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Abstract 

The multifrequency formalism is generalized and exploited to quantify attractive forces, 

i.e., the van der Waals interactions,  with small amplitudes or gentle forces in bimodal 

and trimodal AFM. The multifrequency force spectroscopy formalism with higher modes, 

including trimodal AFM, can outperform bimodal AFM for material property 

quantification. Bimodal AFM with the second mode is valid when the drive amplitude of 

the first mode is approximately an order of magnitude larger than that of the second mode. 

The error increases in the second mode but decreases in the third mode with decreasing 

drive amplitude ratio. Externally driving with higher modes provides a means to extract 

information of higher force derivatives while enhancing the range of parameter space 

where the multifrequency formalism holds. Thus, the present approach is  compatible 

with robustly quantifying weak long range forces while extending the number of channels 

available for high resolution.  
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I. INTRODUCTION 

 

Multifrequency atomic force microscopy (AFM) is a dynamic mode of AFM which 

enhances resolving power, provides extra contrast channels, and is equipped with a 

formalism to quantify material properties1. Since its inception, dynamic AFM (AFM) was 

divided into two main modes of operation, i.e., amplitude modulation2 (AM) AFM and 

frequency modulation3 (FM) AFM. In both approaches a microcantilever with a sharp tip 

at its end is excited at or near its resonant frequency. AM AFM tracks the amplitude decay 

while FM AFM tracks the frequency shift. The tracking parameter shaped the lines of 

research in each field. For example Giessibl4, 5, Sader and Jarvis6-8 derived a general 

expression relating the frequency shift to the tip-sample force during the late 90s and early 

2000s. In the AM AFM field others focused on the relationships between the tip-sample 

force and the amplitude decay. For example, in 2001, San Paulo and García derived a 

generic expression based on the virial of the interaction and the energy dissipation 

expressions9. The virial of interaction, or virial, is the time averaged tip-sample force 

times displacement and accounts for the amplitude decay due to conservative forces. The 

virial, as concept in dynamic AFM,  arguably brings together the above lines of research10, 

11. Stark and others12-14 reported the effects of higher harmonics to the dynamics of the 

cantilever and in the 2000s several methods that monitor higher harmonics and higher 

modes emerged. The reader can refer to Roger Proksch15, Solares and Chawla16 or García 

and Herruzo1 for a brief introduction to the early developments. More recently,  advances 

17-19 include  the work of Eichhorn and Dietz20-22 where torsional and flexural modes are 

simultaneously excited and monitored and advances in the understanding of qPlus sensors 

23, 24. In this work we focus on bimodal AFM, as introduced in 200425 and 200615, 26, 

trimodal AFM as introduced in 201027,  and the multifrequency formalism for force 
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spectroscopy to quantify material properties11, 28-35. Here, van der Waals  (vdW) forces 

are taken as a model force to be investigated in  multifrequency AFM since these 

interactions are widely employed in current research36 that could be impacted or exploited 

through our findings.  For example, in the field of fabrication of nanostructures and 

nanodevices, vdW  forces offer an alternative bond-free integration strategy without 

lattice and processing limitations37. In particular,  in two-dimensional layered materials 

(2DLMs) weak vdW interactions are responsible for the integration of highly disparate 

materials without the constraints of crystal lattice matching38. The same principles are 

being exploited to move beyond two dimensional structures37 and, amongst other39, 40, 

also exploited in advanced nanophotonic and opto-electronic applications41.  In short, in 

this study the vdW forces are parametrized in terms of the ubiquitous inverse square law42  

where the proportional parameter provides information regarding the magnitude of the 

force. The force spectroscopy expressions are then generalized to higher modes, including 

the simultaneous excitation of more than 2 modes, in order to investigate the sensitivity 

and robustness of the formalism.  

 

II. MODEL 

 

 

The dynamics of the AFM cantilever interacting with a surface can be reduced to a set of 

M governing equations28, one equation representing each eigenmode i, expressed  in 

terms of the standard linear differential equations employed to describe driven harmonic 

motion,  with the addition of the tip-sample force Fts 

 

𝑚𝑚𝑧̈𝑧𝑖𝑖 = −𝑘𝑘𝑖𝑖𝑧𝑧𝑖𝑖 − 𝑚𝑚𝜔𝜔0𝑖𝑖
𝑄𝑄𝑖𝑖

𝑧̇𝑧𝑖𝑖 + ∑ 𝐹𝐹0𝑖𝑖cos𝜔𝜔𝑖𝑖𝑡𝑡𝑖𝑖=𝑀𝑀
𝑖𝑖=1 + 𝐹𝐹ts(z)               (1) 
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where m is the effective mass, ki, Qi and ω0i are the spring constant, the Quality factor and 

the natural angular frequency of each mode i. M is the number of modes employed to 

