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Introduction 

A multidisciplinary workshop entitled “Crosslinguistic speech patterns: biosocial markers of 

psychiatric disorders” was held with the support of a Distinguished Lorentz Fellowship granted to 

Iris Sommer, in conjunction with the DISCOURSE in Psychosis Consortium (October 31st-

November 4th 2022, Leiden University, the Netherlands). We (the attendees) included clinical 



2 
 

practitioners and experts in diverse scientific disciplines, such as artificial intelligence (AI), clinical 

psychology, cognitive neurosciences, computational sciences, ethics, law, linguistics, psychiatry, 

and technology industry. A main aim of the workshop was to deliberate on potential challenges 

with respect to the discovery, characterization, validation, and potential utilization of natural 

language processing (NLP) markers for psychosis and other psychiatric disorders using 

computational technologies, with the ultimate goal of implementing them ethically in clinical 

settings. Related to this, we discussed who the main stakeholders key to this enterprise are, 

including individuals with lived experience, their families, the clinicians who serve them, research 

scientists with diverse areas of expertise, and ethicists. Ethical issues were discussed in detail, 

emphasizing their relationship to regulatory concerns that may differ by country and by stakeholder 

status. 

 

NLP markers for psychiatric disorders 

Definition and potential roles 

Aligning with a broad characterization of markers in digital medicine1, we agreed that an NLP 

marker is a digitally acquired, computationally derived, quantifiable measure or set of measures of 

human language production reflecting the state of biological, neurocognitive, and social processes 

that contribute to it. While acknowledging the breadth of oral and sign language-related processes 

(i.e., production and comprehension of spoken/sign/written language), we mostly focused on 

speech production for a few key reasons. In psychiatric practice, spoken language is considered to 

be indicative of mental states, which are reflected in its meaning (i.e., semantic content), form (i.e., 

grammar), and acoustic features. Metrics of spoken language can easily be derived from audio 

recordings obtained during routine clinical practice in psychiatry, as well as in naturalistic, 

ecologically valid contexts (e.g., at home). While many developing markers are obtained using 

NLP techniques (e.g., cosine semantic similarity metrics), markers derived using other 

computational approaches focused on human communication processes (e.g., acoustics of speech 

signal and non-verbal behaviors such as facial expression) are also included in the broad definition 

of NLP markers. 

We recognized that NLP markers might have a descriptive role useful for screening, 

stratification in trials, and as a marker of outcome (e.g., prediction of relapse). In parallel, NLP 

markers might also have a mechanistic role, making them indicative of underlying pathological 



3 
 

mechanisms at cellular, physiological and/or circuit-based levels, which could lead to target 

engagement for the development of new therapeutics, and plausibly improve prediction accuracy, 

stratification and monitoring of treatment response. 

 

NLP markers for clinical actions 

A set of potential clinical actions and goals were nominated for the use of NLP markers in 

psychiatry (see Table 1), based on discussions of examples and existing avenues of research. These 

comprise mostly descriptive NLP markers that as yet are limited in accuracy, carrying the risk of 

both false positives and false negatives. It was agreed that much work needs to be done before any 

of these use cases could be implemented in the clinic, and that ethical issues, commensurate with 

other fields of neurotechnology that prioritize people’s neurorights2,3, are paramount in developing 

NLP markers for psychiatric disorders. 

The group agreed that the field as yet lacks comprehensive large-scale “candidate-selection” 

studies for several clinical decisions (e.g., treatment response monitoring and prediction of 

aggression/violence). We reviewed the promising proof-of-concept studies that support the 

construct validity of candidate NLP markers that correlate with standard clinical ratings (e.g., 

associations between cosine similarity metrics and tangentiality4 in individuals at clinical risk for 

psychosis) and that are predictive of some outcomes of interest, such as transition to psychosis 

from risk states5. Robust external replications5, prospective validations, cross-linguistic 

comparisons, and reliability estimates on assay performance are also needed, and clinical trials on 

integrating NLP markers with routine practice are yet to begin. 

The measurement and evaluation of NLP markers for specific clinical actions6 can be guided 

by a principled approach with three steps7. First, current clinical knowledge, prior research results, 

and data-driven approaches should guide the selection of promising features to validate NLP 

markers for specific clinical actions. Second, optimal procedures for measuring those features 

should be defined. Third, arguments both in favor and against making changes in current clinical 

practice related to the employment of NLP markers should be thoroughly examined, addressing 

issues of validity, reliability, utility, acceptability, and costs. 

Understanding the constraints of NLP markers on generalization (e.g., heterogeneity and 

inherent volunteer bias in training data) is crucial, requiring debiasing strategies during acquisition, 

training and validation stages and safeguards during implementation. There was general agreement 
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on the need to collect large diverse samples to determine how NLP markers generalize over 

populations varying in age, sex, ethnicity, and education, for instance. Constraints on 

implementation of NLP markers must be considered right from the start in developing predictive 

models for clinical use. Data-sharing obstacles should be tackled8 so that interested parties can 

collaborate inter-institutionally9 to advance the field. 

