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Abstract

This thesis presents VAMPyR, an advancement in quantum chemistry that signif-
icantly mitigates the challenges inherent in high-precision computational meth-
ods. By providing a Python interface to the multiwavelet-based functionalities
of MRCPP, VAMPyR enables a more intuitive, accessible, and efficient approach to
quantum chemical calculations, reducing the complexity traditionally encoun-
tered with basis sets and lower-level programming languages.

The development and capabilities of VAMPyR are underscored, illustrating its
application in simplifying the prototyping and implementation of new methods
in quantum chemistry. The software’s usability is evidenced through successful
deployment in educational settings and research projects, thus confirming its
potential to enhance productivity and foster innovation in the field.
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Chapter 1

Introduction

Quantum chemistry methods are essential tools for understanding the intri-
cate structures and behaviors of molecules, contributing to various scientific
domains. The primary contribution of the MRChem group lies in computational
methodologies, particularly in relation to the precision of calculations.

To avoid confusion, it is important to clarify the term precision, which
is often mistaken for accuracy. Consider the analogy of throwing darts at a
dartboard: accuracy refers to how close the darts land to the bullseye, while
precision pertains to how tightly grouped the darts are, regardless of their
distance from the bullseye. In the context of quantum chemistry, accuracy
is the closeness of a computational model to the Schrödinger equation, while
precision relates to the numerical reliability of these calculations. The MRChem

group addresses precision through the choice of basis.

Historically, the most successful and impactful basis set type has arguably
been atom-centered Gaussian functions[1]. However, these functions have limi-
tations, particularly in high-precision calculations, due to the linear dependence
of the basis set[2]. High-precision calculations have often been performed using
real-space numerical grids. However, the computational cost of these real-space
methods has traditionally been prohibitively high, limiting their primary use
to benchmarking studies.

Now more computationally feasible real space alternative exist[3–6]. One
such approach is based on Alpert’s multiwavelets[7]. Multiwavelets provide
rigorous error control and are adaptive, meaning they create tight grids where
functions are difficult to represent and computational efforts are required, while
areas that do not require much effort represented sparcely.

Recent advancements in computing infrastructure, along with the paper by
Wind et al.[8], which demonstrates near-linear scaling for molecular electronic
structure calculations with the multiwavelet-based code MRChem, suggest that
real-space methods have potential for larger systems, not just for benchmark-
ing.

The use of multiwavelets in quantum chemistry was first initiated by Har-
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12 CHAPTER 1. INTRODUCTION

rison et al.[9–11] with their code, MADNESS[12–14]. Their success inspired Tor
Fl̊a, Luca Frediani and Kenneth Ruud to start the MRChem project from UiT. As
of this writing, the MRChem project includes three code contributions: MRChem,
MRCPP, and VAMPyR. These contributions have resulted in various publications
related to the basis set precision. For instance benchmarks on total energy
[15, 16], linear response properties[17, 18], on scalar relativistic effects[19] and
magnetic properties[17].The relationships and functionalities of these codes are
depicted in Figure 1.1.

MRCPP (MultiResolution Computation Program Package) is a nu-
merical mathematics library based on multi-resolution analysis and
the multiwavelet basis. It offers mathematical operations such as
arithmetic, differentiation, integration, and integral operators, all
with low-scaling algorithms and rigorous error control. The library
is implemented in modern C++ and parallelized using OpenMP,
a multi-platform shared-memory parallel programming model[20,
21].

MRChem (MultiResolution CHEMistry) builds upon MRCPP and is a
real-space code for molecular electronic structure calculations such
as Hartree–Fock and Density Functional Theory. It is written in
modern C++ and parallelized using MPI, making it suitable and
scalable for large-scale HPC facilities.

VAMPyR (Very Accurate Multiresolution Python Routines), which is
the main contribution of this work, binds the functionality of MRCPP
into a Python library. Its purpose is to reduce the barrier of entry
to writing multiwavelet applications.

Figure 1.1: Connections between MRChem, MRCPP and VAMPyR. MRCPP implements
a high-performance MRA framework with Multiwavelets (MW). MRChem uses
MRCPP as an external library to solve electronic structure systems. VAMPyR

imports features from MRCPP using Pybind11 and brings intuitive design and
easy prototyping through Python. Figure adapted from [22].

The thesis begins with the ’Why VAMPyR?’ section, examining the chal-
lenges of quantum chemistry computations and the role that VAMPyR plays in
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addressing these complexities. This setting of context provides insight into the
importance and motivations behind VAMPyR.

What follows next is a brief introduction to foundational Quantum Chem-
istry concepts, focusing on the Schrödinger equation, which forms the basis
for the methods and problem-solving techniques discussed in the upcoming
chapters.

This leads into the next section on Multiwavelets, designed to present fun-
damental mathematical concepts related to multiwavelets in a non-technical
manner. Presenting these concepts in a layman’s language makes them acces-
sible to readers who may not have a strong background in mathematics.

Having established the basic content and context, the thesis then progresses
into specific chapters:

Chapter 2 provides an introduction to the mathematical concepts
central to multiwavelets, setting the stage for computational method-
ologies reliant on these principles.

Chapter 3 offers an introduction to mainstay quantum chemistry
methods. This includes a discussion on the Schrödinger equation,
along with simplifications such as the Born–Oppenheimer approx-
imation, Hartree–Fock, and Density Functional Theory. Addition-
ally, the chapter outlines how these problems are solved within a
multiwavelet framework. The chapter also covers essential elements
such as solvation and relativity, providing an overview of their cor-
responding equations and how those are addressed within the mul-
tiwavelet framework.

Chapter 4 gives an overview of the advantages with VAMPyR, high-
lighting its design and usability. It also presents some details on
important datatypes shared between MRCPP and VAMPyR along with
some implementation details.

1.1 Why VAMPyR?

Developing new methods in quantum chemistry codes is a significant challenge.
The inherent complexity intrinsic to quantum chemistry itself stems from its
intricate equations and their interactions. Accidental complexity arises not
only from the use of low-level programming languages, but also from the use of
basis sets in quantum chemistry. Traditionally used programming languages,
such as C, C++, and Fortran, introduce an additional layer of complexity.
These complexities exist before even considering aspects of optimizing code
performance and efficiency. Moreover, when working with basis sets, making
choices on the kinds of basis sets to use and the optimization of these basis sets
can add further accidental complexity.

Multiwavelet-based codes, namely MRCPP and by extension, MRChem, which
builds upon MRCPP, offer a distinct advantage. They provide a more direct
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and intuitive correspondence between the mathematical operations of quantum
chemistry equations and their coded forms. This approach effectively mitigates
many of the accidental complexities traditionally associated with using basis
sets.

However, the use of multiwavelet-based codes does introduce some acci-
dental complexities of their own, particularly related to techniques for solving
partial differential equations. Even so, these complexities are considerably less
extensive compared to those imposed by other basis sets.

When developing new methods using MRCPP or MRChem, further acciden-
tal complexities emerge. The intricacies of the C++ language, performance
optimization challenges, and the navigation of an expansive existing codebase
present considerable barriers. For new developers, and even experts of the field,
the question of ”Where should I start?” when looking to add new features or
enhancements, can be daunting. VAMPyR seeks to address these challenges by
providing a more accessible Python interface to the mathematical functionality
of MRCPP, simplifying the process and contributing to the ongoing efforts to
make computational quantum chemistry more user-friendly.

Addressing the accidental complexities associated with quantum chemistry
computations, VAMPyR offers an accessible suite of mathematical tools based
on MRCPP, made available in Python. This not only simplifies its usage but
also ensures a close link between equations and code, providing a more intu-
itive understanding of mathematical operations. One significant advantage of
VAMPyR lies in its counteraction to the accidental complexity that large code-
bases can introduce. It achieves this through its simplicity and modularity.
In VAMPyR, new features can be prototyped independently, effectively lowering
both computational and cognitive barriers. This approach is especially helpful
for those less experienced in the field, promoting more manageable and efficient
experimentation.

The utility and simplified application of VAMPyR have been practically ex-
emplified in several contexts. Its applicability has been demonstrated in a
Bachelor’s project and a Master’s project[23], not to mention its deployment
in producing a solvation paper[24]. Initial implementations of ReMRChem[22,
25] and time propagation methods using VAMPyR[22] further testify to its ver-
satility. Its educational value has been acknowledged through its inclusion in
a tutorial session for NMQC[26] and the 2021 Hylleraas School[27].

1.2 The Schrödinger Equation: The Essentials

To understand complex systems like airplanes, engineers break them down into
smaller components—wings, engines, cockpit—and analyze each to understand
its function and behavior. Similarly, scientists dissect nature to comprehend
the laws that govern it. In chemistry, this analytical approach extends to the
level of atoms, electrons, and nuclei.

Traditional experimental chemistry relies on beakers and test tubes. How-
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ever, advancements in computational power have paved the way for virtual
experiments, enabling detailed scrutiny of each particle’s behavior within a
computer. This virtual laboratory is the realm of quantum chemistry, anchored
by the Schrödinger equation,

HΨ = EΨ, (1.1)

which serves as the rule book for the behavior of atoms and electrons at the
quantum level1. The wavefunction, Ψ, contains all information about the sys-
tem it represents.

All physical observable properties, such as position x, momentum p, and en-
ergy E, can be extracted from the wavefunction Ψ. This extraction is achieved
using their corresponding operators x → x̂, p → p̂, and E → Ĥ. The expec-
tation value, which represents the mean value of these physical properties, can
then be calculated as

〈Ω〉 = 〈Ψ|Ω̂|Ψ〉. (1.2)

It’s important to note that the physical information extracted from the
wavefunction represents the expectation or mean value of these properties.
This means that the values we compute provide an average behavior of the
system under study, rather than precise measurements of individual particles
at specific moments.

The real challenge here is solving the Schrodinger equation, determine Ψ.
Despite its simple appearance, the Schrödinger equation is analytically solvable
only for systems with two or fewer particles. For larger systems, numerical
computational methods are required. Yet even advanced numerical techniques
are often insufficient for tackling complex molecules. Therefore, simplifications
are commonly used, traditionally branching into two main approaches: wave
function methods and density functional theory (DFT).

Wave function methods range from low-accuracy techniques like Hartree–
Fock to high-accuracy methods such as coupled cluster. On the other hand,
DFT uses the density of the system to extract the same information as the
wavefunction, albeit based on certain approximations due to unknown exact
functional forms. These methods primarily pertain to the accuracy of the
model. For the precision of the solution, another essential component comes
into play: basis sets.

1.3 Non-Rigorous and Simplified: Unpacking
Multiwavelets

Some chemical experiments are either impossible or, at the very least, imprac-
tical to do in a laboratory. Luckily, we have an amazing tool in our arsenal—
computers. Unfortunately, computers can’t do chemistry, or at least not di-
rectly, as they cannot think. Computers compute and humans think, so to use

1Ignoring relativistic effects which we’ll touch upon in section 3.9



16 CHAPTER 1. INTRODUCTION

the computer, we humans need to reformulate the chemical problems into com-
putational problems. We start this process by figuring out the mathematics
that best describe the chemical systems we wish to explore, which usually end
up being some set of partial differential equations. For chemists, the partial
differential equations typically boil down to either the Hartree–Fock equations
(see section 3.5.1) or the Kohn–Sham equations (see section 3.6.1)

Once we have some partial differential equations we wish to solve, we need
to figure out how to convert the problem with a partial differential equation
into a computable problem. There are many approaches. One approach is to
introduce a basis set. The basis set helps us represent mathematical functions
as a set of values with rules that can be implemented into a computer program.
The choice of basis set is not arbitrary; some basis sets are great for quick and
dirty calculations while others are great for precise but slower calculations. So
with a basis set, we can transform the mathematical problem into numbers,
we can then write computer programs that tell the computer what to compute
using those numbers, and this is how we solve the partial differential equations.
I like to think about basis sets as a set of Lego blocks, and the programs we
write to solve the mathematical equations as the building instructions.

Lego blocks can be used to build more or less whatever you like, depending
only on the pieces available and the building instructions you choose to follow.
In 1.2, the first Figure 1.2a is a picture of the Millennium Falcon and in Figures
1.2b and 1.2c, the Millennium Falcon is replicated in Lego. In Figure 1.2b, the
copy uses few pieces with simple building instructions, and in Figure 1.2c, there
are thousands of pieces, with elaborate building instructions, and building it
takes a significantly longer time than the crude copy in Figure 1.2b.

(a) Exact (b) Crude (c) Precise

Figure 1.2: The Millennium Falcon and replicas in Lego

Now if we think about Lego or some type of generic building block, there
are three ways to make precise builds. First, we can use specialized pieces,
pieces that to begin with are similar to what we wish to build. Another way
is to use a fixed size cubic piece. If we want something crude, we can use a
few big cubes, and if we want something accurate, we use more, only smaller,
pieces. The third option is to combine the two approaches to use some special
pieces but also have the option to use smaller pieces if we need higher precision.
We can think of basis sets in a similar manner. In the following sections, we
will explore each approach, with multiwavelet glasses on, to approximate the
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Figure 1.3: The Slater Function

Slater function in Figure 1.3.

1.3.1 Specialized Basis

First, let’s build a representation of the Slater function using a set of k + 1
basis functions. We’ll call these basis functions scaling functions {ϕi}ki=0. The
scaling functions we’ll use are linearly independent, orthonormal polynomial
functions defined between [0, 1]. Linear independence means it’s impossible
to replicate any of the basis functions in the set using the other functions in
the set. This means each basis function adds something unique to the set.
Then, using the basis set to approximate a function, the approximation can be
improved by adding basis functions to the basis set.

The Slater function (Figure 1.3), or any function f(x), can be approximated
in terms of the scaling functions {ϕi}ki=0

f(x) ≈ fk(x) =

k∑

i=0

siϕi(x), (1.3)

where the expansion coefficients, si, are calculated through the projection in-
tegral

si =

∫
f(x)ϕi(x) dx. (1.4)

In the projection integral (1.4), we calculate the overlap between the basis func-
tion and the function we wish to approximate. For the sake of this discussion
we assume that the function f(x) is normalized. That is,

∫
|f(x)|2 = 1. Then,

the expansion coefficient, si, has a value between -1 and 1, where 0 means there
is no overlap between the function f(x) and the scaling function ϕi(x). When
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it is 1 it is exactly the same and when it is -1 the functions are the same but
with opposite signs

A set of functions that satisfy our requirements for scaling functions are
the Legendre Polynomials—see Figure 1.4 for an example. In Figure 1.5, we
see how 10, 20 and 40 Legendre polynomials approximate the Slater function
from Figure 1.3. It’s clear that the more scaling functions we use, the better
the approximation becomes. But even with 40 Legendre polynomials, we see
some oscillations around the edges of the figure, and the sharp part of the
Slater function isn’t well represented. So if we need a better approximation,
we need to use more than 40 scaling functions, which increases the cost of the
representation. Moreover most of this effort is required to get correctly zero
away from the cusp.

Figure 1.4: 10 Legendre Polynomials

Figure 1.5: The Slater function from Figure 1.3 represented by 10, 20 and 40
Legendre Polynomials

1.3.2 Small Pieces

The second way of using building blocks is where we use only one simple cube,
then increase the precision by using smaller cubes. In the basis set world,
the equivalent is to use a single scaling function ϕ(x) = ϕ0(x) and set it to
a constant, then increase the precision of the representation by limiting the
area in which the scaling function is defined. If the scaling function we use to
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approximate the Slater function is defined between [0, 1], we will only get a line,
which in the case of a constant scaling function, represents the average of the
function in the interval. To improve the approximation, we split the area into
two parts, [0, 12 ] and [ 12 , 1], effectively doubling the number of scaling functions.
Then we use the constant to approximate the function within each area, and
then we’ll get two lines—still a bad approximation, but better than a single
line. To improve the approximation, we continue this doubling recursively,
where the approximation improves at each step. In principle, this can be done
infinitely many times, and in that case, the representation will be exact. Next
we’ll introduce some terminology for this approach.

When one scaling function cover the entire area [0, 1], we say the approx-
imation is on scale n = 0. When we split the area into two, with one scaling
function in each part, [0, 12 ] and [ 12 , 1], we say the approximation is on scale
n = 1. Then if continue this process n times, we say that the approximation is
on scale n. The scaling function at scale n, ϕnl , then takes the form

ϕnl (x) = 2n/2ϕ(2nx− l), (1.5)

where the factor 2n in front of the argument, x, compresses the function, the
factor 2n/2 conserves the norm and, l, is the translation index 0 ≤ l ≤ 2n − 1.
Translates the function within the interval [0, 1], l = 0 the function is placed all
the way to the left and l = 2n − 1 it is all the way to the right. The functions,
f(x), is then expressed in terms of our scaling function on scale n as

f(x) ≈ fn(x) =

2n−1∑

l=0

snl ϕ
n
l (x), (1.6)

where l is the translation index and the expansion coefficients, snl , are obtained
by projection integral

snl =

∫
f(x)ϕnl (x) dx. (1.7)

In Figure 1.6 we see how the approximation of the Slater function 1.3 im-
proves the further up in scale we go. Here, the approximation is plotted on
scales n = 2, 3 and 4, and we must go a lot further up in scale to accurately
represent the Slater function.

Figure 1.6: 1 scaling function (a constant) with scales 2, 3 and 4.



20 CHAPTER 1. INTRODUCTION

1.3.3 A Bit of Both

A third alternative is to mix the two approaches above by using, k+ 1, scaling
functions, {ϕi}ki=0. Then improve the approximation by increasing the scale,
n. The function approximation then looks like this,

f(x) ≈ fnk (x) =

2n−1∑

l=0

k∑

i=0

sni,lϕ
n
i,l(x), (1.8)

here we have introduced the notation, fnk , which means we have projected a
function onto a basis of order k on scale n. The scaling functions ϕni,l are

obtained by translation and dilation of the k + 1 scaling functions, {ϕi}ki=0,

ϕni,l(x) = 2n/2ϕi(2
nx− l), (1.9)

and the expansion coefficients, sni,l, are calculated using the projection integral

snj,l =

∫
f(x)ϕnj,l(x) dx. (1.10)

In Figure 1.8 we approximate the Slater function from figure 1.3. We use 5
scaling functions then improve the approximation by increasing the scales one
level at a time with n = 2, 3 and 4. This approach appears to offer a sweet spot
when it comes to representing a function using basis sets. For all approaches
discussed this far, a clear limitation is that when we want to do an accurate
representation of a sharp function, like the Slater function, we see that we need
to go to very high scales to represent the cusp accurately, which increases the
cost of the representation significantly. The solution to this problem starts at
separating the scales.

Figure 1.7: 6 scaling functions ϕni,l at scale n = 2
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Figure 1.8: Slater function approximated using 5 scaling functions at scales 2,
3 and 4

1.3.4 Separation of Scales and Adaptive Representation

Above we illustrated how a fixed number of basis functions can be used to
approximate a function to an arbitrarily high precision by increasing the scale,
n, of the projection. Next, we’ll look into achieving the same approximation
as above, but with a slightly different approach. Namely, by improving the
approximation one layer (scale) at a time. We begin by rewriting the function
approximation, fnk , from equation (1.8) as

fnk (x) = f0k (x) +

n∑

n′=0

dfn
′

k (x), (1.11)

where f0k is the function projected onto the scaling basis (1.9) at scale n = 0.
dfnk is the difference between the projection onto the scaling basis at scales n+1
and n,

dfnk (x) = fn+1
k (x)− fnk (x). (1.12)

The difference term dfn can be calculated directly by projecting the function
onto what we call a wavelet basis {ψni,l}. The wavelet basis on scale n, similar
to the scaling functions in equation (1.9), are obtained from a set of k + 1
wavelet functions {ψi}ki=0 as

ψni,l(x) = 2n/2ψi(2
nx− l). (1.13)

then dfn is defined as

dfn(x) =

2n−1∑

l=0

k∑

i=0

wni,lψ
n
i,l(x), (1.14)

and wni,l is calculated from the projection integral

wnj,l =

∫
f(x)ψnj,l(x) dx. (1.15)

The result of this is that functions projected onto the scaling basis in figure 1.7
and in figure 1.9 are equal. We call this a multiresolution representation.
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Figure 1.9: High-resolution basis

Figure 1.10: Slater function projected onto an adaptive multiwavelet basis,
with numerical precision 1.0 × 10−3.

The advantage of this approach lies in its capability to enhance precision
incrementally, one layer at a time. This process is facilitated by measuring the
wavelet coefficients. It is indicated that if the magnitude of the coefficients is
smaller than a certain threshold, ε, the magnitude of the wavelet coefficients
on the subsequent scale will correspondingly diminish. This triggers a stop in
the refinement process along that branch.

|wnl | < 2−n/2ε|f | (1.16)

For a visual representation of this process, see Figure 1.10. The vertical lines
depict the grid used to embody the function, with the tightest grid situated
around the cusp of the Slater function. Simultaneously, the smoother portions
of the function are represented on a sparser grid.



Chapter 2

Partial differential
equations and
Multiwavelets

2.1 Multiresolution Analysis

We first define the scaling space V nk as outlined in Alpert et al. [28]. Specifically,
V nk is a space of piecewise polynomial functions characterized as follows:

V nk = {f : the restriction of f to the interval (2−nl, 2−n(l + 1))

is a polynomial of degree less than k + 1, for l = 0, . . . , 2n − 1, (2.1)

and f vanishes elsewhere}.

The space V nk has dimension 2n(k + 1) and is characterized by an infinite,
ordered set of nested subspaces,

V 0
k ⊂ V 1

k ⊂ · · · ⊂ V nk ⊂ · · · , (2.2)

Defining the space Vk = ∪∞n=0V
n
k , we observe that Vk is dense in L2([0, 1]).

Building on this foundation, we introduce the scaling functions that span
V 0
k , denoted by {φi}ki=0. These functions serve as a basis for constructing the

multiresolution analysis, with scaling functions at higher resolutions V nk for
n > 0 generated through dilations and translations:

φni,l(x) = 2n/2φi(2
nx− l), i = 0, . . . , k, l = 0, . . . , 2n − 1. (2.3)

They satisfy the orthogonality relation,

〈φni,l, φnj,m〉 = δi,jδl,m, (2.4)

23
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To capture features not represented by the scaling functions, we introduce
the ’wavelet space’ Wn

k , defined as the orthogonal complement of V nk in V n+1
k :

Wn
k = V n+1

k 	 V nk . (2.5)

Similar to the scaling functions, Wn
k is spanned by a set of wavelet functions

{ψni,l}ki=0, l = 0, . . . , 2n − 1, generated through dilations and translations:

ψni,l(x) = 2n/2ψi(2
nx− l). (2.6)

These wavelet functions are not only mutually orthogonal but also orthogonal
to the scaling functions at all scales lower or equal their own:

〈ψni,l, ψn
′

j,m〉 = δi,jδl,mδn,n′ , if n′ ≤ n. (2.7)

An essential feature of these wavelet functions is that they have ‘vanishing
moments’, meaning they are orthogonal to the polynomials in the corresponding
scaling space. This is crucial for the numerical efficacy of approximations and
operations.

In summary, the multiresolution structure is recursively defined as follows:

V Nk = V nk ⊕Wn
k ⊕Wn+1

k ⊕ · · · ⊕WN−1
k . (2.8)

2.1.1 Extension to d-dimensions

The theory of multiresolution analysis naturally extends to d-dimensions through
tensor products. In this framework, the d-dimensional scaling space V n,dk is de-
fined as:

V n,dk =

d⊗
V nk , (2.9)

and the basis functions for this space are tensor products of the one-dimensional
bases:

φn,dj,l (x) =

d∏

p=1

φnjp,lp(xp). (2.10)

To facilitate a uniform notation that accommodates both wavelet and scal-
ing functions, we introduce a generalized wavelet function φα,nj,l :

φ
αp,n
jp,lp

=

{
φnjp,lp if αp = 0,

ψnjp,lp if αp = 1.
(2.11)

This generalized function allows us to write the d-dimensional wavelet functions
as:

Ψn,α
j,l (x) =

d∏

p=1

φ
αp,n
jp,lp

(xp), (2.12)
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where α encodes the 2d different combinations of wavelet and scaling functions.

Upon expanding the tensor product in the definition of the wavelet space,
the pure scaling term is recognized as V n,dk . This makes the wavelet space

Wn,d
k consist of all remaining terms that contain at least one wavelet space.

Consequently, the dimensionality of the wavelet space is 2d − 1 times higher
than the corresponding scaling space.

An immediate implication of extending to d-dimensions is the exponential
growth in computational complexity, primarily due to the increase in basis
functions. Each hypercube at scale n contain (k+ 1)d basis functions, and the
total number scales as 2dn.

2.1.2 Projection onto Scaling and Wavelet Spaces

Projecting functions onto the scaling and wavelet spaces allows us to approx-
imate arbitrary functions within the multiresolution framework. Consider a
function f(x) in one dimension.

The scaling projector Pn allows us to project f(x) onto the scaling space
V nk :

Pnf(x) = fn(x) =

2n−1∑

l=0

k∑

j=0

sn,fj,l φ
n
j,l(x), (2.13)

where sn,fj,l are the scaling coefficients, computed as:

sn,fj,l =

∫
f(x)φnj,l(x) dx. (2.14)

Here, l serves as the translation parameter ranging from 0 to 2n − 1, and j
denotes the polynomial order parameter ranging from 0 to k.

Similarly, the wavelet projector Qn allows us to project f(x) onto the
wavelet space Wn

k :

Qnf(x) = dfn(x) =

2n−1∑

l=0

k∑

j=0

wn,fj,l ψ
n
j,l(x), (2.15)

with wavelet coefficients wn,fj,l defined as:

wn,fj,l =

∫
f(x)ψnj,l(x) dx. (2.16)

Again, l and j have the same roles and limitations as in the scaling projection.

In equations (2.13) and (2.15) we see how the function f are projected onto
the scaling space V nk and Wn

k respectively. As we can do with scaling and
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wavelet spaces in (2.8). The function fn can also be represented in multireso-
lution components as

fn(x) = Pnf(x) =
(
Pn−1 +Qn−1

)
f(x) =

(
P 0 +

n−1∑

n′=0

Qn
′

)
f(x) (2.17)

= f0(x) +

n−1∑

n′=0

dfn
′
(x) (2.18)

2.1.3 Generalization to d-dimensions

The principles can be extended to d-dimensions, where the function f(x) can

be approximated within the d-dimensional scaling space V n,dk using the scaling
projector Pn. This is expressed as:

Pnf(x) = fn(x) =
∑

l,j

sn,fj,l Φnj,l(x), (2.19)

where l = (l1, . . . , ld) represents the translation vectors with 0 ≤ lp ≤ 2n − 1
for each dimension p, and j = (j1, . . . , jd) are the polynomial order parameters

with 0 ≤ jp ≤ k. The d-dimensional scaling coefficients sn,fj,l are obtained by:

sn,fj,l =

∫
f(x)Φnj,l(x) dx. (2.20)

Similarly, the d-dimensional wavelet projector Qn allows us to project f(x)

onto the wavelet space Wn,d
k :

Qnf(x) = dfn(x) =
∑

l,j

2d−1∑

α=1

wα,n,fj,l Ψα,n
j,l (x), (2.21)

The d-dimensional wavelet coefficients are computed as:

wα,n,fj,l =

∫
f(x)Ψα,n

j,l (x) dx. (2.22)

The multiresolution representation is given by:

fn(x) = f0(x) +

n−1∑

n′=0

dfn
′
(x) (2.23)

2.2 Numerical Grid

The scaling coefficients are calculated numerically using a Gauss–Legendre
quadrature. This means the integral in (2.14) is approximated as the following
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sum:

sn,fj,l ≈ 2−n/2
kq−1∑

q=0

wqf(2−n(xq + l))φj(xq) (2.24)

In d-dimensions, the approximation is extended as follows:

sn,fj,l = 2−nd/2
∑

q

f(2−n(xq + l))

D∏

d=1

ωqdφjp(xqd) (2.25)

In practical terms, this means that when a function is projected onto V nk , the
function f is sampled at grid points xq. We denote this vector as fl. To obtain
the scaling coefficients, a function-to-scaling transformation matrix Tv←f is
applied:

snl = Tv←ffl (2.26)

Conversely, we can retrieve the function values at the grid points by apply-
ing the inverse of the transformation matrix to the scaling coefficients. This
operation can be represented as:

fl = Tf←vfl = T−1v←fs
n
l (2.27)

2.3 Addition of Functions

The addition of functions is straightforward, represented by the following map-
pings:

V nk + V nk → V nk (2.28)

Wn
k +Wn

k →Wn
k (2.29)

For instance, consider adding two functions fn and gn to obtain a new function
hn. The function hn is then simply expressed as:

hn(x) =

2n−1∑

l=0

k∑

j=0

(sn,fj,l + sn,gj,l )φnj,l(x) (2.30)

The same principle applies to dhn.

2.4 Multiplication of Functions

The product of functions is represented by the following mapping:

V nk × V nk → V n2k (2.31)
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This implies that the new function at scale n should be represented by double
the number of scaling functions, requiring a projection back to the scaling
space. Following Beylkin[29], we propose that the product spills over onto the
finer scales:

V nk × V nk → ⊗
∞⊕

n′=n

Wn′

k (2.32)

This is truncated to:

V nk × V nk → V nk ⊗
N⊕

n′=n

Wn′

k = V Nk (2.33)

where the scale N is generally higher than n. To multiply the functions fn and
gn, we adopt the following general method. The first step invokes upsampling
the scaling coefficients of fn and gn:

↑N sn,fj,l = sN,fj,l ↑N sn,gj,l = sN,gj,l (2.34)

Next, the scaling-to-function transformation (as per equation (2.27)) is per-
formed for both functions, leading to the upsampled grid points:

fNl = Tf←vs
N,f
j,l gNl = Tf←vs

N,g
j,l (2.35)

Carrying this forward, a pointwise multiplication is executed between these
grid points:

hNl = fNl × gNl (2.36)

The final step in this procedure involves obtaining the scaling coefficients via
a function-to-scaling transformation. This sequence of operations effectively
multiplies the functions.

2.5 Function and Operator Thresholding

A crucial aspect of achieving fast algorithms is thresholding the functions and
operators. Specifically, the input function f , output function g, and operator
Ô are thresholded to a predetermined relative precision ε. We require

||f − fε||2 < ε||f ||2, (2.37)

and it can be shown that such a precision is guaranteed when we have the
following bound on the wavelet coefficients ω:

||ωnl ||2 < 2−dn/2ε||f ||2. (2.38)
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Numerical studies have shown that

||ωnl ||2 < 2−n/2ε||f ||2 (2.39)

is generally sufficient, as long as the polynomial order k is sufficiently large,
with higher precision requiring larger k.

A similar kind of thresholding is done for operator applications to calculate

ĝn = Ônfn. (2.40)

The main difference here lies in determining which terms to include in the
output ĝn. Detailed information, along with numerical tests, is well explained
in [30] and in the supplementary information to Harrison et. al.[10].

2.6 Operator representation

We write the operator T projected onto the scaling basis at scale n, as, Tn. Tn

can then be applied onto the function fn which yields us ĝn.

ĝn = Tnfn (2.41)

Here we differentiate between ĝn and gn. The former, ĝn, is calculated by apply-
ing an operator represented in a multiwavelet basis onto a function represented
in a multiwavelet basis. Whereas, the latter, gn, would be the convolution
performed analytically then projected onto the multiwavelet basis.

As for functions projected onto a scaling basis, operators projected onto
a scaling basis can also be expanded from a pure scaling representation to a
scaling plus wavelet representation. The first step to this is,

Tn+1 = Tn +An +Bn + Cn. (2.42)

Here An, Bn and Cn are the kernel represented by various combinations of
scaling and wavelet functions. The pure scaling term Tn is rather expensive to
apply, and they are applied onto fn and dfn and gives us

ĝn = Tnfn (2.43)

g̃n = Cndfn (2.44)

dg̃n = Andfn +Bnfn (2.45)

which we use to construct ĝn+1 as

ĝn+1 = ĝn + g̃n + dg̃n. (2.46)

The Tn part of the operator is represented purely by scaling functions, which
makes it significantly more costly to represent and apply than the An, Bn

and Cn parts. The latter parts are partly or fully represented in the wavelet
basis, which have the property of vanishing moments. This property leads to
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sparse representations of smooth operators such as potentials and differential
operators. So to speed up the operator application do we focus on decomposing,
Tn. Which can be expanded recursively until we hit the coarsest scale, doing
that we get what is called the non-standard form of the operator

Tn+1 = T 0 +

n∑

n′=0

(
An
′
+Bn

′
+ Cn

′
)

(2.47)

This leads to ĝn+1 being calculated as

ĝn+1 = ĝ0 +

n∑

n′=0

(
ĝn
′
+ dg̃n

′
)
. (2.48)

2.7 Derivative Operators

Due to the discontinuous nature of the multiwavelet basis, derivative operators
do not exist in conventional sense[28]. We employ two methods suited for
different situations in computing the derivatives:

1. A method based on the concept of a weak derivative through
integration by parts, ideal for handling non-continuous functions
when a single derivative is needed. This method is discussed in
detail in [28].

2. A B-spline derivative operator introduced in [31], which is de-
signed to differentiate continuous functions. It works well for higher
order derivatives.

The first method, following [28], is designed for non-continuous functions
and is based on the concept of a weak derivative through integration by parts.
The scaling coefficients of df

dx are calculated as:

s
n, dfdx
j,l = f(x)φnj,l(x)

∣∣2−n(l+1)

2−nl
−
∫ 2−n(l+1)

2−nl

f(x)φnj,l(x)dx (2.49)

The integral here (right hand side of (2.49)) is manageable if we substitute
f(x) with fn(x):

∫ 2−n(l+1)

2−nl

fn(x)φnj,l(x)dx = 2n
k∑

i=0

sn,fi,l Kj,i (2.50)

(2.51)

where Kj,i can be computed as the following integral:

Kj,i =

∫ 1

0

φi(x)
d

dx
φj(x)dx (2.52)
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The challenging part here is evaluating:

f(x)φnj,l(x)
∣∣2−n(l+1)

2−nl
= f(2−n(l + 1))φnj,l(2

−n(l + 1))− f(2−nl)φnj,l(2
−nl)

(2.53)

since we do not have the value of f(x) in the points x = 2−n(l+1) and x = 2−nl
which represent discontinuities of our basis and is not sampled in our numerical
grid. So the values are approximated as:

f(2−n(l + 1)) ≈ 2n/2
k∑

i=0

[
(1− a)sn,fi,l φi(1) + asn,fi,l φi(0)

]
(2.54)

f(2−nl) ≈ 2n/2
k∑

i=0

[
(1− b)sn,fi,l φi(0) + bsn,fi,l φi(1)

]
(2.55)

where 0 ≤ a, b ≤ 1. Selecting the parameters as a = b = 1/2 can be seen as
a central difference. a = 1, b = 0 can be viewed as a forward difference, and
a = 0, b = 1 can be viewed as a backward difference. More details on this can
be found in [28].