model the system and/or where external driving forces are acting, F0i  and ωi are the 

driving force and the driving angular frequency at or near the resonance of each mode 

and Fts(z) is the tip-sample force acting at the cantilever position z. The reduction of the 

dynamics to M equations is made under the assumption that the relevant information is 

mostly contained in these M eigenmodes at the frequencies of interest, i.e., those where 

there is a drive ωi. Furthermore, z can be expressed in terms of the frequency components 

coinciding with the drive frequencies ωi as follows 

𝑧𝑧(𝑡𝑡) = ∑ 𝑧𝑧𝑖𝑖
𝑖𝑖=𝑀𝑀
𝑖𝑖=1 + 𝑂𝑂(𝜀𝜀) ≈ ∑ 𝐴𝐴𝑖𝑖cos (𝜔𝜔𝑖𝑖𝑡𝑡 − 𝜙𝜙𝑖𝑖) 𝑖𝑖=𝑀𝑀

𝑖𝑖=1                    (2) 

 

where 𝑂𝑂(𝜀𝜀) is the term carrying the contributions of higher harmonics and higher modes, 

i.e., it is the error not accounted for by the higher modes at frequencies other than ωi.43  

The amplitudes  Ai and phases ϕi are experimental observables in multifrequency AFM. 

It follows that Fts can be approximated to  

 

𝐹𝐹ts(z) ≈ 𝐹𝐹ts�∑ 𝑧𝑧𝑖𝑖
𝑖𝑖=𝑀𝑀
𝑖𝑖=1 �                                                                  (3) 

 

Standard bimodal AFM typically employs the first two modes, i.e., m=1 and m=2, and 

was introduced in 2004. Trimodal AFM44 was introduced in 2010 and the first three 

eigenmodes are excited at, or near, the natural frequency of oscillation. Here we reduce 

the system to M=3 and explore the consequences for the extraction of material properties 

when exciting the first, second and the third modes simultaneously as in trimodal, or,  as 
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in bimodal, two modes at a time. Furthermore, this study focuses on gentle interactions, 

i.e., roughly speaking the small amplitudes typically employed to image in the attractive 

regime in AM AFM25, 30. For this reason we employ the same model employed in the 

original study of 200425  

 

𝐹𝐹𝑡𝑡𝑡𝑡 = − 𝛼𝛼
(𝑧𝑧𝑐𝑐+𝑧𝑧)2                      where d = zc + z     and         d > a0   (4) 

 

where  zc is the tip-sample rest separation45, α dictates the magnitude of the phenomena30 

or the strength of the force46, d is the instantaneous tip-sample distance and a0 is an 

intermolecular distance introduced to avoid the divergence of (4) and physically 

represents matter impenetrability, i.e., the atoms on the tip and the atoms on the surface 

cannot be closer than a0.  Other details on the approximations and validity of (4) can be 

found elsewhere45. The expression in (4) is typically employed in AFM to model long 

range attractive, i.e., vdW,  forces. It is perhaps more interesting to write (4) in terms of 

the Hamaker H and the tip radius R42. Then, α=RH/6. Since this work focuses on gentle 

forces the interactions of interest are d>a0 throughout. Experimentally this can be 

achieved by employing sufficiently small amplitudes30, 47.  The virials of interaction 

contain information about conservative forces such as those in (4). 9 The virials for each 

mode are defined as28   

𝑉𝑉𝑖𝑖 = ⟨𝐹𝐹𝑡𝑡𝑡𝑡𝑧𝑧𝑖𝑖⟩ = 1
𝑇𝑇 ∫  𝑇𝑇

0 𝐹𝐹𝑡𝑡𝑡𝑡𝑧𝑧𝑖𝑖𝑑𝑑𝑑𝑑     (5) 

These expressions can be  expressed in terms of experimental observables by noting that 

combining (1) and (2) and integrating over a full cycle 

𝑉𝑉𝑖𝑖 = − 1
2

𝐹𝐹0𝑖𝑖𝐴𝐴𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑖𝑖      (6) 
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where, at the resonances, F0i= kiA0i/Qi. Thus, all the terms in (6) can be experimentally 

calibrated or monitored.  In principle, extracting the sample’s parameters consists in 

inserting a model in (5) and solving the integrals. A constraint is that there must be as 

many equations (5), i.e., modes M, as unknowns in the model. In (4) the unknowns are 

two, i.e., zc and α.  For the virial of the first mode, i.e., the fundamental frequency ω01 

with period T, the following approximation simplifies the solution30, 47  

𝑉𝑉1 = ⟨𝐹𝐹𝑡𝑡𝑡𝑡𝑧𝑧1⟩ = 1
𝑇𝑇 ∫  𝑇𝑇

0 𝐹𝐹𝑡𝑡𝑡𝑡𝑧𝑧1𝑑𝑑𝑑𝑑 ≈ − 1
𝑇𝑇

� 𝛼𝛼
(𝑧𝑧𝑐𝑐+𝑧𝑧1)2 𝑧𝑧1𝑑𝑑𝑑𝑑 

𝑇𝑇

0
    (7) 

