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Abstract

Global Navigation Satellite Systems typically perform poorly in urban environments, where the

likelihood of line-of-sight conditions between devices and satellites is low. Therefore, alternative location

methods are required to achieve good accuracy. We present LocUNet: A convolutional, end-to-end trained

neural network (NN) for the localization task, which is able to estimate the position of a user from the

received signal strength (RSS) of a small number of Base Stations (BS). Using estimations of pathloss

radio maps of the BSs and the RSS measurements of the users to be localized, LocUNet can localize

users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of

radio maps. The proposed method does not require generating RSS fingerprints of each specific area

where the localization task is performed and is suitable for real-time applications. Moreover, two novel

datasets that allow for numerical evaluations of RSS and ToA methods in realistic urban environments

are presented and made publicly available for the research community. By using these datasets, we also

provide a fair comparison of state-of-the-art RSS and ToA-based methods in the dense urban scenario

and show numerically that LocUNet outperforms all the compared methods.
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I. INTRODUCTION

The location information of a User Equipment (UE) is essential for many current and en-

visioned applications that range from emergency 911 services [2], autonomous driving [3],

intelligent transportation systems [4], proof of witness presence [5], 5G networks [6], to social

networks, asset tracking and advertising [7], just to name a few.

In urban environments, Global Navigation Satellite Systems (GNSS) alone may fail to provide

a reliable localization estimate due to the lack of line-of-sight conditions between the UE and

the GNSS satellites [8]. In addition, the continuous reception and detection of GNSS signals is

one of the dominating factors in battery consumption for hand-held devices. It is thus necessary

to resort to other complementary means to achieve localization with the desired high accuracy.

In cellular networks, the position of UE can be estimated by using various statistics that the UE

may report or the network can infer. The most prominent localization methods in the literature

are based on Time of Arrival (ToA) [9], [10], Time Difference of Arrival (TDoA) [11], Angle

of Arrival (AoA) [12] and Received Signal Strength (RSS) [13] measurements.

A. Received Signal Strength (RSS)

Received signal strength quantifies the received power, averaged over a certain time interval

and frequency band, of the beacon slots broadcast periodically by base stations (BSs) [14]–[16].

For such measurements coherent reception is not necessary, and small scale fading fluctuations

are alleviated due to the time-frequency averaging. Since the transmit power of the BS on its

beacon signal slots is fixed and known, the received signal strength is a function of the pathloss

of the propagation between the BS and the UE. In fact, received signal strength measurements

of beacon signals are routinely performed by UEs and reported to the system as “received

signal strength indicators” (RSSI). Reporting RSS information is a standard feature in most

current wireless protocols. For example, this is used to trigger handovers and to enable UE-BS

association for load balancing purposes. Therefore, exploiting RSS information for localization

is attractive since it is a feature already built-in in the wireless protocols and does not require any

further specific hardware at the UE, whereas the time-based (ToA and TDoA) and angle-based

(AoA) methods require high precision clocks and antenna arrays, respectively [17], [18].

Remark 1: For ease of exposition, throughout the paper we consider a cellular network scenario

with BSs. Essentially, any wireless signal source with known location, e.g., WiFi-Hotspots, can

be utilized.
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B. Ranging-Based Methods

In ranging-based techniques, the distances between the UE and the BSs are used to esti-

mate the position of UE by lateration. Here, the distances are estimated by using RSS or

ToA measurements, based on a statistical signal attenuation or time delay model to estimate

the distance between the UE and the BS. However, using such models is not appropriate in

urban settings, since in practice the signal undergoes diverse propagation phenomena such as

penetrations, reflections, diffractions, and wave guiding effects, due to the presence of obstacles in

the environment. This leads to very large errors in the distance estimation (See e.g. [19]). We call

this phenomenon range estimation mismatch. Several works, e.g. [9], [10], [20]–[26] proposed

methods to mitigate the effects of obstructions in the range estimation mismatch. Nevertheless,

these methods do not directly use a complete model of the propagation phenomena, and only

partially alleviate the aforementioned problem.

In particular, ranging techniques exploiting RSS are based on standard statistical models where

the pathloss is modeled as a deterministic function of the distance between the UE and the BS

(radial function), with some (typically log-normal) random fluctuation. These techniques are

particularly problematic in an urban setting [19] where, for a specific propagation environment,

the pathloss function is not at all a radial function (see for example Fig. 3). The usage of

standard statistical models for RSS-based ranging has somehow generated the belief that RSS is

an unreliable statistic. The matter of the fact is, that this is not a limitation of the RSS itself, but

of the statistical models that relate pathloss with distance. It is therefore evident that in order

to exploit RSS for positioning, a much more refined estimation of the pahtloss function for any

specific propagation environment is needed.

C. Fingerprint-Based Methods

Fingerprint-based methods, as opposed to ranging-based methods, do not impose any modeling

assumption on the signal strength propagation. Instead, they rely on offline generated extensive

databases of the measured “radio signatures” of the signal at different locations. Given a reported

signal fingerprint, these methods infer the location of the UE by “looking up” a location with

a similar fingerprint from the database (radio map, cf. Section II-A). Many fingerprint types,

such as visual, radio wave (e.g. RSS or the baseband transfer function with complex channel

coefficients, i.e., the so-called Channel State Information (CSI)), or motion fingerprints, can

be used for localization purpose [27]. In this paper we focus on RSS signatures which, as
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already argued before, are more easier to acquire (requiring time-frequency averaged non-

coherent power measurements), more robust than complex baseband CSI to small-scale changes

in the propagation environment, and much lower dimensional than CSI signatures. Fingerprint-

based methods are well-known for outperforming the ranging-based techniques in complex urban

environments [28]. Many machine learning (ML) techniques based on RSS fingerprints were

applied for positioning in past work, e.g. [29], [30].

D. Physical Simulations of Radio Maps and RadioUNet

A major drawback of fingerprinting is the difficulty in generating and updating the radio signa-

ture database for the desired location. Fingerprinting requires a labor intensive, time consuming

and expensive site surveying, which needs to be repeated as the environment changes. While

this is possible for well-defined and somehow restricted indoor locations such as an airport hall,

or a shopping mall, it is clearly difficult if not impossible to produce such data for an extended

outdoor area such as a whole city. Furthermore, the outdoor propagation medium changes rapidly

due to moving vehicles. Therefore, radio signatures such as baseband CSI (sensitive to small

scale effects such as multipath propagation and phase rotations) are extremely fragile.

When dealing only with RSS, a more feasible alternative for generating the radio map is using

physical simulation methods such as ray tracing [31]–[33], thereby bypassing the extensive

measurement campaigns. Based on an approximate model of the physical signal propagation

phenomena, such simulations yield very accurate predictions, especially when an accurate ge-

ometrical description of the urban environment is available, see e.g. [34], [35]. Many previous

works proposed using simulated radio maps for localization, e.g. [29], [36]–[43].

However, such simulations are computationally demanding and are thus not suitable for real

time applications. Recently, an efficient deep learning-based method termed RadioUNet [44]

(see Subsection II-C) was proposed by the authors of this paper. This algorithm enables the

generation of high accuracy pathloss radio maps in much shorter time, and is thus adopted as

an important building block of the current work.

