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Abstract 

Multi-step retrosynthesis problem can be solved by a search algorithm, such as Monte Carlo 

tree search (MCTS). The performance of multistep retrosynthesis, as measured by a trade-off 

in search time and route solvability, therefore depends on the hyperparameters of the search 

algorithm. In this paper, we demonstrated the effect of three MCTS hyperparameters (number 

of iterations, tree depth, and tree width) on metrics such as Linear integrated speed-accuracy 

score (LISAS) and Inverse efficiency score which consider both route solvability and search 

time. This exploration was conducted by employing three data-driven approaches, namely a 

systematic grid search, Bayesian optimization over an ensemble of molecules to obtain static 

MCTS hyperparameters, and a machine learning approach to dynamically predict optimal 

MCTS hyperparameters given an input target molecule. With the obtained results on the 

internal dataset, we demonstrated that it is possible to identify a hyperparameter sets which 

outperform the current AiZynthFinder default setting and appeared optimal across a variety of 

target input molecules, both on proprietary and public datasets. The settings identified with 
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the in-house dataset reached a solvability of 93% and median search time of 151s for the in-

house dataset, and a 74% solvability and 114s for the ChEMBL dataset. These numbers can 

be compared to the current default settings which solved 85% and 73% during a median time 

of 110s and 84s, for in-house and ChEMBL, respectively. 

 

Introduction 

The problem of synthesizing novel chemical matter is a fundamental challenge in several areas 

of applied chemistry, including drug discovery and process chemistry1. The systematic 

approach presented by Corey, retrosynthesis, is now a standard part of textbooks on organic 

chemistry.2 In multi-step retrosynthesis, the target molecule is iteratively broken down to 

smaller precursor molecules until the precursors are readily available from stock solutions. In 

recent times, software tools have been developed to aid chemists in this task. Such tools suggest 

how to break down a target molecule, and may also be used to predict the outcome of putative 

reactions (forward prediction) and under what conditions the reactions should be performed.3,4 

Although expert systems still have a significant impact on the field, many tools are now data-

driven and exploit machine learning models.5,6 

 

The multi-step retrosynthesis problem can be solved using a search algorithm which operates 

on a tree or graph. Although several search algorithms have been suggested, including Monte 

Carlo tree search (MCTS),7,8 number-proof theory searches,9,10,11 and A*-like algorithms,12,13,14 

it is still unclear if any algorithm is superior for the retrosynthesis task.15,16 In short, the search 

algorithm proceeds by selecting a promising node in the search tree. This node is then expanded 

via a one-step retrosynthesis model (i.e. predicting precursors of the current molecule). An 

iteration is completed by updating a search tree statistic, which guides the selection of a 

promising node in the next iteration of the algorithm. In MCTS, for instance, the node for 
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expansion is selected based on an upper confidence bound statistic, and an iteration is 

completed by backpropagating a reward obtained from a so-called roll-out process, which 

estimates the cost of the synthetic route.17,18 

 

For the multi-step retrosynthesis field, an optimal algorithm would properly balance both speed 

and accuracy, resulting in a short search time and high accuracy. In a high-throughput context, 

for example, it is highly desirable to minimize the prediction time to enable queries of multiple 

compounds while decreasing energy usage. Both speed and accuracy are controlled by specified 

hyperparameters (or configuration settings). Therefore, it is desirable to find an optimal, or at 

least objectively satisfactory, set of hyperparameters for the multi-step retrosynthesis task. The 

speed-accuracy trade-off must be considered for any search algorithm and may be represented 

in an objective function using the response time from the search (T) versus the accuracy (in this 

case proportion of solved (PS) routes), respectively. The hyperparameters, which are tuned to 

maximize algorithmic performance, are often defined by the user, but can in general be 

automatically specified.19,20 Examples of hyperparameters for multistep retrosynthesis 

algorithms include the width of the tree (the number of one-step retrosynthesis predictions to 

add to the search tree), and the maximum depth (a limit on the linear length of the synthetic 

route). Iterative algorithms, such as MCTS, often also require a priori specification of maximum 

number of iterations, and maximum elapsed compute time. Furthermore, specific search 

algorithms may have extra hyperparameters, e.g. a parameter in MCTS controlling the balance 

between exploitation and exploration. MCTS are used in a variety of fields and hyperparameters 

have been explored for a variety of MCTS implementations. The computational budget 