The approximation in (7) is valid provided the amplitude of the first mode A1 is much 

larger than the amplitudes of the higher modes, i.e., z ≈ z1. The solution of (7) was already 

provided in 2001 by the authors that introduced the virial theorem in AFM9  

𝑉𝑉1(𝑛𝑛 = 2) ≈ 𝛼𝛼
𝐴𝐴1

��𝑧𝑧𝑐𝑐
𝐴𝐴1

�
2

− 1�
−3/2

    (8) 

Combining (6) and (8) is not sufficient to extract α since there are two unknowns, i.e., α 

and zc. By exciting the second mode, i.e., bimodal,  another equation is available, albeit 

the approximation in (7) for higher modes is too cumbersome. A more manageable 

approximation  was later introduced where48, 49  

𝑉𝑉2 ≈ 𝐴𝐴2
2

2
1
𝑇𝑇 ∮ ∂𝐹𝐹𝑡𝑡𝑡𝑡

∂d 𝑑𝑑𝑑𝑑     (9) 

Here, we propose using (9) for higher modes. Thus we proceed to expand the  formalism 

to extract material properties using (9) for any higher mode or combination of higher 

modes where 

𝑉𝑉𝑖𝑖 ≈ 𝐴𝐴𝑖𝑖
2

2
1
𝑇𝑇 ∮ ∂𝐹𝐹𝑡𝑡𝑡𝑡

∂d 𝑑𝑑𝑑𝑑  for i= 2, 3, …    (10) 
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Inserting (4) into (10)  

𝑉𝑉𝑖𝑖(𝑛𝑛 = 2) ≈ 𝛼𝛼 �𝐴𝐴𝑖𝑖
𝐴𝐴1

�
2 1

𝐴𝐴1
��𝑧𝑧𝑐𝑐

𝐴𝐴1
�

2
+ 1

2
� ��𝑧𝑧𝑐𝑐

𝐴𝐴1
�

2
− 1�

−5/2
  (11) 

where n= 2 is a reminder of the power in (4) while  (6), (8) and (11) can be combined to 

express the unknowns  in (4) (zc and α)  in terms of observables 

𝑧𝑧𝑐𝑐 = 𝐴𝐴1 �1+𝑏𝑏/2
1−𝑏𝑏

�
1/2

        (12) 

𝛼𝛼 = 𝐴𝐴1𝑉𝑉1 ��𝑧𝑧𝐶𝐶
𝐴𝐴1

�
2

− 1�
3/2

 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝛼𝛼 = 𝐴𝐴1𝑉𝑉1 ��1+𝑏𝑏/2
1−𝑏𝑏

� − 1�
3/2

        (13) 

where       

𝑏𝑏𝑖𝑖 = �𝐴𝐴𝑖𝑖
𝐴𝐴1

�
2 𝑉𝑉1

𝑉𝑉𝑖𝑖
     (14) 

It follows that zc and α can be written in terms of observables by exciting modes 1 

and 2, modes 1 and 3 or modes 1, 2 and 3 simultaneously. If higher modes were  

excited the same equations would still hold since the contribution from the modes 

is contained in the subscript of (14).  If  three modes are simultaneously excited  

approximations for α and zc can be found from modes 1 and 2 and  modes 1 and 3 

simultaneously.   Finally, the minimum distance of approach dm is more meaningful 

as a parameter than zc  in terms of the interaction, i.e., dm is the minimum distance 

between the tip and the sample during an oscillation cycle. Thus, we propose two 

approximations for dm that result from (12) as follows  

 

𝑑𝑑𝑚𝑚 = 𝐴𝐴1 ��1+𝑏𝑏/2
1−𝑏𝑏

− 1� where  𝑑𝑑𝑚𝑚 ≈ 𝑧𝑧𝑐𝑐 − 𝐴𝐴1   (15) 



8 
 

𝑑𝑑𝑚𝑚 = 𝐴𝐴1 ��1+𝑏𝑏/2
1−𝑏𝑏

− ∑ 𝐴𝐴𝑖𝑖
𝑖𝑖=𝑀𝑀
𝑖𝑖=1

𝐴𝐴1
�  where 𝑑𝑑𝑚𝑚 ≈ 𝑧𝑧𝑐𝑐 − (𝐴𝐴1 + 𝐴𝐴2 + 𝐴𝐴3)   (16) 

The approximation in (15), i.e., dm≈ zc – A1,  is the standard approximation48, 50 in 

multifrequency AFM. The approximation in (16), i.e.,  dm≈ zc – (A1+A2+... +AM),  is 

introduced here to improve the results as discussed later.   

