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Abstract
The high latitude ionosphere is highly irregular, which is caused by plasma
patches, flow shears and electron precipitation. These causes are not well un-
derstood, but it is thought to be three sources to these irregularities: density
gradients, arcs/flow channels and electron precipitation. It is speculated that
there are two main mechanisms for the formation of these irregularities. These
mechanisms are Kelvin-Helmholtz Instability (KHI), a instability with flow
shears as a source and Gradient Drift Instability (GDI), which have plasma
density gradient in plasma patches as a source. The reason for the interest in
these irregularities, are the technological problems they cause. Signals from
satellites can be shifted away from intended targets or reflected back from the
atmosphere completely. The goal of the thesis is to compute the linear growth
rate of these instabilities to be able to see which one is more likely to be the
dominant one. I used the Swarm satellites to access data for 2015 and 2020
as they are at approximately solar maximum and minimum respectively. The
data was accessed from 60 degrees latitude and upwards, as the area of inter-
est were the auroral region and the polar cap. I used both latitude and Kp as
means of restriction for the datasets, so I could analyse and compare differ-
ences for the auroral region and polar cap, geomagnetic activity and seasonal
variations. I also compare the differences between the solar maximum and
minimum. The results indicate that the GDI is the more dominant mechanism
from the assumptions made in the thesis, as it had a consistently larger growth
rate than KHI. The GDI growth rate also seems to be affected by the seasonal
variations as there is more GDI growth rate in the winter months. The KHI
growth rate however seems to be invariant of the seasons. The GDI growth rate
also reaches larger values in 2015 than in 2020, which might have to do with
the solar maximum, while the KHI growth rate is pretty consistent throughout
all the results.
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1
Introduction
Plasma patches, flow shears and electron precipitation creates irregularities in
the ionosphere. These irregularities can cause technological problems, espe-
cially in the form of GPS signals from satellites being shifted away from the
intended target, or reflected away from the atmosphere completely (Oksavik
et al., 2012). The causes of these irregularities are not well understood however,
there is thought to be three different sources: density gradients, arcs/ flow chan-
nels and electron precipitation. This thesis will look at what is considered the
two main mechanisms, Gradient-Drift Instabilities (GDI) and Kelvin-Helmholtz
Instabilities (KHI). The GDI has density gradients in plasma patches as the
source, while the KHI has arcs/flow channels as the source (Oksavik et al.,
2012).
Plasma patches are areas of plasma with at least twice the density as the back-
ground plasma (Spicher et al., 2015). They move over the polar cap and are
impacted by the solar cycle, the geomagnetic activity and the seasons. Irregu-
larities can be found in the whole patch, which can be from 100-1000km wide
in the horizontal direction, however they seem to be more prominent on the
trailing edges (Oksavik et al., 2012).
In the ionosphere there are flow channels and arcs. These impact the convec-
tion of the ionosphere depending on which direction they are from, the time
and the seasons (Lockwood et al., 1990). When large velocity shears transverse
the magnetic field irregularities can occur. These flow shears can be both per-
pendicular and parallel to the magnetic field, however this does not seem to
have an impact on irregularity growth (Oksavik et al., 2012).
This thesis will try and understand which of these mechanisms seems to be the
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2 chapter 1 introduction

most dominant. This is done with an analysis with two different sets of data,
one for 2015 and one for 2020. The two years were chosen based on the solar
cycle maximum and minimum, to see if there is a difference. This thesis will
focus on the northern polar area of 60 degrees and upwards. The latitude will
be divided into two regions, the auroral region from 60 to 75 degrees (Kataoka,
Ryuho and Nakano, Shin’ya, 2021) and the polar cap from 75 to 90 degrees.
This to see if the difference in activity in these regions would matter for the
irregularities. There is also a restriction on Kp which are divided into three,
1-3, 3-6 and 6-9. The Kp index is chosen because it is a good indication of the
geomagnetic activity, and it is divided up to look at the difference for different
geomagnetic activity (Matzka et al., 2021).
I determine the more dominant instability by calculating the linear growth
rate for both GDI and KHI using in situ measurements from the Swarm Alpha
satellite. This is one of three identical satellites in a constellation from the Eu-
ropean Space Agency’s (ESA) first mission of Earth Observation (ESA, 2023a).
They orbit the entirety of the Earth and uses approximately 95 minutes on one
orbit (Team, 2023). The assumption made is that the larger the growth rate
the more dominant the irregularity mechanism is. In Oksavik et al. (2012) they
used in situ measurements from a sounding rocket together with ground-based
data to look at spatial structures and irregularities in the F-region of the iono-
sphere. The time of their measurements are therefore only when the rocket are
in the F-region and over a limited area. In Burston et al. (2016) they use the
Dynamics Explorer 2 satellite over approximately 2 years to look at GDI, KHI
current convective and a small scale "turbulance" process. This however was
only during the peak of the solar cycle, and they could therefore not compare
it with the solar minimum. In this thesis I try to expand the time and space
the measurements are taken, and then compare two different years at differ-
ent time in the solar cycle. This will hopefully give some insight on how the
geomagnetic activity and region of latitude impacts the growth rates of the
instabilities.
The thesis is divided into 7 chapters as well an appendix. The first chapter is
the introduction. In the second chapter I present background information rele-
vant to my investigation. The third chapter is instrumentation where I give an
overview of the satellites and instruments used for data collection. The fourth
chapter is the methodology where I describe how I worked to find the results,
which are presented in the fifth chapter. In the sixth chapter I discuss my re-
sults in the context of already existing literature, and in the seventh chapter I
present my conclusion. In the appendix the code used for the calculations is
presented.



2
Background
In this section I will go through the necessary background information, so that
the results will be easily understood. As this thesis is about irregularities in the
high latitude ionosphere in polar area, I will introduce the ionosphere and some
consequences of the magnetosphere-ionosphere coupling. This will be followed
by the theory for the Kelvin-Helmholtz and Gradient-Drift irregularities.

2.1 Ionosphere

The region in the atmosphere which is partially ionized is called the ionosphere
(Brekke, 2012). The two things needed for a ionosphere is a neutral atmo-
sphere and a source of ionization. The two most common are photoionization
and impact ionization (Russell et al., 2016). Photoionization is ionization of
atmospheric constituent due to interactions between the solar photons. It is
primarily because of solar photons ultraviolet wavelengths. Impact ionization is
collisions between ionized particles and neutral constituents. Photoionization
can be assumed as the most dominant source of ionization in the ionosphere
for the most part. Impact ionization is sustaining the high-latitude ionosphere
on the nightside, and is therefore more dominant than photoionization in this
part of the ionosphere (Russell et al., 2016). The ionosphere consists of three
different regions: The D-, E-, and F-region. The D-region exists at an altitude
below 90 km, the E-region is between 90 and 130 km, while the F-region is
above 130 km (Russell et al., 2016). As the ionosphere is only a region of ion-
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4 chapter 2 background

ized particles, it varies depending on solar radiation, precipitating particles,
aurora particles, time of the day and seasons (Brekke, 2012). For my thesis I
have looked at the F-region of the ionosphere in the auroral region, which is
defined as a latitude from 60-75 degrees (Kataoka, Ryuho and Nakano, Shin’ya,
2021) as well as the polar cap which is approximately from a latitude of 75-90
degrees as it is defined as being above the auroral region.

2.1.1 Plasma

Plasma is defined as a gas of free electrons and ions that behaves in a collective
way, which means that the plasma as a whole is neutral, however the different
particles and parts of the plasma is not neutral. This is called quasi-neutrality
(Piel, 2017). Because of the particles that make up the plasma, it can be acted
upon by both electric and magnetic fields (Russell et al., 2016). The focus of
the thesis is the ionosphere, and as such the plasma discussed will be space
plasma.
Plasma patches seems to be an area in which strong irregularities can be ob-
served (Oksavik et al., 2012). To be considered a patch the density of the patch
must be at least twice the background density. They can be anything from a few
kilometres to a thousand kilometres wide in the horizontal direction (Oksavik
et al., 2012). Patches can be observed the whole year, but are more prominent
during conditions when Kp > 4, and when we are closer to the maximum of
the solar cycle. The patches are observed to drift over the polar cap, and while
irregularities have been observed in the entire patch structure, the stronger
once have a tendency to be on the trailing edges of the patches (Oksavik et al.,
2012). The plasma patches appear to be solar-induced plasma that is trans-
ported from lower latitudes in the ionosphere through the polar cap and into
the auroral region (Tsunoda, 1988). It is important to the understanding of
the irregularities to know that the plasma patches moves, and that there is
movement in the ionosphere. It will be discussed in more detail in the next
section of the background.

2.2 Magnetosphere-Ionosphere coupling

Earth has its own magnetic field, which is formed by the molten core of
metals and stone. As such the Earth is like a dipole magnet, and has its own
magnetosphere. The size of the magnetosphere depends on the magnetic
pressure of the magnetosphere, the components of the solar-wind pressure
and the balance between these two (Russell et al., 2016). There are three
components of the solar-wind pressure: momentum flux of the cold stream
ions flowing from the Sun, the kinetic or thermal pressure of the solar
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wind plasma and the pressure of the interplanetary magnetic field (IMF)
(Russell et al., 2016). These push perpendicular along the magnetopause,
the outer boundary of the magnetosphere, where the magnetosphere meets
the solar wind, as the solar wind passes by the magnetosphere it creates a
drag which changes the shape of the magnetosphere, as well as causes the
circulation of the magnetospheric plasma and transports magnetic flux. The
solar wind reconnects at the magnetopause, coupling the solar wind with the
magnetosphere, which causes the magnetic fields to be linked. This means
that the magnetic flux from the solar wind is coupled with the magnetosphere,
which the magnetospheric plasma carries together with plasma over the polar
cap to the magnetotail. Here there is a larger energy reservoir which can be
released rapidly, and when released, hit the night side of the planet first(Russell
et al., 2016). A simple schematic of these areas of the magnetosphere can be
seen in figure 2.1. This means that the solar wind is a primary driver for the
circulation of plasma.

Figure 2.1: The figure shows the magnetosphere with the magnetotail, magnetopause
and reconnection. Figure from Bahmer (2024)

In short the magnetic field of the Earth and the ionosphere is heavily influenced
by the solar wind, and the IMF. The magnetic field and the ionosphere is heav-
ily interconnected, which is to be taken into consideration when studying the
ionosphere.
As a consequence of the magnetosphere-ionosphere coupling we have plasma
convection in the ionosphere. One of the important parameters is the interplan-
etary magnetic field (IMF), as the way it changes in magnitude and direction
contributes to the convection patterns in the high-latitude ionosphere (Heelis,
1988). Ionospheric flows are a result of the solar wind coupling with the mag-
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netosphere. The flow can be viewed as two separate flows, decoupled from
each other, and are time-dependent (Lockwood et al., 1990). The flow pattern
happening on the dayside of the magnetopause, is driven by a direct coupling of
the solar wind and magnetosphere. This flow is associated with an expanding
polar cap (Lockwood et al., 1990). The flow pattern happening on the night-
side of the magnetopause is driven by flux return from the geomagnetic tail.
This comes from the magnetic reconnection during substorms when energy is
released from the magnetotail. The nightside flow pattern is associated with a
contracting polar cap (Lockwood et al., 1990).
As the IMF has a northward direction it is possible for the convection pattern to
go from a two-cell to a four-cell pattern. However when the IMF is southward
it seems like the plasma patches is formed (Heelis, 1988). There is also varia-
tions in the plasma convection patterns, that comes from the geographic and
geomagnetic poles are misaligned. So the convection patterns reflects the state
of the cusp, which the plasma convects through from the auroral region to the
polar cap (Heelis, 1988). In figure 2.2 we can see the main ionospheric two-
cell convection pattern, during an aurora, with southern IMF. This is from the
northern hemisphere above 50 degrees latitude in magnetic local time.
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Figure 2.2: Main ionospheric convection pattern during an aurora. Figure taken from
Heelis (1988)

The magnetosphere-ionosphere coupling, seems to also have a impact on
the aurora. The EUV flux controls the background density of the ionospheric
plasma, which in turn controls to which degree intense auroral processes
can operate (Newell et al., 2001). The aurora can then be a sign of the
magnetospheric processes driving currents into the ionosphere (Newell
et al., 2001). Said in other words, the aurora and its strength could give us
information on the state of the ionospheric currents and convections.

There are also seasonal variations in the high-latitude ionosphere, which come
from the tilt of the planet. In the summer-period for the northern hemisphere
the polar cap is drenched in sunlight. This can cause the background density
to be much larger than during the wintertime (Spicher et al., 2017). The
sunlight can also be the cause of for the rate of density index is high from
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September to April. The solar EUV ionizes the E-region, which can result in
irregularities decaying quicker in the F-region (Jin et al., 2019).

All of these processes follows from the magnetosphere-ionosphere coupling.
Since a lot of the processes written about is heavily influenced by the solar
wind, one way of monitoring the variations is by using the Kp index. This is
a standardized index to monitor geomagnetic disturbances on a global scale.
The index ranges from 0-9 and is quasi-logarithmic (Matzka et al., 2021). I
have used Kp later in the thesis as one of the parameters of interest.

2.3 Instabilities

The irregularities in the ionosphere are poorly understood, however there are
two main mechanisms that are believed to be the cause of the formations
(Carlson and Moen, 2008). The first is the GDI which occurs on electron
density gradients, which can be encountered in polar cap patches. Polar
cap patches are plasma density islands, with an area of several hundred
kilometres, and a density more than double the background density (Spicher
et al., 2015). They are to be found traversing the polar cap. In the ionosphere
the plasma density gradient and the electric field can create unstable polarized
electric fields. This then creates a positive feedback loop, in which the initial
perturbation from the creation of this unstable electric field becomes amplified
by the gradient drift motion moving less dense plasma to areas with higher
density plasma and vice versa. This is the process thought to create GDI
(Tsunoda, 1988).
The second instability is the KHI which is associated with flow shears. It is
thought to occur when there are large velocity shears transverse the magnetic
field (Oksavik et al., 2012). There are two different types of flow shears,
when the plasma flow velocity is either parallel or perpendicular to the
magnetic field. KHI can be the outcome for both types, however it seems that
the growth rate appears to be slow, no matter which type (Keskinen et al.,
1988). There are several other mechanisms that are believed to contribute to
the irregularities in the ionosphere, these however is not discussed in this thesis.

The equations used for calculating the linear growth rates for the Gradient Drift
Instability (GDI) and Kelvin-Helmholtz Instability (KHI) are (Oksavik et al.,
2012):



2.3 instabil it ies 9

𝛾𝐺𝐷 =
𝑉0Δ𝑁

𝑁0Δ𝑥
(2.1)

𝛾𝐾𝐻 =
0.2Δ𝑉
𝐿

(2.2)

For equation 2.1 𝑉0 is the plasma drift relative to the neutral atmosphere in
the direction parallel to the density gradient, 𝑁0 is the background density,
Δ𝑁
Δ𝑥 is the horizontal electron density gradient. Here Δ𝑥 = Δ𝑡 ∗ [𝑉𝑟 + 𝑉𝐸𝑥𝐵],
where 𝑉𝑟 is the horizontal velocity of the satellite, Δ𝑡 is the time between
data samples and 𝑉𝐸𝑥𝐵 is the ion drift along the satellite track (Oksavik et al.,
2012). For equation 2.2 Δ𝑉 is velocity difference and L is the velocity difference
scale length (Oksavik et al., 2012). The reason to look at the growth rates is
that they can give an indication of which instability is more dominant, as the
faster the instabilities grow, the more irregularities are created (Oksavik et al.,
2012).





