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Significance statement 

In search of biomarkers for GFR decline, estimated GFR (eGFR) from creatinine, cystatin C, or both 

have mostly been used. Whether the relationships between biomarkers and eGFR decline are similar 

to associations with measured GFR (mGFR) decline has not been investigated. This study revealed 

that some biomarkers showed statistically significant different associations with eGFR decline 

compared to mGFR decline, particularly for eGFR from cystatin C. The study indicates that non-GFR-

related factors influence the relationship between biomarkers and eGFR decline. It concludes that 

the results of biomarker studies using eGFR, particularly eGFRcys, should be interpreted with 

caution. 
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Abstract 

Background: 

Several serum protein biomarkers have been proposed as risk factors for GFR decline using estimated 

GFR (eGFR) from creatinine or cystatin C. We investigated whether eGFR can be used as a surrogate 

endpoint for measured GFR (mGFR) when searching for biomarkers associated with GFR decline.  

Methods: 

In the Renal Iohexol Clearance Survey (RENIS), GFR was measured with plasma iohexol clearance in 

1627 individuals without diabetes, kidney, or cardiovascular disease at baseline. After 11 years of 

follow up, 1409 participants had one or more follow-up GFR measurements. Using logistic regression 

and interval-censored Cox regression, we analyzed the association between baseline levels of 12 

serum protein biomarkers with the risk of accelerated GFR decline and incident CKD for both mGFR 

and eGFR. 

Results:  

Several biomarkers exhibited different associations with eGFR decline compared to their association 

with mGFR decline. More biomarkers showed different associations with eGFRcys decline than with 

eGFRcre decline. Most of the different associations of eGFR decline vs mGFR decline remained 

statistically significant after adjustment for age, sex, and BMI, but several were attenuated and not 

significant after adjusting for the corresponding baseline mGFR or eGFR.  

Conclusion:  

In studies of some serum protein biomarkers, eGFR decline may not be an appropriate surrogate 

outcome for mGFR decline. Although the differences from mGFR decline are attenuated by 

adjustment for confounding factors in most cases, some persist. Proposed biomarkers from studies 

using eGFR should preferably be validated with mGFR. 
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Introduction 

The prevalence of chronic kidney disease (CKD) is increasing worldwide.1,2 Several studies have 

therefore investigated biomarkers to identify people at risk for CKD as well as the underlying 

mechanisms for GFR loss.  

Biomarkers related to inflammation, immunity, fibrosis development, cell proliferation, angiogenesis, 

and apoptosis have been associated with loss of GFR in general population studies.3-13 These studies 

used equations based on creatinine and/or cystatin C to estimate GFR (eGFR) and eGFR change rates. 

This method may introduce confounding and spurious associations between the biomarkers and 

renal outcomes because eGFR is biased by non-GFR-related factors such as diet, muscle mass, 

inflammation, obesity, and cardio-metabolic risk factors.14-19 Some of these studies included persons 

with diabetes, cardiovascular disease (CVD), and other comorbidities, potentially increasing the 

problem of confounding. 

The aim of this study was to investigate whether eGFR can be used as a surrogate endpoint for 

measured GFR (mGFR) decline when searching for biomarkers for GFR decline. We assessed the 

validity of associations between protein biomarkers and eGFR decline relative to the decline in 

measured GFR (mGFR). This was done by comparing the associations between 12 protein biomarkers 

measured at baseline and loss of kidney function assessed by eGFR from creatinine and cystatin C 

versus the measured GFR. We analyzed associations of protein biomarkers and risk of accelerated 

GFR decline and incident CKD using eGFR and mGFR in a representative sample of a middle-aged 

general population without self-reported diabetes, CVD, or kidney disease at baseline, where iohexol 

clearance had been measured three times during 11 years of follow-up. 
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Methods 

Subjects 

The Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-T6) (2007-2009) was a substudy of the sixth 

Tromsø Study (T6), a general population survey in the municipality of Tromsø, Northern Norway.20 In 

total, 2825 participants from T6 between 50-62 years of age without self-reported diabetes, kidney 

disease or CVD were invited to RENIS-T6. The response rate was 75%, and 1627 persons were 

investigated according to a predetermined study target size (Figure 1).16 Of these 1627, 1324 had a 

follow-up in the RENIS follow-up (RENIS-FU) (2013-2015) and 1174 in RENIS-3 (2018-2020) after a 

median of 5.6 (interquartile range (IQR): 4.3-7.0) and 11 (IQR: 10.6-11.5) years, respectively, leaving 

1410 participants with at least one follow-up GFR measurement and a total of 4213 GFR 

measurements.21 Another 210 participants were included in RENIS 3,21 these were not included in the 

current study because they did not have their GFR or proteins measured at baseline. The study was 

approved by the Norwegian Data Inspectorate and the Regional Ethics Committee of Northern 

Norway, and all participants provided written informed consent. 

Iohexol clearance 

GFR was measured using single sample plasma clearance of iohexol (Omnipaque, 300 mgI/ml; 

Amersham Health, London, UK)22 in all three surveys; details have been reported previously.23-25 The 

mean coefficient of variation for intraindividual mGFR variation was 4.2% in RENIS-FU (95% 

confidence interval (CI) 3.4-4.9%).24 Iohexol concentration was measured using high-performance 

liquid chromatography (HPLC) in RENIS-T6 and RENIS-FU and by liquid chromatography‒mass 

spectrometry (LC‒MS) in RENIS-3. A calibration equation for the conversion of results between HPLC 

and LC‒MS was developed, and the equation development has been described in detail.21,26 

Serum protein biomarker selection and measurement 

We selected serum protein biomarkers that have been associated with an increased risk of 

accelerated eGFR loss, CKD development, and renal aging in previous studies. The biomarkers were 
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selected based on a structured literature search of published articles during the last five years. Two 

researchers conducted the search using the PubMed database from March to April 2018, applying 

three slightly different searches to expand the search (listed in Table S1). Studies with diabetes type 

1 and acute kidney injury patients were excluded. In total, 72 different proteins were identified from 

original research and review articles, mainly from longitudinal general population studies but also 

studies involving patients with type 2 diabetes, of which each researcher listed 20 proteins based on 

relevance in findings. We selected proteins which associated with different pathophysiological 

pathways to investigate a broad range of biomarkers associated with eGFR loss. Thirteen proteins 

available for analysis using the Luminex assay were selected (Figure S1). Full names of the 13 proteins 

are listed in Table 1, and abbreviations are used hereinafter. 