The other method, introduced in [31], employs what we call a B-spline
derivative operator. The derivative dp

dxp f
n is calculated by applying the oper-

ator:

D(p) = B(p)(A∗A)−1A∗ (2.56)

This operator maps the coefficients sn,fi,l onto a b-spline basis, a basis where
the derivative is better defined. It then differentiates and transforms the co-
efficients back to the scaling space. Therefore, the scaling coefficients of d(p)f

dx(p)

are calculated as:

s
n, d

pf
dxp

i,l = D(p)sn,fi,l (2.57)

2.8 Convolution Operators

A convolution operation between a kernel K and a function f is defined as
follows:

g(r) = (K ∗ f)(r) =

∫
K(r− r′)f(r′)dr′ (2.58)

This operation can be written as:

g(r) = K̂[f ](r) (2.59)

In this context, we introduce the notation K̂ to denote a convolution operator.
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In our framework, we work with convolution kernels that are a sum of
Gaussians:

K(r− r′) =

M∑

κ=1

ακe
−βκ‖r−r′‖2 (2.60)

=

M∑

κ=1

ακ

d∏

i

e−βκ‖ri−r
′
i‖

2

(2.61)

This results in convolutions of the form:

g(r) =

M∑

κ=1

∑

j,m

sn,fj,m

d∏

i

K(xp − yp)φjp,mp(y)dy (2.62)

This transformation allows us to convert a single d-dimensional convolution into
M × d 1-dimensional convolutions. Within the multiwavelet framework, this
reduces the number of operations required for a convolution from O((k+ 1)2d)
to O(dM(k+ 1)d+1). For detailed information on this, refer to [32], where this
topic is discussed extensively.

2.8.1 The Poisson Equation

The Poisson equation is traditionally expressed as:

∇2V (r) = −4πρ(r) (2.63)

In this equation, ∇2 is the Laplacian operator, ρ(r) traditionally represents the
charge density, and V (r) is the electric potential. The solution to this equation
can be formulated as a convolution integral involving Poisson kernel P (r− r′):

V (r) =

∫
P (r− r′)ρ(r′) dr′ (2.64)

The Poisson kernel, is a Green’s function and satisfies the equation

∇2P (r− r′) = −δ(r− r′) (2.65)

and it is given by:

P (r− r′) =
1

4π||r− r′|| (2.66)

We denote the convolution in 2.64 using the operator P̂ :

V (r) = P̂ [ρ](r) (2.67)
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2.8.2 The Bound State Helmholtz Equation

The Bound State Helmholtz equation has a central role in quantum chemistry,
specifically in the context of the Hartree–Fock equations and the Kohn–Sham
equations, detailed further in Sections 3.5.1 and 3.6.1 respectively. The Bound
State Helmholtz Equation is given by:

(
∇2 − µ2

)
φ(r) = s(r) (2.68)

In this equation, µ is a positive number with µ > 0. The Helmholtz equation
can be solved through the convolution integral:

φ(r) =

∫
Gµ(r− r′)s(r′) dr′ (2.69)

The Helmholtz kernel, denoted as Gµ(r− r′), satisfies:
(
∇2 − µ2

)
Gµ(r− r′) = −δ(r− r′) (2.70)

The Helmholtz kernel G is given by:

Gµ(r− r′) =
e−µ||r−r

′||

4π||r− r′|| (2.71)

We denote the convolution in 2.64 using the operator P̂ :

φ(r) = Ĝµ[ρ](r) (2.72)

2.8.3 Kernel Separation Using Gaussians

In the beginning of this section, we outlined the use of convolution operators
in a separable form, as detailed in equation (2.62). This approach leans toward
reducing the number of operations required to apply the operator. However,
intrinsic to the Poisson (equation (2.66)) and Helmholtz (equation (2.71)) ker-
nels we examined is a non-separable nature. To handle this, we approximate
these kernels as a sum of Gaussians.

The Poisson kernel allows for an alternative representation [33], as demon-
strated below:

P (r) =
1

r
=

4√
π

∫ ∞

0

e−4r
2t2dt, (2.73)

In this instance, the integrand is separable. By adapting from methodologies
outlined in [30, 34], the equation can be restructured, ensuring the integrand
decays superexponentially with respect to the integration variable:

P (r) =
4√
π

∫ ∞

−∞

coshw

1 + e− sinhw
e−4r

2(sinhw+log (1+e− sinhw))2 dw. (2.74)

In this configuration, the integrand shows super-exponential decay as w →
±∞, thereby facilitating the accurate computation of the integral using the
trapezoidal rule.
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Similarly, the Bound State Helmholtz Kernel manifests exponential decay
when posed as an integral:

Hµ(r) =
2√
π

∫ ∞

−∞
e−r

2e2w−µ
2

4 e
−2w+w dw. (2.75)

This integral is evaluated across a range of values for w, specifically set between
w0 and w1 to maintain accuracy. The choice of step size follows the suggestion
in [9]:

h =
1

0.2− 0.47 log10 ε
. (2.76)

Utilizing Gaussian approximation guarantees the attainment of high precision
within the interval r ∈ [r0, r1], where r1 denotes the maximum distance in the
computational domain, and r0 is chosen to purge singularity contributions. For
more insights into the accuracy of this methodology, readers may refer to [9] for
insights on the Helmholtz representation and to the supplementary material of
[30] for details on the Poisson representation.



Chapter 3

Introduction to Quantum
Chemistry

This chapter provides an introduction to quantum chemistry, a field that merges
the principles of quantum mechanics and chemistry to understand the behavior
of atoms and molecules at the quantum level. Achieving this understanding
requires the use of mathematical tools and approximations.

We will first shed light on the necessity of approximations and explain why
we do not solve the Schrödinger equation directly. We will then introduce
the Born–Oppenheimer approximation, a fundamental concept in molecular
quantum mechanics. Further, we will delve into two distinct methods—the
Hartree–Fock method and Kohn–Sham Density Functional Theory—exploring
their foundational principles and how they fit into a multiwavelet framework.

For clarity, we will express equations in atomic units throughout the chap-
ter. We set the reduced Planck’s constant ~ = 1, the elementary charge
qe = −1, and the electron mass me = 1. We also differentiate between r and
x where the former is the position vector and the latter contain information
about both position and spin.

After understanding how to solve the Hartree–Fock and Kohn–Sham equa-
tions, we will further explore solvation models—particularly the Polarizable
Continuum Model—in the context of a multiwavelet framework. Finally, we
will delve into the role and significance of relativity within the multiwavelet
framework. As we cover heavier elements where the speed of an electron comes
close to the speed of light, relativistic effects become pronounced and need to
be accounted for.

35
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3.1 The Schrödinger Equation

The foundation of quantum mechanics is primarily based on the time-dependent
Schrödinger equation. The equation is expressed as follows:

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (3.1)

where i is the imaginary unit, r is the position vector, t specifies time, Ψ(r, t)
represents the system’s wavefunction, and Ĥ denotes the Hamiltonian operator.

When the Hamiltonian is time-independent—expressed as H(r, t) = H(r)—
the wavefunction can be expressed as a product of spatial, ψ(r), and temporal
components, ϕ(t), such that Ψ(r, t) = ψ(r)ϕ(t). Inserting this into the time-
dependent Schrödinger equation (3.1), we can rewrite it as:

ϕ′(t)

ϕ(t)
= i

Ĥψ(r)

ψ(r)
, (3.2)

where ϕ′(t) represents the time derivative of ϕ(t). In this equation, the left-
hand side depends exclusively on time, while the right-hand side relies solely on
the spatial coordinates. As such, both sides must individually equal a constant,
usually denoted as E:

i
ϕ′(t)

ϕ(t)
= E,

Ĥψ(r)

ψ(r)
= E. (3.3)

The first equation readily permits a solution, yielding the general solution
ϕ(t) = C exp(−Et). After this, our attention shifts to solving the time-
independent Schrödinger equation:

Ĥψ(r) = Eψ(r). (3.4)

For a more detailed description of the steps above see for instance Griffiths[35].

3.2 The Time Independent Schrödinger Equa-
tion

The time independent Schrödinger equation, represented as:

ĤΨ(r) = EΨ(r), (3.5)

is the cornerstone of quantum mechanics. In this equation, Ĥ denotes the
Hamiltonian operator, a Hermitian operator that encapsulates the total energy
of a quantum system. The wavefunction, Ψ(r,R), provides a comprehensive
description of the system’s quantum state as a function of the electron positions
(r) and nuclear positions (R), and E represents its associated energy eigenvalue.
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For a normalized wavefunction Ψ, the energy eigenvalue E can be deter-
mined as the expectation value:

E = 〈Ψ|Ĥ|Ψ〉. (3.6)

In a broader sense, any measurable property, Ω, of a quantum system can be
deduced from its associated operator Ω̂ using:

Ω = 〈Ψ|Ω̂|Ψ〉. (3.7)

The Hermitian nature of the Hamiltonian ensures that its solutions (eigenfunc-
tions) can be chosen to be orthogonal and normalized, ensuring the physical
realism and stability of these solutions. Furthermore, these solutions form
a complete set, which is a crucial property for representing any state of the
quantum system.

The full Hamiltonian operator, Ĥ, is a sum of kinetic and potential energy
operators:

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn (3.8)

where

T̂e = −
∑

i

1

2
∇2
i (3.9)

is the kinetic energy operator for the electrons, and

T̂n = −
∑

I

1

2MI
∇2
I (3.10)

is the kinetic energy operator for the nuclei, with MI representing the mass of
the I-th nucleus. The potential energy operators are given by

V̂en =
∑

i,I

ZI
|ri −RI |

(3.11)

which describes the interaction potential between electrons and nuclei, with
ZI representing the atomic number of the I-th nucleus. The electron-electron
repulsion potential is given by

V̂ee =
∑

i>j

1

|rj − ri|
(3.12)

and the nuclear-nuclear repulsion potential is

V̂nn =
∑

I>J

ZIZJ
|RI −RJ |

(3.13)
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In these equations, lowercase letters (i, j) are used to index electrons, while
uppercase letters (I, J) denote nuclear particles. The Schrödinger equation
(3.5), though linear and simple at first glance, hides inherent complexities.
With three times the total number of particles (electrons and nuclei) as degrees
of freedom, it can be solved analytically for a maximum of two particles using
traditional calculus methods.

The Hamiltonian, Ĥ, given by equation (3.8), incorporates terms associ-
ated with kinetic energy (equations (3.9) and (3.10)), and potential energy
(equations (3.11) - (3.13)). These potential energy terms describe a variety
of inter-particle interactions, including electron-electron, electron-nucleus, and
nucleus-nucleus interactions. The number of these inter-particle interactions
grows quadratically with the number of particles N , correspondingly increas-
ing the problem’s complexity for larger systems.

To manage this computational complexity, incorporating simplifications is
crucial. A common initial step involves the application of the Born–Oppenheimer
approximation. This approximation drastically simplifies the problem by treat-
ing electronic and nuclear motions separately, significantly reducing the com-
plexity of the potential energy terms involving the nuclei in the many-particle
Schrödinger equation.

3.3 The Born–Oppenheimer Approximation

The Born–Oppenheimer approximation [36], a common strategy in quantum
mechanics, simplifies calculations by taking advantage of the significant mass
difference between electrons and nuclei. Given that electrons move consider-
ably faster due to their lower mass, we can consider the nuclei to be almost
stationary, thereby reducing the problem to the sole movement of electrons.
So, we can formulate potential energy surfaces based on fixed nuclear positions
and solve the electronic Schrödinger equation using the electronic Hamiltonian.

Following Atkins[37] we start with the Hamiltonian outlined previously in
(3.8), but we combine the potential terms into V̂ = V̂ee + V̂en + V̂nn:

Ĥ = T̂e + T̂n + V̂ . (3.14)

Under the Born–Oppenheimer approximation, we postulate that the wavefunc-
tion Ψ takes the form:

Ψ(r,R) = ψ(r; R)χ(R), (3.15)

where ψ is the electronic wavefunction that is now parametrically dependent
on the nuclear positions, and χ is the nuclear wavefunction. Substituting this
into the Schrödinger equation (3.5), we obtain:

Hψχ = χTeψ + ψTnχ+ χTnψ + V ψχ (3.16)

≈ χTeψ + ψTnχ+ V ψχ. (3.17)
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Since T̂n also needs to be applied to ψ due to its parametric dependency on
the nuclear positions R, we note that as the nuclear mass MJ appears in the
denominator of T̂n (see equation (3.10)), this term tends to be small and can
be neglected.

Rearranging the terms in equation (3.16), we obtain:

ψTNχ+ (Teψ + V ψ)χ = Eψχ. (3.18)

We can now introduce the electronic Hamiltonian Ĥel = Te+V and the clamped
Schrödinger equation [37]:

Ĥelψ = Ee(R)ψ. (3.19)

By inserting this into equation (3.18) and canceling the electronic wavefunction
ψ, we get:

Tnχ(R) + Ee(R)χ(R) = Eχ(R). (3.20)

The eigenvalue E represents the total energy of the system under the Born–
Oppenheimer approximation. However, in most cases, the primary equation to
work with is the clamped nuclei Schrödinger equation (3.19). This approach
significantly simplifies the problem, while still offering a comprehensive de-
piction of a molecular system’s quantum behavior. From this point forward,
we will encounter the electronic Hamiltonian in our discussions. To simplify
notation, we will refer to the electronic Hamiltonian, Ĥel, as simply Ĥ.

3.4 The Variational Principle

The Variational Principle is a fundamental theorem in quantum chemistry. It
states that the energy of an approximate wavefunction is always greater than
or equal to the exact energy of the system. This principle is often used to
estimate the ground state of a system, denoted as Ψ0, which is characterized
by having the lowest energy E0.

The Variational Principle states that for a given Hamiltonian Ĥ with a true
ground state Ψ0, any arbitrary trial wavefunction Ψ̃ will satisfy the following
inequality (see for instance[38]):

〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

≥ 〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

(3.21)

This implies that the problem of finding the ground state can be treated as a
minimization problem, where the trial wavefunction is varied until the corre-
sponding energy is minimized. This approach often provides a good approxi-
mation to the true ground state, especially if the form of Ψ̃ is chosen to reflect
the physical characteristics of the system.
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3.5 Hartree–Fock

The Hartree–Fock method is a fundamental approach in quantum chemistry.
Its aim is to approximate the ground state of the wavefunction using a single
Slater determinant. The Slater determinant ensures that the many-electron
wavefunction Ψ is anti-symmetric, in accordance with the Pauli exclusion prin-
ciple[39]. The mathematical representation of the Slater Determinant is:

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) · · · φ1(xN )
φ2(x1) φ2(x2) · · · φ2(xN )

...
...

. . .
...

φN (x1) φN (x2) · · · φN (xN )

∣∣∣∣∣∣∣∣∣
(3.22)

The Hartree–Fock energy is given by:

EHF = 〈Φ|Ĥ|Φ〉, (3.23)

To make this more explicit, the energy expression in terms of the spin-orbitals
{φi, i = 1 . . . N} that define the Slater determinant can be written as:

〈Φ|Ĥ|Φ〉 =
∑

i

hi +
1

2

∑

ij

(Jij −Kij) + UN , (3.24)

The one-electron term hi arises from the kinetic and potential energy of a single
electron. Specifically, it includes the kinetic energy operator T̂ = − 1

2∇2 and
the electron-nuclear potential:

V̂n = −
∑

I

ZI
‖r−RI‖

. (3.25)

Here, r denotes the position of an electron, RI is the position of the I-th
nucleus, ZI is the charge of the I-th nucleus, and ∇2 is the Laplacian operator.

hi = 〈φi|ĥ|φi〉 = 〈φi|T̂ + V̂N |φi〉 (3.26)

The two-electron terms Jij and Kij , namely the Coulomb interaction and ex-
change interaction, arise from the electron-electron interactions. The Coulomb
term encapsulates the classical electrostatic repulsion between electrons. It
quantifies the cost of placing two electrons at positions r and r′.

Jij = 〈φi(x1)φj(x2)|1/r12|φi(x1)φj(x2)〉 (3.27)

In contrast to the Coulomb term, the exchange term does not have a classical
counterpart. Its existence is a consequence of the Pauli exclusion principle,
which mandates the anti-symmetry of the electron wavefunction. This term is
a fundamental aspect of quantum mechanics, reflecting the indistinguishability
and anti-symmetry of electrons. The exchange term is given by:

Kij = 〈φi(x1)φj(x2)|1/r12|φj(x1)φi(x2)〉 (3.28)
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3.5.1 The Hartree–Fock Equations

To find the optimal Φ, we use the Lagrangian multiplier technique(see for in-
stance[40]), which ensures the orthogonality of the orbitals. The conditions
for energy minimization arise when we set the functional derivative of the La-
grangian with respect to the orbital variations to zero:

δL =
∑

i

〈δφi|F̂ |φi〉−
∑

ij

λij 〈δφi|φj〉+
∑

i

〈δφi|F̂ |φi〉∗−
∑

ij

λji 〈δφi|φj〉∗ = 0,

(3.29)
A key component of the Hartree–Fock method is the Fock operator, F̂ , which
combines the effects of the one-electron operator and the Coulomb and ex-
change interactions:

F̂ = ĥ+
∑

j

Ĵj − K̂j . (3.30)

For clarity, we adopt an operator notation for the Coulomb and Exchange
operators:

Ĵi|φj〉 = 〈φi|1/r12|φi〉|φj〉 (3.31)

K̂i|φj〉 = 〈φi|1/r12|φj〉|φi〉 (3.32)

Differentiating the Lagrangian expression and setting the derivative equal to
zero results in the coupled Hartree–Fock equations:

F̂Φ = ΦF (3.33)

Here, each element Fij of the Fock matrix, F, is equivalent to the Lagrange
multiplier λij . The Fock matrix arises from the stationary condition on the La-
grangian and can be formally defined by projecting the Hartree–Fock equations
onto the set of occupied orbitals:

F = 〈Φ|F̂ |Φ〉 . (3.34)

3.6 Density Functional Theory

Density Functional Theory (DFT) offers an alternative approach to solving the
Schrödinger equation. Based on the work of Hohenberg and Kohn [41], DFT
demonstrates that the electron density, ρ(r1), defined as:

ρ(r1) = N

∫
|φ(x1,x2, . . . ,xN )|2ds1dx2 · · · dxN , (3.35)

provides the same information as the wavefunction. The total energy of the
system can then be expressed as a functional of ρ:

E[ρ] = T [ρ] + Vne[ρ] + Vee[ρ], (3.36)
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where T [ρ] is the kinetic energy, Vne[ρ] the electron-nuclear interaction energy,
and Vee[ρ] the electron-electron interaction energy functionals. The ground
state density is the density that minimizes this energy:

E0 = min ρ E[ρ]. (3.37)

In the Born–Oppenheimer approximation, the electron-nuclear interaction en-
ergy can be calculated as the classical electrostatic interaction between charge
densities:

Vne[ρ] =

∫
ρ(r)Vn(r)dr, (3.38)

with Vn(r) given by equation (3.25).
The main challenge in DFT lies in the fact that the kinetic T and electron-

electron Vee interaction energy functionals in (3.36) are unknown. These ener-
gies stem from quantum mechanical interactions, but their functional forms in
terms of ρ are not straightforward. This complexity arises from the quantum
mechanical exchange and correlation energies, in addition to the classical elec-
trostatic interactions. The development of accurate approximations for these
functionals, either through theoretical frameworks or semi-empirical strategies
informed by experimental data, represents a key aspect of DFT.

In the following sections, we will discuss one strategy for overcoming this
challenge, namely, Kohn–Sham DFT.

3.6.1 The Kohn–Sham Equations

The derivation of the Kohn–Sham equations presented in this section follows
the approach outlined in [42]. As previously mentioned, DFT offers an alter-
native method for solving the Schrödinger Equation to determine a quantum
system. However, the exact forms of both the kinetic energy functional T [ρ]
and the electron-electron interaction energy functional Vee[ρ] remain unknown.
This presents a challenge in approximating these functionals. Notably, the
virial theorem suggests that the kinetic energy is approximately equal to the
system’s total energy, emphasizing the importance of its accurate representa-
tion.

An alternative approach to approximating the kinetic energy and electron-
electron interaction energy functionals was proposed by Kohn and Sham [43].
They began by introducing density orbitals, φi, representing the density using
one-particle functions. For simplicity, we assume double occupancy in the
orbitals. For such a closed-shell system, this results in:

ρ(r) = 2

N/2∑

i

|φi(r)|2, (3.39)

This approach reintroduces the concept of orbitals from Hartree–Fock the-
ory. The key idea is that the kinetic energy of a set of non-interacting orbitals
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is well-defined:

Ts[ρ] = 2

N/2∑

i

〈φi| −
1

2
∇2|φi〉. (3.40)

However, it is important to note that this is not equal to the true kinetic energy
functional, leading to the discrepancy: T [ρ] − Ts[ρ]. Following this approach,
we separate the classical component J :

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

‖r− r′‖ drdr
′, (3.41)

from the energy expression Vee noting the energy discrepancy: Vee[ρ] − J [ρ].
These differences are then collected in an exchange-correlation functional1:

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ], (3.42)

resulting in the Kohn–Sham energy:

E[ρ] = Ts[ρ] + Ven[ρ] + J [ρ] + Exc[ρ]. (3.43)

Minimizing the energy with respect to the density yields the Euler equation:

µ =
δTs[ρ]

δρ(r)
+ veff (r), (3.44)

where µ is a Lagrange multiplier ensuring electron number conservation. The
effective potential, expressed in terms of functional derivatives, is:

veff (r) =
δVen[ρ]

δρ(r)
+
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
, (3.45)

= vnuc(r) + vel(r) + vxc(r). (3.46)

The Euler equation can be interpreted as a system of non-interacting elec-
trons moving within an effective potential veff . Its associated Hamiltonian
is:

Ĥ = −
N/2∑

i

1

2
∇2
i +

N/2∑

i

veff (ri), (3.47)

from which the Fock or Kohn–Sham operator is derived:

F̂ = −1

2
∇2 + veff (r). (3.48)

Solving DFT’s Euler equation leads to the Kohn–Sham equations:

F̂Φ = ΦF (3.49)

1The exact form of this functional is unkown. Coutless parametrisations are available.
Derived either from empirical or theoretical assumtions.
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While the reintroduction of orbitals (equation (3.39)) means forgoing a single
three-dimensional equation for the problem, we now encounter N/2 coupled
non-linear equations for the orbitals. Since the effective potential in the Kohn–
Sham operator is density-dependent (and thus orbital-dependent), Kohn–Sham
DFT emerges as a self-consistent field (SCF) method. Given its parallels with
the Hartree–Fock equations, similar techniques can be employed to address
both. Importantly, Kohn–Sham DFT is computationally similar to Hartree–
Fock, yet it often yields significantly better results. However, it is worth noting
that there is no systematic way to improve the results towards the exact solution
in Kohn–Sham DFT, in contrast with wavefunction theory.

3.7 Solving the Hartree–Fock and Kohn–Sham
Equation in Integral Form

Both the Hartree–Fock (3.33) and Kohn–Sham (3.49) equations share a com-
mon structure:

F̂Φ = ΦF (3.50)

For the Hartree–Fock equation, the Fock operator, F̂ , is defined as:

F̂ = −1

2
∇2 + Veff , (3.51)

with the effective potential, Veff , defined as:

Veff = Ĵ − K̂ + Vn. (3.52)

In the Kohn–Sham equation, Veff is defined as provided in equation (3.46).
The goal is to solve these equations iteratively using the Helmholtz operator

(section 2.8.2). The chosen strategy for this includes subtracting the diagonal
matrix Λ, where Λij = λiδij with λi < 0, from both sides of equation (3.50):

(F̂ − Λ)Φ = Φ(F− Λ). (3.53)

This transformation facilitates the recasting of the equation as follows:

(−1

2
∇2 + Veff − Λ)Φ = Φ(F− Λ)→ (3.54)

(
∇2 + 2Λ

)
Φ = 2 [V Φ + Φ (Λ− F)] . (3.55)

By choosing µi =
√
−2λi, the equation can be inverted using the Helmholtz

operator, as discussed in Section 2.8.2:

Φ = −2Ĝµ [V Φ + Φ (Λ− F)] . (3.56)

Given that Φ appears on both sides of the equation, the solution necessitates
an iterative approach until self-consistency is achieved:

Φ̃n+1 = −2Ĝµ
n

[V Φn + Φn (Λ− Fn)] . (3.57)
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Managing self-consistency can pose computational challenges, particularly for
systems involving a large number of electrons, where orbital rotations may
lead to slow convergence. To overcome such hurdles, acceleration techniques
like KAIN (Krylov subspace Accelerated Inexact Newton method) [44] are used.
KAIN employs information from preceding iterations to accelerate convergence,
proving particularly useful in overcoming sluggish orbital rotations. It’s impor-
tant to note that while this method increases the memory footprint of the iter-
ation, it also enhances convergence. KAIN serves a similar role in convergence
acceleration to other techniques such as DIIS [45] and Anderson mixing [46].

The selection of λi is not a random choice. According to numerical studies,
opting for λi as the diagonal elements of F, namely λi = Fii, typically delivers
optimal convergence (see [47]). Additionally, it should be emphasized that a
λi value that significantly deviates from the diagonal elements in F can hinder
convergence, reinforcing the importance of a well chosen λi value.

The integral operator Ĝµ does not conserve the orthogonality of all orbitals
φi within Φ. To denote the set of vectors needing orthogonality enforcement,
we use the tilde notation Φ̃n+1. Although the Gram-Schmidt procedure is a
method for enforcing orthogonality (see, for instance [48]), it is essential to avoid
this projective approach as it prevents the carry-over of the Fock matrix to new
orbitals [49]. Instead, we use a Löwdin transformation [50] where orthogonality
is assured through the overlap matrix:

S = 〈Φ|Φ〉 (3.58)

Φ = Φ̃S−1/2. (3.59)

To accelerate convergence and conserve memory, we augment the Löwdin
transformation with another rotation M that adjusts the orbitals to a specific
form. For small systems0, this could involve diagnonalizing the Fock matrix,
but for larger systems, it is often beneficial to localize the orbitals, for in-
stance, through a Foster–Boys transformation [50, 51].In practice, it is not
always necessary to diagonalize or localize the Fock matrix during every SCF
iteration. Therefore, the matrix M can often be chosen as the identity for
many intermediate steps. The combined transformation matrix then becomes
U = S−1/2MX , where X = {C,L, I} represents the canonical, localized, or
identity forms, respectively. The new orbital vector and Fock matrix are then
obtained by:

Φ = Φ̃U, (3.60)

F = U†FU. (3.61)

This approach is further detailed in [49].

3.8 Solvation

Understanding the interactions between a quantum system—commonly a molec-
ular solute—and its surrounding environment or solvent is the central objective
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of solvation studies in quantum chemistry for the last half-century[52–55]. How-
ever, the task of accurately representing these interactions while maintaining
reasonable computational costs presents a significant challenge. There are two
primary familiers of models developed to deal with this problem.

The first is the explicit models. Here, the environment is rendered in
detail using either a cheap quantum mechanical approach[56] or molecular
mechanics[57] commonly known as quantum mechanics/molecular mechanics
(QM/MM).These models can be polarizable or non-polarizable[58–60], indicat-
ing the mutual polarization between the solute and solvent or implying a fixed
environment. Defining an optimal cut-off radius for long-range interactions,
like electrostatic and van der Waals forces, without significantly increasing
computational costs. Some might argue that, with appropriate methodologies,
QM/MM computations can be as cost-effective as continuum models. However,
this issue is complex. QM/MM methods usually require hands-on adjustments
and modifications, such as obtaining varied structures from molecular dynam-
ics and performing necessary averaging. Moreover, assessing the reliability of
the classical force field in these models can be complicated, adding another
layer of intricacy.

The second family of methods pertains to those where the interaction with
the solution is implicitly dealt with. In this implicit solvation approach, the
solute is placed within a cavity for a quantum mechanical analysis, distinctly
separating it from the rest of the system. Traditionally, a sharp boundary
exists between the solute in the cavity and the solvent or environment, with
the interaction between the solute and solvent treated as a pure boundary
problem. However, this hard cutoff is not physically sound as the electronic
densities of the solvent and solute overlap. This issue has subsequently been
addressed by a normalization procedure[54]. Later, more elaborate methods
were developed[61] and for the Integral Equation Formalism formulation of
the Polarizable Continuum Model (PCM), it has been shown that the model
includes first-order corrections[62].

With the development of real-space methods for quantum chemistry[3–6, 14,
63], it is now possible to employ a soft cavity boundary. Here, the potential is
not calculated in a vacuum, but instead within a generalized dielectric medium
with position-dependent permittivity. This approach has been followed in [22,
24], as well as several real space codes[64–69].

3.8.1 The Solvation Hamiltonian

Within the framework of the Born–Oppenheimer approximation (see section
3.3), we define the Hamiltonian as outlined by Tomasi[53, 54]:

H(rS , rE) = HS(rS) +HE(rE) +HSE(rS , rE) (3.62)

The term HS corresponds to the electronic Hamiltonian (refer to equation
(3.19) for details). HE denotes the Hamiltonian for the solvent. The term HSE

represents the interaction energy between the solute and the environment. This
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includes energy contributions from electrostatics and polarization, creating the
cavity, dispersion energy, repulsion energy, the last two being components of
van der Waals forces. Here, rS and rE encapsulate coordinates of both electrons
and nuclei within the solute and solvent, respectively.

It is not important to get a good description of the solvent. It’s sufficient to
have a good description of the interaction. The Hamiltionian is then reduced
to the form:

H(rS , rE) = HS(rS) +HSE(rS , rE) (3.63)

However, as discussed by Tomasi[53], the remaining degrees of freedom in the
Hamiltonian still prove computationally hefty. Addressing this challenge, we
introduce a reaction potential VR:

H(rS , rE) = HS(rS) + VR (3.64)

This reaction potential aims to accurately represent the interaction between
electrons and nuclei within the solute and solvent. In the following sections, we
delve into how the reaction potential VR is derived starting from the Generalized
Poisson Equation.

3.8.2 The Generalized Poisson Equation

The Generalized Poisson Equation (GPE)2 is expressed as:

∇ · [ε(r)∇V (r)] = −4πρ(r). (3.65)

Here, ε(r) represents the isotropic permittivity of the medium, and ρ is the
charge density, which contain both electronic and nuclear contributions:

ρ(r) = ρel(r) + ρnuc(r), (3.66)

where ρnuc, the nuclear density, is defined as:

ρnuc(r) =

N∑

I

ZIδ(r−RI). (3.67)

The formulation currently provided for the GPE doesn’t align with the tools
currently available to us. Thus, to solve this equation using the Poisson opera-
tor, as introduced in section 2.8.1, we will need to rewrite it in a suitable form.
To do that we need to isolate the Laplacian therm ∇2V

By applying the vector identity ∇· (fA) = f∇·A + A ·∇f , we can rewrite
the GPE as:

∇2V (r) = −4π
ρ(r)

ε(r)
− ∇ε(r) · ∇V (r)

ε(r)
. (3.68)

2A derivation of the GPE can be found in [24]
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We then introduce the surface charge distribution due to polarization at the
solute-solvent boundary, denoted by γ:

γ(r) =
∇ε(r) · ∇V (r)

4πε(r)
. (3.69)

Defining the effective charge density ρeff as ρ/ε, the Generalized Poisson equa-
tion takes the form:

∇2V = −4π(ρeff + γ). (3.70)

Given that the Laplacian term ∇2V is now isolated, this equation must be
solved self-consistently. This requirement emerges due to γ containing the
potential V , thereby necessitating a self-consistent solution approach. Our
ultimate goal is to calculate the reaction potential VR. To achieve this, we
partition the total potential V into the electrostatic potential in a vacuum,
denoted as Vvac, and the reaction potential VR:

V = Vvac + VR (3.71)

Remembering that ∇2Vnuc = −4πρ equation (3.70) takes the form:

∇2VR = −4π (ρeff + γ − ρ) (3.72)

With this we can invert it using the Poisson operator

VR = P̂ [ρeff + γ − ρ] (3.73)

Now, since γ is a function of the reaction potential VR, it must be solved
iteratively until self-consistency is achieved. In the following sections, we’ll
discuss how the solution integrates into solving the Kohn–Sham equation or
Hartree–Fock equations with the reaction potential.

3.8.3 Integrating and Solving the Reaction Potential in
Hartree–Fock and Kohn–Sham Equations

Gerez et al. [24] provide a detailed scheme for solving the self-consistent re-
action field (SCRF), along with the associated algorithms. This section out-
lines their method and illustrates how it fits seamlessly into the self-interaction
scheme presented in section 3.7. The main deviation of this method from the
conventional approach resides in the composition of the Fock operator:

F̂sol = F̂ + VR, (3.74)

where VR is the reaction potential that must be solved for self-consistently
between each iteration:

V n,iR = P̂
[
ρneff + γi − ρ

]
. (3.75)
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Here, i denotes the microiterations.

This iterative process is crucial from a physical perspective as it aptly por-
trays mutual polarization between the solvent and the solute. The orbitals,
representing the quantum system, are subject to change, influencing their in-
teraction with the potential. In turn, this potential also interacts with the
orbitals, thus creating a dynamic interplay. This cycle continuously refines our
understanding of the system, accounting for alterations in the solute’s electronic
configuration and its interaction with the solvent.

According to Gerez et al. [24], optimal convergence is achieved when the
converged reaction potential is used as the starting guess for each new microi-
teration scheme, i.e., V n,0 = V n−1. It is also beneficial to employ a less strict
convergence criterion for the microiterations than for the main iterations. Fur-
thermore, the micro SCF can be accelerated to enhance convergence, thereby
improving the overall efficiency of the calculations.