3
Instrumentation
In this section I will discuss the satellites and instruments used, to collect the
analysed data.

3.1 Satellites

I have used measurements collected from the European Space Agency’s (ESA)
satellite constellation Swarm. The constellation consists of three identical satel-
lites, Alpha, Bravo and Charlie, and is ESA’s first mission of Earth Observation
(ESA, 2023a). The Alpha and Charlie satellites are in the same orbital plane,
and have the same altitude of 462 km, while the Bravo satellite has an altitude
of 511 km. Alpha and Charlie has a distance of 15 km or 2 seconds in the orbit
(ESA, 2023a). The satellites were launched in a near polar orbit in 2013, and
the mission was only supposed to last until 2017, however it has now been
renewed to 2025. They orbit the entirety of the Earth and uses approximately
94 minutes on one orbit (Team, 2023). The satellites measure the geomagnetic
field, the velocity which the electric field in the ionosphere can be calculated
from, as well as provide information about the dynamics in the ionosphere
(ESA, 2023a).
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12 chapter 3 instrumentation

3.2 Instruments and data

For the analysis I used measurements of electron density, ion drifts cross-track
velocity in the horizontal direction in satellite-track coordinates, ion-drifts
along-track velocities from the vertical and horizontal TII sensor, the satellite
velocity in the North-East-Center (NEC) frame, specifically in the North and
East direction. I decided to use data only from the Alpha satellite, the reason
which will be discussed further in the Methodology chapter. The instrument
used to gather these specific measurements is the Electric Field Instrument
(EFI) a 3D ionospheric imager. It measures plasma density, drift and velocity to
characterise the electric field around Earth. It consists of three main parts, the
Langmuir Probe, the thermal ion imager and the electronics assembly (ESA,
2023b). All the data is accessed through VirES for Swarm (ESA, 2023c).



4
Methodology
In this section the methodology is presented. Here I present the method of
accessing the data, the problems I encountered and the solutions I used. I
wanted to be able to use different restrictions so that I could compare the
auroral region with the polar cap, compare different geomagnetic activity
and look at two different years that correspond with the solar maximum and
minimum. The decisions for how the data is used is also presented.

As a start for the code and analysis in this thesis I used the code from my
project paper, where I analysed four cases of GDI and KHI. The cases were
spread over different days, and the data accessed were from a latitude of
75 degrees and above. There were no restrictions of Kp values. I used VirES
for Swarm to access the satellite data. This code is using the datasets "EFI
TCT02" and "EFI IDM" to access the different values needed to calculate the
growth rates of GDI and KHI. From the "TCT02" dataset I access the ion drifts
cross-track velocity in the horizontal direction in satellite-track coordinates
needed to calculate the KHI growth rate. For the along track ion drift velocity,
the ion density and the satellite velocity in NEC frame needed to calculate the
GDI growth rate are accessed from the "IDM" dataset.

The original code was not optimised and there was a lot of manual work
required to perform an analysis in more than single cases, be able to
select intervals of the time or orbit, or restrict latitude and Kp. Therefore

13
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significant improvements were required. A range filter were applied for
the latitude and Kp, so this could be changed easily to fit the restrictions
I wanted. I have looked at GDI and KHI growth rates in the aurora oval
and in the polar cap. I have also looked at the difference in KHI and GDI
growth rates based on different Kp values. The range filter helped with eas-
ily being able to change the restrictions to fit what I was looking for at the time.

The next challenge encountered and that needed to be solved was that the
datasets from the different instruments weren’t necessarily of equal length,
and they didn’t always have similar timing. Unless I had equal length dataset
it was not possible to plot them together, which made it hard to be able to
compare and see differences and similarities, as well as making an analysis of
the data. I also needed the datapoints to be taken at the same time, so that I
knew that they were taken in the same place. A five second shift meant that I
would compare two datapoints at different places in the ionosphere, and this
would give inaccurate results. So the process of making them equal no matter
which dataset was longer needed to be automated. Selecting datapoints which
are closer than half a second so the values were taken at approximately the
same time also needed to be automated. This was done with an if statement
in a for loop. The timesets were converted to UNIX time, however for the plots
they were converted back for an easier understanding.

Then I had a problem with the calculated GDI as the magnitude seemed
unrealistic as I got values upwards to 107/𝑠. Therefore I put maximum and
minimum limits on all the velocity, of which I used 10 000 and -10 000 m/s
respectively, and density values, of which I used 18𝑐𝑚−3 and 0 respectively, to
limit the number of non physical values making the problems. The velocity
values are much larger than typical ionospheric velocities, which usually
reaches a maximum of 1000 m/s. There are however possible to reach larger
velocities, so my limits were chosen to not restrict the data too much. Then
I also put a median filter on the ion density to remove any spikes from the
dataset. Here I decided on a median filter that uses a gradient between 3
points. In figure 4.2 we can see an example of how filtering affects the data.
In figure 4.2 the blue dots represent data with no smoothing, the orange
dots represent the data with a 3 point gradient median filter, and the green
dots represent the data with a 5 point gradient median filter. As can be seen
the filtering smoothes some of the gradients, so that the largest outliers
are omitted from the results. I found that a 3 point gradient was a good
middleground between no smoothing and the 5 point gradient, as some of the
outliers are omitted, but not so many to make the data unreliable. This still
didn’t fix the problem completely, as seen in figure 4.3 where I have plotted
the KHI growth rate with blue dots and the GDI growth rate with ion density
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with orange dots for January of 2020. The figure shows growth rate on the
y-axis and time on the x-axis. Here we can see that GDI reaches a growth
rate of 125 000/s which seems unrealistic. This also causes the problem of
not being able to visually compare with the KHI as the growth rate becomes
approximately zero when plotted together with the GDI.

In the end I found out that the "EFI IDM" dataset had too many uncertainties
in their values to be used here, and decided instead to use the dataset "EFI".
The "IDM" dataset were originally chosen because it provided Vi both along the
orbit and the density which meant not needing to combine different datasets.
The "EFI" dataset did not have the velocity along the satellite, which meant
combining different datasets for the GDI growth rate calculation. From this
dataset I could access the electron density, and for the velocities needed I
accessed those from the "TCT02" dataset. Here I chose the ion drifts along-
track velocities from the vertical and horizontal TII sensor, and the satellite
velocity in the NEC frame, specifically in the North and East direction. I also
selected a scale length L of 8000 m. In equation 2.1 the 𝑉0 is the square root
of the along-track velocities, Δ𝑁 is the electron density, 𝑁0 is the background
density and Δ𝑥 is the velocities in north and east direction as well as Δ𝑡 . In
figure 2.2 Δ𝑉 is the cross-track horizontal drift velocity and L is the scale
length. In equation 4.4 the KHI growth rate is plotted with blue dots, and the
GDI growth rate with electron density instead of ion density is plotted with
orange dots. The figure shows the growth rate on the y-axis and the time on the
x-axis. The growth rates are plotted over January of 2020. This gave a better
result when looking at the GDI magnitude as seen in figure 4.4, where the
maximum value of the GDI growth rate is 2/s which is a much more realistic
value (Oksavik et al., 2012).
Figure 4.1 shows a sketch of the satellite in orbit from the auroral region and
upwards. This also shows all the parameters used to calculate the growth
rates.
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Figure 4.1: A sketch of the satellite orbit in the auroral region, with the different
parameters used for the growth rate
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Figure 4.2: 𝑁𝑖 density with no smoothing, a 3 point smoothing and a 5 point smooth-
ing of the data. Date 28.06.2015 in the time period 21:00:00-22:00:00 UT
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Figure 4.3: KHI growth rate vs GDI growth rate where I use the ion density to calculate
GDI growth rate. We can see that there seems to be an unrealistically high
growth rate for the GDI, and it is not possible to compare with the KHI
growth rate as the GDI growth rate is to large. The GDI growth rate is the
orange dots and the KHI growth rate is the blue dots.
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Figure 4.4: KHI growth rate vs GDI growth rate where I use the electron density to
calculate the GDI growth rate. GDI growth rate is the orange dots and
KHI growth rate is the blue dots.





5
Results
In this section I present the results of my thesis. Here I have decided to show a
comparison with one of the cases from my project paper. I also show data to
illustrate the solar cycle, the GDI and KHI growth rates for 2015 and 2020 with
restrictions for Kp or latitude, as well as histograms of GDI and KHI growth
rates for 2015 and 2020. I made the decision to look at Kp and latitude, to see
if any of them had an impact on the GDI and KHI growth rates. Kp and latitude
are looked at separately. The solar cycle is shown to see if it has any impact on
the GDI or KHI growth rate. The latitudes selected are from 60 degrees latitude
and upwards, as the thesis is centered around the northern polar area. The
latitudes are chosen to separate the auroral region at 60-75 degrees (Kataoka,
Ryuho and Nakano, Shin’ya, 2021) and the polar cap.

From figure 5.1 we can see that from the number of observed sunspots, we
can infer that there was a solar maximum around 2014-2015, and a solar mini-
mum in 2020. This was used to be able to choose which years to collect data
from.
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Figure 5.1: Showing the solar cycle, both predicted and observed. (SunPy, 2023)

Figure 5.2: KHI and GDI growth rates plotted together and against each other
09.09.2015. In the top left plot the labels are showing the day 09-09, and
the hour of the day, 19, 20, 21 etc.
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In figure 5.2 we can see the KHI and GDI growth rates plotted together for the
09.09.2015 in the plots to the left, while on the right they are plotted against
each other. This date was chosen as it was one of the dates used for my case
by case analysis in the project paper, and it could be interesting to see the
difference in the plot as the auroral region is included and there are made
quite a bit of improvement of the code for this thesis. For the top left plot the
GDI growth rate is plotted with blue dots, while the KHI growth rate is plotted
with orange dots. In the bottom left plot the GDI growth rate is plotted with a
orange line, while the KHI growth rate is plotted with a blue line. The reason
for the different times in the top left and bottom left plots, are that the top
plot is over the whole day of the 09.09.2015, while the bottom plot is only for
7 minutes of the day the 09.09.2015. We can see that the GDI growth rate is
larger than the KHI growth rate for the whole period. The data is collected
with a latitude of 60 to 90 degrees, and there was no restriction for Kp in the
two top plots, while for the two bottom plots the latitude was 75 to 90 degrees,
again with no restriction for Kp. The two bottom plots are from my project
paper, while the two top plots are from the code that is used in this thesis. The
motivation for showing these plots are so that I can compare the difference
since I have included the aurora oval in the new plots. I also used a different
dataset to calculate the GDI growth rate for the two top plots. We can see that
the GDI growth rate is larger for all the plots also when the auroral region is
included, however the two bottom plots reaches larger values of growth rate.

After showing the data for a selected day to compare with the project paper, we
show the GDI and KHI growth rates for two different years, with restrictions
for Kp, and with a latitude of 60 degrees. This to investigate the difference of
the growth rates with different Kp values, as well as look at if the different
years at different ends of the solar cycle has any impact.

Figure 5.3 shows three different plots with the growth rate on the vertical axis
and the date on the horizontal axis. They are differentiated by Kp, so in the
top plot, the data collected is when the Kp was between 1 and 3. The middle
plot the Kp was between 3 and 6, and the bottom plot has a Kp between 6 and
9. All the data is collected in 2015 above 60 degrees of latitude. The blue dots
represent the GDI linear growth rate,while the orange represents the KHI linear
growth rate. As we can see there are more data points where the Kp is between
1 and 3, than when Kp is between 3 and 6 or 6 and 9. For the two top plots,
we can see that the GDI growth rate is of approximately the same magnitude,
with the same value as the maximum value. The bottom plot however does not
reach the same maximum values for the GDI growth rate, but seem to have
approximately the same values for the KHI growth rate. We can also see that
there are seasonal variations for both the GDI and KHI growth rates, however
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Figure 5.3: Comparison between the different Kp values for GDI and KHI growth rates
during 2015 for latitudes above 60 degrees

they are more prominent for the GDI growth rate, and the growth rates are
larger in the winter months of the year.

In figure 5.4 two different plots are shown, with the growth rate on the ver-
tical axis and the date on the horizontal axis. This is shown so that it can be
compared with figure 5.3, and see if the difference in years and time in the
solar cycle has any impact. The data collected is from 2020 above 60 degrees
latitude. It is differentiated in two plots by Kp between 1 and 3 in the top plot
and Kp between 3 and 6 in the bottom plot. There is only two plots as there
was no data with Kp between 6-9. Here we can see that the top plot has more
data points than the bottom one, however the bottom plot has some GDI linear
growth rates with a larger value. For the KHI linear growth rate it seems to
be in the approximately same area of values in both plots. We can also see
seasonal variations for both growth rates, however they are more prominent
for the GDI growth rate, and the growth rates are larger in the winter months
of the year.

After showing data from 2015 and 2020 with restrictions for Kp, we now show
the GDI and KHI growth rates, with no restriction for Kp, but with the latitude
divided up in two equal regions. The latitudes shown are between 60 and 75
degrees, and 75 and 90 degrees. This data will also be shown for 2015 and 2020.
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Figure 5.4: Comparison between the different Kp values for GDI and KHI growth rates
during 2020 for latitudes above 60 degrees. There was no data for Kp 6-9,
so there is only two plots for this figure.

From figure 5.5 the plot is divided by latitudes of 15 degrees each. The top
plot has data collected between 60 and 75 degrees, while the bottom plot has
data collected between 75 and 90 degrees. The auroral region is approximately
from 60-75 degrees latitude, while the polar cap is approximately from 75-90
degrees latitude. So to divide these two regions up, we can compare if the
regions impact the growth rates in any way. The data is collected in 2015, and
for these plots the Kp was between 1 and 9. In the top plot, where the data
is from the auroral region, we can see that some of the GDI growth rates are
much larger than the rest of the plot, and much larger than the bottom plot.
This contrast the values in figure 5.3 where we don’t reach the same maximum
values. However it seems like for the majority of the growth rates for both KHI
and GDI that the values are similar for both plots. Again we can see that the
growth rates have seasonal changes, and there are larger growth rates in the
winter months.

From figure 5.6 we have two plots which are divided with 15 degrees of latitude.
The top plot had data collected between 60 and 75 degrees latitude, the auroral
region. The bottom plot has data collected between 75 and 90 degrees, the
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Figure 5.5: Comparison between latitudes for the GDI and KHI growth rates during
2015 for Kp between 1 and 9

polar cap. All the data is collected from 2020 with Kp between 1 and 9. The
data from 2020 is shown to be able to compare with figure 5.5, and look at
the difference for two years at different times in the solar cycle. For the top
plot we can see that the GDI growth rates are larger for the start of the year
than in the bottom plot, however the KHI growth rates are similar in both plots.
Here we also has seasonal variations with larger growth rates in the winter
months.