 

 

 

 

III. RESULTS 

 

A comparison between the virials as expressed in (5), and as obtained from 

numerically integrating the equations of motion, and the approximation to the 

virials in Eqs. (8) and (10) for the first and higher modes respectively,  is shown in 

FIG. 1.  The parameters used for the simulations are given in the figure caption. The 

top panels (a to c) show the results for virials 1, 2 and 3 when only the first and 

second modes are excited. The bottom panels (d to f) show the results for virials 1, 

2 and 3 when only the first and third modes are excited. The first mode was excited 

with a free amplitude of A01 = 2nm throughout. The higher modes were excited with 

amplitudes of  0.2 nm.  The numerical results obtained directly from Eq. (5) are 

shown in black squares and the approximations from Eq. (10) are shown in blue 

circles.  The virials are shown as a function of the normalized fundamental 

amplitude  A1/A01 since this is the target amplitude typically employed as feedback. 

In the presence of external drive (a and b and d and f) the approximations hold. In 
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particular, at higher set-points, i.e., A1/A01 > 0.2-0.4, the errors are ~ 10% or less 

and improve with increasing set-point both when exciting the second  (FIG. 1b) and 

the third modes (FIG. 1f).   This is consistent with our latest reports30. The 

expressions for the virials (Eq. 11) when there is no external excitation in the higher 

modes (FIGS. 1c and 1e) cannot be employed since the errors are too large. The 

reasoning is that without external drive the expression in (6) is zero, i.e., the 

assumptions of multifrequency do not hold.  
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FIG. 1. Bimodal AFM where either modes 1 and 2 (a, b, and c) or modes 1 and 3 (d, e, 

and f) are externally excited. The virial expressed as a time integral of the displacement 

weighted tip sample force (Eq. 5) is shown in black squares as directly computed from 

the numerical integration of the equations of motion and the approximations in Eqs. 8 

(virial 1) and 11 (virials 2 or 3 since the same expression applies for both). Where there 

is no external drive the approximation in Eq. 11 is invalid as shown from inspecting 

panels c and e. The parameters in the simulations for each mode are k1=  2 N/m, k2=  80 

N/m, k3=  600 N/m,  f01= 70kHz  (ω01=2π f01), f02= 420kHz, f03= 1190 kHz,  Q1 =100, Q2 = 600  

and Q3 = 1800. For the physical parameters the values are R= 20 nm, a0 = 0.165 nm and  H=4.1x10-

20 J. The virials are further normalized in relation to the maximum value of the numerical results 

with V1 = 2x10-20 J, V2  = 1.4x10-21 J, and V3  = 3.4x10-21 J in the presence of external drive and  

V2  = 2.6x10-22 J and V3  = 3.4x10-23 J in the absence of external drive (panels c and e). The drives 

were A01= 2nm, A02= 0.2 nm A03 = 0 nm (top panels) and A02= 0 nm A03 = 0.2 nm (bottom panels). 
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The results and discussion of FIG. 1 and the presence of the drive in the virial (Eq. 6) 

show that the multifrequency formalism can be exploited to recover relevant parameters 

provided there is an external drive in at least one higher mode. Here,  Eqs. 12, 13, 15 and 

16 have been employed to extract  zc, dm and α in FIG. 2. The parameters of the 

simulations in FIG. 2 are the same as those in FIG. 1. Panels a and b in FIG. 2 show that 

zc can be recovered relatively well for a range of set points above 0.2, i.e., A1/A01, in 

bimodal AFM by exciting modes 1 and 2 or 1 and 3.  The behaviour is to be contrasted 

with the results of the virial  approximations where the errors monotonically increase with 

decreasing set-point30 throughout (Fig. 1). The practical significance is that driving at set-

points above 0.2 - 0.4, i.e., A1/A01> 0.2-0.4, leads to a valid approximation in 

multifrequency with regards to zc (Eq. 12). Furthermore, for the operational parameters 

employed to generate the data in FIG. 2 the results are slightly better when using modes 

1 and 2 than when using modes 1 and 3 (compare FIG. 2a with 2b). Our simulations show 

that decreasing the driving ratios, i.e., A01/A02 or A01/A03,  changes this trend (see FIG. 3 

and discussion of FIG. 3).  Panels c and d in FIG. 2 show the results for dm.  The two 

approximations for dm are plotted with Eq. 15 in blue circles and Eq. 16 in red triangles. 

The same  trend is found but the approximation from Eq. 16 is superior to that of Eq. 15. 