 

NLP markers and mechanistic research 

Significant progress has been made in understanding the neural basis of language processing10 and 

its interaction with neurocognitive processes such as attention11 or memory12. Spoken language 

conveys information about impairments in thought and cognition in psychiatric disorders13. Thus, 

the mechanisms that underlie NLP markers might be in close proximity to the etiology of psychosis 

and other psychiatric disorders14. To test this, there is a need for carefully designed hypothesis-

driven experiments in clinical samples. By developing causal-mechanistic explanations for 

promising NLP markers15,16 (i.e., delineating the neural mechanisms that account for their 

characteristics), in the near future NLP markers could be used as proxy outcomes reflecting 

whether clinical interventions exert an effect on the underlying mechanisms of a given disorder. 

Attendees highlighted that language production is the result of genetic17 and developmental18 

processes. Further, while an individual’s anatomical19 and cognitive20 characteristics constrain its 

features, language production is influenced by pharmacological21, contextual22, and socio-

demographic23 factors. Therefore, we considered that, with respect to mechanistic investigations 

of candidate NLP markers, we must improve the consistency of how we acquire, preprocess, and 

analyze speech data, how we parse effect(s) of potential confounders on the characteristics of 

candidate NLP markers, and how we interpret candidate NLP markers to ensure robust replications. 

We acknowledged that candidate NLP markers could map onto multilevel biosocial causal 

frameworks, and group-aggregated results of NLP markers might be used as priors to inform any 

personalized care24. Rigorous and large-scale clinical studies evaluating predictive models 

alongside experimental mechanistic studies should allow us to identify explainable candidate NLP 

markers. 
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Imagining a Clinical Decision Support System incorporating NLP markers 

Discussions of a putative CDSS incorporating NLP markers highlighted that candidate markers 

must be validated with “ground truth” clinical rating scales, and evidence that they have real-life 

functional correlates should be provided. We also agreed that NLP markers must be integrated with 

other sources of clinical information24, and that training related to their acquisition and 

interpretation should have minimal burden on clinicians. Further, along with accessibility to and 

acceptance of candidate markers by clinicians and patients25, any CDSS incorporating NLP 

markers should achieve expected standards of transparency, trust, and efficient and safe 

functioning26 for regulatory approvals before widespread clinical use27. In the absence of a formal 

CDSS, clinical settings can implement NLP markers in pilot testing using human-in-the-loop 

iterative methodologies28 to begin to flesh out these issues. 

 

Ethical challenges 

We anticipate the implementation of any CDSS incorporating NLP markers to face a series of 

ethical challenges (many of which have been debated for decades). Spoken language reflects 

psychological states and is considered to be personal data, raising nuanced concerns about data 

protection and privacy legislation29. The use of audio and video recordings require us to adhere to 

a set of ethical principles to “preserve people’s privacy, identity, agency and equality”2. Likewise, 

(inter)national AI-laws30 should regulate the process of scaling up any putative CDSS incorporating 

NLP markers for routine use. Moreover, broader concerns over AI explainability, clinical 

reasoning, and patients’ autonomy also persist31. Specifically, unease about misuse (e.g., 

discrimination) or potential harms (e.g., missing a relapse event) arising from mistakes in utilizing 

NLP markers is widespread. In this context, NLP markers must also be first validated and assessed 

for accuracy, reliability, acceptability, scalability, utility and cost before any consideration can be 

made for making them an integral part of clinical care. All these ethical issues must be addressed 

in an explicit and transparent manner. Importantly, previous efforts have suggested that these 

challenges are surmountable (e.g., the European MONARCA project32), but call for an 

interdisciplinary action plan. 

 



6 
 

Conclusions and future directions 

Psychiatric practice is deeply rooted in human language and the communicative interchanges it 

allows. With unprecedented developments in digital health technology and NLP, we are now at the 

cusp of systematically building on language-related data to derive clinical benefits. Our consortium 

will work to build an alliance of lived-experience experts, clinicians, and caregivers in further 

collaborative work. Constructing benchmark transdiagnostic datasets requires sustained global 

multicenter collaborations. Researchers in the language sciences could inform the development of 

cross-linguistic NLP markers that incorporate phenomena of linguistic variation, thus increasing 

generalizability and avoiding the bias of underrepresenting certain languages or communities of 

speakers. Empirical cognitive neuroscience and psycholinguistic studies investigating the 

mechanistic basis of NLP markers can enhance their use in experimental medicine and treatment 

discoveries. The results could inspire novel linguistic remediations and speech and language 

therapy approach in psychiatry. A partnership of computational and data scientists with end-users 

