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Abstract. We introduce some new weighted maximal operators of the Fejér
means of the Walsh–Fourier series. We prove that for some “optimal” weights
these new operators are bounded from the martingale Hardy space Hp(G) to the
space weak-Lp(G), for 0 < p < 1/2. Moreover, we also prove sharpness of this
result. As a consequence we obtain some new and well-known results.

1. Introduction

All symbols used in this introduction can be found in Section 2.
In the one-dimensional case, the weak (1,1)-type inequality for the max-

imal operator σ∗ of Fejér means σn with respect to the Walsh system

σ∗f := sup
n∈N

|σnf |

can be found in Schipp [19] and Pál, Simon [14] (see also [4], [13] and [16]).
Fujii [7] and Simon [21] proved that σ∗ is bounded from H1 to L1. Weisz [29]
generalized this result and proved boundedness of σ∗ from the martingale
space Hp to the Lebesgue space Lp for p > 1/2. Simon [20] gave a coun-
terexample which shows that boundedness does not hold for 0 < p < 1/2.
A counterexample for p = 1/2 was given by Goginava [9]. Moreover, in [10]
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(see also [23]) he proved that there exists a martingale F ∈ Hp (0 < p ≤ 1/2)
such that

sup
n∈N

‖σnF‖p = ∞.

Weisz [29,32] proved that the maximal operator σ∗ of the Fejér means is
bounded from the Hardy space H1/2 to the space weak-L1/2.

For 0 < p < 1/2 in [25] it was investigated the weighted maximal opera-
tor

(1) σ̃∗,pF := sup
n∈N

|σnF |

(n+ 1)1/p−2

was investigated and it was proved that the following estimate holds:∥∥ σ̃∗F
∥∥
p
≤ cp ‖F‖Hp

and

(2)
∥∥ σ̃∗F

∥∥
weak-Lp

≤ cp ‖F‖Hp
.

Moreover, it was proved that the rate of sequence {(n+ 1)1/p−2}, given in
denominator of (1) can not be improved. In the case p = 1/2 analogical
results for the maximal operator

σ̃∗F := sup
n∈N

|σnF |

log2(n+ 1)

was proved in [11] for Walsh system and [24] for Vilenkin systems.
In the study of convergence of subsequences of Fejér means and their

restricted maximal operators on the martingale Hardy spaces Hp(G) for 0 <
p ≤ 1/2, the central role is played by the fact that any natural number n ∈ N

can be uniquely expression as n =
∑∞

k=0 nj2j, nj ∈ Z2 (j ∈ N), where only
a finite numbers of nj differ from zero and their important characters [n],
|n|, ρ(n) and V (n) are defined by

[n] := min{j ∈ N, nj �= 0}, |n| := max{j ∈ N, nj �= 0}, ρ(n) = |n| − [n],

V (n) := n0 +
∞∑
k=1

|nk − nk−1|, for all n ∈ N.

Weisz [31] (see also [30]) also proved that for any F ∈ Hp(G) (p >  0), the 
maximal operator supn∈N |σ2nF | is bounded from the Hardy space Hp to the 
Lebesgue space Lp. Persson and Tephnadze [15] (see also [4]) generalized
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(3) sup
k∈N

ρ(nk) ≤ c < ∞,

then the restricted maximal operator σ̃∗,∇, defined by

(4) σ̃∗,∇F := sup
k∈N

|σnk
F |

is bounded from the Hardy space Hp(G) to the space Lp(G). Moreover, if
0 < p < 1/2 and {nk : k ≥ 0} is a sequence of positive numbers such that

sup
k∈N

ρ(nk) = ∞,

then there exists a martingale F ∈ Hp such that

sup
k∈N

‖σnk
F‖p = ∞.

From these facts it follows that if 0 < p < 1/2, F ∈ Hp and {nk : k ≥ 0} is
any sequence of positive numbers, then the maximal operator defined by (4)
is bounded from the Hardy space Hp to the Lebesgue space Lp if and only
if the condition (3) is fulfilled.

