Since
we work over the infinite field C and the line is homeomorphic to C1 with respect to Euclidean topology,
therefore we may perturb 𝑝𝑖 along ℓ so that it lies only on ℓ and no other line.

As a result of the above procedure, we have constructed a realization 𝐴′ of C with | |𝐴 − 𝐴′ | | < 𝜖 . □

Remark 5.10. By perturbation procedure, the corresponding configurations are realizable over any subfield of C.

Let C be the configuration with two lines 123 and 345. Consider the following points in 𝑉comb
C :

𝐴 =


1 1 0 0 0
0 1 0 1 0
0 0 0 1 1

 and 𝐴′ =


1 1 0 0 0
0 1 𝜖 1 0
0 0 0 1 1

 . (2)

Note that 𝐴 ∉ ΓC is not a realization of C because 3 is a loop in C𝐴. See Figure 6. Following the perturbation
argument, we perturb 𝐴 to 𝐴′ which corresponds to moving point 3 so that it is non-zero and lies on the
intersection of the planes spanned by 1, 2 and 4, 5.

Figure 6: On the right a configuration C and on the left the configuration C𝐴 for the matrix 𝐴 in (2), together
with a depiction of the perturbation of point 3 taking 𝐴 ∈ 𝑉comb

C \ΓC to 𝐴′ ∈ ΓC . The loop 3 in C𝐴 is shown in
a square and the shaded planes in C3 correspond to the lines in C𝐴 and C.

Theorem 5.11. Let C = (P,L,I) be a forest-like configuration with |L𝑝 | ≤ 2 for every 𝑝 ∈ P. Then the
combinatorial closure 𝑉comb

C coincides with the matroid variety 𝑉C and in particular is irreducible.

Proof. Recall that 𝑉comb
C = 𝑉𝐶 (C) where 𝐶 (C) denotes the circuits of the matroid corresponding to C. So it

remains to show that 𝑉𝐶 (C) = 𝑉C . It is clear that 𝑉C ⊆ 𝑉𝐶 (C) . For the opposite inclusion, by the perturbation
procedure each 𝐴 ∈ 𝑉𝐶 (C) is a limit point of the configuration space ΓC with respect to the Euclidean topology.
This implies 𝑉𝐶 (C) ⊆ 𝑉C , since the Zariski topology is coarser than the Euclidean topology. □
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Definition 5.12. Let C be a point and line configuration and 𝑝 a point. Let D be the dependent sets of
the matroid associated to C on ground set P. By setting 𝑃 ⊆ P to be loops, we mean the matroid 𝑀 whose
dependent sets are given by D ∪ {𝐷 ⊆ P : 𝑃 ∩ 𝐷 ≠ ∅}. In other words the circuits of 𝑀 are: the circuits of the
matroid associated to C which do not meet 𝑃; and 𝑃 thought of as a set of loops.

Before proving an analogous result for a general forest-like point and line configuration, we consider the
following simple configuration which has at most one point that lies on more than two lines.

Lemma 5.13. Let C = (P,L,I) be a forest-like configuration which has a unique point 𝑝 := 𝑝𝑖 such that
|L𝑝 | > 2 and for all other points 𝑝 𝑗 we have |L𝑝 𝑗

| ≤ 2. Then the combinatorial closure 𝑉comb
C has exactly two

irreducible components: one is the central component and the other arises by setting the intersection point 𝑝 to
be a loop.

Proof. For each element 𝐴 ∈ 𝑉comb
C , we write 𝐴𝑝 ∈ C3 for the column vector corresponding to the intersection

point 𝑝. We have that 𝑉C is the central component of 𝑉comb
C and we write 𝑉0 = {𝐴 ∈ 𝑉comb

C : 𝐴𝑝 = 0} for
the collection of elements of the combinatorial closure where the intersection point is zero. Let C0 be the
configuration obtained from C by setting the intersection point to be a loop. Clearly, we have 𝑉C0 ∪ 𝑉C ⊆
𝑉0 ∪ 𝑉C ⊆ 𝑉comb

C . Since ΓC0 and ΓC are irreducible by Corollary 5.8, the lemma follows from showing that

𝑉C0 ∪𝑉𝐶 = 𝑉comb
C by proving the opposite inclusion.

Take any element 𝐴 ∈ 𝑉comb
C and fix 𝜖 > 0. We will show that there exists 𝐴′ ∈ ΓC0∪ΓC such that | |𝐴−𝐴′ | | < 𝜖

by applying the perturbation procedure. Let us take cases on whether 𝐴𝑝 is zero.

Case 1. Assume that 𝐴𝑝 = 0. Since C0 is a configuration that contains only points 𝑝 𝑗 with |L𝑝 𝑗
| ≤ 2, we may

apply the perturbation procedure to C0\𝑝. As a result we have 𝐴′ ∈ ΓC0 .
Case 2. Assume that 𝐴𝑝 ≠ 0. We may now apply steps (a) to (d) in the proof of the perturbation procedure
to construct a point 𝐴′ ∈ ΓC with | |𝐴 − 𝐴′ | | < 𝜖 . In the procedure, by assumption we have that 𝐴𝑝 ≠ 0. This
assumption guarantees that if 𝑝, 𝑝1, 𝑝2 are collinear points in C then the corresponding points are collinear in
C𝐴, and all lines arising in this way pass through the common point 𝑝. □

We are now ready to state our main result in this section for a general forest-like point and line configuration.

Theorem 5.14. Let C = (P,L,I) be a forest-like configuration. Let 𝑆 = {𝑝 ∈ P : |L𝑝 | ≥ 3} be the collection of
points contained in at least 3 lines. Then the combinatorial closure 𝑉comb

C has at most 2 |𝑆 | irredundant irreducible
components. Moreover, these components can be obtained from C by setting a subset of 𝑆 to be loops.

Proof. For each element 𝐴 ∈ 𝑉comb
C and point 𝑝 ∈ P, we write 𝐴𝑝 ∈ C3 for the column vector corresponding to

the point 𝑝. For each subset 𝐽 ⊆ 𝑆, we write C𝐽 for the configuration obtained from C by setting the points in
𝐽 to be loops. We will show that

⋃
𝐽⊆𝑆 𝑉C𝐽 = 𝑉comb

C . Note that by Corollary 5.8, each variety 𝑉C𝐽 is irreducible.

By construction, it is immediately clear that 𝑉C𝐽 ⊆ 𝑉comb
C for each 𝐽. So, to prove the theorem, it remains to

show the opposite inclusion, i.e. 𝑉comb
C ⊆ ⋃

𝐽⊆𝑆 𝑉C𝐽 . Fix 𝐴 ∈ 𝑉comb
C and 𝜖 > 0. We will construct 𝐴′ ∈ ΓC𝐽 for

some 𝐽 ⊆ 𝑆 such that | |𝐴 − 𝐴′ | | < 𝜖 .
We proceed by induction on 𝑠 := |𝑆 |. If 𝑠 = 1, then the result follows by Lemma 5.13. So let us assume that

𝑠 > 1. Since 𝐺C is a forest, we can find a point 𝑝 ∈ 𝑆 such that the path (if it exists) between any other pair of
points in 𝑆 does not pass through 𝑝. Let 𝑃 ⊆ P be the collection of points 𝑞 ∈ P lying in the same connected
component of 𝐺C as 𝑝, such that for all 𝑝′ ∈ 𝑆\{𝑝}, if there is a path from 𝑞 to 𝑝′, then the path passes through
𝑝. By convention, we assume 𝑝 ∈ 𝑃.

Consider the configuration C′ = (P′,L′,I′) obtained from C by removing points 𝑃. We have 𝑆′ := {𝑝 ∈ P′ :
|L′ | ≥ 3} = 𝑆\{𝑝}. Clearly, C′ is a forest-like configuration and |𝑆′ | = 𝑠−1. So, by induction, we can perturb the
points in P′ so that they lie in a realization space ΓC′

𝐽′
for some 𝐽′ ⊆ 𝑆′. More precisely, there exists a subset

𝐽′ ⊆ 𝑆\{𝑝} and a realization 𝐴′P′ ∈ ΓC′𝐽′ such that | |𝐴P′ − 𝐴′P′ | | < 𝜖/2, where 𝐴P′ is the set of vectors obtained
from 𝐴 by removing the points 𝑃. We proceed by taking cases on whether 𝐴𝑝 is zero.
Case 1. Assume that 𝐴𝑝 = 0. Let 𝐽 = 𝐽′ ∪ {𝑝}, we construct 𝐴′ ∈ ΓC𝐽 from 𝐴′P′ by taking the vectors in
𝐴 for the points in 𝑃\{𝑝} and applying the perturbation procedure. By the perturbation procedure we have
ensured that 𝐴′ ∈ ΓC𝐽 and by perturbing each point 𝑝 ∈ 𝑃 by a distance of at most 𝜖/2|𝑃 |, we have that
| |𝐴 − 𝐴′ | | ≤ | |𝐴P′ − 𝐴′P′ | | + (|𝑃 | − 1) (𝜖/2|𝑃 |) < 𝜖 .
Case 2. Assume that 𝐴𝑝 ≠ 0. Let 𝐽 = 𝐽′ and construct 𝐴′ ∈ ΓC𝐽 from 𝐴′P′ by taking the vectors in 𝐴 for points
in 𝑃 and applying steps (a) to (d) in the proof of the perturbation procedure. In the procedure, by assumption
we have that 𝐴𝑝 ≠ 0. This assumption guarantees that all lines of C passing through 𝑝 are contained in a line
of C𝐴 passing through 𝑝. As a result we obtain a realization 𝐴′ ∈ ΓC𝐽 and by perturbing each point 𝑝 ∈ 𝑃 by a
distance of at most 𝜖/2|𝑃 |, we have that | |𝐴 − 𝐴′ | | ≤ | |𝐴P′ − 𝐴′P′ | | + |𝑃 | (𝜖/2|𝑃 |) < 𝜖 . □

Remark 5.15. It is not hard (but a bit tedious) to classify all irreducible components of 𝑉comb
C for forest-like

configurations C. This classification follows from the same proof of Theorem 5.14 by taking into account that
components may become redundant; see Example 5.16.
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Figure 7: Depiction of C, C{1} and C{1,2} in Example 5.16. Shaded squares represent loops of the configuration.

Example 5.16. Consider the configuration C in Figure 7. Note that the points 1, 2 and 3 have degree 3
in the graph 𝐺C . So by Theorem 5.14, 𝑉comb

C has at most 8 irredundant irreducible components which arise
from setting the intersection points: 1, 2, and 3 to be loops in some combination. When points are set to
loops, we remove the lines which contain at most two non-loop points, as they do not contribute any new
dependencies. The variety of C{1} appears as an irredundant component of 𝑉comb

C . However C{1,2} gives rise
to a redundant component since its variety is contained the variety of C{1} . The irreducible decomposition of
𝑉comb
C has 4 irredundant components which are: the central component 𝑉C , and the non-central components
𝑉C{1} , 𝑉C{2} , 𝑉C{3} .

6 Consecutive forest hypergraphs Δ𝐺

We fix a 𝑑 × 𝑛 matrix 𝑋 = (𝑥𝑖, 𝑗 ) of indeterminates and the polynomial ring 𝑅 = C[𝑋]. Throughout this section,
we fix a forest 𝐺 (acyclic graph) with vertices labeled 1, . . . , 𝑛.

Definition 6.1. We define the consecutive forest hypergraph of 𝐺 as

Δ𝐺 = min

(
𝑃2 (𝐺) ∪

(
[𝑛]
4

))
where 𝑃2 (𝐺) = {𝑃 ⊆ 𝑉 (𝐺) : 𝑃 is a 2-path in 𝐺}.

We recall that a 𝑘-path 𝑃 in 𝐺 is a subgraph of 𝐺 whose vertex set is a non-repeating sequence 𝑝1, . . . , 𝑝𝑘+1 ⊆
𝑉 (𝐺) and whose edge set is {{𝑝𝑖 , 𝑝𝑖+1} : 1 ≤ 𝑖 ≤ 𝑘}. We identify 𝑃 with its vertex set, and simply write 𝐶 ⊆ 𝑃
instead of 𝐶 ⊆ 𝑉 (𝑃). If 𝑄 is another path, then 𝑃 ∪𝑄 is the set of all vertices of 𝐺 lying in 𝑃 and 𝑄.

Remark 6.2. The hypergraph ideal 𝐼Δ𝐺
of the 𝑛-path 𝐺 is exactly the ideal 𝐼3𝑛 (3) of adjacent minors studied in

[HS04]. We note that our construction generalises this particular family by allowing 𝐺 to be an arbitrary graph.
In [HS04], the ideals 𝐼𝑚𝑛 (𝑚) are studied for general 𝑚 ≥ 3 which can be thought of as the consecutive forest
hypergraph of the 𝑛-path except with higher order minors. These ideals can be studied using positroid varieties
as described in [KLS13]. It is not too difficult to show that each of the prime components of 𝐼𝑚𝑛 (𝑚) is a positroid
variety. For instance, one can use the characterisation of positroids via their excluded minors [Oh09, Theorem 16]
or the decomposition of the Grassmannian into positroid varieties [KLS13, Section 5.2]. In particular, we note
that the defining ideals of positroid varieties are generated by minors [KLS13, Theorem 5.15]. However, this
is no longer true for the consecutive forest hypergraph varieties. More precisely, the varieties arising in the
irreducible decomposition of 𝑉Δ𝐺

are, in general, not positroid varieties; for instance see Example 6.21.

