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Summary 

Cognitive effort is highly familiar in everyday life and may influence our decisions and task 

performance. However, researchers have struggled to both define and measure cognitive effort. A 

range of tools measuring cognitive effort has been developed within different lines of research. Yet it 

is unclear to what degree these tools are related and if they are measuring the same cognitive effort 

construct. Furthermore, the influential default-interventionist dual-process account proposes that a 

lack of cognitive effort is a significant source of errors in reasoning and decision-making. However, an 

accumulating body of research contradicts predictions from the default-interventionist account, giving 

rise to a new generation of dual-process models. Notably, a separate line of research applying single-

process sequential sampling models proposes that bias in decision-making is exacerbated by more 

extensive integration of evidence. These separate lines of research make opposing predictions 

regarding pupil dilation. Pupil size can be used as an indicator of both cognitive effort and Locus 

Coeruleus – Norepinephrine activity. The default-interventionist account predicts that errors in 

reasoning should be associated with smaller pupil dilations, I.e. less cognitive effort. The extensive 

integration account proposes that larger pupil dilations, indicating low levels of norepinephrine and 

neural gain, leads to more extensive integration and more bias in reasoning. Thus, competing models 

and frameworks with opposing predictions regarding cognitive effort and errors in decision-making 

can be tested by measuring pupil size during performance on reasoning tasks.  

The aims of the thesis were to investigate the role of cognitive effort in decision-making and errors in 

reasoning. Further, to evaluate tools measuring cognitive effort in decision-making, and lastly to 

evaluate competing dual-process models and alternative frameworks of decision-making. Paper 1 

assessed the shared variance between three behavioral measures of cognitive effort and their 

relationship to the need for cognition scale. Additionally, working memory capacity and subjective 

mental effort of the task paradigms was measured. The results showed no relation between the three 

behavioral measures of cognitive effort. However, two of the measures were related to need for 

cognition and working memory capacity. Contrary to dual-process model predictions, performance on 

a battery of rational reasoning tasks was negatively related to subjective mental effort on the tasks. 

Indicating that more cognitive effort was associated with errors in reasoning. Paper 2 and Paper 3 

applied pupillometry to assess cognitive effort during decision-making tasks. Paper 2 found that larger 

pupil dilations, indicating more cognitive effort, was associated with more errors on a teleological 

reasoning task, thus finding support for the extensive integration account of bias in reasoning. Paper 3 

measured eye-gaze and pupil dilation in two separate versions of a base-rate task. The results were 

partly mixed. However, evidence suggested base-rate neglect was a significant source of bias on the 

task. Further, larger pupil dilations associated with conflict detection and cognitive decoupling were 

related to correct responses. Implicating the Locus Coeruleus – Norepinephrine system in conflict 

detection and overriding of erroneous responses. The thesis concludes that a lack of cognitive effort is 

not a general cause of decision-making errors. Rather, errors in reasoning can be associated with both 

more and less cognitive effort, dependent on the task. Researchers should be mindful of the tools 

available when measuring cognitive effort as tools differ in reliability, validity, and may measure 

different aspects of cognitive effort. The results from the thesis largely oppose dual-process models. 
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The results are in line with sequential sampling models and the extensive integration account of bias in 

reasoning, highlighting the role of Locus Coeruleus in decision making and reasoning errors. Notably, 

sequential sampling models were not tested to the same extent as dual-process models in this thesis 

and the results should be considered preliminary. However, the tools and methodology applied in the 

thesis may suggest a path forward for future research on errors in decision-making. 
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1 Introduction 

The phenomenal feeling of cognitive effort is highly familiar to everyday life. Cognitive effort may 

influence both the decision to engage in a task and determine the successful completion of the task. 

However, researchers have struggled to both define what cognitive effort is and how to measure 

cognitive effort (Shenhav, Musslick, et al., 2017; Thomson & Oppenheimer, 2022; Westbrook & 

Braver, 2015). The ubiquitous nature of cognitive effort remains part of the challenge as nearly all task 

performance is dependent on both cognitive ability and the willingness to perform the task at hand, 

that is, expending the required cognitive effort. Despite the challenge of both defining cognitive effort 

and disentangling effort from performance and ability, several researchers have noted that a 

fundamental property of cognitive effort is the tendency to minimize cognitive effort, all else being 

equal (Allport, 1954; Hull, 1943; Kool et al., 2010; Solomon, 1948; Zipf, 1949). This is known as the 

“law of least effort”, which have been applied to effort in both the physical and cognitive domain 

(Allport, 1954; Hull, 1943; Zipf, 1949). In the last two decades the study of cognitive effort has 

revealed that cognitive effort is treated as costly(Westbrook et al., 2013), although, the nature of this 

cost is uncertain. Cognitive effort seems to be expended in relation to the expected attainment of goals 

and rewards and may be subject to multiple trade-offs (Aston-Jones & Cohen, 2005; Kool & 

Botvinick, 2014; Kurzban et al., 2013; Shenhav et al., 2013). Cognitive effort is generally experienced 

as aversive, this to the point where humans will both forego rewards and endure pain to avoid 

cognitive effort (Vogel et al., 2020; Westbrook et al., 2013). However, some individuals may be more 

inclined to expend, and value cognitive effort (Cacioppo et al., 1996; Cacioppo & Petty, 1982; Inzlicht 

et al., 2018). Of particular importance to the understanding of cognitive effort, and the influence of 

cognitive effort, is the relationship between cognitive effort and decision-making. Firstly, the 

investigation of cognitive effort through decision-making has significantly advanced research on 

cognitive effort (Shenhav, Musslick, et al., 2017; Westbrook et al., 2021). In particular, the 

development of task paradigms for measuring cognitive effort costs and cognitive effort avoidance 

through decision-making have been fundamental to this advancement (Kool et al., 2010; Westbrook et 

al., 2013). These task paradigms have advanced our knowledge of both the neural mechanisms and 

computations involved in tracking cognitive effort costs and the allocation of cognitive effort (Sayalı 

& Badre, 2021; Shenhav, Musslick, et al., 2017; Westbrook et al., 2020, 2021). However, the 

relationship between these newly developed task paradigms has until now not yet been properly 

investigated (Thomson & Oppenheimer, 2022). Thus, it has been unknown to what extent these task 

paradigms are measuring the same cognitive effort construct. Second, the tendency to minimize 

cognitive effort has been proposed as one of the main reasons for human errors in reasoning and 

decision-making (J. St. B. T. Evans, 2006; Kahneman, 2011; Shah & Oppenheimer, 2008; Stanovich, 

2009a). This proposal has been advanced through research on heuristics and biases and dual-process 

models of reasoning and decision-making (J. St. B. T. Evans, 2006; Kahneman, 2011). The classical 

default-interventionist dual-process account proposes that errors in reasoning are largely a result of 

fast effortless processing and proposes that slower more effortful deliberate processing generally leads 

to better decision-making and fewer errors in reasoning (J. St. B. T. Evans, 2006; J. St. B. T. Evans & 

Stanovich, 2013; Kahneman, 2011; Stanovich, 2009a). This notion of errors in reasoning resulting 
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from a lack of cognitive effort has been so fundamental that researchers have used performance on 

heuristics and bias tasks as measures of cognitive effort, often labeled as measures of deliberate 

(reflective) thinking or an analytic thinking style (Frederick, 2005; Pennycook, Cheyne, et al., 2012; 

Pennycook et al., 2015a; Shenhav, Rand, et al., 2017; Stanovich, 2016; Trippas et al., 2015). However, 

an accumulating body of research is questioning both assumptions of classical dual-process models 

and the relationship between cognitive effort and reasoning errors. (Bago & De Neys, 2017; Newman 

et al., 2017; Raoelison et al., 2020; Thompson et al., 2018). This has given rise to a new generation of 

dual-process models which remain to be properly tested (De Neys & Pennycook, 2019; Pennycook et 

al., 2015b; Thompson et al., 2018). A novel approach to study dual-process models and cognitive 

effort in reasoning and decision-making is through the use of pupillometry, as the pupil is known to 

track cognitive effort (Beatty & Lucero-Wagoner, 2000; Kahneman, 1973; Mathot, 2018; van der Wel 

& van Steenbergen, 2018). Recently, Eldar et al. (2021) applied pupillometry to test assumptions of 

the default-interventionist dual-process model against an alternative framework of decision-making, 

namely sequential sampling models (Boag et al., 2023; N. J. Evans & Wagenmakers, 2020; B. U. 

Forstmann et al., 2016; Ratcliff et al., 2016, p. 20) and finding evidence in favor of sequential 

sampling models of decision-making. Importantly, in addition to reflecting cognitive effort, the pupil 

is closely linked with the Locus Coeruleus (LC) – Norepinephrine (NE) system. The LC is a brainstem 

nucleus with far-reaching connections and is known to regulate the sleep-wake cycle, arousal, and 

attention, in addition to influencing several more specific cognitive functions (Berridge & 

Waterhouse, 2003; Bouret & Sara, 2005; Chandler et al., 2014; McBurney-Lin et al., 2019; 

McGaughy et al., 2008; Poe et al., 2020; Spencer & Berridge, 2019; Takeuchi et al., 2016; Viglione et 

al., 2023; Waterhouse & Navarra, 2019). Importantly, the LC-NE system influences brain wide 

changes in neural gain (Eldar et al., 2013), which have been proposed to influence evidence weighting 

in sequential sampling models of decision-making (Eldar, Cohen, et al., 2016; Eldar et al., 2021). 

The overarching aim of this thesis was to assess the role of cognitive effort in decision-making and 

errors in reasoning. To achieve this, we evaluated tools measuring cognitive effort in decision-making, 

and tested competing dual-process models and alternative frameworks of decision-making. In the 

following introduction, I will first define and present theories of cognitive effort. Second, I will review 

dual-process models of decision-making and theoretical developments. Third, I will introduce 

pupillometry as a tool for investigating cognitive effort in decision-making. Fourth, I will introduce 

the LC-NE system. Fifth, I will briefly introduce sequential sampling models as an alternative 

framework for decision-making. Lastly, I will expand upon the aims of the thesis. 