After showing data from 2015 and 2020 with restrictions for latitude, we now
show the GDI and KHI growth rates in histograms. This is to be able to get a
sense of the different quantities the different growth rates has. The histograms
shown will be for both 2015 and 2020, with and without restrictions for Kp
and latitude. This to be able to better compare the different quantities. All the
histograms were normalized with the normalizing function that is built into
Python, as an attempt to see if they would look any different. The end result
was the same as the histograms shown here, and the normalized histograms
are therefore not included.
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Figure 5.6: Comparison between latitudes for the GDI and KHI growth rates during
2020 for Kp between 1 and 9

In figure 5.7 there are six different histograms. The two on the top are for the
GDI and KHI growth rate with Kp between 1 and 3. The two in the middle
are for Kp between 3 and 6, and the two on the bottom are for Kp between 6
and 9. The data is from 2015 above 60 degrees latitude. The vertical axis gives
the quantity of the growth rates in a logarithmic scale, and the horizontal axis
gives the growth rates. I have also decided to make a range from 0.01/s to 1.0/s,
as the values that are 0/s, were there are no growth rates, is not interesting
to look at. We can see that the GDI growth rate for Kp 1 to 3 has the largest
quantities, but the GDI growth rate for Kp 3 to 6 is close. The KHI growth rate
is clearly smaller, and for the quantities of Kp 6 to 9 there is significantly less
values.

In figure 5.8 the two top plots are for Kp between 1 and 3, while the two bottom
plots are for Kp between 3 and 6. All the data is collected in 2020 above 60
degrees latitude. Here there are clearly larger GDI growth rate for Kp 1 to 3.
The KHI growth rate for Kp 1 to 3 are much larger than the KHI growth rate
for Kp 3 to 6.
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Figure 5.7: A histogram for the GDI and KHI growth rates for different Kp values in
2015

Figure 5.8: A histogram for the GDI and KHI growth rates for different Kp values in
2020. Here there was no data for Kp 6-9.
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In figure 5.9 the two top plots have data from 60-75 degrees latitude, while
the two bottom plots have data from 75-90 degrees latitude. All the data is
collected in 2015 with Kp between 1 and 9. The quantities for the different
GDI growth rates is very similar at the different latitudes, which looks to be
the same for the quantities for the different KHI growth rates at the different
latitudes.

Figure 5.9: A histogram for the GDI and KHI growth rates for different latitudes in
2015

In figure 5.10 the two top plots have data from latitude 60-75 degrees, and
the two bottom plots have data from latitude 75-90 degrees. All the data is
collected from 2020 with Kp between 1 and 9. Here it seems like the GDI growth
rate for latitude 75-90 degrees has larger quantities than the GDI growth rate
for latitude 60-75 degrees. The KHI growth rate for latitude 75-90 degrees also
has larger quantities than the KHI growth rate for latitude 60-75 degrees.

In figure 5.11 the two top plots have data from latitude 60-75 degrees, and
the two bottom plots have data from latitude 75-90 degrees. This figure is to
compare the GDI growth rate between solar maximum and solar minimum. All
the data is collected with Kp between 1 and 9. As can be seen the GDI growth
rate for 60 to 75 degrees in 2015 is larger than the GDI growth rate for the same
degrees in 2020. The same is the case for the GDI growth rate with latitude 75
to 90 degrees.
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Figure 5.10: A histogram for the GDI and KHI growth rates for different latitudes in
2020

Figure 5.11: A histogram for the GDI growth rates for different latitudes for both 2015
and 2020
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In figure 5.12 the two top plots have data from latitude 60-75 degrees, and
the two bottom plots have data from latitude 75-90 degrees. This figure is to
compare the KHI growth rate between solar maximum and solar minimum. All
the data is collected with Kp between 1 and 9. Again can we see that the KHI
growth rate from 2015 is larger than the KHI growth rate for 2020. This is for
both intervals of latitude. It can also be seen that the KHI growth rate for 2020
is larger in the interval 75 to 90 degrees than from 60 to 75 degrees.

Figure 5.12: A histogram for the KHI growth rates for different latitudes for both 2015
and 2020

In figure 5.13 the two top plots have data with Kp from 1 to 3, and the two
bottom plots have data with Kp from 3 to 6. All the data is collected for a
latitude from 60 degrees. Here we can see that the GDI growth rate is larger
in 2015 for both intervals of Kp. The GDI growth rate also has larger quantities
for Kp 1 to 3 for both years. I have chosen to not use Kp 6 to 9 in this plot, as I
only have data from 2015 the solar maximum, and would therefore be unable
to compare it with a solar minimum.

In figure ?? the two top plots have data with Kp from 1 to 3, and the two bottom
plots have data with Kp from 3 to 6. All the data is collected with a latitude from
60 degrees. The KHI growth rate is larger in 2015 for both intervals of Kp. The
KHI growth rate also has larger quantities for Kp 1 to 3 for both years.
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Figure 5.13: A histogram for the GDI growth rates for different Kp values for both
2015 and 2020. Since there are no data for Kp 6-9 in 2020, all the values
for Kp 6-9 was omitted.
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Figure 5.14: A histogram for the KHI growth rates for different Kp values for both
2015 and 2020. Since there is no data for Kp 6-9 in 2020, all values for
Kp 6-9 was omitted.





6
Discussion
In this section I will discuss the results previously shown, and use the
information from the instrumentation and background sections to try and put
the results into context with other literature. The goal of the thesis is to look
at the GDI and KHI linear growth rate to try and determine if the GDI or KHI
is more dominant. I have looked at two different regions in the northern polar
area, the auroral region from 60 to 75 degrees and the polar cap from 75 to
90 degrees. I have also looked at different geomagnetic activity, where I have
used the Kp index, as well as looked at 2015 and 2020 to be able to compare
solar maximum with solar minimum.

From figures 5.3, 5.4, 5.5 and 5.6 we can see that the GDI growth rate is larger
than the KHI growth for both 2015 and 2020, which suggest that GDI is more
common. For both the KHI and GDI growth rates there are seasonal variations.
However the change in the GDI growth rate is larger than the change in the
KHI growth rate which is rather consistent throughout the year. This indicates
that in the ionosphere above 60 degrees latitude, GDI grows faster than KHI,
and they are more active in the winter months. As an approximation we
can look at a common value for the GDI growth rate which is 0.2/s which
corresponds to a growth in 5 seconds. For KHI a common value is 0.1/s which
corresponds to a growth in 10 seconds. Most of the values are still smaller than
this for both the growth rates, which can be seen in the histograms. However
the GDI also have some larger values as well. The KHI growth rates being
smaller than the GDI growth rates corresponds well with Oksavik et al. (2012)
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and Burston et al. (2016).
The reason for the seasonal variations is that in the summertime the whole
polar cap has sunlight at all times. One of the criteria to have density gradients
is to have areas with different density plasma. However in the summer the
ionosphere in the northern hemisphere the density of ions and electrons are
already so high, that it is much rarer to have plasma islands than in the winter,
when the polar cap is turned away from the sun (Spicher et al., 2017). The
solar EUV ionizes the ionospheric E-region. This can result in the F-region
irregularities decay quickly, and the irregularity amplitude is lower (Jin et al.,
2019). This seems to be consistent with earlier work from Oksavik et al. (2012),
Jin et al. (2019), Spicher et al. (2017) and Burston et al. (2016).

We can see from figures 5.3, 5.4, 5.5, 5.6 and figures 5.7, 5.8, 5.9, 5.10, 5.11,
5.12, 5.13, 5.14, that there are more quantity of data, and that reaches higher
values in 2015 than in 2020. The quantity is probably because the Swarm
satellites "EFI" instruments was fully active in 2015, while they were used
more sporadically in 2020, due to degradation (Kramer, 2023). However the
higher values in GDI growth rate especially is not explained by this. As we
can see from figure 5.1 in 2015 we are close to a solar maximum, while in
2020 we are at a solar minimum in the solar cycle. Perhaps a greater influx
of solar particles to the ionosphere could be a reason for the larger values in
GDI growth rate. From Oksavik et al. (2012) we know that there are generally
more patches during the solar cycle maximum, both for winter and summer
conditions (Oksavik et al., 2012). If I compare my results with those in Jin
et al. (2019) it seems like they are consistent with their findings that there is a
solar cycle dependency for the irregularities.

From figure 5.3 we can see that the largest value of growth rates are upwards
to 1/s. This is for the GDI growth rate with Kp between 1 and 3, and Kp
between 3 and 6. It looks like the GDI growth rate for Kp between 3 and 6
might have one or two values which are larger than the GDI growth rate in
Kp between 1 and 3. As seen in figure 5.4 the largest GDI growth rate values
happens for Kp between 3 and 6 where it is nearly up to 4 at the most. This
fits with others finds that there are more patches with a Kp>4 (Weber et al.,
1984).
From figures 5.5 and 5.6 we can see that the GDI growth rate has larger
values for latitude between 60 and 75 degrees. This area of the ionosphere
corresponds to where the aurora is generally located. There is typically a
higher density of electrons and ions in this area (Carlson, 2012), and therefore
you would expect the plasma patches to travel from the aurora oval and to the
polar cap dayside, and therefore have a higher value of GDI and KHI growth
rates farther north (Carlson, 2012). However the GDI only needs density
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gradients to be created, and as there is higher density in the auroral region
this could suggest a higher number of GDI. It may be that the large number of
GDI growth rate that is shown in figures 5.5 and 5.6 are outliers that shouldn’t
be counted in. However in figure 5.11 we can see that the quantity of growth
rate is approximately the same. In figure 5.12 we can see that the values for
the KHI growth rates at latitude 75-90 degrees are larger than for latitude
60-75 degrees.

In this thesis I have used the equations for linear growth rate for both instabili-
ties. There might however be uncertainties whit this method of deciding which
instability is more dominant in the polar northern hemisphere. There is also
an equation for growth rate in collisionless plasma that is not used (Oksavik
et al., 2012), and looking at the different parameters separately might also give
more accurate results. In figure 5.5 we can see a large value of GDI growth
rate which does not match what we see in figure 5.3. To try and figure out
the reason for the difference I have looked at if the amount of values match
between the latitude and Kp results, and found that the Kp has a larger amount
of datapoints. This was done for a few intervals of ten days each for both 2015
and 2020. This is as expected since there are some overlap in the way I have
sectioned up the different Kp values. Then I tried to plot the GDI growth rate
without a median filter. The results indicated that this might be the reason for
the difference in growth rates between figure 5.3 and 5.5. There is also used
a median filter on the electron density which is shown in figure 4.2, and this
could also have an impact on the datapoints. What I also observed was that
the general trend for the years and seasons were still the same.
The chosen scale length of 8000 meter gives us a resolution of 1 Hz. This will
have an impact on the datapoints for KHI, but again will do nothing for the
large scale trends seen in this thesis. The GDI growth rate was also consistently
larger than the KHI growth rate.
I have used in situ measurements from the Swarm satellite A. These mea-
surements and these calculations do not say anything about what is actually
happening in the ionosphere, with respect to GDI and KHI growth rates. The
calculations only tells us that if there are irregularities, they would with these
conditions in the ionosphere have these growth rates for the GDI and KHI. From
Tsunoda (1988) we know that the GDI is most active on trailing edges of the
plasma patches. With my data it is not possible to differentiate between leading
edges, and trailing edges. This means that the data shown in this thesis, says
nothing of where in the polar region the measurements are taken. Since we
don’t know if there even are irregularities or plasma patches at the times the
measurements are taken, there are uncertainties in how accurate the results
of this thesis are.





7
Conclusion
In this thesis I have tried to determine which of the main mechanisms for
instability is more dominant in the ionosphere, above 60 degrees in latitude. I
have looked at both the KHI and GDI growth rates for different latitudes and Kp
values, to see if that has any impact on the instabilities. This is all looked at for
2015 and 2020, which is the solar cycle maximum and minimum respectively.
It is clear that under my previously stated assumption that the GDI growth rate
is larger than the KHI growth rate, and therefore more dominant. The GDI
growth rate also appears more prone to seasonal change than the KHI growth
rate is. I also noticed that during the solar maximum the values reached for
the instabilities are larger than during solar minimum.
For further research a larger dataset could be used so it would be possible to see
the whole change from 2015 to 2020. It could also be expanded to consider the
southern hemisphere as well as the northern. The research could also include
the equation for linear growth rate were collisions are taken into consideration,
as well as look at the different parameters in the equations separately. As
discussed it could also be an advantage to try and filter the data in a different
way than I have done, as this clearly had an impact on the data. This does not
mean the results are wrong, as the general trend stays the same no matter if
there is a median filter or not.
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A
Main Code

[ ]: SERVER_URL = ’https://vires.services/ows’
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[ ]: import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import cartopy.crs as ccrs
from tempfile import TemporaryFile
import sys

import numpy as np
import xarray as xr
import datetime as dt
from matplotlib.dates import DateFormatter
import scipy.signal as sc
import pandas as pd
import time, datetime
from datetime import datetime
# Control the HTML display of the datasets
xr.set_options(display_expand_attrs=False,␣
↩→display_expand_coords=True, display_expand_data=True)

from viresclient import SwarmRequest
import warnings; warnings.simplefilter(’ignore’)

[ ]: request = SwarmRequest(SERVER_URL)

[ ]: request.available_collections("EFI_TCT02", details=False)

[ ]: request.available_collections("EFI_IDM", details=False)

[ ]: request.available_collections("EFI", details=False)
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[ ]: tct_vars = [
# Satellite velocity in NEC frame
"VsatC", "VsatE", "VsatN",
# Ion drifts along-track from vertical (..v) and␣

↩→horizontal (..h) TII sensor
"Vixv", "Vixh",
# Ion drifts cross-track (y from horizontal sensor, z␣

↩→from vertical sensor)
# (in satellite-track coordinates)
"Viy", "Viz",
# Random error estimates for the above
# (Negative value indicates no estimate available)
"Viy_error", "Viz_error",

]

[ ]: idm_vars = [
# Satellite velocity in NEC frame
"V_sat_nec",
# Along-track ion drift velocity, uncertainty, validity␣

↩→flags, and velocity without detrending
"V_i", "V_i_err", "V_i_Flags", "V_i_raw",
# Ion density, uncertainty, and validity flags
"N_i", "N_i_err", "N_i_Flags",

]

[ ]: start = "2015-06-28T21:00:00"
end = "2015-06-28T22:00:00"
L_start = 60
L_end = 90
K_start = 1
K_end = 9

[ ]: request = SwarmRequest(SERVER_URL)
request.set_collection("SW_EXPT_EFIA_TCT02")
request.set_products(measurements=tct_vars,

auxiliaries=["Kp", "SyncStatus"])
request.set_range_filter("Latitude", L_start, L_end,␣
↩→negate=False)
request.set_range_filter("Kp", K_start, K_end, negate=False)
request.set_range_filter("SyncStatus", negate=False)
data = request.get_between(start, end, nrecords_limit=None)
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[ ]: df1 = data.as_dataframe()
df1.head()