The results of recovering α  (Eq. 13) are shown in FIGs. 2e and 2f for modes 1 and 2 and 

modes 1 and 3 respectively. Again the approximation is better when using modes 1 and 

2 and the recovered value of α diverges as  A1/A01 tends to 1. It is worth mentioning 

however that the amplitude of the third mode A3 does not significantly decrease, i.e., ~ 1 

pm, at  high set-points, i.e.,   A1/A01> 0.9. The numerical values for zc, dm and α for the 

data in Fig. 2 are shown in Table I  and II for some relevant values of A1/A01 for bimodal 

operated with modes 1 and 2 (Figs. 2a, 2c and 2e) and  modes 1 and 3 (Figs. 2b, 2d and 

2f) respectively. Errors for zc, dm and α are also provided. 



12 
 

 

 

 

 

 

FIG. 2. Comparison of bimodal AFM where either modes 1 and 2 (left panels) or modes 

1 and 3 (right panels) are externally excited. The black squares show the values obtained 

directly from numerical results and the blue circles show the values obtained from the 

approximations in Eq. 12 (a and b) for the cantilever  separation zc, Eq. 15 (c and d) for 

the minimum distance of approach dm, and Eq. 13 (e and f) for α in Eq. 4. The red triangles 
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in panels c and d show the approximation for dm in Eq. 16. The rest of parameters are the 

same as those in FIG. 1. Since α is a constant in the simulations, it takes on a single value 

for the whole range of set points A1/A01.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I. Numerical values for zc, dm and α for the data in Figs. 2a, 2c and 2e (bimodal 

operated via modes 1 and 2) for some relevant values of A1/A01.  The corresponding errors 

for zc  (Eqs. 12) , dm (Eqs. 15 and 16)  and α (Eq. 13) are also provided.  

 

 

 

A1/A01 zc [nm] error zc 

[pm] 
dm 

[nm] 
error dm [pm] α [N·m2] 

x10-28 
error  α  x10-28 

[N·m2] Eq. 15 Eq. 16 
0.95 3.96 -12 1.93 122 -77 1.37 0.01 
0.9 3.5 88 1.66 149 -50 1.37 0.18 

0.85 3.27 94 1.55 132 -66 1.37 0.21 
0.8 3.15 81 1.45 154 -43 1.37 0.2 

0.75 2.92 36 1.3 169 -28 1.37 0.13 
0.7 2.81 13 1.24 169 -27 1.37 0.09 

0.65 2.69 -5 1.19 169 -26 1.37 0.06 
0.6 2.58 -17 1.15 171 -23 1.37 0.04 

0.55 2.35 -20 1.08 183 -8 1.37 0.05 
0.5 2.23 -13 1.06 192 3 1.37 0.07 

0.45 2.12 -4 1.04 201 16 1.37 0.1 
0.4 2.12 -4 1.04 201 16 1.37 0.1 

0.35 1.88 20 1 220 41 1.37 0.18 
0.3 1.77 34 0.98 229 55 1.37 0.23 

0.25 1.65 49 0.96 239 72 1.37 0.3 
0.2 1.54 68 0.94 251 94 1.37 0.39 
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Table II. Numerical values for zc, dm and α for the data in Figs. 2b, 2d and 2f (bimodal 

operated via modes 1 and 3) for some relevant values of A1/A01.  The corresponding errors 

for zc  (Eqs. 12) , dm (Eqs. 15 and 16)  and α (Eq. 13) are also provided.  

 

 

FIG. 3 shows a direct comparison between the recovery of zc, dm and α from modes 1 and 

2 (blue circles) and modes 1 and 3 (red triangles). Again, this is contrasted  to numerical 

results (black squares). The panels on the left (FIGs. 2a, 2c and 2e) show the behaviour 

when the ratio of drives is 10 %, i.e., A02/A01 =0.1 and A03/A01 =0.1 for modes 1 and 2 

and 1 and 3 respectively.  The panels on the right (FIGs. 2b, 2d and 2f) show the behaviour 

when the ratio of drives is 2.5% %, i.e., A02/A01 =0.025 and A03/A01 =0.025 for modes 1 

and 2 and 1 and 3 respectively. The interpretation of the results is the same as that given 

for FIG. 2 but a comparison between the left and right panels shows that as the ratio of 

drives decreases the errors increase when driving with the first and second modes and 

improves when driving with the first and third modes. This result could be understood 

when considering that Eq. 10 was derived by considering that the higher mode frequency 

A1/A01 zc [nm] error zc 

[pm] 
dm 

[nm] 
error dm [pm] α [N·m2] 

x10-28 
error  α  x10-28 

[N·m2] Eq. 15 Eq. 16 
0.95 3.96 681 1.86 885 684 1.37 1.15 
0.9 3.62 342 1.59 546 346 1.37 0.63 