1.1 Cognitive effort and decision making 

The lack of a common definition of cognitive effort has been a challenge for both conducting research 

on cognitive effort and integration of research across fields, this has been described as the “effort 

problem” (Thomson & Oppenheimer, 2022). To describe what is meant by cognitive effort here, we 

refer to two complementary earlier descriptions.  

“At a coarse level, “effort” refers to the degree of engagement with demanding tasks.” (Westbrook & 

Braver, 2015, p. 3). 
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Effort is what mediates between (a) the characteristics of a target task and the subject’s 

available information-processing capacity and (b) the fidelity of the information-processing 

operations actually performed, as reflected in task performance. The first two factors, task 

characteristics and capacity, determine what level of performance is attainable in principle. 

Effort refers to the set of intervening processes that determine what level of performance will 

in fact be realized. (Shenhav, Musslick, et al., 2017, pp. 100 - 101) 

Accordingly, cognitive effort refers to the degree of engagement with a task or the cognitive resources 

employed for task performance. However, cognitive effort will always depend on both the 

characteristics of the task (task demands), and the cognitive resources available (cognitive ability). 

Thus, cognitive effort represents the mobilization of cognitive processing resources leading to a 

certain level of performance being achieved, dependent on both task characteristics and cognitive 

ability. 

Cognitive effort needs to be distinguished from mental operations which execution requires cognitive 

effort. Although it is not clear why some mental operations require more effort than others, a common 

factor that seems to require cognitive effort is top-down cognitive control (Botvinick & Braver, 2015; 

Botvinick & Cohen, 2014; McGuire & Botvinick, 2010; Musslick et al., 2018; Sayalı & Badre, 2019; 

Schneider & Shiffrin, 1977; Shenhav et al., 2013; Shenhav, Musslick, et al., 2017). Information 

processing may be viewed as a continuum of automatization (Schneider & Shiffrin, 1977). On one end 

of the continuum there are processes which have been highly automatized (often through repeated 

practice) and require little to no effort and impose little interference on other processes. On the other 

end of the continuum, there are processes which rely on control demanding resources. Cognitive 

control allows for more flexible information processing, allow for contextual influences on 

information processing, and can reorganize information processing away from the default. Cognitive 

control is a cognitively effortful process and heavily interferes with other processes. Note, the end 

points of this continuum may also be seen as separate processes (see 1.2 Dual-process models of 

decision-making). Examples of effortful cognitive (executive) control functions are working memory 

maintenance and sustained attention, updating, task switching, inhibition and overriding of habitual 

responses (Botvinick & Braver, 2015; Braver, 2012; Friedman & Miyake, 2017; Kahneman, 1973; E. 

K. Miller & Cohen, 2001; Miyake et al., 2000; Monsell, 2003). Thus, cognitive effort is not the same 

as cognitive control, but cognitive effort may be exerted through cognitive control. Accordingly, 

cognitive effort is not a unidimensional construct and may refer to several related phenomena such as, 

the phenomenal feeling of cognitive effort, the allocation of cognitive resources (deciding to expend 

cognitive effort), and the execution of demanding cognitive operations. 

The ubiquity of effort minimization as a fundamental principle or “law” of behavior was early noted 

by several theorists, referring to the tendency for humans and animals to minimize the total amount of 

effort, all else being equal (Allport, 1954; Hull, 1943; Solomon, 1948; Zipf, 1949). Later, self-report 

measures of experienced cognitive effort (Hart & Staveland, 1988) and of enjoyment of cognitive 

effort was created (Cacioppo & Petty, 1982). The need for cognition (NFC) questionnaire measuring 

the tendency to engage in and enjoy effortful cognitive activity has proven to be a reliable and stable 
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trait measure of individual differences in cognitive effort (Cacioppo & Petty, 1982; Hussey & Hughes, 

2020). Research on cognitive effort through self-reported NFC, with questions such as “I find 

satisfaction in deliberating hard and for long hours”, has elucidated characteristics of individuals with 

different dispositions for engaging in demanding mental work (Cacioppo et al., 1996). Showing that 

cognitive effort is related to task performance and cognitive ability, in addition to important outcomes 

such as academic achievement and attitude formation (Cacioppo et al., 1996; Colling et al., 2022). 

However, self-report measures may be subject to bias and there are concerns regarding the validity of 

self-report measures (Paulhus & Vazire, 2007). Furthermore, to understand cognitive effort, in 

addition to trait measures of cognitive effort such as NFC, it is important to investigate state dependent 

changes and actualized cognitive effort expenditure, performance related changes, and the cognitive 

systems as well as the computational and physiological underpinnings of cognitive effort (Shenhav, 

Musslick, et al., 2017; Thomson & Oppenheimer, 2022; Westbrook & Braver, 2015). 

In recent years, cognitive effort has been framed in economic terms and studied through decision-

making paradigms (Kool et al., 2010; Shenhav et al., 2013; Shenhav, Musslick, et al., 2017; 

Westbrook et al., 2013; Westbrook & Braver, 2015). Experimental evidence of cognitive demand 

avoidance was presented by Kool et al. (2010) by the development of the demand selection task 

(DST). In the DST participants were asked to make a series of choices between two similar visual 

stimuli. When a choice was made participants were presented with a series of numbers. Depending on 

the color of the number participants either had to make a parity or a magnitude judgement. By 

leveraging the fact that task switching requires cognitive control and cognitive effort, the only 

difference between the two visual stimuli were the number of task switches (90% vs 10%). Across 

multiple experiments it was shown that most people tend to avoid the more mentally demanding 

stimulus, all else being equal. Studies using variants of the DST have shown that humans learn to 

avoid mental effort adaptively while tracking effort costs and cost-prediction errors (Nagase et al., 

2018). Additionally, brain imaging studies have shown decreased activity in reward regions due to 

increasing cognitive demand (Botvinick et al., 2009). Further, Westbrook et al. (2013) were able to 

quantify the cost of cognitive effort and showed individual differences in cognitive effort costs by 

developing the cognitive effort discounting paradigm (COG-ED). The COG-ED relies on a working 

memory task, the n-back task (Owen et al., 2005), where mental demand can be manipulated by how 

many pieces of information must be continually updated in working memory. After experiencing 

different demand levels participants are asked to make a series of choices where they have to decide if 

they want to complete a harder task for more money or an easier task for less money. Demand and 

offer amounts are manipulated and titrated to find a subjective indifference point between options 

(Westbrook et al., 2013). Thus, one can calculate the subjective value of mental work across load 

levels for each individual. This task paradigm has revealed stable monetary discounting due to 

cognitive effort costs (Westbrook et al., 2013, 2019, 2020). The cost of cognitive effort may be partly 

attributed to the phenomenal feeling of cognitive effort, which is usually described as aversive. A 

study relying on a variant of COG-ED showed that negative experience of cognitive effort is so strong 

that some individuals are willing to endure pain to avoid it (Vogel et al., 2020). However, it should be 

noted that cognitive effort may also be valued, learned to be associated with rewards, and followingly 

become rewarding in itself (Clay et al., 2022; Eisenberger, 1992; Inzlicht et al., 2018).  
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The development of task paradigms investigating cognitive effort through decision-making, such as 

the DST and COG-ED, in addition to other task paradigms (Apps et al., 2015; Chong et al., 2017; 

Collins et al., 2017; Fallon et al., 2017; Froböse et al., 2018; Massar et al., 2015; Sidarus et al., 2019; 

Vassena et al., 2014), have allowed for greater insights into the neural mechanisms involved in 

cognitive effort. In a neuro-economic framework cognitive effort is usually treated as carrying a 

disutility that is expended in relation to expected rewards, goals or leisure (Kool & Botvinick, 2014, 

2018; Shenhav et al., 2013; Shenhav, Musslick, et al., 2017; Westbrook et al., 2013). The subjective 

value of cognitive effort seems to be encoded by a domain-general valuation network centered in the 

ventromedial (vm) pre-frontal cortex (PFC) (Westbrook et al., 2019). It has been proposed that the 

anterior cingulate cortex (ACC) integrates information on potential rewards, the cost of cognitive 

control, task demands and performance, in order to calculate the expected value of exerting more 

effortful cognitive control (Shenhav et al., 2013). The ACC relies on input from multiple areas such 

as, sensory areas, the anterior insula (AI), amygdala, ventral-tegmental area (VTA), striatum and the 

PFC, to allocate control resources. The output, the execution of the effortful cognitive control, may 

then be conducted by the lateral PFC (Cai et al., 2016; C. Wang et al., 2016). Downstream projections 

from the ACC to areas such as the subthalamic nucleus and the LC, may also engage different types of 

control by modulating decision threshold and neural gain (Aston-Jones & Cohen, 2005; Cavanagh et 

al., 2011, 2014; Eldar et al., 2013; Jepma & Nieuwenhuis, 2011; Keuken et al., 2015). Furthermore, 

Westbrook et al. (2020) found that individuals with low dopamine synthesis capacity in the caudate 

nucleus showed higher cognitive effort costs. However, administering methylphenidate (increasing 

levels of dopamine and norepinephrine), increased their willingness to do cognitive work, showing 

that dopamine may promote cognitive work. Analyzing eye gaze patterns and computational modeling 

with a drift-diffusion model (see 1.5 Sequential sampling models of decision-making) dopamine 

biases attention towards benefits and away from costs. Phasic dopamine binding at striatal D1 

receptors may be associated with benefits, whereas striatal D2 receptors may be associated with costs, 

thus reflecting benefits versus the cost of actions (Westbrook et al., 2020, 2021). Tonic ventral striatal 

dopamine may favor disengagement due to higher opportunity costs (Niv et al., 2007; see Westbrook 

et al., 2021 for a more detailed overview). And dopamine in the PFC may function to maintain the 

stability of working memory representations, thus facilitating effortful cognition (Westbrook & 

Braver, 2016). This framework is also consistent with a body of work showing that incentives can 

increase cognitive performance on tasks requiring cognitive control (Botvinick & Braver, 2015; 

Padmala & Pessoa, 2011). However, the nature of the cost of cognitive effort remains uncertain 

(Musslick et al., 2018). 