6.1 Minimal matroids. In this section, we will define so-called prime collections which are collections
of subsets of vertices of 𝐺. To each prime collection S we will associate a unique matroid 𝑀S . We will then see
that such matroids are realizable over the real numbers and have irreducible realization spaces. Moreover, we
prove that such matroids appear as minimal matroids for consecutive forest hypergraphs.

Definition 6.3. Let S be a collection of singleton subsets of [𝑛]. We say S is a prime collection of singletons
for 𝐺 if S satisfies the following inductive definition.

• The empty set S = ∅ is a prime collection of singletons.

• If |S| ≥ 1, then S = {{𝑠1}, . . . , {𝑠𝑡 }} is a prime collection of singletons if, for each natural number 𝑖 with
1 ≤ 𝑖 ≤ 𝑡, S\{𝑠𝑖} is a prime collection of singletons and 𝑠𝑖 satisfies the following two rules:
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Figure 8: Graphs in Examples 6.5 and 6.7. (Left) 𝐺1 with prime collection S1 = {1, 23, 24, 45} and clouds 234
and 45. (Right) 𝐺2 has a valid collection S2 = {1, 2, 34, 45, 67} which is not prime. The clouds are 345 and 67.

1. 𝑠𝑖 is not a leaf or isolated vertex of 𝐺′,

2. If 𝑠𝑖 is adjacent to a leaf of 𝐺′ then it has degree at least 3 in 𝐺′,

where 𝐺′ is the induced subgraph of 𝐺 obtained by deleting the vertices in the set {𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖+1, . . . , 𝑠𝑡 }.

For ease of notation and when it is clear, we denote a collection of singletons S = {{𝑠1}, . . . , {𝑠𝑡 }} as {𝑠1, . . . , 𝑠𝑡 }.

Definition 6.4. Let S be a collection of singleton subsets sing(S) and 2-subsets of 𝑉 (𝐺). Let 𝐺′ be the induced
subgraph of 𝐺 obtained by removing all vertices in sing(S).

• We say S is a prime collection for 𝐺 if:

– The sing(S) is a prime collection of singletons for 𝐺.

– The 2-subsets in S are a subset of edges of 𝐺′ such that for every vertex 𝑣 ∈ 𝑉 (𝐺′) which is incident
to an edge in S, there exists an edge {𝑣, 𝑤} of 𝐺′ which is not in S.

• We say S is a valid collection for 𝐺 if each 2-subset is disjoint from each singleton set.

Note that every prime collection is a valid collection, but the converse is not true.

Example 6.5. Consider the graph 𝐺1 in Figure 8. Let S1 = {1, 23, 24, 45}. We see that the singletons, i.e. {1},
form a prime collection of singletons for 𝐺1 because 1 is adjacent to a leaf of 𝐺1 and has degree at least three.
Then we consider the induced subgraph 𝐺′ of 𝐺1 obtained by removing the vertex 1. The vertices which lie in
some 2-subset in S are shaded yellow and vertices in 𝐺′ which do not lie in any 2-subset are white. Since every
yellow vertex is adjacent to a white vertex, we have that the 2-subsets form a prime collection of 2-subsets for
𝐺′. Therefore, S2 is a prime collection for 𝐺1.

On the other hand, in the graph 𝐺2, the set S2 = {1, 2, 34, 45, 67} is a valid collection since each 2-subset in
S2 does not contain any of the singleton subsets. However S is not a prime collection because 1 is a leaf and so
the singletons do not form a prime collection of singletons. Additionally 45 ∈ S is not an edge of 𝐺2.

In the following, we show how a valid collection for 𝐺 can be extended to the set of circuits of a dependent
matroid for the consecutive forest hypergraph Δ𝐺.

Definition 6.6. Let S be a valid collection.

• Let 𝐺 (S) be the graph whose vertex set is given by the union of all 2-subsets of S and whose edges are
the 2-subsets of S. A cloud of S is the set of vertices of a connected component of 𝐺 (S).

• We say that a path 𝑃 : 𝑣0, 𝑣1, . . . , 𝑣𝑡 in 𝐺 crosses the cloud containing 𝑣 𝑗 and 𝑣𝑘 if there exists 𝑖 < 𝑗 < 𝑘 < ℓ

such that some cloud of S contains {𝑣 𝑗 , 𝑣𝑘} but no cloud of S contains either {𝑣𝑖 , 𝑣 𝑗 } or {𝑣𝑘 , 𝑣ℓ }. (This
may mean that 𝑣𝑖 or 𝑣ℓ does not lie in any cloud.)

• We say that the subset 𝐴 ⊂ 𝑉 (𝐺) is blocked by S if there exist 𝑣, 𝑤 ∈ 𝐴 such that one of the following
conditions holds:

(i) The vertices 𝑣 and 𝑤 lie in different connected components of 𝐺.

(ii) The vertices 𝑣 and 𝑤 lie in the same connected component of 𝐺 and the unique path from 𝑣 to 𝑤 in
𝐺 crosses a cloud or contains a vertex 𝑖 ∈ 𝑉 (𝐺)\{𝑣, 𝑤} such that {𝑖} is a singleton in S.

We note that if a set 𝐴 ⊆ 𝑉 (𝐺) is not blocked by some valid set S then it follows that 𝐴 is contained within
a connected component of 𝐺.
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Example 6.7. In Figure 8, we have illustrated a prime collection S1 for the graph 𝐺1 which contains two
clouds 234 and 45. The path from 𝑎 to 𝑏 crosses the cloud 234 whereas the path from 𝑐 to 𝑑 does not cross any
cloud. Therefore any set of vertices containing 𝑎 and 𝑏 is blocked by S, but {4, 𝑐, 𝑑} is not blocked by S.

We also illustrate a non-prime valid collection S2 for the graph 𝐺2 which contains two clouds. The path
from 𝑎 to 𝑏 crosses the cloud 345 since the path passes through both 3 and 5. However the path from 𝑐 to 𝑑
does not cross any clouds of S2

We now give the construction of a matroid whose circuits include S for a given valid collection S.

Proposition 6.8. Let S be a valid collection. Let C be the collection of subsets of [𝑛] consisting of the

1. singletons in S,

2. 2-subsets of clouds of S,

3. 3-subsets of [𝑛] which are not blocked and do not contain any set in S, and

4. 4-subsets of [𝑛] containing none of the sets listed in 1, 2, or 3 above.

Then C is the collection of circuits of a matroid.

Proof. We need to check that C satisfies the circuit elimination axiom. That is, if 𝐶1, 𝐶2 ∈ C and 𝑥 ∈ 𝐶1 ∩ 𝐶2,
we must check that there is a set in C contained in (𝐶1 ∪𝐶2)\{𝑥}. This is clear if either 𝐶1 or 𝐶2 is a set of size
1 or 4. If 𝐶1 and 𝐶2 both have size 2, then 𝐶1 and 𝐶2 are contained in the same cloud. Thus, (𝐶1 ∪ 𝐶2)\{𝑥} is
contained in the same cloud, implying that (𝐶1 ∪ 𝐶2)\{𝑥} ∈ C.

Suppose |𝐶1 | = 2 and |𝐶2 | = 3. Let 𝐶1 = {𝑣, 𝑥} and 𝐶2 = {𝑥, 𝑦, 𝑧}.
Since 𝐶2 is not blocked, it is contained in a connected component of 𝐺.
Let 𝑃1 be the path from 𝑥 to 𝑦; let 𝑃2 be the path from 𝑣 to 𝑦; and let 𝑃3 be the path from 𝑣 to 𝑥. Since

{𝑥, 𝑦, 𝑧} ∈ C, we have {𝑥, 𝑦} ∉ C. Therefore, 𝑦 is not contained in the same cloud that contains 𝑣 and 𝑥. Since a
cloud contains every vertex on the path between two vertices in the cloud, we see then that either 𝑃3 ⊆ 𝑃1, or
𝑃3 ⊆ 𝑃2, or 𝑃3 = 𝑃1 ∩ 𝑃2. In either case, the fact that {𝑥, 𝑦} is not blocked implies that {𝑣, 𝑦} is not blocked.
Similarly, {𝑣, 𝑧} is not blocked. We already know that {𝑦, 𝑧} is not blocked because {𝑦, 𝑧} ⊆ {𝑥, 𝑦, 𝑧}. Therefore,
we conclude that {𝑣, 𝑦, 𝑧} is not blocked and contains a member of C.

Finally, we consider the case where |𝐶1 | = |𝐶2 | = 3. If |𝐶1 ∩ 𝐶2 | = 1, then (𝐶1 ∪ 𝐶2)\{𝑥} has size 4 and
therefore contains a member of C. If |𝐶1 ∩ 𝐶2 | = 2, let 𝐶1 = {𝑣, 𝑥, 𝑦} and 𝐶2 = {𝑤, 𝑥, 𝑦}. We will show that
(𝐶1 ∪ 𝐶2)\{𝑥} = {𝑣, 𝑤, 𝑦} contains a member of C. Since {𝑣, 𝑥, 𝑦} and {𝑤, 𝑥, 𝑦} are not blocked, the pairs {𝑣, 𝑦}
and {𝑤, 𝑦} are not blocked. Suppose for a contradiction that the pair {𝑣, 𝑤} is blocked. Recalling that there is
a unique path between any pair of vertices in a connected component of a forest, one can see that either {𝑣, 𝑥}
or {𝑤, 𝑥} is blocked, a contradiction, or 𝑥 is contained in the cloud that blocks {𝑣, 𝑤}. So we deduce that 𝑥 is
contained in the cloud that blocks {𝑣, 𝑤}. But then, either {𝑣, 𝑦} or {𝑤, 𝑦} is blocked, or 𝑥 and 𝑦 are contained
in the same cloud, a contradiction. □

Notation. Given a valid collection S, we denote by 𝑀S its corresponding matroid from Proposition 6.8.

Remark 6.9 (Flats of 𝑀S). The set of loops 𝐿 of 𝑀S is the set of singletons in S. Note that the loops of a
matroid are contained in every flat of the matroid. The flats of 𝑀S of rank 1 are either of the form 𝐵∪ 𝐿, where
𝐵 is a cloud, or of the form {𝑥} ∪ 𝐿, where 𝑥 ∈ [𝑛] is a non-loop element contained in no cloud. The flats of
rank 2 are either of the form 𝐹 ∪ 𝐿, where 𝐹 is an inclusion-wise maximal set that is not blocked, or of the form
𝐹1 ∪ 𝐹2, where 𝐹1 and 𝐹2 are flats of rank 1 such that {𝑥1, 𝑥2} is blocked for every pair {𝑥1, 𝑥2} ∈ 𝐹1 ∪ 𝐹2. Since,
all 4-subsets of [𝑛] are dependent in 𝑀S , the matroid has rank at most 3.

We now show that the matroids 𝑀S associated to prime collections S in Definition 6.4 are precisely the
minimal matroids for Δ𝐺. Firstly, we observe that the simplification of 𝑀S is the matroid associated to a
forest-like configuration.

Proposition 6.10. Let S be a prime collection. Then the simplification of 𝑀S is the matroid of a forest-like
configuration.

Proof. By definition, the simplification (𝑀S)𝑠 is the matroid obtained from 𝑀S by deleting all its loops and
deleting elements from parallel classes such that each parallel class contains only one element. Since 𝑀S has
rank at most 3, it follows that (𝑀S)𝑠 is completely determined by its dependent rank-2 flats (that is, the flats
of rank 2 with at least 3 elements). We define the point and line configuration C whose points are the elements
of the ground set of (𝑀S)𝑠 and whose lines are the dependent rank-2 flats of (𝑀S)𝑠. Clearly, we have that the
matroid associated to C is equal to (𝑀S)𝑠. It remains to show that C is forest-like.

We proceed by induction on |S|. If S = ∅, then we have that the matroid associated to C is equal to
𝑀S . For any labelling of the points in C, we show that 𝐺C is a disjoint union of paths. By Definition 6.6,
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the 3-subsets of 𝑉 (𝐺) contained in a connected component of 𝐺 are exactly those which are not blocked by
S. So, by the definition of the matroid 𝑀S , its dependent rank-2 flats are the connected components of 𝐺. It
follows immediately from the definition of the graph 𝐺C that its connected components are paths. Hence C is
forest-like.