Fasting serum samples collected at baseline and stored at -80 °C were thawed for protein 

measurement. TNFR2 was analyzed in 2015 using a quantitative sandwich ELISA with a QuantiKine kit 

from R&D systems, Inc. (Minneapolis, MN) as part of a previous project.27 The other 12 proteins were 

analyzed between June 2018 and January 2019 using Luminex xMap multiplex technology (Bio-Plex 

200 systems, BIO-RAD) and human magnetic bead-based assays from R&D Systems (Bio-Teche), 

consisting of microplates with 96-well plates and magnetic antibody-coated beads. All the 

microplates and accompanying standard solutions were from the same batch to avoid batch 

differences. 

Due to differences in the required dilution factor of serum samples prior to protein analyses with 

Luminex technology, we used two separate kits. The first 9 proteins (CD40Lig, GDF-15, MCP-1, Tie-2, 

TRAIl-R2, FABP4, KIM-1, MMP7, and suPAR) were measured at a 1:2 dilution, and the last three 

(Umod, Gal-3, and MMP2) were measured at a 1:50 dilution. Protein levels were calculated using a 

five-parameter logistic (5-PL) standard curve and displayed as the mean of duplicate measurements. 

KIM-1 was undetectable (below the lower limit of detection) in all but 37 of the baseline samples and 
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was thus excluded from the analysis. Intra- and interassay CVs were between 2.9–6.4% and 4.9–

19.3% respectively (Table S2). 

Of the selected biomarkers, two markers of fibrosis (MMP7 and MMP2) as well as TNFR2 have been 

included in previous publications from the first RENIS follow-up after a median of 5.6 years (RENIS-

FU).14,27,28 

Other study variables 

Information on medication use and smoking habits (current, previous, or never daily smoker) was 

collected through a questionnaire. Height and weight were measured to calculate body mass index 

(BMI: weight in kg divided by height in meters squared). Blood pressure (BP) was measured three 

times at one-minute intervals after 2 minutes of rest using an automated device (model UA 799; 

A&D, Tokyo, Japan). The average BP of the last two measurements was used in the analyses. 

Hypertension was defined as either systolic BP (sBP) ≥140 mmHg, diastolic BP (dBP) ≥90 mmHg, or 

the use of antihypertensive medication. Fasting glucose, creatinine (Cre), and cystatin C (Cys C) were 

measured using COBAS 8000 (Roche Diagnostics).15 Serum creatinine was measured using an 

enzymatic assay standardized to the isotope dilution mass spectroscopy method (CREA Plus, Roche 

Diagnostics, GmbH, Mannheim, Germany). Cystatin C was measured by a particle-enhanced 

turbidimetric immunoassay (Gentian, Moss, Norway). The inter-assay coefficient of variation for 

creatinine and cystatin C was 2.3 and 3.1%, respectively.23 Due to the lack of an established 

international standard at baseline, the baseline cystatin C measurements were calibrated to the 

international reference ERM-DA471/IFCC (as previously described).29 This standard was in use during 

data collection in RENIS-FU and RENIS-3. eGFR was based on Cre, Cys C or both using the Chronic 

Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.30,31 Three samples of first-void 

morning urine were collected on consecutive days, and fresh samples were analyzed for the urinary 

albumin to creatinine ratio (uACR mg/mmol).20 All measurements and blood samples were collected 

in the morning between 08:00-10:00 a.m. 
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Statistical analyses 

Descriptive statistics for normally distributed variables and skewed variables were given as the 

means (standard deviations: SD) and medians (IQR), respectively. Categorical variables were given as 

numbers (n) and percentages. Normally distributed proteins were modeled per SD increase in 

concentration, whereas proteins with skewed distributions were modeled per logarithmic unit 

increase after log2-transformation. 

The association between proteins measured at baseline and a dichotomous variable for accelerated 

mGFR and eGFR decline was investigated using multiple logistic regression analyses. In studies of 

CKD, which include many patients with very rapid eGFR decline, accelerated GFR decline has often 

been defined as loss of GFR greater than 3.0 mL/min/1.73 m2/year. To obtain a reasonable number 

of persons with accelerated GFR in this relatively healthy population, we instead defined it as the 

10% steepest mGFR or eGFR decline slopes, calculated using linear mixed model for each GFR 

method adjusted for baseline age, sex, BMI, smoking, blood pressure medication, sBP and fasting 

glucose, using a within-person centered time-variable, as described in previous publications.28,32,33 

The slope obtained from a linear mixed model is considered to be more precise than a slope based 

on linear regression and a better surrogate marker of end-stage kidney disease, especially among 

those with GFR >60 ml/min/1.73 m2.34 

To test the differences between the odds ratios (OR) for the GFR methods in the logistic regressions 

(mGFR vs. each eGFR, or between eGFRcre and eGFRcys), we used the suest (seemingly unrelated 

estimation) command in STATA.  

Incident CKD was defined as new-onset eGFR or mGFR <60 ml/min/1.73 m2, a definition used by 

others.21,35 Since the exact time of the event was not observed, the risk of incident CKD during the 

study period was assessed using interval-censored Cox regression analysis.36 Censoring was 

performed at the first time interval incident CKD was assumed to have occurred. Thus, persons with 

prevalent CKD at baseline were categorized as left censored, i.e. the event occurred before the first 
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visit. Those who developed CKD in-between visits were categorized as interval censored, and those 

who had GFR >60 ml/min/1.73 m2 at their last visit as right censored. To avoid misclassification if 

baseline GFR was < 60 ml/min/1.73m2 whereas subsequent GFR was >60 ml/min/1.73m2, we did not 

register this as CKD unless GFR fell below 60 ml/min/1.73m2 at a later measurement. For each 

protein, the statistical significance of the differences between the hazard ratio (HR) for mGFR and the 

other three eGFR methods, were calculated with the bootstrap method from 1000 resamples with 

replacement of the participants in the study population. 

Both the analyses of accelerated decline and incident CKD were adjusted for covariates in three 

different models:  Unadjusted analysis (protein concentration only); adjustment for factors 

commonly included in biomarkers studies that may be related to creatinine and/or cystatin C 

production (non-GFR related factors influencing creatinine or cystatin C): age, sex, BMI, and tobacco 

smoking19,37 (Model 1). In a Model 2 we also adjusted for the respective baseline measured or 

estimated GFR (Model 2), as doing so could reduce confounding of baseline eGFRcre or eGFRcys due 

to unmeasured non-GFR related factors. 15-17 The association between a protein biomarker and eGFR 

decline was judged to be dissimilar from the association with mGFR decline if the difference between 

the associations estimated as OR (Table 3) or HR (Table 4) was statistically significant with alpha set 

at 0.05 in any of these models. 