Proposed explanations for cognitive effort costs include metabolic by-product accumulation or 

resource limitations, computational or representational capacity limitations, structural limitations and 

opportunity costs. On a biological level a proposed metabolic account of cognitive effort costs is that 

long term cognitive effort exertion may cause build-up of potentially toxic substances that need to be 

recycled (Holroyd, 2016). Indeed, Wiehler et al. (2022) found elevated levels of glutamate in the 

lateral PFC following daylong cognitive effort exertion. Indicating that rising cognitive effort costs 

could be attributed to a need to maintain glutamate levels within certain boundaries. Further, elevated 

cognitive effort costs may limit effort recruitment and bias decisions away from cognitively effortful 
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tasks (Wiehler et al., 2022). An alternative proposal is that engaging in cognitively demanding tasks 

depletes energy resources such as blood glucose (Gailliot et al., 2007; Gailliot & Baumeister, 2007), 

however evidence suggests that this is not so (G. R. J. Hockey, 2011; Kurzban et al., 2013; Molden et 

al., 2012). The effects of glucose on effort and performance are better explained in terms of motivation 

(Inzlicht & Schmeichel, 2012). From an information-processing perspective, cognitive effort costs 

arise due to limits on shared representational and computational resources of the processing system. In 

this perspective cognitive control restricts interference due to crosstalk when different tasks compete 

to use the same set of representations (Feng et al., 2014; Garner & Dux, 2015; Musslick et al., 2016). 

The advantage of shared representations lies in the ability to generalize, draw inferences, and learn 

abstract structures (LeCun et al., 2015; McClelland & Rumelhart, 1985; Musslick et al., 2016). Thus, 

the advantage of shared representations outweighs the constraints on information processing (Feng et 

al., 2014; Musslick et al., 2016). Additionally, there are explanations focusing on structural capacity 

limitation which refer to restrictions in the number of computations that can be processed in a central 

control mechanism, often referring to limits of working memory or attention (Cowan et al., 2012; 

Kahneman, 1973; G. A. Miller, 1956). However, there is a lack of satisfactory explanations for why a 

structural limitation should have evolved. Lastly, it has been proposed that cognitive effort costs and 

restrictions on cognitive control arise due to an opportunity cost (Aston-Jones & Cohen, 2005; 

Kurzban et al., 2013). This account proposes that cognitive effort and the aversive feeling arises as the 

brain continually evaluates alternative uses of cognitive resources and alternative courses of actions. 

As one commits cognitive resources, time and action on a certain task, it excludes the engagement in 

alternative tasks. It has been proposed that the LC-NE system regulates the adaptive dilemma of 

exploiting and exploring the environment (Aston-Jones & Cohen, 2005), and that tonic striatal 

dopamine may signal the average reward rate or opportunity cost (Niv et al., 2007). Indeed, due to 

opportunity costs limiting computational effort and time on task can be the optimal solution 

(Gershman et al., 2015; Gigerenzer, 2008; Simon, 1990). Note that the accounts mentioned are not 

mutually exclusive. 

The study of cognitive effort through decision-making paradigms such as the DST and COG-ED has 

significantly advanced cognitive effort research. However, until now there have been no studies 

evaluating whether these task paradigms are measuring the same cognitive effort construct, or if they 

are related. It has been shown that the effort discounting in COG-ED is related to NFC (Westbrook et 

al., 2013). However, demand avoidance in the DST is not related to NFC (Strobel et al., 2020). 

Further, the task paradigms have been applied to clinical research, showing disparate results regarding 

cognitive effort and schizophrenia (Culbreth et al., 2016; J. M. Gold et al., 2015). Thus, there is a need 

to compare tools measuring cognitive effort in order to determine their shared variance, i.e., to avoid 

misconceptions due to assumed similarities. Additionally, an alternative approach, not yet properly 

discussed, measures cognitive effort through items from the heuristics and bias literature. Several 

authors have noted that humans rely on heuristics, or simplifying rules, to save effort when making 

decisions (J. St. B. T. Evans, 2008; Frederick, 2005; Gigerenzer & Gaissmaier, 2011; Kahneman, 

2011; Shah & Oppenheimer, 2008; Stanovich, 2016; Toplak et al., 2014; Trippas et al., 2015). It has 

long been assumed that many errors in reasoning and decision-making occur due to heuristics or fast 

effortless processing, and that engagement of more effortful cognitive processing leads to fewer errors 
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in reasoning (J. St. B. T. Evans, 2008; Frederick, 2005; Kahneman, 2011; Stanovich, 2016; West et 

al., 2008). The assumption of effortless reasoning leading to errors in decision-making on bias and 

heuristics tasks have been so strong that performance on these tasks have been used as measures of 

deliberate (control demanding) processing and an analytic thinking style (Frederick, 2005; Pennycook 

et al., 2015a; Stanovich, 2016; Thomson & Oppenheimer, 2022; Toplak et al., 2014; Trippas et al., 

2015). Supporting the notion that these tasks are related to effort and are measuring deliberate 

processing is the relationship between performance on these tasks and NFC (Thomson & 

Oppenheimer, 2016; Toplak et al., 2014; West et al., 2008). However, it is not known if performance 

on these tasks is related to other measures of cognitive effort, such as demand avoidance in the DST 

and effort discounting in COG-ED, which would be predicted by dual-process theories. As reviewed 

in Thomson & Oppenheimer (2022) there is a need to investigate cognitive effort across disciplines to 

advance knowledge across different fields of research. A possible approach to advance cognitive effort 

research is therefor by comparing tools and measures from different research fields. 

1.2 Dual-process models of decision-making 

Dual-process models have a long history in psychology and became more prominent in research on 

errors in reasoning and decision-making in the 1970’s. Dual-process models have since been applied 

to other areas of research, such as social psychology (Strack & Deutsch, 2004), behavioral economics 

(Kahneman, 2011; Thaler & Sunstein, 2008), and moral philosophy (Białek & De Neys, 2017; 

Cushman, 2013; Greene, 2014). Dual-process models generally propose that human reasoning relies 

on two different modes of processing. Type 1 processing, often called intuitive or heuristic, is 

automatic and does not require working memory capacity. Type 1 reasoning is often associated with 

features such as being fast, effortless, unconscious, contextualized, associative and parallel (J. St. B. T. 

Evans & Stanovich, 2013; Kahneman, 2011; Stanovich & West, 2000). Type 2 processing, often 

called analytic or deliberate, relies on working memory resources to generate responses (J. St. B. T. 

Evans & Stanovich, 2013). Type 2 processing is often associated with being slower, effortful, 

conscious, decontextualized, rule-based, logical and serial (Epstein, 1994; J. St. B. T. Evans, 2006, 

2008; Sloman, 1996; Stanovich, 2009a; Stanovich & West, 2000). At the center of the distinction 

between Type 1 and Type 2 processing is the difference in load on working memory. Type 2 

processing taxes working memory resources, whereas Type 1 processing utilizes little to no working 

memory resources. However, there is disagreement on the nature of the two modes of processing, how 

they interact, and what responses they produce (De Neys, 2018; J. St. B. T. Evans & Stanovich, 2013). 

The Default-interventionist account (J. St. B. T. Evans, 2008; J. St. B. T. Evans & Stanovich, 2013; 

Kahneman, 2011) propose that Type 1 processes are the default, and most situations generate intuitive 

responses. Type 2 processes are engaged (intervene) at later stages of reasoning, or not at all. Type 2 

processes are treated as more computationally expensive (cost) but lead to the correct response more 

often (benefit). A trade-off between accuracy and computational expense is therefore evident (Simon, 

1990; Stanovich, 2018). According to the Default-interventionist account, rational reasoning and 

sound decision-making is thus dependent upon Type 2 processing overriding errors made by Type 1 

processing. In this account, humans are cognitive misers because their default is to conserve effort 
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expenditure by relying on Type 1 processing. The Default-interventionist account and the distinction 

between Type 1 and Type 2 processing can be exemplified by a classical problem from the heuristics 

and bias literature showing base-rate neglect (De Neys & Glumicic, 2008; Kahneman & Tversky, 

1973). 

In this problem, participants are asked to decide which out of two groups a person picked at random 

most likely belongs to. Participants are provided two pieces of information.  

1) They are given a description of the person. Example from Kahneman & Tversky (1973). 

"Tom W. is of high intelligence, although lacking in true creativity. He has a need for order and 

clarity, and for neat and tidy systems in which every detail finds its appropriate place. His writing is 

rather dull and mechanical, occasionally enlivened by somewhat corny puns and flashes of 

imagination of the sci-fi type. He has a strong drive for competence. He seems to feel little sympathy 

for other people and does not enjoy interacting with others. Self-centered, he nonetheless has a deep 

moral sense." 

2) They are provided information about how many people each group consists of (base-rate 

information). For this example, participants are told there are 900 lawyers and 100 engineers. 

According to the Default-interventionist account, Type 1 processing will associate the description of 

Tom W. with a stereotypical engineer. According to Kahneman & Tversky (1973), the degree of 

representativeness (match between description and stereotype) will then be used to judge the 

probability that Tom W. is an engineer, as a Type 1 process. Thus, participants relying on Type 1 

processing will neglect the base-rate information and respond that Tom W. is most likely an engineer. 