Assume that |S| ≥ 1. Then, either S contains a singleton of 𝑉 (𝐺) or an edge of 𝐺.
Case 1. Let {𝑣} ∈ S be a singleton. By definition, we have that S\{𝑣} is a prime collection. By induction,
the simplification (𝑀S\{𝑣})𝑠 is the matroid of a forest-like configuration C′. Since 𝑣 is not contained in any
cloud of S, it follows that 𝑣 is contained in a unique dependent rank-2 flat 𝐹 = {𝑣, 𝑓1, . . . , 𝑓𝑘} of (𝑀S\{𝑣})𝑠. The
dependent rank-2 flats of (𝑀S)𝑠 are obtained from the dependent rank-2 flats of (𝑀S\{𝑣})𝑠 by replacing 𝐹 with
a disjoint collection of flats 𝐹1, . . . , 𝐹𝑑 which partitions { 𝑓1, . . . , 𝑓𝑘}. Each flat 𝐹𝑖 corresponds to a neighbor of
𝑣 in 𝐺. To see this, let 𝐴 ⊆ 𝑉 (𝐺)\𝑣 be a 3-subset and suppose that 𝐴 is not blocked by S\{𝑣}. Then 𝐴 is not
blocked by S if and only if for any pair of vertices 𝑥, 𝑦 ∈ 𝐴 we have that the path from 𝑥 to 𝑦 in 𝐺 does not pass
through 𝑣. Therefore the point and line configuration C is obtained from C′ by replacing the line containing 𝑣
with 𝑑 non-intersecting lines. Since C′ is forest-like, it follows that C is also forest-like.

Case 2. Let {𝑣, 𝑤} ∈ S be an edge of 𝐺. Since S is a prime collection, the induced subgraph 𝐺′ of 𝐺 on
the vertices of the cloud of S containing {𝑣, 𝑤} is connected. By assumption 𝐺 is a forest, hence 𝐺′ is forest.
So, without loss of generality, we may assume that 𝑣 is a leaf in 𝐺′. By the definition of a prime collection,
it follows that S\{𝑣, 𝑤} is a prime collection. By induction, the simplification (𝑀S\{𝑣,𝑤})𝑠 is the matroid of a
forest-like configuration C′. Let 𝐹 be the unique dependent flat of rank 2 of (𝑀S\{𝑣,𝑤})𝑠 that contains 𝑣. The
dependent rank-2 flats of (𝑀S)𝑠 are obtained from the dependent rank-2 flats of (𝑀S\{𝑣,𝑤})𝑠 by replacing 𝐹
with a collection of flats 𝐹1, . . . , 𝐹𝑑 such that 𝐹𝑖 ∩ 𝐹𝑗 = {𝑝} where 𝑝 is the element of the ground set of (𝑀S)𝑠
that corresponds to the cloud of S containing 𝑣 and 𝑤. To see this, let 𝐴 ⊆ 𝑉 (𝐺) be a 3-subset and suppose
that 𝐴 is not blocked by S\{𝑣, 𝑤}. Then 𝐴 is blocked by S if and only if there exist 𝑥, 𝑦 ∈ 𝐴 such that the
path from 𝑥 to 𝑦 in 𝐺 crosses a cloud of S via the edge {𝑣, 𝑤}. Therefore, the point and line configuration C′ is
obtained from C by removing the line containing 𝑣 and replacing it with 𝑑 lines that pass through a common
vertex. Since C′ is forest-like, it follows that C is also forest-like. □

We now state and prove our main result, and then the auxiliary results used in this proof.

Theorem 6.11. The minimal matroids for Δ𝐺 are M𝐺 = {𝑀S : S is a prime collection}.

Proof. On the one hand, if we take a minimal matroid 𝑀 for Δ𝐺, then by Lemma 6.17 we have that 𝑀 = 𝑀S
for some prime collection S. On the other hand, let S be a prime collection. First, we observe that, for every
prime collection S, every member of Δ𝐺 is indeed a dependent set in 𝑀S . More precisely, Δ𝐺 ⊆ D(𝑀S) because
every path in 𝐺 with three vertices either contains a singleton set in S, contains two elements from a cloud
of S, or is not blocked. Since Δ𝐺 ⊆ D(𝑀S), Lemma 6.17 implies that there is a prime collection T such that
Δ𝐺 ⊆ D(𝑀T) ⊆ D(𝑀S) and such that 𝑀T is a minimal matroid for Δ𝐺. But Lemma 6.18 implies that S = T .
Therefore, 𝑀S is a minimal matroid for Δ𝐺. □

Example 6.12. Let 𝐺 be the graph on vertex set [7] with edges 𝐸 (𝐺) = {12, 23, 34, 45, 56, 47}. The consecutive
forest hypergraph for 𝐺 is given by Δ = {123, 234, 345, 347, 456, 457}. In Figure 9, we write down the prime
collections S for 𝐺. For each S, the matroid 𝑀S is the matroid of a point and line configuration which we
illustrate in the figure. For instance if S = ∅, then 𝑀S is the matroid of the point and line configuration with all
seven points lying on a single line. If S = {34, 45}, then the corresponding configuration has a line containing
the points 1, 2, 3, 4, 5 and two free points 6 and 7. The three points 3, 4, 5 coincide since they are a cloud of S.

We devote the rest of this subsection to prove the lemmas used in the proof of Theorem 6.11. We first prove
a matroid result that we will need later.

Lemma 6.13. Let 𝑀 be a matroid, and let {𝑎, 𝑏, 𝑐, 𝑑} be a subset of the ground set of 𝑀 such that {𝑎, 𝑑} is an
independent set. If {𝑎, 𝑏, 𝑑} and {𝑎, 𝑐, 𝑑} are dependent sets, then so is {𝑎, 𝑏, 𝑐}.

Proof. Since {𝑎, 𝑏, 𝑑} is dependent, the rank of {𝑎, 𝑏, 𝑑} is at most 2. Since {𝑎, 𝑐, 𝑑} is dependent and {𝑎, 𝑑} is
independent, 𝑐 is in the closure of {𝑎, 𝑑}. Therefore, 𝑐 is in the closure of {𝑎, 𝑏, 𝑑}. Since the rank of {𝑎, 𝑏, 𝑑}
is at most 2 and 𝑐 is in the closure of {𝑎, 𝑏, 𝑑}, it follows that the rank of {𝑎, 𝑏, 𝑐, 𝑑} is at most 2. Therefore,
{𝑎, 𝑏, 𝑐} is a dependent set. □

Now we consider the loops of a minimal matroid and give an algorithmic formulation of Definition 6.3. Given
a collection S of singletons, if S passes the following algorithm, it is a good candidate to be a prime collection
of singletons for 𝐺. While every prime collection of singletons will pass Algorithm 1, not all sets which pass
the algorithm are prime collections of singletons. In order to guarantee that a set S is a prime collection of
singletons, we require that S passes regardless of the ordering of its elements.
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Point and line configurationPrime collection Point and line configurationPrime collection

Figure 9: Prime collections S and their matroid 𝑀S as a point and line configuration from Example 6.12. The
dotted pairs of vertices are the two subsets of S and the square points in the configurations represent loops.

Algorithm 1: Prime collection test

Input: S = (𝑠1, . . . , 𝑠𝑡 ) an ordered list of vertices of 𝐺
Output: pass or fail. (If fail then S is not a prime collection of singletons for 𝐺.)
Initialize: 𝐻 ← 𝐺

for 𝑖 ← 1 to 𝑡 do
if 𝑠𝑖 is a leaf or isolated vertex of 𝐻 then

return fail
if 𝑠𝑖 is adjacent to a leaf of 𝐻 and 𝑠𝑖 has degree 2 in 𝐻 then

return fail
𝐻 ← induced subgraph of 𝐻 obtained by deleting vertex 𝑠𝑖

return pass

Proposition 6.14. Let S = {𝑠1, . . . , 𝑠𝑡 } be a collection of singleton sets of vertices of 𝐺. Then S is a prime
collection of singletons for 𝐺 if and only if S passes Algorithm 1 for any ordering of its elements.

Proof. Suppose that 𝜎 ∈ 𝑆𝑡 is a permutation such that the algorithm fails with the input (𝑠𝜎 (1) , . . . , 𝑠𝜎 (𝑡 ) ). In
particular, assume that the algorithm fails at step 𝑝 ∈ {1, . . . , 𝑡}. Then it follows that {𝑠𝜎 (1) , . . . , 𝑠𝜎 (𝑝) } is not a
prime collection of singletons. So, by Definition 6.3, the set S is not a prime collection of singletons. Conversely,
if S is not a prime collection of singletons then, by definition, there exists 𝑝 ∈ {1, . . . , 𝑡} and 𝑗 ∈ {1, . . . , 𝑝} such
that {𝑠1, . . . , 𝑠𝑝−1} is a prime collection of singletons and either: 𝑠 𝑗 is a leaf or isolated vertex in 𝐺′, or 𝑠 𝑗 is
adjacent to a leaf of 𝐺′ and has degree two, where 𝐺′ is the induced subgraph of 𝐺 obtained by deleting the
vertices {𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . , 𝑠𝑝}. Now we order the elements of S as: (𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . , 𝑠𝑝 , 𝑠 𝑗 , 𝑠𝑝+1, . . . , 𝑠𝑡 ).
By construction, we have that Algorithm 1 fails in the for-loop when checking vertex 𝑠 𝑗 . □

Lemma 6.15. Let 𝑀 be a minimal matroid for Δ𝐺. Then the loops of 𝑀 are a prime collection of single-
tons for 𝐺.

Proof. We follow the algorithmic description of the construction of a prime collection of singletons. Let S be
the loops of 𝑀. Suppose for a contradiction that S fails to be a prime collection of singletons for 𝐺. Then there
exists an ordering of the loops, say S = (𝑠1, 𝑠2, . . . , 𝑠𝑝), such that at step 𝑖 we are unable to choose 𝑠𝑖 for the
prime collection. Let 𝐺′ be the induced subgraph of 𝐺 obtained by removing vertices 𝑠1, . . . , 𝑠𝑖−1. In order for
us to be unable to choose 𝑠𝑖 for the prime collection there are two cases:

1. 𝑠𝑖 is a leaf or isolated vertex of 𝐺′,

2. 𝑠𝑖 is adjacent to a leaf and has degree two in 𝐺′.

Case 1. We construct a new matroid 𝑀 ′ on [𝑛] as follows. First construct the matroid 𝑀\𝑠𝑖 by deleting 𝑠𝑖.
If 𝑠𝑖 is a leaf of 𝐺′, denote by 𝑥 the unique vertex adjacent to 𝑠𝑖. Then, let 𝑀

′ be the matroid obtained from
𝑀\𝑠𝑖 by adding to the ground set the element 𝑠𝑖 in the same parallel class as 𝑥.

If 𝑠𝑖 is an isolated vertex of 𝐺′, note that every neighbor of 𝑠𝑖 in 𝐺 is a loop of 𝑀. Let 𝑀 ′ be the matroid
obtained from 𝑀\𝑠𝑖 by freely adding 𝑠𝑖 to the ground set of 𝑀\𝑠𝑖.

In either case, note that the collection of dependent sets of 𝑀 ′ contains Δ𝐺 because every path with three
vertices containing 𝑠𝑖 contains either 𝑥 or some loop of 𝑀 ′.
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We now show that 𝑀 ′ ⪇ 𝑀. Take any dependent set 𝐷 of 𝑀 ′. If 𝑠𝑖 ∈ 𝐷, then clearly 𝐷 is a dependent set
of 𝑀 since 𝑠𝑖 is a loop of 𝑀. On the other hand, if 𝑠𝑖 ∉ 𝐷, then 𝐷 is a dependent set of 𝑀 ′\𝑠𝑖 = 𝑀\𝑠𝑖. Hence 𝐷
is a dependent set of 𝑀. To show that 𝑀 ≠ 𝑀 ′ we simply note that 𝑠𝑖 is a loop in 𝑀 but is not a loop in 𝑀 ′.
So we have shown Δ𝐺 ⊆ D(𝑀 ′) ⊊ D(𝑀). Hence 𝑀 is not a minimal matroid for Δ𝐺, a contradiction.

Case 2. Let 𝑠𝑖 be a vertex of degree two which is adjacent to a leaf of 𝐺′. Let 𝑥 and 𝑦 be the vertices adjacent
to 𝑠𝑖, with 𝑥 being a leaf. We construct a new matroid 𝑀 ′ by first deleting 𝑠𝑖 to form 𝑀\𝑠𝑖. Then we define
𝑀 ′ to be the matroid obtained by adding 𝑠𝑖 to the same parallel class as 𝑦 in 𝑀\𝑠𝑖. Note that D(𝑀 ′) must
contain Δ𝐺 because any path with three vertices containing 𝑠𝑖 (and not containing any loop of 𝑀 ′) must also
contain 𝑦. To show that 𝑀 ′ ⪇ 𝑀 we use the same argument as Case 1, so we have that Δ𝐺 ⊆ D(𝑀 ′) ⊊ D(𝑀).
Therefore 𝑀 is not a minimal matroid for Δ𝐺, a contradiction. □

We now characterize matroids which are minimal among all the matroids whose circuits of size one and two
are exactly the members of S. One can think of this as a constrained notion of minimality. In the following
lemma, note that 𝑀 is fixed, and S is obtained from 𝑀. In a matroid, every circuit of size two is disjoint from
every circuit of size one. Therefore, S is a valid collection for 𝐺, and 𝑀S is well-defined.

Lemma 6.16 (Constrained minimal matroids). Let 𝑀 be a matroid with Δ𝐺 ⊆ D(𝑀) whose circuits of size
one and two are the members of S. Then 𝑀S ≤ 𝑀.