All 1410 participants who attended the baseline examination and had one or more follow-up GFR 

measurements were included in this study. There were equal number of observations regardless of 

whether eGFR or mGFR was used. However, we excluded one participant with an extreme outlier in 

the Cys C measurement at RENIS-3, leaving 1409 participants included in the analysis. The protein 

biomarkers were measured at baseline only.  

All statistical analyses were performed with STATA version 17.0 (StataCorp, College Station, TX). A p 

value of <0.05 was considered as statistically significant. Due to the number of multiple analyses with 

different outcomes, adjustment of the p values for multiple comparisons was considered. This has 
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been a controversial issue in epidemiological research.38 We selected all proteins based on earlier 

studies with a high probability of being associated with the outcome of interest, thus having high 

pretest probability, which would not have been considered in commonly used methods for multiple 

comparisons adjustment. Accordingly, we decided not to adjust for multiple comparisons. 

Results 

Study characteristics 

The baseline characteristics of the study cohort are shown in Table 2. There were only small 

differences between the subgroup with one or more follow-up examinations (n=1409; included in the 

current study) and the total RENIS baseline cohort (n=1627) (Table S3). 

Accelerated GFR decline. 

The mean (SD) mGFR decline rate was 1.07 ml/min/1.73m2/year (0.5). The 140 persons who had an 

accelerated mGFR decline defined as the 10% with the steepest mGFR decline slope had a mGFR 

decline rate of ≥1.63 ml/min/1.73 m²/year. As reported in a previous publication from the RENIS 

study, the mean (SD) eGFRcre decline rate was similar to that of mGFR, but the mean eGFRcys 

decline rate was steeper, and the distribution (SD) wider, using cystatin C-based eGFR.21 Using the 

eGFR equations with the 10% steepest eGFR decline slopes, the cutoffs for eGFRcre, eGFRcys and 

eGFRcyscre were ≥1.49 ml/min/1.73 m²/year, ≥2.64 ml/min/1.73 m²/year and ≥2.13 ml/min/1.73 

m²/year, respectively.  

In the unadjusted analysis, higher concentrations of four proteins were associated with accelerated 

mGFR decline, five with eGFRcre decline, six with eGFRcys and eGFRcyscre decline (Table 3). For four 

proteins, there were statistically significant differences in associations between eGFRcys decline and 

mGFR decline (TRAIL-R2, FABP4, TNFR2 showed higher OR and Umod lower OR for eGFRcys vs 

mGFR). No proteins showed significantly different associations between eGFRcre decline and mGFR 

decline in unadjusted analysis. For GAL-3 it was a statistically significant difference between mGFR 
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and eGFRcyscre. For three proteins, the associations with eGFR decline were statistically significant 

different when using eGFRcre versus eGFRcys (TNFR2, Tie2 and Umod). 

Most associations and differences between the GFR methods remained after adjustment for age, sex, 

BMI and smoking (model 1), but many associations changed in the model that included baseline 

eGFR or mGFR, respectively (model 2). Only one out of four proteins for eGFRcre and one out of five 

proteins for eGFRcys in model 1 remained associated with eGFR decline after additional adjustment 

for baseline eGFR, while three out of three remained associated with mGFR decline after adjusting 

for baseline mGFR. Five and two proteins showed statistically significant different results between 

eGFR and mGFR in model 1 and model 2, respectively. (Model 2, Table 3).  

Incident CKD  

At baseline, 8 participants had CKD using mGFR, 95 developed CKD during follow-up, and the rest 

(n=1307) never developed CKD during the study period. For eGFRcre, eGFRcys and eGFRcyscre: 4, 5 

and 3 had eGFR<60 ml/min/1.73 m²/year at baseline, and 51, 96 and 62 developed CKD, respectively. 

In the interval-censored Cox regression analysis using mGFR, eight proteins were associated with an 

increased risk of incident CKD in the unadjusted model, five with eGFRcre, eight with eGFRcys and 

seven with eGFRcyscre. In unadjusted analyses, there were statistically significant differences in the 

association of one protein for incident CKD using eGFRcre (suPAR), three for eGFRcys (MCP-1, TNFR2 

and GDF-15), and one (Gal-3) for eGFRcyscre, compared to the results using mGFR. For three 

proteins (TNFR2, suPAR and Umod) there were also differences in the associations with incident CKD 

using eGFRcre vs. eGFRcys.  

Most of the associations between proteins and incident CKD, and the different results compared to 

mGFR, remained similar after adjustment for age, sex, and BMI (Table 4, model 1). However, after 

additional adjustment for the corresponding measured or estimated baseline GFR most of the 

associations between baseline protein concentration and incident CKD changed. Four proteins 

remained associated with increased risk of incident CKD using mGFR (TRAIL-R2, TNFR2, GDF-15, and 
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MMP7). For eGFR, only two proteins remained associated with increased risk (GDF-15 with eGFRcys 

and MMP7 with all eGFRs). Only one protein (suPAR) remained statistically significantly differently 

associated with incident CKD compared to the association with incident CKD using mGFR (Table 4). 

Discussion 

In this cohort from the general population without diabetes, self-reported kidney disease or CVD at 

baseline, biomarkers showed divergent associations with the three eGFR methods compared to 

mGFR and among the eGFR methods themselves. Several of the differences between accelerated 

decline of mGFR and eGFR or between eGFRcre and eGFRcys were statistically significant in 

unadjusted models and when adjusting for age, sex and BMI. Two differences remained significant in 

the model that included baseline GFR. More biomarkers showed different associations with eGFRcys 

decline than with eGFRcre decline. Only MMP7 showed statistically significant associations with GFR 

decline and incident CKD using all GFR methods, regardless of adjustment. 