Integrating the prior probability given by the base-rates of engineers and lawyers (100 vs. 900), with 

the individuating information is thought to be a Type 2 process. Normatively, this results in Tom W. 

being more likely a lawyer due to the base-rates heavily favoring any person drawn from the two 

groups being a lawyer. Accordingly, Type 1 and Type 2 processing will have conflicting outputs. The 

Default-interventionist account proposes that most people will intuitively think that the description 

matches the stereotype of an engineer, however they would have to engage in deliberate effortful Type 

2 processing to override the intuitive response and come up with the normative response by integrating 

both the base-rate and individuating information. 

Parallel processing accounts propose that both Type 1 and Type 2 processing are engaged from the 

start of reasoning (Epstein, 1994; Sloman, 1996). Sloman (1996)’s two-systems theory proposes that 

there is one rule-based system (Type 2 processing) and one associative system (Type 1 processing). 

The rule-based system operates on symbolic structures and abstract variables. These symbolic 

structures have logical content and can assume a class of possible values. Rules are productive in that 

they can encode any number of propositions. Additionally, rules are systematic in that if they can be 

applied to one case, they can make inferences and apply to alternative cases. The associative system 

encodes and processes statistical regularities of its environment and computes on the basis of 

similarity and temporal contiguity. Both systems operate in parallel and can create different solutions 
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to the same reasoning problem. The rule-based system can suppress the associative system but not 

completely inhibit it. Epstein (1994)’s cognitive-experiential personality theory proposes an 

experiential system (Type 1) and a rational system (Type 2). The experiential system is automatic and 

operates on classical learning principles, classical and operant conditioning, and observation. The 

experiential system solves problems automatically by reacting in accordance with reinforcement 

history. The rational system is a conscious reasoning system that evaluates evidence and applies 

logical principles when solving problems. Thus, for the parallel processing models it would be 

assumed that associating a description of a person with a stereotypical profession would be a Type 1 

process (associative- or experiential system), whereas applying Bayes rule or otherwise applying rules 

to integrate the base-rate information with the individuating information would be a Type 2 process 

(rule-based- or rational system). 

Both default-interventionist and parallel processing accounts assume that a Type 2 correction of a 

competing intuitive Type 1 response is necessary. Historically, these models have assumed that Type 

2 processes are logical, rule-based, mathematical, or probabilistic, whereas Type 1 processes are 

heuristic, associative, stimulus-response pairings, and based on prior beliefs (not an exhaustive list) 

(Epstein, 1994; J. St. B. T. Evans, 2006, 2008; Kahneman, 2011; Sloman, 1996; Stanovich, 2009a; 

Stanovich & West, 2000). Often normative responses have been taken as evidence of Type 2 

processing and errors on reasoning tasks have been assumed to result from Type 1 processing. 

Additionally, fast responses have often been assumed to result from Type 1 processing and slower 

responses from Type 2 processing (Stanovich & Toplak, 2012). However, evidence suggests that 

probabilistic and “normative” responses are often given fast and “intuitively” (Bago & De Neys, 2017; 

Newman et al., 2017; Raoelison et al., 2020). Furthermore, there is evidence that conflicting responses 

have been detected even when participants respond with the “intuitive” response. In response, there 

have been theoretical developments of dual-process models and a new generation of “hybrid” models 

or “dual-process 2.0” have been proposed (De Neys, 2018; De Neys & Pennycook, 2019; Pennycook 

et al., 2015b; Raoelison et al., 2020; Stanovich, 2009a, 2018; Thompson et al., 2018). 

Stanovich (2009) proposes that the generic dual-process model should be refined with a three-process 

model where Type 2 processing needs to be divided into a reflective level and an analytical level. In 

Stanovich’s (2009) three-process model the analytical level is responsible for carrying out mental 

simulation (or cognitive decoupling) in working memory. Meaning the generation of Type 2 responses 

and overriding of Type 1 responses are carried out at the analytical level. At this level individual 

differences in efficiency of processing are evident. The capacity of the analytical level can be assessed 

with traditional measures of intelligence. However, just as Type 1 processes need to be overridden by 

the analytical level (Type 2 process), the execution of this overriding is initiated at a higher level, 

namely the reflective level (Stanovich, 2009a). The reflective level regulates behavior at a high level 

of generality and is concerned with pragmatic- and epistemic self-regulation as well as higher order 

goals and values. Additionally, conflict detection between multiple intuitive responses, error 

monitoring, and the initiation of analytical (Type 2) processing are performed at the reflective level. 

According to Stanovich (2009), individual differences at the reflective level can be assessed with 

measures of thinking dispositions such as actively open-minded thinking (Stanovich & West, 1997) 
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and NFC (Cacioppo & Petty, 1982), or with performance measures of rational reasoning such as the 

cognitive reflection test and other heuristics and bias tasks (Frederick, 2005; Stanovich, 2009a, 2016; 

Toplak et al., 2014; West et al., 2008). Importantly, individual differences in rational reasoning 

performance are thus dependent on both cognitive ability (intelligence) and thinking disposition 

(cognitive motivation). 

Stanovich (2018) highlights that mindware instantiation, the degree to which mindware has been 

learned and automatized, is critical for understanding and classifying responses on rational reasoning 

tasks. The degree to which mindware is learned and automatized predicts whether conflict detection is 

possible, probable, or if a mindware specific response can be made intuitively as a Type 1 process1 

(Stanovich, 2018). Importantly, according to this framework a number of different intuitions can be 

produced as Type 1 responses. This depends on the degree of mindware instantiation, or the degree to 

which the specific mindware has been learned, practiced, and automatized. Importantly, Type 2 

processes will not always lead to more accurate answers. If mindware is missing, deliberation will not 

lead to correct responding. Additionally, rationalization of an intuitive incorrect response can lead to a 

deliberate incorrect response (J. St. B. T. Evans, 2019; Pennycook et al., 2015b). The view of a 

multitude of intuitions being possible at the level of Type 1 processing is in line with a body of work 

which has found evidence for fast intuitive correct responses (Bago & De Neys, 2017; De Neys, 2018; 

Kruglanski & Gigerenzer, 2011; Mækelæ & Pfuhl, 2019; Newman et al., 2017; Raoelison et al., 2020; 

Thompson et al., 2018). This has given rise to the Smart intuitor account (Raoelison et al., 2020; 

Thompson et al., 2018).  

The Smart intuitor account proposes that high cognitive capacity individuals are more likely to answer 

correctly on reasoning tasks by having “better” or more accurate intuitions (Raoelison et al., 2020). 

That means that a corrective deliberate process (as proposed by the Default-interventionist account) 

can still happen, but most of the variance in correct responding in decision-making tasks are explained 

by more accurate intuitions rather than overriding of faulty intuitions (Raoelison et al., 2020). 

Therefore, according to the smart intuitor account, overriding of incorrect intuitive responses is not 

always necessary on heuristic and bias tasks. Rather, most normative responses can be made 

intuitively. Thus, the smart intuitor account predicts that correct responses can be made fast and with 

little effort. Additionally, the smart intuitor account predicts that cognitive ability should predict 

reasoning performance, and cognitive motivation (NFC) should have less influence on performance. 

This is in contrast to the Default-interventionist account where both ability and motivation to execute 

deliberation is necessary for correct responding. 

Addressing the question of how Type 2 processing is engaged is at the center of Pennycook et al. 

(2015b)’s three-stage model of analytic engagement. This model integrates the smart intuitor proposal 

 

1 Stanovich (2009) uses the term autonomous set of systems instead of Type 1 processing. This to 

highlight that there are multiple sub-systems working in parallel, not one unitary system. 
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that many types of intuitions can be made fast as a Type 1 process. In this model competing intuitions 

are the mechanism causing deliberation or Type 2 processing. The model suggests that bias can occur 

early as a failure in conflict monitoring, which leads to the initial response being given (similar to 

Default-interventionist). If a conflict between competing intuitions is detected Type 2 processing will 

be engaged. This can lead to evaluation of the initial responses, where the best one is given, or a new 

response can be generated. This is labeled cognitive decoupling, a type 2 process, similar to the 

proposal of the Default-interventionist account. Alternatively, if a conflict is detected, an initial 

incorrect response may be rationalized (Type 2 process) as being the correct one, that is similar to 

motivated reasoning (Kahan, 2013, 2015; Kunda, 1990).  

Dual-process theories and heuristics and bias tasks have co-evolved where errors in reasoning have 

been explained in a dual-process framework and performance measures on heuristics and bias tasks 

such as response accuracy and response times have been used to investigate dual-process theories (De 

Neys & Glumicic, 2008; Kahneman, 2011; Kahneman & Frederick, 2002; Pennycook et al., 2015b, 

2016; Pennycook, Fugelsang, et al., 2012; Stanovich, 2016; Stanovich & West, 2000; Tversky & 

Kahneman, 1974). A salient example is the base-rate task mentioned previously. Kahneman & 

Tversky (1973) presented evidence that humans tend to ignore base-rates in certain scenarios, 

although they are fully able to use base-rate information in the absence of individuating information. 

This error has since been explained as resulting from Type 1 processing (Kahneman & Frederick, 

2002). However, evidence suggests that base-rate information can be used intuitively, and base-rate 

use depends on the task structure and the format of the information presented (Barbey & Sloman, 

2007; Bar-Hillel, 1980; De Neys & Glumicic, 2008; Gigerenzer et al., 1988; Koehler, 1996; 

Pennycook & Thompson, 2012). Further the cognitive reflection test (CRT) has been proposed to 

assess cognitive reflection or the tendency to engage in Type 1 or Type 2 processing through task 

performance (Frederick, 2005). However, testing the famous bat and ball problem from the CRT in a 

two-response format, it was shown that most of the participants who answered correctly did so 

intuitively, and there was only a marginal increase in correct responding after deliberation (Raoelison 

et al., 2020). Further, a meta-analysis revealed that the CRT may assess general intelligence and 

numeracy, but no specific factor of cognitive reflection could be distinguished (Otero et al., 2022). 