0.85 3.27 194 1.4 380 179 1.37 0.42 
0.8 3.15 166 1.33 365 164 1.37 0.38 

0.75 2.92 128 1.22 339 138 1.37 0.33 
0.7 2.81 116 1.19 325 125 1.37 0.32 

0.65 2.69 107 1.16 312 112 1.37 0.31 
0.6 2.58 100 1.14 298 98 1.37 0.31 

0.55 2.35 95 1.07 304 105 1.37 0.32 
0.5 2.23 96 1.05 310 112 1.37 0.34 

0.45 2.12 99 1.03 317 119 1.37 0.37 
0.4 2 107 1.01 324 127 1.37 0.42 

0.35 1.88 120 0.99 336 140 1.37 0.48 
0.3 1.77 141 0.97 356 161 1.37 0.59 

0.25 1.65 175 0.94 392 198 1.37 0.77 
0.2 1.54 236 0.91 458 267 1.37 1.1 
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is much larger Simulations show that by further decreasing the drive ratios to 0.01 the 

trend improves for the first and third modes and worsens for modes 1 and 2 (data not 

shown). The practical implication is that in bimodal AFM, and for the recovery of 

material properties in multifrequency AFM, the driving ratio should be maintained at 

approximately 10% when driving with the first and second modes while it can be 

significantly decreased when driving with the first and third modes. Since the resolution 

might be better when driving with smaller amplitudes this provides a means to extracting 

material properties with smaller higher mode amplitudes without compromising contrast. 

The results also extend the applicability of bimodal AFM for the extraction of material 

properties for driving ratios below 10%. We recently discussed that  the 10% ratio is 

optimal in bimodal AFM for modes 1 and 230, 48.   The numerical values for zc, dm and α 

for the data in Fig. 3 are shown in Table III  for some relevant values of A1/A01 for bimodal 

operated with modes 1 and 2 and modes 1 and 3 (Figs. 2a, 2c and 2e) with higher mode 

amplitudes of 200 pm. In and IV (Figs. 2b, 2d and 2f) the results when driving with higher 

mode amplitudes of 50 pm are provided. The errors for zc, dm and α are shown in both 

tables as in Tables I and II. Finally, a discussion of the results obtained when driving the 

three modes simultaneously,  for the recovery of material properties, and  according to 

the above formalism,  is given below with the help of FIG. 4.  
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FIG. 3. Comparison of bimodal AFM where either modes 1 and 2 (blue circles) or modes 

1 and 3 (red triangles) are externally excited. The black squares show the values obtained 

directly from numerical results.  For the left panels the drive amplitudes are A01= 2 nm 

and 0.2 nm for the externally excited higher mode, otherwise 0. For the right panels the 

drive amplitudes are A01= 2 nm and 0.05 nm for the externally excited higher mode, 

otherwise 0.     The figures show a comparison for the extraction of zc (a and b), dm (c and 

d) and  α ( e and f) respectively with different drive ratios. The rest of parameters are the 

same as those in FIG. 1. 
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Table III. Numerical values for zc, dm and α for the data in Figs. 3a, 3c and 3e in bimodal 

operated via modes 1 and 2 (m1, m2) and modes 1 and 3 (m1, m3) respectively for some 

relevant values of A1/A01. The higher mode drive amplitudes are 200 pm throughout.  The 

corresponding errors for zc  (Eqs. 12) , dm (16)  and α (Eq. 13) are also provided. Values 

for errors in dm and α are highlighted where trimodal AFM outperforms bimodal AFM 

for the same drive amplitudes (compare with table V).  

 

 

 

 

A1/A01 
zc [nm] error zc [pm] dm [nm] error dm [pm] α 

[N·m2] 
x10-28 

error  α [N·m2] 
x10-28 

m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 
0.95 3.96 3.96 -12 681 1.93 1.86 -77 684 1.37 0.01 1.15 
0.9 3.5 3.62 88 342 1.66 1.59 -50 346 1.37 0.18 0.63 

0.85 3.27 3.27 94 194 1.55 1.4 -66 179 1.37 0.21 0.42 
0.8 3.15 3.15 81 166 1.45 1.33 -43 164 1.37 0.2 0.38 

0.75 2.92 2.92 36 128 1.3 1.22 -28 138 1.37 0.13 0.33 
0.7 2.81 2.81 13 116 1.24 1.19 -27 125 1.37 0.09 0.32 

0.65 2.69 2.69 -5 107 1.19 1.16 -26 112 1.37 0.06 0.31 
0.6 2.58 2.58 -17 100 1.15 1.14 -23 98 1.37 0.04 0.31 

0.55 2.35 2.35 -20 95 1.08 1.07 -8 105 1.37 0.05 0.32 
0.5 2.23 2.23 -13 96 1.06 1.05 3 112 1.37 0.07 0.34 

0.45 2.12 2.12 -4 99 1.04 1.03 16 119 1.37 0.1 0.37 
0.4 2.12 2 -4 107 1.04 1.01 16 127 1.37 0.1 0.42 

0.35 1.88 1.88 20 120 1 0.99 41 140 1.37 0.18 0.48 
0.3 1.77 1.77 34 141 0.98 0.97 55 161 1.37 0.23 0.59 