3.9 Relativity in Multiwavelets

The concept of relativity within the context of multiwavelets in quantum chem-
istry is crucial due to the potential for achieving higher accuracy in calcu-
lating molecular properties, especially those involving heavier atoms[70]. To
this end, significant work has been undertaken by the MADNESS group. They
construct arbitrariness-precise representations necessary for ut pt second or-
der Douglass–Kroll–Hess[71], thus presenting a model for constructing quasi-
relativistic Hamiltonians. Furthermore, and importantly, they report the first
fully numerical method to quantum chemical calculations applicable to molecules[72].
This constitutes a complete implementation of the four-component Dirac–
Coulomb equation formulated to a user-specified precision.

Notwithstanding advancements made in adjusting existing basis-set meth-
ods to account for the effects of special relativity, these adaptations have lim-
itations similar to nonrelativistic basis-set calculations. For instance, they of-
fer poor scaling with respect to the number of basis functions and exhibit a
high number of linear dependencies when working with large basis sets[2]. In
addition, there is the requirement to select and contract basis sets for rela-
tivistic calculations with added caution. This additional care maintains the
appropriate relation between the large and small components, thus preventing
variational collapse[73]. Fully numerical codes are available, but their appli-
cation is usually relegated to atoms[74] or small molecules with pronounced
symmetry[75–77].

Moreover, the MRChem group sets forth by working on the four-component
Hamiltonian. In[22], an implementation of the Dirac equation for one electron
is demonstrated. Meanwhile, [25] details the implementation of the Full Breit
Hamiltonian, an important progression towards incorporating magnetic inter-
actions including spin-other-orbit and the retardation effect due to the finite
speed of light[78–81]. Notably, for the sake of realistic core-electron spectro-
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scopies, it is imperative to include the Breit interaction terms[82, 83]. This
has been actualized in a practical implementation carried out in VAMPyR. In
conclusion, this section aims to introduce the Dirac equation that governs the
relativistic space and to explore its integral form. Moreover, strategies for
solving this will be examined, influenced by similar methodologies used for the
Hartree–Fock and Kohn–Sham equations in section 3.7.

In the following two sections we give an introduction to the Dirac equation
in its 4-component form. We then present the Green’s kernel that can be used
to solve it in a multiwavelet framework.

3.9.1 The Dirac Equation

The Dirac equation is a relativistic equation that is consistent with both the
principles of quantum mechanics and the theory of special relativity. The
equation is characterized by a 4-component wavefunction, which is necessary to
form a complete Hamiltonian. In this section, we will start with the relativistic
energy equation and investigate the necessity of a 4-component wavefunction.
Instead of following Dirac’s derivation[84, 85], we adopt the approach of van
Waerden[86] and Saue[87].

The derivation of the Dirac equation begins with the relativistic energy
equation

E2 = m2c4 + p2c2 (3.76)

where m is the mass, c is the speed of light, and p is the linear momentum.
When we take the square root, we encounter a choice of sign:

E = ±
√
p2c2 +m2c4 (3.77)

This implies that possible energy values exist in two bands of opposite sign,
separated by an energy gap of 2mc2. In classical mechanics, we disregard the
negative energy band as unphysical because energy can only change contin-
uously. However, in quantum mechanics, discrete energy jumps are possible,
making the negative energy band relevant.

The relativistic energy equation (3.76) does not resemble its non-relativistic
counterpart:

E =
p2

2m
(3.78)

However, they are connected, which can be seen by Taylor expanding the pos-
itive branch of the energy E =

√
p2c2 +m2c4:

E = mc2
√

1 +
p2

m2c2
= mc2 +

p2

2m
− p4

8m3c2
+ ... (3.79)

The first term, mc2, is known as the rest mass, the second term, p2/2m, is
the non-relativistic energy (see equation (3.78)), and the remaining terms are
relativistic corrections.
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To approximate the Hamiltonian, one approach could be to start with the
Taylor expansion of the relativistic energy in equation (3.76) and quantize the
components. However, this yields an infinite sum as the Hamiltonian. The
challenge lies in representing this infinite sum in a more manageable form.
Quantization in quantum mechanics involves replacing classical observable with
quantum operators. This is done using the following substitutions:

x→ x̂ p→ p̂ = −i d
dx

(3.80)

and the heuristic substitution

E → i
∂

∂t
(3.81)

Applying these substitutions to the non-relativistic energy equation (3.78) leads
us to the time-dependent Schrödinger equation (3.1). However, it is important
to note that the Schrödinger equation is non-relativistic and does not account
for spin, which are key considerations in the context of the Dirac equation. To
incorporate spin and relativistic effects, we turn to the Dirac identity:

(σ ·A)(σ ·B) = A ·B + iσ · (A×B) (3.82)

In the Dirac identity, σ represents the three Pauli spin matrices:

σ = (σ1, σ2, σ3) (3.83)

Each component is defined as:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(3.84)

The Pauli spin matrices, σ1, σ2, and σ3, where constructed by Pauli[39], to
take into account the interaction of spin of a particle with an external electro-
magnetic field.

Inserting the linear momentum operator p for A and B into equation (3.82)
we get

(σ · p)(σ · p) = p2 (3.85)

This suggests that spin may be ”hidden” in the non-relativistic wave equation
and only appear when an external magnetic field is introduced. To obtain the
Dirac equation, we start by quantizing the relativistic energy equation (3.76)
using the substitutions for energy (3.81) and momentum (3.80). This yields:

(
− 1

c2
∂2

∂t2
− p2

)
φ1 = (mc)2φ1 (3.86)
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The left-hand side can be expanded using the Dirac identity (3.82):

[
i

c

∂

∂t
+ (σ · p)

] [
i

c

∂

∂t
− (σ · p)

]
φ1 = (mc)2φ1 (3.87)

This form with (σ · p) implies that the wavefunction φ1 is two-component, as
the Pauli matrices σ are 2x2 matrices.

If we introduce a second wavefunction φ2

φ2 =

[
i

c

∂

∂t
− (σ · p)

]
φ1/(mc) (3.88)

we obtain two coupled equations

[
i

c

∂

∂t
− (σ · p)

]
φ1 = mcφ2 (3.89)

[
i

c

∂

∂t
+ (σ · p)

]
φ2 = mcφ1 (3.90)

Then taking the linear combinations of these equations, adding and subtracting
them, we get

i

c

∂

∂t
ΨL − (σ · p)ΨS = mcΨL (3.91)

− i
c

∂

∂t
ΨS + (σ · p)ΨL = mcΨS (3.92)

Here we have introduced the notation for large ΨL and small component ΨS

of the wavefunction:

ΨL = [φ1 + φ2] (3.93)

ΨS = [φ1 − φ2] (3.94)

The large component wavefunction, ΨL, corresponds to the wavefunction previ-
ously discovered by Pauli[39]. This wavefunction describes spin-1/2 particles,
like electrons, in non-relativistic quantum mechanics. The small component
wavefunction, ΨS , on the other hand, is a unique feature of the Dirac equa-
tion and accounts for the relativistic effects or ”corrections”. The resulting
equations can then be written in a matrix form

[
i
c
∂
∂t −(σ · p)

(σ · p) − i
c
∂
∂t

] [
ΨL

ΨS

]
= mc

[
ΨL

ΨS

]
(3.95)

or in its conventional form

(βmc2 + c(α · p))Ψ = i
∂

∂t
Ψ (3.96)



3.9. RELATIVITY IN MULTIWAVELETS 53

Here, Ψ is the 4-component wavefunction:

Ψ =

[
ΨL

ΨS

]
(3.97)

The Dirac matrices in equation (3.96), α and β, play a crucial role in the Dirac
equation. They are defined as follows:

β =

[
I 0
0 −I

]
, α =

([
0 σ1
σ1 0

]
,

[
0 σ2
σ2 0

]
,

[
0 σ3
σ3 0

])
(3.98)

where σ1, σ2, and σ3 are the Pauli matrices as defined in equation (3.84).
These matrices were introduced by Dirac as a way to take the square root of
the Hamiltonian, which is derived from the relativistic energy equation (3.76).
This approach resulted in the first derivation of the Dirac equation (3.96).

4-component Relativistic Bound-State Green’s Kernel

The strategy used to solve the Kohn–Sham and Hartree–Fock equations in
section 3.7 is to represent them in their integral form, after which they are
solved iteratively until self-consistency is achieved. We wish to apply a similar
approach to the Dirac equation. First, we need to determine the 4-component
bound-state Helmholtz kernel, which we do by following the process detailed
in [88]. Starting with the equation,

(hd − εI4)Gµd (r) = δ(r)I4, (3.99)

we introduce the 4-component operator hd,

hd = cα · p + βmc2I4, (3.100)

where Gµd represents the 4-component relativistic Green’s function.
Interestingly, the kernel Gµd can be expressed in terms of the bound-state

Helmholtz Green’s kernel, G from equation (2.71) in section 2.8.2 as:

Gµd (r) =
1

2mc2
[hd + εI4]Gµ(r), (3.101)

where µ is defined as:

µ =

√
m2c4 − ε2
mc2

. (3.102)

To demonstrate this, we adopt the approach outlined by Blackledge and
Babajanov in [88]. We begin by observing that the expression (hd − εI4) (hd + εI4)
can be rewritten as:

(hd − εI4) (hd + εI4) = −c2∇2I4 +m2c4I4 − ε2I4 (3.103)

= −c2
(
∇2I4 +

ε2 −m2c4

c2
I4

)
(3.104)

= −c2
(
∇2I4 −

m2c4 − ε2
c2

I4

)
(3.105)
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By setting µ as above, we can replace (∇2−µ2)I4 with− 1
c2 (hd − εI4) (hd + εI4)

in equation (2.70), yielding:

1

c2
(hd − εI4) (hd + εI4)Gµ(r− r′) = δ(r− r′)I4. (3.106)

From this, it follows that:

(hd − εI4)Gµr (r− r′) = δ(r− r′)I4, (3.107)

The relativistic bound state Helmholtz kernel Gµd ’s definition, given in equation
(3.101), is dependent on the form of hd as noted by Anderson et al. [72]. In
practice, the energy in the Dirac equation is often shifted by the rest energy
to align the positive branch of the energy with the non-relativistic energy. For
instance, h−d is defined as hd −mc2. In such cases, corresponding adjustments

must be made to µ → µ− and Gµd → Gµ
−

d to ensure consistency. Now that
we have the Green’s function for the relativistic bound-state Helmholtz kernel.
We can look into solving the Dirac equation in it’s integral form.

3.9.2 Solving the Dirac Equation Using Green’s Function
and Integral Form

We start by introducing the stationary version of the 4-component Dirac equa-
tion (3.96) for one electron

(hd + V )Ψ = EΨ (3.108)

or its matrix from:
[
V +mc2 −(σ · p)
(σ · p) V −mc2

] [
ΨL

ΨS

]
= E

[
ΨL

ΨS

]
(3.109)

Here, we have introduced an external potential V .
As we did for the Hartree–Fock and Kohn–Sham equations in section 3.7,

we need to rewrite the stationary Dirac equation (3.108) into its integral form:

Ψ = −Ĝµd [VΨ] (3.110)

Here Ĝµd is the relativistic Bound-state Helmholtz (convolution) operator. It
can be applied in three equvivalent ways[72]

Ĝµd [Ψ] =
1

2mc2
(Ψ ∗ (hd + E)Gµ) (3.111)

=
1

2mc2
[hd + E](Ψ ∗Gµ) (3.112)

=
1

2mc2
(([hd + E]Ψ ∗Gµ)) (3.113)
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In the first variant, the operator (hd+E) is applied directly to the Bound-State
kernel Gµ, followed by the convolution. In the second, the operator is applied
to the result of the convolution between g and the wavefunction Ψ. In the
third, the operator is applied to the orbital Ψ before the convolution with the
kernel g is performed.

The first and third methods have an inherent advantage in that the integral
operator can smooth out the numerical noise introduced by the derivatives
in hd. However, the last two methods do not require altering the kernel g,
which is already implemented in codes like MRCPP and VAMPyR. This makes
these methods more convenient for practical applications.

Since we have Ψ on both sides of the equation (3.110) it has to be solved
iteratively until self-consitency is achieved:

Ψ̃n+1 = −Ĝµ
n

d [VΨn] (3.114)

Again we are using the tilde notation since the operation Ĝµd does not conserve
the norm of the wavefunction Ψ. So we need to normalize Ψ between each
iteration:

Ψn+1 =
Ψ̃n+1

||Ψ̃n+1||
(3.115)

This can be generalized for more than one electron. This has been done by
Anderson et al[72]. Where they solve the Dirac Fock equation.
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Chapter 4

Very Accurate
MultiResolution Python
Routines

This chapter provides an overview of the installation procedures and inherent
functionalities of VAMPyR, a software package implemented using pybind11 in-
tegrating the computational capabilities of MRCPP with the approachable script-
ing ease of Python. We detail several installation approaches to accommodate
users’ preferences across various platforms, including direct source installation,
package management systems, and precompiled binaries.

As we discuss the fundamental data structures that are central to VAMPyR

(and the underlying software MRCPP), readers will gain insight into the software’s
handling of multidimensional computational challenges.

Advanced users requiring higer control over the software’s core functionality
have the option to use VAMPyR’s advanced modules, which preserve the control
of MRCPP within a Python framework. The chapter also addresses the usability
of VAMPyR, providing examples and documentation resources that facilitate a
smooth transition for users of varying expertise levels, and underscores the
software’s role in simplifying the application of multi-resolution analysis.

The sections to follow ensure that readers are acquainted with both the
practical usage and the broader context of VAMPyR, providing essential knowl-
edge for users to effectively deploy the tool in diverse computational scenarios.
From exploring key structures to applying the software to specific operations,
this chapter serves as both an introductory guide and a resource for deeper
engagement with the utility and adaptability of VAMPyR in the field of compu-
tational science.

57
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4.1 Installation and Documentation

VAMPyR is available under the LGPLv3 license. The source code can be accessed
on GitHub within the MRChemSoft[89] repository. Users who wish to install the
source code directly can utilize pip for virtual environment installations or opt
for the more traditional cmake approach. For users that prefer conda. It is
also possible to download precompiled binaries compatible with several Linux
and macOS architectures from anaconda.org[90]. Then installation is a simple
command (see Lising 4.1)

Source Code 4.1: Conda installation

conda install -c conda-forge vampyr

Details on the installation process can be found in the README file in the VAMPyR
GitHub repository[89].

The VAMPyR documentation[91] includes a collection of Jupyter notebooks
available at Binder[92]. This allows users to interactively try out the code
without the need to install the software locally, making it easier for new and
potential users to explore the software.

4.2 Key Data Structures

VAMPyR is built on top of MRCPP and uses pybind11 to bridge the C++ core
of MRCPP into a Python environment. It shares several key data structures
which are fundamental to its operations. This section highlights the most
important structures: the MultiResolutionAnalysis<D>, MWTree<D>, and
MWNode<D>, along with the MWTree<D> derivatives FunctionTree<D> and
OperatorTree<D>.

Dimensionality in MRCPP is handled using C++ templates with the template
parameter <D>, representing spatial dimensions. This allows for a flexible and
efficient implementation1. Some operations, such as those involving the Poisson
and Helmholtz operators (see sections 2.8.1-2.8.2), are dimension-specific and
only work in 3D.

Python, unlike C++, does not support native templates. To manage com-
plexity in VAMPyR, which stems from C++ templates in MRCPP, the framework
abstracts this into three distinct Python submodules. Users select the appro-
priate submodule based on their problem’s dimensionality:

Source Code 4.2: Handling Dimensionality in VAMPyR

from vampyr import vampyr1d

from vampyr import vampyr2d

from vampyr import vampyr3d

1For a deeper understanding of C++ Templates, refer to [93] or [94]
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Additionally, VAMPyR offers advanced submodules for users who require high
control and are comfortable with the complexity of MRCPP’s functionalities.
These functions presented without simplifications in the advanced submodules:

Source Code 4.3: Advanced VAMPyR Submodules

from vampyr import vampyr1d.advanced

from vampyr import vampyr2d.advanced

from vampyr import vampyr3d.advanced

For an example of this usage see Listing 4.6.
Throughout this discussion, we refer to the shared key data structures be-

tween MRCPP and VAMPyR with the template parameter <D>.

4.2.1 Multiresolution Analysis
(MultiResolutionAnalysis<D>)

The MultiResolutionAnalysis<D> object in MRCPP and VAMPyR serves as the
data structure that defines the multiwavelet basis and the physical domain it
covers. It allows functions and operators to be represented and manipulated
within the same framework.

4.2.2 MultiWavelet Node (MWNode<D>) and MultiWavelet
Tree (MWTree<D>)

The MWNode<D> is a multi-dimensional container with a scaling index n and
a translation index l = (l1, l2, ..., ld). It stores (k + 1)d scaling coefficients sn,fj,l
and (2d − 1)(k + 1)d wavelet coefficients wn,fj,l . In general, each MWNode<D>

give rise to 2d child nodes, based on a thresholding regime (section 2.5).
The MWNode<D> is organized in a hierarchical manner, with the root node

symbolizing the entire physical space. Each node apart from the leaf nodes owns
2d child nodes, each of which holds 1/2d the space of its parent, in line with
the discussion in section 1.3.2. This hierarchical architecture of MWNode<D> is
depicted in Figures 4.1a and 4.1b, providing insight into the organization of an
MWTree<D> and an MWNode<D>.

4.2.3 FunctionTree<D> and OperatorTree<D>

MWTree<D> is a base class and is not used directly, its most important deriva-
tives are the FunctionTree<D> and OperatorTree<D>, which are fundamen-
tal in practical computations.

The FunctionTree<D> inherits from both the MWTree<D> and
RepresentableFunction<D> classes. Where RepresentableFunction<D> is
the primary abstraction for analytic functions that can be projected onto the
multiwavelet basis. Essentially, FunctionTree<D> denotes functions that are
numerically projected onto a MultiResolutionAnalysis<D>.
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(a) The hierarchical structure of an
MWTree<D>. The top node is referred to
as the Root node. The bottom nodes along
each branch are referred to as leaf nodes.

(b) An MWNode<D> has an Index
(n, l) and stores (k + 1)d scaling
coefficients sn,f

j,l and (2d − 1)(k +

1)2 wavelet coefficients wn,f
j,l .

Figure 4.1: The MWTree<D> and MWNode<D> structures in MRCPP, where (a)
represents the hierarchical structure of an MWTree<D>, while (b) depicts the
structure of an MWNode<D>.

The OperatorTree<D> is another crucial derivative of MWTree<2>. It
stores the scaling and wavelet coefficients for operators in the
MultiResolutionAnalysis<D>. It inherits from the two dimensional MWTree<2>,
since all operators are applied in a single dimension at a time. Derivative oper-
ators only operate in a single dimension at a time and currently all convolution
operators are represented as a sum of one-dimensional Gaussian kernels (see
section 2.8).

4.3 Intuitive Multiresolution Analysis with VAMPyR

This section demonstrates the use of VAMPyR for multi-resolution analysis with
an emphasis on its Pythonic syntax. VAMPyR simplifies the transition from
the foundational, C++-based mathematics of MRCPP to the more widely-used
Python programming environment. It provides users with tools to carry out
scientific computations effectively, leveraging Python’s well-known syntax and
structure.

In the examples that follow, the focus will be on how procedures are im-
plemented in VAMPyR compared to MRCPP. The aim is to highlight how VAMPyR

can handle complex computational patterns using Python’s clear and concise
scripting style.

These examples will also demonstrate the practicality of VAMPyR, offering
insights into how it streamlines the process of performing multi-resolution anal-
yses and reduces the amount of code required to achieve these tasks.
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4.3.1 Interactive Design: VAMPyR vs. MRCPP

Understanding the differences in how users interact with MRCPP and VAMPyR

sheds light on the streamlined workflow VAMPyR offers. In MRCPP, operations on
FunctionTree<D> objects are explicit, involving direct object manipulation
and reference-based function calls. For example, addition in MRCPP requires
declaring a FunctionTree<D> and then applying the ‘add‘ function as follows:

Source Code 4.4: MRCPP Addition Operation

// Declare the new tree

auto a_tree = FunctionTree<D>(mra);

// Perform the addition

add<D>(prec, a_tree, 1.0, b_tree, 1.0, c_tree);

Conversely, VAMPyR abstracts the FunctionTree<D> instantiation, provid-
ing a simplified and more Pythonic approach:

Source Code 4.5: VAMPyR Addition Operation

a_tree = b_tree + c_tree;

While reducing code verbosity and aligning with Python’s familiar script-
ing style, VAMPyR retains the robust computational model underlying both
frameworks. Additionally, for use cases that demand a higher degree of con-
trol—reminiscent of MRCPP workflows—VAMPyR provides ’advanced’ submodules
which expose more explicit operations akin to the core C++ library:

Source Code 4.6: Explicit operation in VAMPyR

from vampyr import vampyrXd as vp # Replace X with 1, 2 or 3.

a_tree = vp.FunctionTree(mra)

vp.advanced.add(prec, a_tree, 1.0, b_tree, 1.0, c_tree)

This dual approach endorses VAMPyR’s flexibility—achieving an ease of use
for general tasks while providing an option for more complex and controlled
operations when needed.

4.3.2 Function Projection in VAMPyR

In any program using VAMPyR (or MRCPP), the initial step is to define a
MultiResolutionAnalysis<D> object. This setup in VAMPyR is straightfor-
ward, requiring only the essential parameters such as the domain box and the
polynomial order k. Selecting k is important as it correlates with the desired
precision of calculations—higher precision necessitates a larger k, while for
lower precision, a smaller k suffices.
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Source Code 4.7: VAMPyR MultiResolutionAnalysis Setup

mra = MultiresolutionAnalysis(box=[-1, 1], order=k)

With the MultiResolutionAnalysis<D> established, function projection
can proceed in a manner consistent with the methodologies outlined in section
2.1.2, specifically the creation of scaling and wavelet projection operators, Pn

and Qn. Below is an example:

Source Code 4.8: Scaling and Wavelet projection operators in VAMPyR

# Define an analytic function

f = lambda x: <expression>

# Create scaling and wavelet projection operators

P_n = ScalingProjector(mra, n)

Q_n = WaveletProjector(mra, n)

# Project the function onto scaling and wavelet basis

f_n = P_n(f) # Scaling projection of f to scale n

d_n = Q_n(f) # Wavelet projection of f to scale n

These operators can create a FunctionTree<D> that is uniformly pop-
ulated to a specified scale n2, with each MWNode<D> either containing only
scaling or only wavelet coefficients. This feature is mostly created for teaching
purposes. In general FunctionTree<D>s that include both scaling and wavelet
coefficients based on a defined precision threshold are constructed:

Source Code 4.9: Function Projection with Precision Control in VAMPyR

# Define an analytic function

f = lambda x: <expression>

# Create a projector with precision control

P_eps = ScalingProjector(mra, prec)

# Project the function onto MRA with precision eps

f_eps = P_eps(f)

Here, prec serves as the precision threshold, which plays a key role in node
generation within the FunctionTree<D>. When a node’s approximation of
the function satisfies the specified precision, further subdivision of that branch
can cease, avoiding unnecessary computational effort. This process, known
as thresholding (see section 2.5). Through this mechanism, VAMPyR enhances
computational efficiency by focusing detail where it’s needed most and allowing
for a leaner, more optimized tree structure.

2It’s important to note that the MultiResolutionAnalysis<D> can have a root scale
different from zero.
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A notable constraint when performing function projection in VAMPyR, in
contrast to MRCPP, is the Global Interpreter Lock (GIL) of Python [95]. The
GIL is a mutex that permits only a single thread to govern the Python in-
terpreter at any given time, thereby preventing multi-threaded execution even
on systems with multiple CPU cores. Consequently, this restricts VAMPyR to
single-threaded operations during function projection, an impediment not en-
countered with MRCPP. Nonetheless, this limitation can be mitigated in specific
scenarios, such as when projecting Gaussian functions. The GaussFunc, a fea-
ture inherited and directly ported from MRCPP to VAMPyR, is a case in point.
Implemented in C++, GaussFunc effectively bypasses the GIL, enabling par-
allel execution in particular instances. This is demonstrated in Listing 4.17.

4.3.3 Arithmetic Operations

The ergonomic design of VAMPyR extends to arithmetic operations, enabling
users to perform these tasks with syntax that closely resembles standard arith-
metic expressions in Python. The interface provided by VAMPyR abstracts the
management of FunctionTree<D> objects, simplifying the execution of opera-
tions between FunctionTree<D>s or between FunctionTree<D>s and scalars.

For example, adding two FunctionTree<D> objects or modifying one by
another is accomplished with the familiar ‘+‘ and ‘+=‘ operators, similar to
how Python handles basic numerical types:

Source Code 4.10: Addition and Increment in VAMPyR

a = b + c # Add two FunctionTrees

b += c # Increment one FunctionTree by another

Subtraction is equally intuitive, allowing for the direct subtraction of one
FunctionTree<D> from another using the ‘-‘ and ‘-=‘ operators:

Source Code 4.11: Subtraction and Decrement in VAMPyR

a = b - c # Subtract one FunctionTree from another

b -= c # Decrement one FunctionTree by another

Multiplication, too, can be performed cleanly between two FunctionTree<D>
objects or between a FunctionTree<D> and a scalar:

Source Code 4.12: Multiplication in VAMPyR

a = b * c # Multiply two FunctionTrees

b *= 2.0 # Scale a FunctionTree by a factor

While VAMPyRdirectly supports addition, subtraction, and multiplication,
operations such as raising to a power or division are primarily designed to
interact with scalars. Here are examples that illustrate using power and division
with a FunctionTree<D>:



64CHAPTER 4. VERY ACCURATEMULTIRESOLUTION PYTHONROUTINES

Source Code 4.13: Power and Division Operations with Scalars in VAMPyR

c = b ** 3 # Raise FunctionTree coefficients to power of 3

c = b / 2.0 # Divide FunctionTree coefficients by 2

# In-place power and division operations

b **= 3

b /= 2.0

These operators not only streamline the overall coding experience but also
mitigate potential errors that might arise from handling FunctionTree<D>
references and operations manually. By offering an intuitive interface, VAMPyR
provides researchers the ability to focus on the core aspects of their scien-
tific work, encoding mathematical expressions directly into their computational
workflows with ease and precision.

An additional benefit of these dunder methods is the seamless integration
with NumPy, a widely-used library in Python for array and matrix manipu-
lation. The dunder methods allow FunctionTree<D> objects in VAMPyR to
be used directly in NumPy arrays, completely utilizing the efficient computa-
tion that NumPy’s design provides. These combined capabilities of VAMPyR

and NumPy allow for vectorized operations on multiple function trees at once,
improving code readability while maintaining computational efficiency.

For example, if A and B are two NumPy arrays populated with function
trees, we can perform simple arithmetic like ‘C = A + B‘. Here, C is a new
array resulting from the addition of corresponding function trees in A and B.
This application of function-level operations across entire arrays of function
trees at once is a powerful testament to the enhanced capabilities of VAMPyR

when combined with NumPy. There are examples of this in [22] and in the
Jupyter notebooks appended to [49].

4.3.4 Derivative Operators

Derivative operations are pivotal in the analysis of functions, particularly when
dealing with physical phenomena where gradients and divergence play crucial
roles. VAMPyR offers a suite of derivative operators to carry out these operations
efficiently and accurately within the multiwavelet framework.

In VAMPyR, the handling of derivatives is adapted to the particularities of the
multiwavelet basis, which is inherently discontinuous. As explained in section
2.7, classical derivative operators do not exist in the usual sense within this
context. Thus, we employ different methods suited to various situations:

1. The ABGVOperator[28] utilizes the concept of a weak derivative
to compute derivatives through integration by parts, best suited for
non-continuous functions where a conventional derivative is unde-
fined.
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2. The BSOperator[31] relies on a B-spline derivative operator
for continuous functions and is particularly useful for higher order
derivatives.

The choice between these two operators should be informed by the nature
of the function (continuous or not) and the requirements of the derivative com-
putation (single or higher order derivatives). For instance, the ABGVOperator

would be preferable for a function with discontinuities, while the BSOperator

would be optimal for a smooth function where multiple derivatives are needed.
Given these considerations, two principal types of derivative operators are

employed in VAMPyR: the BSOperator and the ABGVOperator.

Source Code 4.14: Using ABGVOperator for Derivatives in VAMPyR

a, b = (0.5, 0.5) # Correspond to central differences

D = vp.ABGVOperator(mra, a, b)

# Compute the gradient components

f_x = D(f, 0) # Derivative along x-axis

f_y = D(f, 1) # Derivative along y-axis

f_z = D(f, 2) # Derivative along z-axis

Alternatively, first- and second-order derivatives can be calculated using the
BSOperator:

Source Code 4.15: Using BSOperator for First and Second Derivatives in
VAMPyR

# First-order derivative operator

D = vp.BSOperator(mra, 1)

# Compute the first-order gradient components

f_x = D(f, 0)

f_y = D(f, 1)

f_z = D(f, 2)

# Second-order derivative operator

D2 = vp.BSOperator(mra, 2)

# Compute the second-order derivatives along each dimension

f_xx = D2(f, 0)

f_yy = D2(f, 1)

f_zz = D2(f, 2)

In vector calculus, the gradient of a scalar field f is a vector field ∇f that
points in the direction of the greatest rate of increase of the scalar field, and
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whose magnitude is the greatest rate of change:

∇f =




∂f
∂x

∂f
∂y

∂f
∂z


 . (4.1)

Conversely, the divergence of a vector field F = (Fx, Fy, Fz) measures the extent
to which the vector field is expanding or converging at a given point:

div F = ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

. (4.2)

Utilizing these concepts, VAMPyR efficiently computes the gradient and di-
vergence of functions as demonstrated below:

Listing 4.1: Calculating Gradient and Divergence in VAMPyR

# Given f i s a FunctionTree o b j e c t r e p r e s e n t i n g a s c a l a r f i e l d

# Compute g r a d i e n t v e c t o r
g r a d f v e c = grad i en t ( ( oper=D, inp=f )

# Compute d ivergence , y i e l d i n g Laplacian o f f
l a p f = d ive rgence ( oper=D, inp=g r a d f v e c )

This implementation in VAMPyR offers an intuitive and readable approach to
conducting differentiation operations on FunctionTree<D> while abstracting
the complexity of underlying multiwavelet-based calculations.

4.3.5 Convolution Operators

Convolution operators play an essential role in various physical applications,
such as solving differential equations related to electrostatic potential and quan-
tum mechanical wavefunctions. These operators, such as the Poisson and
Helmholtz operators, are designed around separable Gaussian kernels that sig-
nificantly reduce the computational complexity from O((k+1)2d) to O(dM(k+
1)d+1), as outlined in Section 2.8.

The Poisson operator, which addresses the Poisson equation described in
Section 2.8.1, and the Helmholtz operator, which is applicable to the Bound
State Helmholtz equation detailed in Section 2.8.2, are readily accessible in
VAMPyR as follows:

Source Code 4.16: Using the Poisson and Helmholtz operators in VAMPyR

poisson_operator = PoissonOperator(mra, prec)

helmholtz_operator = HelmholtzOperator(mra, mu, prec)
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# Apply the Poisson operator to a function

g_poisson = poisson_operator(f)

# Apply the Helmholtz operator to a function

g_helmholtz = helmholtz_operator(f)

Furthermore, custom convolution kernels can be constructed by combining
Gaussian functions. Each Gaussian function in the expansion, defined by pa-
rameters β and α, can be appended to form a kernel object. The subsequent
convolution operator, built using this kernel, is then capable of convolving any
given function within the multiwavelet basis:

Source Code 4.17: Creating and using a custom convolution kernel in VAMPyR

# Initialize a convolution kernel with Gaussian expansions

kernel = GaussExp()

kernel.append(GaussFunc(beta, alpha))

# Construct the convolution operator

T = ConvolutionKernel(mra, kernel, prec)

# Apply the convolution operator to a FunctionTree object

g = T(F)

4.4 Implementation

VAMPyR is built on top of MRCPP, using the pybind11 library to facilitate the
integration of its C++ core into a Python environment. The union of these
two technologies enables VAMPyR to meld the high-performance computation of
MRCPP with the ease-of-use and accessibility of Python.

These key technologies underpin the implementation details of VAMPyR. The
pybind11 library is instrumental in exposing the C++ data structures and
algorithms of MRCPP to Python, offering users the computational efficiency of
MRCPP while enabling them to interact with it through a Pythonic interface.

Within this fusion, the automatic conversion of data types and the direct
invocation of MRCPP’s algorithms in Python play a crucial role. This preserves
the performance benefits of C++ while offering the flexibility and ease-of-use
inherent in Python workflows. Such capabilities are further elaborated in the
following subsections which delve into the binding process, multi-dimensional
data handling, and the Pythonic interface of VAMPyR.

4.4.1 Modifying the FunctionTree<D> for VAMPyR

The FunctionTree<D> is a fundamental object for users of VAMPyR and MRCPP.
To ensure its proper functionality within VAMPyR, it is essential to not only
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import the FunctionTree<D> class from MRCPP but also to establish its inher-
itance from the MWTree<D> and RepresentableFunction<D> classes. This
step is crucial for the compatibility of methods that are transferred from MRCPP

to VAMPyR, which often require inputs of type MWTree<D> or
RepresentableFunction<D>. If the inheritance of the FunctionTree<D> is
not correctly specified, these methods may fail to recognize the tree as a valid
input.

The FunctionTree<D> class is the cornerstone of user interaction within
both MRCPP and VAMPyR, serving as the principal data structure through which
various computational operations are executed. In MRCPP, users have access to
a suite of useful methods, exemplified as follows:

Source Code 4.18: Useful methods of a FunctionTree in MRCPP

// Direct integration of the function

auto integral = f_tree.integrate()

// Computes the L2 norm squared

auto norm_squared = f_tree.getSquareNorm()

// In-place normalization of the FunctionTree<D> instance

f_tree.normalize()

As we transition to VAMPyR, the FunctionTree<D> remains the pivotal object
for user operations. Operations similar to those in Listing 4.18 are performed
in VAMPyR as shown below:

Source Code 4.19: Updated methods on a FunctionTree in VAMPyR

# Direct integration of the function

integral = f_tree.integrate()

# Computes the L2 norm

norm = f_tree.norm()

# Normalization that yields a new FunctionTree<D> instance

f_normalized = f_tree.normalize()

The updates made in VAMPyR enhance user experience: the getSquareNorm

method from MRCPP is changed to norm, aligning with the numpy naming conven-
tion. The refactored normalize method now returns a new FunctionTree<D>
instance, reflecting user feedback.