E. Machine Learning For Localization

Lately, several ML-based localization approaches have been proposed, e.g. [29], [36]–[43],

[45]–[48], see the recent surveys [30], [49]. To the best of our knowledge, none of the previous

works considered applying convolutional neural networks on pathloss radio maps. We note that

the radio maps may serve as a mean to assess the likelihood of a location for the UE with
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respect to a BS. However, in order to compute such likelihood in a classical sense (i.e., not

using a deep-learning training-based method), one would need to characterize the a posteriori

probability of the location given the radio map and the RSS measurement. This requires in turns

a statistical characterization that goes well beyond the simplistic pathloss models used in wireless

communications.

As opposed to the previous work, LocUNet does not require new signature generation (i.e.,

new RSS/CSI samples) for re-training when deployed in a new environment. Moreover, LocUNet

efficiently utilizes radio map estimations (See Section III) thanks to its convolutional design (See

Remark 3).

F. State-of-the-Art Urban Localization in Current Commercial Use

The industry state-of-the-art on radio localization as implemented by systems such as Google

Maps and Apple Maps are based on a multitude of sensor data, including GNSS, “radio signa-

tures” of all sort (e.g., WiFi SSIDs, cellular channel quality, detailed channel frequency response

of the fading channels over the OFDM subcarriers, and so on), and these data are fused via some

machine learning scheme. Since these practical implementations are ad-hoc industry intellectual

property and not revealed in the open literature at a level of details sufficient to run accurate

performance comparisons, it is virtually impossible to assess the performance of our proposed

method against the “real-world” state-of-the-art.

In contrast, it is important to notice here that our method is based uniquely on RSS measure-

ments from known BSs/WiFi-Hotspots, which are collected by default by standard user devices

since each device continuously measures the received signal strength from BS beacon signals.

Furthermore, these measurements are very robust since BS beacon signals are easy to detect

and do not require any calibration or accurate timing and frequency synchronization, as they

are simply wideband power measurements. Our method based on such a simple setting, still

achieves state-of-the-art results with respect to the previous works and could be incorporated

into some industry scheme by appropriate data fusion. This direction, however, goes beyond the

scope of this paper and it is left for future work.

G. Our Contribution

Our contribution can be summarized as follows. 1) We propose an accurate and computation-

ally efficient localization method, merely based on RSS measurements, which does not necessitate

additional signal processing or hardware (e.g., calibrated antenna arrays) at the user devices. 2)

Relying on the recent developments in deep learning approximations of ray tracing (RadioUNet
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[44]) to generate pathloss radio map estimations, our method enjoys low run-time, which would

allow real-time applications. 3) Using such radio map estimations and measured RSS values, the

proposed LocUNet yields very accurate localization results, which are demonstrated by numerical

experiments. The proposed method achieves about 5m of accuracy in mean absolute error, when

trustworthy radio map estimates are available, which outperforms current state-of-the art. 4)

The proposed method demonstrates very high robustness to the inaccuracies in the radio map

estimates in a rigorously studied realistic setting. Moreover, the robustness of the method to out-

of-distribution measurements, and to the inaccuracies in the location labels of the training set,

are shown. 5) Extensive numerical comparisons with ToA ranging-based methods are presented,

where LocUNet outperforms the state-of-the-art in different settings. 6) We justify our neural

network design by a comprehensive ablation study. 7) Two synthetic datasets are introduced and

set publicly available for the research community.

The rest of the paper is organized as follows. We present the preliminaries in Section II. The

proposed method is explained in Section III. Numerical results are presented in Section IV, and

conclusions are drawn in Section V.

II. PRELIMINARIES

In this section, we present the preliminaries that serve as the building blocks of LocUNet.

A. Pathloss and Radio Map

The pathloss (or large-scale fading coefficient), quantifies the loss of wireless signal strength

between a transmitter (Tx) and receiver (Rx) due to large scale effects. The signal strength

attenuation can be caused by many factors, such as free-space propagation loss, penetration,

reflection and diffraction losses by obstacles like buildings and cars in the environment. In dB

scale1, pathloss amounts to PL = (PRx)dB − (PTx)dB, where PTx and PRx denote the transmitted

and received locally averaged power (RSS) at the Tx and Rx locations, respectively. Notice that

“locally averaged” power is defined as the energy per unit time averaged over time intervals

of the order of a typical transmission slot in the underlying protocol (e.g., the duration of a

Resource Block in 5G NR standard [50]) and over the whole system bandwidth. Hence, the

effect of the small-scale frequency selective fading is averaged out and only the frequency-flat

pathloss matters. A radio map R(x1,x2) defines the pathloss between any two points x1 and

x2 in the plane. For fixed Tx position x1 = xtx, the radio map is a function of the Rx position

1(·)dB := 10 log10(·).
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x2 = xrx, i.e., it can be represented as a 2-dimensional image where the value of the pathloss

R(xtx,xrx) at each suitably discretized position xrx corresponds to a “pixel” of the image.

B. Radio Map Simulations

One well-known class of numerical methods for solving Maxwell’s equations in far-field

propagation conditions is Ray Tracing [32]. In ray tracing, the signal is modeled as rays that

are cast from the transmitter, travel in straight lines in homogeneous medium (like free space),

and undergo rules of reflection, refraction and diffraction when the medium changes (e.g., when

hitting an obstacle).

There are two main approaches for finding the ray paths in a given environment. Classical ray

tracing searches for the paths between the transmitter and each receiver point, which necessitates

very high computational time, with exponential dependency between the number of interactions

and the complexity of the geometry (e.g., the number of buildings), and a linear dependency

between the computation time and the number of receiver pixels [51]. The second approach,

ray launching [52], discretizes the propagation angle at the transmitter and launches rays in all

directions. The rays interact with the environment as before, and terminate when a predetermined

maximum number of interactions is reached or when the signal strength goes below a minimum

value. The received signal strength is then computed as the sum of all rays at all receiver pixels

(i.e., discretized locations).

In the following, we briefly explain the simulation models used in this paper, computed using

the software WinProp [33].

1) Dominant Path Model (DPM) [34]: DPM is based on the assumption that the dominant

propagation path from Tx to Rx must arrive via convex corners of the obstacles to Rx, and

thus only diffractions are taken into account, omitting reflections and penetrations altogether.

The model assigns the pathloss of the ray with the largest received power to each receiver

point. This is equivalent to finding the shortest free space path to each point, and computing the

corresponding pathloss. The formula of the pathloss is given by some statistical model, based

on the following parameters as inputs: The length of the path, a parameter that depends on the

distance and visibility between the Tx and Rx, and a diffraction loss function, which depends on

the angle of the diffraction and the number of previous diffractions in the path. The model can

also consider waveguiding pathloss effects when calculating the pathlosses of the paths, where

reflection loss of the walls along the path as well as their distance to the path influence the

value. This simplified model of the signal propagation allows a very efficient implementation
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with respect to more traditional ray tracing methods, while demonstrating good accuracy in many

real-world urban propagation scenarios [34].

2) Intelligent Ray Tracing (IRT) [51]: This algorithm starts with a pre-processing step for the

considered map, where the faces of the obstacles are discretized into regular tiles, their edges

into segments, and the visibility relations among the centers of these elements are found. For the

visible element pairs, the distance between their centers and the subtended angles are calculated.

The computations of the paths, based on the ray launching approach, are then accelerated using

the pre-computed visibility model. The maximum number of interactions is set by the user. In

our simulations, we set the maximum number of interactions as two (at most one diffraction and

one reflection). We set the tile length as 100 m, which results in having only one tile for most

of the building walls and for all of the cars (cf. Section III-B for the detailed description of the

dataset). High accuracy of this method was also proven by field measurements in several cities,

see e.g. [35] and the references therein.