expressed as the number of iterations and the balance between exploitation and exploration 

have been most commonly been investigated,17,18 but it is unlikely that the learnings from 

previous studies on other fields can be transferred to retrosynthesis, as the implementation of 
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the MCTS algorithm is significantly different.   Although hyperparameters are likely to 

influence the output of the multi-step retrosynthesis experiments, the process of selecting (or 

optimizing) them is largely unexplored in this field. For AiZynthFinder,21 default values have 

been introduced based on limited manual explorations with a small number of compounds. As 

such, it is unclear if these values are optimal, or even performant, for the typical set of molecules 

that AiZynthFinder is routinely used to predict synthetic routes for. It should be noted that such 

an empirical approach to finding good hyperparameters is a common approach in MCTS 

research.17 In principle, one could approach this in a naïve manner and employ the maximum 

number of iterations, maximum search tree depth, and maximum width affordable within a 

fixed computational budget. However, this tactic is approaching a systematic exploration of the 

search tree and it quickly becomes tedious for the search algorithm to effectively navigate the 

large search tree effectively. 

 

In this paper, we first demonstrate the effect of three MCTS hyperparameters (number of 

iterations, tree depth, and tree width) on route solvability and search time, while exploring 

metrics that are tailored toward optimizing both aspects of a model. We then exploit three data-

driven approaches for optimizing performance of multi-step retrosynthesis depending on these 

three hyperparameters. In the first approach, we obtain an optimal static hyperparameter 

configuration by exploiting Bayesian optimization over an ensemble of molecules in an 

AstraZeneca in-house (AZ designs) dataset. In the second approach, we perform a systematic 

grid search and visually pinpoint a static hyperparameter configuration from the experiments. 

In the third approach, we train machine learning models based on the initial experiments to 

dynamically predict optimal MCTS hyperparameters given an input target molecule. The 

obtained results and conclusions derived from the AZ design dataset are further validated on a 

ChEMBL target set.22  
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Methods 

Compound datasets. We constructed two datasets of compounds to be used as targets for the 

retrosynthesis experiments. The first consisted of approximately 28,600 compounds designed 

by AstraZeneca chemists for in-house drug discovery projects, and this set will be referred to 

as AZ design. The second set, which will be referred to as ChEMBL, consisted of 50,000 

compounds randomly sampled from the ChEMBL database22 which have a molecular weight 

between 100 and 800 Da and a QED score23 above 0.2. The tautomeric form of the compounds was 

determined by RDKit.24 The AZ design dataset represents contemporary drug design and the type 

of molecules AiZynthFinder would typically be applied to. The ChEMBL dataset, on the other hand, 

is publicly available and offers an external test set for our study. By using these two datasets, we 

can investigate transferability of the MCTS hyperparameter searches between different sets, which 

may cover slightly different chemical spaces.  

 

Retrosynthesis experiments. For each combination of MCTS hyperparameters, we ran 

retrosynthesis searches on each compound using the AiZynthFinder software.21 The 

hyperparameters and their settings are shown in Table 1. Combining the different settings for 

hyperparameters in Table 1 gives rise to 27 different combinations and we performed 

retrosynthesis each of the 27 combinations for all target molecules in both compound sets. No 

time limit was specified. As an expansion policy, we use a one-step template-based 

retrosynthesis models previously explained in the literature, and we also apply a quick filter 

policy based on a binary classification model to remove the most unlikely predictions of the 

expansion policy.25 For the AZ designs, we used filter and expansion policies trained on in-

house data, and an in-house stock set.26 For the ChEMBL compounds, we used policies trained 

on public reaction data,27 and a stock that was a combination of ZINC28 and eMolecules.26 
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Table 1 – Hyperparameters varied in the retrosynthesis experiments 

  

Hyperparameter Settings 

Search tree width 10, 50, 100 

Maximum search tree depth 3, 7, 12 

Number of iterations 50, 100, 400 

  

The performance of each set of MCTS hyperparameters was determined by the fraction of 

solved molecules and by the search time to find these n solutions, with a solution being defined 

as a synthetic route with all starting material existing in stock. This will be referred to as the 

solvability. The total search time was computed by multiplying the average iteration time by 

the number of iterations used for that experiment, whereas the time to a solution was defined 

as the average iteration time multiplied with the maximum number of iterations it took to find 

n solutions. 