Thus, there has been an assumption that task performance could display effort engagement and Type 2 

processing without measuring actual effort in reasoning. Furthermore, errors in rational reasoning 

have been interpreted in dual-process frameworks, and proposed to occur due to fast effortless 

processing. A salient example of this is the teleological reasoning bias (Kelemen et al., 2013). 

Teleological reasoning is the tendency to see purpose and intentionality in natural phenomena. 

Teleological reasoning arises early in children’s development and is applied as a general explanatory 

default (DiYanni & Kelemen, 2005). Later in life, through education a mechanistic, scientifically more 

accurate, explanation of natural phenomena replaces teleological reasoning. It has been assumed, in 

accordance with Default-interventionist dual-process theory that this developmentally persistent 

reasoning bias occurs as Type 1 processing, and has to be suppressed through Type 2 processing, in 

order to come up with an alternative more scientifically accurate explanation (Kelemen et al., 2013). 

This was supported by more teleological reasoning errors seen in a speeded vs. an un-speeded 

teleological reasoning task. Thus, it was assumed that Type 2 processing leads to less teleological 
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reasoning errors. However, errors in the control condition were percentage wise equally affected by 

time pressure. This leaves the question of whether reasoning performance on these tasks are actually 

measuring Type 1 and Type 2 processing unanswered. Further, it is unclear if more effort and 

deliberation actually leads to better performance on these tasks. It is therefore important for both the 

development of dual-process theories and the understanding of errors in reasoning to distinguish the 

contributing factors to reasoning performance and Type 1 and Type 2 processing.  

As the defining distinction between Type 1 and Type 2 processing is working memory load (J. St. B. 

T. Evans & Stanovich, 2013), using pupillometry (as the pupil is known to reflect cognitive effort and 

working memory load) is an excellent (and relatively cheap) way to investigate dual-process reasoning 

during task performance. Surprisingly, to our knowledge there is only one study that has investigated 

classic heuristics and bias tasks using pupillometry. Eldar et al. (2021) showed that larger pupil 

dilations were associated with more bias (not less as proposed by the Default-interventionist account) 

on three framing tasks and found no association between pupil dilation and bias on three other tasks. 

Therefore, there is a need to measure concurrent effort exertion during performance on a range of 

heuristics and bias task. Additionally, with new theoretical developments in dual-process research, it is 

important to make strong tests of the new frameworks in order to advance dual-process research. 

1.3 Pupillometry as a measure of cognitive effort  

The human pupil has a diameter that varies roughly between 2- and 8-mm (Mathot, 2018; Sirois & 

Brisson, 2014). The pupil constricts and dilates in response to brightness (controlling how much light 

enters the eye), fixation (controlling focus and visual acuity, constricting when changing from far to 

near and dilating from near to far), and mental activity (cognitive effort and arousal). Changes in 

brightness (from average lighting conditions to darkness) can more than double the pupils’ usual size 

(approximately 120%), whereas changes due to mental activity are smaller and rarely more than 0.5 

mm (Beatty & Lucero-Wagoner, 2000). Pupil dilation, in the context of a cognitive task, is usually 

measured as a stimulus induced change in pupil size from a pre-stimulus baseline time period. The 

pre-stimulus baseline pupil size is usually corrected for by subtraction or a divisive baseline correction 

(Mathot, 2018).  

Starting in the 1960’s a series of studies revealed that the pupil dilates in response to increasing 

processing demands across a range of different tasks such as, mental arithmetic, pitch discrimination, 

language comprehension and more (Boersma et al., 1970; Bradshaw, 1968; Hess et al., 1965; Hess & 

Polt, 1964; Kahneman & Beatty, 1966; Kahneman & Wright, 1971; Schaefer et al., 1968). The claim 

that the pupil reflects changes in cognitive effort was first made by Hess & Polt (1964). Since then, 

several authors and reviews have noted that pupil dilations during cognitive task performance can be 

used as a measure of cognitive effort (Beatty & Lucero-Wagoner, 2000; Just et al., 2003; Kahneman, 

1973; Laeng & Alnaes, 2019; Mathot, 2018; van der Wel & van Steenbergen, 2018). The close 

relationship between cognitive effort and attention was early noted, Kahneman (1973) even used the 

terms interchangeably in his seminal book “Attention and effort”, where “attentional effort” is used to 

describe the “intensity” aspect of attention, as opposed to the “selective” aspect of attention. 

Furthermore, attention and cognitive effort are closely related to the arousal system, which is covered 
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in the next section (1.4 Pupillometry as a measure of the Locus Coeruleus – Norepinephrine system). 

Kahneman (1973) highlights that pupillometry is an adequate physiological measure of effort. 

Pupillometry is sensitive to changes in effort, between tasks, within tasks, as well as being sensitive to 

individual differences in effort requirements due to differences in processing capacity (cognitive 

ability). Kahneman (1973) noted that arousal and effort are not determined prior to the task but varies 

moment to moment when a subject is engaged in a task, and these variations correspond to changes in 

task demands. A salient example displaying changes in pupil size due to variations in cognitive effort 

can be seen in a digit-span task. In this task, subjects are presented a string of numbers to hold in 

memory and report back. The presentation of each successive digit in this task is followed by an 

increase in pupil dilation, with pupil size increases corresponding to increasing numbers of digits 

retained in memory (Kahneman & Beatty, 1966; Kreis et al., 2020). Further, as subjects report back 

the numbers retained in memory a decrease in pupil size can be observed, as an “unloading” of digits 

retained in memory unfolds (D. A. Johnson, 1971). Importantly, pupil dilation increases with higher 

cognitive load until cognitive capacity reaches maximum capacity, but excessive load or “overload” (9 

– 13 digits or 125%) leads to a constriction of the pupil (Granholm et al., 1996; Kreis et al., 2020; 

Poock, 1973), likely indicating a withdrawal of effort, expected when extremely high task demands 

lead to disengagement (Brehm & Self, 1989). This provides convincing evidence that pupil dilation 

reflects cognitive effort rather than simply reflecting task demand. Furthermore, changes in pupil 

dilation have been used to reveal differences in reactive and proactive control strategies in a 

continuous performance task, which would not be possible if pupil dilation simply reflected task 

demand (Chatham et al., 2009). Lastly, performance is a function of both effort and ability. 

Accordingly, differences in cognitive ability have been shown to influence pupil dilation during task 

performance (Ahern & Beatty, 1979; Bornemann et al., 2010; van der Meer et al., 2010). The evidence 

suggests that for simpler or routine tasks, more intelligent individuals have smaller pupil dilations 

during task performance, presumably due to higher efficiency of processing and thus lower effort 

expenditure needed to complete the tasks (Ahern & Beatty, 1979). Conversely, on difficult tasks it 

appears that individuals of higher intelligence have larger pupil dilations during task performance, 

presumably due to more available cognitive resources (Bornemann et al., 2010; van der Meer et al., 

2010). However, it should be noted that the research literature regarding intelligence influencing task-

evoked pupil responses is scarce, and these findings should be interpreted as preliminary. The 

relationship between cognitive effort and pupil size though, is well documented on a broad range of 

tasks, including but not limited to; memory tasks involving digit strings and memory recall, cognitive 

control tasks such as continuous performance and n-back, inhibition tasks such as go-/no-go, Stroop, 

and other conflict paradigms, mathematical problems, listening effort tasks manipulating complexity 

and intelligibility, sentence- and language comprehension, and mental spatial rotation (Beatty & 

Lucero-Wagoner, 2000; Just et al., 2003; Kahneman, 1973; S. E. Kramer et al., 2013; Laeng & 

Alnaes, 2019; Mathot, 2018; Piquado et al., 2010; van der Wel & van Steenbergen, 2018; Zekveld et 

al., 2018). However, the pupil does not only reflect changes in cognitive effort expenditure. As noted 

by Laeng et al. (2012), pupillometry may provide insight into changes in mental states, allocation of 

attention and the intensity aspect of mental activity, and thus could be considered a window to the 

preconscious. Of particular importance is the close relationship between pupil diameter and activity in 

the Locus Coeruleus, a brain stem nucleus involved in arousal, sleep, stress, attention, learning, 
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behavioral flexibility, decision-making and more (Arnsten, 2000; Aston-Jones et al., 1999, 2001; 

Aston-Jones & Cohen, 2005; Berridge & Waterhouse, 2003; Bouret & Sara, 2005; Foote et al., 1975; 

Nassar et al., 2012; Poe et al., 2020; Preuschoff et al., 2011; Rajkowski et al., 1994; Sara & Segal, 

1991; Yu & Dayan, 2005).  