Arithmetic Operations in VAMPyR

A notable divergence between VAMPyR and MRCPP lies in the implementation
of arithmetic operations. The convenience in VAMPyR comes from overloading
standard arithmetic operators to work with FunctionTree<D> objects, a de-
sign choice that is exemplified by Listings 4.10 through 4.13. This approach
not only makes the code more intuitive but also secures against common errors
when dealing with complex object manipulations.
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The implementation relies on dunder (double underscore) methods, special
functions that Python recognizes for operator overloading. In VAMPyR, these
methods are defined for various arithmetic operations, such as:

Source Code 4.20: Operator overloading for addition in VAMPyR

.def("__add__", &impl__add__<D>, py::is_operator())

For instance, the add method is implemented using a template function that
generates a new FunctionTree<D> by adding two given FunctionTree<D>
objects together:

Source Code 4.21: Implementation of addition operation for FunctionTree

template <int D>

auto impl__add__(FunctionTree<D> *inp_a, FunctionTree<D> *inp_b)

-> std::unique_ptr<FunctionTree<D>> {

auto out = std::make_unique<FunctionTree<D>>(inp_a->getMRA());

FunctionTreeVector<D> vec;

vec.push_back({1.0, inp_a});

vec.push_back({1.0, inp_b});

build_grid(*out, vec);

add(-1.0, *out, vec);

return out;

};

This function begins by creating a unique pointer to a new FunctionTree<D>
based on the MultiResolutionAnalysis<D> of the input trees. Then con-
structs a FunctionTreeVector<D>, a container to store the input function
trees with their associated coefficients, before finally invoking the build grid

and add functions to combine the input trees on a common grid and sum their
values. Note that all dunder methods for arithmetic’s in VAMPyR for arithmetic
operations adhere to a similar pattern.

The primary distinction between the methods used in VAMPyR and MRCPP

lies in their approach to tree refinement. MRCPP adapts the refinement based on
precision. In particular, this is important for multiplication. Since, as discussed
in section 2.4, the tree has to be expanded prior to the operation.

In contrast, VAMPyR’s dunder methods forego dynamic refinement in favor
of a static, predetermined refinement. In general, a union between the trees
are taken before the arithmetic operation. An visual illustration of this can be
seen in Figure 4.2 for the case of addition. For multiplication, a union is first
taken and the tree is refined one level before the multiplication takes place. See
Figure 4.3 for a visual illustration. Where it theoretically should be infinite.
However, numerical tests have shown that one level of refinement is usually
sufficient to keep numerical precision.

A problem with the multiplication operator is how the tree grows with each
operation; it is easy to see how this can expand exponentially. VAMPyR’s crop
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method allows users to contain numerical growth. It trims the FunctionTree<D>
based on a set precision, as depicted in the example below, maintaining accu-
racy while preventing unwieldy tree expansions.

Source Code 4.22: Combining multiple multiplications with the crop function
in VAMPyR

h = f * f * f * f * f # Multiple multiplications leading to tree refinement

f.crop(prec) # Cropping f to maintain precision

h.crop(prec) # Cropping h to precision after multiplications

Thus, while VAMPyR’s methods are less adaptable than those of MRCPP, they
typically meet precision standards. The crop method enhances this by re-
cursively trimming nodes starting from the leaf level, preventing unnecessary
computational overhead and aligning with the users’ precision needs. But as
always an MRCPP type of multiplication in available in the advanced submodule
is avaiable if an MRCPP type of control is required.

Figure 4.2: Tree structure showcasing the dunder method for addition in
VAMPyR. The input trees and the resulting output tree are displayed. Nodes
shaded in the input trees indicate newly generated nodes necessary for per-
forming the operation. Prior to commencing addition, a union operation aligns
the structure of input trees.

Figure 4.3: Tree structure illustrating the dunder method for multiplication in
VAMPyR. The input trees and the output tree are depicted. The nodes shaded
in the input trees denote nodes specifically generated for the operation. Post
aligning the tree structures via a union operation, each leaf node gives rise to
new leaf nodes.

4.4.2 Modifying MRCPP Functions for VAMPyR

Most user-facing functions from MRCPP are directly ported and made avail-
able through the advanced submodule (see Listing 4.3). This module proves
useful when users require a level of control equivalent to that of MRCPP in
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their code. An example of such cases is the dunder methods for multiplica-
tion, where we risk losing precision and experiencing exponential growth of the
FunctionTree<D> object in special scenarios.

In the previous section, we observed how the usability of VAMPyR was en-
hanced by augmenting FunctionTree<D> during the porting. For instance, by
introducing dunder methods for arithmetic operations. In MRCPP, most func-
tions operate on the FunctionTree<D> by passing the FunctionTree<D>
to be modified by reference. In VAMPyR, function projections, convolution
operators, and derivative operators are created and then applied to an ana-
lytic function for projection or a FunctionTree<D>, and they return a new
FunctionTree<D>.

In this section, we will explore how operators for projections, derivatives,
and convolutions — similar to those introduced in section 4.3 — are imple-
mented within VAMPyR. To recapitulate the process, an operator is first instan-
tiated and subsequently applied either to an analytic function, in the case of
function projections, or to a FunctionTree<D>, when dealing with derivatives
and convolutions.

In VAMPyR, the design for function projection and operator application pri-
oritizes user convenience. Operators can be instantiated with the necessary
parameters and can then be applied to functions using a syntax that is con-
sistent with typical Python functions. The following code demonstrates this
process:

Source Code 4.23: Creation and application of an operator in Python.

# Initialize the operator with an mra

O = Operator(mra)

# Apply the operator to the function f

g = O(f)

In Listing 4.23, we see how the operator O is first defined and then applied
directly onto a function f , which would be an analytic function in the case
of a function projection or a FunctionTree<D> in the case O is a Derivative
or Convolution Operator. The output FunctionTree<D> is then returned
directly.

To understand how this is implemented, let us consider the porting code for
the DerivativeOperator<D> as depicted in Listing 4.24. The most important
part of this example, at least with respect to usability, is the implementation of
the dunder method call . In this method, first, a unique FunctionTree<D>
pointer is created. Then the apply function from MRCPP with the derivative
operator is applied onto the FunctionTree<D> pointer, which is then returned.
This is all abstracted away, and the creation and application of the derivative
operator are streamlined.
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Source Code 4.24: Implementation of the DerivativeOperator<D> callable
method.

py::class_<DerivativeOperator<D>>(m, "DerivativeOperator")

.def(py::init<const MultiResolutionAnalysis<D> &, int, int>(),

"mra"_a, "root"_a, "reach"_a)

.def("getOrder", &DerivativeOperator<D>::getOrder)

.def("__call__",

[](DerivativeOperator<D> &oper, FunctionTree<D> *inp, int axis) {

auto out = std::make_unique<FunctionTree<D>>(inp->getMRA());

apply(*out, oper, *inp, axis);

return out;

},

"inp"_a,

"axis"_a = 0);

Through this method, VAMPyR streamlines the process of managing mathe-
matical operations, enabling users to concentrate on scientific inquiries and
computational tasks with reduced concern for the complexity of the underlying
code.
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5.1 Paper 1: VAMPyR – A High-Level Python
Library for Mathematical Operations in a
Multiwavelets Representation

Abstract

Wavelets and Multiwavelets have been progressively employed in
the domain of Quantum Chemistry to address the limitations en-
countered with traditional basis sets, such as atomic orbitals and
plane waves. They offer numerous numerical benefits: precision,
locality, efficient algorithms, and scalable calculations. To harness
these advantages, we introduce VAMPyR, a Python library developed
to facilitate the implementation of Quantum Chemistry equations
through a Multiwavelets approach. This library bridges the gap be-
tween theoretical constructs and practical computation, providing
access to advanced Multiwavelet calculations (algebra, integral, and
differential operator application) via Python. We discuss the main
features of VAMPyR, detail its design, and demonstrate its capabili-
ties and integration with other software platforms through various
examples.

Personal Contributions:

• Initiated the project VAMPyR and assumed the role of the main developer.

• Authored the predominant portion of the theoretical groundwork pre-
sented in the paper.

• Created extensive examples that illustrate the application of the library
in complex mathematical problems and quantum chemistry simulations.
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• Implemented examples showcasing VAMPyR’s compatibility with other Python
packages, thus proving its potential for collaborative and interdisciplinary
projects.
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Wavelets and Multiwavelets have lately been adopted in Quantum Chemistry to overcome12

challenges presented by the two main families of basis sets: atomic orbitals and plane13

waves. In addition to their numerical advantages (high precision, locality, fast algorithms,14

linear scaling, to mention a few) they provide a framework which narrows the gap between15

the theoretical formalism of the fundamental equations and the practical implementation in16

a working code. This realization led us to the development of Python code so called with17

acronym VAMPyR that means Very Accurate Multiresolution Python Routines. VAMPyR18

encodes the binding to a C++ library for Multiwavelet calculations (algebra, integral and19

differential operator application) and exposes the required functionality to write simple20

Python code to solve among others, the Hartree–Fock equations, the generalized Poisson21

Equation and the Dirac equation up to any predefined precision. In this contribution we22

will outline the main features of Multiresolution Analysis using multiwavelets and we will23

describe the design of the code. A few illustrative examples will show the code capabilities24

and its interoperability with other software platforms.25
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I. INTRODUCTION26

Wavelets and Multiwavelets have emerged in the last few decades as a versatile tool for compu-27

tational science. Their strength derives from the combination of frequency separation with locality28

(in contrast to Fourier Transform) and a robust mathematical framework to gauge the precision of a29

calculation. In particular Multiwavelets have been recently employed within the field of Quantum30

Chemistry to overcome some of the known drawbacks of traditional Atomic Orbital (AO)-based31

calculations.1–9 The code which pioneered this approach is M-A-D-N-E-S-S,10 followed by our32

own code MRChem.11 To date, they are the only two codes available worldwide for quantum chem-33

istry calculations using multiwavelets.34

As the development of MRChem unfolded, we found advantageous to separate the mathematical35

code dealing with the MultiWavelet (MW) formalism in a separate library, called MRCPP. Once36

MRCPP was available, we realized it would be useful to be able to access its functionality in a simple37

and low threshold way. That led us to the delvelopment of VAMPyR (Very Accurate Multiwavelets38

Python Routines), which leverages on the functionality of MRCPP, combined with Python’s status as39

a high-level programming language that simplifies the processes of code development, verification,40

and exploration.41

In contrast to traditional quantum chemistry codes typically implemented in lower-level lan-42

guages such as Fortran, C, or C++, which can pose significant barriers for non- expert program-43

mers, VAMPyR offers an accessible and user-friendly platform in Python.44

For this reason Python has become a de facto standard in the scientific community, widely45

taught to science students and used extensively in research. Its high-level syntax and rich ecosys-46

tem, including libraries such as NumPy12, SciPy13 and Matplotlib14, make it a powerful tool47

for scientific computing. Moreover, Python’s integration with Jupyter Notebooks15 has facilitated48

interactive and reproducible research.49

The VAMPyR project aims at providing the scientific community with a robust tool that builds50

upon the capabilities of the Multi-Resolution Computation Program Package (MRCPP). MRCPP is51

a high-performance C++ library, which provides the tools of Multi–Resolution Analysis (MRA)52

with Multiwavelets. It implements low-scaling algorithms and a robust mechanism for error con-53

trol during numerical computations. The goal of VAMPyR is to allow a broader audience to make54

use of these tools while maintaining the original power and efficiency of the MRCPP library.55

One key feature of MRCPP that VAMPyR inherits is its parallelization using OpenMP, a multi-56

2



platform shared-memory parallel programming model.16,17 Despite Python’s limitations with57

shared-memory parallelism due to the Global Interpreter Lock (GIL), VAMPyR retains high com-58

putational performance and efficiency by leveraging OpenMP.18
59

II. MULTIWAVELETS60

In this section, we elucidate the mathematical structures that constitute the basis of multiwavelet61

theories. We focus on the Multiresolution Analysis (MRA), its subsequent wavelet space, and the62

inherent hierarchical structure, delineated by a sequence of nested subspaces V n.63

A. Hierarchical Subspaces in Multiresolution Analysis64

A Multiresolution Analysis (MRA) is defined as a nested sequence of subspaces, V n, spanned65

by k+1 polynomials, conforming to the structure presented in Eq. (1). This hierarchy asymptoti-66

cally approaches to square integrable space L2(R).67

· · · ⊂V−1 ⊂V 0 ⊂V 1 ⊂ ·· · ⊂V n ⊂ ·· · (1)68

According to the framework put forth by Alpert19, each subspace V n partitions the real line into69

non-overlapping segments, each of length 2−n.70

B. Scaling and Wavelet Spaces71

The subspace V n is spanned by a basis {ϕn
i,l}k

i=0. This basis can be generated from a set of k+172

scaling functions {ϕi}k
i=0 that are defined on the unit interval:73

ϕn
i,l(x) = 2n/2ϕi(2nx− l) (2)74

These scaling functions are typically taken either as Legendre polynomials or interpolating La-75

grange polynomials20. It follows that each interval in V n splits into two sub-intervals in V n+1,76

resulting in a doubling of basis functions with every increment in the level n. This establishes the77

nested structure V n ⊂ V n+1 seen in (1). In order to account for features not captured by V n, a78

complementary “wavelet space” W n is defined as:79

W n =V n+1 ⊖V n (3)80
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This wavelet space also consists of disjoint intervals on the real line, with a basis constructed from81

a set of wavelet functions {ψi}k
i=0:82

ψn
i,l(x) = 2n/2ψi(2nx− l) (4)83

The wavelet functions ψi, originally conceived by Alpert19, are orthogonal to the polynomials in84

the corresponding scaling space, this property, known as “vanishing moments”, is essential for the85

numerical efficacy of approximations and operations in this bases.86

Equation (3) leads to the recursive relation Eq. (5):87

V N =V n ⊕W n ⊕W n+1 ⊕·· ·⊕W N−1 (5)88

C. Two-Scale Filter Relations (MW Transform)89

The mathematical framework extends to include two-scale filter relations, between functions at90

different scales, through the filter matrices:91


ψn

l

ϕn
l


=


G(1) G(0)

H(1) H(0)




ϕn+1

2l+1

ϕn+1
2l


 (6)92

The matrices H(0),H(1),G(0), and G(1) are each of dimension (k+ 1)× (k+ 1), and their el-93

ements are derived from the wavelet and scaling functions. See Ref. 20 for a comprehensive94

derivation of these matrices.95

The inherent local properties of these two-scale filter relations are of significance for numerical96

applications. Specifically, they facilitate efficient linear scaling algorithms. The transformation97

articulated in Eq. (6) constitutes the forward wavelet transform, also known as wavelet decompo-98

sition. The inverse of this operation is termed the backward wavelet transform or wavelet recon-99

struction.100

D. Function projection onto the multiwavelet space101

Function projections are an integral part of the MRA framework and associated basis functions.102

These projections facilitate the representation of arbitrary functions within the confines of the the-103

ory established above, serving as a conduit between abstract mathematical concepts and practical,104

computable forms.105
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Consider first the scaling space V n. This space is associated with a projector Pn, employed to106

approximate a function in one dimension (1D):107

f (x)≈ Pn f (x) =
2n−1

∑
l=0

k

∑
j=0

sn, f
j,l ϕn

j,l(x), (7)108

Here, sn, f
j,l are the scaling coefficients, given by:109

sn, f
j,l =

∫
f (x)ϕn

j,l(x)dx. (8)110

Similarly, a wavelet projector Qn is associated with the wavelet space W n:111

Qn f (x) =
2n−1

∑
l=0

k

∑
j=0

wn, f
j,l ψn

j,l(x), (9)112

The wavelet coefficients wn, f
j,l are defined analogously through a projection integral:113

wn, f
j,l =

∫
f (x)ψn

j,l(x)dx. (10)114

E. Adaptive Projection115

Within the framework of multi-resolution representation, as formalized by Equation 5, we use116

the notations f n = Pn f and d f n = Qn f to express the representation of a function in the following117

manner:118

f N = f 0 +
N−1

∑
n=0

d f n. (11)119

This equation gains special significance when considering that the wavelet coefficients, wn
l , ap-120

proach zero for smooth functions. The function representation can thus be rigorously assessed by121

examining the wavelet coefficients at a specific scale n and translation l:122

|wn
l |< ε. (12)123

This mathematical property provides the foundation for an adaptive projection methodology.124

Rather than constraining the function’s projection to a fixed scale n, the scale may be incremen-125

tally increased to n+ 1. Utilizing the two-scale filter relations specified in Equation (6), we can126

compute the wavelet coefficients and assess their magnitude. If these coefficients meet prede-127

fined precision criteria at a specific translation l, that branch of the function representation can be128
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truncated. This truncation effectively focuses computational and data resources only where high129

precision is necessary. Should the desired precision level not be reached, the refinement process130

continues in a recursive manner.131

The strategy takes full advantage of the wavelet basis’ inherent adaptability for efficient func-132

tion representation. Computational and data resources are thereby allocated where they are most133

beneficial, facilitating high-precision representations.134

F. Operator Application in Multiwavelet Framework – Non-Standard Form135

The projection of an operator T onto an MRA can be represented using a non-standard form,136

expressed as follows:137

T N = T 0 +
N

∑
n=0

(An +Bn +Cn) . (13)138

In this decomposition, each term at a given scale n is uniquely defined:139

T n = PnT Pn, An = QnT Qn, (14)140

Bn = QnT Pn, Cn = PnT Qn. (15)141

Here An, Bn, and Cn components exhibit sparsity properties, similar to what is observed for func-142

tions, and are therefore leading to fast, and often linearly scaling algorithms, for a any arbitrary143

predefined precision. The purely scaling part T of the operator is only required at the coarsest144

scale where only a handful of grid points are present. Another important feature of the non-145

standard (NS) form is the absence of coupling between different scales, which allows to preserve146

the adaptive precision of the representation, and independent or asynchronous operator application147

across different scales, which boost computational efficiency.148

III. VAMPYR149

In the architecture of VAMPyR, MRCPP serves as the foundational layer, integrated into Python150

through Pybind11, as illustrated in Figure 1. This setup enables seamless interoperability between151

Python and C++, allowing Pybind11 to automatically convert many standard C++ types to their152

Python equivalents and vice versa. This leads to a more Pythonic and natural interface to the153

MRCPP codebase.154
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Figure 1. Connections between MRChem, MRCPP and VAMPyR. MRCPP implements a high-performance MRA

framework with Multiwavelets (MW). It has function and operator representations as well as fast operator

application. MRChem uses MRCPP as an external library to solve electronic structure systems. VAMPyR imports

features from MRCPP using Pybind11 and brings intuitive design and easy prototyping through Python. It

is used as a python library and is therefore compatible with other quantum chemistry software. VAMPyR

doesn’t include functionality from MRChem.

For the development of VAMPyR, we opted for Pybind11 as our binding framework, chiefly155

for its robustness, maintainability, and alignment with our development objectives. Pybind11 is156

a lightweight, header-only library that utilizes modern C++ standards to automatically infer type157

information, thus streamlining the binding process and enhancing overall code quality.158

To facilitate accessibility and streamline the user experience, multiple installation options are159

available for VAMPyR and MRCPP. The source code for both is openly accessible and distributed160

under the LGPLv3 license on GitHub, specifically within the MRChemSoft repository21. For users161

who prefer a simplified installation procedure, binary packages are also provided through the162

Conda package manager, which is compatible with various Linux and macOS architectures22,23.163

Each new release triggers an automated build process that uploads the binary packages to the164

Conda Forge channel on anaconda.org, thereby easing the installation process and incorporating165

all requisite dependencies. The packages are designed to be compatible with current Python ver-166

sions, ranging from 3.8 to 3.11. For a practical illustration of the installation process using Conda,167

see Listing 1. Thanks to its availability on the Conda package manager, VAMPyR is well-suited168169

for seamless integration into existing scientific computing workflows. This makes it a valuable170

tool for both researchers and professionals involved in high-performance scientific computations.171

Moreover, its Pythonic interface allows VAMPyR to capitalize on the extensive user base of the172

7



Listing 1. Installing VAMPyR using Conda from the terminal.

conda install vampyr -c conda-forge

Python community.173

A. Implementation174

In the development of VAMPyR, the choice of a binding framework is critically important. Sev-175

eral alternatives are available, such as Cython, SWIG, and Boost.Python. We selected Pybind11 to176

ensure robust and maintainable bindings between C++ and Python. Pybind11 aligns well with our177

development objectives and offers multiple advantages. Specifically, it is a lightweight, header-178

only, and standalone library. It employs modern C++ standards to automatically infer type infor-179

mation, thereby streamlining the binding process significantly. This enhances code maintainabil-180

ity, minimizes the potential for bugs, and contributes to the library’s overall efficiency and ease of181

use.182

The integration of MRCPP into Python through Pybind11 serves as the foundational layer for183

VAMPyR. Pybind11 enables seamless communication between Python and C++, capable of auto-184

matically converting many standard C++ types to their Python counterparts, and vice versa. This185

feature results in a more natural and Pythonic interface to the MRCPP code.186

In MRCPP, C++ template classes and functions are utilized to provide abstraction over the di-187

mensionality of the simulation box. These templates enable the generic implementation of data188

structures and algorithms for problems in D dimensions.24 The specialization for 1-, 2-, and 3-189

dimensional problems is performed at compile-time, thereby eliminating any impact on runtime190

performance.25
191

In Python, native template constructs are absent, presenting a challenge for dimension-specific192

specialization. In VAMPyR, we emulate MRCPP’s generic approach by implementing dimension-193

dependent bindings using Pybind11. Specifically, our binding code incorporates template classes194

and functions similar to those in MRCPP. This design permits the relatively straightforward addition195

of functionality for new dimensions, such as 4-dimensional problems, requiring only the insertion196

of a new function invocation in the binding source code. MRCPP’s 1-, 2-, and 3-dimensional tem-197
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plate classes and functions are directly bound to their corresponding dimensions in VAMPyR, as198

demonstrated in Listing 2.199

Listing 2. Importing dimensional-dependent bindings from VAMPyR.

from vampyr import vampyr1d

from vampyr import vampyr2d

from vampyr import vampyr3d

Through this approach, VAMPyR manages to uphold the dimensionality-flexible philosophy in-200

herent in MRCPP, despite Python’s limitations in handling generic datatypes.201

While the MultiResolutionAnalysis and FunctionTree classes in VAMPyR are inherited202

from MRCPP, there are noteworthy distinctions between the vanilla C++ and the corresponding203

Python classes. These differences are introduced to enhance the Python version of the MRCPP204

classes with syntax sugar, making them uniquely suited for quantum chemistry computations in205

a Python environment. Among these enhancements are the overload of various dunder (double206

underscore, also known as magic) methods that have been added to the classes to extend their207

functionalities and make them more Pythonic.208

These dunder (or magic) methods enable the use of Python’s built-in operators on FunctionTree209

objects. For instance, the addition (__add__) and multiplication (__mul__) operators allow for210

the direct use of + and * operators with FunctionTree objects. This improves readability and211

ease-of-use, as it allows developers to write more intuitive code.212

As an example, addition of two FunctionTree objects can be expressed in natural Python213

syntax (listing III A). Where this is possible thanks to the binding code in listing III A.214

Listing 3. Syntax sugar for FunctionTree addition in action.

f_tree1 = vp.FunctionTree(MRA)

f_tree2 = vp.FunctionTree(MRA)

f_tree_sum = f_tree1 + f_tree2
215

216
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Listing 4. C++ binding for operator +.

// allocate new FunctionTree for the output

auto out = std::make_unique<FunctionTree<D>>(inp_a->getMRA());

// arrange input operands in vector of summands

FunctionTreeVector<D> vec;

vec.push_back({1.0, inp_a});

vec.push_back({1.0, inp_b});

// build grid for output value based on summands

build_grid(*out, vec);

// perform summation with no additional refinements

add(-1.0, *out, vec);

// return sum of FunctionTree objects

return out;

These additions provide VAMPyR with a strong advantage over the C++ implementation of217

MRCPP. The use of dunder methods makes VAMPyR more compatible with Python’s syntactic sugar218

and thereby makes the package more accessible and appealing to the broad Python community.219

The above Python code can be equivalently written in desugared form as:220

Listing 5. De-sugared syntax for FunctionTree addition using the advanced bindings submodule.

from vampyr import vampyr3d as vp

f_tree1 = vp.FunctionTree(MRA)

f_tree2 = vp.FunctionTree(MRA)

f_tree_sum = vp.FunctionTree(mra)

vp.advanced.add(-1.0, f_tree_sum, 1.0, f_tree1, 1.0, f_tree2)
221

222
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Although the above listing is more involved than simply applying an arithmetic operator, it223

does provide more flexibility and control which might be necessary in some specific applications.224

IV. MATHEMATICS WITH VAMPYR225

In this section we display some of the theoretical consepts discussed in II with practical exam-226

ples using VAMPyR.227

A. The MultiResolutionAnalysis Object in VAMPyR228

The foundation of VAMPyR’s internal operations is built upon the MultiResolutionAnalysis229

object. This object encapsulates essential information about the physical space being modeled,230

along with configurations for the scaling and wavelet basis functions as defined in the theory of231

MRA (see Section II).232

a. Standard Usage For users seeking a straightforward implementation, VAMPyR provides233

a "Standard Usage" option. In this approach, users are only required to specify the box size and234

polynomial order. The remaining parameters, such as the choice of interpolating polynomials for235

the scaling basis, are automatically configured by the library. Listings 6 illustrate how to create an236

MRA object for unit cells either centered at the origin or anchored at the origin’s left corner.237

Listing 6. Standard usage of the MRA object.

# For a unit cell centered at the origin

MRA = vp.MultiResolutionAnalysis(box=[-L,L], order=k)

# For a unit cell with left corner at the origin

MRA = vp.MultiResolutionAnalysis(box=[L], order=k)
238

239

b. Advanced Usage For users requiring more control over the computational setup, VAMPyR240

offers an "Advanced Usage" approach. This method allows for the customization of various pa-241

rameters, including the world box dimensions and the specific type of scaling basis, such as Leg-242

endre Polynomials. This level of customization grants the user full control over the basis configu-243

ration, as demonstrated in Listing 7. Thus, VAMPyR can cater to a wide range of users, from those244245

who prefer the ease of "Standard Usage" to those who require the additional control offered by246
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Listing 7. Advanced usage of the MRA object.

# Construct scaling basis

scaling_basis = InterpolatingBasis(order) # or LegendreBasis(order)

# Define world box

world_box = BoundingBox(scale=0, corner=[x0, y0, z0],

nboxes=[Nx, Ny, Nz], scaling=[a, b, c])

# in 3D, for 1D and 2D replace list of size 3 with list of size 1 or 2

# Construct MRA

MRA = vp.MultiResolutionAnalysis(box=world_box, basis=scaling_basis)

"Advanced Usage". This flexibility allows users to choose the level of interaction with the MRA247

object based on their specific needs and expertise.248

B. Function Projectors249

In VAMPyR, functions are represented using a tree-based data structure, specifically a graph,250

termed a FunctionTree. This structure naturally arises from the Multi-Resolution Analysis251

(MRA) framework outlined in Section II D.252

a. Tree Structure and Nodes The FunctionTree consists of interconnected nodes orga-253

nized hierarchically. The root node represents the entire physical domain, and each non-terminal254

node or “branch” begets 2d child nodes while connecting to a single parent node. Terminal nodes,255

or “leaves,” possess a parent but have no children. Here, d represents the dimensionality of the256

system, which VAMPyR supports as 1, 2, or 3.257

b. Node Properties Each node corresponds to a d-dimensional box within the physical do-258

main and encapsulates information about a specific set of scaling and wavelet functions defined259

therein. Specifically, a node stores (k+1)d scaling coefficients and (2d −1)(k+1)d wavelet coef-260

ficients, which are governed by the same scaling, n, and translation vector l = (l1, l2, . . . , ld). These261

parameters dictate the node’s spatial size and position.262
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C. Scaling and Wavelet projectors in VAMPyR263

Building on the theoretical concepts described in Section II D and the FunctionTree architec-264

ture discussed in Section IV B, this section provides practical examples to further elucidate these265

ideas.266

To facilitate the implementation of function projections into scaling and wavelet spaces,267

VAMPyR provides the vp.ScalingProjector and vp.WaveletProjector classes. In List-268

ing 8, we define an abstract analytic function f denoted as analytic function. This serves269

to illustrate the essence of how to project a function using the vp.ScalingProjector and270

vp.WaveletProjector classes. Instances P_n and Q_n are then created to perform the pro-271

jection into the scaling and wavelet spaces. The resulting functions, denoted f_n and df_n ,272

are fully described by their mathematical definitions in Equations (7) and (9), respectively.273

Listing 8. Function Projection in VAMPyR by Scaling and Wavelet projectors.

f = lambda x: <analytic function>

P_n = vp.ScalingProjector(MRA, scale=n)

Q_n = vp.WaveletProjector(MRA, scale=n)

f_n = P_n(f)

df_n = Q_n(f)

Figures 2 and 3 provide visual insights into the projection of an exponential ( Slater) function274

at different scales. Each figure consists of two subfigures: the left-hand side displays the scaling275

function space (Figures 2(a) and 3(a)), while the right-hand side illustrates the wavelet function276

space (Figures 2(b) and 3(b)).277

In Figure 2, the projection onto the root scale captures only the general characteristics of the278

Slater function. The vertical lines in both subfigures delineate the physical space spanned by k+1279

scaling and wavelet functions, offering a broad approximation of the function.280

Figure 3, on the other hand, showcases the projection at the 4th scale. The scaling function281

space on the left-hand side captures more structural details, as indicated by the nuanced curve.282

Despite the improvements, it still falls short of replicating the sharpness of the original Slater283

function. On the right-hand side, the reduced magnitude of the wavelet coefficients suggests a284

more accurate approximation. Importantly, this also highlights areas around the function’s cusp285
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Listing 9. Adaptive Function Projection in VAMPyR.

P_eps = vp.ScalingProjector(MRA, prec=epsilon)

f_eps = P_eps(f)

where information is still lacking, affirming the role of wavelet space as an indicator of approxi-286

mation quality.287

(a) (b)

Figure 2. Projection of Slater function onto different bases at root scale. Left: Projection onto scaling

function space V 0
4 with vertical lines marking the physical space spanned by k+1 scaling functions. Right:

Projection onto wavelet function space W 0
4 , where vertical lines indicate the physical space spanned by k+1

wavelet functions.

D. Adaptive Projection in VAMPyR288

Building on the mathematical framework presented in Section II E, we delve into the practi-289

cal aspects of adaptive projection within VAMPyR. Unlike the fixed-scale projection illustrated in290

Listing 8, adaptive projection leverages the prec parameter to autonomously fine-tune the approxi-291

mation’s precision, as shown in Listing 9. The visual comparison in Figure 4 between the adaptive292293

and fixed-scale projections (previously shown in Figures 2 and 3) reveals the efficacy of the adap-294

tive method. Notably, it accomplishes a nuanced approximation using fewer basis functions. This295

is manifested by the non-uniform distribution of vertical lines: sparse in smooth regions and dense296

14



in areas with sharp variations.297

By adaptively concentrating computational and data resources where they are most efficacious,298

this technique offers an optimized pathway to both efficient and precise function approximations.299

E. Arithmetic Operations in FunctionTrees300

In VAMPyR, arithmetic operations on FunctionTree objects are intuitive and flexible. Standard301

Python operators like +, −, ∗, /, and ∗∗ are employed for these elementary operations.302

For a detailed example, refer to Listing 10, which showcases arithmetic operations with303

FunctionTree objects.304

In-place operations can also be performed on existing FunctionTree objects, as demonstrated305

in Listing 11.306

In these examples, f and g are instances of FunctionTree, and a is a scalar. These operations307

provide an efficient and user-friendly way to manipulate FunctionTree objects in VAMPyR.308

(a) (b) .

Figure 3. Projection of Slater function onto different bases at the 4th scale. Left: Projection onto scaling

function space V 4, with vertical lines delineating the physical space spanned by k + 1 scaling functions.

Right: Projection onto wavelet function space W 4, where vertical lines mark the physical space spanned by

k+1 wavelet functions.
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Figure 4. Adaptive projection of the Slater function with prec = 1.0×10−1. The non-uniform vertical lines

indicate the physical space spanned by the adaptive basis functions, underscoring the method’s efficiency

and precision.

F. Vectorizing Function Trees with NumPy309

The seamless integration between the overloaded arithmetic methods in VAMPyR and NumPy’s310

flexible data structures provides a range of computational advantages. Among these advantages,311

the support for multi-dimensional arrays, broadcasting, and linear algebra operations stand312

out. Although NumPy is primarily optimized for integers and floating-point numbers, its data struc-313

tures can be extended to accommodate custom objects such as FunctionTrees. This capability314

enables the incorporation of FunctionTrees within NumPy arrays, thus allowing for the full suite315

of NumPy’s array-oriented computing features.316

For illustration, consider the example in Listing 12, where we encapsulate a matrix of function317

trees within a NumPy array and execute various matrix operations:318

As demonstrated in Listing 12, the integration between VAMPyR’s FunctionTree objects319

16



Listing 10. Basic Arithmetic Operations in VAMPyR.

# Arithmetics with scalars

a_mult_f = a * f # Scalar on the left

f_mult_a = f * a # Scalar on the right

f_div_a = f / a # Division by scalar

f_pow_a = f ** a # Power operator

# Arithmetics between FunctionTrees

f_mult_g = f * g # Multiplication operator

f_add_g = f + g # Addition operator

f_sub_g = f - g # Subtraction operator

Listing 11. In-Place Operations in VAMPyR.