C. RadioUNet

RadioUNet is a UNet-based [53] pathloss radio map estimation method introduced in [44],

[54]. In this paper we use the so called RadioUNetC . The trained model takes as input the map

of the city and the location of the BS (both encoded as B/W images) and returns an estimation

of the corresponding radio map represented as a gray-scale image. RadioUNet demonstrates high

accuracy, with root-mean-square-error of order of 1dB in various scenarios, and a run-time order

of milliseconds on NVIDIA Quadro GP100 [44]. RadioUNet is trained by supervised learning

to match simulations of radio maps, using the RadioMapSeer Dataset [55].

III. PATHLOSS FINGERPRINT-BASED LOCALIZATION WITH DEEP LEARNING

In this section we present LocUNet – a deep learning localization method based on estimations

of pathloss radio maps.

A. Proposed Method

Suppose that a UE with location coordinates xU = (xU , yU) reports the strength of beacon

signals (non-interfering identification signals), transmitted from a set of BSs Bj , j = 1, . . . , J ,

with known coordinates xBj = (xBj , yBj). We refer to such BSs as “anchor BSs” since they

belong to the network of the wireless operator and, as such, their position is known. Based

on the relation between transmit/receive powers and the pathloss (PRx)dB = PL + (PTx)dB, the

pathloss between the device and the BSs, pj , j = 1, . . . , J , can be calculated, where we assume



9

the small-scale fading effects are eliminated by averaging over time and system bandwidth. In

our approach, the position of the UE is estimated based on the following information.

1) The pathloss values pj , j = 1, . . . , J ,

2) The estimations of the radio maps for each anchor BS Rj(x, y) := R(xBj , (x, y)), j =

1, . . . , J , computed via RadioUNet,2

3) The map of the urban environment, the locations of the anchor BSs (which are fixed and

known).

The processing is typically performed in a centralized manne in the cloud, based on the RSS

information reported by the UE. Alternatively, localized processing at the UE may also be

considered, but in this case the UE must be aware of the BSs location (beyond their identity)

and of the corresponding radio maps. At this point we do not distinguish between these two

options, which are equivalent in terms of system performance (although may not be equivalent in

terms of protocol overhead, computation complexity at the UE, and privacy of the UE location

with respect to the network control).

Our method, called LocUNet, computes an estimation of the UE location using a UNet variant.

In order to input the above information (1)–(3) to the UNet, this is first represented as a set of

2D images.

1) The RSS values {pj} are converted to gray-level. Each pathloss pj is represented as a 2D

image Pj(x, y) of a constant value pj , i.e., for each j this is an all-gray uniform image, but

the level of gray differs for different indices j.

2) Each radio map Rj(x, y) is represented as a 2D image, with pixel values in gray-level. Radio

maps are obtained by using RadioUNet, which takes the map of the urban environment,

and the locations of BSs as input features [44].

3) The map of the urban environment is represented as a binary black and white image, where

the interior of the buildings are white (pixel value = 255), and the exterior is black (pixel

value = 0).

4) The location of each BS Bj is represented as a one-hot binary image, where the pixel at

location (xBj , yBj) is white, and the rest is black.

Inputs (3) and (4) are optional for LocUNet as input features (Note that they are still needed

to generate the input (2) via RadioUNet), and through numerical experiments we observe their

2From now on it is convenient to represent the locations as pixel coordinates (x, y) in the 2-dimensional plane.
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TABLE I: Architecture of the first part of LocUNet (w/o final CoM layer). Resolution is the number of pixels of
the image in each feature channel along the x, y axis. Filter size is the number of pixels of each filter kernel
along the x, y axis. The input layer is concatenated in the last two layers before the CoM layer.
in = 10/11/15/16, cf. Table X.

LocUNet
Layer In 1 2 3 4 5 6 7 8 9

Resolution 256 256 128 64 64 32 32 16 16 16
Channel in 20 50 60 70 90 100 120 120 135

Filter size 3 5 5 5 5 5 5 3 5 5
Layer 10 11 12 13 14 15 16 17 18 19

Resolution 8 8 4 4 2 4 4 8 8 16
Channel 150 225 300 400 500 400 + 400 300 + 300 225 + 225 150 + 150 135 + 135

Filter size 5 5 5 5 4 5 4 5 4 5
Layer 20 21 22 23 24 25 26 27 28 29

Resolution 16 16 32 32 64 64 128 256 256 256
Channel 120 + 120 120 + 120 100 + 100 90 + 90 70 + 70 60 + 60 50 + 50 20 + 20 + in 20 + in 1

Filter size 3 6 5 6 5 6 6 5 5 -

negligible influence on the performance (See Section IV-H1).

The first part of LocUNet is a UNet [53], with average pooling, upsampling + bilinear

interpolation, and Leaky ReLU (with parameter 0.2) as the activation function. We call the

output feature map of the UNet, H(x, y) a quasi-heatmap, as its value at a point (x, y) in the

map quantifies the likelihood of the UE to be located at this point, while it can take negative

values, due to LeakyReLU being the activation function of the network.

The final layer of LocUNet computes the center of mass (CoM) (µx, µy) of H(x, y),

µx =

∑256
x=1

∑256
y=1 xH(x, y)∑256

x=1

∑256
y=1H(x, y)

, µy =

∑256
x=1

∑256
y=1 yH(x, y)∑256

x=1

∑256
y=1H(x, y)

,

where 256 is the number of pixels along each axis.

The architecture of LocUNet is summarized in Table I.

We measure the accuracy of the proposed method over a given subset S of the dataset by

average Euclidean distance, i.e., mean absolute error (MAE), between the estimated UE location

and the true UE location, given by

LMAE(u, ũ) =
1

|S|
∑
k∈S

||uk − ũk||2, (1)

where ũk := (µk
x, µ

k
y) and uk := (xkU , y

k
U) denote the LocUNet estimation and the corresponding

true location of the kth instance of the dataset.

We also consider using the average squared Euclidean distance, i.e., mean squared error (MSE),
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TABLE II: RadioLocSeer Dataset parameters.

Parameter Value
Map size 2562 pixels

Pixel length 1 meter
BS, UE height 1.5 meter

Center carrier frequency 5.9 GHz
Channel bandwidth 10 MHz

Noise power spectral density -174 dBm/Hz
Transmit power 23 dBm
Noise floor (NF) -134 dB

as a loss function, which is the average squared 2D Euclidean distance

LMSE(u, ũ) =
1

|S|
∑
k∈S

||uk − ũk||22. (2)

When using stochastic gradient descent for training, we take S = Bm in one of the cost functions

mentioned above, where Bm is the m-th mini-batch of the training set.

B. Datasets

We introduce two new datasets to allow for comparisons among RSS (pathloss) and ToA

ranging-based algorithms. These two new datasets, which we call RadioLocSeer Dataset and

RadioToASeer Dataset, are available at [55] and https://RadioMapSeer.GitHub.io/LocUNet.html.

More details on the datasets can be found in [56].

1) RadioLocSeer Dataset: We introduce a dataset of city maps, BS locations, and the corre-

sponding radio maps simulated by the ray tracing software WinProp [33] and by RadioUNet.

The dataset is based on the test set of RadioMapSeer [44], which contains 99 maps and 80 BS

per map. We report the parameters of the dataset in Table II (cf. [44] Section III.B for details).