1.4 The Locus Coeruleus – Norepinephrine system, neural gain 
and pupillometry 

The Locus Coeruleus (LC) is a small nucleus deep in the brainstem that synthesizes the 

neurotransmitter norepinephrine (NE)2. The LC has widespread effects on the central nervous system 

and the whole organism through projections to the spinal cord, brainstem, cerebellum and the 

forebrain (Aston-Jones et al., 1984; Berridge & Waterhouse, 2003; Foote et al., 1983; Moore & 

Bloom, 1979; Poe et al., 2020; Samuels & Szabadi, 2008). The primary source of cortical NE is the 

LC (Foote et al., 1983). The LC-NE system has far-ranging connections reaching most of the cortex 

through axonal varicosities with only few areas that do not receive innervation (Agster et al., 2013; 

Jones et al., 1977; Jones & Yang, 1985; Poe et al., 2020; Samuels & Szabadi, 2008). The LC appear to 

function both as a global unified brain-wide signal and modularly with functionally discrete actions 

(Chandler et al., 2014; Foote et al., 1983; Nagai et al., 1981; Schwarz et al., 2015; Uematsu et al., 

2017). It has long been known that NE modulates global brain states such as arousal, alertness and the 

sleep-wake cycle (Arnsten, 2000; Aston-Jones et al., 1999; Berridge & Waterhouse, 2003; Foote et al., 

1983; Poe et al., 2020). However, recent work suggests that clusters of LC neurons seem to be 

organized with projections to functionally related target areas such as the amygdala and mPFC, 

coordinating for example aversive learning and behavioral flexibility (Chandler et al., 2014; Uematsu 

et al., 2017). Additionally, the LC-NE system is involved in sensory processing, memory formation, 

gene-transcription and brain plasticity, executive functions, such as working memory, focused and 

flexible-attention, in addition to cognitive- and behavioral flexibility and decision-making (Berridge & 

Waterhouse, 2003; Bouret & Sara, 2004; Chandler et al., 2014; McBurney-Lin et al., 2019; 

McGaughy et al., 2008; Poe et al., 2020; Sara & Bouret, 2012; Spencer & Berridge, 2019; Takeuchi et 

al., 2016; Viglione et al., 2023; Waterhouse & Navarra, 2019). Accordingly, there are multiple factors 

affecting the influence of NE which regulates cognition and behavior differentially at different levels 

and timescales.  

The LC-NE system primarily functions as a neuromodulatory system, that is, NE acts through 

modulating the effects of other neurotransmitters such as glutamate and gamma amino butyric acid 

(GABA), rather than producing direct excitatory or inhibitory effects. Thus, the LC-NE system 

modulates the strength and efficiency of synaptic transmission and the overall activity pattern of 

neural circuits. It has been proposed that the LC-NE system globally functions through modulating 

neural gain (Aston-Jones & Cohen, 2005; Eldar et al., 2013; Servan-Schreiber et al., 1990; Usher et 

al., 1999). That is, the LC-NE system alters the responsiveness of neural populations to synaptic input, 

 

2 Although all Locus Coeruleus neurons contain norepinephrine some also express other molecules. 



 

 

24 

 

 

either increasing or decreasing the signal based on other input. Higher gain increases the signal-to-

noise ratio in neural circuits by amplifying salient information or representations, while suppressing 

other information. Global increases in neural gain are associated with focused attention, higher 

functional connectivity, and clustering of neural activity, whereas low gain is associated with broader 

attention and lower functional connectivity (Eldar et al., 2013). According to the adaptive gain theory 

(Aston-Jones & Cohen, 2005) the LC- NE system adaptively adjust gain to the adaptive dilemma of 

exploiting and exploring the environment.  

Importantly, LC activity can be characterized as tonic and phasic. Tonic LC activity is the baseline 

firing rate of the LC and is monotonically related to wakefulness and arousal. Phasic LC activity is 

characterized by short bursts of spiking neural activity. It occurs at moderate levels of tonic activity 

and is often linked to salient or novel stimuli. According to the adaptive gain theory, phasic LC 

activity creates system-wide increases in neural gain to facilitate the execution of behavioral responses 

ensuing from decision processes. In the context of experimental tasks, phasic activity is associated 

with task related stimuli but not distractors. Low tonic LC activity i.e., low NE levels, are associated 

with inattention, drowsiness, little motor activity and low cognitive performance. Moderate tonic 

activity is associated with phasic activity, high cognitive performance, attentiveness and wakefulness. 

High tonic LC activity (or tonic mode) has been associated with distractibility and low cognitive on-

task performance. According to the adaptive gain theory, tonic mode produces an enduring non-

specific increase in gain that increases task disengagement, thus task performance suffers. However, 

the exploration of alternatives is an adaptive adjustment on a broader scale and necessary when utility 

in the current task decreases. The relationship between NE and task performance can be described as 

an inverse U-shaped function. An explanation for this can be found when considering that NE acts at 

three families of receptors, α1, α2, and β receptors. α2 receptors have higher affinity to NE compared 

to α1 and β receptors. At low and moderate levels of NE, high affinity α2 receptors promote working 

memory. However, at higher levels of NE (e.g., high arousal conditions such as stress and anxiety) 

lower affinity α1 receptors can impair working memory performance (Arnsten, 2000; Berridge & 

Spencer, 2016; MacDonald et al., 1997; M. Wang et al., 2007). However, low affinity α1 receptors 

promote both focused- and flexible attention at moderate and higher levels of NE, but also show 

diminished performance with levels of NE being too high. Thus, differing levels of NE enhance and 

impede separate executive cognitive processes. Notably sustained and flexible attention is enhanced at 

higher levels of NE compared to working memory, thus indicating a right-shifted inverted U-curve 

(Berridge & Spencer, 2016; Spencer & Berridge, 2019).  

Alternative theories have proposed that LC activity may signal unexpected uncertainty or 

environmental volatility, and learning dynamics of the environment (Browning et al., 2015; Dayan & 

Yu, 2006; Nassar et al., 2012; Preuschoff et al., 2011; Yu & Dayan, 2005). Phasic LC activation may 

function as a neural interrupt signal or a “network reset”. Phasic LC activation occurs in response to a 

change in the environment (salient, novel, or unexpected stimulus or event), and the function of this 

signal might be to interrupt ongoing activity and facilitate re-organization, in order for fast behavioral 

adaptation to occur (Bouret & Sara, 2005; Dayan & Yu, 2006).  
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There is a remarkably high correlation between LC activity and fluctuations in pupil diameter (Joshi et 

al., 2016; Rajkowski et al., 1994; Reimer et al., 2016). Thus, non-luminance mediated changes in pupil 

size as measured by pupillometry can be used as a proxy for the LC-NE system and neural gain (Eldar, 

Cohen, et al., 2016; Eldar et al., 2013; Eldar, Niv, et al., 2016; Gilzenrat et al., 2010; Jepma & 

Nieuwenhuis, 2011; Joshi et al., 2016; Murphy et al., 2014). Notably, there is an inverse relationship 

between baseline pupil size and task evoked pupil responses (de Gee et al., 2014; Eldar et al., 2013, 

2021; Gilzenrat et al., 2010; Murphy et al., 2014). Meaning lower baseline pupil size, indicating low 

levels of NE and neural gain, can be associated with larger pupil dilations. Thus, indicating a need for 

caution when making baseline corrections. Furthermore, using pupil dilation as a proxy for neural 

gain, and modelling the influence of neural gain on decisions, has received attention in an alternative 

framework for decision-making, namely sequential sampling models (Busemeyer et al., 2006; Eldar et 

al., 2013, 2021; Krajbich & Rangel, 2011; Usher et al., 1999, 2013; Usher & McClelland, 2004). 

1.5 Sequential sampling models of decision-making 

Sequential sampling models of decision-making are a class of cognitive computational models that 

aims to understand and describe the cognitive processes underlying decision-making (Boag et al., 

2023; N. J. Evans & Wagenmakers, 2020; B. U. Forstmann et al., 2016; Ratcliff et al., 2016). 

Generally, these models assume that decision-making is a process which unfolds over time as 

evidence is gradually accumulated and integrated, at a certain rate, for some alternatives, until a 

threshold or criteria is reached, which triggers a decision. These models are formally described 

mathematical models which provide predictions regarding both decision choice and response times for 

decisions. An advantage of these models is the ability to decompose response time distributions into 

latent psychological parameters underlying decisions, such as drift-rate and decision threshold, rather 

than relying on descriptive statistics such as mean response time and percentage of correct answers. 

Thus, the models can account for speed-accuracy trade-offs present in most decision-making tasks. 

Further, sequential sampling models enable researchers to link latent psychological decision-

parameters with psychophysiological data (Cavanagh et al., 2014; de Gee et al., 2020; Krajbich, 2019; 

Krajbich et al., 2010, 2012; Turner et al., 2013, 2015, 2016; Westbrook et al., 2020). These models are 

neurally plausible both in individual neurons and populations of neurons (Arnold et al., 2015; Ding & 

Gold, 2012; B. U. Forstmann et al., 2016; J. I. Gold et al., 2008; J. I. Gold & Shadlen, 2007; Roxin & 

Ledberg, 2008; Shadlen & Kiani, 2013). Sequential sampling models can theoretically be extended to 

any cognitive decision-making task and have been applied and validated with a range of cognitive 

tasks in areas such as perceptual choice, learning, memory, language processing and consumer choice 

(B. U. Forstmann et al., 2016; Krajbich, 2019; Lerche et al., 2020; Lerche & Voss, 2017, 2019; 

Ratcliff, 1978; Ratcliff et al., 2016; Trueblood et al., 2014; Voss et al., 2004; Westbrook et al., 2020). 

To exemplify the general structure of sequential sampling models, the drift-diffusion model (DDM, 

also known as diffusion decision model) will be presented (Ratcliff, 1978; Ratcliff & McKoon, 2008; 

Ratcliff & Rouder, 1998; Wagenmakers et al., 2008). The model has four key parameters, drift-rate, 

threshold, starting point, and non-decision time. The model assumes two choice options and that 

evidence is noisily and gradually accumulated from a starting point until a decision threshold is 

reached. The drift-rate represents the average amount of evidence for the two response options per unit 
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of time. Stronger evidence in favor of one option will lead to higher drift-rate, whereas weaker or 

more ambiguous evidence will lead to lower drift-rate. Thus, drift-rate is indexing task difficulty. 