[ ]: ds1 = data.as_xarray()

ds1

[ ]: request = SwarmRequest(SERVER_URL)
request.set_collection("SW_PREL_EFICIDM_2_")
request.set_products(measurements=idm_vars,

auxiliaries=["Kp"])

request.set_range_filter("Latitude", L_start, L_end,␣
↩→negate=False)
request.set_range_filter("Kp", K_start, K_end, negate=False)
data = request.get_between(start, end, nrecords_limit=None)

[ ]: df2 = data.as_dataframe()
df2.head()

[ ]: ds2 = data.as_xarray()
ds2

[ ]: request = SwarmRequest(SERVER_URL)
request.set_collection("SW_OPER_EFIA_LP_1B")
request.set_products(measurements=[’Ne’], auxiliaries=["Kp"])
request.set_range_filter("Latitude", L_start, L_end,␣
↩→negate=False)
request.set_range_filter("Kp", K_start, K_end, negate=False)
data = request.get_between(start, end, nrecords_limit=None)

[ ]: df3 = data.as_dataframe()
df3.head()

[ ]: ds3 = data.as_xarray()
ds3



49

[ ]: d1 = np.ndarray(len(ds1.Timestamp.values))

out = pd.to_datetime(ds1.Timestamp.values)
#print(out[0:2])
d = out.to_pydatetime()
for i in range(len(d1)):

d1[i] = d[i].timestamp()
#print(d[0:2])
#print(d1[0:2])
d2 = np.ndarray(len(ds2.Timestamp.values))

out2 = pd.to_datetime(ds2.Timestamp.values)
#print(type(out.to_pydatetime()))
d_2 = out2.to_pydatetime()
for i in range(len(d2)):

d2[i] = d_2[i].timestamp()
#print(d_2[0:2])
#print(d2[0:2])

d3 = np.ndarray(len(ds3.Timestamp.values))

out3 = pd.to_datetime(ds3.Timestamp.values)
#print(type(out.to_pydatetime()))
d_3 = out3.to_pydatetime()
for i in range(len(d3)):

d3[i] = d_3[i].timestamp()
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[ ]: if len(d1) > len(d2):
#print("hei")
N = np.empty((len(d2)))
#Vi = np.empty((len(d3)))
Vr = np.empty((len(d2)))
V = np.empty((len(d2)))
Vy = np.empty((len(d2)))
tid = np.empty((len(d2)))
Kp_1 = np.empty((len(d2)))
#Kp_2 = np.empty((len(d3)))
Ne = np.empty((len(d2)))
Vixh = np.empty((len(d2)))
Vixv = np.empty((len(d2)))
N[:] = np.nan
#Vi[:] = np.nan
Vr[:] = np.nan
V[:] = np.nan
Vy[:] = np.nan
tid[:] = np.nan
Kp_1[:] = np.nan
#Kp_2[:] = np.nan
Ne[:] = np.nan
Vixh[:] = np.nan
Vixv[:] = np.nan
#print(np.shape(ds2.V_sat_nec))
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[ ]: for i in range(0, len(d2)):
#print(i)
num2 = d2[i]
ind = np.argmin(np.abs(num2-d1))
#print(ind)
num1 = d1[ind]
#print(abs(num2 - num1))
#print(num1, num2)
if abs(num2 - num1) > 0.03:

#print(abs(num2 - num1))
tid[i] = d2[i]

elif abs(num2 - num1) <= 0.03:

tid[i] = d2[i]
N[i] = ds2.N_i[i]
#Vi[i] = ds2.V_i[i]
Vy[i] = ds1.Viy[i]
Vr[i] = ds1.VsatE[i] #E og N
V[i] = ds1.VsatN[i]
Kp_1[i] = ds1.Kp[i]
#Kp_2[i] = ds2.Kp[i]
#Ne[i] = ds3.Ne[i]
Vixh[i] = ds1.Vixh[i]
Vixv[i] = ds1.Vixv[i]
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[ ]: #print(num1, num2)
#print(Vi)

elif len(d2) > len(d1):
#print("lol")
N = np.empty((len(d1)))
Vi = np.empty((len(d1)))
Vr = np.empty((len(d1)))
V = np.empty((len(d1)))
Vy = np.empty((len(d1)))
tid = np.empty((len(d1)))
Kp_1 = np.empty((len(d1)))
Kp_2 = np.empty((len(d1)))
Ne = np.empty((len(d1)))
Vixh = np.empty((len(d1)))
Vixv = np.empty((len(d1)))
N[:] = np.nan
Vi[:] = np.nan
Vr[:] = np.nan
V[:] = np.nan
Vy[:] = np.nan
tid[:] = np.nan
Kp_1[:] = np.nan
Kp_2[:] = np.nan
Ne[:] = np.nan
Vixh[:] = np.nan
Vixv[:] = np.nan

for i in range(0, len(d1)):
#print(i)
num1 = d1[i]
ind = np.argmin(np.abs(num1-d2))
#print(ind)
num2 = d2[ind]
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[ ]: if abs(num1 - num2) > 0.03:

tid[i] = d1[i]

elif abs(num1 - num2) <= 0.03:

tid[i] = d1[i]
N[i] = ds2.N_i[ind]
Vi[i] = ds2.V_i[ind]
Vy[i] = ds1.Viy[i]
Vr[i] = ds2.V_sat_nec[ind, 0]
V[i] = ds2.V_sat_nec[ind, 1]
Kp_1[i] = ds1.Kp[i]
Kp_2[i] = ds2.Kp[ind]
Ne[i] = ds3.Ne[i]
Vixh[i] = ds1.Vixh[i]
Vixv[i] = ds1.Vixv[i]
#print(Vi)
#print()
#print(Vi)
#print(Vy)’
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[ ]: """elif len(d3) > len(d1):
#print("lol")
#N = np.empty((len(d1)))
#Vi = np.empty((len(d1)))
Vr = np.empty((len(d1)))
V = np.empty((len(d1)))
Vy = np.empty((len(d1)))
tid = np.empty((len(d1)))
Kp_1 = np.empty((len(d1)))
#Kp_2 = np.empty((len(d1)))
Ne = np.empty((len(d1)))
Vixh = np.empty((len(d1)))
Vixv = np.empty((len(d1)))
#N[:] = np.nan
#Vi[:] = np.nan
Vr[:] = np.nan
V[:] = np.nan
Vy[:] = np.nan
tid[:] = np.nan
Kp_1[:] = np.nan
#Kp_2[:] = np.nan
Ne[:] = np.nan
Vixh[:] = np.nan
Vixv[:] = np.nan
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[ ]: for i in range(0, len(d1)):
#print(i)
num1 = d1[i]
ind = np.argmin(np.abs(num1-d3))
#print(ind)
num2 = d3[ind]

if abs(num1 - num2) > 0.03:

tid[i] = d1[i]

elif abs(num1 - num2) <= 0.03:

tid[i] = d1[i]
#N[i] = ds2.N_i[i]
#Vi[i] = ds2.V_i[i]
Vy[i] = ds1.Viy[i]
Vr[i] = ds1.VsatE[i]
V[i] = ds1.VsatN[i]
Kp_1[i] = ds1.Kp[i]
#Kp_2[i] = ds2.Kp[i]
Ne[i] = ds3.Ne[i]
Vixh[i] = ds1.Vixh[i]
Vixv[i] = ds1.Vixv[i]
#print(Vi)
#print()
#print(Vi)
#print(Vy)’"""
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[ ]:

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data = {’timestamp’: tid}
time = pd.DataFrame(data)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time[’timestamp’] = pd.to_datetime(time[’timestamp’],␣
↩→unit=’s’)

# Print the updated DataFrame
#print(time)

#plt.scatter(tid, Vi)
#plt.show()

[ ]: #Vi_1 = [np.nan if S >= 10000 or S <= -10000 else S for S in␣
↩→Vi]
Vy_1 = [np.nan if T >= 10000 or T <= -10000 else T for T in␣
↩→Vy]
Vr_1 = [np.nan if U >= 10000 or U <= -10000 else U for U in␣
↩→Vr]
V_1 = [np.nan if X >= 10000 or X <= -10000 else X for X in V]
N_1 = [np.nan if Y >= 1e8 or Y <= 0 else Y for Y in N]
Vixh_1 = [np.nan if H >= 10000 or H <= -10000 else H for H␣
↩→in Vixh]
Vixv_1 = [np.nan if L >= 10000 or L <= -10000 else L for L␣
↩→in Vixv]
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[ ]: #Vi_2 = np.array(Vi_1)
Vy_2 = np.array(Vy_1)
Vr_2 = np.array(Vr_1)
V_2 = np.array(V_1)
N_2 = np.array(N_1)
N_3 = N_2*1e6
Vixh_2 = np.array(Vixh_1)
Vixv_2 = np.array(Vixv_1)

#plt.scatter(tid, Vi_2)
#plt.show()

#print(Vi_2)

[ ]: #plt.plot(tid, N_3)
#plt.ylim(0, 1e6)
#plt.show()

[ ]: delta_t = 1
V_r = Vr_2
V = V_2
V_perp = np.sqrt(V_r**2+V**2)
#V_exb = Vi_2
#delta_x = delta_t * abs(V_exb - V_perp)

[ ]: N_i0 = N_3
N_i3 = sc.medfilt(N_3, kernel_size=None) # To remove spikes
N_i5 = sc.medfilt(N_3, kernel_size=5)

"""delta_n1s = np.empty((len(N_3)))
N_background = np.empty((len(N_3)))

delta_n1s[:] = np.nan
N_background[:] = np.nan

for t in range(len(N_3)-2):
delta_n1s[t] = (N_i[t + 2] - N_i[t])
N_background[t] = min(N_i[t: t + 2])"""
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[ ]: #N_01s = np.percentile(V_exb, 30)
#N_background = min(N_i) # background density, using the 30␣
↩→percentile of all the density values
plt.rcParams.update({’font.size’: 15})
plt.figure(figsize=(10, 7))
#print(N_i[155:165])
plt.scatter(time, N_i0, label=’N_i 0 point gradient’)
plt.scatter(time, N_i3, label=’N_i 3 point gradient’)

[ ]: plt.xticks(fontsize=20, rotation = -45)
plt.yticks(fontsize=20)
plt.xlabel(’Time’, fontsize=20)
plt.ylabel(’Ion density [m^-3]’, fontsize=20)
plt.legend()
plt.show()

[ ]: #Growth_GD = (V_exb * delta_n1s)/(N_background * delta_x)
#plt.scatter(time, Growth_GD)
#plt.show()
"""print(Growth_GD)
print(V_exb[158])
print(delta_n1s[158])
print(N_background[158])
print(delta_x[158])
np.where(Growth_GD < -50)"""

[ ]: """fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5,␣
↩→sharex=True, figsize=(10, 7))

ax1.scatter(time, delta_n1s, label="delta_n1s")
ax2.scatter(time, V_exb, label="Velocity")
ax3.scatter(time, N_background, label="N_background")
ax4.scatter(time, delta_x, label=’delta x’)
ax5.scatter(time, Growth_GD, label=’Growth_GD’)
ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()
ax5.legend()
plt.rc(’font’, size=22)
plt.show()"""

[ ]: L_1 = 8000
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[ ]: V_iy = Vy_2

delta_v1s = np.empty(len(Vy_2))
delta_v1s[:] = np.nan

for t in range(len(Vy_2)-2):
delta_v1s[t] = (V_iy[t + 2] - V_iy[t])

[ ]: Growth_KHy = 0.2*(delta_v1s/L_1)

[ ]: N_e0 = Ne
N_e3 = sc.medfilt(Ne, kernel_size=3) # To remove spikes
N_e5 = sc.medfilt(Ne, kernel_size=5)

"""delta_ne1s = np.empty((len(Ne)))
Ne_background = np.empty((len(Ne)))

delta_ne1s[:] = np.nan
Ne_background[:] = np.nan

for t in range(len(Ne)-2):
delta_ne1s[t] = (N_e[t + 2] - N_e[t])
Ne_background[t] = min(N_e[t: t + 2])"""

[ ]: plt.scatter(time, N_e0, label="N_e 0 point gradient")
plt.scatter(time, N_e3, label="N_e 3 point gradient")
plt.scatter(time, N_e5, label="N_e 5 point gradient")
plt.xticks(rotation=45)
plt.xlabel(’Time’)
plt.ylabel(’Electron density [m^-3]’)
plt.show()

[ ]: V_plasma = np.sqrt(Vixv_2**2 + Vixh_2**2)

N_rel = delta_ne1s/Ne_background

GD = (V_plasma * delta_ne1s)/(Ne_background * delta_t *␣
↩→V_perp)
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[ ]: #Vi_1 = [np.nan if S >= 10000 or S <= -10000 else S for S in␣
↩→Vi]

#x = np.argwhere(np.isnan(Growth_GD))
#y = np.argwhere(np.isnan(Growth_KHy))

#print(x)
#print(y)

#Growth_GD1 = [np.nan if G >= 1 or G <= -1 else G for G in␣
↩→Growth_GD]

#Growth_GD2 = np.array(Growth_GD1)

[ ]: for i in range(len(Growth_KHy)):
if np.isnan(Growth_KHy[i]):

#Growth_GD[i] = np.nan
GD[i] = np.nan

#if np.isnan(Growth_GD[i]):
#Growth_KHy[i] = np.nan
#GD[i] = np.nan

if np.isnan(GD[i]):
#Growth_GD[i] = np.nan
Growth_KHy[i] = np.nan

#print(np.argwhere(np.isnan(Growth_KHy)))
#print(np.argwhere(np.isnan(Growth_GD2)))
#print(np.argwhere(np.isnan(GD)))

[ ]: """fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True,␣
↩→figsize=(10, 7))

ax1.scatter(time, V_iy, label="Velocity_y_TCT")
ax2.scatter(time, V_exb, label="Velocity")
ax3.scatter(time, N_i, label="Ion_density")
ax1.legend()
ax2.legend()
ax3.legend()
plt.xticks(rotation=45)
plt.rc(’font’, size=22)
plt.show()"""
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[ ]: """fig, axes = plt.subplots(nrows=3, sharex=True,␣
↩→figsize=(10, 7))

ds1.plot.scatter(x="Timestamp", y="Viy", ax=axes[0],␣
↩→label="Velocity_y_TCT")

ds2.plot.scatter(x="Timestamp", y="V_i", ax=axes[1],␣
↩→label="Velocity")

ds2.plot.scatter(x="Timestamp", y="N_i", ax=axes[2],␣
↩→label="Ion_density")

axes[0].legend()
axes[1].legend()
axes[2].legend()
plt.xticks(rotation=45)
plt.rc(’font’, size=22)
plt.show()"""

[ ]: #plt.figure(figsize=(8,5))

#Growth_GDI = sc.medfilt(Growth_GD, kernel_size=None)
Growth_KHIy = sc.medfilt(Growth_KHy, kernel_size=None)
GDI = sc.medfilt(GD, kernel_size=None)