The maps are randomly split into 69 training, 15 validation and 15 test maps.

For each map we randomly generate 200 UE positions and randomly pick 5 BS positions out

of the 80 available ones. We repeat the latter step 50 times for each map, to represent different

scenarios of BS deployment. The BS locations are chosen to be separated by at least 20 m.

Moreover, the BSs and UEs are restricted to lie in the middle 150× 150 and 164× 164 boxes

about the center of the 256 × 256 grid of the RadioMapSeer images, respectively. We ensured

that each UE can receive the signals of at least one BS with a power above the noise floor (NF)

(cf. Table IV for the number of BSs in coverage in the test set.)

For each of the above maps and BS location, we provide: 1) the radio map estimations via

the RadioUNet model trained on DPM (see Subsection IV-A); 2) the simulated (by WinProp)

radio maps obtained by DPM and IRT (cf. Sec. II-B); 3) a second version of the ray-racing

https://RadioMapSeer.GitHub.io/LocUNet.html
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Fig. 1: Empirical CDF of the difference between the direct and dominant path in meters

simulations including the effects of cars in the streets, where each map consists of 100 cars (if

the roads of the corresponding maps are of sufficient length to fit them, otherwise the maximum

number that can fit) of size 2× 5× 1.5 (width × length × height), randomly generated near and

along or perpendicular to roads; 4) the B/W images of the city maps, along with the coordinates

of the considered BSs and the UEs.

2) RadioToASeer Dataset: We generated another dataset based on the dominant path model

(cf. Subsection II-B1) via the software WinProp [33], of the same settings as in RadioLocSeer

Dataset, which provides ToA information of the dominant paths, to allow for comparisons

between RSS and ToA ranging-based methods in realistic urban scenarios.

We call the straight line connecting Tx and Rx, which may go through obstacles (in this

paper, buildings and cars), the direct path. The difference (error) between ranging with ToA

measurement of the ray (range is calculated as: ToA × speed of light) and the direct path

is called the NLOS bias, which is by definition non-negative (Zero when the link is in LOS,

positive otherwise). The empirical cumulative distribution function (CDF) of the NLOS bias of

the dataset is shown in Fig. 1. We see that 47% of the links in the RadioToASeer are in LOS.

We argue that even though the dominant path may be a NLOS path, and hence introduces an

NLOS bias, it is quasi-optimal to use the ToA of such paths in ToA ranging-based algorithms.

First, if the dominant path is LOS, then it is by definition the shortest path and the bias is

zero. Second, in the NLOS situation, the NLOS bias of a dominant path is lower than that of

a potential free space path between the same Tx and Rx, that undergoes reflections to reach its

destination (cf. Section II-B1). Thus, relying on ToAs of the dominant paths would yield better

performances than the ToAs of the other free space paths.

Notice that in NLOS conditions using the length (range) of the direct path (assuming building

penetration) would also incur several problems. First, we note that empirical evidence shows that

loss due to penetration through a building is around 15− 20dB [57]. In an urban scenario, the
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associated direct path of an NLOS link is usually subject to blockage by numerous buildings.

For devices with realistic noise figures and SNR requirements, the received power of such a

path may go easily below the detection threshold. Furthermore, the bandwidth considered in the

current paper does not allow for a well resolvability of the multi-path components. Indeed, in

the considered setting, we have ∆τ = 1/W = 100ns, so, when multiplied by the speed of light

c ≈ 3 × 108 m/s, the difference between the paths should be at least ∆d = c∆τ = 30m for

resolvability. In our dataset, we observe that around 92% of NLOS direct paths don’t satisfy this

condition (cf. Fig 1), i.e., the difference of the length of the direct path and that of the dominant

path is less than 30 m. Finally, whenever the direct path penetrates an obstacle, it incurs an

excess delay

t∆ = (
√
εr − 1)

dw
c
, (3)

where εr denotes relative electric permittivity and dw stands for the thickness of the wall.

Assuming a total length of 3m of penetrated wall of concrete with permittivity 4, we get an

excess delay of 10 ns, which further makes the ToA of the direct and dominant path closer,

deteriorating resolvability further: about 94% of NLOS direct paths don’t satisfy this.

Hence, it is reasonable to ignore the direct paths and use the dominant paths instead.

Moreover, the dataset assumes exact ToA information, i.e., perfectly synchronized clocks at

the BSs and UEs, and also no other additive noise on ToA measurements. Thus, all in all,

evaluating the ToA ranging based-methods on this dataset yields essentially a best case of what

is possible with ToA ranging in an urban environment.
Remark 2: To the best of our knowledge, there exists no publicly-available dataset of measured

radio maps reporting consistent signal strength and ToA with a fine resolution for the same

environments. This is essential in order to make fair comparison of different methods, and we

believe that our dataset will be useful for the research community in this area.

C. Training

We perform supervised learning on the training set. We use Adam optimizer [58] with an

initial learning rate of 10−5 and decrease the learning rate by a factor of 10 after 30 epochs. We

set the total number of epochs for training as 50 and batch size as 15. To avoid overfitting, we

pick the network parameters with the lowest validation error in the 50 training epochs. We used

PyTorch [59] for the implementation3.

3The code is available at https://GitHub.com/CagkanYapar/LocUNet. For reproducibility, see the compute capsule at https:
//codeocean.com/capsule/7149386/tree.

https://GitHub.com/CagkanYapar/LocUNet
https://codeocean.com/capsule/7149386/tree
https://codeocean.com/capsule/7149386/tree
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IV. NUMERICAL RESULTS

In this Section, we demonstrate the performance of LocUNet by numerical simulations. We

assess the accuracy of LocUNet and the compared methods on the test set, namely, by MAE (1)

with S = T , where T is the test set (cf. Subsection III-A).

First, we discuss the sources of mismatch between a true and estimated radio maps and describe

two scenarios in order to investigate the robustness of our method to such realistic inaccuracies.

Afterward, we illustrate these scenarios and LocUNet’s estimation results under them. Then,

we compare the performance of the presented method with state-of-the-art fingerprint-based

methods and study the effect of number of BSs in coverage. Subsequently, we study numerically

the effect of out-of-distribution measurements, and the location errors in the position labels.

Then, evaluations of state-of-the-art ToA ranging-based methods are presented, which proves the

superiority of LocUNet in numerous settings. Next, we present the baseline/relevant previous

methods, discuss their relation with LocUNet, and present their numerical evaluations. Finally,

we present the ablation study of input features, activation function of the layer before the CoM

layer, and the loss function for training, which justify our choices.

All of the compared algorithms with CPU implementation were run on an Intel Core i7-8750H,

and LocUNet was run on a GPU of NVIDIA Quadro RTX 6000. We report the approximate

run-times of the LocUNet and the compared algorithms (all implemented using MATLAB, run

on CPU), as well. For the sake of completeness, we note that none of our implementations

were meant to optimize the run-time, and thus the reported run-times reflect only an indicative

assessment.

A. Modeling of Mismatch in Radio Maps

As we argued before (cf. Section II-A), the RSS values are obtained by integrating the signal

strength measurements over time and the channel bandwidth, which effectively averages out the

small scale frequency selective fluctuations.

Given this, we identify two sources of mismatch between the actual RSS measured at the UE

and the estimated radio map input to LocUNet. These are:

1) The mismatch between the real propagation phenomena and the simplified model which is

used to estimate the radio maps. For example, a statistical model based on radial symmetry

plus long-normal fluctuations exemplifies a very simplified model with large mismatch,
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whereas models that use the geometry of the environment (e.g. ray tracing methods or their

accurate approximations like RadioUNet) will yield much better radio map estimations.