 

Retrosynthesis performance evaluation. We explored a few metrics previously reported in 

literature for scoring with speed–accuracy trade-offs29. Here we detail their definitions in terms 

of combining the search time, T, and proportion of solved targets, PS. The inverse efficiency 

score30 (IES) was given by the median search time of solved targets (𝑇𝑠𝑜𝑙𝑣𝑒𝑑), divided by the 

proportion of solved targets (𝑃𝑆), 

 𝐼𝐸𝑆 =
𝑚𝑒𝑑(𝑇𝑠𝑜𝑙𝑣𝑒𝑑)

𝑃𝑆
. 

The rate-correct score31 (RCS) was defined as the number of solved (𝑁𝑠𝑜𝑙𝑣𝑒𝑑) over the summed 

search times, 𝑇𝑖 , 

𝑅𝐶𝑆 =  
𝑁𝑠𝑜𝑙𝑣𝑒𝑑

∑ 𝑇𝑖𝑖
. 
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Both IES and RCS perform a direct the speed-accuracy weighting. The linear integrated speed–

accuracy score32 (LISAS) instead accounts for the magnitude changes in accuracy and speed 

by scaling with their corresponding standard deviations, 

𝐿𝐼𝑆𝐴𝑆 = 𝑚𝑒𝑑(𝑇𝑠𝑜𝑙𝑣𝑒𝑑) +  
𝜎(𝑇𝑠𝑜𝑙𝑣𝑒𝑑)

𝜎(1−𝑃𝑆)
(1 − 𝑃𝑆). 

 

Datasets for training, validation and testing. In this section we discuss the data driven 

approaches employed,  namely the Bayesian hyperparameter optimization approach using the 

publicly available optimization software framework, Optuna33, and a dynamic hyperparameter 

prediction with machine learning models (see the following two paragraphs for details). The 

initial Optuna hyperparameter parameter search was derived from a smaller distribution of  two 

random subsets of 1000 molecules from the AZ designs and ChEMBL datasets. We selected 

these smaller subsets because optimization over the full datasets would be intractable due to the 

relatively long retrosynthesis search time. For training machine learning models, we instead 

needed a larger subset from which the models could learn. The AZ design compound set was 

therefore divided into an 80% training set, 10% validation set and 10% test set, using a stratified 

split over compounds. The stratification was done based on which of the 27 combinations of 

the three hyperparameters resulted in at least one solved route in the shortest amount of time. 

 

The dataset split used for the machine learning models differed from the one used for Optuna. 

Consequently, the machine learning test set and Optuna test sets differed as well. To allow for 

proper comparison of the different approaches, the results from both Optuna and machine 

learning models were evaluated on a shared test set of AZ design targets. This test set included 

the targets in the machine learning test set, excluding the few test set targets which were used 

in the Optuna optimization. Furthermore, the results were evaluated on the ChEMBL Optuna 
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test set of 49,000 targets. The specific datasets, as well as their splits and sizes, are listed in 

Table S1 for clarity. 

 

Optuna for Bayesian hyperparameter optimization. Optuna34 (version 3.1.0) was used to 

perform two searches of the hyperparameter space using a random subset of 1000 molecules 

from the AZ designs and ChEMBL datasets, respectively (Table S1). Trials were optimized to 

minimize the LISAS for the subset dataset. The Tree-structured Parzen Estimator (TPE) was 

used to explore the three hyperparameters, with a minimum and maximum value of 5 to 150 

for the width, 2 and 15 for the depth and 50 to 400 for the max iterations specified, respectively. 

The total number of trials was set to 30, with the number of start-up trials set to 10, to ensure 

that sufficient random sampling of the hyperparameter space was performed to avoid reaching 

a local minimum. The performance of the optimal hyperparameter configuration was 

subsequently evaluated on the full set of test target inputs, as well as the part of the test set 

shared with machine learning models (see the following paragraph).  

 

Machine learning for dynamic hyperparameter prediction. We trained a nearest neighbor 

(kNN) model, a random forest model35 and a ChemProp model36 on each compound set. For all 

models, the three MCTS hyperparameters (width, depth and number of iterations) were treated 

as individual multiclass tasks, i.e. we framed the modeling as a multitask-multiclass problem. 