For 0 < p < 1/2 in [28] it was proved that if F ∈ Hp, then there exists
an absolute constant cp, depending only on p, such that

‖σnF‖Hp
≤ cp2ρ(n)(1/p−2)‖F‖Hp

.

Using this it follows that∥∥∥∥ σnF

2ρ(n)(1/p−2)

∥∥∥∥
p

≤ cp ‖F‖Hp

and

(5)
∥∥∥∥ σnF

2ρ(n)(1/p−2)

∥∥∥∥
weak-Lp

≤ cp ‖F‖Hp
.

Moreover, if {Φn} is any nondecreasing sequence such that

sup
k∈N

ρ(nk) = ∞, lim
k→∞

2ρ(nk)(1/p−2)

Φnk

= ∞,

M

this result and proved that if 0 < p  ≤ 1/2 and {nk : k ≥ 0} is a sequence of 
positive numbers such that
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then there exists a martingale F ∈ Hp (0 < p < 1/2) such that

sup
k∈N

∥∥∥∥σnk
F

Φnk

∥∥∥∥
weak-Lp

= ∞.

In [28] it was proved that if F ∈ H1/2, then there exists an absolute
constant c such that

‖σnF‖H1/2
≤ cV 2(n) ‖F‖H1/2

.

Moreover, the rate of sequence V 2(n) can not be improved.
The (H1/2–L1/2)-type inequalities for the the restricted and weighted

maximal operators of Walsh–Fejér means were studied in [2] and [3]. Ana-
logical problems for partial sums of Walsh-Fourier series for 0 < p < 1 were
proved in [5] and [6] (see also [26,27]).

In this paper we generalize estimates (2) and (5). In particular, we prove
that the weighted maximal operator σ̃∗,∇, defined by

(6) σ̃∗,∇F := sup
n∈N

|σnF |

2ρ(n)(1/p−2)

of Fejér means of Walsh–Fourier series is bounded from the Hardy space 
Hp(G) to the  space weak-Lp(G). Moreover, we prove that the rate of the 
sequence {2ρ(n)(1/p−2)} in (6) is sharp. We also prove that the maximal op-
erator defined by (6) is not bounded from the Hardy space Hp(G) to the  
Lebesgue space Lp(G). As a consequence we obtain some new and well-
known results.

This paper is organized as follows: In order not to disturb our discussions 
later on some preliminaries are presented in Section 2. The main result and 
some of its consequences can be found in Section 3. The detailed proof of 
the main result is given in Section 4. Some open questions and final remarks 
are given in Section 5.

2. Preliminaries

Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Denote  
by Z2 the discrete cyclic group of order 2, that is Z2 := {0, 1}, where the  
group operation is the modulo 2 addition and every subset is open. The 
Haar measure on Z2 is given so that the measure of a singleton is 1/2.

Define the group G as the complete direct product of infinite copies of 
the group Z2, with the product of the discrete topologies of Z2 and product 
of the measures on Z2 (it will be denoted by μ). The elements of G are 
represented by sequences x := (x0, x1, . . .  , xj , . . .), where xk = 0 ∨ 1.
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It is easy to give a base for the neighborhood of x ∈ G

I0(x) := G, In(x) :=
{
y ∈ G : y0 = x0, . . . , yn−1 = xn−1

}
(n ∈ N).

Denote In := In(0), In := G \ In and en := (0, . . . , 0, xn = 1, 0, . . .) ∈ G,
for n ∈ N. Then it is easy to show that

(7) IM =
M−1⋃
i=0

Ii\Ii+1 =
(M−2⋃

k=0

M−1⋃
l=k+1

Il+1(ek + el)
)⋃(M−1⋃

k=0

IM (ek)
)
,

where

Ik,lN =:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
IN (0, . . . , 0, xk �= 0, 0, . . . , 0, xl �= 0, xl+1, . . . , xN−1, . . .),

for k < l < N,

IN (0, . . . , 0, xk �= 0, xk+1 = 0, . . . , xN−1 = 0, xN , . . .),
for l = N.

If n ∈ N, then every n can be uniquely expressed as n =
∑∞

j=0 nj2j ,
where nj ∈ Z2 (j ∈ N) and only a finite numbers of nj differ from zero.