These findings indicate the influence of non-GFR-related factors when assessing the association of 

proteins with eGFR decline. We have previously shown that eGFRcre and eGFRcys are influenced by 

inflammation, as assessed by TNFR2 and CRP, and by CKD risk factors.14,15 The current results, 

showing a statistically significant difference between the GFR methods used and, e.g., associations 

with TNFR2, indicate that different associations can be found for some biomarkers when assessing 

GFR change using eGFR or mGFR. For example, muscle mass, obesity, and low-grade inflammation 

may affect the level of several biomarkers and at the same time influence the production rate of 

creatinine and/or cystatin C. Muscle wasting (reduced creatinine), increased body fat, and increased 

inflammation (increased cystatin C) during follow-up, which is commonly seen during aging, may lead 

to a stronger association with a decline in eGFRcys and a weaker association with the eGFRcre 

decline rate. Adjustment for factors that have been associated with non-GFR-related influence on 

creatinine and cystatin C (e.g., age, sex, obesity, and smoking in model 1) at baseline would be 

expected to reduce such influences. However, for most of the investigated proteins the differences 
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to mGFR persisted in model 1. Other nontraditional cardiovascular risk markers, such as fasting 

insulin levels, muscle mass and dimethylarginines, have also been found to influence creatinine 

and/or cystatin C levels along non-GFR-related pathways.16 Since these risk factors are typically not 

available as covariates for adjustment in many studies, residual confounding may persist when using 

eGFR.   

Several of the associations between proteins and eGFR decline, and the different associations 

compared to mGFR decline in the current study, were attenuated and no longer significant when 

adjusting for baseline eGFR or mGFR, respectively.39 There may be several explanations for this, and 

one possibility is that the inclusion of baseline eGFR in the model partly blocks the non-GFR related 

effects on eGFR change, thereby also reducing the longitudinal confounding. Accordingly, adjusting 

for baseline GFR may adjust for some of the confounding factors so that change in eGFR is more 

reflective of true change in mGFR. 

In line with the results of the present longitudinal study, several previous cross-sectional studies 

found cystatin C to be influenced by more non-GFR-related factors than creatinine.14,16,17 We recently 

reported that eGFRcys overestimates GFR change rates compared to mGFR.21 The distribution of the 

GFR decline rates was wider with eGFRcys than with mGFR, possibly due to the influence of non-GFR 

related factors. 

Ten protein biomarkers in this study have previously been shown to be associated with eGFR in 

general population studies, of which nine were associated with eGFR decline.3-13,27,40-42 Some of these 

biomarkers were not validated in separate cohorts, whereas others were validated but with mixed 

results. MMP7 have been associated with GFR decline in patients with diabetes using eGFRcre,43,44 

and was also associated with mGFR decline over a median of 5.6 years in the RENIS cohort.28 Several 

of the proteins that have shown associations with eGFR decline in previous studies did not show any 

associations in our study, regardless of the method used to measure or estimate GFR. The different 

age distributions, population characteristics of the included persons in the studies, and follow-up 
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times, as well as different methods to measure proteins (ELISA, Luminex/proteomic) and statistical 

methods, could explain some of the diverging findings. Our cohort was relatively healthy at baseline, 

without self-reported CVD, kidney disease or diabetes, with mean estimated and measured baseline 

GFRs well within the normal range.3-6,8,9 Thus, some of the observed GFR decline may represents age-

related GFR decline rather than a pathological decline due to underlying disease. Although age-

related GFR decline is an important driver of the high prevalence of CKD in the aging population, 

some proteins may be associated with specific disease processes in subgroups of people, which were 

not prevalent in the current study. However, our main objective was to validate associations found 

using eGFR with mGFR. We have no reason to believe that differences between methods will not 

hold in other more diseased populations. Similar non-GFR-related determinants of cystatin c and 

creatinine, such as inflammation, obesity, and CVD risk factors, have been found in different 

populations,16,17,37 and their influence on eGFR may even be larger in patients than in healthy 

persons. 

A study with elderly Swedish participants from two separate general population cohorts found 

associations between FABP4, suPAR, GDF-15, TRAIL-R2 and TNFR2 and annual eGFR decline and 

incident CKD.3 In these Swedish cohorts, 74% and 40% of the participants had diabetes, which may 

explain the different results compared to the present study. However, among 20 proteins that were 

associated with eGFR decline in both cohorts, none were consistently associated with eGFR decline 

after adjustment for baseline eGFR. There may be several reasons for these findings, and it is 

controversial whether it is correct to adjust for the baseline value when investigating change rates of 

that same variable.39,45 Nevertheless, our study shows that the results of eGFR decline is more similar 

to mGFR decline in models that adjust for the corresponding baseline GFR.    

The results of this study need to be interpreted in the context of some strengths and limitations. The 

main strength is the longitudinal design with repeated GFR measurements by iohexol clearance 

during 11 years of follow-up. Additionally, we investigated the association with biomarkers that 
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represent different pathways likely involved in kidney function decline and CKD development and 

used different statistical methods to assess the relationship with different kidney outcomes using 

both mGFR and eGFR. 

There are also limitations. Generalizability to other age groups and ethnicities is limited by only 

including North European study participants between 50-64 years. Misclassification of incident CKD 

could have occurred since censoring was done at the first visit with mGFR/eGFR <60 ml/min/1.73 m2 

without repeated eGFR/mGFR after three months. However, others have found similar risk patterns 

using this definition compared to CKD confirmed with later follow-up measurements, but with lower 

risk estimates.35 The linear mixed model used to calculate the accelerated GFR decline outcome 

assumes a linear decline in GFR. Although this assumption may not hold for some participants, the 

non-linearity of the GFR trajectory in RENIS is modest and fairly similar for eGFR compared to 

mGFR.21 The majority of proteins were measured using a Luminex assay with varying intra- and 

interassay CVs between 2.9–6.4% and 4.9–19.3% (four >10%), respectively. Thus, misclassification 

may have occurred. However, our mean intra- and interassay CVs were lower than or equal to those 

reported by others using the Luminex method. 3,46,47 Also, in a previous publication we explored the 

high inter-assay CV of MMP7, where one assay was found to have standards which deviated from the 

expected concentrations by 7.5–28%. By excluding the 30 participants on this assay, the inter-assay 

CV for the study population was reduced from 19.3% to 13.7%, and the association between the GFR 

outcomes and MMP7 even became slightly stronger.  