2) The mismatch due to the inaccurate knowledge of the propagation environment. This

inaccuracy can be decomposed into two classes: 1) Imperfect knowledge on position, shape

and material information of the objects, 2) Changes in the environment due to the objects

with mobility. While the first class of inaccuracies could be alleviated by integrating public

access city maps (e.g., OpenStreetMap [60]) with refined information from cameras, LiDAR,

and satellites, the second class of inaccuracy is not easily solvable since it would require a

dynamic re-computation at a fast rate of the radio maps for the time-varying environment.

Hence, in this work we focus on the inaccuracy due to mobile objects in the propagation

environment, which we modeled as the presence of cars in the streets. In particular, these

are unknown in the training phase of RadioUNet, and unknown at the run time of LocUNet.

However, LocUNet can learn the discrepancy between the RadioUnet estimated radio map and

the actual one during training, and (seamlessly) incorporate the statistics of this error in its

location estimation.

In the following we designate two scenarios with increasing compliance with reality, encom-

passing the above mentioned sources of inaccuracies.

1) Nominal Scenario: In this optimistic scenario, we assume that the real radio maps are

exactly governed by DPM and the radio map estimates are obtained by RadioUNet, which was

trained in a supervised fashion to estimate radio maps under DPM assumption, as well. Moreover,

we assume that there are no addional unknown obstacles, i.e., the exact information about the

propagation environment is available to RadioUNet. Hence, LocUNet enjoys having access to

very high accuracy radio maps, where the inaccuracy of the available radio maps with respect

to the true radio maps is solely due to the prediction error of RadioUNet, addressing the first

mentioned source of inaccuracy.

2) Robustness Scenario: This scenario encompasses all the inaccuracies enumerated previ-

ously, which are likely to occur in the deployment of the method. That is to say, we take into

account the potential mismatch between the real radio maps (above mentioned first source of

error), which we simulate (with WinProp [33]) by IRT as the real-surrogate (from which the

UE measures its pathloss), and the estimated radio maps, which are obtained by RadioUNet

that was trained on DPM dataset. We also add the effects of unknown obstructions to the real-

surrogate IRT simulations, addressing the second above mentioned source of error. We model
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Fig. 2: Histograms of the differences between the estimated (by RadioUNet trained on DPM simulations) and the
assumed ground-truth pathloss measurements in RadioLocSeer Dataset.

the obstructions as cars (100 per map in general, cf. Sec. III-B). The root mean square error

between the estimated and the simulated real-surrogate pathloss measurements are found to be

1.66 dB and 4.80 dB, for the Nominal and the Robustness Scenarios, respectively, whereas the

mean absolute errors are 0.87 dB and 3.55 dB. The histograms of the differences between the

estimated and real-surrogate pathlosses are shown in Fig. 2 for each scenario.

B. Examples

In Fig. 3, we show the results of LocUNet for a typical test map in the previously explained

Nominal and Robustness Scenarios. In the first two rows, we show the radio maps for the

considered 5 BS locations, which serve as the surrogate ground-truth (From top to bottom):

DPM ground-truth (for the pathloss measurements at UE in the Nominal Scenario), IRT with

cars ground-truth (for the Robustness Scenario). In the third row, the DPM estimations via

RadioUNet are shown. In the last row, we show the heatmaps and the locations estimations (i.e.,

the CoM of the quasi-heatmap, marked with yellow squares) of the LocUNet for the considered

two scenarios, where we partitioned the quasi-heatmap in two partial heatmaps, representing the

positive and the negative values (normalized by its max. and min. pixel value, respectively),

which we call the positive heatmap and the negative heatmap. The true location of the UE is

marked with green cross.

We note that the CoM of the quasi-heatmap is invariant to the multiplication of the quasi-

heatmap by −1. In each scenario, we observe that one of the heatmaps (the positive ones for

the first scenario, and the negative one for the second scenario) serves as a belief map about

the location of the UE, while the other one as a disbelief map. We see that the non-zero pixels

(there are more of them in the Nominal Scenario) of the disbelief maps are concentrated about

the pixels of the buildings and are distanced from the neighborhood of the estimated location.
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(a) Tx 1 DPM (b) Tx 2 DPM (c) Tx 3 DPM (d) Tx 4 DPM (e) Tx 5 DPM

(f) Tx 1 IRT with
cars

(g) Tx 2 IRT with
cars

(h) Tx 3 IRT with
cars

(i) Tx 4 IRT with
cars

(j) Tx 5 IRT with
cars

(k) Tx 1 DPM via
RadioUNet

(l) Tx 2 DPM via
RadioUNet

(m) Tx 3 DPM
via RadioUNet

(n) Tx 4 DPM
via RadioUNet

(o) Tx 5 DPM
via RadioUNet

(p) Nominal
positive heatmap

(q) Nominal
negative heatmap

(r) Robustness
positive heatmap

(s) Robustness
negative heatmap

Fig. 3: A generic localization problem of our dataset, where the pathloss at the UE from each BS is moderate.
First row: DPM true radio maps. Second row: IRT with cars true radio maps. Cars are shown in red. Third
row: DPM estimated maps by RadioUNet. Fourth row: LocUNet results for the two scenarios. The normalized
positive (by max. pixel value) and the negative (by min. pixel value) heatmaps of LocUNet before CoM layer are
shown in gray-level. Buildings are blue, Tx locations are marked with red diamonds. Estimated and true locations
are marked with yellow square and green cross, respectively.

C. Comparison with Pathloss Fingerprint-Based Methods

In Table III, we present the MAE accuracy of LocUNet in the scenarios described in Subsection

IV-A, and compare its performance with the competing fingerprint-based methods. The data is

provided by the RadioLocSeer Dataset III-B1. LocUNet is trained using the whole dataset with

5 anchor BSs, where it is ensured that the UEs can decode the beacons of at least one BS

(See Table IV for the number of BSs in coverage in the test set). Here, we use the radio map

estimations of all 5 BS, even when the UE is not in the coverage of a BS (i.e., UE is located

at a zero pixel of the true radio map of a BS). In order to study the effect of number of BSs

in reception during the test phase, we also test our method on the test set where the number of
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TABLE III: Comparison with fingerprint-based methods. Average Euclidean distance (MAE) for 5 and 3 number
of BSs, and approximate run-times of the evaluated methods.

Algorithm 5Tx 3Tx ms
Nominal Scenario

kNN [61] (k=16, 40) 6.95 17.27 ∼ 20
kNN [61] Cond. 6.93 16.56 ∼ 20

Adaptive kNN [62] (avg. k=2.50, 2.40) 7.49 16.18 ∼ 20
LocUNet 4.80 10.70 ∼ 5

Robustness Scenario
kNN [61] (k=200,1500) 27.38 38.54 ∼ 20

kNN [61] Cond. 24.44 32.83 ∼ 20
Adaptive kNN [62] (avg. k=8.51, 5.08) 29.51 45.31 ∼ 20

LocUNet 13.14 19.06 ∼ 5

BSs in coverage is not more than 3.