Every n ∈ N can be also represented as n =
∑r

i=1 2
ni

, n1 > n2 > · · · > nr

≥ 0. For such representation of n ∈ N, let denote numbers

n(i) = 2n
i+1

+ · · ·+ 2n
r

, i = 1, . . . , r.

The norms (or quasi-norms) of the spaces Lp(G) and weak-Lp(G) (0 <
p < ∞) are, respectively, defined by

‖f‖pp :=
∫
G
|f |p dμ, ‖f‖pweak-Lp(G) := sup

λ>0
λpμ(f > λ) < +∞,

The k-th Rademacher function is defined by

rk(x) := (−1)xk (x ∈ G, k ∈ N).

Now, define the Walsh system w := (wn : n ∈ N) on G as:

wn(x) :=
∞
Π
k=0

rnk

k (x) = r|n|(x)(−1)
|n|−1∑

k=0

nkxk

(n ∈ N).

The Walsh system is orthonormal and complete in L2(G) (see [18]).
If f ∈ L1(G), we can define the Fourier coefficients, partial sums of

Fourier series, Fejér means, Dirichlet and Fejér kernels in the usual man-
ner:

f̂(n) :=
∫
G
fwn dμ, (n ∈ N),
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Snf :=
n−1∑
k=0

f̂(k)wk (n ∈ N+, S0f := 0), σnf :=
1
n

n∑
k=1

Skf,

Dn :=
n−1∑
k=0

wk , Kn :=
1
n

n∑
k=1

Dk (n ∈ N+).

Recall that (see [8], [12] and [18]) for any t, n ∈ N,

(8) D2n(x) =

{
2n if x ∈ In,

0 if x �∈ In.

and

(9) K2n(x) =

⎧⎪⎨⎪⎩
2t−1, if x ∈ In(et), n > t, x ∈ It\It+1,

(2n + 1)/2, if x ∈ In,

0 otherwise.

Let n =
∑r

i=1 2
ni

, n1 > n2 > · · · > nr ≥ 0. Then (see [12] and [18])

(10) nKn =
r∑

A=1

(A−1∏
j=1

w2nj

)(
2n

A

K2nA + n(A)D2nA

)
.

The next two lemmas can be found in [17] (see also [15]):

Lemma 1. Let n ≥ 2M and x ∈ Ik,lM , k = 0, . . . ,M − 1, l = k+1, . . . ,M .
Then ∫

IM

|Kn(x+ t)| dμ(t) ≤ c2k+l−2M .

Lemma 2. Let n ∈ N+, [n] �= |n| and x ∈ I[n]+1(e[n]−1 + e[n]). Then

|nKn(x)| = |
(
n− 2|n|

)
Kn−2|n|(x)| ≥

22[n]

4
.

The σ-algebra, generated by the intervals {In(x) : x ∈ G} will be denoted
by ζn (n ∈ N). Denote by F = (Fn, n ∈ N) a martingale with respect to ζn
(n ∈ N) (for details see e.g. [30]).

The maximal function F ∗ of a martingale F is defined by

F ∗ := sup
n∈N

|Fn|.
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In the case f ∈ L1(G) the maximal function f∗ is given by

f∗(x) := sup
n∈N

1
μ(In(x))

∣∣∣∣ ∫
In(x)

f(u) dμ(u)
∣∣∣∣.

For 0 < p < ∞ the Hardy martingale spaces Hp(G) consists of all mar-
tingales for which (for details see e.g. [17], [22] and [30])

‖F‖Hp
:= ‖F ∗‖p < ∞.

It is easy to check that for every martingale F = (Fn, n ∈ N) and every
k ∈ N the limit

F̂ (k) := lim
n→∞

∫
G
Fn(x)wk(x) dμ(x)

exists and is called the k-th Walsh–Fourier coefficients of F .
If F := (S2nf : n ∈ N) is a regular martingale, generated by f ∈ L1(G),

then F̂ (k) = f̂(k), k ∈ N.
A bounded measurable function a is called p-atom if there exists a dyadic

interval I such that∫
I
a dμ = 0, ‖a‖∞ ≤ μ (I)−1/p , supp(a) ⊂ I.