Proof. By assumption, all of the circuits of 𝑀S of size one and two are also circuits of 𝑀. All 4-subsets of [𝑛]
are dependent in both 𝑀 and 𝑀S . Therefore, to show that 𝑀S ≤ 𝑀, it suffices to show that all 3-circuits of 𝑀S
are dependent in 𝑀. Let 𝐷 = {𝑎, 𝑏, 𝑐} be such a circuit of 𝑀S . Let 𝐺

′ be the induced subgraph of 𝐺 obtained
by removing those vertices 𝑣 for which {𝑣} ∈ S. Now since 𝐷 is a circuit in 𝑀S , we have that for any pair of
elements 𝑥, 𝑦 ∈ 𝐷, there is a path in 𝐺′ from 𝑥 to 𝑦 and it is not blocked by S. We denote by Conv(𝑥, 𝑦) the
collection of vertices on the path from 𝑥 to 𝑦. Similarly we define the convex hull of a set of vertices:

Conv(𝐴) =
⋃

𝑥,𝑦∈𝐴
Conv(𝑥, 𝑦).

By abuse of notation, we identify Conv(𝐴) with the induced subgraph of 𝐺′ whose vertices are Conv(𝐴).
To complete the proof of the theorem, it suffices to prove the following claim. Since, as a result we have

that {𝑎, 𝑏, 𝑐} is a dependent set in 𝑀. Therefore, every dependent set in 𝑀S is also dependent in 𝑀, as desired.

Claim. All 3-subsets of Conv(𝑎, 𝑏, 𝑐) are dependent in 𝑀.
We must show that every 3-subset {𝑎′, 𝑏′, 𝑐′} ⊆ Conv(𝑎, 𝑏, 𝑐) is dependent in 𝑀. We proceed by induction

on |Conv(𝑎′, 𝑏′, 𝑐′) |. For the base case, suppose that |Conv(𝑎′, 𝑏′, 𝑐′) | = 3. Then Conv(𝑎′, 𝑏′, 𝑐′) is a path in
𝐺 with three vertices. By definition of Δ𝐺, we have that {𝑎′, 𝑏′, 𝑐′} ∈ Δ𝐺. Since Δ𝐺 ⊆ D(𝑀), we have that
{𝑎′, 𝑏′, 𝑐′} is dependent in 𝑀. For the inductive step, assume that all 3-subsets of Conv(𝑎, 𝑏, 𝑐) whose convex
hull has size at most 𝑘 ≥ 3 are dependent and |Conv(𝑎′, 𝑏′, 𝑐′) | = 𝑘 + 1. Since |Conv(𝑎′, 𝑏′, 𝑐′) | ≥ 4, there is a
vertex 𝑑 ∈ Conv(𝑎′, 𝑏′, 𝑐′)\{𝑎′, 𝑏′, 𝑐′}. Note that neither 𝑎′, 𝑏′, 𝑐′, nor 𝑑 can be a loop of 𝑀 because then it
would be a loop of 𝑀S . This implies either that {𝑎, 𝑏, 𝑐} is blocked or that an element of {𝑎, 𝑏, 𝑐} is a loop of
𝑀S . This is impossible since {𝑎, 𝑏, 𝑐} is a circuit of 𝑀S .

By induction, {𝑎′, 𝑏′, 𝑑}, {𝑎′, 𝑐′, 𝑑}, and {𝑏′, 𝑐′, 𝑑}, are all dependent since their respective convex hulls lie
strictly inside Conv(𝑎′, 𝑏′, 𝑐′). Since {𝑎′, 𝑏′, 𝑑} and {𝑎′, 𝑐′, 𝑑} are dependent, Lemma 6.13 implies that either
{𝑎′, 𝑏′, 𝑐′} or {𝑎′, 𝑑} is dependent. Similarly, if {𝑎′, 𝑏′, 𝑐′} is not dependent, then {𝑏′, 𝑑} and {𝑐′, 𝑑} are dependent.
Therefore, since 𝑑 is not a loop, we may assume that the rank of {𝑎′, 𝑏′, 𝑐′, 𝑑} is at most one, implying that
{𝑎′, 𝑏′, 𝑐′} is dependent. This completes the proof of the claim. □

Lemma 6.17. If 𝑀 is a minimal matroid for Δ𝐺, then 𝑀 = 𝑀S for some prime collection S.

Proof. Let S be the collection of all circuits of 𝑀 of size one and two. Since Δ𝐺 ⊆ D(𝑀), Lemma 6.16 implies
that 𝑀S ≤ 𝑀. However, 𝑀 is a minimal matroid. Since Δ𝐺 ⊆ D(𝑀S), the minimality of 𝑀 implies that
𝑀 = 𝑀S . So it suffices to show that S is a prime collection.

By Lemma 6.15, we have that the loops of 𝑀 form a prime collection of singletons for 𝐺. The collection of
2-element circuits of a matroid does not intersect the set of loops, so S is a valid collection of subsets.

Let 𝐺′ be the induced subgraph of 𝐺 obtained by deleting the vertices that are singleton sets in S. Suppose
for a contradiction that S is not a prime collection. Then it follows that there exists a vertex 𝑣 in 𝐺′ such that,
for every vertex 𝑤 adjacent to 𝑣 in 𝐺′, we have that {𝑣, 𝑤} is a member of S.

Let 𝑤 be a vertex adjacent to 𝑣, and consider the valid collection S′ = S\{{𝑣, 𝑤}}. A set is a singleton in S
if and only if it is a singleton in S′. Since every vertex adjacent to 𝑣 is in the same cloud of S as 𝑣, a 3-subset
of [𝑛] is blocked by S if and only if it is blocked by S′. We also have Δ𝐺 ⊆ D(𝑀 ′S).

Since the collection of 2-subsets in S′ is properly contained in the the collection of 2-subsets in S, we have
that 𝑀 ′S ⪇ 𝑀S , a contradiction. Therefore, we conclude that S is a prime collection. □
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The last ingredient in the proof of Theorem 6.11 is to show that 𝑀S is minimal for any prime collection S.

Lemma 6.18. If S and T are prime collections with 𝑀S ≥ 𝑀T , then S = T .

Proof. Let us begin by considering the loops of 𝑀S and 𝑀T . Since 𝑀S ≥ 𝑀T , we have that every loop of 𝑀T
is a loop of 𝑀S . Suppose for a contradiction that 𝑀S has strictly more loops than 𝑀T . Let 𝐺S be the induced
subgraph of 𝐺 obtained by removing the loops of 𝑀S . We define 𝐺T similarly. Pick any loop 𝑣 in 𝑀S that is
not a loop in 𝑀T . We now show that deg(𝑣) ≥ 2 in 𝐺T . Suppose otherwise. Then all but at most one of the
neighbors of 𝑣 are loops in 𝑀T . Since 𝑀S ≥ 𝑀T , all but at most one of the neighbors of 𝑣 are loops in 𝑀S
also. But this fact, with the assumption that 𝑣 is a loop in 𝑀S , contradicts the assumption that S is a prime
collection. Therefore, deg(𝑣) ≥ 2 in 𝐺T . Similar reasoning shows that each vertex adjacent to 𝑣 in 𝐺T must be
adjacent to a vertex in 𝐺T that is not a loop in 𝑀S .

Since T is a prime collection, there is at least one vertex 𝑥 adjacent to 𝑣 in 𝐺T such that {𝑥, 𝑣} ∉ T . Since
deg(𝑣) ≥ 2 in 𝐺T , let 𝑦 ≠ 𝑥 be another neighbor of 𝑣 in 𝐺T . We have already observed that there must be a
vertex adjacent to 𝑥 in 𝐺T that is not a loop in 𝑀S . Call this vertex 𝑥′. We may choose 𝑥′ so that {𝑥, 𝑥′} ∉ S
because, if there is no such vertex, then 𝑥 has no neighbor outside the cloud containing 𝑥 in 𝐺S , which implies
that S is not a prime collection. Similarly, we let 𝑦′ be any vertex adjacent to 𝑦 such that 𝑦 is not a loop in
𝑀S and such that {𝑦, 𝑦′} ∉ S. For 𝑋 ⊆ [𝑛], let cl(𝑋) denote the closure of 𝑋 in 𝑀T . Since Δ𝐺 ⊆ D(𝑀T),
we have that {𝑥, 𝑥′, 𝑣} and {𝑥, 𝑦, 𝑣} are both dependent sets in 𝑀T . By assumption, {𝑥, 𝑥′} is independent in
𝑀S , implying that it is independent in 𝑀T also. Since {𝑥, 𝑥′, 𝑣} is dependent, we have 𝑣 ∈ cl({𝑥, 𝑥′}). Thus
cl({𝑥, 𝑥′}) = cl({𝑥, 𝑥′, 𝑣}). Similarly, since {𝑥, 𝑣} is independent in 𝑀T but {𝑥, 𝑦, 𝑣} is dependent, we have that
𝑦 ∈ cl({𝑥, 𝑣}) ⊆ cl({𝑥, 𝑥′, 𝑣}) = cl({𝑥, 𝑥′}). Since 𝑦 ∈ cl({𝑥, 𝑥′}), we have that {𝑥, 𝑥′, 𝑦} is a dependent set in
𝑀T . However, by assumption, we have that {𝑥, 𝑥′} is independent in 𝑀S . Hence {𝑥, 𝑥′, 𝑦} is independent in 𝑀S
because it is blocked by 𝑣. So we have found a dependent set in 𝑀T which is independent in 𝑀S , a contradiction.
Therefore, we deduce that 𝑀S and 𝑀T have the same loops.

To show that S = T , it remains to show that the 2-subsets in S are the same as the 2-subsets in T . Since
𝑀S and 𝑀T have the same loops and 𝑀S ≥ 𝑀T , it follows that every 2-subset in T is also in S. Suppose
for a contradiction that S has strictly more 2-subsets than T . Therefore, either S has more clouds than T ,
or there is a cloud of T that is properly contained in a cloud of S. In either case, since every vertex in the
cloud is adjacent to a vertex not in the cloud, there is a 3-element set that is blocked by S but not by T . This
contradicts the assumption that 𝑀S ≥ 𝑀T . □

6.2 Irreducible matroid varieties. In this subsection, we combine the results of §6.1 to obtain a
classification of the irreducible components of 𝑉Δ𝐺

. In particular, we will prove Theorem 6.20. This gives a
straightforward description of the irreducible components.

Proposition 6.19. Let 𝐺 be a forest and S be a prime collection for 𝐺 as in Definition 6.4. Then for any
non-central component 𝑉𝑁 of 𝑉comb

𝑀S
there exists another prime collection S′ for 𝐺, such that 𝑉𝑁 ⊆ 𝑉𝑀S′ .

Proof. Let 𝐽 be the ideal associated to the matroid 𝑁 and for notation we write 𝑁 as 𝑀𝐽 . By Proposition 6.10,
the simplification of 𝑀S is forest-like. So, by Theorem 5.14,

the matroid 𝑀𝐽 is obtained from 𝑀S by setting all elements inside certain clouds of S to be loops, see
Definition 5.12. Denote these clouds by 𝐶1, . . . , 𝐶𝑠. More precisely, the circuits of 𝑀𝐽 are the singleton subsets
of 𝐶1 ∪ · · · ∪ 𝐶𝑠 along with the collection of circuits of 𝑀S\(𝐶1 ∪ · · · ∪ 𝐶𝑠). Note that 𝑀S < 𝑀𝐽 .

Let (P,L,I) be the point and line configuration whose matroid is the simplification of 𝑀S . By Theorem 5.11,
if a non-central component 𝐽 of 𝐼comb

𝑀S
exists, there is a point in P contained in at least three lines in L. This

implies that a cloud of S contains at least three elements.
Let 𝐶 be a cloud of S that is not one of 𝐶1, . . . 𝐶𝑠. Let 𝑝𝑖 ∈ P be the corresponding point in the simplification

of 𝑀S . We define the star of 𝑝𝑖 to be 𝑆(𝑝𝑖) =
⋃

ℓ∈L𝑖
ℓ, where ℓ is identified with the set of points it passes

through. By Lemma 5.13, we see that all generators of 𝐼𝑀S constructed using points in 𝑆(𝑝𝑖) are also generators
of 𝐽. However, we also see that 𝐼𝑀S ⊈ 𝐽 because the elements of 𝐶1 ∪ · · · ∪ 𝐶𝑠 are loops of 𝑀𝐽 . Therefore, it is
enough to show that there exists a prime collection S′ such that:

• 𝑀S′ < 𝑀𝐽 and

• every cloud of S′ contained in any of 𝐶1, . . . , 𝐶𝑠 has size at most two.

We will construct S′ from S by an inductive procedure modifying the clouds 𝐶1, . . . , 𝐶𝑠. Let S0 = S. At
each step of the procedure, we construct S𝑖+1 from S𝑖 by modifying a cloud 𝐶 of S𝑖 with |𝐶 | ≥ 3 such that
𝐶 ⊆ 𝐶1∪· · ·∪𝐶𝑠. By induction, we assume S𝑖 is a prime collection. At each step of this procedure, we construct
a prime collection S𝑖+1 such that every set that is dependent in 𝑀S𝑖+1 but not in 𝑀S𝑖 is dependent in 𝑀𝐽 . Since
𝑀S < 𝑀𝐽 , this implies that 𝑀S′ < 𝑀𝐽 .