We compare with two fingerprint-based methods, namely, k-nearest neighbors (kNN) method

[61] and an adaptive kNN variant [62]. We determined the k parameters of the kNN algorithm

by coarse grid-search for both of the 3 and 5 BS settings, as the one which yields the best

performance in the training set. We also considered determining individual k parameters for

each number of BSs in coverage (See the following Subsection IV-C1 for more) in the same

way, and report the overall performance of this approach under the name kNN Cond. In the kNN

methods, we have not excluded the pixels of buildings from consideration when finding the k

neighbors (when a BS is not in coverage), and doing otherwise did not yield improvements.

We observe that LocUNet provides the best accuracy among the fingerprint based methods

in all the scenarios, and LocUNet is especially good at dealing with the inaccuracies of the

radio map estimations in the realistic setting, as witnessed in the results of the Robustness

Scenario (Sec. IV-A). Thus, the results in this scenario are a more meaningful indicator for the

performances of the compared algorithms. LocUNet outperforms the best performing competitor

algorithm (kNN) by about 11m and 14m in MAE in the cases of 5 or 3 BSs per map.

Remark 3: We attribute the success of LocUNet in accuracy and its robustness to the inaccu-

racies in radio map estimations to its convolutional nature, which takes fully into account the

neighborhood/spatial relations in the radio map estimations, whereas the kNN method makes

use of the spatial information only when the CoM of the k-nearest-neighbors are found in the

final step. The kNN method can hence be seen as a convolutional method with convolution

kernels of 1x1 pixels. Note that both kNN and our method perform CoM as the last step and the

found k-nearest-neighbors can be interpreted as a heatmap. However, the k-nearest-neighbors

are solely determined by assigning each pixel a distance in the signal space of the RSS values
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TABLE IV: Conditional performances of kNN and LocUNet.

No BS above NF: 1 2 3 4 5 Overall
kNN (k=200) 69.81 48.89 34.62 26.30 19.62 27.38
kNN Cond. 46.25 35.56 29.88 24.28 19.62 24.44

kNN Cond. w/ below NF 48.9 42.1 34.22 26.45 19.62 26.31

LocUNet 30.51 21.89 16.31 13.28 9.62 13.14
LocUNet Cond. 56 28.37 20.1 15.02 9.06 15.04

LocUNet Cond. w/ below NF 32.14 39.03 18.45 13.93 9.06 14.86
LocUNet Cond. 5 33.57 23.55 17.28 13.5 9.06 13.3

no instances in test set 3284 12478 26515 35167 72556 150000
% 2.19 8.32 17.68 23.44 48.37 100

under a metric (we took the usual “Euclidean”, the sum of the squared residuals, and our

experiments with the “Manhattan” metric did not yield improvements), which disregards any

spatial relations of the pixels. LocUNet also compares the RSS measurements (represented via

the constant image channel pj) to the RSS values at each of the pixels (via the input radio map).

However, LocUNet also utilizes the spatial information by propagating the RSS information from

the spatial neighbors of each point via the convolutions.

1) Conditional Performance of the Compared Methods: Previously, we have evaluated Lo-

cUNet and the kNN algorithms for 5 BS deployments or for subsets of 3 BS deployments of

them. However, not all BSs are necessarily in coverage (We only ensured each UE is at least in

the coverage of one BS, cf. Sec. III-B), as happens often in the real life.

In Table IV we demonstrate the performance of LocUNet and kNN in the Robustness Scenario,

conditioned on the number of BSs detectable at the UE. We compare the performance of training

(for kNN, setting the k parameter) on the whole training set with that of training separately for

different BS numbers. For the conditional training, we consider two variants, one which only

uses the radio map estimation of a BS when the UE is in the coverage of the BS, and one which

uses all the radio map estimations, even when a link between the UE and a BS is not strong

enough for detection. We observe that such non-detectable signal information can be beneficial

for LocUNet, while kNN demonstrates a better performance without taking such radio maps into

consideration. We also observe that LocUNet performs the best when only one network with the

whole training dataset is trained, whereas kNN achieves a better performance under conditional

training. This can be attributed to the limited size of the dataset for low number of BSs (cf.

bottom of the Table IV), causing LocUNet to overfit. In fact, the results with a network trained

with only data from 5 BS in reception shows a deterioration with respect to training with the

whole data. A detailed study of the effect of number of BSs in reception, dataset sizes, or neural

network sizes could be interesting but is out of the scope of the current work.
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TABLE V: Neural networks of the Nominal and Robustness Scenarios evaluated under out-of-distribution pathloss
measurements. Comparison with kNN where k parameter is fixed for the scenario of the interest. The accuracies
under in-distribution measurements are shown in red.

DPM DPM w/ cars IRT IRT w/ cars
LocUNet Nominal 4.80 8.80 20.07 25.64

kNN Nominal (k=16) 6.95 11.29 24.38 28.56
LocUNet Robustness 12.94 12.52 11.93 13.14

kNN Robustness (k=200) 9.22 12.46 23.41 27.38

D. Robustness to Out-of-Distribution Pathloss Measurements

In this Section we show the performance of LocUNet and the kNN method for the above

defined two scenarios under out-of-distribution (OOD) pathloss measurements, i.e., we test with

measurements stemming from different distributions than the one during the training.

To this end, we take the trained LocUNet networks under these two scenarios, and kNN

method with k values found via grid search in the training set for each scenarios. We then

test both methods with pathloss measurements obtained from different simulations scenarios.

In addition to the above mentioned two ground-truth scenarios (DPM and IRT with cars), we

consider two more scenarios. 1) DPM with cars, where the radio map is simulated with the DPM

under the presence of additional (unknown to LocUNet) obstructions (cars), 2) IRT simulations

as in the Robustness Scenario, but without the presence of unknown cars. The data for these

scenarios are also available in the RadioLocSeer Dataset. In Table V we observe that the network

trained in the Nominal scenario suffers from substantial decrease of performance when the

pathloss measurements stem from other scenarios, whereas the accuracy of the network trained

in Robustness Scenario is not much affected, while being outperformed by the network trained in

the Nominal Scenario when the measurements stem from DPM simulations, which demonstrates

the importance of having high accuracy radio map estimations, when possible. We also notice

that the network trained in Robustness Scenario performs even better when there are no unknown

cars in the map. On the other hand, we observe that the performance of the kNN method is

mainly dependent on the closeness of the real (surrogate) and the estimated maps, and different

k (nearest neighbors) values do not lead to remarkable improvements in performance, especially

when the mismatch between the estimated and true radio map is high.

E. Robustness to Location Errors

1) Location Errors in the Training Dataset: A crucial requirement of a localization method

should be robustness to inaccuracies of the reported locations of the samples in the training

dataset, as the very localization problem in dense urban setting, which the current paper is

dealing with, is also present while collecting the labeled (here, the true locations) data. To
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Fig. 4: Robustness to the inaccuracies in the reported positions of the training dataset samples

TABLE VI: Test accuracies under training with contaminated position labels. The numbers of training epochs of
LocUNet that give rise to the best validation losses are reported in the last row.

Algorithm σ = 0 σ = 1 σ = 2 σ = 5 σ = 15 σ = 25 σ = 35 σ = 45 σ = 55
kNN [61] 27.38 27.38 27.38 27.20 27.13 27.20 27.44 27.44 27.44

LocUNet 13.14 12.90 13.20 13.49 14.55 15.30 15.36 16.85 17.43
best # of epochs 20 17 30 14 8 8 8 9 6

assess the robustness of LocUNet to such inaccuracies, we consider additive Gaussian noise

on each location coordinate of the training data. We report the test results for varying standard

deviation of the noise in Fig. 4 and Table VI. We observe that even to a significantly high level of

additive noise (σ = 55) to the positions in the training data, both LocUNet and kNN [61] show

extremely high robustness. Another observation we made is a trend of decrease in the number

of training epochs which yields the best validation loss with increasing σ, i.e., overfitting occurs

earlier as σ increases and the generalization is more severely impaired.