The dyadic Hardy martingale spaces Hp for 0 < p ≤ 1 have an atomic
characterization. Namely, the following theorem holds (see [17], [30], [31]):

Lemma 3. A martingale F = (Fn, n ∈ N) belongs to Hp (0 < p ≤ 1) if
and only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence
(μk, k ∈ N) of real numbers such that for every n ∈ N

(11)
∞∑
k=0

μkS2nak = Fn,
∞∑
k=0

|μk|
p < ∞.

Moreover, ‖F‖Hp
� inf

( ∑∞
k=0 |μk|

p
)1/p, where the infimum is taken over all

decomposition of F of the form (11).

From this result it follows the following important lemma.

Lemma 4 (Weisz [30]). Suppose that an operator T is σ-sublinear and

sup
ρ>0

ρpμ
{
x ∈ I : |Ta(x)| > ρ

}
≤ Cp < ∞,

for every p-atom a, where I denotes the support of the atom. If T is bounded
from L∞ to L∞, then

‖TF‖weak-Lp
≤ cp‖F‖Hp

.
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3. The main result and its consequences

Theorem 1. a) Let 0 < p < 1/2 and f ∈ Hp(G). Then the weighted

maximal operator σ̃∗,∇, defined by (6), is bounded from the Hardy space Hp

to the space weak-Lp.
b) Let ϕ : N → [1,∞) be a nondecreasing function, satisfying the condi-

tion

lim
n→∞

2ρ(n)(1/p−2)

ϕ(n)
= ∞.

Then there exist a sequence {fnk
, k ∈ N+} of p-atoms and a sequence {qnk

,
k ∈ N+} of real numbers satisfying the condition |qnk

| = nk such that

sup
k∈N

∥∥∥σqnk
fnk

ϕ(qnk
)

∥∥∥
weak-Lp

‖fnk
‖Hp

= ∞.

We also prove the following theorem.

Theorem 2. Let 0 < p < 1/2. There exists a sequence {fk, k ∈ N+} of
p-atoms such that

sup
k∈N

‖σ̃∗,∇fk‖p
‖fk‖Hp

= ∞.

From Theorem 1 immediately follows the mentioned result of Weisz [31]
(see also [30]):

Corollary 1. Let 0 < p < 1/2 and f ∈ Hp(G). Then the maximal op-
erator

sup
n∈N

|σ2nF |

is bounded from the Hardy space Hp(G) to the Lebesgue space weak-Lp(G).

We also obtain results of Persson and Tephnadze [15] (see also [4]):

Corollary 2. Let 0 < p < 1/2 and f ∈ Hp(G). Then the maximal op-
erator, defined by (4) is bounded from the Hardy space Hp(G) to the space
weak-Lp(G) if and only if condition (3) is fulfilled.

Corollary 3. a) Let 0 < p < 1/2 and f ∈ Hp(G). Then the weighted
maximal operator

sup
n∈N

|σ2n+2n/2F |

2
n

2
(1/p−2)

is bounded from the martingale Hardy space Hp(G) to the space weak-Lp(G). 
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b) Let ϕ : N → [1,∞) be a nondecreasing function, satisfying the condi-
tion

lim
n→∞

2
n

2
(1/p−2)

ϕ(n)
= ∞.

Then, there exists a p-atom a such that

sup
n∈N

‖
σ
2n+2n/2a

ϕ(2n+2n/2)‖weak-Lp

‖a‖Hp

= ∞.

Corollary 4. a) Let 0 < p < 1/2 and f ∈ Hp(G). Then the weighted
maximal operator

sup
n∈N

|σ2n+1F |

2n(1/p−2)

is bounded from the Hardy space Hp to the space weak-Lp.
b) Let ϕ : N → [1,∞) be a nondecreasing function, satisfying the condi-

tion

lim
n→∞

2n(1/p−2)

ϕ(n)
= ∞.

Then, there exists a p-atom a such that

sup
n∈N

∥∥ σ2n+1a
ϕ(2n+1)

∥∥
weak-Lp

‖a‖Hp

= ∞.