The input to kNN and random forest consisted of Morgan-like fingerprints37 of radius 2 and 

length 2024, calculated with RDKit24, while the input to ChemProp consisted of the graph 

representation of the compounds. Based on the retrosynthesis experiments, we assigned binary 

labels to each MCTS hyperparameter such that a positive label corresponded to the 

hyperparameter being in the most efficient configuration: If a configuration produced a solved 

route in the shortest time across experiment hyperparameters, the corresponding training labels 
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were set to 1, otherwise 0. The kNN and random forest models were fitted using scikit-learn 

version 1.2.038. The kNN model used five neighbors and the Jaccard distance between Morgan-

like fingerprints while the random forest used 100 decision trees and “balanced subset” as class 

weight. For the random forest, we trained one model per MCTS hyperparameter. Furthermore, 

ChemProp version 1.5.2 was used with a cross-entropy loss. Since the choice of ChemProp 

network parameters are reported to influence performance, we conducted an additional 

hyperparameter optimization with the built-in standard settings of the ChemProp 

hyperparameter optimization procedure for 100 iterations. Each model was fitted on the training 

set (Table S1).  The predefined training, validation and test sets (Table S1) were supplied to 

ChemProp as separate sets to ensure the same split across models. The fitted models were then 

evaluated on the test set using two metrics that were computed separately for each task (each 

MCTS hyperparameter). The first being the area under the curve of the receiving operator 

characteristic using one-versus-all and weighted average (to account for class-imbalanced data), 

and the second being the multiclass accuracy.  

 

Results and discussion 

Selection of hyperparameters greatly influences retrosynthesis solvability and search time 

As a first step, we performed retrosynthesis experiments on all AZ design targets with 

AiZynthFinder using 27 different combinations of the three MCTS hyperparameters: tree 

width, depth, and number of iterations. There are other hyperparameters that could have a 

significant effect on the route predictions, but we limit ourselves to the three that we judged as 

having the most significant effect, to reduce the complexity of the optimization search problem. 

In the future, it could also be of interest to tune the balance between exploitation and 

exploration. Figure 1a shows the percentage of targets for which AiZynthFinder finds at least 

one route, while Figure 1b shows the search time. As evident, the choice of hyperparameters 
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affects both the percentage of solved targets, and the median search time. The fewest targets 

were solved with the set {d=3, w=10, i=50} (53%) and the most targets were solved with the 

set {d=12, w=100, i=400} (87%). Moreover, 88% of the targets were solved with at least one 

setting, and the current default set {d=7, w=50, i=100} solved 75% of the targets, Figure 1a. 

We also noticed large deviations in the median search time depending on the hyperparameters. 

More iterations and wider or deeper search trees required longer searches to find a solution. In 

particular, the best resolving set {d=12, w=100, i=400} on average required a longer search 

time (719 seconds (s)) than the current default set (113s) and the worst performing set (19s). 

We notice similar wide-spread behavior on the ChEMBL target dataset, Figure S1. Specifically, 

the fewest ChEMBL targets were solved by {d=3, w=10, i=50} (62%) while most were solved 

with the most generous setting {d=12, w=100, i=400} (79%). The search time covered the range 

10s-674s. These numbers can be compared to what is achieved with the current default (73% / 

84s). This wide range of outcomes demonstrates the value of devising a good strategy for 

finding MCTS hyperparameters by considering a trade-off in solvability and search time.  

 

 

Figure 1 – a) Percentage of solved targets and b) median search time in seconds for best 

solution for the 27 hyperparameter sets. The analysis was done on the full set of AZ design 

targets. The x-axis indicates the hyperparameters in the order of d (depth), w (width), and i 
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(iterations). The boxes reflect the distribution after dividing the data into 10 batches. The pink 

shade marks the current default configuration in AiZynthFinder. 

 

Optimizing static hyperparameters over the ensemble of molecules 

To obtain optimal static MCTS hyperparameters, we exploited Bayesian optimization using an 

objective function which takes both search time and solvability (finding one solution) into 

account. We used the linear integrated speed-accuracy score (LISAS) for this purpose. Figure 

2a-c shows the performance on the targets in the test set, as evaluated by four different metrics: 

percentage of solved targets vs. a) LISAS, b) IES, and c) RCS. Together with the optimized 

hyperparameter performance, we also evaluated the performance of the 27 combinations of 

hyperparameters in the experiment sets (see Figure 1 for configurations) using the various 

metrics on the test set, Figure 2 a-c).  