2) Uncertainty of Anchor BS Locations: Throughout the paper, we focused on a setting with

known anchor BS locations, which are naturally known to the service providers, and might be

also available to the users (required for self-localization at the UEs), through open access sources

such as https://www.cellmapper.net. Here, we present a brief numerical study of LocUNet, when

the locations of the anchor BSs are not exactly known. As before, we model the uncertainty

as an additive Gaussian random variable. Since generating a dataset for each realization of

such uncertainty is unfeasible, we instead distort the position of the UE for each considered

BS, and assume that the pathloss measurements stem from the distorted location (rounded so

that it corresponds to a pixel in the radio map), while only the non-contaminated location is

known. If the distorted location corresponds to a location in a building, we repeat the process

of adding noise to the original location of the UE, until it does not. The results of LocUNet and

kNN are reported in Table VII. In the first two rows, we show the accuracy of the algorithms

https://www.cellmapper.net
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TABLE VII: Robustness to the inaccuracies in the anchor BS locations. For each transmitter, the reported pathloss
stems from a position contaminated by additive Gaussian noise with given standard deviation σ, to emulate the
uncertainty in the BS position.

Algorithm σ = 5 σ = 10 σ = 15 σ = 20 σ = 25
kNN [61] Noisy Loc. ZS (k=200) 30.91 36.34 43.67 50.98 57.95

LocUNet Noisy Loc. ZS 16.42 22.23 29.01 35.29 40.96

kNN [61] Noisy Loc. (k=500,800,6000,10000,12000) 30.11 34.78 38.81 42.54 45.19
LocUNet Noisy Loc. 16.26 20.52 25.43 29.55 34.09

trained with data with exactly known transmitter locations and evaluate their performances under

contaminated transmitter locations (Zero-Shot Scenario, ZS). In the last two rows, the results

under training with distorted BS locations are presented, where we observe the beneficial effects

of it with respect to the Zero-Shot Scenario on the accuracy of the both methods.

F. Comparison with ToA Ranging-Based Methods

Using the RadioToASeer Dataset (Sec. III-B2), we evaluate the accuracies of the state-of-the-

art ToA ranging based algorithms, in our presented realistic urban setting, and compare with our

method. The compared methods are based on the measured ToAs of the dominant paths of the

beacon signals of BSs as explained in Section III-B2, found in our RadioToASeer Dataset. We

assumed the availability of the ToA measurements even if the signal power of the dominant ray

of interest falls below the noise floor. This further favors ToA-based schemes. In a separate set

of experiments not shown here for space limitation we have verified that if only the rays with

RSS above the noise floor are considered (average of 4.72 BS above the noise floor), similar

results are obtained with 2-3 meters of degradation in the performances of SDP-based methods,

and around 1 meter of improvement in bisection-based methods.

In practice, there are several factors which deteriorate the accuracy of ToA measurements at

a UE, e.g., clock offset and skew (synchronization errors), quantization of the measured values,

additional thermal noise, or failures in resolving the multipath components. In the numerical

experiments, we only took into account the inaccuracy due to the quantization (in LTE, ToAs

are quantized to intervals of 9.77 meters), the thermal noise and the clock error and modeled

them altogether with a single additional Gaussian noise variable with zero mean and standard

deviation σ, as proposed in [63]. As in [63], we took σ = 20 meters, and also evaluated the

methods with σ = 10m and under no measurement noise, σ = 0 (cf. Table VIII). For all the

cases, all the 5 BSs or a subset of 3 BSs are taken into consideration.

For the robust ToA methods [23]–[25], we pick the NLOS bias b at CDF 0.9 (20 m), as

suggested in [26], and also at CDF 0.5 (0.7 m) (cf. Fig. 1).
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TABLE VIII: Comparison with ToA ranging-based methods. Absolute Euclidean distance (MAE) accuracies and
approximate run-times of compared algorithms under different additional noise and number of BSs in the map.

no BS: 5 3 5 3 5 3 Run-time
Standard dev. of noise: σ = 0 σ = 10 σ = 20 ∼ ms

POCS [20], [21] 37.75 46.15 39.36 47.26 41.27 48.72 15
SDP [22] 6.81 13.95 15.52 27.81 24.88 41.02 600

Robust SDP 1 [23], b = 20 9.98 17.10 17.02 27.59 27.76 40.37 600
Robust SDP 1 [23], b = 0.7 7.04 15.38 17.13 28.12 28.42 41.74 600
Robust SDP 2 [24], b = 20 12.53 19.63 18.66 28.59 27.81 39.93 600
Robust SDP 2 [24], b = 0.7 7.14 15.63 17.10 28.10 28.39 41.72 600

Bisection-based robust method [25], b = 20 9.16 15.87 14.42 25.40 23.30 38.14 16
Bisection-based robust method [25], b = 0.7 9.49 14.95 14.80 27.35 24.09 40.75 16

Max. correntropy criterion method [26] 12.44 18.40 20.54 31.27 31.91 45.68 30

LocUNet Nominal & Robustness Scenarios 4.80 10.70 13.14 19.06 13.14 19.06 5

We report the simulation results in Table VIII. We added the results of LocUNet in the Nominal

and Robustness Scenarios, at the bottom of the Table, for comparison. The results of LocUNet

under the Nominal and Robustness Scenarios should be compared with the ToA ranging-based

methods under no additive measurement noise and under noisy measurements, respectively. We

observe that LocUNet outperforms all the compared ToA-based methods in all the settings.

G. Comparison with Baselines in Image Processing

To demonstrate the validity of our method, we perform comparisons with baselines. We relate

our method to the localization problems (e.g. human/hand pose estimation) in image processing,

which can be generally characterized as a so-called keypoint regression problem [64]. We describe

in the following four approaches, with increasing level of accuracy, where our method falls into

the last category. We report our findings based on the numerical experiments we conducted, and

discuss the results.

1) Direct classification: For the localization problem at hand, a classification approach seems

to be the most appropriate at first sight. In this case, the task of the DNN is to approximate a

one-hot map with the “hot” pixel at the desired location. The classical loss function in this case

is the cross-entropy loss between the desired one-hot map and the heatmap output by the DNN

(both maps can be interpreted as probability distributions on the set of all possible locations).

While this approach may be appropriate for classification of categorical data (e.g., handwriting

of letters and numbers), it is inappropriate for localization since the cross-entropy loss does

not capture the proximity of the estimated position in the Euclidean distance sense. In fact,

our regression approach based on MAE or MSE is much more meaningful in this sense. Our

implementation of the classification approach did not converge, as expected.
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Fig. 5: Heatmap regression with different activations, heatmap loss functions, heatmap shapes vs LocUNet.
Abbreviations: (Gauss): Gaussian, (MQuad): Inverse Multiquadric, (Quad): Inverse Quadratic, (BCE): Pixelwise
binary cross-entropy.
TABLE IX: 5 best performing choices for heatmap regression vs LocUNet

Method σ MAE
Sigmoid+BCE+Gaussian+CoM 10 13.40

Sigmoid+BCE+Gaussian+argmax 10 13.44
Softmax+MSE+Gaussian+CoM 10 13.55

LeakyReLU+MSE+Gaussian+argmax 5 13.56
Sigmoid+BCE+Inverse quadratic+argmax 3 13.61

LocUNet - 13.14

2) Direct regression: Another reasonable approach could be the direct regression of the pixel

coordinates under a distance based loss, where instead of the CoM layer, a fully connected layer

would be used as the last layer. This flattening at the last layer impairs the spatial generalizability

of the network. In particular, the translation equivariance, which is crucial for the localization

problem, is lost. Our experiments with this approach did not converge either. Similar observations

were made in some previous works, e.g. in [65].