# In-place arithmetics

f *= a # Multiplication with scalar

f *= g # Multiplication with function

f += g # Addition with function

f -= g # Subtraction with function

and NumPy arrays simplifies the implementation of complex mathematical operations. Through320

NumPy’s multi-dimensional arrays, it is possible to organize and manipulate arrays of function321

trees efficiently. Broadcasting allows for the addition of a single FunctionTree (or scalar) to322

an entire array of FunctionTrees. Furthermore, NumPy’s built-in linear algebra functions, such323

as the matrix multiplication operator ‘@‘, can be used for matrix operations. This approach not324

only improves the readability of the code but also offers computational benefits, as we will further325

discuss in Section V.326
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Listing 12. Performing matrix operations using function trees in a NumPy array.

# Creation of a matrix containing function trees

matrix = np.array([[a_tree, b_tree], [c_tree, d_tree]])

# Performing matrix multiplication

matrix_mul = matrix @ matrix

# Performing addition and subtraction

matrix_sum = matrix + matrix

matrix_neg = matrix - matrix

# Multiplication by a scalar

matrix_mul_scalar = matrix * 2

# Demonstrating broadcasting by adding a single function tree to all elements

matrix_bcast_add = matrix + single_tree

G. Derivative Operators in VAMPyR327

Handling derivatives in VAMPyR presents a unique challenge due to the discontinuous nature328

of the multiwavelet basis. Traditional derivative operators are inapplicable, making the task of329

differentiating functions non-trivial. However, VAMPyR offers two specialized operators to address330

this issue, each tailored for specific requirements concerning the continuity of the function and331

the desired order of the derivative. These methods are based on the works by Alpert et. al20and332

Anderson et. al.26 approaches.333

Both the ABGVOperator and the BSOperator apply the operators following the non-standard334

form as described in Subsection II F, allowing for efficient and accurate calculations.335

1. ABGVOperator: Designed for non-continuous functions, this operator provides a weak for-336

mulation for first-order derivatives. It is primarily suitable for handling first-order deriva-337

tives and offers a balance between accuracy and computational efficiency. Usage is demon-338
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strated in Listing 13.339

2. BSOperator: This operator is more versatile and designed for continuous functions. It340

accommodates higher-order derivatives by transforming the function onto a B-spline basis341

before differentiation. See Listing 14 for a practical example.342

Both operators provide distinct advantages depending on the application, making VAMPyR a343

flexible tool for a variety of computational scenarios.344

Listing 13. First-order derivatives using ABGVOperator.

D = vp.ABGVOperator(MRA)

# x, y, z derivatives using ABGVOperator

f_x = D(f, 0)

f_y = D(f, 1)

f_z = D(f, 2)

H. Convolution Operators in VAMPyR345

In VAMPyR, convolution operators serve as more than just a reliable alternative to poorly-defined346

derivative operators. They are essential tools for solving integral forms of key equations in Quan-347

tum Chemistry, particularly in three-dimensional spaces. The two most crucial operators—the348

Poisson and the bound-state Helmholtz operators—are directly implemented in the library.349

K(x,y) =
e−µ∥x−y∥

∥x−y∥ , (16)350

where µ = 0 yields the Poisson kernel, and µ > 0 corresponds to the bound-state Helmholtz kernel.351

Importantly, both operators are implemented as a sum of Gaussian functions, consistent with the352

general approach for constructing convolution operators in VAMPyR.353

The MW basis is particularly well-suited for handling these equations due to its sparse function354

representations and non-standard form. Furthermore, these kernels can be approximated as a sum355

of Gaussians:356
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Listing 14. First- and second-order derivatives using BSOperator.

D1 = vp.BSOperator(MRA, 1) # First-order derivative operator

D2 = vp.BSOperator(MRA, 2) # Second-order derivative operator

# First-order derivatives

f_x = D1(f, 0)

f_y = D1(f, 1)

f_z = D1(f, 2)

# Second-order derivatives

f_xx = D2(f, 0)

f_yy = D2(f, 1)

f_zz = D2(f, 2)

K(x,y)≈
M

∑
i=1

αi exp(−β∥x−y∥2). (17)357

This Gaussian approximation, combined with the tensor product nature of the MW basis, allows358

for precise and fast operator applications.359

Listing 15. Creating and applying Poisson and Helmholtz operators in VAMPyR.

P_oper = vp.PoissonOperator(mra, prec)

H_oper = vp.HelmholtzOperator(mra, mu, prec)

g_tree = P_oper(f_tree)

g_tree = H_oper(f_tree)

A more general method for constructing convolution operators based on Gaussian expansion360

is also available in VAMPyR. This approach is illustrated with an example in Listing 16. Addi-361

tionally, to highlight the versatility afforded by the Python framework, Figure 5 demonstrates a362
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(a) Original image projected onto the

Multi-Resolution Analysis (MRA).

(b) Resulting image after performing convolution

with a Gaussian Kernel, leading to smoothing or

blurring of the original image.

Figure 5. Illustration of convolution process in VAMPyR.

non-traditional application in image processing, although VAMPyR is not generally optimized for363

such tasks.364

Listing 16. Construction of a Custom Convolution Operator in VAMPyR.

# Create a 1D GaussExp object, serving as a container for Gaussians

kernel = vp1.GaussExp()

# Append a Gaussian function to the kernel

kernel.append(vp1.GaussFunc(beta, alpha))

# Construct the convolution operator

T = vp.ConvolutionOperator(mra, kernel, prec)

# Apply the operator to a function tree

g_tree = T(f_tree)
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V. FOUR LITTLE PIECES OF QUANTUM CHEMISTRY365

One of the main technical challenges of quantum chemistry is the large gap between the equa-366

tions describing the physical nature of the system and their practical realization in a working code.367

This gap arises because the equations in their original form are in general too complicated to be368

solved. To achieve equations which have a manageable computational cost, it has so far been nec-369

essary to make use of representations which convey most of the physics in a simplified way. We370

will here present four little pieces of quantum chemistry where we show how the MW representa-371

tion of functions and operators in MRCPP and the simple Python interface provided by VAMPyR can372

close this semantic gap.373

A. The Self Consistent Field equations of Hartree–Fock and Density Functional Theory374

The starting point of most Quantum Chemistry calculations involve one Slater determinant,375

because it automatically accounts for the Pauli exclusion principle and allows to express quantities376

in a sum of orbital contributions. In particular, the energy expression for a Slater determinant Ψ in377

atomic units is given by:378

E[Ψ] = ∑
i
⟨ψi|ĥ|ψi⟩+

1
2 ∑

i, j
⟨ψi|Ĵ j − K̂ j|ψ j⟩ (18)379

Here, ĥ is the one-electron Hamiltonian:380

ĥφi =
(
T̂ +V̂n

)
φi (19)381

T̂ = −1
2∇2 is the kinetic energy operator, capturing the energy associated with the motion of the382

particles. The nuclear potential energy operator, V̂n = −∑I

(
ZI

|r−RI |

)
, represents the energy from383

the potential between the nuclei in the system and the electrons. Ĵ j and K̂ j denote the Coulomb384

and exchange interaction operators, respectively, and are defined as:385

Ĵ jψi = P̂
[
|ψ j|2

]
ψi (20)386

K̂ jψi = P̂
[
ψ jψi

]
ψ j (21)387

By minimizing the energy E[Ψ] with respect to variations in the orbitals, under the constraint388

that the spatial orbitals remain orthogonal:389

⟨E⟩HF = minE[Ψ] ⟨ψi|ψ j⟩= δi, j (22)390
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, the Hartree–Fock equations are obtained27:391

F̂ψi =
(
ĥ+ Ĵ− K̂

)
ψi = ∑

j
Fi jψ j (23)392

where F̂ = T̂ + vnuc + Ĵ− K̂ +V̂xc is the Fock operator and Fi j = ⟨ψi|F̂ |ψ j⟩are its matrix elements393

in the chosen oribitals.394

Traditional quantum chemistry methods make use of an expansion of the orbitals in a fixed set395

of atomic orbitals χ: the problem is then cast in matrix form and the eigenvalues (energies) and396

eigenvectors (orbitals) are obtained by standard linear algebra techniques. The obvious advantage397

is a representation closely related to the physics of the system (atomic orbitals), but this comes at398

a price: the implementation deals with the representation of such functions, their integrals, their399

overlaps, and seemingly simple operations such as applying an operator, multiplying two func-400

tions, a change of gauge become technically complicated obfuscating the physical significance.401

By using MWs orbitals are represented directly in an adaptive real-space grid and the basis is402

therefore not predefined.403

1. Practical Implementation of Hartree–Fock Equations404

This discussion will primarily focus on closed-shell systems, where every orbital is doubly405

occupied with one electron having spin up (alpha) and the other with spin down (beta). The406

Hartree–Fock equations (23) for these systems can be reformulated as:407

[
T̂ +V̂

]
Φ = ΦF. (24)408

In the above equation, Φ denotes a vector of doubly occupied orbitals, F = ⟨Φ|T̂ +V̂ |Φ⟩ represents409

the Fock matrix, and V̂ = V̂nuc + 2Ĵ − K̂ is the potential operator. The terms here are the nuclear410

potential:411

V̂nuc = ∑
I

ZI

|r−RI|
, (25)412

Coulomb and exchange operators. The latter two defined above in equations (20), and (21).413

The closed-shell assumption eases our calculations by negating the need to consider unpaired414

electrons and enabling us to treat spinorbitals as real functions instead of complex ones. Many415

stable molecules and atoms have closed shell configurations, which is why this is a common416

scenario in quantum chemistry.417
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In the context of a multiwavelet approach, we opt to address partial differential equations418

(PDEs) in their integral form. The closed-shell Hartree–Fock equations (24) are then restructured419

into their integral representation, facilitating self-consistent resolution via an iterative scheme.420

This scheme, demonstrated below, continues until self-consistency is reached:421

Φ̃n+1 =−2Ĝµ⃗n [
V̂ Φn +Φn (Λn −Fn)

]
(26)422

In the above equation, Ĝµ⃗ is the bound-state Helmholtz operator, functioning as a convolution423

operator:424

Ĝµ [φ ] =
∫

Gµ(r′)φ(r− r′)dr′ (27)425

with the Helmholtz kernel Gµ = e−µr

r .426

Within this context, µn
i =

√
−2λ n

i is defined as a positive real number, and Λn
i j = λ n

i δi j is a427

diagonal matrix with elements corresponding to the parameters used in constructing the Helmholtz428

vector. In practical applications, we set λ n
i = Fn

ii to nullify the diagonal elements in (Λn −Fn).429

The programmatic implementation of these equations incorporates a Lowdin orthogonalization430

of the orbital vectors, ensuring the desired orthogonality condition. This process is illustrated in431

Listing ??.432

We base our implementation on these equations. The SCF equation (26) is implemented in433

Python, as demonstrated in Listing 17:434

Listing 17. Python implementation of the SCF equation.

VPhi = V_nuc(Phi_n) + 2J_n(Phi_n) - K_n(Phi_n)

Phi_np1 = -2G(VPhi + (Lambda_n - F_n) @ Phi_n)

This approach results in a direct analogue to the original mathematical formulation. Here,435

we operate on a NumPy vector of function trees representing our orbital vector . The functions436

V_nuc, J_n, and K_n correspond to the nuclear potential, Coulomb operator, and exchange opera-437

tor, respectively. These operators (defined in equations (??), (??), and (??)) are implemented in a438

vectorized manner using NumPy. For example, the CouloumbOperator class is presented in Listing439

18: This pythonic implementation leverages NumPy’s vectorization capabilities to handle function440441

tree objects efficiently, thereby enabling straightforward, readable implementations.442
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Listing 18. Python implementation of the Couloumb operator.

class CouloumbOperator():

def __init__(self, mra, Psi, prec):

self.mra = mra

self.Psi = Psi

self.prec = prec

self.poisson = vp.PoissonOperator(mra=mra, prec=self.prec)

self.potential = None

self.setup()

def setup(self):

rho = self.Psi[0]**2

for i in range(1, len(self.Psi)):

rho += self.Psi[i]**2

rho.crop(self.prec)

self.potential = (4.0*np.pi)*self.poisson(rho).crop(self.prec)

def __call__(self, Phi):

return np.array([(self.potential*phi).crop(self.prec) for phi in Phi])

B. Solvation through the Polarizable Continuum model443

PCM has been used to represent solvent effects for over fifty years and has proven to be an ef-444

fective way to compute electrostatic effects in solvation28. This is because the degrees of freedom445

of the solvent are reduced as no solvent molecule is explicitly included in the computation. Instead446

the solvent is represented by its relative permittivity εr, which can be parameterized from its bulk447

properties.448

The solvation energy ER is computed from the solute-solvent interaction reaction potential,449

often just called a reaction potential VR, and the total solute charge density ρsol450

ER =
1
2

∫
dxVR(x)ρsol(x). (28)451

The reaction potential VR arises from the surface charge distribution γs(x) induced at a boundary452

between the bulk solvent and the solute. This boundary is called a cavity, and it encapsulates the453
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whole solute. The position dependent permittivity, ε(r), takes the value of the permittivity of free454

space ε0 inside this boundary while on the outside it takes the value of the relative permittivity of455

the solvent εr.456

We compute the reaction potential by repeated application of the Poisson operator P(x)457

VR(x) = P(x)⋆
[
ρe f f (x)+ γs(x)

]
(29)458

where the effective density ρe f f is defined as459

ρe f f (x) = 4π
(

ρsol(x)
ε(x)

−ρ(r)
)

(30)460

For further details on the equations and variables, the reader is directed to Gerez S. et al.29
461

where a thorough study of theory and implementation has been done.462

1. Practical Implementation of Solvation463

The example in listing 19 shows how PCM has been implemented using VAMPyR. Here we464

have assumed we already have a projected permittivity function and the total solute density465

function together with a suitable mra and an function that computes γs called computeGamma.466

Look up on the VAMPyR documentation page for a hands-on example of this implementation.467

C. The Dirac equation for one electron468

The last of the three pieces we present is the Dirac equation for one electron:469


(V +mc2 − ε) c(σ ·p)

c(σ ·p) (V − ε −mc2)




ψL

ψS


= 0 (31)470

where V is the external potential, ε is the energy eigenvalue, c is the speed of light, p is the471

momentum operator and σ is the vector collecting the three Pauli matrices. As shown by Black-472

ledge and Babajanov? and later exploited by Anderson et al. ? , the Dirac equation can also be473

reformulated as an integral equation as:474


ψL

ψS


=

−1
2mc2


(ε +mc2) c(σ ·p)

c(σ ·p) (ε −mc2)


Gµ ∗


V


ψL

ψS




 (32)475

where Gµ is the bound-state Helmholtz kernel as in the non relativistic case, and µ =
√

m2c4−ε
mc2 .476

The above integral equation can be solved iteratively as for the non relativistic case.477
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Listing 19. Python implementation of PCM in VAMPyR.

# Initialize the poisson operator

P = vp.PoissonOperator(mra=mra, prec=1.0e-5)

# Solve the standard Poisson equation

V_vac = P(4*pi*density)

# Compute the initial gamma_s

gamma_s = computeGamma(V_vac)

# Construct effective density rho_eff

rho_eff = (4 * np.pi) * ((density * (permittivity)**(-1)) - density)

# Compute the initial reaction potential

V_R = P(rho_eff + gamma_s)

# Solve the GPE by iteration

for i in range(100):

V = V_vac + V_R

gamma_s = computeGamma(V, permittivity)

V_R_np1 = P(rho_eff + gamma_s)

dV_R_n = V_R_np1 - V_R

update = dV_R_n.norm()

V_R = V_R_np1.deepCopy()

if (abs(update) <= 1.0e-5):

break

# compute the final energy and finish.

E_R = (1/2)*vp.dot(V_R, rho)

1. Practical implementation of the Dirac Equation478

The algorithm to solve the Dirac equation is in its general traits identical to the non-relativistic479

case. The main difference is that the infrastructure required to deal with 4-component spinors480

needs to be implemented.481

Our design is built essentially on two Python classes: one to deal with complex functions482
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(a single component of a spinor is a complex function) and another one to deal with the four483

components. Thanks to the design of VAMPyR those classes are easy to implement and use, for the484

most part overloading dunder operators.485

The listing?? shows a portion of the class implementation for the 4-component spinor. The486

objects are made callable and work as NumPy arrays. Each component is itself a complex function487

object (defined in a separate class). Some dunder methods are shown and the methods to perform488

the operation cα · pψ are also reported.489490

With the spinor class implementation at hand, the iterative scheme to converge the Hydrogen491

atom is easily implemented:492

First the energy is computed in order to obtain the parameter µ , then comes the convolution493

of V ψ with the Helmholtz kernel Gµ , and finally the Dirac Hamiltonian plus the energy hD + ε is494

applied to the convolution. The iteration is repeated until the norm of the spinor update is below495

the requested threshold. At the end of the iteration the energy must be computed once more (not496

reported in the listing).497

D. Time dependent Schrödinger equation498

Here we demonstrate how the multiwavelets machinery can be exploited for time evolution499

simulations. The main equation of interest is the following500

i∂tΨ =
(
T̂ +V̂

)
Ψ, (33)501

where the potential V̂ may depend on time in general. This equation is complemented by a given502

initial wave function Ψ(x,0) = Ψ0(x). Consideration of time-dependent potentials does not make503

the problem more difficult to solve, and so in this paper it won’t be utilized for simplicity of504

presentation. Moreover, we will focus on one dimensional problem, so V =V (x) and Ψ = Ψ(x, t)505

with x, t ∈ R.506

A usual way of numerical treatment of (33) is to choose a small time step t > 0 and construct507

the time evolution operator on interval [0, t]. Then applying it iteratively one can arrive to the508

solution at some given finite time moment, thanks to the semigroup property of the propagator.509

This propagator can be written down in the very simple terms510

Ψ(t) = exp
(
−it
(
T̂ +V̂

))
Ψ0, (34)511

where we used the fact that the potential is time-independent. Our aim is to construct this expo-512
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nential operator at least for small time step t > 0. As we normally do not have an access to the513

full collection of eigenfunctions and eigenvalues for the Hamiltonian, we have to split the propa-514

gator on kinetic exp
(
−itT̂

)
and potential exp

(
−itV̂

)
parts. Note that the latter is a multiplication515

operator in the physical space, whereas the first one is a multiplication operator in the momentum516

space. Such splitting leads to an additional source of error, since the kinetic and potential energy517

operators do not commute. Ignoring this, one obtains a time evolution numerical scheme of the518

first order519

exp
(
−it
(
T̂ +V̂

))
= exp

(
−itT̂

)
exp
(
−itV̂

)
+O

(
t2)

520

that is the simplest possible splitting, too rough though for practical applications. We will make521

use of the following fourth order scheme30
522

eAt+Bt = exp
( t

6
B
)

exp
( t

2
A
)

exp
(

2t
3

B̃
)

exp
( t

2
A
)

exp
( t

6
B
)
+O

(
t5
)
, (35)523

where524

B̃ = B+
t2

48
[B, [A,B]]. (36)525

In the case of A = −iT̂ and B = −iV̂ this B̃ turns out to be a multiplication operator containing526

potential gradient ∂xV (x). Remarkably, this high order scheme requires only two applications of527

the free-particle semigroup operator exp
(
−itT̂/2

)
per time step. It is also very easy to implement:528

529

class ChinChenA(object):

def __init__(self, expA, expB, exp_tildeB):

self.expA = expA

self.expB = expB

self.exp_tildeB = exp_tildeB

def __call__(self, u):

u = self.expB(u) # 1/6*dt

u = self.expA(u) # 1/2*dt

u = self.exp_tildeB(u) # 2/3*dt

u = self.expA(u) # 1/2*dt

u = self.expB(u) # 1/6*dt

return u
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Now we can conclude that for an effective simulation of small quantum systems it is enough to530

have a good numerical presentation of exp
(
it∂ 2

x
)
, where t > 0 is normally taken less than a time531

step. We remind that the exponent operator forms a semigroup representing solutions of the free532

particle equation533

i∂tΨ+∂ 2
x Ψ = 0.534

In other words, for any Ψ0 ∈ L2(R) function Ψ = exp
(
it∂ 2

x
)

Ψ0 solves this equation. This is a535

convolution operator with the kernel536

K(x,y) =
exp(−iπ/4)√

4πt
exp
(

i(x− y)2

4t

)
,537

and so one anticipates that the machinery described above would work here as well. However,538

in practice it turns out to be difficult to discretise it in a similar manner without damping the539

high frequencies of Green’s function31. We developed a completely different approach to this540

discretisation problem32.541

1. Practical implementation of the Schrödinger semigroup542

The detailed theory behind algorithm in use follows in a separate upcoming publication32. Here543

we present only the working formulas encoded in MRCPP. Let
[
σn

l′−l

]
j′ j (t) stay for matrix elements544

of the time evolution operator Pn exp
(
it∂ 2

x
)

Pn at scale n with respect to the Legendre scaling basis545

ϕn
j,l(x). Then546

[σn
l ]p j (t) =

∞

∑
k=0

C2k
jpJ2k+ j+p(l,4nt), (37)547

where548

Jm(l,a) =
ei π

4 (m−1)

2π(m+2)!

∫

R
exp
(

ρl exp
(

i
π
4

)
−aρ2

)
ρmdρ (38)549

satisfying the following relation550

Jm+1 =
il

2a(m+3)
Jm +

im
2a(m+2)(m+3)

Jm−1, m = 0,1,2, . . . , (39)551

with the agreement J−1 = 0 and552

J0 =
e−i π

4

4
√

πa
exp
(

il2

4a

)
. (40)553

These power integrals depend on the time step parameter t > 0, whereas the coefficients C2k
jp are554

problem-independent and can be calculated once as555

Ck
jp =

j

∑
m=0

p

∑
q=0

(−1)m+1(k+2+ j+ p)!
(k+2+ j+ p+m+q)!

(
A j

mBp
q +(−1)k+ j+p+m+qB j

mAp
q

)
.556
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The coefficients appearing here under the double sum may be found as follows557

A1
0 =

√
3, A1

1 = 2
√

3, B1
0 =

√
3, B1

1 =−2
√

3.558

For j ⩾ 1 we have the following relation559

A j+1
0 =

√
2 j+3
2 j−1

A j−1
0

A j+1
1 =

√
2 j+3
2 j−1

A j−1
1 −2

√
(2 j+1)(2 j+3)A j

0

. . . . . . . . . . . . . . .

A j+1
j−1 =

√
2 j+3
2 j−1

A j−1
j−1 −2

√
(2 j+1)(2 j+3)A j

j−2

A j+1
j =−2

√
(2 j+1)(2 j+3)A j

j−1

A j+1
j+1 =−2

√
(2 j+1)(2 j+3)A j

j

560

and B j
m obey the same recurrence for j ⩾ 1.561

The MRCPP implementation of the time evolution operator exp
(
it∂ 2

x
)

is under optimization562

currently, though it is already available in VAMPyR:563

def create_unitary_kinetic_operator(mra, precision, time, finest_scale):

real = vp1.TimeEvolutionOperator(mra, precision, time, finest_scale, False)

imag = vp1.TimeEvolutionOperator(mra, precision, time, finest_scale, True)

return UnitaryExponentGroup(real, imag)

VAMPyR is using real-space techniques. So if we associate with each complex-valued function564

a vector consisting of two real functions, then the semigroups under consideration will have the565

following common form566

exp
(
−iĤt

)
=


 cos Ĥt sin Ĥt

−sin Ĥt cos Ĥt


 , operating on vector-functions Ψ(t) =


u(t)

v(t)


 .567

Here self-adjoint Ĥ can stand for the kinetic energy −∂ 2
x , time independent potential V (x) or568

Hamiltonian −∂ 2
x +V (x), which one incorporates in the code:569
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class UnitaryExponentGroup(object):

def __init__(self, real, imag):

self.real = real

self.imag = imag

def __call__(self, psi):

u = psi[0]

v = psi[1]

res0 = self.real(u) - self.imag(v)

res1 = self.imag(u) + self.real(v)

return np.array([ res0, res1 ])

It finishes the description of the unitary exponential operator associated with the kinetic energy.570

In order to encode the unitary group associated with the potential energy, we define the general571

multiplication operator:572

class MultiplicationOperator(object):

def __init__(self, function):

self.function = function

def __call__(self, function):

return self.function * function

Now the tree structure of the potential semigroup exp(−itV ) is introduced:573

def create_unitary_potential_operator(P, V, t):

def real(x):

return np.cos(V(x) * t)

real = P(real)

def imag(x):

return - np.sin(V(x) * t)

imag = P(imag)

real = MultiplicationOperator(real)

imag = MultiplicationOperator(imag)
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return UnitaryExponentGroup(real, imag)

Together with a splitting scheme, for example (35), this completes the algorithm description for574

the time evolution simulations.575

The above algorithm in work is demonstrated on a very simple example of the Gaussian wave576

packet577

Ψ0(x) =
(

1
2πσ2

)1/4

exp
(
−(x− x0)

2

4σ2

)
578

evolving with time in the harmonic potential V (x) =V0(x−x1)
2. The equation under consideration579

is (33) with T̂ =−∂ 2
x . It is well known that the density |Ψ(t)|2 oscillates in the harmonic potential580

with the period tperiod = π/
√

V0. More precisely, Ψ
(
tperiod

)
=−Ψ0. This can immediately be seen581

taking into account that the eigenvalues for the Hamiltonian are
√

V0(2n+ 1). We take x0 = 0.3,582

σ = 0.04 and x1 = 0.5, V0 = 25000. All the parameters are chosen in a way that the solution stays583

localized mainly on the space interval [0,1]. Note that B̃ being used in (35) simplifies to584

B̃ =−iṼ =−iV +
it2

24
(∂xV )2 =−iṼ0(x− x0)

2, where Ṽ0 =V0 −
(tV0)

2

6
,585

according to (36). Thus as we have already mentioned above, B̃ and so the corresponding exponent586

in (35) are multiplication operators.587

In Listing 22 we define all the necessary operators and initialize Scheme (35). Actual simu-588

lations are conducted in Listing 23. Figure 6 demonstrates the results of these calculations: the589

oscillation movement of the density |Ψ(t)|2 and the difference between the numerical and exact590

solution at the time moment t = tperiod.591

VI. INTEROPERABILITY WITH OTHER PACKAGES592

One of the main benefits of introducing a Python interface is the seamless interoperability it593

offers with a vast number of other useful packages. This interoperability not only simplifies the594

usage of the package but also enhances its capabilities by allowing the integration of features595

provided by other packages. In this section, we will explore some potential applications of this596

interoperability, showcasing how VAMPyR can interact with other packages to efficiently perform597

tasks that may otherwise be computationally demanding or require complex implementation.598

The power of interoperability has already been illustrated through our previous examples,599
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(a) Density evolution in the harmonic potential. (b) The difference between the numerical and exact

solution.

Figure 6. Simulation of (33) in VAMPyR.

where the NumPy and Matplotlib packages were used in tandem with VAMPyR for various com-600

putational and visualization tasks. However, we can push the envelope even further.601

As an example, the Self-Consistent Field (SCF) solver implemented in VAMPyR, though fully602

general, encounters practical limitations with more complex molecular systems. One primary603

challenge is the selection of an appropriate initial guess for the orbitals; a poor choice can severely604

impact the convergence rate and even result in a failure to locate the global energy minimum.605

The first step beyond the Hartree-Fock (HF) approximation might be to incorporate exchange and606

correlation density functionals, which, while beneficial, can be tedious to implement.607

Here is where interoperability steps in. We can leverage the capabilities of different Python608

packages to address these issues. We will walk through examples demonstrating how VAMPyR can:609

• Use VeloxChem to generate an initial guess for a SCF, speeding up the process and increas-610

ing the chance of successful convergence.611

• Cooperate with VeloxChem to compute a potential energy surface grid, effectively utilizing612

computational resources.613

• Perform stability analysis on Density Functional Theory (DFT) functionals from Libxc,614

simplifying the incorporation of exchange and correlation effects.615

These examples, while not exhaustive, demonstrate the potential for integrating VAMPyR with616
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other Python-based scientific computing packages, creating an efficient and powerful computa-617

tional toolset.618

A. Generating an Initial Guess with VeloxChem619

The efficiency of SCF calculations can be significantly improved with a suitable initial guess.620

A common approach to obtaining this is to utilize electronic structure packages like VeloxChem.621

As both VeloxChem and VAMPyR provide Python interfaces, they can seamlessly interoperate, ex-622

emplifying the benefits of using Python for scientific software. A suitable initial guess not only623

enhances the chances of reaching convergence but also accelerates the convergence rate, as we624

have seen in the earlier examples with suboptimal starting guesses (see Section V).625

Here, we illustrate how to generate an initial guess using VeloxChem that can be imported into626

VAMPyR. Reconstructing the Molecular Orbitals (MOs) (or electron density) from the AO basis set627

using the MO (or density) matrix is a rather complex task, especially if the basis contains high628

angular momentum functions. We thus want to make use of VeloxChem’s own internal evaluator629

for these objects, and wrap a simple function around it which can be projected onto the MW basis630

using a ScalingProjector. In principle, any R3 →R function can be projected in this way, so we just631

have to define a function that takes as argument a point in real-space, runs it through VeloxChems632

internal AO evaluater code, and returns the function value of a given MO.633

First, we read the molecular structure and basis set:634

# Read molecule and basis

molecule = vlx.Molecule.read_str(mol_str)

basis = vlx.MolecularBasis.read(molecule, "PCSEG-1")

Next, we create an instance of the ScfRestrictedDriver and run the SCF calculation:635

# Make SCF and run driver

scf_drv = vlx.ScfRestrictedDriver()

scf_results = scf_drv.compute(molecule, basis)

To extract the molecular orbitals (MOs) from the SCF calculation, we need to use VeloxChem’s636

VisualizationDriver:637
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# Make a visualization driver that can be used to evaluate orbitals.

vis_drv = vlx.VisualizationDriver()

# Get the MOs

mol_orbs = scf_drv.mol_orbs

We can define a function, orb(r), that returns the value of the MO at a given point in space. This638

function will be used for projecting onto an MRA in VAMPyR:639

# Define a function to get the MOs, this can be projected onto an MRA by vampyr

def mo_i(r):

R = np.array([r])

return vis_drv.get_mo(R, molecule, basis, mol_orbs, i, "alpha")[0]

Finally, we use a projector from VAMPyR to project the MOs from VeloxChem onto an MRA,640

generating a list of FunctionTrees for the initial guess:641

# This can now be imported into vampyr as:

P_eps = vp.ScalingProjector(mra, prec)

Phi_0 = [P_eps(mo_i) for i in range(nr_orbs)]

In the last step, we loop over the desired number of orbitals, project each one onto the MRA,642

and store the result in Phi_0. This list of FunctionTrees represents an approximation to the643

molecular orbitals of the system, and serves as an excellent initial guess for the SCF procedure644

in VAMPyR. This approach demonstrates how we can leverage the strengths of VeloxChem and645

VAMPyR together, creating efficient workflows in quantum chemistry calculations.646

B. Calculate a potential energy surface with VeloxChem and VAMPyR647

A Potential Energy Surface (PES) can be computed as a series of single point energy calcu-648

lations while varying one (or more) bond distance(s) in a molecule. We will here use VAMPyR’s649

adaptive function projector as a driver for computing the PES of the Hydrogen molecule using650
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VeloxChem’s single-point Hartree–Fock evaluator. We define a Python function, pes(r), that651

computes the energy for two Hydrogen atoms given the bond distance as input:652

def pes(r):

mol_str = f"""

H 0.0 0.0000 -0.2

H 0.0 0.0000 {r[0]}

"""

molecule = vlx.Molecule.read_str(mol_str)

basis = vlx.MolecularBasis.read(molecule, "PCSEG-1")

scf_drv = vlx.ScfUnrestrictedDriver()

scf_results = scf_drv.compute(molecule, basis)

return scf_drv.scf_energy

This function generates a diatomic Hydrogen molecule at a given bond distance (+0.2 bohrs to653

avoid a singularity, since r will be evaluated between 0 and 10), performs an SCF calculation at654

the given geometry, and returns the computed energy. This function, being a R→R mapping, can655

be projected on a 1D MRA using VAMPyR.656

mra = vp.MultiResolutionAnalysis(box=[0, 10], order=1)

P_eps = vp.ScalingProjector(mra, prec=1.0e-3)

pes_tree = P_eps(pes)

Here the adaptive projector will automatically sample the pes(r) function in appropriate points657

in order to produce a smooth surface. This approach effectively focuses computational resources658

where they are needed most, as determined by the adaptive projection algorithm. The potential659

energy surface obtained in this manner can be visualized, as shown in Figure 7.660

It’s important to note that the grid lines in Figure X represent the adaptive MRA grid, and the661

potential energy surface depicted is interpolated from this grid rather than computed directly at662

each point. This approach emphasizes the efficacy of the adaptive grid algorithm in efficiently663

focusing computational resources. It also underscores the power of combining Python packages664

like VeloxChem and VAMPyR to efficiently and accurately model complex quantum systems.665
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Figure 7. Potential energy surface calculated using VeloxChem and VAMPyR. The grid lines represent the

adaptive MRA grid, from which the PES is interpolated.