 

Figure 2d shows the median search times against the percentage of solved targets. Although the 

hyperparameters found by Optuna using the LISAS metric resulted in a short median search 

time (22s), the percentage of solved targets is also low (53%). This indicates that the chosen 

metric puts too much weight on search time compared to solvability and may therefore not be 

suitable for optimizing MCTS hyperparameters. We observed similar issues with both the 

inverse efficiency score and the rate-correct score metrics (Figure 2b-c)). Furthermore, when 

observing the optimization landscapes of median search time and percentage of solved targets 

as a function of the MCTS hyperparameters (Figure S2), we note that finding a good weight 

between median search time and percentage of solved targets is nontrivial and subjective. 

However, using the results in Figure S3 (Optuna training set), we can perform a visual grid 

search to identify a set of MCTS hyperparameters among the experiment sets which 

qualitatively outperforms both the Optuna-found hyperparameters and the current default set 
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for finding 1, 5, and 10 solutions, namely {d=12, w=50, i=100}, Figure S3 d-f). We call this set 

of hyperparameters the “experiment best” set. The findings of this set translate to both the test 

set (Figure 2 and S4) and the ChEMBL compounds (Figure S5). For the AZ design test set, this 

configuration resulted in a median search time of 151 seconds, and a solvability of 93% for 

finding 1 solution. Furthermore, this specific configuration was able to retain high solvability 

for 5 and 10 solutions, Figure 2e-f). 

 

Regarding the optimization approach, one may argue that finding one solution for each target 

is insufficient in practice due to inaccuracies of the current retrosynthesis methods. Among 

other things, there is a lack of forward synthesis validation and reaction conditions. To mitigate 

such inaccuracies, we can instead request multiple solutions from AiZynthFinder. These 

solutions can then be evaluated by a chemist before initiating wet-lab synthesis. Clearly, if we 

select too restrictive MCTS hyperparameters, we cannot expect to find a diverse set of solutions. 

Hence, we wonder if the current analysis considering one solution is sufficient. Figure 2d-f 

display the percentage of solved targets with at least d) 1, e) 5 and f) 10 solutions as a function 

of median search time for different static hyperparameter sets. Although more extensive tree 

searches naturally produce more solutions, we note that the overall hyperparameter 

performance remains quite similar regardless of whether we consider finding one, five or ten 

solutions. It should be noted that we do not equate solvability with the quality of the produced 

routes.  However, there is a current lack of an agreed metric of route quality to can be computed 

in a high-throughput fashion.15 Therefore, we focus on the solvability as the most important 

metric of the success of the multistep retrosynthesis, which also is aligned with the fact that 

such tools are primarily used as idea generators. Given that the route prediction often produces 

more than one route, it is likely that some of the predictions are useful for further optimization 

by a domain expert. 
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Taken together, the MCTS hyperparameters optimized over the ensemble of molecules indeed 

decreased the overall search time, but also the solvability of most targets. Instead, we could 

qualitatively pinpoint an MCTS configuration which outperformed both the current default and 

the optimized configurations. Nonetheless, one could hypothesize that a dynamic approach for 

selecting the hyperparameters based on molecular features may further optimize both 

solvability ability and search time. We therefore decided to also explore such a dynamic 

approach using machine learning to predict hyperparameters. 

 

Figure 2 – a-c) Percentage of solved targets (1 solution) vs. a) LISAS, b) IES, and c) RCS. d-

f) Percentage of solved targets of the test set of AZ designs as a function of median search 

time. Percentage corresponds to finding at least d) 1 solution, e) 5 solutions and f) 10 

solutions. The error bars show the standard deviation across 10 splits. AZ and ChEMBL 

Optuna refer to Optuna applied to the AZ design and ChEMBL datasets, respectively. 
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Predicting dynamic hyperparameters on a molecule-specific basis 

To generate dynamic (i.e. molecule-specific) MCTS hyperparameters, we used a machine 

learning approach where optimal hyperparameters were predicted given an input molecule. We 

implemented and evaluated three models for this purpose: 1) a simple k-nearest neighbors 

(kNN) model, 2) three random forest models each trained on a hyperparameter (task) while 

accounting for class imbalance, and 3) the deep-learning neural network ChemProp.36 The 

models were evaluated by accuracy and (class-weighted) area under the receiver-operating 

characteristic curve (AUC-ROC) (see Table 2). 