0.25 1.65 1.65 49 175 0.96 0.94 72 198 1.37 0.3 0.77 
0.2 1.54 1.54 68 236 0.94 0.91 94 267 1.37 0.39 1.1 

A1/A01 
zc [nm] error zc [pm] dm [nm] error dm [pm] α 

[N·m2] 
x10-28 

error  α [N·m2] 
x10-28 

m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 

0.95 3.96 3.96 63 657 2.05 2.01 28 660 1.37 0.08 1.06 

0.9 3.5 3.5 501 258 1.74 1.67 428 257 1.37 0.93 0.44 

0.85 3.27 3.27 523 172 1.61 1.54 437 157 1.37 1.08 0.31 

0.8 3.04 3.04 303 121 1.47 1.41 249 127 1.37 0.63 0.23 

0.75 2.92 2.92 170 103 1.41 1.36 131 113 1.37 0.35 0.21 

0.7 2.81 2.81 55 89 1.36 1.32 31 99 1.37 0.11 0.19 

0.65 2.58 2.58 -89 69 1.27 1.27 -90 69 1.37 -0.17 0.16 

0.6 2.46 2.46 -120 61 1.24 1.24 -113 61 1.37 -0.24 0.15 

0.55 2.35 2.35 -130 55 1.21 1.21 -117 64 1.37 -0.26 0.14 

0.5 2.23 2.23 -123 49 1.18 1.18 -106 65 1.37 -0.25 0.14 

0.45 2.12 2.12 -106 45 1.16 1.16 -87 64 1.37 -0.22 0.14 

0.4 2 2 -86 41 1.14 1.14 -65 61 1.37 -0.17 0.14 

0.35 1.88 1.88 -67 37 1.12 1.12 -45 58 1.37 -0.12 0.14 

0.3 1.77 1.77 -52 34 1.1 1.09 -30 54 1.37 -0.08 0.15 

0.25 1.65 1.65 -45 30 1.07 1.07 -20 52 1.37 -0.05 0.16 

0.2 1.54 1.54 -42 27 1.04 1.03 -15 57 1.37 -0.04 0.18 
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Table IV. Numerical values for zc, dm and α for the data in Figs. 3b, 3d and 3f in bimodal 

operated via modes 1 and 2 (m1, m2) and modes 1 and 3 (m1, m3) respectively for some 

relevant values of A1/A01. The higher mode drive amplitudes are 50 pm throughout.  The 

corresponding errors for zc  (Eqs. 12) , dm (16)  and α (Eq. 13) are also provided.  

 

 

The data and discussion of  FIGs. 1-3 focus on the behaviour of the cantilever and 

quantification in bimodal AFM by simultaneously exciting the first mode and the second 

or the third modes respectively. In FIG.4 results are shown for the simultaneous excitation 

of modes 1 to 3, i.e., trimodal AFM. First, the formalism above requires two equations 

(Eqs. 8 and 11) to solve for the two unknowns zc and α in Eq. 4. While dm is also an 

unknown, the equation for dm (Eqs. 15 or 16) follows from geometric considerations alone 

based on zc.  The practical implication is that in trimodal AFM, provided there are two 

unknowns, i.e., here zc and α, the unknowns can be recovered from 1) the dynamics of 

modes 1 and 2, 2) the dynamics of modes 1 and 3 or 3) from modes 1 and 2 and modes 1 

and 3 simultaneously. The third possibility does not necessarily lead to inconsistency or 

redundancy since we are dealing with approximations. In this sense, quantifying 

parameters from multiple compatible sources can be used to confirm or  establish the 

validity of the results. Second, since the second and third modes do not necessarily 

provide the same contrast while imaging27, 44,  the acquisition of  contrast images from 

higher modes can be performed simultaneously with material properties quantification.   

For example, in FIG 4a the mean cantilever separation zc recovered from the dynamics of 



19 
 

the first and third modes (red triangles) is correct down to fractions of angstrom for 

relevant imaging conditions, i.e., 0.4 < A1/A01 < 0.8, and slightly outperforms the recovery 

carried out from modes 1 and 2 (blue circles). Furthermore, the first and second modes 

provide better results than the first and third modes at the extremes, i.e. 0.2 < A1/A01 or 

A1/A01 > 0.9.  The same conclusions hold for the recovery of dm (FIG. 4b) and α (FIG. 