[ ]: fig = plt.figure(figsize=(10,7))
plt.scatter(time, abs(GDI), label="GDI_Ne", marker=’o’)
plt.scatter(time, abs(Growth_KHIy), label="KHI", marker=’.’)
#plt.scatter(time, abs(Growth_GDI), label="GDI_Ni", marker=’.
↩→’)

plt.xticks(rotation=45)
plt.ylabel("Growth rate [1/s]")
plt.xlabel("Time [Date]")
#plt.ylim(0, 0.5)

[ ]: plt.rc(’font’, size=22)
plt.legend()
plt.show()
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[ ]: #Growth_KHIy_1 = Growth_KHy[~pd.isnull(Growth_KHy)]
#GDI_1 = GD[~pd.isnull(GD)]
#print(len(Growth_KHIy))
#print(len(GDI))

"""GDI_1[0:len(GD_2)]

if GD_1 > GD_2:
GD_1_short = GD_1[0:len(GD_2)]

else:
GD_1_short = GD_1"""

fig, ax = plt.subplots(figsize=(10,7))
#print(((polyline)))

[ ]: diag_line, = ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--",␣
↩→c=".3")

def on_change(axes):
# When this function is called it checks the current
# values of xlim and ylim and modifies diag_line
# accordingly.
x_lims = ax.get_xlim()
y_lims = ax.get_ylim()
diag_line.set_data(x_lims, y_lims)

# Connect two callbacks to your axis instance.
# These will call the function "on_change" whenever
# xlim or ylim is changed.
ax.callbacks.connect(’xlim_changed’, on_change)
ax.callbacks.connect(’ylim_changed’, on_change)

[ ]: plt.axis(’square’)
plt.xlim([0,0.3])
plt.ylim([0,0.3])
plt.ylabel("GDI growth rate [1/s]")
plt.xlabel("KHI growth rate [1/s]")
plt.rc(’font’, size=22)
plt.scatter(abs(Growth_KHIy), abs(GDI))
plt.legend()
plt.show()
#Legge inn best fit curve
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[ ]: """geod = ccrs.Geodetic()
proj = ccrs.LambertAzimuthalEqualArea(central_latitude=90.0)

plt.figure(figsize=(16,9))

ease_extent = [-9000000., 9000000., -9000000., 9000000.]
ax = plt.axes(projection=proj)
ax.set_extent(ease_extent, crs=proj)
ax.gridlines(color=’gray’, linestyle=’--’)
ax.coastlines()

plt.tight_layout()

[ ]: start_lon, start_lat = ds2.Longitude[0], ds2.Latitude[0]
stop_lon, stop_lat = ds2.Longitude[-1], ds2.Latitude[-1]

plt.plot([start_lon, stop_lon], [start_lat, stop_lat],
color=’blue’, linewidth=2, marker=’o’,
transform=ccrs.Geodetic(),
)

plt.show()"""

[ ]: """np.savetxt(’Jan_2015_GDI_1_3’, GDI)
np.savetxt(’Jan_2015_KHI_1_3’, Growth_KHIy)
np.savetxt(’Jan_2015_Kp_1_1_3’, Kp_1)
#np.savetxt(’Jnn_2015_Kp_2_75’, Kp_2)
np.savetxt(’Jan_2015_time_1_3’, time)
#np.savetxt(’Jan_2015_N_75’, N_3)
#np.savetxt(’Jan_2015_Vi_75’, Vi_2)
np.savetxt(’Jan_2015_Vr_1_3’, Vr_2)
np.savetxt(’Jan_2015_V_1_3’, V_2)
np.savetxt(’Jan_2015_Vy_1_3’, Vy_2)
np.savetxt(’Jan_2015_deltaV_1_3’, delta_v1s)
np.savetxt(’Jan_2015_N_rel_1_3’, N_rel)"""
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[ ]: """fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex=True,␣
↩→figsize=(10, 7))

ax1.scatter(time, Kp_2, label="Kp_index_2")
ax2.scatter(time, abs(Growth_GDI), label="GDI")
ax3.scatter(time, Kp_1, label="Kp_index_1")
ax4.scatter(time, abs(Growth_KHIy), label="KHI")
ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()
plt.rc(’font’, size=22)
plt.xticks(rotation = -45)
plt.show()"""

One example on how I plotted the data saved from the main code:

[ ]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

[ ]: G_Jan75 = open(’Jan_2020_GDI_75’, ’r’)
G_Jan1 = G_Jan75.readlines()
G1_Jan = [float(i) for i in G_Jan1]
GDI_Jan75 = np.asarray(G1_Jan)

K_Jan75 = open(’Jan_2020_KHI_75’, ’r’)
K_Jan1 = K_Jan75.readlines()
K1_Jan = [float(i) for i in K_Jan1]
KHI_Jan75 = np.asarray(K1_Jan)
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[ ]: T_Jan75 = open(’Jan_2020_time_75’, ’r’)
T_Jan1 = T_Jan75.readlines()
T1_Jan = [float(i) for i in T_Jan1]
Time_Jan75 = np.asarray(T1_Jan)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jan75 = {’timestamp’: Time_Jan75}
time_jan75 = pd.DataFrame(data_jan75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jan75[’timestamp’] = pd.
↩→to_datetime(time_jan75[’timestamp’], unit=’ns’)

[ ]:
G_Feb75 = open(’Feb_2020_GDI_75’, ’r’)
G_Feb1 = G_Feb75.readlines()
G1_Feb = [float(i) for i in G_Feb1]
GDI_Feb75 = np.asarray(G1_Feb)

K_Feb75 = open(’Feb_2020_KHI_75’, ’r’)
K_Feb1 = K_Feb75.readlines()
K1_Feb = [float(i) for i in K_Feb1]
KHI_Feb75 = np.asarray(K1_Feb)

[ ]: T_Feb75 = open(’Feb_2020_time_75’, ’r’)
T_Feb1 = T_Feb75.readlines()
T1_Feb = [float(i) for i in T_Feb1]
Time_Feb75 = np.asarray(T1_Feb)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_feb75 = {’timestamp’: Time_Feb75}
time_feb75 = pd.DataFrame(data_feb75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_feb75[’timestamp’] = pd.
↩→to_datetime(time_feb75[’timestamp’], unit=’ns’)
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[ ]:
G_Mar75 = open(’Mar_2020_GDI_75’, ’r’)
G_Mar1 = G_Mar75.readlines()
G1_Mar = [float(i) for i in G_Mar1]
GDI_Mar75 = np.asarray(G1_Mar)

K_Mar75 = open(’Mar_2020_KHI_75’, ’r’)
K_Mar1 = K_Mar75.readlines()
K1_Mar = [float(i) for i in K_Mar1]
KHI_Mar75 = np.asarray(K1_Mar)

[ ]: T_Mar75 = open(’Mar_2020_time_75’, ’r’)
T_Mar1 = T_Mar75.readlines()
T1_Mar = [float(i) for i in T_Mar1]
Time_Mar75 = np.asarray(T1_Mar)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mar75 = {’timestamp’: Time_Mar75}
time_mar75 = pd.DataFrame(data_mar75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mar75[’timestamp’] = pd.
↩→to_datetime(time_mar75[’timestamp’], unit=’ns’)

[ ]:

G_Apr75 = open(’Apr_2020_GDI_75’, ’r’)
G_Apr1 = G_Apr75.readlines()
G1_Apr = [float(i) for i in G_Apr1]
GDI_Apr75 = np.asarray(G1_Apr)

K_Apr75 = open(’Apr_2020_KHI_75’, ’r’)
K_Apr1 = K_Apr75.readlines()
K1_Apr = [float(i) for i in K_Apr1]
KHI_Apr75 = np.asarray(K1_Apr)

T_Apr75 = open(’Apr_2020_time_75’, ’r’)
T_Apr1 = T_Apr75.readlines()
T1_Apr = [float(i) for i in T_Apr1]
Time_Apr75 = np.asarray(T1_Apr)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_apr75 = {’timestamp’: Time_Apr75}
time_apr75 = pd.DataFrame(data_apr75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_apr75[’timestamp’] = pd.
↩→to_datetime(time_apr75[’timestamp’], unit=’ns’)

G_Mai75 = open(’Mai_2020_GDI_75’, ’r’)
G_Mai1 = G_Mai75.readlines()
G1_Mai = [float(i) for i in G_Mai1]
GDI_Mai75 = np.asarray(G1_Mai)

[ ]: K_Mai75 = open(’Mai_2020_KHI_75’, ’r’)
K_Mai1 = K_Mai75.readlines()
K1_Mai = [float(i) for i in K_Mai1]
KHI_Mai75 = np.asarray(K1_Mai)

T_Mai75 = open(’Mai_2020_time_75’, ’r’)
T_Mai1 = T_Mai75.readlines()
T1_Mai = [float(i) for i in T_Mai1]
Time_Mai75 = np.asarray(T1_Mai)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mai75 = {’timestamp’: Time_Mai75}
time_mai75 = pd.DataFrame(data_mai75)
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[ ]: # Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mai75[’timestamp’] = pd.
↩→to_datetime(time_mai75[’timestamp’], unit=’ns’)

G_Jun75 = open(’Jun_2020_GDI_75’, ’r’)
G_Jun1 = G_Jun75.readlines()
G1_Jun = [float(i) for i in G_Jun1]
GDI_Jun75 = np.asarray(G1_Jun)

K_Jun75 = open(’Jun_2020_KHI_75’, ’r’)
K_Jun1 = K_Jun75.readlines()
K1_Jun = [float(i) for i in K_Jun1]
KHI_Jun75 = np.asarray(K1_Jun)

[ ]: T_Jun75 = open(’Jun_2020_time_75’, ’r’)
T_Jun1 = T_Jun75.readlines()
T1_Jun = [float(i) for i in T_Jun1]
Time_Jun75 = np.asarray(T1_Jun)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jun75 = {’timestamp’: Time_Jun75}
time_jun75 = pd.DataFrame(data_jun75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jun75[’timestamp’] = pd.
↩→to_datetime(time_jun75[’timestamp’], unit=’ns’)
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[ ]:
G_Jul75 = open(’Jul_2020_GDI_75’, ’r’)
G_Jul1 = G_Jul75.readlines()
G1_Jul = [float(i) for i in G_Jul1]
GDI_Jul75 = np.asarray(G1_Jul)

K_Jul75 = open(’Jul_2020_KHI_75’, ’r’)
K_Jul1 = K_Jul75.readlines()
K1_Jul = [float(i) for i in K_Jul1]
KHI_Jul75 = np.asarray(K1_Jul)

T_Jul75 = open(’Jul_2020_time_75’, ’r’)
T_Jul1 = T_Jul75.readlines()
T1_Jul = [float(i) for i in T_Jul1]
Time_Jul75 = np.asarray(T1_Jul)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jul75 = {’timestamp’: Time_Jul75}
time_jul75 = pd.DataFrame(data_jul75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jul75[’timestamp’] = pd.
↩→to_datetime(time_jul75[’timestamp’], unit=’ns’)

[ ]: G_Aug75 = open(’Aug_2020_GDI_75’, ’r’)
G_Aug1 = G_Aug75.readlines()
G1_Aug = [float(i) for i in G_Aug1]
GDI_Aug75 = np.asarray(G1_Aug)

K_Aug75 = open(’Aug_2020_KHI_75’, ’r’)
K_Aug1 = K_Aug75.readlines()
K1_Aug = [float(i) for i in K_Aug1]
KHI_Aug75 = np.asarray(K1_Aug)

T_Aug75 = open(’Aug_2020_time_75’, ’r’)
T_Aug1 = T_Aug75.readlines()
T1_Aug = [float(i) for i in T_Aug1]
Time_Aug75 = np.asarray(T1_Aug)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_aug75 = {’timestamp’: Time_Aug75}
time_aug75 = pd.DataFrame(data_aug75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_aug75[’timestamp’] = pd.
↩→to_datetime(time_aug75[’timestamp’], unit=’ns’)

G_Sep75 = open(’Sep_2020_GDI_75’, ’r’)
G_Sep1 = G_Sep75.readlines()
G1_Sep = [float(i) for i in G_Sep1]
GDI_Sep75 = np.asarray(G1_Sep)

K_Sep75 = open(’Sep_2020_KHI_75’, ’r’)
K_Sep1 = K_Sep75.readlines()
K1_Sep = [float(i) for i in K_Sep1]
KHI_Sep75 = np.asarray(K1_Sep)

[ ]: T_Sep75 = open(’Sep_2020_time_75’, ’r’)
T_Sep1 = T_Sep75.readlines()
T1_Sep = [float(i) for i in T_Sep1]
Time_Sep75 = np.asarray(T1_Sep)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_sep75 = {’timestamp’: Time_Sep75}
time_sep75 = pd.DataFrame(data_sep75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_sep75[’timestamp’] = pd.
↩→to_datetime(time_sep75[’timestamp’], unit=’ns’)
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[ ]:

G_Okt75 = open(’Okt_2020_GDI_75’, ’r’)
G_Okt1 = G_Okt75.readlines()
G1_Okt = [float(i) for i in G_Okt1]
GDI_Okt75 = np.asarray(G1_Okt)

K_Okt75 = open(’Okt_2020_KHI_75’, ’r’)
K_Okt1 = K_Okt75.readlines()
K1_Okt = [float(i) for i in K_Okt1]
KHI_Okt75 = np.asarray(K1_Okt)

T_Okt75 = open(’Okt_2020_time_75’, ’r’)
T_Okt1 = T_Okt75.readlines()
T1_Okt = [float(i) for i in T_Okt1]
Time_Okt75 = np.asarray(T1_Okt)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_okt75 = {’timestamp’: Time_Okt75}
time_okt75 = pd.DataFrame(data_okt75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_okt75[’timestamp’] = pd.
↩→to_datetime(time_okt75[’timestamp’], unit=’ns’)

G_Nov75 = open(’Nov_2020_GDI_75’, ’r’)
G_Nov1 = G_Nov75.readlines()
G1_Nov = [float(i) for i in G_Nov1]
GDI_Nov75 = np.asarray(G1_Nov)

[ ]: K_Nov75 = open(’Nov_2020_KHI_75’, ’r’)
K_Nov1 = K_Nov75.readlines()
K1_Nov = [float(i) for i in K_Nov1]
KHI_Nov75 = np.asarray(K1_Nov)

T_Nov75 = open(’Nov_2020_time_75’, ’r’)
T_Nov1 = T_Nov75.readlines()
T1_Nov = [float(i) for i in T_Nov1]
Time_Nov75 = np.asarray(T1_Nov)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_nov75 = {’timestamp’: Time_Nov75}
time_nov75 = pd.DataFrame(data_nov75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_nov75[’timestamp’] = pd.
↩→to_datetime(time_nov75[’timestamp’], unit=’ns’)

[ ]: G_Des75 = open(’Des_2020_GDI_75’, ’r’)
G_Des1 = G_Des75.readlines()
G1_Des = [float(i) for i in G_Des1]
GDI_Des75 = np.asarray(G1_Des)

K_Des75 = open(’Des_2020_KHI_75’, ’r’)
K_Des1 = K_Des75.readlines()
K1_Des = [float(i) for i in K_Des1]
KHI_Des75 = np.asarray(K1_Des)