Theorem 1 immediately follows result given in [25]:

Corollary 5. a) Let 0 < p < 1/2 and f ∈ Hp(G). Then the weighted
maximal operator σ̃∗, defined by

σ̃∗F := sup
n∈N

|σnF |

(n+ 1)1/p−2

is bounded from the martingale Hardy space Hp(G) to the space weak-Lp(G).
b) Let {ϕn} be any nondecreasing sequence satisfying the condition

lim
n→∞

(n+ 1)1/p−2

ϕn
= +∞.

Then there exists a martingale f ∈ Hp such that

sup
n∈N

∥∥∥σnf
ϕn

∥∥∥
p
= ∞.
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4. Proof of the Theorems

Proof of Theorem 1. Since σn is bounded from L∞ to L∞, by Lemma
4, the proof of Theorem 1 will be complete, if we show that

(12) tμ{x ∈ IM : σ̃∗,∇a(x) ≥ t1/p} ≤ c < ∞, t ≥ 0

for every p-atom a. We may assume that a is an arbitrary p-atom, with
support I , μ(I) = 2−M and I = IM . It is easy to see that σna(x) = 0 when
n < 2M . Therefore, we can suppose that n ≥ 2M . Since ‖a‖∞ ≤ 2M/p, we
obtain that

|σna(x)|
2ρ(n)(1/p−2) ≤

1
2ρ(n)(1/p−2) ‖a‖∞

∫
IM

|Kn(x+ t)| dμ(t)

≤
1

2ρ(n)(1/p−2) 2
M/p

∫
IM

|Kn(x+ t)| dμ(t).

Let x ∈ Il+1(ek + el), 0 ≤ k, l ≤ [n] ≤ M or 0 ≤ k, l ≤ M < [n]. Then, it
is easy to see that x+ t ∈ Il+1(ek + el) for t ∈ IM and if we combine (8) and
(9) with (10) we get that

Kn(x+ t) = 0, for t ∈ IM

and

(13)
|σna(x)|

2ρ(n)(1/p−2) = 0.

Let x ∈ Il+1(ek + el), [n] ≤ k, l ≤ M or k ≤ [n] ≤ l ≤ M . By using
Lemma 1 we can conclude that

|σna(x)|
2ρ(n)(1/p−2) ≤ cp2M/p 2k+l−2M

2ρ(n)(1/p−2) ≤ cp
2[n](1/p−2)+k+l+M(1/p−2)

2|n|(1/p−2)(14)

≤ cp2[n](1/p−2)+k+l ≤ cp2k+l(1/p−1).

By applying (13) and (14) for any x ∈ Il+1(ek + el), 1 ≤ k < l ≤ M we
find that

σ̃∗,∇a(x) = sup
n∈N

( |σna(x)|
2ρ(n)(1/p−2)

)
≤ cp2k+l (1/p−1).

It immediately follows that for such k < l ≤ M we have the estimate

σ̃∗,∇a(x) ≤ Cp2M/p for x ∈ Ik,lM
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and also that

(15) μ{x ∈ Ik,lN : σ̃∗,∇a(x) > Cp2s/p} = 0, s = M + 1,M + 2, . . . .

Suppose that

2k+l (1/p−1) > 2s/p for some s ≤ M(16)

It is evident that inequality (16) does not hold when k < l ≤ s. On the other
hand, inequality (16) holds for all l > k ≥ s, that is,

2k+l (1/p−1) > 2s/p, where l > k ≥ s.(17)

If l > s > k, from (16) we can conclude that

k + l (1/p− 1) > s/p, l > (s/p− k)/(1/p− 1)

and

2k+l(1/p−1) > 2s/p, where s > k, l > (s/p− k)/(1/p− 1).(18)

By combining (7), (17) and (18) we get that

{x ∈ IM : σ̃∗,∇a(x) ≥ Cp2s/p}

⊂

(M−1⋃
k=s

M⋃
l=k+1

{x ∈ Ik,lM : σ̃∗,∇a(x) ≥ Cp2s/p}
)

∪

( s⋃
k=0

M⋃
l>(s/p−k)(1/p−1)