Let 𝐺′ be the induced subgraph of 𝐺 obtained by deleting the singletons in S𝑖. Let 𝐺 [𝐶] be the induced
subgraph of 𝐺 with vertex set 𝐶, and let ℓ be a leaf of 𝐺 [𝐶]. Since |𝐶 | ≥ 3, the neighbor 𝑥 of ℓ in 𝐺 [𝐶] is not
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a leaf of 𝐺 [𝐶]. In particular, deg(𝑥) ≥ 3 in 𝐺′, so we can add 𝑥 to the collection of singletons of S𝑖 to result
in a new prime collection of singletons. Therefore, we modify S𝑖 as follows. Make 𝑥 a singleton set in S𝑖+1 and
remove all 2-subsets in S𝑖 which contain 𝑥. We now consider the neighbors of 𝑥 which lie outside 𝐶. For each
such neighbor 𝑦 of 𝑥, if 𝑦 belongs to a cloud 𝐶′ ≠ 𝐶 and 𝑥 is the only neighbor of 𝑦 not contained in 𝐶′, then
we remove 𝑦 from the cloud 𝐶′. This ensures that the new collection is a prime collection. Let S𝑖+1 be this new
prime collection. Note that this procedure does not add any new 3-circuits because all paths crossing 𝐶′ that
contain 𝑦 necessarily pass through 𝑥.

As a result of this procedure, the cloud 𝐶 no longer contains 𝑥 or ℓ and might also be split into multiple
smaller clouds. Note that all other clouds affected by this procedure have decreased in size. Thus, the only
subset of [𝑛] that is dependent in S𝑖+1 but not in S𝑖 is the singleton set {𝑥}, which is a loop of 𝑀𝐽 . Therefore,
𝑀S𝑖+1 < 𝑀𝐽 as desired. We apply this procedure inductively until we obtain a prime collection S′ such that
every cloud of S′ contained in 𝐶1 ∪ · · · ∪ 𝐶𝑠 has size 2. □

Theorem 6.20. Let 𝐺 be a forest and let Δ𝐺 be the corresponding consecutive forest hypergraph. Then,

𝑉Δ𝐺
=
⋃
S
𝑉𝑀S ,

is an irredundant irreducible decomposition of 𝑉Δ𝐺
, where the union is taken over all prime collections S of 𝐺.

In particular, a minimal prime decomposition of
√︁
𝐼Δ𝐺

is given as
√︁
𝐼Δ𝐺

=
⋂
S 𝐼𝑀S .

Proof. By Theorem 6.11, the set of all minimal matroids of Δ𝐺 is {𝑀S : S is a prime collection}. It follows, by
Proposition 3.10, that 𝑉Δ𝐺

=
⋃
S 𝑉

comb
𝑀S

. It is easy to see that, the simplification of the matroid 𝑀S is a forest-like

configuration. So, the irreducible components of 𝑉comb
𝑀S

are in one-to-one correspondence with the irreducible
components of the combinatorial closure of the matroid variety of this configuration, which are given by Theo-
rem 5.14. By Proposition 6.19, for every non-central component 𝑉𝑀𝐽

of 𝑉comb
𝑀S

, there exists a prime collection
S′ such that 𝑉𝑀𝐽

⊆ 𝑉𝑀′S
. Moreover, by Theorem 6.22, each of the matroids 𝑀S is realizable. Hence, the

irredundant irreducible decomposition of 𝑉Δ𝐺
is given by 𝑉Δ𝐺

=
⋃
S 𝑉𝑀S , as desired. □

In the example below we show that the irreducible components of 𝑉Δ𝐺
are not necessarily positroid varieties.

Example 6.21. Let 𝐺 be the graph on the vertex set {1, 2, . . . , 9} and edge set {12, 23, 14, 45, 56, 47, 78, 89}. Let
S = {14, 47} be a prime collection. By Remark 6.9, the matroid 𝑀S has three rank 2 flats given by 12347, 14567
and 14789. So the simplification of 𝑀S is the matroid of the configuration given by three lines passing through
a point. See Example 3.6. In particular, the ideal of 𝑀S is not generated by determinants. So by [KLS13,
Theorem 5.15], the matroid 𝑀S is not a positroid.

6.3 Realizability. We are now ready to consider the minimal matroids for Δ𝐺. Recall that, if S is a valid
collection for 𝐺, then the matroid 𝑀S arising from Proposition 6.8 is minimal with respect to Δ𝐺. Here, we
show that 𝑀S is realizable over the real numbers hence realizable over C.

Theorem 6.22. If S is a valid collection, then 𝑀S is R-realizable.

Proof. Let 𝑟 be the rank function of 𝑀S . The elements of 𝑀S are the vertices of the forest 𝐺. Let 𝐿 be the set
of loops of 𝑀S , so 𝐿 consists of the singletons in S. We will proceed inductively by considering subgraphs of 𝐺
with increasing numbers of vertices. For the base case, we begin with the set 𝐿 of loops of 𝑀. The restriction
𝑀S |𝐿 can be represented by the 3 × |𝐿 | zero matrix.

For the inductive step, suppose that we have shown that 𝑀S |𝑉 (𝐺0) is realizable over R for some subgraph
𝐺0 of 𝐺 containing the vertices in 𝐿. Let 𝑣 ∈ 𝑉 (𝐺)\𝑉 (𝐺0). We will show that the restriction 𝑀S | (𝑉 (𝐺0) ∪ {𝑣})
is obtained from 𝑀S | (𝑉 (𝐺0)) either by adding 𝑣 as a coloop or by freely adding 𝑣 to a flat. Thus, Lemma 5.5
or Lemma 5.6 implies that 𝑀S | (𝑉 (𝐺0) ∪ {𝑣}) is realizable over the reals. We consider the following cases.

(1) There is a vertex 𝑤 ∈ 𝑉 (𝐺0) such that 𝑣 and 𝑤 are in the same cloud.

(2) Case (1) does not hold, but there are vertices 𝑤, 𝑥 ∈ 𝑉 (𝐺0)\𝐿, not in the same cloud, such that {𝑣, 𝑤, 𝑥}
is an unblocked set.

(3) Neither Case (1) nor Case (2) holds.

For Case (1), note that 𝐶 ∪ 𝐿 is a flat of rank 1 for every cloud 𝐶. Therefore, if 𝐶 is the cloud containing 𝑣
and 𝑤, then we obtain 𝑀S | (𝑉 (𝐺0) ∪ {𝑣}) by freely adding 𝑣 to the flat 𝐶 ∪ 𝐿.

In Case (2), the fact that 𝑤 and 𝑥 are not in the same cloud and the fact that neither 𝑤 nor 𝑥 is in 𝐿 imply
that 𝑟 ({𝑤, 𝑥}) = 2. The fact that {𝑣, 𝑤, 𝑥} is an unblocked set implies that 𝑟 ({𝑣, 𝑤, 𝑥}) = 2 also. Thus, 𝑣 is in
the closure of {𝑤, 𝑥} in the matroid 𝑀S . Since Case (1) does not hold, 𝑀S | (𝑉 (𝐺0) ∪ {𝑣}) is obtained by adding
𝑣 freely to the closure of {𝑤, 𝑥}.
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Now we consider Case (3). Since Case (1) does not hold, Proposition 6.8 implies that 𝑀S has no circuit of
size 2 consisting of 𝑣 and some vertex of 𝐺0. Since Case (2) does not hold, Proposition 6.8 implies that 𝑀S has
no circuit of size 3 consisting of 𝑣 and two vertices of 𝐺0. Therefore, the only circuits of 𝑀S containing 𝑣 and
some vertex of 𝐺0 are sets of size 4. Thus, the matroid 𝑀S | (𝑉 (𝐺0) ∪ {𝑣}) is obtained either by freely adding 𝑣
to the ground set 𝑉 (𝐺0) (if 𝑟 (𝑉 (𝐺0)) = 3) or by adding 𝑣 as a coloop (if 𝑟 (𝑉 (𝐺0)) < 3). □

7 Hypergraphs Δ𝑠,𝑡

Here, we study hypergraph ideals which arise naturally in the study of conditional independence statements.
We begin with notation and the general setup of the problem. We denote the 𝑘 × ℓ matrix of integers

Y = (Y𝑖, 𝑗 )𝑖, 𝑗 =


1 𝑘 + 1 . . . (ℓ − 1)𝑘 + 1
2 𝑘 + 2 . . . (ℓ − 1)𝑘 + 2
...

...
. . .

...

𝑘 2𝑘 . . . ℓ𝑘


. (3)

For each 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ], the rows and columns of Y are denoted

𝑅𝑖 = {Y𝑖,1,Y𝑖,2, . . . ,Y𝑖,ℓ } = {𝑖, 𝑘 + 𝑖, . . . , (ℓ − 1)𝑘 + 𝑖},
𝐶 𝑗 = {Y1, 𝑗 ,Y2, 𝑗 , . . . ,Y𝑘, 𝑗 } = {( 𝑗 − 1)𝑘 + 1, ( 𝑗 − 1)𝑘 + 2, . . . , ( 𝑗 − 1)𝑘 + 𝑘}.

For each 𝑠 and 𝑡 with 𝑠 ≤ 𝑘 and 𝑡 ≤ ℓ, we define Δ𝑠,𝑡 be the following collection of subsets of [𝑘ℓ],

Δ𝑠,𝑡 =
⋃

1≤𝑖≤𝑘

(
𝑅𝑖

𝑡

)
∪

⋃
1≤ 𝑗≤ℓ

(
𝐶 𝑗

𝑠

)
.

If the values of 𝑠 and 𝑡 have been fixed, then we simply write Δ for Δ𝑠,𝑡 . We are interested in studying the ideals
𝐼Δ𝑠,𝑡 for 𝑑 ≥ max{𝑠, 𝑡} as these are examples of conditional independence ideals with hidden variables.

Example 7.1. Let 𝑘 = 4, ℓ = 7, 𝑠 = 2 and 𝑡 = 3. We have

Y =


1 5 9 13 17 21 25
2 6 10 14 18 22 26
3 7 11 15 19 23 27
4 8 12 16 20 24 28

 and Δ2,3 =

{(
{1, 5, 9, 13, 17, 21, 25}

3

)
∪ · · · ∪

(
{25, 26, 27, 28}

2

)}
.

Calculating the dependent matroids for Δ2,3, we find that all such matroids are point and line configurations.
In Table 1, there are 10 combinatorial types of configurations which appear as these matroids. Explicitly, these
are the point and line configurations which have at most 4 lines and at most 7 points.

𝑘

ℓ
3 4 5 6 7 8 9 10 11 12 · · · · · · ∞

2 2 2 3 4 4 4 4 4 4 4 4 4 4
3 2 2 3 5 7 8 9 9 9 9 9 9 9
4 2 2 3 6 10 13 20 23 24 25 25 25 25

Table 1: The number of combinatorial types of configurations appearing among dependent matroids for Δ2,3.
Note that increasing ℓ leads to having arbitrarily many irreducible components for the variety 𝑉Δ2,3 .

Remark 7.2. The minimal prime decomposition of 𝐼Δ𝑠,𝑡 has been extensively studied in [HHH+10, Rau13,
CMR20, PS19]. In each case, we find a matroidal description of the prime components. In Table 2 we give a
unified perspective on these results where the minimally dependent matroids can be uniquely identified by their
loops. In the case 𝑘 = 𝑠 = 2, it is possible to generalize the prime components of 𝐼Δ𝑠,𝑡 , described in [CMM21]
for the 𝑡 = 3, to all 𝑡 ≥ 3. A complete description of this can be found in our forthcoming work. In this case the
minimally dependent matroids are given by configurations of points lying in (𝑡−1)-dimensional affine subspaces.
When 𝑠 = 2, 𝑡 = 3 and 𝑘, ℓ are arbitrary, the dependent matroids for Δ𝑠,𝑡 are given by configurations with at
most 𝑘 points and ℓ lines. The specific case with 𝑑 = 𝑘 = 𝑠 = 𝑡 = 3 and ℓ = 4 is given in Example 3.12. The ideal
𝐼Δ𝑠,𝑡 has two components both of which are matroid varieties corresponding to the configurations in Figure 2.

Example 7.3. Let 𝑠 = 2 and 𝑡 = 3. For each 2 ≤ 𝑘 ≤ 4 and 3 ≤ ℓ we calculate the number of possible combinato-
rial types of points and line configurations which appear among dependent matroids for Δ𝑠,𝑡 . These calculations
are displayed in Table 1. Note that with 12 points, we observe all combinatorial types of configurations with at
most 4 lines. So, in order to determine the components of the hypergraph variety 𝑉Δ𝑠,𝑡 , we need only show that
a finite number of point and line configurations have irreducible varieties.
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(𝑘, ℓ, 𝑠, 𝑡) Minimally dependent matroids 𝑀S for Δ𝑠,𝑡 Simplification

(𝑘, ℓ, 2, 2) The parallel classes of 𝑀S are the connected components of
Δ𝑠,𝑡\S. 𝑀S is minimally dependent if for any T ⊆ S, there
exists a parallel class of 𝑀T which contains at least two dis-
tinct parallel classes of 𝑀S .

𝑀S : Uniform matroid on
the ground set of parallel
classes of 𝑀S .