To conclude, some associations between biomarkers and eGFR decline were different from the 

associations with mGFR decline. Thus, spurious associations with eGFR decline may be caused by the 

influence of non-GFR factors. Although the differences between the methods were attenuated after 

adjustment, particularly after adjustment for baseline eGFR, persisting differences for some 

biomarkers may be a problem in research on CKD pathophysiology and risk factors. The results of 
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studies using eGFR to identify biomarkers for GFR decline should therefore be interpreted with 

caution and preferably be validated with mGFR. 
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Tables 

Table 1: The 13 selected protein biomarkers analyzed with the Luminex multiplex method. Name of 
the protein, abbreviation, and function/involvement in pathways. 

Abbreviation Protein name 
Size 

(kDa) 
Function/pathways 

Type of 

marker 
Reference 

MCP-1 

(CCL2) 

Monocyte 

Chemoattractant 

Protein 1 

13 

Inflammation, 

immunity. 
Pro-

fibrotic 
48,49 

TRAIL-R2 TNF-Related Apoptosis 

Inducing Ligand 

Receptor 2 

48 

Apoptosis, 

inflammation. - 50,51 

FABP4 Fatty Acid Binding 

Protein 4 

15 

Binds long-chain fatty 

acids, fat absorption, 

transportation, 

metabolism, 

inflammation, 

fibrosis. 

Filtration 

and pro-

fibrotic 

52-55 

TNFR2 Tumor Necrosis Factor 

Receptor 2 
40 

Inflammation, anti-

apoptotic. 
- 56,57 

CD40Lig CD40 receptor Ligand 
18 

Immunity. Pro-

fibrotic 
58,59 

GDF-15 Growth/Differentiation 

Factor 15 

12 

(dimer: 

25-30) 

Cell damage, 

inflammation, 

apoptosis. 

Injury 60 

Tie 2 TEK Tyrosine Kinase 

75-78 

Embryonic 

angiogenesis, 

immunity, anti-

inflammatory. 

- 61 

MMP7 Matrix 

Metalloproteinase 7 19  

Fibrosis, matrix 

remodulation, wound 

healing. 

Pro-

fibrotic, 

injury 

62,63 

suPAR Soluble urokinase-type 

Plasminogen Activator 

Receptor 
24 -66 

Phosphate 

metabolism, 

apoptosis, 

inflammation. 

- 64,65 

MMP2 Matrix 

Metalloproteinase 2 
72 (64 

active) 

Fibrosis, matrix 

remodulation. Neural 

system. 

Pro-

fibrotic 
66,67 

Umod Uromodulin 
85 

Immunity. Nephron 

mass 
68,69 

Gal-3 Galectin-3 

30 

Carbohydrate binding 

protein, apoptosis, 

immunity, 

Pro-

fibrotic 
70-72 
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antimicrobial, 

fibrosis. 

KIM-1 Kidney Injury Molecule 

1 
40-80 

Kidney damage 

marker (proximal 

tubule), allergies, 

immunity. 

Injury 73 
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Table 2: Baseline characteristics of the study cohort.

 

Participants (n) 1409

Male sex (n) 696 (49%)

Age (years)  58.5 (54.5 - 61.4)

Height (cm) 170.7 (8.7)

Weight (kg) 79.6 (14.1)

BMI (kg/m²) 27.2 (3.9)

mGFR (ml/min/1.73 m²) 94.0 (14.3)

eGFRcre (ml/min/1.73 m²) 94.9 (9.4)

eGFRcys (ml/min/1.73 m²) 105.7 (12.1)

eGFRcyscre (ml/min/1.73 m²) 103.2 (11.2)

Urinary ACR (mg/mmol)ᵃ 0.2 (0.1 - 0.5)

Systolic BP (mmHg) 129 (17)

Diastolic BP (mmHg) 83 (10)

BP medication (n) 250 (18%)

RAS- inhibitors 143 (10%)

Fasting blood glucose (mmol/l) 5.3 (0.5)

LDL cholesterol (mmol/l) 3.7 (0.8)

HDL cholesterol (mmol/l) 1.5 (0.4)

Triglycerides (mmol/l) 1.2 (0.7)

Daily smoker (n) 949 (67%)

Current smoker (n) 278 (20%)

Previously smoker (n) 670 (48%)

Never smoker (n) 456 (32%)

Serum protein biomarkers:

CD40Lig (ng/ml) 6.8 (2.1)

GDF-15 (ng/ml) 0.8 (0.4)

MCP-1 (ng/ml) 0.5 (0.4 - 0.6)

Tie2 (ng/ml) 16.2 (5.7)

TRAIL-R2 (ng/ml) 0.03 (0.03 - 0.04)

FABP4 (ng/ml) 9.5 (6.6 - 13.8)

MMP7 (ng/ml) 1.9 (0.80)

suPAR (ng/ml) 0.3 (0.2)

MMP2 (ng/ml) 315.3 (58.7)

Umod (ng/ml) 237.8 (96.0)

Gal-3 (ng/ml) 7.5 (1.9)

TNFR2 (ng/ml) 2.7 (0.6)

ᵃ To convert ACR in mg/mmol to mg/g, multiply by 8.84.

Baseline characteristics of RENIS participants with at least 

one follow-up GFR measurement

Abbreviations: RENIS: The Renal Iohexol Clearance Survey, BMI: 

body mass index, mGFR: measured glomerular filtration rate, 

eGFRcre/cys/cyscre: estimated GFR based on the CKD-EPI 

equation for creatinine, cystatin C or both, ACR: albumin to 

creatinine ratio, BP: blood pressure, RAS: renin-angiotensin 

system, LDL: low density lipoprotein, HDL: high density 

lipoprotein, CD40Lig: CD40 ligand receptor, GDF-15: 

growth/differentiation factor 15, MCP-1: monocyte 

Mean (SD) for normally distributed variables, median (IQR) for 

skewed variables, and number and  percentages (%) for 
Variables with missing baseline values (n): smoke (5), TRAIL-R2 (1), 

FABP4 (3), TNFR2 (3), MMP7 (14) and suPAR (18).
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Table 3: Odds ratios (OR) for accelerated mGFR and eGFR decline per doubling or standard deviation 
(SD) increase in baseline protein concentration. 