Table 2 – Performance metrics for individual tasks 

Model Hyperparameter AUC-ROC 

(unweighted) 

AUC-ROC 

(weighted) 

Accuracy 

kNN d 0.79 0.69 0.73 

kNN w 0.80 0.62 0.74 

kNN i 0.91 0.59 0.88 

Random forest d 0.81 0.72 0.75 

Random forest w 0.81 0.64 0.75 

Random forest i 0.91 0.60 0.88 

ChemProp d 0.80 0.73 0.73 

ChemProp w 0.81 0.61 0.74 

ChemProp i 0.92 0.59 0.89 
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Figure 3 - Performance of the dynamical MCTS hyperparameter predictors. a) Accuracy per 

task, b) (class-weighted) AUC-ROC, and c) percentage of solved targets vs. median search 

time comparing to the static hyperparameters. Error bars denote the standard deviation 

across 10 splits. 

 

Can we now use these multi-task models together to predict MCTS hyperparameters for 

retrosynthesis searches? If so, the models should not only predict each hyperparameter 

correctly, but also the combination. For the targets in the test set, we compare the models with 

the current default hyperparameters ({d=7, w=50, i=100}) and the best performing 

hyperparameter set ({d=12, w=100, i=400}). The three dynamic models (kNN, random forest 

and ChemProp), albeit providing hyperparameters yielding short search times, are 

outperformed when it comes to the number of targets that are solved, Figure 3c. While the 

current default finds solutions to 85% of the targets in the test set, the dynamically suggested 

configurations only find solutions to 75-78% of the targets. The drop in performance comes 

with a substantial decrease in search time, from an average of 109 seconds with the default 

setting to about 22 seconds for the machine learning models. Although not able to outperform 

the current default setting, the dynamic approach indeed appeared more successful than the 

static optimization approach, Table 3. Provided the same amount of time (22-23s), the machine 

learning models improve solvability compared to the configuration proposed by Optuna. 
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Table 3 – Median time and solvability of different strategies for selecting MCTS 

hyperparameters. AZ Optuna refers to Optuna applied to the AZ design dataset. 

 

MCTS hyperparameter strategy Configuration 

(d, w, i) 

Median time Solvability 

Current default (7, 50, 100) 110 85 

Experiment best (12, 50, 100) 151 93 

AZ Optuna (2, 108, 51) 22 53 

kNN dynamic 22 75 

Random forest dynamic 23 78 

ChemProp dynamic 23 78 

 

Remarks on difficulties in predicting dynamic hyperparameters 

The difficulty in using basic machine learning to dynamically predict optimal hyperparameters 

may be caused by two main contributors. First, the “true optimal” hyperparameter values were 

selected such that the search time for obtaining one solution was minimized. However, the 

results were quite noisy. Specifically, many settings have similar search times and yield similar 

frequency of solved targets. Figure 4a shows the minimum search time over all hyperparameter 

sets that solves the different compounds. For more than half of the targets, the minimum search 

time is less than five seconds, and for most targets it is less than a minute, Figure 4a. 

Furthermore, the difference in search time between the two fastest sets is less than ten seconds 

for most targets, Figure 4b. The ten fastest settings are typically not more than 100s slower than 

the fastest one. This implies that modeling the relationship between input structure and best 

hyperparameters can be difficult as there are potentially multiple suitable solutions. In addition 

to this, we did not observe any clustering of similar molecules in any of the “true optimal” 
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hyperparameter settings, number of solutions, or search time in UMAP space39 (Figure S6). 

One could argue that any time the model predicts sub-optimal hyperparameters, there is a 

chance that the predicted parameters are good-enough. However, we note that the “experiment 

best” configuration still outperform the dynamic parameters when evaluating over the ensemble 

of molecules, Figure 2 and 3. In other words, we still prefer using the identified static 

hyperparameters over the dynamic. 

 

The second reason for the difficulty in predicting dynamic parameters may reside in the 

imbalanced training data, Figure 5. However, it should be noted that our balanced random forest 

model was not able to accurately predict molecule-specific hyperparameters either. This hints 

that the absence of correlation between molecular similarity and MCTS hyperparameter 

configuration may be the key issue.  