(𝑘, ℓ, 2, ℓ) S = ∅: 𝑀∅ is the uniform matroid on [𝑘ℓ] of rank ℓ − 1.
S ≠ ∅: 𝑀S is minimally dependent if |S ∩𝑅𝑖 | = 1 for each row
𝑅𝑖 and S ∩ 𝐶 𝑗 ≠ ∅ for at least two distinct columns 𝐶 𝑗 of Y.
The parallel classes of 𝑀S are 𝐶 𝑗\S for each column 𝐶 𝑗 .

𝑀∅ : Already simplified.
𝑀S : Uniform matroid on
the ground set of parallel
classes of 𝑀S .

(2, ℓ, 2, 3) S : a minimal set from [CMM21, Definition 3.15]. 𝑀S is
the matroid of a point and line configuration. The parallel
classes of 𝑀S are: C =

⋃
𝐶 𝑗 where the union is taken over

all columns 𝐶 𝑗 of Y such that 𝐶 𝑗 ∩ S = ∅, and the sets 𝐶 𝑗\S
where 𝐶 𝑗 ∩ S ≠ ∅. The circuits of size 3 in 𝑀S are given by
3-subsets of the rows 𝑅1\S and 𝑅2\S respectively.

𝑀S : Matroid of a point and
line configuration with at
most two lines intersecting
at C (possibly empty set).

Table 2: The minimally dependent matroids for Δ𝑠,𝑡 , which are uniquely determined by their loops S ⊆ [𝑘ℓ].

7.1 Grid matroids of small rank. Although the minimal matroids for Δ𝑠,𝑡 are known for some specific
values of 𝑠 and 𝑡, it seems difficult to determine the minimal matroids for arbitrary values of 𝑠 and 𝑡. However,
there is no difficulty if 𝑑 is sufficiently small. We first recall the notion of affine matroids.

Definition 7.4. Let F be a field, and let 𝑆 = {𝑣1, . . . , 𝑣𝑘} be a collection of (not necessarily distinct) vectors in
F𝑑−1. Let 𝑣′

𝑖
∈ F𝑑 be the vector whose first coordinate is 1 and whose other coordinates are those of 𝑣𝑖.

• The collection 𝑆 is affinely dependent if 𝑘 > 0 and there are elements 𝑎1, . . . , 𝑎𝑘 ∈ F that are not all 0 with∑𝑘
𝑖=1 𝑎𝑖𝑣𝑖 = 0 and

∑𝑘
𝑖=1 𝑎𝑖 = 0. This is equivalent to the condition that {𝑣′1, . . . , 𝑣′𝑘} is linearly dependent.

• A matroid 𝑀 on the set [𝑛] is affine over the field F if there is a function 𝜙 : [𝑛] → F𝑑−1 such that 𝑋 ⊆ [𝑛]
is an independent set in 𝑀 if and only if 𝜙(𝑋) is affinely independent. In this case, 𝑀 has rank at most 𝑑
and can be realized by a 𝑑 × 𝑛 matrix whose columns are 𝑣′1, . . . , 𝑣

′
𝑛. An affine matroid must be loopless,

and it is simple if and only if 𝜙 is injective. If 𝐹 is a flat of 𝑀 of rank 𝑡, then there is a (𝑡 − 1)-dimensional
affine subspace of F𝑑−1 whose intersection with [𝑛] is 𝜙(𝐹).

Theorem 7.5. Let 𝑠, 𝑡, 𝑘, ℓ, 𝑑 be positive integers such that 3 ≤ 𝑠 ≤ 𝑡 ≤ ℓ, 𝑠 ≤ 𝑘, and 𝑡 ≤ 𝑑 ≤ 𝑠 + 𝑡 − 3. Then
C = min(Δ𝑠,𝑡 ∪

([𝑘ℓ ]
𝑑+1

)
) is the collection of circuits of an R-realizable matroid on [𝑘ℓ] of rank 𝑑. This is the unique

minimal matroid for Δ𝑠,𝑡 in this case.

Proof. One can check fairly easily that C satisfies circuit elimination and therefore is the collection of circuits of
a matroid. However, this will be unnecessary because we will prove this theorem by constructing a realization
for an affine matroid over R whose circuits are C. Because C is itself the collection of circuits of a matroid 𝑀,
there can be no matroid 𝑁 ≠ 𝑀 with rank at most 𝑑 and ground set [𝑘ℓ] such that Δ𝑠,𝑡 ⊆ D(𝑁) ⊆ D(𝑀).
Thus, 𝑀 is the unique minimal matroid for Δ𝑠,𝑡 with 𝑑 ≤ 𝑠 + 𝑡 − 3.

To construct a realization for an affine matroid over R whose circuits are C, we must define a function
𝜙 : [𝑘ℓ] → R𝑑−1. In such a matroid, each 𝑅𝑖 must be a flat of rank 𝑡 −1 and each 𝐶 𝑗 must be a flat of rank 𝑠−1.
A flat of rank 𝑑−𝑚 in an affine matroid over R corresponds to an affine subspace of R𝑑−1 of dimension 𝑑−𝑚−1.
For each such subspace, there are 𝑚 distinct affine hyperplanes in R𝑑−1 whose intersection is the subspace.
Therefore, each 𝜙(𝑅𝑖) must be defined by the intersection of a collection H𝑅𝑖

of 𝑑 − 𝑡 + 1 affine hyperplanes.
These hyperplanes are defined by the following equations, with the matrix 𝐴𝑖 = [𝑎𝑝,𝑞] having full row rank.

𝑎1,1𝑥1 + · · · + 𝑎1,𝑑−1𝑥𝑑−1 = 𝑐1
...

𝑎𝑑−𝑡+1,1𝑥1 + · · · + 𝑎𝑑−𝑡+1,𝑑−𝑡+1𝑥𝑑−1 = 𝑐𝑑−𝑡+1

We choose 𝑘 such collections of hyperplanes H𝑅1
,H𝑅2

, . . . ,H𝑅𝑘
such that the rank-(𝑡 − 1) subspaces they

define are in “general position”. That is, for every 𝑛 < 𝑡, the intersection of every collection of 𝑛 such subspaces
is a subspace of rank 𝑡 − 𝑛. Similarly, each 𝜙(𝐶 𝑗 ) must be defined by the intersection of a collection H𝐶 𝑗

of
𝑑 − 𝑠 + 1 hyperplanes defined by the following equations, with the matrix 𝐵 𝑗 = [𝑏𝑝,𝑞] having full row rank.

𝑏1,1𝑥1 + · · · + 𝑏1,𝑑−1𝑥𝑑−1 = 𝑐𝑑−𝑡+2
...

𝑏𝑑−𝑠+1,1𝑥1 + · · · + 𝑏𝑑−𝑠+1,𝑟−1𝑥𝑑−1 = 𝑐2𝑑−𝑠−𝑡+2
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Choosing the subspaces defined by H𝑅1
,H𝑅2

, . . . ,H𝑅𝑘
,H𝐶1

,H𝐶2
, . . . ,H𝐶ℓ

will ensure that every subset of
𝜙( [𝑘ℓ]) that should be affinely dependent is indeed so. However, we must also ensure that every subset of
𝜙( [𝑘ℓ]) that should be affinely independent is so. That is, for every subset 𝑋 with |𝑋 | ≤ 𝑑 such that no 𝑡-subset
of any 𝑅𝑖 or 𝑠-subset of any 𝐶 𝑗 is contained in 𝑋, 𝜙(𝑋) must be affinely independent. To do this, we will choose
the collections H𝐶1

,H𝐶2
, . . . ,H𝐶ℓ

successively. Suppose we have chosen the collections H𝐶1
, . . . ,H𝐶 𝑗−1 and now

must choose H𝐶 𝑗
. If 𝑋 is a subset of 𝐶1∪ · · · ∪𝐶 𝑗 such that 𝜙(𝑋) is to be affinely independent, then 𝜙(𝑋 −𝐶 𝑗 ) is

a basis for a subspace 𝑆 of R𝑑−1. We must choose H𝐶 𝑗
so that, for each 𝑖 ≤ 𝑘, the intersection of all hyperplanes

in H𝑅𝑖
∪H𝐶 𝑗

is a subspace of rank 𝑑 − (𝑑 − 𝑠 + 1) − (𝑑 − 𝑡 + 1) = 𝑑 − (2𝑑 − 𝑠 − 𝑡 + 2) = 𝑠 + 𝑡 − 𝑑 − 2 that avoids all
such subspaces 𝑆.

The requirement that this subspace has rank 𝑠 + 𝑡 − 𝑑 − 2 is equivalent to the matrix

[
𝐴𝑖
𝐵 𝑗

]
having full row

rank. This subspace must be nonempty since 𝑅𝑖 ∩ 𝐶 𝑗 ≠ ∅. Thus, we must have 𝑠 + 𝑡 − 𝑑 − 2 ≥ 1, which is true
because 𝑑 ≤ 𝑠 + 𝑡 − 3. The requirement of avoiding all subspaces defined by independent sets can be achieved as
there are only finitely many such subspaces to avoid but infinitely many collections to choose to be H𝐶 𝑗

. □

7.2 General grid matroids. Given a collection D of subsets of a ground set 𝐸 , we wish to find the
matroids that are minimally dependent for D. However, for our purposes here, it is necessary to find the
matroids minimally dependent for D among the class of realizable matroids.

Some work toward these ideas has been done by Mart́ı-Farré [MF14]. Below, we recall the algorithmic
procedure used in [MF14] to obtain minimally dependent matroids. This algorithm is not quite completely
satisfactory from our perspective for two reasons. First, the algorithm does not take realizability into account
at all. Mart́ı-Farré and de Mier worked with realizability in [MFdM15], but as they said there, “The problems
under consideration are far from being solved.” Second, although the algorithm is guaranteed to give all of the
minimally dependent matroids, it may also give additional matroids that are not minimally dependent. One
must compare the matroids given by the algorithm to determine which ones are minimally dependent.

In fact, we will use the algorithm of Mart́ı-Farré to prove a result that illustrates the difficulties of determining
the minimal matroids for Δ𝑠,𝑡 in general. First, we recall some terminology and notation, much of it coming
from [MF14]. A clutter on a set Ω is a collection of subsets of Ω such that no set is contained in another. (The
term clutter is another word for what we have been calling a simple hypergraph.) If Λ is a clutter on Ω, let
Λ+ = {𝐴 ⊆ Ω : 𝐴0 ⊆ 𝐴 for some 𝐴0 ∈ Λ}. If Υ is any collection of subsets of Ω, then recall from Section 2 that
min(Υ) denotes the clutter of inclusion-wise minimal sets in Υ. For 𝐵 ⊆ Ω, define

𝐼Λ (𝐵) =
⋂

𝐴∈Λ,𝐴⊆𝐵
𝐴.

It follows from the circuit elimination axiom that Λ is the collection of circuits of a matroid if and only if
𝐼Λ (𝐴1 ∪ 𝐴2) = ∅ for all 𝐴1, 𝐴2 ∈ Λ with 𝐴1 ≠ 𝐴2. To describe the algorithm, we use the notation of Mart́ı-Farré
and de Mier in [MFdM17]. Let Λ be a clutter with 𝐴1, 𝐴2 ∈ Λ. An 𝛼1-transformation of Λ is

𝛼1 (Λ; 𝐴1, 𝐴2) =
{
min(Λ ∪ {𝐴1 ∩ 𝐴2}) if 𝐼Λ (𝐴1 ∪ 𝐴2) ≠ ∅,
Λ otherwise.

The 𝛼2- and 𝛼3-transformations of Λ are

𝛼2 (Λ) = min(Λ ∪ {(𝐴1 ∪ 𝐴2)\{𝑥} : 𝐴1, 𝐴2 ∈ Λ, 𝐴1 ≠ 𝐴2, 𝑥 ∈ 𝐴1 ∩ 𝐴2}) and

𝛼3 (Λ) = min(Λ ∪ {(𝐴1 ∪ 𝐴2)\𝐼Λ (𝐴1 ∪ 𝐴2) : 𝐴1, 𝐴2 ∈ Λ, 𝐴1 ≠ 𝐴2}).

The following result is proved in [MF14, Theorem 13].

Theorem 7.6. Let Λ ≠ {∅} be a clutter on a finite set Ω and let 𝑀 be a minimally dependent matroid for Λ

whose collection of circuits is C(𝑀). There is a sequence of clutters Λ = Λ0,Λ1, . . . ,Λ𝑟 = C(𝑀) such that, for
each 𝑖 ≥ 1, we have Λ+

𝑖−1 ⊊ Λ+
𝑖
and such that Λ𝑖 is either an 𝛼1-, 𝛼2-, or 𝛼3-transformation of Λ𝑖−1.

So, in order to obtain all minimally dependent matroids for a clutter, it suffices to perform every possible
combination of 𝛼1-, 𝛼2-, and 𝛼3-transformations on the clutter. Then, one must compare the resulting matroids
and discard any matroid whose collection of dependent sets strictly contains the collection of dependent sets of
another matroid obtained from the algorithm. Although the elements of the ground set of Δ𝑠,𝑡 are the integers
1, 2, . . . , ℓ𝑘, it will be convenient to think of each element as an ordered pair (𝑖, 𝑗), where (𝑖, 𝑗) is the unique
element of 𝑅𝑖 ∩𝐶 𝑗 . In the remainder of this section, we show that every matroid can be obtained as a restriction
of a matroid obtained from some Δ𝑠,𝑡 by 𝛼1- and 𝛼2-transformations. We prove the following result.
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Theorem 7.7. Let 𝑀 be a matroid on ground set [𝑛]. There are positive integers 𝑠, 𝑡, 𝑘, ℓ and a sequence of
clutters Δ𝑠,𝑡 = Λ0,Λ1, . . . ,Λ𝑟 on the set [𝑘ℓ] such that, for each positive integer 𝑖 ≤ 𝑟, Λ𝑖 is either an 𝛼1- or an
𝛼2-transformation of Λ𝑖−1 and Λ𝑟 is the collection of circuits of a matroid with a restriction isomorphic to 𝑀.