[ ]: T_Des75 = open(’Des_2020_time_75’, ’r’)
T_Des1 = T_Des75.readlines()
T1_Des = [float(i) for i in T_Des1]
Time_Des75 = np.asarray(T1_Des)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_des75 = {’timestamp’: Time_Des75}
time_des75 = pd.DataFrame(data_des75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_des75[’timestamp’] = pd.
↩→to_datetime(time_des75[’timestamp’], unit=’ns’)

[ ]: GDI_75_20 = np.concatenate([abs(GDI_Jan75), abs(GDI_Feb75),␣
↩→abs(GDI_Mar75), abs(GDI_Apr75), abs(GDI_Mai75),

abs(GDI_Jun75), abs(GDI_Jul75),␣
↩→abs(GDI_Aug75), abs(GDI_Sep75), abs(GDI_Okt75),

abs(GDI_Nov75), abs(GDI_Des75)])
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[ ]: KHI_75_20 = np.concatenate([abs(KHI_Jan75), abs(KHI_Feb75),␣
↩→abs(KHI_Mar75), abs(KHI_Apr75), abs(KHI_Mai75),

abs(KHI_Jun75), abs(KHI_Jul75),␣
↩→abs(KHI_Aug75), abs(KHI_Sep75), abs(KHI_Okt75),

abs(KHI_Nov75), abs(KHI_Des75)])

time_75_20 = np.concatenate([time_jan75, time_feb75,␣
↩→time_mar75, time_apr75, time_mai75, time_jun75,␣
↩→time_jul75,

time_aug75, time_sep75,␣
↩→time_okt75, time_nov75, time_des75])

[ ]: G_Jan90 = open(’Jan_2020_GDI_90’, ’r’)
G_Jan2 = G_Jan90.readlines()
G2_Jan = [float(i) for i in G_Jan2]
GDI_Jan90 = np.asarray(G2_Jan)

K_Jan90 = open(’Jan_2020_KHI_90’, ’r’)
K_Jan2 = K_Jan90.readlines()
K2_Jan = [float(i) for i in K_Jan2]
KHI_Jan90 = np.asarray(K2_Jan)

[ ]: T_Jan90 = open(’Jan_2020_time_90’, ’r’)
T_Jan2 = T_Jan90.readlines()
T2_Jan = [float(i) for i in T_Jan2]
Time_Jan90 = np.asarray(T2_Jan)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jan90 = {’timestamp’: Time_Jan90}
time_jan90 = pd.DataFrame(data_jan90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jan90[’timestamp’] = pd.
↩→to_datetime(time_jan90[’timestamp’], unit=’ns’)
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[ ]:
G_Feb90 = open(’Feb_2020_GDI_90’, ’r’)
G_Feb2 = G_Feb90.readlines()
G2_Feb = [float(i) for i in G_Feb2]
GDI_Feb90 = np.asarray(G2_Feb)

K_Feb90 = open(’Feb_2020_KHI_90’, ’r’)
K_Feb2 = K_Feb90.readlines()
K2_Feb = [float(i) for i in K_Feb2]
KHI_Feb90 = np.asarray(K2_Feb)

[ ]: T_Feb90 = open(’Feb_2020_time_90’, ’r’)
T_Feb2 = T_Feb90.readlines()
T2_Feb = [float(i) for i in T_Feb2]
Time_Feb90 = np.asarray(T2_Feb)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_feb90 = {’timestamp’: Time_Feb90}
time_feb90 = pd.DataFrame(data_feb90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_feb90[’timestamp’] = pd.
↩→to_datetime(time_feb90[’timestamp’], unit=’ns’)

[ ]:
G_Mar90 = open(’Mar_2020_GDI_90’, ’r’)
G_Mar2 = G_Mar90.readlines()
G2_Mar = [float(i) for i in G_Mar2]
GDI_Mar90 = np.asarray(G2_Mar)

K_Mar90 = open(’Mar_2020_KHI_90’, ’r’)
K_Mar2 = K_Mar90.readlines()
K2_Mar = [float(i) for i in K_Mar2]
KHI_Mar90 = np.asarray(K2_Mar)
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[ ]: T_Mar90 = open(’Mar_2020_time_90’, ’r’)
T_Mar2 = T_Mar90.readlines()
T2_Mar = [float(i) for i in T_Mar2]
Time_Mar90 = np.asarray(T2_Mar)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mar90 = {’timestamp’: Time_Mar90}
time_mar90 = pd.DataFrame(data_mar90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mar90[’timestamp’] = pd.
↩→to_datetime(time_mar90[’timestamp’], unit=’ns’)

[ ]:

G_Apr90 = open(’Apr_2020_GDI_90’, ’r’)
G_Apr2 = G_Apr90.readlines()
G2_Apr = [float(i) for i in G_Apr2]
GDI_Apr90 = np.asarray(G2_Apr)

K_Apr90 = open(’Apr_2020_KHI_90’, ’r’)
K_Apr2 = K_Apr90.readlines()
K2_Apr = [float(i) for i in K_Apr2]
KHI_Apr90 = np.asarray(K2_Apr)

[ ]: T_Apr90 = open(’Apr_2020_time_90’, ’r’)
T_Apr2 = T_Apr90.readlines()
T2_Apr = [float(i) for i in T_Apr2]
Time_Apr90 = np.asarray(T2_Apr)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_apr90 = {’timestamp’: Time_Apr90}
time_apr90 = pd.DataFrame(data_apr90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_apr90[’timestamp’] = pd.
↩→to_datetime(time_apr90[’timestamp’], unit=’ns’)
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[ ]:
G_Mai90 = open(’Mai_2020_GDI_90’, ’r’)
G_Mai2 = G_Mai90.readlines()
G2_Mai = [float(i) for i in G_Mai2]
GDI_Mai90 = np.asarray(G2_Mai)

K_Mai90 = open(’Mai_2020_KHI_90’, ’r’)
K_Mai2 = K_Mai90.readlines()
K2_Mai = [float(i) for i in K_Mai2]
KHI_Mai90 = np.asarray(K2_Mai)

T_Mai90 = open(’Mai_2020_time_90’, ’r’)
T_Mai2 = T_Mai90.readlines()
T2_Mai = [float(i) for i in T_Mai2]
Time_Mai90 = np.asarray(T2_Mai)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mai90 = {’timestamp’: Time_Mai90}
time_mai90 = pd.DataFrame(data_mai90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mai90[’timestamp’] = pd.
↩→to_datetime(time_mai90[’timestamp’], unit=’ns’)

G_Jun90 = open(’Jun_2020_GDI_90’, ’r’)
G_Jun2 = G_Jun90.readlines()
G2_Jun = [float(i) for i in G_Jun2]
GDI_Jun90 = np.asarray(G2_Jun)

K_Jun90 = open(’Jun_2020_KHI_90’, ’r’)
K_Jun2 = K_Jun90.readlines()
K2_Jun = [float(i) for i in K_Jun2]
KHI_Jun90 = np.asarray(K2_Jun)
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[ ]: T_Jun90 = open(’Jun_2020_time_90’, ’r’)
T_Jun2 = T_Jun90.readlines()
T2_Jun = [float(i) for i in T_Jun2]
Time_Jun90 = np.asarray(T2_Jun)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jun90 = {’timestamp’: Time_Jun90}
time_jun90 = pd.DataFrame(data_jun90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jun90[’timestamp’] = pd.
↩→to_datetime(time_jun90[’timestamp’], unit=’ns’)

[ ]:
G_Jul90 = open(’Jul_2020_GDI_90’, ’r’)
G_Jul2 = G_Jul90.readlines()
G2_Jul = [float(i) for i in G_Jul2]
GDI_Jul90 = np.asarray(G2_Jul)

K_Jul90 = open(’Jul_2020_KHI_90’, ’r’)
K_Jul2 = K_Jul90.readlines()
K2_Jul = [float(i) for i in K_Jul2]
KHI_Jul90 = np.asarray(K2_Jul)

T_Jul90 = open(’Jul_2020_time_90’, ’r’)
T_Jul2 = T_Jul90.readlines()
T2_Jul = [float(i) for i in T_Jul2]
Time_Jul90 = np.asarray(T2_Jul)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jul90 = {’timestamp’: Time_Jul90}
time_jul90 = pd.DataFrame(data_jul90)
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[ ]: # Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jul90[’timestamp’] = pd.
↩→to_datetime(time_jul90[’timestamp’], unit=’ns’)

G_Aug90 = open(’Aug_2020_GDI_90’, ’r’)
G_Aug2 = G_Aug90.readlines()
G2_Aug = [float(i) for i in G_Aug2]
GDI_Aug90 = np.asarray(G2_Aug)

K_Aug90 = open(’Aug_2020_KHI_90’, ’r’)
K_Aug2= K_Aug90.readlines()
K2_Aug = [float(i) for i in K_Aug2]
KHI_Aug90 = np.asarray(K2_Aug)

[ ]: T_Aug90 = open(’Aug_2020_time_90’, ’r’)
T_Aug2 = T_Aug90.readlines()
T2_Aug = [float(i) for i in T_Aug2]
Time_Aug90 = np.asarray(T2_Aug)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_aug90 = {’timestamp’: Time_Aug90}
time_aug90 = pd.DataFrame(data_aug90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_aug90[’timestamp’] = pd.
↩→to_datetime(time_aug90[’timestamp’], unit=’ns’)
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[ ]:
G_Sep90 = open(’Sep_2020_GDI_90’, ’r’)
G_Sep2 = G_Sep90.readlines()
G2_Sep = [float(i) for i in G_Sep2]
GDI_Sep90 = np.asarray(G2_Sep)

K_Sep90 = open(’Sep_2020_KHI_90’, ’r’)
K_Sep2 = K_Sep90.readlines()
K2_Sep = [float(i) for i in K_Sep2]
KHI_Sep90 = np.asarray(K2_Sep)

T_Sep90 = open(’Sep_2020_time_90’, ’r’)
T_Sep2 = T_Sep90.readlines()
T2_Sep = [float(i) for i in T_Sep2]
Time_Sep90 = np.asarray(T2_Sep)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_sep90 = {’timestamp’: Time_Sep90}
time_sep90 = pd.DataFrame(data_sep90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_sep90[’timestamp’] = pd.
↩→to_datetime(time_sep90[’timestamp’], unit=’ns’)

[ ]:
G_Okt90 = open(’Okt_2020_GDI_90’, ’r’)
G_Okt2 = G_Okt90.readlines()
G2_Okt = [float(i) for i in G_Okt2]
GDI_Okt90 = np.asarray(G2_Okt)

K_Okt90 = open(’Okt_2020_KHI_90’, ’r’)
K_Okt2 = K_Okt90.readlines()
K2_Okt = [float(i) for i in K_Okt2]
KHI_Okt90 = np.asarray(K2_Okt)
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[ ]: T_Okt90 = open(’Okt_2020_time_90’, ’r’)
T_Okt2 = T_Okt90.readlines()
T2_Okt = [float(i) for i in T_Okt2]
Time_Okt90 = np.asarray(T2_Okt)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_okt90 = {’timestamp’: Time_Okt90}
time_okt90 = pd.DataFrame(data_okt90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_okt90[’timestamp’] = pd.
↩→to_datetime(time_okt90[’timestamp’], unit=’ns’)

[ ]:
G_Nov90 = open(’Nov_2020_GDI_90’, ’r’)
G_Nov2 = G_Nov90.readlines()
G2_Nov = [float(i) for i in G_Nov2]
GDI_Nov90 = np.asarray(G2_Nov)

K_Nov90 = open(’Nov_2020_KHI_90’, ’r’)
K_Nov2 = K_Nov90.readlines()
K2_Nov = [float(i) for i in K_Nov2]
KHI_Nov90 = np.asarray(K2_Nov)

[ ]: T_Nov90 = open(’Nov_2020_time_90’, ’r’)
T_Nov2 = T_Nov90.readlines()
T2_Nov = [float(i) for i in T_Nov2]
Time_Nov90 = np.asarray(T2_Nov)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_nov90 = {’timestamp’: Time_Nov90}
time_nov90 = pd.DataFrame(data_nov90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_nov90[’timestamp’] = pd.
↩→to_datetime(time_nov90[’timestamp’], unit=’ns’)
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[ ]:
G_Des90 = open(’Des_2020_GDI_90’, ’r’)
G_Des2 = G_Des90.readlines()
G2_Des = [float(i) for i in G_Des2]
GDI_Des90 = np.asarray(G2_Des)

K_Des90 = open(’Des_2020_KHI_90’, ’r’)
K_Des2 = K_Des90.readlines()
K2_Des = [float(i) for i in K_Des2]
KHI_Des90 = np.asarray(K2_Des)

T_Des90 = open(’Des_2020_time_90’, ’r’)
T_Des2 = T_Des90.readlines()
T2_Des = [float(i) for i in T_Des2]
Time_Des90 = np.asarray(T2_Des)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_des90 = {’timestamp’: Time_Des90}
time_des90 = pd.DataFrame(data_des90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_des90[’timestamp’] = pd.
↩→to_datetime(time_des90[’timestamp’], unit=’ns’)
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[ ]: GDI_90_20 = np.concatenate([abs(GDI_Jan90), abs(GDI_Feb90),␣
↩→abs(GDI_Mar90), abs(GDI_Apr90), abs(GDI_Mai90),

abs(GDI_Jun90), abs(GDI_Jul90),␣
↩→abs(GDI_Aug90), abs(GDI_Sep90), abs(GDI_Okt90),

abs(GDI_Nov90), abs(GDI_Des90)])

KHI_90_20 = np.concatenate([abs(KHI_Jan90), abs(KHI_Feb90),␣
↩→abs(KHI_Mar90), abs(KHI_Apr90), abs(KHI_Mai90),

abs(KHI_Jun90), abs(KHI_Jul90),␣
↩→abs(KHI_Aug90), abs(KHI_Sep90), abs(KHI_Okt90),

abs(KHI_Nov90), abs(KHI_Des90)])

time_90_20 = np.concatenate([time_jan90, time_feb90,␣
↩→time_mar90, time_apr90, time_mai90, time_jun90,␣
↩→time_jul90,

time_aug90, time_sep90,␣
↩→time_okt90, time_nov90, time_des90])

[ ]: G_Jan75 = open(’Jan_2015_GDI_75’, ’r’)
G_Jan1 = G_Jan75.readlines()
G1_Jan = [float(i) for i in G_Jan1]
GDI_Jan75 = np.asarray(G1_Jan)

K_Jan75 = open(’Jan_2015_KHI_75’, ’r’)
K_Jan1 = K_Jan75.readlines()
K1_Jan = [float(i) for i in K_Jan1]
KHI_Jan75 = np.asarray(K1_Jan)

T_Jan75 = open(’Jan_2015_time_75’, ’r’)
T_Jan1 = T_Jan75.readlines()
T1_Jan = [float(i) for i in T_Jan1]
Time_Jan75 = np.asarray(T1_Jan)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jan75 = {’timestamp’: Time_Jan75}
time_jan75 = pd.DataFrame(data_jan75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jan75[’timestamp’] = pd.
↩→to_datetime(time_jan75[’timestamp’], unit=’ns’)

G_Feb75 = open(’Feb_2015_GDI_75’, ’r’)
G_Feb1 = G_Feb75.readlines()
G1_Feb = [float(i) for i in G_Feb1]
GDI_Feb75 = np.asarray(G1_Feb)