 

 

Figure 4 – a) The distribution of minimum and median search time for the AZ design targets 

over all hyperparameter sets. The shaded region denotes the standard deviation error across 

10 splits of the data. b) The distribution of the difference between the fastest hyperparameter 

sets and the nth fastest hyperparameter sets for the AZ design targets. 
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Figure 5 – Percentage of AZ design targets which are solved fastest using each 

hyperparameter set. The x-axis indicates the hyperparameters in the order of d (depth), w 

(width), and i (iterations). 

 

Conclusions 

The success of multi-step retrosynthesis is highly dependent on the selection of MCTS 

hyperparameters (i.e. the configuration). The current default configuration in AiZynthFinder 

was determined by manually running the retrosynthesis prediction on a small number of test 

targets and examining the results.  

 

In this work, we investigated data-driven approaches and strategies for improving the default 

MCTS hyperparameter configuration (tree depth, width, and number of iterations). We 

specifically evaluated three approaches for optimizing on search time and solvability 

simultaneously: 1) a static approach where configurations were selected by optimizing over the 

ensemble of molecules, 2) a (static) systematic grid search over configurations, and 3) a 

dynamic approach where the hyperparameters were predicted for each specific molecule. By 

comparing between these three strategies and benchmarking against the current default 

configuration, we found a new set of MCTS hyperparameters which outperformed the current 

default configuration.  
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Surprisingly, the systematic grid search proved most successful among the three suggested 

strategies. As such, a static approach for selecting MCTS hyperparameters may be more reliable 

than the suggested dynamic approach. We attributed the difficulties of the dynamic strategy to 

three main issues: 1) there may exist many well-suited configurations for each molecule, 2) the 

training set was class-imbalanced, and 3) we observed a seemingly missing correlation between 

molecular similarity and MCTS configuration. Hence, future studies are needed to investigate 

a different treatment of the dynamic approach, as opposed to the current classification model 

requiring the discretization of the data into “optimal” hyperparameter classes. 
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Supplementary Information 

Table S1 – Datasets and splits used in study 

Dataset Total size Optuna 

train. set 

Optuna 

test set 

ML train. 

set 

ML val. 

set 

ML 

test 

set 

Shared 

test set 

AZ design 28586 1000 27586 19913 2489 2504 2416 

ChEMBL 50000 1000 49000 - - 50000 49000 

 

 

Figure S1 - ChEMBL targets. a) Percentage of solved targets and b) median search time in 

seconds for best solution for the 27 hyperparameter sets. The x-axis indicates the 

hyperparameters in the order of d (depth), w (width), and i (iterations). The boxes reflect the 

distribution after dividing the data into 10 batches. The pink shade marks the current default 

configuration in AiZynthFinder. 
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Figure S2 - AZ Optuna training set. a-c) Optimization landscape over median search time as 

a function of the three hyperparameters. d-f) Optimization landscape over percentage of 

solved targets as a function of the three hyperparameters. AZ Optuna refers to Optuna 

applied to the AZ design dataset. 
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Figure S3 - AZ Optuna training set. a-c) Percentage of solved targets (1 solution) vs. a) 

LISAS, b) IES, and c) RCS. d-f) Percentage of solved targets as a function of median search 

time. Percentage corresponds to finding at least d) 1 solution, e) 5 solutions and f) 10 

solutions. The error bars show the standard deviation across 10 splits. AZ Optuna refers to 

Optuna applied to the AZ design dataset. 
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Figure S4 Full AZ Optuna test set. a-c) Percentage of solved targets (1 solution) vs. a) 

LISAS, b) IES, and c) RCS. d-f) Percentage of solved targets as a function of median search 

time. Percentage corresponds to finding at least d) 1 solution, e) 5 solutions and f) 10 

solutions. The error bars show the standard deviation across 10 splits. AZ Optuna refers to 

Optuna applied to the AZ design dataset. 
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Figure S5 ChEMBL test set targets. a-c) Percentage of solved targets (1 solution) vs. a) 

LISAS, b) IES, and c) RCS. d-f) Percentage of solved targets as a function of median search 

time. Percentage corresponds to finding at least d) 1 solution, e) 5 solutions and f) 10 

solutions. The error bars show the standard deviation across 10 splits. 
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Figure S6 UMAP projections of the molecular fingerprints (with Jaccard similarity metric). 

Each point is colored by a) optimal depth, b) optimal width, c) optimal number of iterations, 

d) number of found solutions, e) whether a solution was found (1) or not (0), f) median search 

times. The colormap maps values from red (low) to yellow (mid) to blue (high). 

 

 

 