 

OR 95% CI OR 95% CI OR 95% CI

MCP-1*

mGFR  1.18 (0.87 to 1.59)  1.08 (0.76 to 1.52)  1.08 (0.77 to 1.52)

eGFRcre  1.11 (0.80 to 1.55) 0.80  1.11 (0.79 to 1.57) 0.90  1.10 (0.78 to 1.56) 0.94

eGFRcys  1.31 (0.98 to 1.75) 0.61  1.28 (0.91 to 1.79) 0.99  1.00 (0.62 to 1.63) 0.80

eGFRcyscre  1.13 (0.82 to 1.55) 0.84  1.08 (0.76 to 1.53) 0.57  1.01 (0.70 to 1.46) 0.80

TRAIL-R2*

mGFR  1.35 (1.04 to 1.75)  1.04 (0.73 to 1.47)  1.07 (0.75 to 1.53)

eGFRcre  1.53 (1.18 to 1.97) 0.51  1.41 (1.07 to 1.86) 0.18  1.27 (0.94 to 1.71) 0.48

eGFRcys  2.27 (1.50 to 3.44) 0.04  2.18 (1.49 to 3.18) 0.005  1.33 (0.78 to 2.29) 0.51

eGFRcyscre  1.52 (1.17 to 1.97) 0.52  1.34 (0.99 to 1.83) 0.28  1.01 (0.63 to 1.63) 0.85

FABP4*

mGFR  1.00 (0.85 to 1.19)  1.02 (0.81 to 1.29)  1.07 (0.84 to 1.37)

eGFRcre  1.18 (0.94 to 1.48) 0.27  1.17 (0.86 to 1.60) 0.48  1.02 (0.76 to 1.35)  0.78

eGFRcys  1.34 (1.08 to 1.66) 0.04  1.74 (1.25 to 2.44) 0.01  1.01 (0.68 to 1.48)  0.79

eGFRcyscre  1.32 (1.04 to 1.68) 0.07  1.44 (1.00 to 2.06) 0.12  1.11 (0.79 to 1.55)  0.87

TNFR2

mGFR  1.40 (1.20 to 1.64)  1.21 (1.02 to 1.43)  1.28 (1.07 to 1.53)

eGFRcre  1.24 (1.07 to 1.44) 0.28ᵃ¹  1.19 (1.02 to 1.39) 0.88ᵃ²  1.07 (0.91 to 1.26) 0.15

eGFRcys  2.57 (2.07 to 3.18) <0.001  2.45 (1.93 to 3.12) <0.001  1.10 (0.82 to 1.47) 0.38

eGFRcyscre  1.44 (1.22 to 1.70) 0.82  1.31 (1.10 to 1.55) 0.52  0.95 (0.77 to 1.17) 0.03

CD40Lig

mGFR  1.03 (0.88 to 1.19)  1.00 (0.84 to 1.20)  1.00 (0.83 to 1.19)

eGFRcre  1.10 (0.96 to 1.26) 0.49  1.07 (0.93 to 1.24) 0.56  1.09 (0.94 to 1.26) 0.45

eGFRcys  1.15 (0.98 to 1.35) 0.29  1.18 (1.00 to 1.39) 0.20  1.20 (0.96 to 1.50) 0.21

eGFRcyscre  1.11 (0.97 to 1.28) 0.44  1.10 (0.95 to 1.29) 0.42  1.09 (0.93 to 1.27) 0.48

GDF-15

mGFR  1.29 (0.73 to 2.28)  1.12 (1.00 to 1.25)  1.13 (1.01 to 1.26)

eGFRcre  1.10 (0.95 to 1.28) 0.60  1.06 (0.95 to 1.18) 0.54  1.01 (0.85 to 1.19) 0.28

eGFRcys  1.69 (0.96 to 2.96) 0.51  1.38 (0.65 to 2.94) 0.58  1.13 (0.99 to 1.29) 0.95

eGFRcyscre  1.19 (0.83 to 1.71) 0.81  1.11 (1.00 to 1.25) 1.00  0.96 (0.75 to 1.24) 0.28

Tie2

mGFR  1.02 (0.87 to 1.20)  0.87 (0.73 to 1.03)  0.87 (0.74 to 1.04)

eGFRcre  0.89 (0.74 to 1.08) 0.29ᵃ³  0.90 (0.74 to 1.09) 0.79  0.87 (0.71 to 1.06) 0.97

eGFRcys  1.29 (1.09 to 1.52) 0.05  1.14 (0.95 to 1.35) 0.03  1.12 (0.89 to 1.41) 0.08

eGFRcyscre  1.04 (0.88 to 1.23) 0.86  0.99 (0.83 to 1.17) 0.31  0.94 (0.78 to 1.12) 0.59

MMP7

mGFR  1.80 (1.53 to 2.13)  1.65 (1.38 to 1.97)  1.74 (1.44 to 2.09)

eGFRcre  1.54 (1.31 to 1.81) 0.19  1.46 (1.23 to 1.72) 0.31  1.34 (1.13 to 1.59) 0.04

eGFRcys  1.90 (1.62 to 2.24) 0.64  1.86 (1.57 to 2.20) 0.35  1.75 (1.37 to 2.23) 0.98

eGFRcyscre  1.83 (1.56 to 2.15) 0.89  1.71 (1.45 to 2.02) 0.79  1.52 (1.27 to 1.81) 0.08

suPAR

mGFR  1.05 (0.93 to 1.18)  0.97 (0.82 to 1.16)  0.98 (0.82 to 1.17)

eGFRcre  1.05 (0.94 to 1.18) 0.95  1.02 (0.90 to 1.15) 0.69  1.00 (0.86 to 1.16) 0.86

eGFRcys  1.14 (0.98 to 1.31) 0.40  1.13 (1.00 to 1.27) 0.20  1.04 (0.85 to 1.27) 0.64

eGFRcyscre  1.11 (0.98 to 1.26) 0.53  1.07 (0.95 to 1.20) 0.40  1.02 (0.88 to 1.18) 0.72

MMP2

mGFR  0.94 (0.79 to 1.12)  0.97 (0.82 to 1.17)  0.97 (0.82 to 1.16)

eGFRcre  1.03 (0.88 to 1.21) 0.46  1.02 (0.88 to 1.19) 0.67  0.99 (0.84 to 1.17) 0.89

eGFRcys  0.98 (0.82 to 1.17) 0.78  0.95 (0.79 to 1.14) 0.84  0.84 (0.66 to 1.07) 0.33

eGFRcyscre  1.03 (0.88 to 1.20) 0.46  1.01 (0.87 to 1.18) 0.75  1.00 (0.85 to 1.17) 0.85