K_Feb75 = open(’Feb_2015_KHI_75’, ’r’)
K_Feb1 = K_Feb75.readlines()
K1_Feb = [float(i) for i in K_Feb1]
KHI_Feb75 = np.asarray(K1_Feb)

[ ]: T_Feb75 = open(’Feb_2015_time_75’, ’r’)
T_Feb1 = T_Feb75.readlines()
T1_Feb = [float(i) for i in T_Feb1]
Time_Feb75 = np.asarray(T1_Feb)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_feb75 = {’timestamp’: Time_Feb75}
time_feb75 = pd.DataFrame(data_feb75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_feb75[’timestamp’] = pd.
↩→to_datetime(time_feb75[’timestamp’], unit=’ns’)
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[ ]:
G_Mar75 = open(’Mar_2015_GDI_75’, ’r’)
G_Mar1 = G_Mar75.readlines()
G1_Mar = [float(i) for i in G_Mar1]
GDI_Mar75 = np.asarray(G1_Mar)

K_Mar75 = open(’Mar_2015_KHI_75’, ’r’)
K_Mar1 = K_Mar75.readlines()
K1_Mar = [float(i) for i in K_Mar1]
KHI_Mar75 = np.asarray(K1_Mar)

T_Mar75 = open(’Mar_2015_time_75’, ’r’)
T_Mar1 = T_Mar75.readlines()
T1_Mar = [float(i) for i in T_Mar1]
Time_Mar75 = np.asarray(T1_Mar)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mar75 = {’timestamp’: Time_Mar75}
time_mar75 = pd.DataFrame(data_mar75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mar75[’timestamp’] = pd.
↩→to_datetime(time_mar75[’timestamp’], unit=’ns’)

G_Apr75 = open(’Apr_2015_GDI_75’, ’r’)
G_Apr1 = G_Apr75.readlines()
G1_Apr = [float(i) for i in G_Apr1]
GDI_Apr75 = np.asarray(G1_Apr)

[ ]: K_Apr75 = open(’Apr_2015_KHI_75’, ’r’)
K_Apr1 = K_Apr75.readlines()
K1_Apr = [float(i) for i in K_Apr1]
KHI_Apr75 = np.asarray(K1_Apr)

T_Apr75 = open(’Apr_2015_time_75’, ’r’)
T_Apr1 = T_Apr75.readlines()
T1_Apr = [float(i) for i in T_Apr1]
Time_Apr75 = np.asarray(T1_Apr)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_apr75 = {’timestamp’: Time_Apr75}
time_apr75 = pd.DataFrame(data_apr75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_apr75[’timestamp’] = pd.
↩→to_datetime(time_apr75[’timestamp’], unit=’ns’)

[ ]:
G_Mai75 = open(’Mai_2015_GDI_75’, ’r’)
G_Mai1 = G_Mai75.readlines()
G1_Mai = [float(i) for i in G_Mai1]
GDI_Mai75 = np.asarray(G1_Mai)

K_Mai75 = open(’Mai_2015_KHI_75’, ’r’)
K_Mai1 = K_Mai75.readlines()
K1_Mai = [float(i) for i in K_Mai1]
KHI_Mai75 = np.asarray(K1_Mai)

T_Mai75 = open(’Mai_2015_time_75’, ’r’)
T_Mai1 = T_Mai75.readlines()
T1_Mai = [float(i) for i in T_Mai1]
Time_Mai75 = np.asarray(T1_Mai)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mai75 = {’timestamp’: Time_Mai75}
time_mai75 = pd.DataFrame(data_mai75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mai75[’timestamp’] = pd.
↩→to_datetime(time_mai75[’timestamp’], unit=’ns’)

G_Jun75 = open(’Jun_2015_GDI_75’, ’r’)
G_Jun1 = G_Jun75.readlines()
G1_Jun = [float(i) for i in G_Jun1]
GDI_Jun75 = np.asarray(G1_Jun)

K_Jun75 = open(’Jun_2015_KHI_75’, ’r’)
K_Jun1 = K_Jun75.readlines()
K1_Jun = [float(i) for i in K_Jun1]
KHI_Jun75 = np.asarray(K1_Jun)

[ ]: T_Jun75 = open(’Jun_2015_time_75’, ’r’)
T_Jun1 = T_Jun75.readlines()
T1_Jun = [float(i) for i in T_Jun1]
Time_Jun75 = np.asarray(T1_Jun)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jun75 = {’timestamp’: Time_Jun75}
time_jun75 = pd.DataFrame(data_jun75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jun75[’timestamp’] = pd.
↩→to_datetime(time_jun75[’timestamp’], unit=’ns’)
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[ ]:
G_Jul75 = open(’Jul_2015_GDI_75’, ’r’)
G_Jul1 = G_Jul75.readlines()
G1_Jul = [float(i) for i in G_Jul1]
GDI_Jul75 = np.asarray(G1_Jul)

K_Jul75 = open(’Jul_2015_KHI_75’, ’r’)
K_Jul1 = K_Jul75.readlines()
K1_Jul = [float(i) for i in K_Jul1]
KHI_Jul75 = np.asarray(K1_Jul)

[ ]: T_Jul75 = open(’Jul_2015_time_75’, ’r’)
T_Jul1 = T_Jul75.readlines()
T1_Jul = [float(i) for i in T_Jul1]
Time_Jul75 = np.asarray(T1_Jul)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jul75 = {’timestamp’: Time_Jul75}
time_jul75 = pd.DataFrame(data_jul75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jul75[’timestamp’] = pd.
↩→to_datetime(time_jul75[’timestamp’], unit=’ns’)
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[ ]:

G_Aug75 = open(’Aug_2015_GDI_75’, ’r’)
G_Aug1 = G_Aug75.readlines()
G1_Aug = [float(i) for i in G_Aug1]
GDI_Aug75 = np.asarray(G1_Aug)

K_Aug75 = open(’Aug_2015_KHI_75’, ’r’)
K_Aug1 = K_Aug75.readlines()
K1_Aug = [float(i) for i in K_Aug1]
KHI_Aug75 = np.asarray(K1_Aug)

T_Aug75 = open(’Aug_2015_time_75’, ’r’)
T_Aug1 = T_Aug75.readlines()
T1_Aug = [float(i) for i in T_Aug1]
Time_Aug75 = np.asarray(T1_Aug)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_aug75 = {’timestamp’: Time_Aug75}
time_aug75 = pd.DataFrame(data_aug75)

[ ]: # Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_aug75[’timestamp’] = pd.
↩→to_datetime(time_aug75[’timestamp’], unit=’ns’)

G_Sep75 = open(’Sep_2015_GDI_75’, ’r’)
G_Sep1 = G_Sep75.readlines()
G1_Sep = [float(i) for i in G_Sep1]
GDI_Sep75 = np.asarray(G1_Sep)

[ ]: K_Sep75 = open(’Sep_2015_KHI_75’, ’r’)
K_Sep1 = K_Sep75.readlines()
K1_Sep = [float(i) for i in K_Sep1]
KHI_Sep75 = np.asarray(K1_Sep)

T_Sep75 = open(’Sep_2015_time_75’, ’r’)
T_Sep1 = T_Sep75.readlines()
T1_Sep = [float(i) for i in T_Sep1]
Time_Sep75 = np.asarray(T1_Sep)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_sep75 = {’timestamp’: Time_Sep75}
time_sep75 = pd.DataFrame(data_sep75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_sep75[’timestamp’] = pd.
↩→to_datetime(time_sep75[’timestamp’], unit=’ns’)

[ ]:
G_Okt75 = open(’Okt_2015_GDI_75’, ’r’)
G_Okt1 = G_Okt75.readlines()
G1_Okt = [float(i) for i in G_Okt1]
GDI_Okt75 = np.asarray(G1_Okt)

K_Okt75 = open(’Okt_2015_KHI_75’, ’r’)
K_Okt1 = K_Okt75.readlines()
K1_Okt = [float(i) for i in K_Okt1]
KHI_Okt75 = np.asarray(K1_Okt)

T_Okt75 = open(’Okt_2015_time_75’, ’r’)
T_Okt1 = T_Okt75.readlines()
T1_Okt = [float(i) for i in T_Okt1]
Time_Okt75 = np.asarray(T1_Okt)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_okt75 = {’timestamp’: Time_Okt75}
time_okt75 = pd.DataFrame(data_okt75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_okt75[’timestamp’] = pd.
↩→to_datetime(time_okt75[’timestamp’], unit=’ns’)
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[ ]:
G_Nov75 = open(’Nov_2015_GDI_75’, ’r’)
G_Nov1 = G_Nov75.readlines()
G1_Nov = [float(i) for i in G_Nov1]
GDI_Nov75 = np.asarray(G1_Nov)

K_Nov75 = open(’Nov_2015_KHI_75’, ’r’)
K_Nov1 = K_Nov75.readlines()
K1_Nov = [float(i) for i in K_Nov1]
KHI_Nov75 = np.asarray(K1_Nov)

T_Nov75 = open(’Nov_2015_time_75’, ’r’)
T_Nov1 = T_Nov75.readlines()
T1_Nov = [float(i) for i in T_Nov1]
Time_Nov75 = np.asarray(T1_Nov)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_nov75 = {’timestamp’: Time_Nov75}
time_nov75 = pd.DataFrame(data_nov75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_nov75[’timestamp’] = pd.
↩→to_datetime(time_nov75[’timestamp’], unit=’ns’)

G_Des75 = open(’Des_2015_GDI_75’, ’r’)
G_Des1 = G_Des75.readlines()
G1_Des = [float(i) for i in G_Des1]
GDI_Des75 = np.asarray(G1_Des)

K_Des75 = open(’Des_2015_KHI_75’, ’r’)
K_Des1 = K_Des75.readlines()
K1_Des = [float(i) for i in K_Des1]
KHI_Des75 = np.asarray(K1_Des)
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[ ]: T_Des75 = open(’Des_2015_time_75’, ’r’)
T_Des1 = T_Des75.readlines()
T1_Des = [float(i) for i in T_Des1]
Time_Des75 = np.asarray(T1_Des)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_des75 = {’timestamp’: Time_Des75}
time_des75 = pd.DataFrame(data_des75)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_des75[’timestamp’] = pd.
↩→to_datetime(time_des75[’timestamp’], unit=’ns’)

[ ]: GDI_75_15 = np.concatenate([abs(GDI_Jan75), abs(GDI_Feb75),␣
↩→abs(GDI_Mar75), abs(GDI_Apr75), abs(GDI_Mai75),

abs(GDI_Jun75), abs(GDI_Jul75),␣
↩→abs(GDI_Aug75), abs(GDI_Sep75), abs(GDI_Okt75),

abs(GDI_Nov75), abs(GDI_Des75)])

KHI_75_15 = np.concatenate([abs(KHI_Jan75), abs(KHI_Feb75),␣
↩→abs(KHI_Mar75), abs(KHI_Apr75), abs(KHI_Mai75),

abs(KHI_Jun75), abs(KHI_Jul75),␣
↩→abs(KHI_Aug75), abs(KHI_Sep75), abs(KHI_Okt75),

abs(KHI_Nov75), abs(KHI_Des75)])

time_75_15 = np.concatenate([time_jan75, time_feb75,␣
↩→time_mar75, time_apr75, time_mai75, time_jun75,␣
↩→time_jul75,

time_aug75, time_sep75,␣
↩→time_okt75, time_nov75, time_des75])
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[ ]: G_Jan90 = open(’Jan_2015_GDI_90’, ’r’)
G_Jan2 = G_Jan90.readlines()
G2_Jan = [float(i) for i in G_Jan2]
GDI_Jan90 = np.asarray(G2_Jan)

K_Jan90 = open(’Jan_2015_KHI_90’, ’r’)
K_Jan2 = K_Jan90.readlines()
K2_Jan = [float(i) for i in K_Jan2]
KHI_Jan90 = np.asarray(K2_Jan)

T_Jan90 = open(’Jan_2015_time_90’, ’r’)
T_Jan2 = T_Jan90.readlines()
T2_Jan = [float(i) for i in T_Jan2]
Time_Jan90 = np.asarray(T2_Jan)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jan90 = {’timestamp’: Time_Jan90}
time_jan90 = pd.DataFrame(data_jan90)

[ ]: # Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jan90[’timestamp’] = pd.
↩→to_datetime(time_jan90[’timestamp’], unit=’ns’)

G_Feb90 = open(’Feb_2015_GDI_90’, ’r’)
G_Feb2 = G_Feb90.readlines()
G2_Feb = [float(i) for i in G_Feb2]
GDI_Feb90 = np.asarray(G2_Feb)

K_Feb90 = open(’Feb_2015_KHI_90’, ’r’)
K_Feb2 = K_Feb90.readlines()
K2_Feb = [float(i) for i in K_Feb2]
KHI_Feb90 = np.asarray(K2_Feb)
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[ ]: T_Feb90 = open(’Feb_2015_time_90’, ’r’)
T_Feb2 = T_Feb90.readlines()
T2_Feb = [float(i) for i in T_Feb2]
Time_Feb90 = np.asarray(T2_Feb)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_feb90 = {’timestamp’: Time_Feb90}
time_feb90 = pd.DataFrame(data_feb90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_feb90[’timestamp’] = pd.
↩→to_datetime(time_feb90[’timestamp’], unit=’ns’)

[ ]:
G_Mar90 = open(’Mar_2015_GDI_90’, ’r’)
G_Mar2 = G_Mar90.readlines()
G2_Mar = [float(i) for i in G_Mar2]
GDI_Mar90 = np.asarray(G2_Mar)

K_Mar90 = open(’Mar_2015_KHI_90’, ’r’)
K_Mar2 = K_Mar90.readlines()
K2_Mar = [float(i) for i in K_Mar2]
KHI_Mar90 = np.asarray(K2_Mar)

[ ]: T_Mar90 = open(’Mar_2015_time_90’, ’r’)
T_Mar2 = T_Mar90.readlines()
T2_Mar = [float(i) for i in T_Mar2]
Time_Mar90 = np.asarray(T2_Mar)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mar90 = {’timestamp’: Time_Mar90}
time_mar90 = pd.DataFrame(data_mar90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mar90[’timestamp’] = pd.
↩→to_datetime(time_mar90[’timestamp’], unit=’ns’)
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[ ]:
G_Apr90 = open(’Apr_2015_GDI_90’, ’r’)
G_Apr2 = G_Apr90.readlines()
G2_Apr = [float(i) for i in G_Apr2]
GDI_Apr90 = np.asarray(G2_Apr)

K_Apr90 = open(’Apr_2015_KHI_90’, ’r’)
K_Apr2 = K_Apr90.readlines()
K2_Apr = [float(i) for i in K_Apr2]
KHI_Apr90 = np.asarray(K2_Apr)

T_Apr90 = open(’Apr_2015_time_90’, ’r’)
T_Apr2 = T_Apr90.readlines()
T2_Apr = [float(i) for i in T_Apr2]
Time_Apr90 = np.asarray(T2_Apr)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_apr90 = {’timestamp’: Time_Apr90}
time_apr90 = pd.DataFrame(data_apr90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_apr90[’timestamp’] = pd.
↩→to_datetime(time_apr90[’timestamp’], unit=’ns’)