Additionally, individual ability, intelligence or processing speed will also influence the rate of 

evidence accumulation or drift-rate. Further, two decision thresholds, representing each response 

option, set the criteria for when the evidence is sufficiently favoring one option. Thus, evidence is 

accumulated until it favors one option to an extent that it reaches a decision threshold, triggering a 

decision. The decision-threshold thus indicates response caution (conservativism) or impulsivity, and 

accounts for speed-accuracy trade-offs. Larger decision boundary separation requires that more 

evidence must be collected (or favor more strongly) one response option. This results in fewer errors, 

but longer response times. Conversely, lower decision thresholds lead to faster decisions but more 

errors. The starting point of the model reflects prior bias or preference for one of the response options. 

The starting point of evidence accumulation can be located closer to one boundary, and thus further 

away from the other response alternative, requiring less evidence accumulation for one option. The 

fourth parameter is non-decision time, such as sensory processing of the stimuli and execution of 

motor responses. Additionally, the model can include variability in drift-rate, starting point, and non-

decision time across trials (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). 

Several sequential sampling models have been proposed and they differ from the DDM in various 

ways. Such as, whether evidence is accumulated at discrete time points or continuously, if there is one 

or more accumulators, whether these are independent, if they are leaky, or exert influence on the 

accumulation process, whether thresholds are fixed for each accumulator or depend on the relative 

evidence strength, and if decision boundaries are static or collapsing over time (Bogacz et al., 2006; 

Brown & Heathcote, 2008; Ratcliff, 1978; Smith & Ratcliff, 2004; Smith & Vickers, 1988; 

Teodorescu & Usher, 2013; Usher & McClelland, 2001; Van Zandt et al., 2000; Vickers & Lee, 

1998). Additionally, there are differing theoretical accounts of the decision-making process (Brown & 

Heathcote, 2008; Busemeyer & Townsend, 1993; Krajbich & Rangel, 2011; Ratcliff, 1978; Ratcliff & 

Rouder, 1998; Roe et al., 2001; Usher & McClelland, 2001). These sequential sampling models 

propose different dynamics of the decision-making process and have different applications. For 

example, the attentional drift-diffusion model proposes that attention influences the rate of evidence 

accumulation for the option being attended (Krajbich, 2019; Krajbich et al., 2010). The model 

explains how attention is dynamically allocated and how visual attention dynamically influences 

decision-making. The model can be extended to include multiple options and be applied to domains 

such as valuation, memory, and learning. Studies using eye-tracking reproduce predictions from the 

model, such as the chosen option being attended more, and usually last before making a decision. 

Relatedly, decision field theory proposes that individuals’ preferences change over time as different 

aspects of options are considered and evaluated, influencing the perceived value of the options and the 

preference state of the options (Busemeyer & Townsend, 1993; Diederich, 2003; J. G. Johnson & 

Busemeyer, 2005; Roe et al., 2001). Thus, highlighting the role of the dynamic process evolving over 

time, and the influence of context, which will influence attention, valence and preference-state. 

Additionally, the model can be extended to include outcomes that are valuations, further extending the 

possible applications of the model. Decision field theory and models built on this framework have 

been used to explain decision biases such as preference reversals and loss aversion (Busemeyer & 
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Townsend, 1993; Diederich, 2003; J. G. Johnson & Busemeyer, 2005; Roe et al., 2001). However, 

despite their differences many of these models have a high degree of overlap and they provide an 

accurate description of response time distributions in a number of cognitive tasks. Thus, it can be hard 

to distinguish predictions and assess which dynamics best explain the decision-making process (Dutilh 

et al., 2019; Leite & Ratcliff, 2010; Teodorescu & Usher, 2013). 

Notably, it has been proposed that neural gain influences evidence accumulation in sequential 

sampling models (Aston-Jones & Cohen, 2005; Eldar, Cohen, et al., 2016; Eldar et al., 2013, 2021; 

Usher et al., 1999). Higher neural gain leads to higher weighting of each piece of evidence, such that 

fewer pieces of evidence are required to reach a decision-threshold and a decision. Conversely, low 

neural gain leads to lower weighting of each piece of evidence such that more evidence must be 

accumulated before a decision is made. Additionally, it has been proposed that neural gain influence 

the breadth of information processing such that high gain is associated with narrower attention, 

whereas low gain is associated with broader information sampling (Eldar et al., 2013; Eldar, Niv, et 

al., 2016). Thus, low gain allows a broader range of information to influence the evidence 

accumulation process. Importantly, Eldar et al. (Eldar et al., 2021) proposes that decision-biases occur 

due to more extensive integration. The authors highlight that predictions from more extensive 

integration due to low neural gain make the opposite predictions regarding pupil dilation and decision 

bias, as dual-process theories do. Indeed, their result supports that larger pupil dilations due to low 

neural gain, as proposed by extensive integration, is linked to more bias on a range of decision-making 

tasks (Eldar et al., 2021). As this study was the first to apply pupillometry to directly assess these 

competing decision-making frameworks, there is a need to further test this hypothesis with other 

reasoning bias tasks.  

1.6 Aims of the thesis 

As outlined above cognitive effort is ubiquitous, however the tools measuring cognitive effort have 

been developed in different strains of research and little is known about whether they are measuring 

the same construct. There is therefore a need to assess the shared variance of these tools to advance 

research and avoid errors due to mistaken similarity. Further, the role of cognitive effort in decision 

making and reasoning errors is controversial with recent empirical findings opposing predictions of 

established dual-process theories. Moreover, newly developed theoretical models are in need of 

empirical testing and alternative decision-making paradigms may explain current empirical findings. It 

is therefore pertinent to empirically test opposing decision-making frameworks and further shed light 

on the role of cognitive effort in decision-making and errors in reasoning. 

The overarching aim of this thesis was to (1) investigate the role of cognitive effort in decision-

making and errors in reasoning. To achieve this, I also (2) evaluated tools measuring cognitive effort 

in decision-making, and (3) evaluated competing dual-process models and alternative frameworks of 

decision-making.  

The primary aim of Paper 1) was to evaluate tools measuring cognitive effort from different strains of 

research. A secondary aim of Paper 1 was to evaluate if other cognitive effort measures were related to 
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performance on a rational reasoning tasks battery, as predicted by dual-process theory. We present six 

studies comparing different tools measuring cognitive effort to assess their shared variance. Thus, 

filling a critical gap in existing knowledge about the shared variance of cognitive effort measures 

within and across research fields. Additionally, we test an important assumption of dual-process 

theories, namely that cognitive effort expenditure is related to performance on rational reasoning tasks.  

The aim of Paper 2) and Paper 3) was to investigate the role of cognitive effort in decision-making and 

test predictions of decision-making frameworks explaining bias in reasoning. To achieve this, I 

applied a psychophysiological measure of cognitive effort, pupillometry, during task performance on 

two different reasoning tasks. In Paper 2) I simultaneously recorded choices, response times and pupil 

dilation during performance on a teleological reasoning task. Thus, advancing our knowledge of a 

developmentally persistent reasoning bias, while explicitly testing competing decision-making 

frameworks and investigating the role of cognitive effort in reasoning bias. In Paper 3) I applied two 

variants of a well-established reasoning task, the base-rate task, adapted for eye-tracking and 

pupillometry, respectively. Measuring eye-tracking and pupillometry during task performance allowed 

me to investigate predictions from the three-stage model of analytic engagement (Pennycook et al., 

2015b). Additionally, by applying psychophysiological measures and computational modelling of 

response times I bring insight into task performance on this reasoning task which have had significant 

influence on the development of dual-process models and our understanding of bias in reasoning. 

2 Methods 

Table 1 present an overview of the studies, samples, tasks, and measures applied in the three papers. 

Table 1. Overview of studies, samples, tasks, and measures for the three papers in the thesis 

Study Sample Tasks and measures Pupillometry 

Paper 1 

Study 1 WashU (N = 76) DST, COG-ED, NFC, a  

Study 2 WashU (N = 91) COG-ED, NCS, a  

Study 3: Day 1 UiT (N = 82) COG-ED, N-TLXCOG-ED
b  

Study 3: Day 2  UiT (N = 84)c RQ, N-TLX RQ, NCS  

Study 4: Day 1 UiT (N = 40) DST, RQ, a, NCS, a, a  

Study 4: Day 2 UiT (N = 40) DST, NCS, a, COG-ED, N-TLXCOG-ED,  
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Study 5: Day 1 UiT (N = 45) DST, N-TLX DST, RQ, N-TLX RQ, NCS, 

Teleological reasoning taskd 

Teleological 

reasoning taskd 

Study 6: (1) UiT (N = 91) COG-ED, N-TLXCOG-ED, DST, N-TLX 

DST, RQ, N-TLX RQ, NFC 

 

Study 6: (2) Prolific (N = 227)  

Paper 2 

Study 5: Day 1 UiT (N = 45) DSTe, N-TLX DST
e, RQ, N-TLX RQ, 

NCS, Teleological reasoning task 

Teleological 

reasoning task 

Paper 3 

Study 5: Day 2f UiT (N = 40) Base-rate task (1)g, N-TLX BR(1), RQ, 

Base-rate task (2), N-TLX BR(2)
 

Base-rate task 

(1) Base-rate 

task (2) 

+ Sampleh UiT (N = 20) Base-rate task (1), N-TLX BR(1), RQ, 

Base-rate task (2), N-TLX BR(2), NFC 

Base-rate task 

(1) Base-rate 

task (2) 

Note. Data from Study 5: Day 1 was applied in both Paper 1 and Paper 2. Study 6 included two 

samples, the first sample (1) was collected at UiT and the second sample (2) was collected online 

through Prolific. Abbreviations: WashU = Washington University in St. Louis, UiT = UiT–The 

Arctic University of Norway, DST = Demand selection task, COG-ED = Cognitive effort 

discounting paradigm, RQ = Rational reasoning battery, NFC = Need for cognition scale, N-TLX = 

NASA task load index, BR = Base-rate task. 
a Notes a task participants completed but not discussed in the thesis. 
b NTL-X followed by task name in subscript = N-TLX for the task noted in subscript. 
c In Study 3, N = 65 participants were tested on both days. 
d Teleological reasoning task not reported in Paper 1. 
e DST and N-TLX not reported in Paper 2. 
f Participants from Study 5: Day 1 were invited for a second day of testing. Due to the COVID-19 

pandemic not all participants could partake in Day 2.  
g For the base-rate task (1) indicates the task version performed first, (2) indicates second. 
h An additional sample was recruited for Paper 3 to achieve statistical power. 