3) Heatmap regression: To preserve the spatial information, the flattening of the layers has

to be avoided. Heatmap regression based methods use fully convolutional networks to maintain

the spatial information. In such methods, the networks are trained to match a (ground truth)

heatmap, which are usually generated as 2D Gaussian distributions (standard deviation σ being

a hyperparameter to be tuned) centered on the ground truth pixels. The values of the heatmap for

the Gaussian case is obtained by e−
r2

2σ2 , where r is the distance to the ground truth pixel from the

pixel of interest. Additionally, we used two other radial basis functions for heatmap generation,

namely, Inverse Multiquadric: 1/
√

1 + r2/(2σ2) and Inverse Quadratic: 1/(1 + r2/(2σ2)).

After the neural network is trained, the position is inferred by taking either the pixel with the
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TABLE X: Performance of LocUNet in MAE and RMSE with different activation functions at the last layer before
CoM, with different loss functions for training, and with different additional input features. n.c.: no convergence.

Training Loss: MAE MSE
Inputs # parameters Test Metric Leaky ReLU ReLU Softmax Sigmoid Leaky ReLU ReLU Softmax Sigmoid

wC wT 22, 332, 381
MAE 13.14 n.c. 13.25 13.15 14.45 15.41 15.04 15.04

RMSE 21.78 n.c. 23.53 23.09 21.93 22.81 23.72 22.35

w/oC wT 22, 331, 676
MAE 13.32 n.c. 12.88 13.47 14.32 n.c. 14.54 14.66

RMSE 23.66 n.c. 22.60 23.79 21.98 n.c. 22.53 21.88

wC w/oT 22, 328, 856
MAE 12.86 n.c. 13.00 13.27 14.75 n.c. 14.45 14.91

RMSE 22.26 n.c. 23.27 23.37 21.95 n.c. 22.07 21.99

w/oC w/oT 22, 328, 151
MAE 13.05 n.c. 13.08 13.36 16.24 n.c. 14.40 14.69

RMSE 22.37 n.c. 22.55 23.12 23.44 n.c. 21.7 22.21

largest value in the heatmap (the mode) or the center of mass (the mean), as the heatmap can

be interpreted as an a posteriori probability distribution of the UE position, and the mode and

mean correspond to maximum a posteriori and posterior mean estimation, respectively. Hence,

these methods are trained against a loss which is different from the actual metric of interest - the

Euclidean distance. Our experiments with this approach with the mentioned inference functions

(i.e., arg max and CoM), and with different activation functions, heatmap loss functions, and

heatmap shapes have demonstrated worse yet close performances to LocUNet for specific values

of σ, which are shown in Fig. 5 and summarized in Table IX.

4) Spatial regression: This approach, which LocUNet is special case of, is based on relying

on the heatmaps only as a latent representation, and defining the loss directly on the location

coordinates. The inference of the coordinates are achieved by a differentiable function (mostly

by CoM as in our paper), which allows end-to-end training. Equipped with the spatial general-

ization capability thanks to the convolutional network, together with the direct regression of the

coordinates, such methods outperform the heatmap regression approach [64], [66]–[69].

H. Ablation Study

In this section, we discuss the effectiveness of our neural network design by comparing with

other reasonable approaches. In the following, we present the impact of the additional input

features, the choice of the last activation function of the network, and the choice of the loss

function during the training. Resulting accuracies in MAE and root-mean-square error (RMSE)

are shown in Table X.

1) Impact of the Additional Input Features: Our observation is that the impact of the additional

input features (cf. Sec. III-A) on the performance is not significant. Hence, for the sake of

simplicity of the exposition, throughout the paper we have taken all the additional features as

inputs to the LocUNet, when comparisons with other methods are carried out. In Table X we
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TABLE XI: Improvements (in percentage) observed in Table X in MAE, RMSE metrics by training with MAE
and MSE losses, with respect to training with MSE and MAE losses, respectively.

Inputs Improvement Leaky ReLU Softmax Sigmoid

wC wT MAE 9.07% 11.9% 12.58%
RMSE −0.69% −0.81% 3.21%

w/oC wT MAE 6.98% 11.42% 8.10%
RMSE 7.10% 0.31% 8.03%

wC w/oT MAE 12.80% 10.03% 11.00%
RMSE 1.39% 5.15% 5.91%

w/oC w/oT MAE 19.65% 9.17% 9.03%
RMSE −4.78% 3.7% 3.94%

show the results of the numerical experiments with (w) and without (w/o) city (C) and Tx (T)

maps as additional input features.

2) Impact of the Activation Function Before the CoM Layer: All of the above mentioned

previous works in localization forced the heatmaps by the activation functions to become non-

negative, or normalized them to represent a probability distribution (e.g. by Softmax as the

activation function). Interestingly, our experiments with several activation functions (ReLU,

Softmax, Sigmoid and Leaky ReLU), have shown, that allowing negative values in the heatmap

(by using Leaky ReLU as the activation function), performed generally the best among all

the activation functions (cf. Table X). Here, this quasi-heatmap can be interpreted as a quasi-

probability and the CoM as then the mean under a quasi-probability distribution, which is the

MMSE estimator (See also the Examples in Sec. IV-B and the belief/disbelief map interpretation

therein). A study of this interesting observation is, however, beyond the scope of this paper.

3) Impact of the Loss Function in the Training: Based on the results in the Table X, we

compare the influence of the training loss function on the evaluation metrics of MAE and RMSE

in Table XI, where we show the improvement (in percentage) in MAE (RMSE) when trained

with MAE (MSE) loss, with respect to when trained with MSE (MAE) loss. In mathematical

terms, we calculate ImpRMSE = 100× RMSEMAE−RMSEMSE
RMSEMAE

, ImpMAE = 100× MAEMSE−MAEMAE
MAEMSE

, where

the terms in fractions denote the performance in terms of TestMetricTrainingLoss.

We observe that in most of the cases training with MAE loss yielded more gains in MAE in

comparison to the performance gains achieved in RMSE when trained with MSE.

V. CONCLUSIONS

In this paper we presented a deep learning method to localize a UE based on the measured

signal strengths from a set of BSs. Our method, based on the estimates of the true radio maps

of each BS, is tailored to work in realistic propagation environments in urban settings. The

proposed approach does not necessitate currently uncommon hardware neither at UEs nor at
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BSs, and does not require an extensive measurement campaign, and thus can be easily integrated

in the localization practices that are already in use. Our method outperforms the state-of-the-art

localization algorithms in realistic urban scenarios and enjoys high robustness to inaccuracies in

the radio map estimates, and also to inaccuracies in the positions labels of the training set. We

also presented two new datasets, which can be used to evaluate the performances of pathloss

fingerprint and ToA ranging-based algorithms in realistic urban environment scenarios.
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