We will prove Theorem 7.7 after giving some definitions and proving some lemmas below. We remark that
these lemmas and Theorem 7.7, as well as their proofs, are true if one replaces 𝛼2-transformations with 𝛼3-
transformations. We will use 𝛼1- and 𝛼2-transformations to obtain a matroid whose restriction to {(1, 𝑗) : 1 ≤
𝑗 ≤ 𝑛} is isomorphic to 𝑀. That isomorphism will be 𝑗 → (1, 𝑗) for each 𝑗 ∈ [𝑛]. Thus, to simplify notation, we
identify the element (1, 𝑗) ∈ 𝑅1 with the element 𝑗 ∈ [ℓ]. (Similarly, we identify subsets of 𝑅1 with subsets of [ℓ].)

Definition 7.8. Let 𝑡 ≥ 3, and let 𝑀 be a matroid of rank 𝑡 − 1 on [𝑛]. Let 𝑐 be the number of loops of 𝑀. Let
𝑐′ = max{𝑐, 𝑡 −1} and 𝑛′ = 𝑛+ 𝑐′ − 𝑐. Let 𝑀 ′ be the matroid on [𝑛′] obtained from 𝑀 by adding 𝑐′ − 𝑐 loops. Let
ℓ = 𝑛′ + 2(𝑡 − 2) and 𝑀+ be the matroid on [ℓ] obtained from 𝑀 ′ by freely adding ℓ− 𝑛′ elements to the flat [𝑛′].

Note that 𝑐′ is the number of loops of both 𝑀 ′ and 𝑀+. Also note that, since the rank of 𝑀 ′ is 𝑡 − 1, there
are at least 𝑡 − 1 non-loop elements of 𝑀 ′. Therefore, 𝑛′ ≥ 𝑡 − 1 + 𝑐′ ≥ 2(𝑡 − 1).

Definition 7.9. Let 𝑀 be a matroid of rank 𝑡−1 on ground set [𝑛], where 𝑡 ≥ 3. Let ℓ = 𝑛′+2(𝑡−2), while 𝑠 = 3
and 𝑘 = 5. For a non-negative integer 𝑝 ≤ 𝑡 −1, let Λ𝑝 (𝑀) be the clutter on [𝑘ℓ] consisting of the inclusion-wise
minimal sets among

(1) 3-subsets of 𝐶 𝑗 , where 1 ≤ 𝑗 ≤ ℓ,

(2) 𝑡-subsets of 𝑅𝑖, where 1 ≤ 𝑖 ≤ 𝑘,

(3) subsets of [𝑛′] ⊆ 𝑅1 of size at least (𝑡 − 𝑝) that are circuits of 𝑀 ′,

(4) sets of the form 𝐴 ∪ {𝑥} ⊆ 𝑅1, where 𝑥 ∈ {ℓ − 2𝑝 + 1, ℓ − 2𝑝 + 2} and 𝐴 is a (𝑡 − 𝑝 − 1)-subset of [ℓ − 2𝑝]
containing exactly one circuit of 𝑀 ′, and

(5) sets of the form 𝐻𝑖 ∪ 𝐾 𝑗 where 𝐻𝑖 ⊆ 𝑅𝑖\𝐶 𝑗 and 𝐾 𝑗 ⊆ 𝐶 𝑗\𝑅𝑖, with |𝐻𝑖 | = 𝑡 − 1 and |𝐾 𝑗 | = 2.

We define a cross set to be a set of the form described in (5).

Note that Λ0 (𝑀) = 𝛼2 (Δ𝑠,𝑡 ) = 𝛼3 (Δ𝑠,𝑡 ) and the members of Λ𝑝 (𝑀) must be inclusion-wise minimal. Hence,
not all sets listed under (1)-(5) above are necessarily members of Λ𝑝 (𝑀). Therefore, we need the following result.

Lemma 7.10. Every subset of 𝑅1 of size at least 𝑡 − 𝑝 that is a circuit of 𝑀 ′ is a member of Λ𝑝 (𝑀).

Proof. It suffices to show that no member of Λ𝑝 (𝑀) is properly contained in a circuit of 𝑀 ′. Other than circuits
of 𝑀 ′, the only members of Λ𝑝 (𝑀) that are contained in 𝑅1 are 𝑡-subsets of 𝑅1 and the sets described in (4) of
Definition 7.9. No circuit of 𝑀 ′ has size greater than 𝑡. Therefore, no 𝑡-subset of 𝑅1 is properly contained in a
circuit of 𝑀 ′. If 𝑝 = 𝑡 − 1, then 𝑡 − 𝑝 − 1 = 0. Since the empty set is never a circuit of a matroid, none of the sets
described in (4) of Definition 7.9 exist. If 𝑝 ≤ 𝑡−2, then ℓ−2𝑝+1 ≥ ℓ−2(𝑡−2) +1 = 𝑛′ +2(𝑡−2) −2(𝑡−2) +1 > 𝑛′.
Since [𝑛′] is the ground set of 𝑀 ′, no set described in (4) is contained in a circuit of 𝑀 ′. □

Lemma 7.11. Let 𝑀 be a matroid of rank 𝑡 − 1, where 𝑡 ≥ 3. Let 1 ≤ 𝑝 ≤ 𝑡 − 1. There is a sequence of clutters
Λ𝑝−1 (𝑀) = Λ𝑝,0,Λ𝑝,1, . . . ,Λ𝑝,𝑞 = Λ𝑝 (𝑀), where Λ𝑝,𝑖 is an 𝛼1-transformation of Λ𝑝,𝑖−1.

Proof. Note that Λ𝑝 (𝑀) = min(Λ𝑝−1 (𝑀) ∪ Γ), where Γ is the collection of

• (𝑡 − 𝑝)-subsets of [𝑛] ⊆ 𝑅1 that are circuits of 𝑀 ′ and

• sets of the form 𝐴∪ {𝑥}, where 𝑥 ∈ {ℓ−2𝑝 +1, ℓ−2𝑝 +2} and 𝐴 is a (𝑡 − 𝑝−1)-subset of [ℓ−2𝑝] containing
exactly one circuit of 𝑀 ′.

By induction, assume Λ𝑝,𝑖−1 = min(Λ𝑝−1 (𝑀) ∪ Γ′), where Γ′ ⊆ Γ. Let 𝑋 ∈ Γ\Γ′. We proceed by tak-
ing cases on 𝑝.

Case 1. Assume that 𝑝 = 1. Let 𝑚1, 𝑚2 ∈ [ℓ]\𝑋. (This is possible because ℓ ≥ 𝑡 + 1 if and only if 𝑛′ ≥ −𝑡 + 5.
We have 𝑡 ≥ 3, implying that 3𝑡 ≥ 9. This implies 𝑛′ ≥ 2𝑡 − 2 ≥ −𝑡 + 7.) Let 𝐾𝑚1

= {(2, 𝑚1), (3, 𝑚1)} and
𝐾𝑚2

= {(4, 𝑚2), (5, 𝑚2)}. Note that 𝑋 ∪ 𝐾𝑚1
and 𝑋 ∪ 𝐾𝑚2

are cross sets and therefore members of Λ𝑝,0. Also
note that 𝑋 ∪ 𝐾𝑚1

and 𝑋 ∪ 𝐾𝑚2
are the only members of Λ𝑝,𝑖−1 contained in 𝑋 ∪ 𝐾𝑚1

∪ 𝐾𝑚2
. Therefore,

𝛼1 (Λ𝑝,𝑖−1; 𝑋 ∪ 𝐾𝑚1
, 𝑋 ∪ 𝐾𝑚2

) = min(Λ𝑝,𝑖−1 ∪ {𝑋}). By iterating this process, we obtain Λ1 (𝑀).
Case 2. Assume that 𝑝 > 1. By Definition 7.9, we see that 𝑋 ∪ {ℓ − 2(𝑝 − 1) + 1} ∈ Λ𝑝−1 (𝑀) and 𝑋 ∪ {ℓ − 2(𝑝 −
1) + 2} ∈ Λ𝑝−1 (𝑀). Also note that 𝑋 ∪ {ℓ − 2(𝑝 − 1) + 1} and 𝑋 ∪ {ℓ − 2(𝑝 − 1) + 2} are the only members of
Λ𝑝,𝑖−1 contained in 𝑋 ∪ {ℓ − 2(𝑝 − 1) + 1, ℓ − 2(𝑝 − 1) + 2}. This follows from the fact that all members of Λ𝑝,𝑖−1
are inclusion-wise minimal (so 𝑋 ∪ {ℓ − 2(𝑝 − 1) + 1, ℓ − 2(𝑝 − 1) + 2} is not a member of Λ𝑝,𝑖−1) and the fact that
𝑡 ≥ 3 (so {ℓ − 2(𝑝 − 1) + 1, ℓ − 2(𝑝 − 1) + 2} is not a member of Λ𝑝,𝑖−1). Therefore, 𝛼1 (Λ𝑝,𝑖−1; 𝑋 ∪ {ℓ − 2(𝑝 − 1) +
1}, 𝑋 ∪ {ℓ − 2(𝑝 − 1) + 2}) = min(Λ𝑝,𝑖−1 ∪ {𝑋}). By iterating this process, we obtain Λ𝑝 (𝑀). □
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Proof of Theorem 7.7. First we consider the case where the rank of 𝑀 is at most 1. Let 𝑐 be the number of
loops of 𝑀. Let 𝑠 = 𝑡 = 𝑘 = 2 and ℓ = max{𝑐 + 1, 𝑛}. For 𝑖 ≤ 𝑐, let Λ𝑖 = 𝛼1 (Λ𝑖−1; {(1, 𝑖), (1, ℓ)}, {(1, 𝑖), (2, 𝑖)}) =
Λ𝑖−1 ∪ {(1, 𝑖)}. The result is that {(1, 𝑗)} ∈ Λ𝑐 for every 𝑗 ≤ 𝑐. Now, let Λ𝑐+1 = 𝛼2 (Λ𝑐). This is the union of Λ𝑐

with the collection of 2-subsets of {(2, 𝑗) : 1 ≤ 𝑗 ≤ ℓ} ∪ {(1, 𝑗) : 𝑐 + 1 ≤ 𝑗 ≤ ℓ}. This is the collection of circuits
of a matroid whose restriction to {(1, 𝑗) : 1 ≤ 𝑗 ≤ 𝑛} is isomorphic to 𝑀.

Now let 𝑀 be a matroid on [𝑛] of rank 𝑡 −1, where 𝑡 ≥ 3. Let 𝑐, 𝑐′, 𝑛′, 𝑀 ′, ℓ, and 𝑀+ be as in Definition 7.8,
while 𝑠 = 3 and 𝑘 = 5. As noted above, 𝛼2 (Δ𝑠,𝑡 ) = Λ0 (𝑀). By repeated use of Lemma 7.11, we can obtain
Λ𝑡−1 (𝑀) from Λ0 (𝑀) by a sequence of 𝛼1-transformations.

Now, let Γ be the clutter consisting of all 2-subsets of columns 𝐶 𝑗 for 1 ≤ 𝑗 ≤ ℓ other than the subsets
containing a loop of 𝑀 ′. We will construct a sequence of clutters Λ𝑡−1 (𝑀) = Λ′0,Λ

′
1, . . . ,Λ

′
𝑞 = min(Λ𝑡−1 (𝑀) ∪ Γ)

such that Λ′
𝑖
is an 𝛼1-transformation of Λ′

𝑖−1. By induction, assume Λ′
𝑖−1 = min(Λ𝑡−1 (𝑀) ∪ Γ′), where Γ′ ⊆ Γ.