4c). The implication is that both channels, i.e., the second mode and third mode channels, 

can be simultaneously employed for contrast or material property quantification.   Table 

V provides some numerical data relevant to Fig. 4. It is worth noting that the expression 

in Eq. 4 involves an inverse square law, i.e., the power is 2. But other power laws might 

be of interest in surface force characterization51-53. In this respect our simulations show 

(data not shown) that the above formalism is still valid when higher powers are employed, 

i.e., Fts ∝ d-3, even though errors in zc, dm and α slightly increase. In particular, the higher 

the slope in the force profile the larger the error. This could be due to the fact that a Taylor 

expansion is employed when deriving Eq. 9 where only the first terms, i.e., first 

derivative,  are kept30, 48.  
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FIG. 4. Trimodal  AFM where modes 1, 2 and 3 are simultaneously excited. The 

parameters zc (a) , dm (b)  and α (c) can be simultaneously recovered from either modes 1 

and 2 (blue circles) or 1 and 3 (red triangles). The black squares are obtained directly 

from the simulations as before. Eqs. 12, 13 and 16 have been used to recover  zc,  α and 

dm respectively. The rest of parameters are the same as those in FIG. 1. 
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Table V. Numerical values for zc, dm and α for the data in Fig. 4  for some relevant values 

of A1/A01 in trimodal AFM where the unknowns can be recovered from modes 1 and 2 

(m1, m2) and/or modes 1 and 3 (m1, m3) respectively. The higher mode drive amplitudes 

are 200 pm throughout for modes 2 and 3.  The corresponding errors for zc  (Eqs. 12) , dm 

(16)  and α (Eq. 13) are also provided. Values for errors in dm and α are highlighted where 

trimodal AFM outperforms bimodal AFM for the same drive amplitudes (compare with 

table III).  

 

 

 

 

IV. CONCLUSION 

 

A1/A0 zc [nm] 
error zc [pm] 

dmin [nm] 
error dmin [pm] α [N·m2] 

x10-28 

error  α [N·m2] 
x10-28 

m1,m2 m1,m3 m1,m2 m1,m3 m1,m2 m1,m3 
0.95 3.96 -72 596 1.75 -161 507 1.37 -0.18 0.87 
0.9 3.62 14 285 1.56 -142 130 1.37 -0.08 0.38 

0.85 3.27 34 147 1.42 -187 -73 1.37 -0.05 0.16 
0.8 3.15 15 118 1.31 -157 -54 1.37 -0.08 0.11 

0.75 2.92 -45 72 1.14 -135 -19 1.37 -0.18 0.04 
0.7 2.81 -77 54 1.08 -135 -4 1.37 -0.24 0.02 

0.65 2.69 -103 40 1.02 -135 7 1.37 -0.29 0 
0.6 2.58 -122 29 0.97 -134 17 1.37 -0.32 -0.01 

0.55 2.46 -133 23 0.94 -131 25 1.37 -0.34 -0.01 
0.5 2.35 -136 20 0.91 -124 32 1.37 -0.34 -0.01 

0.45 2.12 -127 26 0.86 -108 46 1.37 -0.32 0.04 
0.4 2 -119 36 0.85 -99 56 1.37 -0.3 0.09 

0.35 1.88 -111 50 0.83 -92 70 1.37 -0.27 0.16 
0.3 1.77 -103 73 0.81 -84 92 1.37 -0.24 0.26 

0.25 1.65 -94 111 0.8 -74 130 1.37 -0.2 0.44 
0.2 1.54 -81 178 0.78 -60 198 1.37 -0.14 0.78 
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In summary, we have shown that the multifrequency formalism can be employed to 

extract material properties from the dynamics of the cantilever by exciting modes 1 and 

2, 1 and 3 or 1, 2 and 3 simultaneously. The multifrequency  approximation for force 

spectroscopy for higher modes (Eq. 10) seems to be universal since it states that the virial 

of any higher mode is proportional to the square of the amplitude of the mode times the 

time integral of the derivative of the force. The approximation can improve for higher 

modes, especially when small higher mode amplitudes are employed, i.e., A0i/A01 << 0.1 

for i > 2, while the same approximation  is optimum when, and limited to, A02/A01 ≈ 0.1 

for modes 1 and 2. Perhaps counterintuitively, the approximations to quantify  material 

properties, i.e., the multifrequency  formalism for force spectroscopy,  in trimodal AFM 

might outperform bimodal AFM since the addition of  higher modes does not seem to 

have a negative impact but rather the opposite. Furthermore,  material property 

quantification in multifrequency AFM can improve irrespectively of the trends in the 

errors in the virial expressions. These results could be exploited in the expanding field of 

nanofabrication of materials and devices or nanophotonic biosensing54 via van der Waals 

interactions36, 41. Finally, future studies could focus on extracting an arbitrary number of 

parameters M form M modes, i.e., M equations for M unknowns. The idea is that a model 

with an arbitrary number  M of unknowns can always be solved by externally exciting M 

modes and exploiting the multifrequency method. The challenge is to find integrals  such 

as those in Eqs. 7 and 10 that can be solved analytically. An example would be to extract 

the power law from Eq. 4 together with zc and α.  
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