[ ]:

G_Mai90 = open(’Mai_2015_GDI_90’, ’r’)
G_Mai2 = G_Mai90.readlines()
G2_Mai = [float(i) for i in G_Mai2]
GDI_Mai90 = np.asarray(G2_Mai)

K_Mai90 = open(’Mai_2015_KHI_90’, ’r’)
K_Mai2 = K_Mai90.readlines()
K2_Mai = [float(i) for i in K_Mai2]
KHI_Mai90 = np.asarray(K2_Mai)

T_Mai90 = open(’Mai_2015_time_90’, ’r’)
T_Mai2 = T_Mai90.readlines()
T2_Mai = [float(i) for i in T_Mai2]
Time_Mai90 = np.asarray(T2_Mai)



95

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_mai90 = {’timestamp’: Time_Mai90}
time_mai90 = pd.DataFrame(data_mai90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_mai90[’timestamp’] = pd.
↩→to_datetime(time_mai90[’timestamp’], unit=’ns’)

[ ]: G_Jun90 = open(’Jun_2015_GDI_90’, ’r’)
G_Jun2 = G_Jun90.readlines()
G2_Jun = [float(i) for i in G_Jun2]
GDI_Jun90 = np.asarray(G2_Jun)

K_Jun90 = open(’Jun_2015_KHI_90’, ’r’)
K_Jun2 = K_Jun90.readlines()
K2_Jun = [float(i) for i in K_Jun2]
KHI_Jun90 = np.asarray(K2_Jun)

T_Jun90 = open(’Jun_2015_time_90’, ’r’)
T_Jun2 = T_Jun90.readlines()
T2_Jun = [float(i) for i in T_Jun2]
Time_Jun90 = np.asarray(T2_Jun)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jun90 = {’timestamp’: Time_Jun90}
time_jun90 = pd.DataFrame(data_jun90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jun90[’timestamp’] = pd.
↩→to_datetime(time_jun90[’timestamp’], unit=’ns’)
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[ ]:
G_Jul90 = open(’Jul_2015_GDI_90’, ’r’)
G_Jul2 = G_Jul90.readlines()
G2_Jul = [float(i) for i in G_Jul2]
GDI_Jul90 = np.asarray(G2_Jul)

K_Jul90 = open(’Jul_2015_KHI_90’, ’r’)
K_Jul2 = K_Jul90.readlines()
K2_Jul = [float(i) for i in K_Jul2]
KHI_Jul90 = np.asarray(K2_Jul)

T_Jul90 = open(’Jul_2015_time_90’, ’r’)
T_Jul2 = T_Jul90.readlines()
T2_Jul = [float(i) for i in T_Jul2]
Time_Jul90 = np.asarray(T2_Jul)

[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_jul90 = {’timestamp’: Time_Jul90}
time_jul90 = pd.DataFrame(data_jul90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_jul90[’timestamp’] = pd.
↩→to_datetime(time_jul90[’timestamp’], unit=’ns’)

G_Aug90 = open(’Aug_2015_GDI_90’, ’r’)
G_Aug2 = G_Aug90.readlines()
G2_Aug = [float(i) for i in G_Aug2]
GDI_Aug90 = np.asarray(G2_Aug)
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[ ]: K_Aug90 = open(’Aug_2015_KHI_90’, ’r’)
K_Aug2= K_Aug90.readlines()
K2_Aug = [float(i) for i in K_Aug2]
KHI_Aug90 = np.asarray(K2_Aug)

T_Aug90 = open(’Aug_2015_time_90’, ’r’)
T_Aug2 = T_Aug90.readlines()
T2_Aug = [float(i) for i in T_Aug2]
Time_Aug90 = np.asarray(T2_Aug)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_aug90 = {’timestamp’: Time_Aug90}
time_aug90 = pd.DataFrame(data_aug90)

[ ]: # Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_aug90[’timestamp’] = pd.
↩→to_datetime(time_aug90[’timestamp’], unit=’ns’)

G_Sep90 = open(’Sep_2015_GDI_90’, ’r’)
G_Sep2 = G_Sep90.readlines()
G2_Sep = [float(i) for i in G_Sep2]
GDI_Sep90 = np.asarray(G2_Sep)

K_Sep90 = open(’Sep_2015_KHI_90’, ’r’)
K_Sep2 = K_Sep90.readlines()
K2_Sep = [float(i) for i in K_Sep2]
KHI_Sep90 = np.asarray(K2_Sep)

T_Sep90 = open(’Sep_2015_time_90’, ’r’)
T_Sep2 = T_Sep90.readlines()
T2_Sep = [float(i) for i in T_Sep2]
Time_Sep90 = np.asarray(T2_Sep)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_sep90 = {’timestamp’: Time_Sep90}
time_sep90 = pd.DataFrame(data_sep90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_sep90[’timestamp’] = pd.
↩→to_datetime(time_sep90[’timestamp’], unit=’ns’)

G_Okt90 = open(’Okt_2015_GDI_90’, ’r’)
G_Okt2 = G_Okt90.readlines()
G2_Okt = [float(i) for i in G_Okt2]
GDI_Okt90 = np.asarray(G2_Okt)

K_Okt90 = open(’Okt_2015_KHI_90’, ’r’)
K_Okt2 = K_Okt90.readlines()
K2_Okt = [float(i) for i in K_Okt2]
KHI_Okt90 = np.asarray(K2_Okt)

[ ]: T_Okt90 = open(’Okt_2015_time_90’, ’r’)
T_Okt2 = T_Okt90.readlines()
T2_Okt = [float(i) for i in T_Okt2]
Time_Okt90 = np.asarray(T2_Okt)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_okt90 = {’timestamp’: Time_Okt90}
time_okt90 = pd.DataFrame(data_okt90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_okt90[’timestamp’] = pd.
↩→to_datetime(time_okt90[’timestamp’], unit=’ns’)
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[ ]:

G_Nov90 = open(’Nov_2015_GDI_90’, ’r’)
G_Nov2 = G_Nov90.readlines()
G2_Nov = [float(i) for i in G_Nov2]
GDI_Nov90 = np.asarray(G2_Nov)

K_Nov90 = open(’Nov_2015_KHI_90’, ’r’)
K_Nov2 = K_Nov90.readlines()
K2_Nov = [float(i) for i in K_Nov2]
KHI_Nov90 = np.asarray(K2_Nov)

T_Nov90 = open(’Nov_2015_time_90’, ’r’)
T_Nov2 = T_Nov90.readlines()
T2_Nov = [float(i) for i in T_Nov2]
Time_Nov90 = np.asarray(T2_Nov)

# Sample DataFrame with float column representing Unix␣
↩→timestamps
data_nov90 = {’timestamp’: Time_Nov90}
time_nov90 = pd.DataFrame(data_nov90)

[ ]: # Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_nov90[’timestamp’] = pd.
↩→to_datetime(time_nov90[’timestamp’], unit=’ns’)

G_Des90 = open(’Des_2015_GDI_90’, ’r’)
G_Des2 = G_Des90.readlines()
G2_Des = [float(i) for i in G_Des2]
GDI_Des90 = np.asarray(G2_Des)

K_Des90 = open(’Des_2015_KHI_90’, ’r’)
K_Des2 = K_Des90.readlines()
K2_Des = [float(i) for i in K_Des2]
KHI_Des90 = np.asarray(K2_Des)

T_Des90 = open(’Des_2015_time_90’, ’r’)
T_Des2 = T_Des90.readlines()
T2_Des = [float(i) for i in T_Des2]
Time_Des90 = np.asarray(T2_Des)
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[ ]: # Sample DataFrame with float column representing Unix␣
↩→timestamps
data_des90 = {’timestamp’: Time_Des90}
time_des90 = pd.DataFrame(data_des90)

# Convert float to datetime using Pandas’ to_datetime()␣
↩→function
time_des90[’timestamp’] = pd.
↩→to_datetime(time_des90[’timestamp’], unit=’ns’)

[ ]: GDI_90_15 = np.concatenate([abs(GDI_Jan90), abs(GDI_Feb90),␣
↩→abs(GDI_Mar90), abs(GDI_Apr90), abs(GDI_Mai90),

abs(GDI_Jun90), abs(GDI_Jul90),␣
↩→abs(GDI_Aug90), abs(GDI_Sep90), abs(GDI_Okt90),

abs(GDI_Nov90), abs(GDI_Des90)])

KHI_90_15 = np.concatenate([abs(KHI_Jan90), abs(KHI_Feb90),␣
↩→abs(KHI_Mar90), abs(KHI_Apr90), abs(KHI_Mai90),

abs(KHI_Jun90), abs(KHI_Jul90),␣
↩→abs(KHI_Aug90), abs(KHI_Sep90), abs(KHI_Okt90),

abs(KHI_Nov90), abs(KHI_Des90)])

time_90_15 = np.concatenate([time_jan90, time_feb90,␣
↩→time_mar90, time_apr90, time_mai90, time_jun90,␣
↩→time_jul90,

time_aug90, time_sep90,␣
↩→time_okt90, time_nov90, time_des90])
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[ ]: fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex=True,␣
↩→figsize=(10, 7), constrained_layout = True)

plt.rcParams.update({’font.size’: 15})

ax1.hist(GDI_75_15, bins=1000, range=(0.01, 1), label=’GDI␣
↩→Latitude 60-75 2015’)
ax2.hist(GDI_75_20, bins=1000, range=(0.01, 1), label=’GDI␣
↩→Latitude 60-75 2020’)
ax3.hist(GDI_90_15, bins=1000, range=(0.01, 1), label=’GDI␣
↩→Latitude 75-90 2015’)
ax4.hist(GDI_90_20, bins=1000, range=(0.01, 1), label=’GDI␣
↩→Latitude 75-90 2020’)

ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()

[ ]: ax1.set_title(’Latitude between 60-75 degrees’)
ax3.set_title(’Latitude between 75-90 degrees’)

ax1.set_yscale(’log’)
ax2.set_yscale(’log’)
ax3.set_yscale(’log’)
ax4.set_yscale(’log’)

ax1.set_ylim(top=10**6)
ax2.set_ylim(top=10**6)
ax3.set_ylim(top=10**6)
ax4.set_ylim(top=10**6)

ax1.tick_params(axis=’both’, which=’major’, labelsize=20)
ax2.tick_params(axis=’both’, which=’major’, labelsize=20)
ax3.tick_params(axis=’both’, which=’major’, labelsize=20)
ax4.tick_params(axis=’both’, which=’major’, labelsize=20)

[ ]: fig.supxlabel(’Growth rate [1/s]’)
fig.supylabel(’Quantity’)
fig.suptitle(’Histogram of GDI with Kp 1-9’, fontsize=20)

plt.show()
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[ ]: fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex=True,␣
↩→figsize=(10, 7), constrained_layout = True)

plt.rcParams.update({’font.size’: 15})

[ ]: ax1.hist(KHI_75_15, bins=1000, range=(0.01, 1),␣
↩→density=True, stacked=True, label=’KHI Latitude 60-75␣
↩→2015’)
ax2.hist(KHI_75_20, bins=1000, range=(0.01, 1),␣
↩→density=True, stacked=True, label=’KHI Latitude 60-75␣
↩→2020’)
ax3.hist(KHI_90_15, bins=1000, range=(0.01, 1),␣
↩→density=True, stacked=True, label=’KHI Latitude 75-90␣
↩→2015’)
ax4.hist(KHI_90_20, bins=1000, range=(0.01, 1),␣
↩→density=True, stacked=True, label=’KHI Latitude 75-90␣
↩→2020’)

ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()

ax1.set_title(’Latitude between 60-75 degrees’)
ax3.set_title(’Latitude between 75-90 degrees’)

[ ]: ax1.set_yscale(’log’)
ax2.set_yscale(’log’)
ax3.set_yscale(’log’)
ax4.set_yscale(’log’)

ax1.set_ylim(top=10**6)
ax2.set_ylim(top=10**6)
ax3.set_ylim(top=10**6)
ax4.set_ylim(top=10**6)

ax1.tick_params(axis=’both’, which=’major’, labelsize=20)
ax2.tick_params(axis=’both’, which=’major’, labelsize=20)
ax3.tick_params(axis=’both’, which=’major’, labelsize=20)
ax4.tick_params(axis=’both’, which=’major’, labelsize=20)
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[ ]: fig.supxlabel(’Growth rate [1/s]’)
fig.supylabel(’Quantity’)
fig.suptitle(’Histogram of KHI with Kp 1-9’, fontsize=20)

plt.show()

[ ]: fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(10,␣
↩→7), constrained_layout = True)

plt.rcParams.update({’font.size’: 15})

ax1.scatter(time_75_15, GDI_75_15, label="GDI latitude 60-75␣
↩→2015", marker=’o’)
ax1.scatter(time_75_20, GDI_75_20, label="GDI latitude 60-75␣
↩→2020", marker=’o’)
ax2.scatter(time_90_15, GDI_90_15, label="GDI latitude 75-90␣
↩→2015", marker=’o’)
ax2.scatter(time_90_20, GDI_90_20, label="GDI latitude 75-90␣
↩→2020", marker=’o’)

ax1.legend()
ax2.legend()

[ ]: ax1.set_title(’Latitude between 60 and 75 degrees’)
ax2.set_title(’Latitude between 75 and 90 degrees’)

ax1.set_ylim(top=6)
ax2.set_ylim(top=6)

ax1.tick_params(axis=’both’, which=’major’, labelsize=20)
ax2.tick_params(axis=’both’, which=’major’, labelsize=20)

[ ]: fig.supylabel(’Growth rate [1/s]’)
fig.supxlabel(’Time [Date]’)
fig.suptitle(’GDI with Kp between 1-9’, fontsize=20)
plt.xticks(rotation=30)

plt.show()
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[ ]: fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(10,␣
↩→7), constrained_layout = True)

plt.rcParams.update({’font.size’: 15})

ax1.scatter(time_75_15, KHI_75_15, label="KHI latitude 60-75␣
↩→2015", marker=’o’)
ax1.scatter(time_75_20, KHI_75_20, label="KHI latitude 60-75␣
↩→2020", marker=’o’)
ax2.scatter(time_90_15, KHI_90_15, label="KHI latitude 75-90␣
↩→2015", marker=’o’)
ax2.scatter(time_90_20, KHI_90_20, label="KHI latitude 75-90␣
↩→2020", marker=’o’)

[ ]: ax1.legend()
ax2.legend()

ax1.set_title(’Latitude between 60 and 75 degrees’)
ax2.set_title(’Latitude between 75 and 90 degrees’)

ax1.set_ylim(top=0.5)
ax2.set_ylim(top=0.5)

ax1.tick_params(axis=’both’, which=’major’, labelsize=20)
ax2.tick_params(axis=’both’, which=’major’, labelsize=20)

[ ]: fig.supylabel(’Growth rate [1/s]’)
fig.supxlabel(’Time [Date]’)
fig.suptitle(’KHI with Kp between 1-9’, fontsize=20)
plt.xticks(rotation=30)

plt.show()
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