Let 𝑋 ∈ Γ\Γ′. Then there are positive integers 𝑗 , 𝑚1, 𝑚2 such that 𝑋 = {(𝑚1, 𝑗), (𝑚2, 𝑗)}. Let {𝑚3, 𝑚4} ⊆
{2, 3, 4, 5}\{𝑚1, 𝑚2}. Let 𝐾𝑚3

⊆ 𝑅𝑚3
\𝐶 𝑗 and 𝐾𝑚4

⊆ 𝑅𝑚4
\𝐶 𝑗 with |𝐾𝑚3

| = |𝐾𝑚4
| = 𝑡 − 1. Moreover, we can choose

𝐾𝑚3
and 𝐾𝑚4

so that no column contains an element of both. (This is possible because ℓ ≥ 2(𝑡−1) +1 if and only
if 𝑛′ ≥ 3. This is true because 𝑛′ ≥ 2(𝑡−1) ≥ 4.) Note that the only members of Λ′

𝑖−1 contained in 𝑋 ∪𝐾𝑚3
∪𝐾𝑚4

are the cross sets 𝑋 ∪𝐾𝑚3
and 𝑋 ∪𝐾𝑚4

. Therefore, 𝛼1 (Λ′𝑖−1; 𝑋 ∪𝐾𝑚3
, 𝑋 ∪𝐾𝑚4

) = min(Λ′
𝑖−1 ∪ {𝑋}). By iterating

this process, we obtain min(Λ𝑡−1 (𝑀) ∪ Γ). Let Λ′′ = min(Λ𝑡−1 (𝑀) ∪ Γ). By Lemma 7.10, the circuits of 𝑀 ′ are
members of Λ𝑡−1 (𝑀). The circuits of 𝑀+ that are not circuits of 𝑀 ′ are the 𝑡-subsets of 𝑅1 not containing a
circuit of 𝑀 ′. Thus, the members of Λ′′ are:

• 2-subsets of 𝐶 𝑗 , where 1 ≤ 𝑗 ≤ ℓ, other than the subsets containing a loop of 𝑀 ′,

• subsets of 𝑅1 that are circuits of 𝑀+, and

• 𝑡-subsets of 𝑅𝑖, where 2 ≤ 𝑖 ≤ 𝑘.

Recall that 𝑐 is the number of loops of 𝑀 and 𝑐′ is the number of loops of 𝑀 ′. Without loss of generality,
assume that the loops of 𝑀 ′ are {𝑛 − 𝑐 + 1, 𝑛 − 𝑐 + 2, . . . , 𝑛′}.

Let Ψ be the clutter consisting of singleton sets {(𝑖, 𝑗)}, where 2 ≤ 𝑖 ≤ 5 and either 1 ≤ 𝑗 ≤ 𝑛 − 𝑐 or 𝑛′ + 1 ≤
𝑗 ≤ ℓ. (So 𝑗 is not a loop of 𝑀+.) We will construct a sequence of clutters Λ′′ = Λ′′0 ,Λ

′′
1 , . . . ,Λ

′′
𝑧 = min(Λ′′ ∪ Ψ)

such that Λ′′
𝑖
is an 𝛼1-transformation of Λ′′

𝑖−1. By induction, assume Λ′′
𝑖−1 = min(Λ′′ ∪ Ψ′), where Ψ′ ⊆ Ψ. Let

{(𝑖, 𝑗)} ∈ Ψ\Ψ′. Let 𝐴1 = {(𝑖, 𝑗)} ∪ {(𝑖, 𝑚) : 𝑛 − 𝑐 + 1 ≤ 𝑚 ≤ 𝑛 − 𝑐 + 𝑡 − 1} and let 𝐴2 = {(𝑖, 𝑗), (1, 𝑗)}. Since
𝑛′ ≥ 𝑛 − 𝑐 + 𝑡 − 1, no element of 𝐴1 ∪ 𝐴2 is a singleton set in Ψ. Thus, 𝐴1 and 𝐴2 are the only members of Λ′′

𝑖−1
contained in 𝐴1∪𝐴2 and 𝛼1 (Λ′′𝑖−1; 𝐴1, 𝐴2) = min(Λ′′∪{(𝑖, 𝑗)}). By iterating this process, we obtain min(Λ′′∪Ψ).

Let Λ′′′ = min(Λ′′ ∪ Ψ). The members of Λ′′′ are

• singleton sets {(𝑖, 𝑗)} where 2 ≤ 𝑖 ≤ 5 and either 1 ≤ 𝑗 ≤ 𝑛 − 𝑐 or 𝑛′ + 1 ≤ 𝑗 ≤ ℓ,

• 2-subsets of 𝐶 𝑗\{(1, 𝑗)}, where 𝑛 − 𝑐 + 1 ≤ 𝑗 ≤ 𝑛′,

• 𝑡-subsets of {(𝑖, 𝑗) : 𝑛 − 𝑐 + 1 ≤ 𝑗 ≤ 𝑛′} for some fixed 𝑖 with 2 ≤ 𝑖 ≤ 5, and

• subsets of 𝑅1 that are circuits of 𝑀+.

Note that each member of Λ′′′ is either contained in 𝑅1 or disjoint from 𝑅1. For every clutter, a process of
repeated 𝛼2-transformations on the clutter must eventually terminate in a clutter that is the collection of circuits
of a matroid. Therefore, repeated 𝛼2-transformations on Λ′′′ will result in a clutter that is the collection of
circuits of a matroid 𝑁 whose circuits are either contained in 𝑅1 or disjoint from 𝑅1. Since the members of Λ′′′

contained in 𝑅1 are the circuits of 𝑀+, circuit elimination implies that the circuits of 𝑁 contained in 𝑅1 are
precisely the circuits of 𝑀+. In particular, the restriction of 𝑁 to {(1, 𝑗) : 1 ≤ 𝑗 ≤ 𝑛} is isomorphic to 𝑀. □

Theorem 7.7 applies to all matroids, regardless of rank. However, in the case where the matroid is simple
and has rank at most 3, the result can be illustrated more clearly using a different procedure from the one used
in the proof of the theorem. We use point and line configurations. Consider the Fano matroid whose point and
line configuration is the Fano plane given in Figure 3. It is well-known that the Fano matroid is not realizable
over any field of characteristic other than 2; therefore, it is not C-realizable. In the case where 𝑛 = 7 and

D = {𝐿1 = {1, 2, 4}, 𝐿2 = {1, 3, 6}, 𝐿3 = {1, 5, 7}, 𝐿4 = {2, 3, 5}, 𝐿5 = {2, 6, 7}, 𝐿6 = {3, 4, 7}, 𝐿7 = {4, 5, 6}} ∪
(
[𝑛]
4

)
,

the only minimally dependent matroid with respect to min(D) is the Fano matroid, which is not relevant for
our purposes because it is not C-realizable. However, this can arise as the simplification of a matroid coming
from a point and line configuration with 𝑠 = 2 and 𝑡 = 3.

Indeed, consider the case 𝑘 = ℓ = 7. Let (𝑖, 𝑗) be the unique element contained in 𝑅𝑖 ∩ 𝐶 𝑗 . Iteratively
performing 𝛼1-transformations (defined earlier in this subsection), we can obtain from the clutter Δ2,3 a clutter
that contains all of the singletons in 𝑅𝑖 except for the elements (𝑖, 𝑗) such that 𝑗 ∈ 𝐿𝑖. In particular, the members
of this clutter are the following:
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• all singletons except for the elements (𝑖, 𝑗) such that 𝑗 ∈ 𝐿𝑖,

• 3-subsets of the form {(𝑖, 𝑗) ∈ 𝑅𝑖 : 𝑗 ∈ 𝐿𝑖}, and

• 2-subsets of 𝐶 𝑗 of the form {(𝑖𝑖 , 𝑗), (𝑖2, 𝑗)}, where 𝑗 ∈ 𝐿𝑖1 ∩ 𝐿𝑖2 .

Then, by performing two transformations (both 𝛼2-transformations, both 𝛼3-transformations, or one of each),
we obtain a clutter that is the collection of circuits of a matroid whose simplification is the Fano matroid and
whose rank-1 flats each have three non-loop elements. The second transformation is needed to include the Fano
matroid’s circuits of size 4. (This works because, for each 4-element circuit 𝐶 of the Fano matroid, there is a
fifth element 𝑥 such that 𝐶 ∪ {𝑥} is the union of two 3-element circuits whose intersection is 𝑥.)

8 Conditional independence models

Conditional independence (CI) models play an important role in algebraic statistics [Stu05]. Given a collection
of random variables and knowledge of the conditional dependencies, or independencies, among them, we can
ask what are the distributions that satisfy them. In a more general setting, some of the random variables
appearing in a CI model can be prescribed as unobserved (or hidden). Our goal is to determine when certain
constraints on the observed variables arise from conditions on the hidden variables [SA15]. This problem can
be restated algebraically by noting that probability distributions satisfying CI statements are the solutions of
certain polynomial equations [DSS09, Sul18] which generate the so-called CI ideal. The distributions satisfying
a given collection of CI statements can be recovered by intersecting the CI ideal with the probability simplex.
When there are no hidden variables, these polynomials are binomials and their associated ideals are well-studied;
see e.g. [Fin11, HHH+10, Rau13, ST13]. However, in the presence of hidden variables, the polynomials become
far more complicated of arbitrarily high degrees and very difficult to calculate; see e.g. [PS19, CMR20].

Let 𝑋,𝑌1, 𝑌2 be observed and 𝐻1, 𝐻2 be hidden random variables taking values in the finite sets X,Y1,Y2,H1,H2

of cardinalities |X| = 𝑑, |Y1 | = 𝑘, |Y2 | = ℓ, |H1 | = 𝑠 − 1, |H2 | = 𝑡 − 1. Consider the CI model given by:

C : 𝑋 ⊥⊥ 𝑌1 | {𝑌2, 𝐻1} and 𝑋 ⊥⊥ 𝑌2 | {𝑌1, 𝐻2}. (4)

Then the CI ideal associated to C is precisely the hypergraph ideal 𝐼Δ𝑠,𝑡 in §7; see [CMM21, CMR20].

Example 8.1. Let 𝑑 = 𝑘 = 𝑠 = 𝑡 = 3 and ℓ = 4. The joint distribution of 𝑌1 and 𝑌2 has state space Y = Y1 ×Y2
which is identified with the 3 × 4 matrix Y with values in the set [12] as in (3). In this case, the CI ideal
𝐼Δ ⊆ C[𝑃] := C[𝑝𝑥,𝑦 : 𝑥 ∈ X, 𝑦 ∈ Y] is the hypergraph ideal from Example 3.12. The ideal 𝐼Δ has two
prime components. One component, associated to the matroid 𝑀0 from Example 3.12, is generated by all
3-minors of the matrix of variables 𝑃. This is the ideal associated to the CI statements 𝑋 ⊥⊥ {𝑌1, 𝑌2} | 𝐻1 and
𝑋 ⊥⊥ {𝑌1, 𝑌2} | 𝐻2. Note that 𝐻1 and 𝐻2 are hidden random variables taking the same number of values, and so
the ideals do not distinguish them. The other prime component 𝐼𝑀 is the ideal of the configuration described in
Example 3.12 consisting of 12 points and 7 lines. Besides the rank constraints given by the original CI model,
the ideal 𝐼𝑀 contains geometric constraints which are satisfied by all distributions which do not lie in 𝑉𝑀0

.

We note that for large values of 𝑑, understanding the algebraic properties of the ideal 𝐼Δ𝑠,𝑡 and its (primary)
decomposition is hard. In particular, Theorem 7.7 shows that, up to simplification, any matroid can appear
among the dependent matroids for Δ𝑠,𝑡 . And, in the example above, some high-degree polynomials may appear in
the generating sets of the primary components of 𝐼Δ𝑠,𝑡 . However, for 𝑑 ≤ 𝑠 + 𝑡 − 3 we have shown in Theorem 7.5
that Δ𝑠,𝑡 has a unique minimally dependent matroid 𝑀. So, for a generic point 𝑝 in the variety 𝑉Δ𝑠,𝑡 , the
additional polynomial constraints on 𝑝 arise from geometric constraints on realizations of 𝑀.

Remark 8.2. Suppose that 𝐻1 and 𝐻2 are both constant. The intersection axiom states that any distribution
satisfying C in (4) generically satisfies 𝑋 ⊥⊥ {𝑌1, 𝑌2}. Here, genericity means that the distributions have non-
zero probabilities. The intersection axiom has been studied for various CI models; see e.g. [HHH+10, Rau13,
CMR20, CMM21, PS19]. We note that our family of hypergraph varieties include all these cases as examples.
In particular, the corresponding ideal 𝐼Δ𝑠,𝑡 has a distinguished prime component with a particular statistical
significance, since the distributions which lie inside do not contain any structural zeros [Stu02]. Importantly,
if we assume, without loss of generality, that 𝑠 ≤ 𝑡 then this prime ideal can be realized as the CI ideal of
𝑋 ⊥⊥ {𝑌1, 𝑌2} | 𝐻2. We may therefore deduce a hidden variable version of the intersection axiom as follows:

C = {𝑋 ⊥⊥ 𝑌1 | {𝐻1, 𝑌2}, 𝑋 ⊥⊥ 𝑌2 | {𝑌1, 𝐻2}} =⇒ 𝑋 ⊥⊥ {𝑌1, 𝑌2} | 𝐻2.

Finally, we give connections of our work to an interesting conjecture by Matúš; see [Mat99].

Conjecture 8.3 ([Mat99]). For any discrete conditional independence model C, there exists a distribution
𝑝 ∈ 𝑉 (𝐽C) such that all joint probabilities of 𝑝 are rational.
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In Theorem 7.7, we have seen that for large enough 𝑠, 𝑡, 𝑘, ℓ, any matroid may appear among the dependent
matroids for Δ𝑠,𝑡 . A natural approach is to carefully choose additional conditional independence and dependence
statements for the model (4), in order to guarantee that any distribution 𝑝 satisfying C is a realization of a
given, realizable, matroid. Note that there exist matroids that are not realizable over the rationals but are
realizable over a real field extension. Hence, this might lead to a characterization of CI models with hidden
variables for which Conjecture 8.3 does not hold.
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