Umod

mGFR  0.76 (0.64 to 0.90)  0.94 (0.78 to 1.14)  0.92 (0.76 to 1.12)

eGFRcre  0.81 (0.67 to 0.98) 0.62ᵃ⁴  0.79 (0.65 to 0.97) 0.23  0.84 (0.69 to 1.03) 0.52

eGFRcys  0.52 (0.43 to 0.63) 0.003  0.61 (0.49 to 0.75) 0.002  0.85 (0.62 to 1.16) 0.64

eGFRcyscre  0.72 (0.60 to 0.87) 0.67  0.77 (0.63 to 0.94) 0.16  0.89 (0.71 to 1.11) 0.80

Gal-3

mGFR  0.98 (0.83 to 1.15)  1.07 (0.89 to 1.30)  1.09 (0.91 to 1.21)

eGFRcre  1.19 (1.04 to 1.37) 0.07  1.18 (1.02 to 1.36) 0.46  1.11 (0.95 to 1.30) 0.87

eGFRcys  1.10 (0.96 to 1.26) 0.27  1.25 (1.06 to 1.47) 0.24  0.97 (0.76 to 1.24) 0.45

eGFRcyscre  1.21 (1.06 to 1.38) 0.04  1.25 (1.08 to 1.45) 0.22  1.16 (0.99 to 1.36) 0.62

Accelerated GFR decline defined as the 10% with the steepest annual GFR decline slope for the corresponding GFR method.

Model 1: Sex, age, body mass index (BMI), smoke (now, previously, newer).

Model 2: Model 1 + baseline GFR.

P-value for statistically significant differences between mGFR and the respective eGFR from creatinine, cystatine C or both.

ᵃ  A statistically significant difference between eGFRcre and eGFRcys:

ᵃ¹P-value: <0.001, ᵃ²P-value: <0.001, ᵃ³P-value:0.004, ᵃ⁴P-value: 0.001.

*Log2 transformed.

Abbreviations: mGFR: measured glomerular fi ltration rate, eGFR: estimated GFR, cre: creatinine, cys: cystatin C, MCP-1: monocyte 

chemoattractant protein-1, TRAIL-R2: TNF-related apoptosis-inducing ligand receptor 2, FABP4: fatty acid binding protein 4, TNFR-2: tumor 

necrosis factor receptor 2, CD40Lig: CD40 ligand receptor, GDF-15: growth/differentiation factor 15, Tie2: TEK tyrosine Kinase, MMP7: 

matrix metalloproteinase 7, suPAR: soluble urokinase-type plasminogen activator receptor, MMP2: matrix metalloproteinase 2, Umod: 

uromodulin, Gal-3: galectin-3.

P-value for 

difference

P-value for 

difference
Protein

Model 2Unadjusted Model 1 P-value for 

difference
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Table 4: Hazard ratios (HR) for incident CKD per doubling or standard deviation (SD) increase in 
baseline protein concentration. 

   

HR 95% CI HR 95% CI HR 95% CI

MCP-1*

mGFR  0.89 (0.58 to 1.37)  0.87 (0.55 to 1.37)  0.81 (0.52 to 1.27)

eGFRcre  1.00 (0.58 to 1.73) 0.55  0.95 (0.53 to 1.70) 0.67  0.93 (0.54 to 1.59) 0.76

eGFRcys  1.24 (0.86 to 1.78)  0.04  1.17 (0.78 to 1.75) 0.19  1.06 (0.74 to 1.51) 0.43

eGFRcyscre  1.06 (0.64 to 1.75) 0.40  1.00 (0.59 to 1.68) 0.56  0.87 (0.51 to 1.46) 0.91

TRAIL-R2*

mGFR  1.64 (1.37 to 1.96)  1.54 (1.27 to 1.87)  1.48 (1.18 to 1.87)

eGFRcre  1.67 (1.20 to 2.31) 0.87  1.58 (1.08 to 2.31) 0.78  1.37 (0.81 to 2.30) 0.57

eGFRcys  1.62 (1.44 to 1.83) 0.98  1.44 (1.25 to 1.67) 0.71  1.00 (0.63 to 1.58) 0.09

eGFRcyscre  1.57 (1.26 to 1.96) 0.69  1.39 (1.08 to 1.80) 0.50  0.82 (0.46 to 1.44) 0.05

FABP4*

mGFR  2.00 (1.58 to 2.53)  1.69 (1.28 to 2.23)  1.10 (0.82 to 1.48)

eGFRcre  1.91 (1.39 to 2.64) 0.84  1.86 (1.27 to 2.73) 0.98  1.19 (0.77 to 1.83) 0.72

eGFRcys  2.37 (1.87 to 3.01) 0.16  1.70 (1.28 to 2.26) 0.51  0.98 (0.72 to 1.34) 0.36

eGFRcyscre  2.31 (1.75 to 3.06) 0.31  1.89 (1.37 to 2.61) 0.63  0.99 (0.67 to 1.46) 0.54

TNFR2

mGFR  1.47 (1.37 to 1.57)  1.33 (1.25 to 1.42)  1.15 (1.05 to 1.26)

eGFRcre  1.37 (1.20 to 1.57) 0.36 ᵃ¹  1.27 (1.12 to 1.44) 0.52ᵃ²  1.09 (0.88 to 1.36)  0.64

eGFRcys  1.69 (1.63 to 1.75) <0.001  1.63 (1.55 to 1.72) <0.001  1.01 (0.85 to 1.21) 0.40

eGFRcyscre  1.58 (1.47 to 1.71) 0.08  1.46 (1.34 to 1.58) 0.13  0.95 (0.80 to 1.14) 0.16

CD40Lig

mGFR  1.08 (0.91 to 1.29)  1.05 (0.89 to 1.24)  1.04 (0.89 to 1.23)

eGFRcre  0.97 (0.72 to 1.32) 0.31  0.95 (0.70 to 1.29) 0.36  0.93 (0.96 to 1.27) 0.43

eGFRcys  1.08 (0.89 to 1.31) 0.93  0.99 (0.86 to 1.15) 0.46  0.91 (0.77 to 1.08) 0.17

eGFRcyscre  1.04 (0.82 to 1.32) 0.61  0.97 (0.78 to 1.20) 0.31  0.96 (0.75 to 1.22) 0.34

GDF-15*

mGFR  1.67 (1.26 to 2.21)  1.55 (1.11 to 2.15)  1.25 (0.90 to 1.74)

eGFRcre  1.27 (0.91 to 1.76) 0.35  1.09 (0.72 to 1.64) 0.31ᵃ³  0.76 (0.48 to 1.20) 0.09

eGFRcys  2.18 (1.72 to 2.77) 0.04  2.18 (1.59 to 2.99) 0.05  1.13 (0.76 to 1.68) 0.67

eGFRcyscre  2.07 (1.47 to 2.91) 0.19  1.83 (1.23 to 2.73) 0.36  0.99 (0.60 to 1.62) 0.31