C. Numerical Stability Analysis using VAMPyR and PylibXC666

Inspired by the paper by Lehtola and Marques33, we investigate the numerical stability of den-667

sity functional approximations (DFAs) lda-c-vwn and lda-c-gk72, with VAMPyR and PylibXC. The668

choice of these DFAs is due to their contrasting convergence behavior, making them interesting669

subjects for our analysis. The lda-c-gk72, developed by Gordon and Kim in 1972, was known670

for its problematic convergence while the lda-c-vwn (Vosko, Wilk, and Nusair functional) was671

noted for its numerical stability. Our objective is to verify these claims, illustrating the potential672

of VAMPyR in detailed and precise computational quantum chemistry.673

Firstly, we initialize a Neon molecule and calculate the self-consistent field (SCF) using674

VeloxChem:675

def init_molecule_and_scf(mol_str, basis_set="PCSEG-1"):

molecule = vlx.Molecule.read_str(mol_str)

basis = vlx.MolecularBasis.read(molecule, basis_set)

scf_drv = vlx.ScfRestrictedDriver()

scf_results = scf_drv.compute(molecule, basis)
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return molecule, basis, scf_drv.density

Next, we calculate the density and project it onto a Multi-Resolution Analysis (MRA) grid:676

def calc_density(r, molecule, basis, mol_orbs, vis_drv):

R = np.array([r])

rho_a = vis_drv.get_density(R, molecule, basis, mol_orbs, "alpha")[0] +

rho_b = vis_drv.get_density(R, molecule, basis, mol_orbs, "beta")[0]

return rho_a + rho_b

rho = P_eps(lambda r: calc_density(r, molecule, basis, mol_orbs, vis_drv))

Subsequently, we use PylibXC to define the chosen DFA functionals:677

func_c = xc.LibXCFunctional("lda_c_gk72" or "lda_c_vwn", "unpolarized")

def f_e(n):

c = func_c.compute({"rho": n})["zk"]

return n * (c)

F_e = vp.FunctionMap(f_e, precision)

Following this, an exchange potential is generated. We iteratively refine the grid based on preci-678

sion, one scale at a time, until no new nodes are created:679

v_x = vp.FunctionTree(mra)

nNodes = v_x.nNodes()

while nNodes > 0:

vp.advanced.clear_grid(v_x)

vp.advanced.map(-1.0, v_x, rho, f_e)

print(f"nodes : {v_x.nNodes()} norm : {v_x.norm()}", flush=True)

nNodes = vp.advanced.refine_grid(v_x, precision)

Observing the output for each DFA, we note: If we look at the printout of the number of nodes680

we see it converging for the lda_c_vwn, no exponential growth in the number of nodes. For681
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Figure 8. Comparison of node growth between the lda-c-vwn and lda-c-gk72 DFAs. The plot illustrates the

sharp contrast in the convergence behaviour, with lda-c-vwn showing a stable, linear growth, and lda-c-gk72

displaying an exponential growth.

lda_c_gk72 We see explosive growth in the number of nodes. So in this case we stopped the682

calculation since it didn’t converge in a reasonable time frame. Looking at the norm we see that683

we’re no closer to convergene. In this example we went for a precision of 1.0e−8684
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Listing 20. Excerpt of the 4-component spinor class.

class spinor:

"""Four components orbital."""

mra = None

light_speed = -1.0

comp_dict = {'La': 0, 'Lb': 1, 'Sa': 2, 'Sb': 3}

def __init__(self):

self.comp_array = np.array([cf.complex_fcn(),

cf.complex_fcn(),

cf.complex_fcn(),

cf.complex_fcn()])

def __getitem__(self, key):

return self.comp_array[self.comp_dict[key]]

def __setitem__(self, key, val):

self.comp_array[self.comp_dict[key]] = val

def __len__(self):

return 4

def __add__(self, other):

output = orbital4c()

output.comp_array = self.comp_array + other.comp_array

return output

def __call__(self, position):

return [x(position) for x in self.comp_array]

def __rmul__(self, factor):

output = orbital4c()

output.comp_array = factor * self.comp_array

return output

def alpha(self, direction, prec):

out_orb = orbital4c()

alpha_order = np.array([[3, 2, 1, 0],

[3, 2, 1, 0],

[2, 3, 0, 1]])

alpha_coeff = np.array([[ 1, 1, 1, 1],

[-1j, 1j, -1j, 1j],

[ 1, -1, 1, -1]])

for idx in range(4):

coeff = alpha_coeff[direction][idx]

comp = alpha_order[direction][idx]

out_orb.comp_array[idx] = coeff * self.comp_array[comp]

out_orb.comp_array[idx].crop(prec)

return out_orb

def alpha_p(self, prec, der = "ABGV"):

out_orb = orbital4c()

orb_grad = self.gradient(der)

apx = orb_grad[0].alpha(0, prec)

apy = orb_grad[1].alpha(1, prec)

apz = orb_grad[2].alpha(2, prec)

result = -1j * (apx + apy + apz)

result.cropLargeSmall(prec)

return result
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Listing 21. Iterative solution of the Dirac equation.

while orbital_error > prec:

hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)

v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)

add_psi = hd_psi + v_psi

energy = (spinor_H.dot(add_psi)).real

mu = orb.calc_dirac_mu(energy, light_speed)

tmp = orb.apply_helmholtz(v_psi, mu, prec)

tmp.crop(prec/10)

new_orbital = orb.apply_dirac_hamiltonian(tmp, prec, energy, der = default_der)

new_orbital.crop(prec/10)

new_orbital.normalize()

delta_psi = new_orbital - spinor_H

orbital_error = (delta_psi.dot(delta_psi)).real

print('Error',orbital_error, imag, flush = True)

spinor_H = new_orbital
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Listing 22. Preparation to implementation of time evolution in VAMPyR.

# Define parameters, final time moment and time step

x0 = 0.3

sigma = 0.04

x1 = 0.5

V0 = 25000

N = 20

t_period = np.pi / np.sqrt(V0)

time_step = t_period / N

# Set the precision and make the MRA

precision = 1.0e-5

finest_scale = 9

mra = vp1.MultiResolutionAnalysis(vp1.BoundingBox(0), LegendreBasis(5))

# Make the scaling projector

P = vp1.ScalingProjector(mra, prec = precision)

# Define the harmonic potential with its scheme modification

def V(x):

return V0 * (x[0] - x1)**2

def tilde_V(x):

A = V0 - ( time_step * V0 )**2 / 6.0

return A * (x[0] - x1)**2

# Define the iteration procedure

iteratorA = ChinChenA(

expA = create_unitary_kinetic_operator(mra, precision, time_step / 2, finest_scale),

expB = create_unitary_potential_operator(P, V, time_step / 6),

exp_tildeB = create_unitary_potential_operator(P, tilde_V, 2 * time_step / 3)

)
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Listing 23. Time evolution simulation in VAMPyR.

# Define the initial wave function

psi0 = vp1.GaussFunc(

beta = 1.0 / (4 * sigma**2), alpha = (2 * np.pi * sigma**2)**(-1/4), position = [x0]

)

psi0 = np.array([ P(psi0), vp1.FunctionTree(mra).setZero() ])

# Solve the initial value problem

psiA = psi0

for n in range(N):

psiA = iteratorA(psiA)

# Find error at t = period

per_errorA = psiA + psi0

print( f"L2-norm of real part error: {per_errorA[0].norm()}" )

print( f"L2-norm of imaginary part error: {per_errorA[1].norm()}" )
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5.2. PAPER II: KINETIC ENERGY-FREE HARTREE–FOCK EQUATIONS: AN INTEGRAL FORMULATION121

5.2 Paper II: Kinetic Energy-free Hartree–Fock
equations: an integral formulation

Abstract

A novel Self-Consistent Field (SCF) solver tailored for Hartree–Fock
calculations harnesses the power of Multiwavelets and Multiresolu-
tion Analysis, presenting a robust preconditioned steepest descent
framework characterized by swift convergence. Notably, our imple-
mentation omits the kinetic energy operator, a critical adaptation
when employing Multiwavelets due to the complexities in accurately
representing differential operators, such as the Laplacian. The pa-
per thoroughly expounds the theoretical underpinnings and delin-
eates the algorithm, which is also shared as an executable Python
notebook. We provide two rudimentary examples that showcase
the efficacy of our approach, including its capacity for highly pre-
cise calculations, expedited and dependable convergence, and the
notable omission of the kinetic energy operator.

Personal Contributions:

• Authored significant sections of the foundational theoretical explanations
and results discussion in the paper’s final version.

• Developed and implemented the Python notebooks that are appended to
the paper, which detail the computational procedures.

• Generated all the figures included in the paper from the provided note-
books, underlining the implementation’s reproducibility and effectiveness.
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1  Introduction

Atom-centered Gaussians have traditionally been the most common and wide-
spread choice of basis set for molecules [1]. Several strong arguments are in favor 
of such a choice: the compactness of the representation which is defined by a 
handful of coefficients, the ability to represent atomic orbitals well (Slater func-
tions are in theory superior due to the cusp at the nuclear position and the correct 
asymptotic), the simplification in the computation of molecular integrals which 
are often obtained analytically (this is the weak point of Slater orbitals which 
require expensive numerical evaluations). Their main disadvantage is the non-
orthogonality of the basis which can become a severe problem especially for large 
bases leading to a computational bottleneck when orthonormalization is required 
or worse numerical instabilities due to near linear-dependency in the basis [2].

On the opposite side of the spectrum, plane waves (PWs) are ideally suited 
for periodic systems and are orthonormal by construction. However a very large 
number of them needs to be employed in order to achieve good precision, espe-
cially if one is interested in high resolution in the nuclear-core regions [3]. A 
popular choice to circumvent the problem is to use pseudopotentials [4] in the 
core region, thereby reducing the number of electrons to be treated and at the 
same time removing the need for very high-frequency components. Lately, the 
use of projector augmented wave (PAW) [5] and linearized augmented plane 
wave (LAPW) [6] techniques, has made this issue less critical for PW calcula-
tions. Another challenge for PWs is constituted by non-periodic systems, which 
can only be dealt with by using a supercell approach [7].

Quantum chemical modeling is constantly expanding its horizons: cutting edge 
research is focused on achieving good accuracy (either in energetics or molecular 
properties) on large non-periodic systems such as large biomolecules or molecu-
lar nanosystems. This progression is constantly exposing the weaknesses of the 
traditional approach thus rendering the use of unconventional methods, which are 
free from the above mentioned limitations ever more attractive. One such choice 
is constituted by numerical, real-space grid-based methods which are gaining 
popularity in quantum chemistry as a promising strategy to deal with the Self 
Consistent Field (SCF) problem of Hartree Fock(HF) and density functional the-
ory (DFT).

Among real-space approaches, three strategies have been commonly employed: 
Finite Differences [8], Finite Elements [9], Wavelets [10, 11] and Multiwavelets 
(MWs) [12]. MWs are particularly well suited for all-electron calculations [12, 
13]. The basis functions are localized (as Gaussian-type orbitals) yet orthonormal 
(as plane waves). One crucial property of MWs is the disjoint support (zero over-
lap) between basis functions in adjacent nodes [14], paving the way for adaptive 
refinement of the mesh, tailored to each given function. This is essential for an 
all-electron description where varying resolution is a prerequisite for efficiency. 
The price to pay, to provide a representation with a given number of vanishing 
moments, is a basis consisting of several wavelet functions per node. The most 
common choice of basis functions in the MW framework is a generic orthonormal 
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polynomial basis of order k, providing a second possibility to increase the resolu-
tion of the representation alongside the adaptive grid refinement [15]. Currently, 
the main drawbacks of this approach are a large memory footprint (a numerical 
representation of a molecular orbital is much larger in terms of number of coef-
ficients), and a significant computational overhead [16, 17]. On the other hand, 
a localized orthonormal basis is an ideal match for modern massively-parallel 
architectures [18] and we are confident that it is only a matter of time before real-
space grid methods in general and MWs in particular will become competitive 
with or even superior to traditional ones.

To achieve high precision and keep the memory footprint at a manageable level, 
an adaptive strategy which refines grids only if needed is necessary [19]. This choice 
has a profound impact on the minimization strategies that can be adopted in order to 
solve SCF problems such as the Roothaan–Hall equations of the Hartree–Fock (HF) 
method. In other words, strategies which rely upon having a fixed basis, such as the 
most common atomic orbital based methods [20] are excluded. On the other hand, 
only the occupied molecular orbitals are needed both in HF and DFT to describe 
the wavefunction/electronic density. Methods providing a direct minimization of the 
orbitals without requiring a fixed basis representation must be considered. Addition-
ally, using MWs on an adaptive grid generates representations with discontinuities 
at the nodal surfaces, which poses a challenge when differential operators are con-
sidered. As will be shown in the paper, if the Hartree–Fock equations are reformu-
lated as coupled integral equations, it becomes possible to minimize the occupied 
orbitals, without ever recurring to differential operators.

2 � Functions and operators in the Multiwavelet framework

When defining the MW framework we think in terms of scaling spaces Vn and wave-
let spaces Wn . The scaling space V0 in 3D real-space is spanned by a set of orthogo-
nal polynomials on the unit cube, and the spaces Vn for n > 0 are obtained recur-
sively by splitting the intervals of Vn−1 in 23 sub-cubes, then translate and dilate the 
original polynomial basis onto those intervals. This results in the ladder of scaling 
spaces

which are approaching completeness in L2 . The wavelet spaces Wn are defined as the 
orthogonal complement of the scaling space Vn in Vn+1

which results in the following relation

(1)V0 ⊂ V1 ⊂ … ⊂ Vn ⊂ …

(2)Wn ⊕ Vn = Vn+1,

(3)VN = V0 ⊕W0 ⊕W1 ⊕…⊕WN−1.
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2.1 � Functions

Functions can be approximated by a projection Pn onto the scaling space Vn , 
which we denote as

where the latter sum runs over all the 23n cubes that make up a uniform grid at length 
scale 2−n . Obviously, larger n means higher resolution and thus a better approxi-
mation. Importantly, these cubes completely fill the space of the unit cube, without 
overlapping, which means that all of them are necessary in order to get a complete 
description of f.

Similarly, a function projection onto the wavelet space Wn is denoted as

Here it should be noted that such a wavelet projection is not an approximation to the 
function, but should be regarded as a difference between two consecutive approxi-
mations. By making use of the relation in Eq. (3), we can arrive at two equivalent 
representations for the approximated function:

where the former can be thought of as a high-resolution representation at a uniform 
length scale N, while the latter is a multi-resolution representation that spans several 
different length scales n = {0,… ,N − 1} . The two representations are completely 
equivalent both in terms of precision and complexity (number of expansion coef-
ficients), but the latter has one significant advantage: since it is built up as a series of 
corrections to the coarse approximation at scale zero, one can choose to keep only 
the terms that add a significant contribution [12, 21]

where � is some global precision threshold.

2.2 � Convolution operators

As will be shown in the following sections, for SCF algorithms within a precon-
ditioned steepest descent framework, the necessary operators are the Poisson 
operator for the Coulomb and exact exchange contributions and the bound-state 
Helmholtz operator for the SCF iterations. Their Green’s kernel can be written as

(4)f ≈ Pnf
def
= f n =

∑
l

f n
l
,

(5)Qnf
def
=df n =

∑
�
df n� .

(6)f ≈ f N =
∑
�

f N
�
= f 0

�
+

N−1∑
n=0

∑
�

df n
�
,

(7)||df n� || >
𝜖

2n∕2
||f ||,
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where 𝜇 > 0 yields the bound-state Helmholtz kernel, whereas � = 0 is the Poisson 
kernel. Their application is achieved by convolution of a function with the corre-
sponding Green’s kernel

once an approximate separated form in terms of Gaussian functions has been com-
puted [21–23]:

The non-standard [22, 24] form of the operator T is built as a telescopic expansion 
of the finest scale projection TN = PNTPN

where An = QnTQn , Bn = QnTPn , Cn = PnTQn . Thanks to the vanishing moments 
of the MW basis, the matrix representations of An , Bn and Cn (which contain at least 
one wavelet projector) are diagonally dominant for both the Poisson and bound-state 
Helmholtz kernels. Therefore, all terms beyond a predetermined bandwidth can be 
omitted in the operator application, by a screening similar to the one for functions in 
Eq. (7). In particular, we have previously shown that the application of the Poisson 
operator for the calculation of the electrostatic potential scales linearly with the size 
of the system [25].

2.3 � Derivative operators

The discontinuities in the MW basis leads to a number of problems when consid-
ering derivative operators. In contrast to the well-behaved smoothing properties of 
the integral operators as discussed above, the application of the derivative operator 
will amplify the numerical noise arising from the discontinuity between adjacent 
intervals in the representation. In particular, since the standard construction [14] of 
the operator allows only for a first derivative to be defined, higher derivatives have 
to be computed by repeated application of the first derivative, which will effectively 
propagate, and further amplify, the numerical noise at every step. This prohibits the 
use of MW in certain situations, like iterative time-propagation methods involving a 
derivative in the propagation operator.

A new class of derivative operators was proposed recently by Anderson et al. [26], 
addressing some of the issues with the original construction. The idea behind the new 
construction was to realize that the MW representations are usually discontinuous 

(8)G�(r − r�) =
e−�‖r−r

�‖

4�‖r − r�‖ ,

(9)g(r) = [Tf ](r) = ∫ G�(r − r�)
[
f (r�)

]
dr�,

(10)G�(r − r�) ≈

M∑

i=1

aie
−�i(r−r

�)2 .

(11)TN = T0 +

N−1∑

n=0

(An + Bn + Cn),
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approximations of functions that are supposed to be smooth and continuous. In these 
situations, a workaround can be achieved by moving to an auxiliary continuous basis, 
compute the derivative, and then move back to the original (discontinuous) MW basis. 
Anderson et al. proposed either b-splines or bandlimited exponentials for this auxiliary 
basis.

It should be noted that the new operators assume that the input function is n times 
differentiable, even if its MW representation is clearly not. It is thus only appropriate 
if the function does not in fact contain any analytic discontinuities or cusps. It is well 
known that the non-relativistic electronic wavefunction in any point-nucleus model 
does contain cusps at the nuclear positions, but there are workarounds for this problem, 
by either removing the cusps from the wavefunction analytically [27], or by introducing 
effective core potentials.

In the following we will avoid this issue altogether, by formulating the HF equations 
without any reference to the kinetic energy (or derivative) operator.

3 � The Hartree–Fock equations

The HF equations are indisputably the cornerstone of quantum chemistry. We will here 
briefly revise the formalism as presented by Jensen [28]. It constitute a concise yet for-
mally correct derivation, which also has the advantage of being completely independ-
ent of the choice of basis.

We start by considering the energy expression of a Slater determinant:

where � is a single determinant and Ĥ is the electronic Hamiltonian operator.
In terms of the spinorbitals 

{
�i, i = 1…N

}
 defining the Slater determinant, the 

energy expression can be written as follows:

where hi represents the one-electron part of the energy, Jij is the Coulomb interac-
tion, Kij is the exchange interaction and UN constitutes the inter-nuclear repulsion. 
They are obtained respectively as:

(12)⟨E⟩HF = ⟨𝛹 �Ĥ�𝛹⟩,

(13)⟨E⟩HF =
�

i

hi +
1

2

�

ij

�
Jij − Kij

�
+ UN ,

(14)hi =⟨𝜑i�ĥ�𝜑i⟩ = ⟨𝜑i�T̂ + V̂N�𝜑i⟩,

(15)Jij =⟨�i(x1)�j(x2)�1∕r12��i(x1)�j(x2)⟩,

(16)Kij =
⟨
�i(x1)�j(x2)|1∕r12|�j(x1)�i(x2)

⟩
,
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In the above equations, lowercase indices run over the electrons, uppercase ones run 
over the nuclei, Z is a nuclear charge, R is the inter-nuclear distance, r is the inter-
electronic distance, T̂ = −∇2∕2 is the kinetic energy operator, V̂N = −

∑
I ZI∕�RI − r� 

is the nuclear potential, and atomic units ( ℏ = 1 , qe = −1 , me = 1 ) are used through-
out. It is useful to define the effective one-electron Coulomb and Exchange operators 
as:

In accordance to the variational principle, the minimizer is obtained by writing the 
Lagrangian equations with the constraint of orthonormal occupied orbitals, and dif-
ferentiating with respect to orbital variations:

where the Fock operator F̂ is defined as:

The functional derivative of the Lagrangian with respect to an arbitrary orbital vari-
ation ��i and of its complex conjugate ��∗

i
 can then be written as:

The Lagrange multipliers constitute a Hermitian matrix [28], which leads to the cou-
pled HF equations:

The Fock matrix F can be formally obtained by projecting the above equations along 
the directions defined by the set of occupied orbitals:

(17)UN =
∑

I>J

ZIZJ

RIJ

.

(18)Ĵi�𝜑j⟩
def
= ⟨𝜑i�1∕r12�𝜑i⟩�𝜑j⟩,

(19)K̂i�𝜑j⟩
def
=

�
𝜑i�1∕r12�𝜑j

�
�𝜑i⟩.

(20)

𝛿L =
�

i

�
𝛿𝜑i�F̂�𝜑i

�
−
�

ij

𝜆ij⟨𝛿𝜑i�𝜑j⟩ +
�

i

�
𝛿𝜑i�F̂�𝜑i

�∗
−
�

ij

𝜆ji⟨𝛿𝜑i�𝜑j⟩∗,

(21)F̂ = ĥ + Ĵ − K̂ = ĥ +
∑

j

Ĵj − K̂j.

(22)
𝛿L

𝛿𝜑i

= F̂�𝜑i⟩ −
�

j

𝜆ij�𝜑j⟩,

(23)
𝛿L

𝛿𝜑∗
i

= F̂�𝜑i⟩∗ −
�

j

𝜆ji�𝜑j⟩∗.

(24)F̂𝜑j =
∑

i

𝜑iFij.

(25)F =
⟨
𝛷|F̂|𝛷

⟩
.
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In the equation above and in the rest of the paper, we made use of a shorthand nota-
tion, indicating with � = (�1,… ,�N) the row-vector of all occupied orbitals.

The Fock operator depends on the orbitals implicitly through Ĵ and K̂ . The equa-
tions must therefore be solved iteratively. The straightforward iteration would in 
practice correspond to a steepest descent minimization:

where � defines the length of the step and the negative sign emphasizes that the 
step is in the opposite direction of the gradient. We notice also that the orbital set {
𝜑̃n+1
i

, i = 1…N
}
 is not orthonormal, because the chosen parametrization is linear 

and not exponential [1, 29]. Throughout the paper we will use 𝜑̃ to refer to non-
(ortho)normalized orbitals.

The direct minimization described above is at best lengthy and often leads to 
either oscillations or even worse to divergent behavior [1]. The usual strategy to 
solve the HF equations consists in projecting the equations onto a given basis, and 
solving the so called Roothaan–Hall equations thereby obtained with an acceleration 
method known as Direct Inversion of the Iterative Subspace (DIIS) [30]. The DIIS is 
however centered on minimizing the occupied-virtual blocks of the Fock matrix in 
the finite basis representation. As discussed in the previous section, this is prevented 
when a MW approach is employed, because the basis set is adaptively refined for 
each function and should therefore be regarded as infinite and the use of differential 
operators within a MW basis is problematic.

An alternative is constituted by the integral representation of the HF equations as 
shown in the next section.

4 � Helmholtz kernel and integral formulation

The use of an integral equation formalism to solve the Schrödinger equation was 
first proposed by Kalos [31]. Let us here consider the derivation for a one-electron 
system, for which we have the Schrödinger equation:

Such an equation can be rewritten in an integral form by making use of a Green’s 
function formalism. The starting point is the Helmholtz equation

which admits a solution in terms of the following Green’s function

(26)𝛷̃n+1 −𝛷n = −𝛼
𝛿L

𝛿𝛷
= −𝛼

(
F̂n𝛷n −𝛷nFn

)
,

(27)
[
−
∇2

2
+ V(r)

]
�(r) = ��(r).

(28)(−∇2 + �2)g(r) = f (r),

(29)(−∇2 + �2)G�(r) = �(r), G�(r) =
e−�|r|

4�|r| .
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By making use of this Green’s function kernel, and choosing �2 = −2� , the 
Schrödinger equation can be written in an integral form:

The above integral formulation does not require the explicit use of the kinetic energy 
operator, which has been formally inverted as follows:

The integral formulation provides also a natural starting point for efficient iterative 
algorithms. At each iteration n, the successive orbital �n+1 is obtained as:

For a practical realization of the algorithm, it is also necessary to be able to compute 
the energy expectation value 𝜖 = ⟨𝜑�Ĥ�𝜑⟩ without recurring to the explicit evalua-
tion of the kinetic energy. Consider the expectation value at iteration n + 1 , if �n+1 
is obtained through Eq. (32), it is easy to show that �n+1 can be obtained as a direct 
update

This shows that the expectation value of the total energy can be obtained by updat-
ing �n with the matrix element of the potential operator involving the new orbital 
𝜑̃n+1 and the previous one �n . We underline that such a prescription is valid for an 
arbitrary form of the potential and only requires that the Helmholtz operator used 
in Eq. (32) is computed with � =

√
−2�n . It is however not required that �n be the 

expectation value at iteration n, which allows to start with a predefined initial guess 
�0 at the first iteration.

5 � Integral formulation for a many‑electron system

The procedure described in the previous section can be extended to a many-electron 
system, to compute all elements of the Fock matrix defined in Eq. (25). To simplify 
the notation, all occupied orbitals {�i} are collected in the row-vector � . Starting 
from the coupled HF Eq. (26), and applying the Helmholtz operator Ĝ�

n:

In the above equations the operators T̂  and V̂  are applied on each component of 
� . Similarly Ĝ� is applied on each component of the resulting vector in the square 
brackets, making sure the proper �i is employed for each component i. By recalling 
the relationship between the Helmholtz kernel and the shifted kinetic energy, one 
obtains:

(30)𝜑(r) = −2Ĝ𝜇
[
V̂𝜑

]
= −2∫ G𝜇(r − r�)

[
V̂(r�)𝜑(r�)

]
dr�.

(31)(T̂ − 𝜖)−1 = 2Ĝ𝜇.

(32)𝜑̃n+1 = −2Ĝ𝜇n[
V̂𝜑n

]
.

(33)𝜖n+1 = 𝜖n +

�
𝜑̃n+1�V̂�𝜑̃n+1 − 𝜑n

�

⟨𝜑̃n+1�𝜑̃n+1⟩
.

(34)𝛷̃n+1 −𝛷n = −𝛼Ĝ�
n[(

T̂ + V̂n
)
𝛷n −𝛷nFn

]
.
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where � = 1 and �n
ij
= �n

i
�ij is a diagonal matrix, with �n

i
= −

(�n
i
)2

2
.

Although the integral formulation above and the differential one in Eq. (26) are 
formally equivalent, there is an important distinction to be made. Iterating on the 
differential formulation corresponds to a steepest descent algorithm, whereas the 
integral formulation is instead a preconditioned steepest descent algorithm, with the 
preconditioner B = (T − �ii)

−1 . The integral formulation is therefore a better start-
ing point for optimizations.

Compared to the one-electron case, a few complications arise for the HF coupled 
equations: 

1.	 The Fock operator, in contrast to the one-electron Hamiltonian, depends on the 
electronic orbitals. Computing the Fock matrix will therefore require the update 
of the potential to be taken into account.

2.	 The electrons are described by a set of orbitals which must be kept orthonormal, 
in order to arrive at a true Aufbau solution of the HF equations, otherwise a 
straightforward iteration of Eq. (35) would bring all orbitals to the lowest eigen-
function.

There is also an arbitrariness in the choice of the parameters �n
i
 defining the Helm-

holtz kernels. The natural choice is to make sure that the diagonal element in the last 
term cancels ( �ii = Fii ). Numerical tests, performed by using a fixed � , have shown 
that this choice is indeed nearly optimal in terms of the number of iterations needed 
to converge the orbitals.

The simplest approach to keep orthonormality would be to apply Eq.  (35) for 
each orbital followed by a Gram–Schmidt orthogonalization in order of increasing 
energy. This would however lead to very slow convergence, especially for valence 
orbitals, as the convergence of each orbital is restrained by the convergence of 
lower-lying orbitals, which in turn will depend on all orbitals through the potential 
operator V̂ .

Harrison et al. [12] described how to use deflation to extract multiple eigenpairs 
from the Fock operator by recasting the equation for each orbital as a ground state 
problem. Another approach suggested in the same paper is to simply diagonalize the 
Fock matrix at each iteration.

5.1 � Calculation of Fock matrix

The starting point is a set of orthonormal orbitals �n and an initial guess for the cor-
responding Fock matrix Fn ≈ ⟨𝛷n�F̂�𝛷n⟩ . We emphasize that such a guess need not 
to be the exact Fock matrix for the given orbital set. The new, and now exact, Fock 
matrix F̃n+1 = ⟨𝛷̃n+1�F̂�𝛷̃n+1⟩ in the non-orthonormal basis obtained by applying 
Eq. (35) can be computed without any reference to the kinetic energy operator. This 
is in analogy to the one-electron case discussed in Sect. 4.

(35)𝛷̃n+1 = −2Ĝ�
n[
V̂n𝛷n +𝛷n(𝛬n − Fn)

]
,
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As for the one-electron case, the application of (T̂ − 𝜆n
i
) to the new orbital will 

return the argument from the Helmholtz operator, provided that �n
i
=
√
−2�n

i
 was used 

in this operator:

We can now use the above observation to eliminate the kinetic operator from the 
calculation of the Fock matrix:

where in the last step we have defined four updates:

Assuming that the original orbital set is orthonormal ( Sn
ij
= �ij ), then the new Fock 

matrix can be obtained as an update to the previous guess:

where

For the definition of the new Fock matrix to be consistent, the two-electron contri-
butions to the potential operator at the n + 1 step needs to be constructed using an 
orthonormalized version of the corresponding orbitals 𝛷̃n+1 , while the matrix ele-
ments themselves are evaluated in the original non-orthonormal basis. This requires 
a temporary set 𝛷̄ , constructed e.g. through a Gram–Schmidt process, so that 
⟨𝜑̄i�𝜑̄j⟩ = 𝛿ij . In this basis we can define the Coulomb and Exchange operators as

(36)
(
T̂ − 𝜆n

i

)
𝜑̃n+1
i

= −
[
V̂n𝜑n

i
+
∑

j

𝜑n
j

(
𝛬n

ji
− Fn

ji

)]
.

(37)

F̃n+1
ij

=
�
𝜑̃n+1
i

�T̂ + V̂n+1�𝜑̃n+1
j

�

=
�
𝜑̃n+1
i

�T̂ − 𝜆n
j
�𝜑̃n+1

j

�
+
�
𝜑̃n+1
i

�V̂n+1 + 𝜆n
j
�𝜑̃n+1

j

�

= −⟨𝜑̃n+1
i

�V̂n�𝜑n
j
⟩ + ⟨𝜑̃n+1

i
�
�

k

�
𝛬n

kj
− Fn

kj

�
𝜑n
k
⟩ +

�
𝜑̃n+1
i

�V̂n+1 + 𝜆n
j
�𝜑̃n+1

j

�

=
�
𝜑̃n+1
i

�𝛥V̂n�𝜑̃n+1
j

�
+
�
𝜑̃n+1
i

�V̂n�𝛥𝜑̃n
j

�
+
�
SnFn

�
ij
+
�
𝛥S̃n

1
Fn

�
ij
+
�
𝛥S̃n

2
𝛬n

�
ij

(38)𝛥𝜑̃n
i
= 𝜑̃n+1

i
− 𝜑n

i
,

(39)𝛥V̂n = V̂n+1 − V̂n,

(40)𝛥S̃n
1
= ⟨𝛥𝛷̃n�𝛷n⟩,

(41)𝛥S̃n
2
= ⟨𝛷̃n+1�𝛥𝛷̃n⟩.

(42)F̃n+1 = Fn + 𝛥S̃n
1
Fn + 𝛥S̃n

2
𝛬n + 𝛥F̃n

pot
,

(43)𝛥F̃n
pot

= ⟨𝛷̃n+1�V̂n�𝛥𝛷̃n⟩ + ⟨𝛷̃n+1�𝛥V̂n�𝛷̃n+1⟩.



354	 Journal of Mathematical Chemistry (2023) 61:343–361

1 3

which are used when computing the potential updates in Eqs. (39) and (43).
We want to emphasize that these expressions are formally exact, but they require 

that the orbitals of the new set 𝛷̃n+1 are related to the orbitals of the old set �n 
exactly through the application of the Helmholtz operator in Eq.  (35). Otherwise 
the application of the kinetic energy operator cannot be avoided to obtain the Fock 
matrix.

5.2 � Calculation of energy

The Hamiltonian and the Fock operator differ only by a factor two in the two-elec-
tron contribution. The expectation value of the Hamiltonian defined in Eq. (13) can 
therefore be obtained by taking the trace of the Fock matrix and subtracting the two-
electron contribution

which means that the kinetic energy operator can be avoided also for the expectation 
value.

5.3 � Orbital orthonormalization

As already mentioned, the basic iteration of the integral operators in Eq.  (35) to 
all orbitals {�i} does not preserve orthonormality. We thus need to explicitly 
enforce orthonormality in each iteration, but here it is important to avoid projective 
approaches like the Gram–Schmidt procedure, because these will not allow us to 
carry over the Fock matrix to the new orbitals. Instead, we can make use of the over-
lap matrix S̃ = ⟨𝛷̃�𝛷̃⟩ in a Löwdin transformation [32]

which allows us to employ the same transformation to the Fock matrix, thus keeping 
it consistent with the new orthonormal orbitals.

In order to speed up convergence it is useful to augment the Löwdin transforma-
tion with another rotation M that brings the orbitals to a particular form. For small 
systems this can be a diagonalization of the Fock matrix, but for larger systems 
it is often beneficial to localize the orbitals, e.g. in a Foster–Boys [33, 34] trans-
formation that maximizes the separation between the orbitals from the functional 
LFB =

∑
i⟨�i����i⟩2 . In practice it will not be necessary to diagonalize/localize in 

(44)Ĵn+1𝜑 =
∑

j

𝜑(r)∫
𝜑̄n+1
j

(r�)𝜑̄n+1
j

(r�)

|r − r�| dr�,

(45)K̂n+1𝜑 =
∑

j

𝜑̄n+1
j

(r)∫
𝜑(r�)𝜑̄n+1

j
(r�)

|r − r�| dr�,

(46)E =
�

i

Fii −
�

i

⟨𝜑i�Ĵ − K̂�𝜑i⟩,

(47)𝛷̄ = 𝛷̃S̃−1∕2, ⟨𝛷̄�𝛷̄⟩ = I,
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every SCF iteration, so the matrix M can be chosen as the identity for many inter-
mediate steps. The combined transformation matrix then becomes Ũ = S̃−1∕2MX , 
with X = {C, L, I} for canonical, localized or identity, and the new orbital vector and 
Fock matrix are obtained with

6 � Implementation

The general algorithm for the SCF optimization for many-electron systems is sum-
marized in Algorithm 1. At each iteration, the input is an orbital vector �n with the 
corresponding Fock matrix Fn , which may or may not be diagonal. The orbitals are 
used to construct the full potential operator V̂n with updated two-electron contri-
butions. The diagonal part of the Fock matrix is extracted into another matrix �n , 
and its elements are used to construct the Helmholtz operator for the correspond-
ing orbitals. The Helmholtz operator is applied to each orbital separately, where the 
argument is corrected with the off-diagonal terms of the Fock matrix, in case non-
canonical orbitals are used. This results in a non-orthonormal set of orbitals 𝛷̃n+1 , 
and the convergence is judged by the norm of the difference between the input and 
output orbitals at this point. The Fock matrix corresponding to the new set of orbit-
als is computed as a pure update from the previous one, as described in Sect. 5.1. 
It is here important to note that the updated potential operator is computed from an 
orthonormalized version of the new orbitals, while the matrix elements are com-
puted using the original non-orthonormal set. The final step of the algorithm is to 
perform an orbital rotation with the Löwdin orthonormalization matrix, optionally 
combined with another transformation that brings the orbitals to either canonical or 
localized form, as described in Sect. 5.3.