{x ∈ Ik,lM : σ̃∗,∇a(x) ≥ Cp2s/p}
)

and

μ{x ∈ IM : σ̃∗,∇a(x) ≥ Cp2s/p}(19)

≤
M−1∑
k=s

M∑
l=k+1

μ(Ik,lM ) +
s∑

k=0

M∑
l>(s/p−k)/ (1/p−1)

μ(Ik,lM )

≤

M−1∑
k=s

M∑
l=k+1

1
2l

+
s∑

k=0

M∑
l>(s/p−k)/ (1/p−1)

1
2l

≤
M−1∑
k=s

1
2k

+
s∑

k=0

1
2(s/p−k)/ (1/p−1)−1 ≤

cp
2s

.
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In view of (15) and (19) we can conclude that

2sμ{x ∈ IM : σ̃∗,∇a(x) ≥ Cp2s/p} < cp < ∞,

which shows (12) as well as part a).
Let qnk

∈ N be sequence such that |qnk
| = nk, [qnk

] = sk and

(20) lim
k→∞

2ρ(qnk
)(1/p−2)

ϕ (qnk
)

= ∞.

Set

fnk
(x) = D2nk+1(x)−D2nk (x), nk ≥ 3.

It is evident

f̂nk
(i) =

{
1, if i = 2nk , . . . , 2nk+1 − 1,
0 otherwise.

Then we can write that

(21) Sifnk
(x) =

⎧⎪⎨⎪⎩
Di(x)−D2nk (x), if i = 2nk, . . . , 2nk+1 − 1,
fnk

(x), if i ≥ 2nk+1,

0 otherwise.

Since

(22) Dj+2nk (x)−D2nk (x) = w2nkDj(x), j = 1, 2, .., 2nk ,

from (8) we get

‖fnk
‖Hp

=
∥∥∥ sup

n∈N
S2nfnk

∥∥∥
p
= ‖D2nk+1 −D2nk‖p(23)

= ‖D2nk‖p ≤ 2nk(1−1/p).

By applying (21) we can conclude that

∣∣σqnk
fnk

(x)
∣∣ = 1

qnk

∣∣∣∣qnk
−1∑

j=0

Sjfnk
(x)

∣∣∣∣ = 1
qnk

∣∣∣∣qnk
−1∑

j=2nk

Sjfnk
(x)

∣∣∣∣
=

1
qnk

∣∣∣∣qnk
−1∑

j=2nk

(
Dj(x)−D2nk (x)

)∣∣∣∣ = 1
qnk

∣∣∣∣qnk
−2nk−1∑
j=0

(
Dj+2nk (x)−D2nk (x)

)∣∣∣∣.

Author's personal copy



By using (22) we find that

∣∣σqnk
fnk

(x)
∣∣ = 1

qnk

∣∣∣∣qnk
−2nk−1∑
j=0

Dj(x)
∣∣∣∣ = qnk

−2nk −1
qnk

∣∣Kqnk
−2nk−1(x)

∣∣ .(24)

Let x ∈ I[qnk
]+1

(
e[qnk

]−1 + e[qnk
]
)
. By using Lemma 2 we obtain that

∣∣σqnk
fnk

(x)
∣∣ ≥ c22sk

2nk
and

|σqnk
fnk

(x)|
ϕ(qnk

)
≥

c22sk

2nkϕ(qnk
)
.

Hence, we can conclude that

μ

{
x ∈ G :

|σqnk
fnk

(x)|
ϕ(qnk

)
≥

c22[qnk
]

2nkϕ(qnk
)

}
(25)

≥ μ(I[qnk
]+1(e[qnk

]−1 + e[qnk
])) > c/2[qnk

].