Tie2

mGFR  1.03 (0.85 to 1.25)  1.06 (0.87 to 1.29)  0.95 (0.77 to 1.17)

eGFRcre  1.12 (0.87 to 1.46) 0.50  1.14 (0.85 to 1.53) 0.56  1.08 (0.82 to 1.42) 0.49

eGFRcys  1.11 (0.93 to 1.33) 0.45  1.05 (0.88 to 1.27) 0.97  1.12 (0.92 to 1.36) 0.33

eGFRcyscre  1.09 (0.87 to 1.37) 0.59  1.09 (0.86 to 1.40) 0.73  1.00 (0.79 to 1.26) 0.81

MMP7

mGFR  1.85 (1.62 to 2.11)  1.75 (1.53 to 1.99)  1.53 (1.34 to 1.75)

eGFRcre  1.71 (1.47 to 1.99) 0.48  1.65 (1.39 to 1.96) 0.61  1.42 (1.13 to 1.79) 0.53

eGFRcys  1.88 (1.69 to 2.09) 0.81  1.80 (1.58 to 2.06) 0.71  1.65 (1.35 to 2.02) 0.48

eGFRcyscre  1.89 (1.67 to 2.14) 0.81  1.75 (1.51 to 2.03) 0.98  1.48 (1.23 to 1.80) 0.74

suPAR

mGFR  1.11 (1.06 to 1.15)  1.08 (0.94 to 1.24)  1.11 (0.98 to 1.25)

eGFRcre  0.95 (0.67 to 1.35) 0.04ᵃ⁴  0.81 (0.54 to 1.23) 0.04ᵃ⁵  0.61 (0.41 to 0.90) 0.01ᵃ⁶

eGFRcys  1.14 (1.10 to 1.17) 0.14  1.13 (1.04 to 1.22) 0.30  1.08 (0.90 to 1.30) 0.71

eGFRcyscre  1.11 (1.04 to 1.19) 0.81  1.06 (0.85 to 1.33) 0.77  0.81 (0.61 to 1.10) 0.08

MMP2

mGFR  1.12 (0.93 to 1.35)  1.04 (0.87 to 1.24)  1.08 (0.91 to 1.30)

eGFRcre  1.27 (1.02 to 1.60) 0.09  1.19 (0.95 to 1.48) 0.06  1.20 (0.88 to 1.64) 0.27

eGFRcys  1.18 (1.01 to 1.38) 0.47  1.12 (0.98 to 1.27) 0.29  1.24 (1.03 to 1.49) 0.24

eGFRcyscre  1.18 (0.93 to 1.48) 0.50  1.09 (0.89 to 1.35) 0.43  1.01 (0.81 to 1.27) 0.71

Umod

mGFR  0.74 (0.58 to 0.94)  0.72 (0.56 to 0.93)  0.82 (0.64 to 1.06)

eGFRcre  0.91 (0.66 to 1.26)  0.09ᵃ⁷  0.92 (0.65 to 1.30) 0.08ᵃ⁸  1.13 (0.84 to 1.52) 0.07

eGFRcys  0.67 (0.50 to 0.89) 0.30  0.71 (0.53 to 0.95) 0.81  0.98 (0.70 to 1.37) 0.26

eGFRcyscre  0.74 (0.53 to 1.05) 0.94  0.75 (0.53 to 1.07) 0.81  1.04 (0.73 to 1.48) 0.20

Gal-3

mGFR  1.25 (1.07 to 1.45)  1.14 (0.97 to 1.35)  1.09 (0.90 to 1.31)

eGFRcre  1.38 (1.15 to 1.64) 0.06  1.32 (1.09 to 1.60) 0.03  1.18 (0.98 to 1.43) 0.36

eGFRcys  1.30 (1.13 to 1.50) 0.34  1.18 (1.01 to 1.38) 0.64  1.09 (0.97 to 1.22) 0.95

eGFRcyscre  1.38 (1.18 to 1.63) 0.02  1.28 (1.07 to 1.52) 0.06  1.12 (0.96 to 1.32) 0.61

Incident CKD is defined as new-onset GFR <60 ml/min/1.73m² during follow-up.

Model 1: Sex, age, body mass index (BMI), smoke (now, previously, newer).

Model 2: Model 1 +  baseline GFR.

* Log2 transformed.

Difference between eGFrcre and eGFRcys: ᵃ¹ P-value: <0.001. ᵃ² P-value: <0.001. ᵃ³ P-value: 0.04. ᵃ⁴ P-value: 0.004. ᵃ⁵ P-

value: 0.002. ᵃ⁶ P-value: 0.004. ᵃ⁷ P-value: 0.008. ᵃ⁸ P-value: 0.04. 

A total of 1409 individuals are included in the analysis, the respective numbers of baseline CKD and incident CKD for 

the GFR methods are:  mGFR; n=8 and, n=95. eGFRcre; n=4 and n=51. eGFRcys; n=5 and n=96. eGFRcyscr; n=3 and n=62.

P-value for 

difference

Abbreviations: mGFR: measured glomerular filtration rate, eGFR: estimated GFR, cre: creatinine, cys: cystatin C, MCP-1: 

monocyte chemoattractant protein-1, TRAIL-R2: TNF-related apoptosis-inducing ligand receptor 2, FABP4: fatty acid 

binding protein 4, TNFR-2: tumor necrosis factor receptor 2, CD40Lig: CD40 ligand receptor, GDF-15: 

growth/differentiation factor 15, Tie2: TEK tyrosine Kinase, MMP7: matrix metalloproteinase 7, suPAR: soluble 

Model 1 P-value for 

difference
Protein

Unadjusted Model 2P-value for 

difference
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Figures and Figure Legends 

 

Figure 1: An overview of the Renal Iohexol Clearance Survey with number (n) of participants included 

and response rate (%) with relevant remarks. 

*Miscount in previous publications (Earlier numbers are 2107 and 1982, the correct numbers are 

2114 and 1989, respectively). 
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Abbreviation: CVD: Cardiovascular disease, UTI: urinary tract infection, GFR: Glomerular filtration 

rate. 
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