(48)𝛷̄ = 𝛷̃Ũ,

(49)F̄ = Ũ†F̃Ũ.
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7 � Results

To illustrate the features of the framework exposed in the previous sections, we pre-
sent two simple examples: the Hydrogen atom as a prototype, one-electron system, 
and the Beryllium atom as a minimal many-electron system. We have used the Mul-
tiwavelet library MRCPP [35] through its Python interface VAMPyR [36] for the 
implementation, and we have prepared Jupyt​er Noteb​ooks [37] that reproduce all the 
results presented below, which can be run freely on Binder [38]. The many-electron 
implementation is a fully general HF solver. Its limitations are mostly outside the 
scope of the present work: the missing features to extend it to larger systems are the 
possibility to deal with open-shell systems, a robust starting guess generator, an iter-
ation accelerator such as the Krylov Accelerated Inexact Newton (KAIN) method 
[39], and the computational resources which are invariably limited on a Binder 
distribution. Nevertheless these two simple examples are sufficient to highlight the 
main features our our implementation. Within the Multiwavelet library, all math-
ematical objects are represented within a given numerical precision. This means that 
all functions and operators are truncated accordingly in their compressed representa-
tion, i.e. Eqs. (6) and (11), and the operators are applied with bandwidth thresholds 
that are consistent with the target precision. It is then expected that the obtained 
solution is exact with respect to the complete basis set limit up to the given preci-
sion, but not beyond, even if the equations might be converged further than this.
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7.1 � Hydrogen atom

The Hydrogen atom is a simple one-electron system, where the Schrödinger equa-
tion can be solved by straightforward power iteration of Eqs.  (32) and (33), with 
an additional normalization step for the wavefunction after each iterations. The 
potential operator V̂  contains only the fixed nuclear potential in this case. It should 
be noted, however, that even if the potential does not depend on the wavefunction, 
Eq. (32) must still be solved iteratively. This is in contrast to a traditional fixed-basis 
approach where the corresponding matrix equation can be readily inverted in a sin-
gle step.

Figure  1 shows a remarkably uniform convergence of the optimization for the 
Hydrogen atom: the norm of the wavefunction update is almost exactly halved 
between each iteration, while the energy update is divided by four. This behavior is 
expected, since the error in the energy should be quadratic with respect to the error 
of the wavefunction. The initial guess for the orbital was for convenience chosen 
as a simple Gaussian function, which was projected onto the numerical grid before 
entering the iterative procedure. The underlying numerical precision is kept at 10−6 
throughout, and we do not expect the final solution to be more accurate than this, 
relative to the true eigenfunction. Indeed, when comparing to the known exact solu-
tion for Hydrogen we see that error in the orbital stabilizes just below this threshold, 
while the energy is several orders of magnitude more precise than the set threshold.

7.2 � Beryllium atom

The Beryllium atom, being a closed-shell two-orbital system, requires the general 
many-electron HF procedure as outlined in Algorithm 1. Figure 2 shows the con-
vergence from a simple starting guess of two linearly independent Gaussians, with 
just a simple Löwdin orthonormalization between each iteration, i.e., no additional 
orbital rotation was performed to obtain either canonical or localized orbitals, as 
described in Sect. 5.3.

Fig. 1   nvergence of the Hydrogen wavefunction and energy by direct power iteration of Eqs. (32) and 
(33). The wavefunction is normalized between each iteration. The plots show both the size of the updates 
relative to the previous iteration, as well as the error with respect to the analytical solution. The overall 
numerical precision is kept at 10−6
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The convergence pattern for Beryllium is very similar to Hydrogen, until the 
requested numerical precision is achieved; thereafter the orbital convergence tails 
off. In contrast to Hydrogen, the orbital mixing caused by the orthonormalization 
step is introducing numerical noise at the order of the truncation threshold, and the 
orbitals are randomly perturbed in every iteration. This in turn prevents further con-
vergence in the norm of the orbital error. The total energy, on the other hand, shows 
again a quadratic convergence relative to the orbital errors, as illustrated in the right-
hand panel of Fig. 2. However, each energy contribution separately is just linear: it 
is only their combined sum which exhibits quadratic convergence. It’s important to 
note, though, that even if the total energy converges rapidly and reaches a numerical 
limit at around 10−12 (around the square of the orbital error), its accuracy relative to 
the HF limit is still bounded by the overall numerical precision in the calculation, in 
this case 10−6 . The reason for this is that in the MW framework, every component is 
approximated according to this precision threshold, including the nuclear, Coulomb 
and exchange operators. We clearly see this bound when comparing the total energy 
with the very precise reference from Thakkar et al. [40], displayed as �Eexact in the 
figure. In practice, this means that it is not really useful to converge the orbitals and 
energies all the way to their numerical limits; the SCF can be considered converged 
whenever the energy update drops below the truncation threshold, in this case after 
10-12 iterations.

8 � Conclusions

We have presented an implementation of a MW-based SCF solver for the HF equa-
tions. The formalism is general and able to deal both closed-shell and open-shell 
systems alike. The extension to DFT [41], although not considered here, is straight-
forward by including the exchange and correlation potential. We note however that 
for DFT derivative operators can be avoided only for local density approximation 
(LDA) functionals.

Fig. 2   Convergence of the Beryllium orbitals and energies by iteration of Algorithm  1. The kinetic 
energy is computed indirectly, by subtracting all other contributions from the total energy, which in turn 
was computed by the kinetic-free expression in Eq. (46). �Etot represents the update in total energy w.r.t. 
the previous iteration, while �Eexact represents the difference w.r.t. the Hartree-Fock limit (-14.57302317 
Ha) from Thakkar et al. [40]. The overall numerical precision is kept at 10−6
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We have shown how it is possible to compute the Fock matrix and the electronic 
energy by exploiting the formal relation between the level-shifted Laplacian and 
the bound-state Helmholtz kernel, thus avoiding any reference to the kinetic energy 
operator. This is an advantage within a MW formalism, because differential opera-
tors are formally ill-defined [14], although recent developments have shown that 
good results can still be achieved [26], also for the kinetic energy expectation value.

We have shown that we are able to obtain high-precision results (basis-set limit 
within an arbitrary, predefined threshold), and the robust convergence pattern is con-
sistent with the fact that the integral formulation can be viewed as a preconditioned 
steepest descent [29] method, in contrast to the differential formulation which is 
instead a steepest descent method.

To illustrate the theoretical framework and demonstrate its applicability we 
detailed the algorithm and presented two simple examples (Hydrogen and Beryl-
lium atoms), showing that the convergence achieved is consistent with the expected 
behavior. In particular we have seen that convergence within the predefined thresh-
old is achieved both for the orbital norm and for the energy. Moreover the total 
energy converges quadratically with respect to the norm of the orbital error. Follow-
ing an open science paradigm, our algorithms are made freely and readily available 
for inspection and testing through the Binder platform (Table 1).
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5.3 Paper III: Future Perspective for Core-Electron
Spectroscopy: Breit Hamiltonian in the Mul-
tiwavelets Framework

Abstract

The evolution of core-electron spectroscopy hinges on novel method-
ologies capable of elucidating structures in powders of strongly cor-
related materials, including f -element oxides, where single crystals
are not available. To address this, sophisticated quantum chemi-
cal methods are required to compute core spectroscopy attributes
accurately. In this work, we introduce a significant advancement
by adapting our flexible real-space multiwavelet basis to the 4-
component Dirac-Coulomb-Breit Hamiltonian. Our results demon-
strate that multiwavelets can replicate one-dimensional grid-based
approaches while presenting a fully three-dimensional methodology,
which paves the way for expansion to molecule and material scale
applications. Notably, the Multiwavelet framework shows consis-
tent precision, unaffected by nuclear model selection, contingent
upon a sufficiently small error threshold and an adequately expan-
sive polynomial basis. Additionally, magnetic and gauge effects
from s-orbitals in two-electron systems are found to be equivalent
and reconcile well with experimental data observed in K and L edge
spectra.

Personal Contributions:

• Actively participated in implementing the ReMRChem code, which was
crucial for the progression of the project.

• Extended and refined the VAMPyR library to streamline operations and
augment development geared towards achieving the paper’s objectives.
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Abstract

New techniques in core-electron spectroscopy are necessary to resolve the struc-

tures of oxides of f -elements and other strongly correlated materials that are present

only as powders and not as single crystals. Thus, accurate quantum chemical methods

need to be developed to calculate core spectroscopic properties in such materials. In

this contribution, we present an important development in this direction, extending

our fully adaptive real-space multiwavelet basis framework to tackle the 4-component

Dirac-Coulomb-Breit Hamiltonian. We show that Multiwavelets are able to reproduce

one-dimensional grid-based approaches. They are however a fully three-dimensional ap-

proach which can later on be extended to molecules and materials. Our Multiwavelet

implementation attained precise results irrespective of the chosen nuclear model, pro-

vided that the error threshold is tight enough and the chosen polynomial basis is
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su�ciently large. Furthermore, our results confirmed that in two-electron species, the

magnetic and Gauge contributions from s-orbitals are identical in magnitude and can

account for the experimental evidence from K and L edges.

1 Introduction

Core-electron spectroscopies like X-ray photoelectron spectroscopy, X-ray absorption spec-

troscopy and electron energy loss spectroscopy are powerful tools to investigate the electronic

structure of transition-metal and rare-earth materials. For example, multi-layered transition

metal carbides and carbonitrides Mn+1AXn, where M is an early transition metal, A is an A-

group element (mostly groups 13 and 14), X is C or/and N and n is 1 to 3.1 These materials

can be employed for energy storage systems, such as lithium-ion batteries,1–5 lithium-ion ca-

pacitors,6 aqueous pseudocapacitors,7,8 and transparent conductive films.9 Additionally, rare

earths are contained in transparent conducting oxides which are considered the new frontier

in the area of optoelectronics.10–12 These materials have the unique behaviour of being both

optically transparent and electrically conducting which makes them key components in many

optoelectronic devices such as solar cells, flat panel displays, thin film transistors, and light

emitting diodes.10–12

Unfortunately, their spectra are not straightforwardly interpretable due to relativistic

e↵ects. All relativistic e↵ects such as spin-orbit interactions, electron-electron interaction in

the valence shell, and between core and valence electrons, will play a role in the core electron

spectra.13–22 A computational approach based on first-principle calculations that will take

2



into account both relativity and electron correlation could help the interpretation of such

spectra. A recent, promising approach in quantum chemistry is based on multiresolution

analysis (MRA), by making use of multiwavelets (MWs).23 This method has gained momen-

tum in recent years, and has been applied to compute complete basis set (CBS) limit results

for energies and linear response properties of a large number of compounds both within

Hartree-Fock (HF) and density functional theory (DFT).24–28 A variational treatment of rel-

ativistic e↵ects into MRA will allow modelling the spectra of transition metal and rare earth

materials. An important step in this direction was presented to tackle the mean-field atomic

and molecular Dirac-Coulomb problem in an adaptive, 4-component multiwavelets basis.29,30

In such a model the electrons are considered static charges where the average interaction

between electrons is modelled with the Coulomb-like term only. This is the lowest-order

relativistic approximation for the two-electron interaction, which disregards the magnetic

interactions, such as spin-other-orbit, and the retardation e↵ects due to the finite speed of

light. These e↵ects are important and must be taken into account for a realistic modelling

of core-electron spectroscopies. Therefore,31–34 the Breit interaction terms must thus be

included.35–39 The Breit Hamiltonian adds two negative terms, called Gaunt and Gauge,

respectively:

ĤCoulomb + ĤBreit = ĤCoulomb + ĤGaunt + ĤGauge

=
I1 · I2

r12

� ~↵1 · ~↵2

r12

� (~↵1 · r1)(~↵2 · r2)r12

2

(1)

The first term in Eq. (1) is the non-relativistic Coulomb interaction. The second term,

called Gaunt, can be seen, in the non-relativistic limit, as the scalar product between the

curl of two spin orbitals: ~↵i ⇠ r ⇥ �i.
37 ~↵ denotes a Cartesian vector collecting the 4 ⇥ 4

Dirac matrices ↵x, ↵y and ↵z (vide infra). When ~↵ acts on a 4-component orbital, it couples

its components, as detailed later on in this contribution. This means that the spin rotation

of one electron on its axis generates a vector potential that will interact with the vector
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potentials generated by all other electrons present in the system,37 resulting in a scalar

potential. Finally, the third term, called Gauge, describes the retardation e↵ects due to the

reciprocal interaction between the rotational vector fields (↵i · ri) of two electrons.37 These

contributions cannot be neglected in systems that contain heavy or super-heavy elements,

especially in the calculation of core spectroscopic properties.31–34

In this contribution, we will present the adaptive MRA multiwavelet implementation

of the full Breit interaction as a perturbative correction on top of a 4-component Dirac-

Coulomb-Hartree-Fock wavefunction. We will demonstrate the precision of our implementa-

tion by comparing ground-state energies of highly-charged helium-like ions with increasing

Z, X(Z–2)+, performed with our Python code, VAMPyR (Very Accurate Multiresolution

Python Routines)40 with numerical radial integration in GRASP 41 and Gaussian basis set

calculations with the DIRAC 42 software.

2 Theory and Implementation

2.1 Multiresolution Analysis and Multiwavelets

Multiresolution analysis43 is constructed by considering a set of orthonormal functions called

scaling functions �i(x) supported on the interval [0, 1]. They can be dilated and translated

to obtain a corresponding basis in subintervals of [0, 1]. The most common procedure is a

dyadic subdivision, such that at scale n there will be 2n intervals defined by a translation

index l = 0, 2n � 1 such that the scaling functions in the l-th interval [l/2n, (l + 1)/2n] are

obtained as:

�n
il = 2n/2�i(2

nx � l) (2)

Additionally, functions at subsequent scales are connected by the two-scale relationships

which allow to obtain the scaling function at scale n as a linear combination of scaling

functions at scale n � 1.
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This construction leads to a ladder of scaling spaces in a telescopic sequence which is

dense in L2:

V k
0 ⇢ V k

1 ⇢ .....V k
n ⇢ .... ⇢ L2 (3)

The multiwavelet functions are then obtained as the orthogonal complement of the scaling

functions at scale n + 1 with respect to the ones at scale n.

V k
n � W k

n = V k
n+1, W k

n ? V k
n (4)

In the construction of Alpert,44 the scaling functions are a simple set of polynomials, and

the wavelet functions are then piecewise polynomial functions. The possibility to construct

e�cient algorithms, with precise error control, relies on the combination of several properties

of such a construction. Here, it will su�ce to say that the most important aspects concern the

disjoint support of the basis, which enables function-based adaptivity, the vanishing moments

of the wavelet functions, which guarantees fast decay of the representation coe�cients, the

non-standard (NS) form of operators,45 which uncouples scales during operator application

thus preserving adaptivity, the separated representation of integral kernels, which leads to

low-scaling algorithms. The interested reader is referred to the available literature for details

about those aspects.23,44,46,47

2.2 Mean-field two-electron operators in a Multiwavelets Basis

We will summarise the main methodological developments enabling the results in this con-

tribution. We first recall that in a relativistic framework, molecular orbitals are vectors with

four complex components. We will use indices:

• u, w 2 {x, y, z} for Cartesian components,

• p, q, . . . for occupied 4-component orbitals,

• A, B, . . . 2 {1, 2, 3, 4} for orbital components.
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Furthermore, Greek capital letters will be used for the 4-component orbitals and their low-

ercase counterparts will be used for the corresponding components:

�p =

0
BBBBBBB@

'1
p

'2
p

'3
p

'4
p

1
CCCCCCCA

(5)

The corresponding Hermitian conjugate (transposed and complex conjugate) orbital is:

�†
p =

✓
'1

p '2
p '3

p '4
p

◆
(6)

with † denoting Hermitian conjugation and overline complex conjugation of a component.

To avoid confusion we will also refer to the instantaneous electron interaction (first term

in Eq. 1 as the Coulomb term, whereas we will use the terms direct and exchange to refer to

the two parts of each term, arising from the fermionic nature of the electrons.

For the Coulomb operator gCoulomb(~r1, ~r2) = I1·I2
r12

, the direct and exchange operators are

straightforward and shown in Eqs. (7a) and (7b) in the Supporting Information, respectively.

In practice, these operators are applied as convolutions. E�cient and accurate convolution

with an integral operator is implemented in a separated representation (see Ref. 47 for

details). We underline that the Coulomb part of the two-electron interaction is in this

framework diagonal, in the sense that it is not coupling the four components of the spinor.

In a Gaussian Type Orbital (GTO) framework, the exchange part would instead couple the

four components of the spinor, because the formalism is tied to the atomic orbital (AO)

densities, thus generating an artificial coupling once the exchange operation is performed.48

We proceed similarly for the Gaunt operator gGaunt(~r1, ~r2) = � ~↵1·~↵2

r12
. Note that the ~↵

appearing in the numerator are Cartesian vectors whose components are 4⇥ 4 anti-diagonal
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block matrices:

↵u =

0
B@

0 �u

�u 0

1
CA (7)

with �u, u 2 {x, y, z}, the Pauli matrices. Applying ↵u on a 4-component orbital, in practice

reorders the components, possibly multiplied by a phase factor.

The two-electron energy for the Gaunt operator is thus:

EGaunt = � 1

2

X

pq

Z
d~r1

Z
d~r2

~jpp(~r1) ·~jqq(~r2)

r12

(8)

+
1

2

X

pq

Z
d~r1

Z
d~r2

~jpq(~r1) ·~jqp(~r2)

r12

(9)

where we have introduced the current density Cartesian vector, with components:

jpq;u =
X

AB

'A
p ↵

AB
u 'B

q , (10)

to rewrite the expression more compactly. The corresponding mean-field, e↵ective one-

electron, direct and exchange operators are:

JGaunt�k =
X

u

"Z
d~r2

P
q �

†
q(~r2)↵u�q(~r2)

|~r1 � ~r2|

#
↵u�k(~r1) =

"Z
d~r2

~j(~r2)

|~r1 � ~r2|

#
· [~↵�k] (11a)

KGaunt�k =
X

q

X

u

↵u�q(~r1)

Z
d~r2

jqk;u(~r2)

|~r1 � ~r2|

�
=
X

q

[~↵�q] · ~V Gaunt
qk , (11b)

~j is the trace of the matrix collecting the orbital-pair current densities jpq;u.

The Gaunt direct and exchange operators use the same primitive as the Coulomb oper-

ators for the convolution with the inverse-distance kernel. Thus:

1. Although the expressions for the Gaunt mean-field operators appear more complicated

than those stemming from the Coulomb interaction, their computational load is only

three times higher, because each component of the ~↵ vector only has four non-zero

elements.
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2. For each Cartesian component, one can compute a “Gaunt potential” which is then

multiplied by the ~↵-transformed orbital, exactly as for the Coulomb interaction.

Turning our attention to the gauge two-electron potential, we follow the suggestion of

Sun et al.49 �r1
1

r12
⌘ ~r12

r3
12

⌘ r2
1

r12
, and rewrite it as:

gGauge(~r1, ~r2) =
1

2

(~↵1 · ~r12)(~↵2 · ~r12)

r3
12

(12)

= �1

2


~↵1 ·

✓
⌥r1,2

1

r12

◆�
(~↵2 · ~r1) +

1

2


~↵1 ·

✓
⌥r1,2

1

r12

◆�
(~↵2 · ~r2) (13)

where the sign/index pairs (�r1 or +r2) can be chosen independently for each of the two

terms, giving rise to four equivalent expression.

The energy expressions corresponding to each of the above forms can be considerably

simplified using integration by parts, thus avoiding the need for di↵erentiating the inverse-

distance kernel. However, of the four forms presented above, the energy expression obtained

by choosing +r2 in both terms of Eq. (13) is the most compact and computationally parsi-

monious:

EGauge =
1

2

X

pq

Z
d~r1

Z
d~r2

⇣
~jpp(~r1) · ~r1

⌘⇣
r2 ·~jqq(~r2)

⌘

2r12

(14)

� 1

2

X

pq

Z
d~r1

Z
d~r2

⇣
~jpp(~r1) · ~r2

⌘⇣
r2 ·~jqq(~r2)

⌘

2r12

(15)

� 1

2

X

pq

Z
d~r1

Z
d~r2

~jpp(~r1) ·~jqq(~r2)

2r12

(16)

� 1

2

X

pq

Z
d~r1

Z
d~r2

⇣
~jpq(~r1) · ~r1

⌘⇣
r2 ·~jqp(~r2)

⌘

2r12

(17)

+
1

2

X

pq

Z
d~r1

Z
d~r2

⇣
~jpq(~r1) · ~r2

⌘⇣
r2 ·~jqp(~r2)

⌘

2r12

(18)

+
1

2

X

pq

Z
d~r1

Z
d~r2

~jpq(~r1) ·~jqp(~r2)

2r12

(19)
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The former three terms are the direct contributions and the latter three the exchange

contributions. The use of the inverse-distance kernel is the most significant advantage of

this formulation, since that is already an e�cient and robust computational primitive in a

multiwavelet basis. Note that the calculation of the divergence of the orbital current densities

r ·~jpq ⌘
@jpq;x

@x
+

@jpq;y

@y
+

@jpq;z

@z

is both e�cient and precise in a multiwavelet basis.50

Finally, we present the expressions for the direct and exchange Gauge mean-field opera-

tors:

JGauge�k =
1

2

("Z
d~r2

r2 ·~j(~r2)

|~r1 � ~r2|

#
[(~↵�k) · ~r1] �

"Z
d~r2

~j(~r2)

|~r1 � ~r2|

#
· [~↵�k]

�

2
4
Z

d~r2

~r2

⇣
r2 ·~j(~r2)

⌘

|~r1 � ~r2|

3
5 · [~↵�k]

)

(20a)

KGauge�k =
1

2

X

q

("Z
d~r2

r2 ·~jqk(~r2)

|~r1 � ~r2|

#
[(~↵�k) · ~r1] � [~↵�q] · ~V Gaunt

qk

�

2
4
Z

d~r2

~r2

⇣
r2 ·~jqk(~r2)

⌘

|~r1 � ~r2|

3
5 · [~↵�k]

)
.

(20b)

All terms in both the direct and exchange operators are applied using the inverse-distance

integral operator only.

For completeness, we report also the expressions for the Gauge term when using the

inverse-cube-distance form for the operator:

gGauge(~r1, ~r2) = �(~↵1 · ~r12) (~↵2 · ~r12)

2r3
12

, (21)
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The two-electron energy reads:

EGauge = � 1

2

X

pq

Z
d~r1

Z
d~r2

⇣
~jpp(~r1) · ~r12

⌘⇣
~jqq(~r2) · ~r12

⌘

r3
12

(22)

+
1

2

X

pq

Z
d~r1

Z
d~r2

⇣
~jpq(~r1) · ~r12

⌘⇣
~jqp(~r2) · ~r12

⌘

r3
12

. (23)

While this is arguably more compact than the sum of all six terms in the previous

equation (Eqs. (14)- (19)), it has two main disadvantages. First, it is harder to appreciate

the physical content of the expression at a glance. Second, it requires the application of a

di↵erent convolution operator. The latter point is apparent when looking at the expressions

for the direct and exchange operators:

JGauge�k =
X

uw

Z
d~r2

(~r1 � ~r2)u(~r1 � ~r2)w

|~r1 � ~r2|3
jw(~r2)

�
↵u�k

=

Z
d~r2G(~r1, ~r2)~j(~r2)

�
· ~↵�k (24a)

KGauge�k =
X

q

X

uw

↵u�q

Z
d~r2

(~r1 � ~r2)u(~r1 � ~r2)w

|~r1 � ~r2|3
jqk;w(~r2)

�

=
X

q

[~↵�q] ·
Z

d~r2G(~r1, ~r2)~jqk(~r2)

�
, (24b)

The new convolution operator, G, is a matrix convolution operator with 6 unique elements,

each of which must be implemented by approximating the integral representation of the

inverse-cube-distance kernel51 as a finite exponential sum:52

(~r1 � ~r2)u(~r1 � ~r2)w

|~r1 � ~r2|3
'
X



a(~r1 � ~r2)u(~r1 � ~r2)w exp(�b|~r1 � ~r2|2). (25)

Each term, though anisotropic, can be applied in each Cartesian direction separately. Co-

e�cients and exponents in the sum are obtained similarly to those for the inverse-distance

10



convolution operator, see Ref. 47 for details. This form has been tested in our code, but it

turned out to be less stable numerically and significantly more demanding computationally.

3 Computational Details

DIRAC calculations were performed using a nuclear point-charge model and a threshold of

10�7 on the norm of the error vector (electronic gradient) was chosen as the convergence

criterion for the SCF procedure. The chosen basis set for He, Ne8+, Ar16+, Kr34+, Xe52+ and

Rn84+ was dyall-aug-cvqz.38,53,54 Furthermore, the calculations were performed using default

settings for 4-center integral screening and replacing (SS|SS) integrals by a simple Coulom-

bic correction. In our MW implementation it is not possible to perform such a correction,

because 4-center integrals do not appear in the formalism. We investigated whether this

could impact our perturbative/variational comparisons: with the full two-electron integral

tensors the total energy computed with DIRAC changes slightly and computational cost in-

creases significantly. However, the relative error with respect to both our implementation in

VAMPyR and in GRASP was practically una↵ected. This shows that the error is dominated

by the intrinsic limitation of the basis set.

4 Results and Discussion

We present results for closed-shell, helium-like species: the core 1s-orbitals are doubly oc-

cupied and our code explicitly enforces Kramers’ time-reversal symmetry (TRS),55,56 such

that the 4-component 1s↵ is related to 1s� by a quaternionic unitary transformation.57

In a mean-field treatment – e.g. HF and Kohn-Sham DFT – the Coulomb two-electron

operator is replaced by the corresponding Direct and Exchange terms, indicated with J and

K, respectively. Further inclusion of the Gaunt and Gauge interactions in Eq. (1) will result

into additional J- and K-like terms. Making use of Kramers TRS has a significant impact

on the computational cost: the Coulomb interaction will only encompass the direct term,

11



whereas exchange one will be equal to zero. The Gaunt and Gauge interactions will give rise

to both direct and exchange terms but several contributions will either vanish or be identical

to each other.

Previous work by Anderson et al.30 on full 4-component Dirac-Coulomb relativistic cal-

culations used smeared nuclear charge models.58 In particular for the isolated atoms they

used the Fermi nuclear model.58 This was done to mitigate numerical issues treating core

orbitals with a point-charge model and improve precision. The Fermi model represents the

nuclear charge using the Fermi-Dirac distribution for the nuclear charge density, introducing

two parameters: the skin thickness and the half-charge radius. The former is set to 2.30

fm (2.30⇥10�5 Å) for all nuclei.58 The latter is the radius of a sphere containing half of the

total nuclear charge. This parameter depends on the atomic mass of the nucleus MN , with

one expression used when MN  5 atomic mass units and another for MN > 5.58 The Fermi

model for the nuclear charge is smooth and is thus more physically meaningful. Furthermore,

it avoids singularities at the nuclei, in contrast to a point-like model. However, the results of

Anderson et al.30 showed that the achieved precision of multiwavelet methods with respect

to the grid-based approach available in GRASP decreases with increasing Z, even though a

more physically motivated nuclear model was used.

Our multiwavelet implementation in VAMPyR uses two parameters to tune the precision

of the calculation: the tolerance, ", and the polynomial order, k. Furthermore, both point-

charge and Fermi models are available for the nuclei. In order to validate our Dirac-Coulomb

Hartree-Fock (DCHF) implementation and reassess the impact of the nuclear model, we

performed DCHF calculations with a point-charge model and increasingly tighter precision

settings. We report the comparison of our results with GRASP in Figure 1. The relative

errors obtained at looser precision settings, as shown in Fig. 1, are not consistent with

the user-requested ✏ for heavy elements. The desired precision is user-selected through the

settings for ✏ and k and should, in principle, be achieved irrespective of the nuclear model.

However, our results show that a point-charge nuclear model can reproduce grid-based results

12



from GRASP only when a very tight tolerance is chosen, see Fig. 1 and Table 1 in Supporting

Information (SI). At the opposite end, SCF convergence could not be achieved for k = 6,

✏ = 10�4 for Kr34+ and heavier elements.

One possible explanation is the choice of point-like nuclear potential, which is nonphysical

and not suitable for fully relativistic calculations, but only for nonrelativistic ones. Thus,

calculations with a point nucleus require a significant tighter tolerance and consequently a

higher polynomial order to achieve the same precision of grid-based results from GRASP .

After assessing the validity of our method for the DCHF equation, we developed the

Gaunt and Gauge two-electron terms in the Breit Hamiltonian as a perturbative correction,

as done in GRASP. The Gaunt term contains the vector operator ~↵: it is a Cartesian vector

of 4 ⇥ 4 matrices whose antidiagonal blocks are the Pauli matrices for the corresponding

Cartesian direction. As we have previously mentioned in the Introduction, it can be seen as

the curl of a spinorbital in the classical limit.59 ~↵ acting on a 4-component orbital mixes its

components to give the the current density generated by the rotation of the spin around its

axis.59

We first compared DCHF results from DIRAC with those obtained with VAMPyR at

high precision (i.e. k = 10, ✏ = 10�8), see Table 2 in SI. These results confirm and extend

to the full 4-component regime the observations of Jensen et al.: MWs can attain higher

precision than large Gaussian atomic basis sets.60

Thereafter, we compared our perturbative Gaunt correction, implemented in VAMPyR,

with the variational implementation available in the DIRAC code, see Figure 2. The inclu-

sion of the Gaunt term in the variational self-consistent field procedure is not expected to

significantly a↵ect the ground state as previously shown61 and both results can be compared,

see Figure 2. In fact, the logarithm of the unsigned relative errors for the spinorbit energies,

see Fig. 2.1, and the Gaunt terms, see Fig. 2.2, between VAMPyR and DIRAC have the

same order of magnitude.

The perturbative Gauge correction only involves the inverse interelectronic distance ker-
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Figure 1: Logarithm of unsigned relative error between the Dirac-Coulomb-Hartree-Fock
ground-state energy calculations from VAMPyR and GRASP . All species are in the electronic
configuration 1s2. The VAMPyR calculations were done with di↵erent choices of Legendre
polynomial order k and tolerance ✏: blue circle, k = 6, ✏ = 10�4; orange square, k = 8,
✏ = 10�6; green cross, k = 10, ✏ = 10�8. Both codes have used nuclear point charge model
as described in Ref. 58.

nel, as shown in by Eqs. (14)- (19), from which it is evident how the magnetic energy term

arises as half of the Gaunt term, since both the direct and exchange Gauge contributions

(third and sixth terms) contain half of the Gaunt term.
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Figure 2: Comparison between the spinorbit energies (a) and Gaunt terms (b) coming from
VAMPyR and DIRAC for selected systems in electronic configuration 1s2. The y axis shows
the logarithm of the unsigned relative di↵erence between VAMPyR and DIRAC results.
The VAMPyR calculations were done with Legendre polynomial order k = 10 and tolerance
✏ = 10�8. All codes have used a nuclear point charge model as described in Ref. 58.

For the specific case of 1s2 systems, the terms involving a gradient in the Gauge energy

(i.e., 1st Eq. (14), 2nd Eq. (15), 4th Eq. (17) and 5th Eq. (18)) are either zero or cancel

each other out, up to the chosen numerical precision ". Thus, the ratio between the Gauge

term (EGauge) and the magnetic interaction energy, which corresponds to half of the Gaunt

term (EMag = 1
2
EGaunt), should be one (i.e., identical Magnetic and Gauge terms). This

was verified comparing the Breit energy corrections from VAMPyR and GRASP results, see

Figure 3 and Table 5 in the SI.

The EGauge/EMag ratio was calculated previously using Gaussian atomic orbital basis sets

for several atoms from Z = 9 to Z = 79.49 It was shown to range between 0.90 (Fluorine) and

0.80 for Z > 56, converging asymptotically. In Table 5 of the SI, where we have considered

1s2 systems exclusively, we have obtained a unitary ratio between Gauge and magnetic term.

Furthermore, the magnitude of the Gauge term from our results in Table 5 in SI confirms

what was previously found by Halbert et al.62 that in core-electron spectroscopy the Gauge
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Figure 3: Comparison between the Breit perturbative corrections computed VAMPyR and
GRASP for noble gases and actinides in electronic configuration 1s2. The y axis shows the
logarithm of the unsigned relative di↵erence between VAMPyR and GRASP results. The
VAMPyR calculations were done with Legendre polynomial order k = 10 and tolerance
✏ = 10�8. All codes have used a nuclear point charge model as described in Ref. 58.

term remains quite significant for the K and L edges, and it must be accounted for, especially

for 1s to 2s transitions.63
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5 Conclusions

We have shown that the 4-component Dirac-Coulomb-Hartree-Fock equations can be solved

self-consistently with a fully adaptive MW basis irrespective of the chosen nuclear model, as

required with Gaussian basis sets.64,65

The use of multiresolution analysis (MRA) with a MW basis to solve the KS-DFT equa-

tions allows to separate model errors from discretization (i.e. basis set) errors, with the latter

precisely quantifiable. Thus, the use of a MW basis provides fundamental insight to under-

stand the range of applicability of KS-DFT with localized basis sets. This issue is especially

relevant for 4-component relativistic calculations on heavy elements where the description

of the core electrons is challenging due the nature of the Dirac equation combined with the

extremely high nuclear charge and a reduced availability of GTO bases.

We have shown that the DCHF ground state combined with the Breit Hamiltonian as a

perturbative correction can reproduce grid-based calculations performed with GRASP . Al-

beit not performed in this work, the fully variational inclusion of the Gaunt and Gauge terms

can be obtained by making use of the corresponding operator expressions (Equations (11a)

and (11b) and Equations (20a) and (20b) for Gaunt and Gauge, respectively). This has

not been done for the current work both to simplify the comparison with the GRASP code

and because of excessive memory demands of the current pilot implementation. The latter

is indeed the main challenge for future extensions to general molecular systems where the

simplifications that enabled our results (time-reversal symmetry, spherical symmetry of the

1s orbital) will no longer hold. Work is in progress in our group to overcome these hurdles.