By combining (20), (23) and (25) we get that

c22[qnk
]

2nkϕ(qnk
)

(
μ
{
x ∈ G :

|σqnk
fnk

(x)|
ϕ(qnk

) ≥ c22[qnk
]

2nkϕ(qnk
)

})1/p

‖fnk
(x)‖Hp

≥
cp22[qnk

]

2nkϕ(qnk
)2nk(1−1/p)

1
2[qnk

]/p =
cp2nk(1/p−2)

2[qnk
](1/p−2)ϕ(qnk

)

=
cp2ρ(qnk

)(1/p−2)

ϕ(qnk
)

→ ∞ as k → ∞. �

Proof of Theorem 2. Let fnk
be the p-atom from part b) of Theo-

rem 1. If we replace qnk
by qsnk

= 2nk +2s (we note that |qsnk
| = nk, [qsnk

] = s)
from (24) we find that

∣∣σqsnk
fnk

(x)
∣∣ ≥ c22s

2nk
for x ∈ Is+1(es−1 + es)

and
|σqsnk

fnk
(x)|

2(1/p−2)ρ(qsnk
) ≥

cp2s/p

2nk(1/p−1) for x ∈ Is+1(es−1 + es).

Hence, ∫
G

(
sup
k∈N

|σqsnk
fnk

(x)|

2(1/p−2)ρ(qsnk
)

)p

dμ(x)(26)

Author's personal copy



≥
nk−1∑
s=1

∫
Is+1(es−1+es)

(
|σqns

k
fnk

(x)|

2(1/p−2)ρ(qsnk
)

)p

dμ(x)

≥ cp

nk−1∑
s=1

1
2s

2s

2nk(1−p) ≥
Cpnk

2nk(1−p) .

Finally, by combining (23) and (26) we find that( ∫
G

(
sup
k∈N

sup
0<s<nk

|σqsnk
fnk

(x)|

2(1/p−2)ρ(qsnk
)

)p
dμ(x)

)1/p

‖fnk
‖Hp

≥
( Cpnk

2nk(1−p) )
1/p

2nk(1/p−1) ≥ cpnk
1/p → ∞, as k → ∞. �

5. Open questions and final remarks

Remark 1. This article can be regarded as a complement of the new
book [17]. In this book also a number of open problems are raised. Also this
new investigation implies some corresponding open questions.

From Theorem 2 we can conclude the following result:

Theorem 3. Let 0 < p < 1/2 and f ∈ Hp(G). Then the weighted maxi-

mal operator σ̃∗,∇ defined by (6) is not bounded from the Hardy space Hp to
the Lebesgue space Lp.

An open problem. Let us introduce some new weighted maximal op-
erator of the Fejér means of the Walsh–Fourier series with some “optimal”
weights such that this new operator is bounded from the martingale Hardy
space Hp(G) to the Lebesgue space Lp(G), for 0 < p < 1/2.

To study boundedness of restricted maximal operators from the martin-
gale Hardy spaces Hp(G) to the Lebesgue space Lp(G), where 0 < p ≤ 1/2,
for any natural number satisfying the condition

2s ≤ ns1 ≤ ns2 ≤ · · · ≤ nsr < 2s+1, s ∈ N,

we define numbers

(27) s− := min{[nsj ]}, s+ := max{[nsj ]} = s, ρs(nsj) := s+ − s−.

Conjecture 1. Let 0 < p <  1/2, f ∈ Hp(G) and {nk : k ≥ 0} be a se-
quence of positive numbers and let {nsi : 1 ≤ i ≤ r} ⊂  {nk : k ≥ 0} be num-
bers such that

2s ≤ ns1 ≤ ns2 ≤  · · ·  ≤  nsr ≤ 2s+1, s ∈ N.
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a) The weighted maximal operator

σ̃∗,∇F := sup
s∈N

sup
2s≤nsi

<2s+1

|σnF |

2ρs(nsi
)(1/p−2) ,

where ρs (nsi) are defined by (27), is bounded from the Hardy space Hp(G)
to the Lebesgue space Lp(G).

b) For any nonnegative and nondecreasing function ϕ : R+ → R satisfy-
ing the condition

(28) sup
s∈N

sup
2s≤nsi

<2s+1

2ρs(nsi)(1/p−2)

ϕ(nsi)
= ∞,

there exists p-atoms fs such that∥∥∥ sup
s∈N

sup
2s≤nsi

<2s+1

|σnsi
fs|

ϕ(nsi
)

∥∥∥
p

‖fs‖Hp

→ ∞, as s → ∞.
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