(i.e., clinicians and patients) will enable the implementation of informed modelling pipelines fitting 

the needs of clinical use. Along with stakeholders in the health technology industry, we will work 

to improve the accessibility to and acceptability of acquisition and analytics procedures. The 

success of a safe and responsible use of any CDSS incorporating NLP markers requires support 

and guidance from ethicists, policy and legal experts, and regulatory bodies. With a commitment 

to act on these points, a diverse, inclusive, interdisciplinary and global collective for mental-health 

NLP markers can create the conditions to optimize health care with readily accessible and widely 

acceptable technology. 
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Table 1. Cases in point and scientific questions relevant to the validation and potential use of NLP markers in psychiatry. 

AI task Variable Clinical goal Example of candidate NLP marker Research questions 
Detection Diagnosis Establish a categorical diagnosis 

(despite questionable validity). 
Emotion-related acoustic features in 
speech differentiate unipolar 
depression and bipolar disorder33. 

What are the likely pathognomonic NLP markers for the 
different psychiatric disorders? 

Symptoms Improve detection and 
quantification of symptoms to 
more efficiently provide patients 
with Measurement-Based Care34. 

In CHR youths, pause length and 
percentage of pauses positively 
correlated with total severity of 
negative symptoms35. 

With what periodicity should the assessment of 
symptoms occur (e.g., once or twice per day) and for how 
long (e.g., one vs three months) to obtain reliable 
estimates? 

Warning signs Identify CHR individuals 
timely. 
Study pre-symptomatic phases 
of mental disorders. 

Prior to the first psychiatric 
hospitalization of patients with SSD, a 
relative increase in the use of 
swearwords and words related to 
perceptual processes and negative 
emotions36. 

Are there transdiagnostic and pathognomonic early-
warning NLP markers? 
Do early-warning NLP markers manifest similarly across 
the lifespan? 

Monitoring Treatment effects Monitor response to treatment 
actively, including side effects. 
Minimize adverse effects from 
medication and increase 
adherence to optimal treatment. 

In adults with major depression, pause 
behavior and mean fundamental 
frequency (pitch) differentiated 
treatment response37. 

Can NLP markers that vary with a treatment effect 
provide sufficient information to make decisions 
regarding changing, augmenting, or discontinuing 
treatments? 
 

Prediction Aggression/violence Reduce the number of injuries, 
amount of harm and damage 
resulting from aggression or 
violence. 
Reduce the use of coercive 
measures against aggressive or 
violent individuals. 

In youth referred for psychiatric risk 
assessment, features such as words 
related to violence and temporal 
phrases related to the frequency of 
violent thoughts or acts were 
significantly associated with the risk of 
school violence38. 

Might NLP markers be predictive of types of 
aggression/violence (e.g., verbal vs physical) and who the 
target is? 

Psychosis onset Stratification of CHR 
individuals for targeted 
preventive interventions. 

Prior to initial psychosis onset in CHR, 
decrease in semantic cosine similarity, 
greater variance in similarity, and less 
usage of possessive pronouns5. 

How early should NLP markers be measured in order to 
predict onset reliably? 
What predictive value will NLP markers have in non-help 
seeking samples? 

Prognosis Estimate the course of a 
patient’s psychiatric disorder 
and/or the probability of 
recovery. 

In first episode psychosis, a drop in 
syntactic complexity over 6 months 
indicated a later diagnosis of 
schizophrenia39. 

Which NLP markers best predict outcomes such as social 
functioning, symptoms’ remission, or vocational 
recovery? 

Relapse Estimate relapse to improve 
preventive care. 

For patients with psychosis, in the 
month preceding relapse there was a 
relative increase in the use of words 

What is the best and actionable time frame for gathering 
relapse-prediction NLP markers data (e.g., every 2-4 
weeks)? 
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related to swearing, anger, death, and a 
decrease in words related to work, 
friends, and health along with more 
first and second person pronouns40. 

 

Suicidality Improve assessment of suicidal 
ideation. 
Prevent suicidal acts. 

Among USA veterans, a combined set 
of acoustic and linguistic features 
improved detection of suicidal 
ideation41. 

Can NLP markers predict suicidal ideation and behavior 
with greater accuracy than existing risk calculators? 
Can NLP markers accurately distinguish between suicidal 
ideation and non-suicidal, negative thoughts? 

Selection Optimal treatment Select an optimal treatment to 
increase the probability of 
recovery. 

In individuals with depression, scores 
of words with emotional content were 
predictive of treatment success with 
psilocybin42. 

Can NLP markers assist in the identification of the 
optimal treatment for a given patient? 

AI: artificial intelligence; CHR: clinical high risk; NLP: natural language processing; SSD: schizophrenia-spectrum disorders; USA: United States of America. 
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