The unitary EGauge/EMag ratio for s-orbitals explains how neither Gaunt nor Gauge terms

can be neglected for core-electron spectroscopy and explains the importance of considering

both these terms when x-ray photoelectron spectra are calculated to fit the experimental

ones.62,63,66 Our results confirm the validity of the MW approach for future development of

core-electron spectroscopy to resolve the structures of oxides of f -elements and other strongly

correlated systems.
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sumi, Y.; Tsuei, K.; Liao, Y.; others Understanding the electronic structure of IrO

2 using hard-x-ray photoelectron spectroscopy and density-functional theory. Physical

review letters 2014, 112, 117601.

(22) Glatzel, P.; Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d tran-

sition metal complexes—electronic and structural information. Coordination chemistry

reviews 2005, 249, 65–95.

(23) Harrison, R. J.; Fann, G. I.; Yanai, T.; Beylkin, G. Multiresolution Quantum Chemistry

in Multiwavelet Bases. Computational Science — ICCS 2003. Berlin, Heidelberg, 2003;

pp 103–110.

(24) Yanai, T.; Harrison, R. J.; Handy, N. C. Multiresolution quantum chemistry in multi-

wavelet bases: time-dependent density functional theory with asymptotically corrected

potentials in local density and generalized gradient approximations. Molecular Physics

2005, 103, 413–424.
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5.4 Paper IV: Cavity-free continuum solvation:
implementation and parametrization in a
multiwavelet framework

Abstract

We introduce a novel approach to continuum solvation models via a
multiwavelet-based framework that integrates a quantum/classical
polarizable continuum model. Departing from traditional meth-
ods, this model applies a diffuse interface between the solute and
solvent, characterized by a variable permittivity, thereby obviat-
ing the sharp-boundary assumption prevalent in several extant sol-
vation models. Our implementation effectively incorporates both
surface and volume polarization effects within the quantum/clas-
sical interface, adhering to tight precision constraints facilitated
by the adaptability of the multiwavelet technique. The model ex-
cels in simulating intricate solvent interactions without necessitat-
ing a posteriori volumetric polarization adjustments. Comparative
analyses with established sharp-boundary continuum models on the
Minnesota solvation database demonstrate our model’s alignment,
particularly in the calculated polarization energies.

Personal Contributions:

• Contributed to enhancing the VAMPyR library by adding critical features
crucial for pioneering the first version of the solvation model code.

• Collaborated in conceptualizing how the VAMPyR library would be utilized
in the implementation, signifying a sound methodological foundation for
the research.
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ABSTRACT: We present a multiwavelet-based implementation of a quantum/classical
polarizable continuum model. The solvent model uses a diffuse solute−solvent boundary
and a position-dependent permittivity, lifting the sharp-boundary assumption underlying many
existing continuum solvation models. We are able to include both surface and volume
polarization effects in the quantum/classical coupling, with guaranteed precision, due to the
adaptive refinement strategies of our multiwavelet implementation. The model can account for
complex solvent environments and does not need a posteriori corrections for volume
polarization effects. We validate our results against a sharp-boundary continuum model and
find a very good correlation of the polarization energies computed for the Minnesota solvation
database.

1. INTRODUCTION
Continuum solvation models have been used in quantum
chemistry for half a century.1−4 Their use is motivated by the
need to simulate the effect of a large solvent environment on a
molecular solute, keeping at the same time the computational
cost to a minimum.
Several models and flavors have throughout the years been

developed. Common to essentially all such models are two
basic assumptions: 1) the solvent degrees of freedom can be
conveniently described in terms of a continuum, parametrized
using macroscopic properties of the solvent; 2) the quantum
system is confined inside a cavity and the solute−solvent
interaction is described in terms of functions (charge density/
potential) supported on the cavity surface. Whereas the former
assumption is a physical one, giving a prescription for the
underlying physical laws,5 the latter is a convenient
mathematical formulation, which reduces the computational
cost transforming a three-dimensional problem in the whole
space to a two-dimensional one on the boundary of the
molecular cavity. Despite the convenience, a sharp boundary
between neighboring molecules assumes that no electronic
density is present beyond the cavity surface. This is not
physically sound, because electronic densities of solute and
solvent in reality overlap. Initially, this issue has been dealt with
by simple renormalization procedures:3 more elaborate
corrections have later been proposed,6−8 and for the Integral
Equation Formalism (IEF) formulation of the polarizable
continuum model (PCM) it can be shown that a first-order
correction is already included in the model.9 A full account of
this issue is, however, not practical in terms of a surface model,

and the ever increasing basis sets employed in routine
calculations, including very diffuse functions, aggravate the
problem further by allowing more and more of the electron
density to “escape” the cavity.
Neglecting electronic charge overlap between solute and

solvent does not only impact the electrostatic energy:
excitation energies depend on the charge distribution in the
excited states, which is invariably more diffuse than in the
ground state, and other interaction terms, such as the repulsion
energy, depend explicitly on the overlap between solute and
solvent densities.10

The parametric description of the cavity surface also
presents challenges, not only from a formal point of view to
define the correct cavity boundary,2,3 but also from a technical
standpoint, especially for larger molecules. The development of
stable cavity generators is still an active area of research.11−20

In recent years, several real-space methods for quantum
chemistry have been developed,21−26 and with these, the
treatment of solvation as a three-dimensional problem has
become a feasible alternative. The advantage is a seamless
integration with the quantum mechanical implementation: the
electrostatic potential is no longer computed in a vacuum but
in the generalized dielectric medium with a position-dependent
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permittivity. Several real-space codes have so far adopted this
strategy.27−32 Another advantage of this approach is an
increased flexibility: no constraints are placed on the form of
the permittivity function, and complex environments consist-
ing of surfaces, droplets, membranes, can be treated without
the need of ad-hoc implementations, which are often limited to
a handful of special cases.33−35

In this contribution, we will present our implementation,
which makes use of a multiwavelet (MW) framework36−39 to
solve both the Kohn−Sham (KS) equations of density
functional theory (DFT)40,41 and the Generalized Poisson
Equation (GPE)27 for the solvent reaction potential. We will
also show a set of benchmark calculations to showcase the
implementation’s theoretical correctness, parametrization, and
flexibility. MWs constitute a basis that can give accurate results
up to a user-defined precision, thanks to an automatic adaptive
refinement.39 Our implementation is included in the open-
source MW computational chemistry software package
MRChem.26 The combination of MW-based KS-DFT and
GPE solver provides a methodology for the assessment of
solvent effects with controlled precision.

2. THEORY
In the theoretical framework adopted in this work, molecules
are described through quantum mechanics, whereas the solvent
is modeled as a classical entity, described by macroscopic
properties. The two subsystems are connected by the solute−
solvent interaction, which describes the mutual polarization of
the two subsystems.2,3 Such an interaction is described by
classical electrostatics. In almost all implementations, the
quantum and the classical problem are solved with very
different methods: the most widely used approach makes use
of Boundary Element Method (BEM)42 techniques to solve
the electrostatic problem (environment) and Gaussian Type
Orbital (GTO) bases43,44 to describe the quantum problem.
The use of Multiwavelets offers a unique opportunity to treat
both problems with the same tools and methods. We will here
recap the basic concepts of multiresolution analysis (MRA)
and how it is employed to solve the electrostatic and the
quantum problem.

2.1. Multiresolution Analysis and Multiwavelets.
MRA is a mathematical framework that considers a space
spanned by a basis of functions with self-similarity and
regularity properties.45 In practice, all basis functions are
constructed by simple translation and dilation of a small set of
starting functions ϕ(x):

=x x l( ) 2 (2 )l
n n n/2

(1)

The core idea of MRA is that the space spanned by the basis
functions at a given scale n is a subspace of those at scale n + 1.
Such a ladder of spaces can be extended indefinitely, and its
limit is by construction dense in L2. Successive refinements
thus provide a systematic strategy to reach completeness, with
a handful of predefined functions. This is in stark contrast with
traditional GTO methods, where extending a basis requires a
complete reparametrization of the basis set, atom by atom. The
wavelet functions are obtained by taking the difference between
two consecutive scaling spaces, and they convey information
about the error incurred at each scale n due to neglecting the
refinement at scale n + 1, see Figure 1 for a 1-dimensional
illustration.
As long as the fundamental properties of self-similarity and

completeness are preserved, the choice of a specific basis set can
be guided by numerical considerations to obtain compact
representation of functions and efficient application of
operators.
Alpert’s Multiwavelets36 constitute a practical realization of

MRA by considering a set of polynomial functions (e.g.,
Legendre or Interpolating polynomials) defined on an interval.
The main advantages of Multiwavelets are the simplicity of the
original basis (a polynomial set) and the disjoint support (basis
functions are zero outside their support node).37 The latter
enables adaptive refinement of functions to minimize the
storage needs and the computational overhead. The extension
to three-dimensional functions is obtained by tensor-product
methods, and operators are efficiently applied in a separated
form.38

Multiwavelets are an ideal framework to deal with integral
operators, and this allows both the KS equations for the
quantum system40 and the Poisson equation for the solvent
polarization27 to be solved within the same formalism, once the
equations are converted from the conventional differential
form to the appropriate integral form. Functions are projected/
computed on an adaptive grid to guarantee the requested
precision. All operations (operator applications, algebraic
manipulations) are defined within the requested precision, in
such a way that the developer can easily implement new
algorithms with little effort46 and the end-user only needs to
specify the requested precision.26,47−49

For details about how to solve the KS equations within a
MW framework, we refer to the literature.39−41 Concerning the

Figure 1. Left panel: scaling functions of order k = 3 defined in the interval [0,1] are simple polynomials. Right panel: the corresponding wavelet
functions are piece-wise polynomials with four vanishing moments (orthogonal to polynomials up to the cubic one). Central panel: adaptive grids
are constructed on demand to minimize storage and meet precision requirements.
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GPE, we will expose the derivation and the implementation
details in the remainder of this section.

2.2. Electrostatics of Continuous Media. Any material is
a bound aggregate of nuclei and electrons: at microscopic level
these charged particles obey the microscopic Maxwell
equations. We are, however, interested in the macroscopic
behavior of the material in the presence of external sources of
charge ρ(r) and current j(r). Following Jackson,5 we can
perform a spatial average to arrive at the macroscopic Maxwell
equations:

· =

× =

× + =

· =

l

m

oooooooooooo

n

oooooooooooo

D

H j

E
B

B

c
D
t c

c t
t

4

1 4

1
0

0 (2)

These equations are expressed in terms of the usual electric
and magnetic fields, E and B, and additionally the displacement
D and magnetization H fields appear as a result of the spatial
averaging. In the quasistatic limit, the electric field has zero curl
and can thus be written in terms of a scalar potential function:
E = −∇V, where V is the electrostatic potential. To relate the
external sources to the potential it is first necessary to relate the
fields E and D with a constitutive relation,5,50 which is, in
general, a nonlinear and space-time nonlocal relationship
between the fields. For linear and local continuous media the
constitutive relation is

=D r E( ) (3)

where the permittivity ε(r) is a position-dependent, rank-3
symmetric tensor. Upon inserting the constitutive relation into
the first of Maxwell’s equations, we obtain the GPE:

·[ ] =r V( ) 4 (4)

In the following, we will further specialize to the isotropic case
ε(r) = ε(r)I, with I the rank-3 identity:

·[ ] =r V( ) 4 (5)

We remark that the permittivity is still position-dependent, in
contrast to the usual PCM treatment. The solution to eq 5 can
be partitioned as

= + =
| |

+r
r r

rV V V V
( )

dR R3 (6)

where Vρ is the electrostatic potential in a vacuum and VR is
the reaction potential. The polarization energy is then defined as

= [ ]r r rU V
1
2

d ( ) ( )pol R (7)

We write the reaction potential as a functional of the charge
density: the functional dependence is linear.9

2.3. The Quantum-Classical Coupling. Our quantum
mechanical treatment of the system will be based on KS-DFT.
For an N-electron system coupled with a classical polarizable
continuum environment, the KS-DFT f ree energy2 func-
tional51,52 reads:
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The molecular charge density is separated into electronic and
nuclear components:

= +r r r RZ( ) ( ) ( )
N

e

nuclei

(9)

Exc[ρe, ∇ρe] is a GGA exchange-correlation functional, and the
nuclear-electron potential is defined as

=
| |=

r
R r

V
Z

( )
N

Ne
1

nuclei

(10)

ζ is a scalar factor influencing the portion of exact exchange
included in the energy. The 1-body reduced density matrix
(RDM) and electronic density function appear in the energy
expression:

= *
=

r r r r r r r( , ) ( ) ( ), ( ) ( , )
i

N

i i1
1

e 1
(11)

The minimum is found by constrained optimization, to
enforce idempotency and normalization of the RDM:
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and leads to the variational condition:51,53

[ ] =F , 0e (13)

where the effective one-electron Fock operator appears:
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2.4. Solving the Generalized Poisson Equation. The
solution to the GPE is a function supported on the entire space
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3. Apparent surface charge formulations of continuum
solvation models do not solve eq 5 directly, but rather
reformulate it as a boundary integral equation and solve it by
boundary-element discretization. The apparent surface charge,
supported on the closed solute−solvent boundary, is the
sought-after quantity to compute the polarization energy.9

Such a procedure is generally based on two underlying
assumptions: (1) the charge density is entirely contained inside
the cavity boundary, and (2) the permittivity is unitary inside
the cavity and constant outside the cavity, with a jump
condition that defines the electrostatic potential and field
across the cavity boundary. With a real-space approach both
assumptions can be relaxed and the equation can be solved
directly. We recap here the procedure outlined by Fosso-
Tande and Harrison.27

We rewrite eq 5 in terms of the Laplacian of the potential V:

= ·
r

r
r

V
V4

( )
( )

( )
2

(15)

The second term on the right-hand side contains both the
gradient of the permittivity and the gradient of the potential.
When the permittivity is not constant, the equation cannot be
solved in one step by inversion of the Laplacian, i.e., by
convolution of the right-hand side with the Laplacian’s Green’s
function. An iterative strategy must be employed instead.
Let us then define the effective charge:

=eff (16)

and the polarization function:

= · =
·V V1

4
log

4 (17)

such that eq 15 becomes

= +V 4 ( )2
eff (18)

We can now formally solve eq 15 in terms of the Laplacian’s
Green’s function:

=
+

| |
=

| |
* +r r

r r

r r r r
V( ) d

( ) ( ) 1
( )eff

eff (19)

However, both the polarization energy in eq 7 and the solute−
solvent interaction term in the Fock operator are expressed in
terms of the reaction potential, rather than the total
electrostatic potential. By making use of the partition of V in
eq 6 and recalling that ∇2Vρ = −4πρ one obtains
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which can be formally inverted using the Poisson kernel:
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We stress that γ is a function of V = Vρ + VR and eq 21 must
therefore be solved iteratively.

3. IMPLEMENTATION
In this section we present details about our specific choice of
parametrization for the permittivity and how we compute the
electrostatic potential between solute and solvent. We also

show how we couple this to a standard self-consistent field
(SCF) optimization procedure.

3.1. The Permittivity Function Parametrization. We
partition space into two regions: a cavity containing the solute,
and the remainder. The cavity surface is defined as the union
set of a collection of interlocking spheres centered on the
nuclei. Their radii are parametrized by using the corresponding
van der Waals radii times a factor. This factor is often set to
either 1.1 or 1.2,2 but it might vary, e.g., depending on the
charge of the solute. For standard continuum models the cavity
boundary is the support of the electrostatic problem for the
solute−solvent interaction. In the current model it serves as a
support to define the parametrization of the position-
dependent ε(r). In Section 4 the appropriate parametrization
of the cavity for the present model will be discussed.
Following Fosso-Tande and Harrison, we write the

permittivity as a function of the molecular cavity function:27
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The exponential parametrization proves convenient in light of
the definition of γ in eq 17, which lets us define its gradient
using the cavity function, C(r), only.
The molecular cavity function is constructed as follows. For

each sphere α centered at rα with radius Rα, we can measure
the signed normal distance of any point in space as

= | |r r rs R( ) (23)

Given sα(r), we define a smoothed boundary of the sphere as
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where σ is a user-defined smoothing parameter: Cα approaches
the Heaviside step function as σ → 0. The molecular cavity
function is then a product of all N spheres:

=
=

r rC C( ) 1 (1 ( ))
N

1

sph

(25)

see Figure 2 for an example.
The log-derivative of the permittivity in eq 17 is then:

=
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out (26)

requiring evaluation of the gradient of the cavity function. For
interlocking-spheres cavities, a closed-form analytical expres-
sion is available, see Appendix A, and is implemented in our
code. Note, however, that, in a real-space, multiwavelet
framework, we can compute this gradient by direct application
of the derivative operator,54 which allows one to use more
complex or even numerical definitions of the boundary, e.g., as
isodensity surfaces.

3.2. The Self-Consistent Reaction Field. The self-
consistent reaction field (SCRF) is the iterative procedure to
solve the GPE for any given molecular density. At convergence,
the iterations produce the reaction potential VR, which can be
directly employed in the solution of the KS-DFT equations.
Algorithm 1 shows the iterative procedure implemented to

solve the GPE within the SCF iterations. The input parameters
at iteration n are the charge density ρ[n], the permittivity ε(r), a
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guess for the reaction potential [ ]V n
R

,0 , and a threshold
parameter δ. Before iterating, the effective density [ ]n

eff and

the potential [ ]V n are computed. At each microiteration i, the

reaction potential [ ]V n i
R

, is computed in four steps as outlined
in lines 5−8 of Algorithm 1, and convergence in the norm of
the reaction potential is checked against the threshold δ. At the
first SCF iteration, the starting guess for the reaction potential
is set to zero =[ ]V( 0)R

0,0 . At all subsequent iterations, the
starting guess is set to the converged reaction potential from
the previous iteration: =[ ] [ ]V Vn n

R
,0

R
1 .

A straightforward implementation of the microiterations
suffers from slow convergence of the reaction potential, thus
adding a significant prefactor to each SCF iteration. We use the
Krylov-accelerated inexact Newton (KAIN) method,41 which
is a convergence acceleration technique, similar to Pulay’s
DIIS55 and Anderson’s mixing.56 At each microiteration i, the
updated reaction potential [ + ]V i

R
1 is constructed as a linear

combination, with constraints, of N previous iterates. The
KAIN history length N impacts both convergence and
memory: N = 5 is generally a good compromise between
fast convergence (fewer iterations) and acceptable memory
footprint.
The KAIN acceleration is combined with an adaptive

threshold to improve the convergence rate of the micro-
iterations: instead of converging the reaction potential to the
same predefined threshold ϵ used for the orbitals, we make use
of a threshold, δ, chosen to be the norm of the orbital update

in the parent SCF macroiteration. δ is thus updated during the
SCF procedure. There are two parameters that affect the
convergence pattern of the reaction potential, VR:

1. The guess for VR at the start of the microiterations:

(A) =[ ]V 0n
R

,0 , or (B) =[ ] [ ]V Vn n
R

,0
R

1 (and zero for the
first microiteration embedded in the first macroiteration).

2. The convergence threshold for the microiterations: (C)
fixed threshold δ, or (D) dynamic threshold δ[n] =
|Δρ[n]|.

These lead to four possible convergence regimes: AC, BC, AD,
BD; the latter being our default.
Figure 3 illustrates how the number of microiterations

evolves. A dynamic precision threshold D reduces the number

of microiterations in the beginning of the SCF procedure,
simply because the threshold for convergence is looser. Using
the converged VR from the previous macroiteration B helps
close to SCF convergence, because the orbitals do not change
much and the starting guess for the microiterations is also
better. Combining those two choices results in the optimal
convergence pattern: the convergence threshold is progres-
sively tighter, while at the same time the starting guess for the
reaction potential improves. The opposite choice (AC instead
of BD) requires a large number of microiterations throughout,
whereas the intermediate choices (AD and BC) result in a
large number of iterations at the beginning (BC) or at the end
(AD). We underline that all four choices converge to the same
result for the example in Figure 3, but we can envisage cases

Figure 2. Cross-section in the xy plane of the cavity function C(r) for
the water molecule. Atom positions are indicated by their symbol.
Coordinates are in atomic units. We can observe the smooth
boundary of the cavity function.

Figure 3. Convergence regimes for the SCRF algorithm. MW
calculations with global precision 10−5 for acetamide (C2H5NO,
identifier 0233ethb from the Minnesota Solvent Descriptor
Database). Four possible convergence scenarios are presented: static
(A) or dynamic (B) precision threshold for the microiterations; zero
initial guess (C) or guess from previous macroiteration (D). A
dynamic threshold (green and red curves) reduces the number of
microiterations at the beginning of the SCF procedure. A starting
guess from the previous SCF macroiteration (green and blue curves)
is effective close to convergence. Combining the two (green curve) is
the optimal strategy. The dip observed for the blue and green curves
at macroiteration 1 is due to the fact that the macroiteration 0 is a
preliminary step and the orbital are not changed progressing from
macroiteration 0 to macroiteration 1, but the convergence threshold is
tightened. This results in an almost converged reaction potential as a
starting guess for the microiterations nested in macroiteration 1.
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where convergence could potentially be prevented by choices
A and C.

4. RESULTS
For all systems, the solvation energies have been computed
with both Gaussian1657 and MRChem. Gaussian16 features
the Integral Equation Formalism PCM (IEFPCM)58 with a
sharp cavity boundary. MRChem features the solvation model
described in the previous sections.

Two sets of calculations have been performed. The aim of
the first set was to determine a good parametrization for the
cavity surface in terms of the atomic radii and the cavity surface
thickness. Once a satisfactory parametrization was achieved, an
extensive benchmark of solvation energies was performed, by
considering the Minnesota Solvent Descriptor Database
(MSDD) of Marenich et al.59

All calculations reported are KS-DFT using the PBE0
functional.60 Gaussian16 results are obtained with the Def2-
TZVP,61−63 basis set, except where otherwise stated. MRChem

Figure 4. Results for the cavity parametrization. Left column: α = 1.1. Right column: α = 1.2. On each row a different permittivity is used: from top
to bottom: ε = 2.0, 4.0, 80.0. For each plot there are four sets of data, corresponding to β = 0.0, 0.5, 1.0, 1.5. Each point on the set represents a
molecule. x-Axis: the reaction energy calculated using Gaussian16. y-Axis: the reaction energy calculated using MRChem. Values are in Hartree.
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results are obtained setting the global precision parameter to
10−5. In other words, the obtained absolute energy is correct
with at least five digits with respect to the complete basis set
(CBS) limit.47 This is not to be confused with the convergence
threshold of a SCF calculation performed with an atomic basis
set, which will guarantee the “exact” result within the chosen
basis, but where the precision compared to the CBS is limited
by the choice of basis.

4.1. Cavity Parametrization. For the parametrization
calculations, 4 molecules of different levels of polarity were
chosen: water, ethanol, formaldehyde, and ethyne (geometries
taken from the MSDD,59 file names 0217wat, 0045eth,
0069met, and 0030eth). No geometry optimization was
performed. They were chosen to give a minimal set of neutral
(polar and apolar) systems, to allow for a reliable yet simple
data set to identify a good choice of the parameters defining
the cavity.
In Gaussian16, the external iteration procedure64,65 was used

to extract the reaction energy from the total energy.a The
spheres used for the cavities were atom-centered and used the
atoms’ Bondi radii66 scaled by a factor of 1.1, as is standard for

Gaussian16. Three different permittivities have been em-
ployed: 2.0, 4.0, and 80.0.
In MRChem, the cavity is also built from atom-centered

spheres, with each radius Ri parametrized as

= +R Ri i i i i
vdW

(27)

where Ri
vdW is the Bondi radius66,67 of the i-th atom, σi is the

width of the cavity boundary, and αi and βi are adjustable
parameters. We allowed for granular, sphere-by-sphere
flexibility in our implementation of the cavity function. By
default, one value is used for each parameter (α, β, σ) for all
spheres. The combination α = 1.1 and β = 0.0 would yield
matching radii between MRChem and Gaussian16. In the
following, we explored results when α values were 1.0, 1.1, 1.2,
1.3 and for β values of 0.0, 0.5, 1.0, 1.5. In all MRChem
calculations the width parameter was fixed to σ = 0.2 au.
The aim of the parametrization is to see how the cavity

width σ affects the results of our calculations, compared to a
sharp-boundary method, and to choose the combination of α
and β coefficients that provides a good correlation between our
method and a sharp boundary implementation. The goal is not
to replicate results from Gaussian16 implementation: our

Figure 5. Correlation plots of reaction energies computed with Gaussian16 and MRChem for all neutral species in the MSDD59 for ε = 2.0, 4.0,
80.0. All cavities are atom-centered, with Bondi radii.66,67 Radii are scaled by 1.1. in Gaussian 16. For the MRChem calculations, we used default
values: α = 1.1, β = 0.5, σ = 0.2 au Linear regression line shown in black. Outlier species are marked in blue and red when containing bromine and
iodine, respectively. The labels refer to A. 5-bromouracil, H3C4N2O2Br (n203); B. 5-bromo-3-s-butyl-6-methyl-uracil, H13C9N2O2Br
(test1013); C. 2-bromoanisole, H7C7OBr (test5008); D. Bromobenzene, H5C6Br (0186bro); E. 4-bromopyridine, H4C5NBr
(0573bro); F. 1-bromo-2-chloroethane, H4C2ClBr (0202bro); G. 5-iodouracil, H3C4N2O2I (test2018); H. iodomethane, H3CI
(test4003); I. iodobenzene, H5C6I (test4001); J. 1,4-dichlorobenzene, H4C6Cl2 (0176pdi); K. 3-bromoanisole, H7C7OBr
(test5009).
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method has a diffuse cavity layer, whereas the cavity of
IEFPCM is a 2-dimensional boundary. This will lead to
contributions and errors that are not equivalent.
Figure 4 shows the results for the cavity parametrization for

α = 1.1 and α = 1.2. Results for α = 1.0 and α = 1.3 are not
shown, because they largely overestimate (α = 1.0) or
underestimate (α = 1.3) solvation energies, but they are
available in the data package available online on DataVerse.68

We conclude that a cavity parametrization with α = 1.1 and
β = 0.5 provides a good correlation with sharp-boundary
IEFPCM for all reasonable values of the permittivity and
default value of cavity width. This choice of α and β with σ =
0.2 au is the current default in MRChem.

4.2. Model Benchmarking against the Minnesota
Solvent Descriptor Database. The geometries from the
MSDD were used to compile a comprehensive benchmark of
our model against a sharp-boundary cavity implementation.
MSDD holds solvation-related quantities, for a wide variety of
solvents and solutes.59 From the conclusions in the previous
section, all MRChem results reported in this section employ
the cavity parameters α = 1.1, β = 0.5, and σ = 0.2 au.
Figures 5 and 6 summarize our results, for neutral and

charged species, respectively. As for the results in Section 4.1,
the figures visualize the correlation between the reaction

energies computed with Gaussian16 (x-axis) and MRChem (y-
axis).
For low permittivity (ε = 2.0), Figure 5.1 shows that for

neutral species our data is quite close to the main diagonal for
small energies, but has a slight systematic deviation for more
negative reaction energies (bottom left corner). For ions,
Figure 6.1 shows a systematic overestimation with respect to
Gaussian16, and a clear distinction between cations and
anions. For ε = 4.0 (Figure 5.2 and 6.2), we see a similar trend,
although most data points appear to be closer to the diagonal.
For high permittivity ε = 80, Figure 5.3 for neutral species and
Figure 6.3 for ionic ones show that the values are now mostly
below the diagonal, that is, solvation energies are under-
estimated compared to Gaussian16. In Figure 5, we can see a
set of outlying point with respect to the rest of the data. These
points have been identified as species containing bromineb or
iodine,c with only one outlier containing chlorine instead.d59

There may be multiple, concomitant reasons for these
discrepancies: (a) Bromine and iodine are the only atoms
from the fourth and fifth period of the periodic table present in
the set; (b) the radii used in the definition of the cavities for
these elements might not be appropriate; (c) the different
treatment of volume polarization in the two implementations
(full account in our model and implicit first-order correction in

Figure 6. Correlation plots of reaction energies computed with Gaussian16 and MRChem for all positive (red) and negative (blue) ions in the
MSDD59 for ε = 2.0, 4.0, 80.0. All cavities are atom-centered, with Bondi radii.66,67 Radii are scaled by 1.1. in Gaussian 16. For the MRChem
calculations, we used default values: α = 1.1, β = 0.5, σ = 0.2 au linear regression lines are shown in red (blue) for positive (negative) ions,
respectively.
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the IEFPCM model8,9) might affect the description of these
molecules, where a more delocalized electronic density is
expected. It would be interesting to disentangle the effects of
surface and volume polarization, but it is not straightforward to
do so and it goes beyond the scope of the present work.
The fact that molecules are quite close to the line, especially

as the reaction energy becomes small (top right corner), is not
surprising. We chose the cavity parameters from a limited set
of small molecules. On the other hand, the observed deviations
for larger solvation energy are to a large degree systematic,
which shows that they could be accounted for, with a more
refined parametrization.
Cations tend to have less diffuse density than anions.

Therefore, the size of the cavity with respect to the spatial
extent of the electronic density is larger for cations than for
anions. According to the simple Born model, solvation energy
of ions is inversely proportional to the radius of the cavity,
which explains the better correlation observed for cations:
when the charge distribution is better confined inside the
cavity, the difference between a sharp interface formally not
accounting for volume polarization and a diffuse one including
it, becomes smaller.

4.3. Performance. The current code is a prototype, and we
have therefore not yet dedicated attention to improving its
performance in terms of computational time and memory
footprint. A few general considerations can however be made.
The solution of the GPE is technically similar to that of the
Helmholtz equation, which we employ to solve the SCF
equations.40,69 It should therefore be possible to achieve linear
scaling with respect to the system size once the code is fully
optimized.70 This is a feature of MRA,37 which is designed to
decouple the long- and short-range interactions automatically
thanks to the adaptive refinement scheme coupled with the use
of the nonstandard form of operators.38 In this sense, the
algorithm should be competitive with implementations of
sharp-cavity models that employ the fast multipole method
(FMM) to accelerate the matrix-free solution of the PCM
equations.71

A qualitative comparison with the domain decomposition
(DD) family of algorithms9,72,73 is also in order. DD
approaches to implicit solvation are, by construction, linear
scaling. Furthermore, they are easily recast in a matrix-free
form that both reduces the memory footprint and lends itself
to further performance boosting via the FMM.74 However, in
our understanding of the algorithm, these advantages of the
method are not straightforwardly extended to cavities with
diffuse boundaries. Furthermore, when dealing with quantum
mechanical source densities, the quantum-classical coupling
must rely on volume integrations, e.g., using a DFT grid, to
correctly represent the escaped charge.75

Our algorithm achieves formal simplicity and, in principle,
algorithmic efficiency. Real-space methods for the reaction
potential can be coupled with GTO methods for the
electronic-structure problem,76 thus making our method of
interest beyond multiwavelet-based quantum chemistry.
Currently the main bottleneck is constituted by the memory
footprint of the functions describing the cavity and the solvent
reaction potential, since they extend throughout the whole
computational domain. Work is currently in progress to deal
with such functions in an efficient way.

5. CONCLUSIONS
We have implemented, parametrized, and benchmarked a
continuum solvation model based on a position dependent
permittivity ε(r).27 Our algorithm performs microiterations,
nested within each SCF cycle, to obtain the solvent reaction
potential. We overcome convergence issues using KAIN
convergence acceleration and an adaptive convergence thresh-
old. Our implementation is robust and introduces only a
modest computational overhead.
With a simple parametrization, we have obtained a good

correlation with respect to the IEFPCM implemented in
Gaussian16, for an extensive library of geometries and a wide
range of permittivities. Some systematic deviations have been
observed, suggesting that a more sophisticated cavity para-
metrization could yield even better agreement. An alternative
option, which is often challenging for standard solvation
models, is to parametrize the permittivity by making use of an
isodensity cavity as support. This choice would forego the
radius parametrization altogether, but it might pose other
challenges, because the cavity gradient must be computed
numerically, and the coupling with the density functional must
be taken into account.
The performance and stability might be further improved, by

considering a different approach to the SCRF microiterations:
a square-root parametrization of the electrostatic potential, as
suggested by Fisicaro et al., might prove useful.30

The flexibility of the method will allow for several additional
developments, such as the inclusion of charged particles
outside the cavity, as well as other contributions to the
solvation energy, such as cavitation, dispersion, and repulsion.

■ APPENDIX A: ANALYTICAL DERIVATIVES OF THE
PERMITTIVITY AND CAVITY FUNCTIONS

A.1: The gradient
The gradient of the permittivity function can be determined
analytically. Differentiating eq 22:
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which only requires to compute the analytical gradient of the
interlocking sphere cavity function C(r).
The analytical gradient of the interlocking sphere cavity is as

defined by Fosso-Tande and Harrison:27
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The gradient of a single sphere cavity function Cα is
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and finally the gradient of the signed normal distance is
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In the implementation, we use a cutoff of 10−12 for the
denominator, in order to avoid numerical discontinuities.
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■ ADDITIONAL NOTES
aWe later learned that the, undocumented, keyword
PrintResultsTable achieves the same purpose. We
used this for one molecule in the benchmark set, the singly
charged negative peroxide ion O2

− (identifier: i091), where
the external iteration procedure failed to terminate.
bMolecules and corresponding filenames in the database: A. 5-
bromouracil, H3C4N2O2Br (n203); B. 5-bromo-3-s-butyl-6-
methyl-uracil, H13C9N2O2Br (test1013); C. 2-bromoani-
sole, H7C7OBr (test5008); D. Bromobenzene, H5C6Br
(0186bro); E. 4-bromopyridine, H4C5NBr (0573bro); F.
1-bromo-2-chloroethane, H4C2ClBr (0202bro); K. 3-
bromoanisole, H7C7OBr (test5009).
cMolecules and corresponding filenames in the database: G. 5-
iodouracil, H3C4N2O2I (test2018); H. Iodomethane, H3CI
(test4003); I. Iodobenzene, H5C6I (test4001).
dMolecule and corresponding filename in the database: J. 1,4-
dichlorobenzene, H4C6Cl2 (0176pdi).
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