2.1 Studies, participants, and ethics 

All three papers in this thesis were based on six studies. Two of the studies, Study 1 and Study 2 were 

conducted in 2013 at Washington University in St. Louis by an independent research group. The 

remaining studies, 3 – 6. were conducted at UiT – The Arctic University of Norway (UiT) between 

2018 and 2022. Paper 1 was based on data from studies 1 – 6 (not included in Paper 1 is Study 5: Day 
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2, and the teleological reasoning task from Study 5: Day 1). Paper 2 was based on data from Study 5: 

Day 1 (not included in Paper 2 is the DST and N-TLX). Paper 3 is based on data from Study 5: Day 2.  

For Study 1 and Study 2, all participants were tested individually at Washington University in St. 

Louis. Participants received 10$ per hour for participation, in addition to monetary rewards which 

could be gained in the COG-ED. 

Study 3 consisted of two days of testing approximately three weeks apart. Participants were 

undergraduate students at UiT, receiving course credit for participation. Participation was possible for 

either one of the days, or both days. Testing was conducted in small groups in a computer room.  

Study 4 consisted of two days of testing. Testing sessions were 4 – 8 weeks apart. All participants 

completed both days. Participants were a mix of students at UiT, full-time workers and high-school 

students. Participants received 200 NOK for participation and earned between 50 – 150 NOK (1 USD 

is approximately 10 NOK) for performance on COG-ED and a second task. 

Study 5 consisted of two days of testing. For Paper 1, Study 5: Day 1 tasks: DST, N-TLX DST, rational 

reasoning battery, N-TLX Rational reasoning battery, and NCS, were used. For Paper 2, Study 5: Day 1 tasks: 

rational reasoning battery, NFC, and teleological reasoning task, were used. For paper 3, data from 

Study 5: Day 2 were used. Participants in Study 5 received either 400 NOK for two test days or 150 

NOK for participating on only one of the days. Participants were a mix of students and full-time 

workers. Participants from Study 5: Day 1 were invited back for a second day of testing. However, 

due to the COVID-19 pandemic the testing session was delayed, and some participants could not 

partake in Study: 5 Day 2. To achieve the desired sample size, an additional sample was recruited to 

partake in Study 5: Day 2. This additional sample was further increased to account for participants 

from Study 5: Day 1 who could not partake in the second day of testing. 

Study 6 consisted of two samples. The first sample (1) was undergraduate psychology students 

recruited from two-psychology classes at UiT. Participants received course credit for participation and 

could win vouchers worth approximately 25 – 50 NOK based on performance in COG-ED. The 

second sample (2) was collected online from Prolific (prolific.co). Participants at Prolific received 8 

GBP for participation, plus bonus based on performance on COG-ED. Both samples completed the 

testing online.  

Study 1 and Study 2 were approved by the Institutional Review Board at Washington University in St. 

Louis. All participants provided written consent. Study 3 - 6 were separately approved by the 

Institutional Review board at the Department of Psychology at UiT. All participants provided consent 

(written or online) before participation. All participants were 18 years or older, and younger than 65 

years. 
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2.2 Tasks and measures 

2.2.1 Cognitive effort discounting paradigm (COG-ED) 

In paper 1, the cognitive effort discounting paradigm was used in all studies except for Study 5. The 

COG-ED measures differences in cognitive effort costs (Westbrook et al., 2013). The COG-ED relies 

on the n-back task (see Owen et al., 2005). In this task, participants are presented sequentially a series 

of letters in the middle of the screen. The task is to respond (key press) if the current letter is the same 

as the letter “N” numbers before. I.e., if N = 1 participants respond if the current letter is the same as 

the previous letter (current - 1). If N = 3 participants respond if the current letter is similar to the letter 

three letters back (current – 3). Participants are familiarized with the N-back task by playing all load 

levels for three runs. In Study 1 and Study 2 load levels were between N = 1 and N = 6. In Studies 3,4 

and 6, the load levels were between N = 1 and N = 4. In the choice phase of the COG-ED participants 

are presented a series of decisions between performing an easy task (N = 1) for a smaller reward, or a 

harder task (N = 2 – 6) for a larger reward. see Figure 1 for an illustration of the N-back task and 

choice (adapted from Mækelæ et al., 2023). 

 

Figure 1. Illustration of the cognitive effort discounting paradigm. 

Note. The figure illustrates the logic of the n-back task and the cognitive effort discounting paradigm. 

Example includes an illustration of a choice between performing a N = 1 back task for a 1$ reward or 

performing a N = 3 back task for a 2$ reward. Figure is adapted from Mækelæ et al. (2023). 

Reward amount offered for the two options are adjusted and titrated based on participants choices to 

find the indifference point between two choice options. As an example, in Study 1 participants were 

offered 2$ for N = 2 and 1$ for N = 1. If participants chose the low effort option (N = 1), the reward 

amount for the low effort option was adjusted downward on the next choice. If the high effort option 

(N = 2) was chosen the reward amount for N = 1was adjusted upward on the next choice. After each 

choice the adjustment of the reward amount is halved. The final amount chosen after six choices is 

taken as the subjective indifference point between the two options. Subjective indifference points were 

averaged across all load levels to create an average indifference point score for each individual. This is 

the cognitive effort discounting measure for COG-ED in Paper 1. 

2.2.2 Working memory capacity 

Working memory capacity in Paper 1 was assessed by the discriminability score (d’) of participants in 

the practice phase of n-back task in COG-ED. The calculation is based on signal detection theory. 
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Correct responses to a stimulus presented N-numbers back is considered a “hit”. Not responding to 

this stimulus is considered a “miss”. Not responding when the current letter does not match the letter 

N-numbers back is considered a “correct rejection”. “False alarms” are responses too late or too early. 

The discriminability score is calculated by z-transformed hit-rate minus z-transformed false alarm rate 

(d’ = z(H)-z(FA)). Higher discriminability score indicates higher working memory capacity. 

2.2.3 Demand selection task (DST) 

The demand selection task was used in Studies 1, 4, 5, and 6, in Paper 1. The DST measures cognitive 

demand avoidance. The task used was a replication of experiment 3 in Kool et al. (2010). In this task 

paradigm participants perform two different tasks. In both tasks participants are presented with a digit 

on the screen, digits range from 1 to 9, excluding 5. One task is a magnitude task where participants 

must respond to indicate if the digit is higher or lower than 5. The other task is a parity task where 

participants must indicate if the digit is odd or even. Which of the two tasks participants have to 

perform is indicated by the color of the digit, either blue or yellow. Responses are made by a mouse 

click on the right or left side of the screen to indicate choices. Participants start with a practice phase 

of 60 trials where participants are familiarized with the two tasks and the associated color. In the 

practice phase participants receive feedback and can redo the training phase if necessary (none of the 

participants had to redo the practice phase). In the test phase participants are presented with two 

colorful balls on the screen and should pick one of the two balls. See Figure 2 for an illustration of the 

demand selection task (adapted from Mækelæ et al., 2023). 

 

Figure 2. Illustration of the demand selection task. 

Note. Figure illustrates stimuli and tasks. Left side of figure shows a ball (before choosing). Right side 

is the ball with number displayed (after choosing ball). Middle shows a magnitude task (top) and a 

parity task (bottom). Figure is adapted from Mækelæ et al. (2023). 

Participants are instructed that they should sample from both presented options but can continue with 

one of them if they develop a preference. The location of the balls change (appearing along an 

invisible circle at a 45-degree angular distance). Not known by the participants one of the balls 

switches tasks on 90% of trials, and the other switches tasks on 10% of the trials. There are eight runs 

of 75 trials each, 600 trials total (Study 6 used 4 runs with a total of 300 trials). Cognitive demand 
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avoidance is quantified as the proportion of high demand choices (choosing the ball with 90% chance 

of task switch). Thus, higher proportion of high demand choices (score between 0.5 and 1) indicates a 

preference for cognitive effort and conversely a lower proportion of high demand choices (score 

between 0 – 0.5) indicates cognitive demand avoidance. 

2.2.4 Rational reasoning battery 

The rational reasoning battery was used in studies 2 – 6 and both Paper 1 and Paper 2. The rational 

reasoning task battery consisted of a collection of tasks from the heuristics and biases literature with 

some variation in tasks across the studies. The tasks are considered a behavioral measure of a thinking 

disposition or a preference for cognitive reflection (or analytic cognitive style) and cognitive effort. 

Performance on the tasks is believed to reflect usual cognitive effort engagement, as opposed to 

maximum (Stanovich, 2009b). Higher performance indicates a tendency to engage in cognitive effort 

when necessary, and lower performance is associated with cognitive miserliness (Toplak et al., 2014; 

Trippas et al., 2015). Tasks from the cognitive reflection test (CRT) are applied in the task battery 

(Frederick, 2005; Thomson & Oppenheimer, 2016; Toplak et al., 2014). Performance on these tasks is 

believed to depend on the ability to suppress an intuitive but incorrect response in order to come up 

with a more deliberate correct response. The underlying assumption is that the deliberation process 

requires more cognitively demanding processing, thus correct responses reflect more cognitive effort 

(Frederick, 2005; but see Raoelison et al., 2020). As an example, consider problem 2 from the original 

CRT, “If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to 

make 100 widgets?___ minutes.” (Frederick, 2005, p. 27). Intuitively the answer 100 comes to mind 

for many people. Perhaps assuming that the number of machines, widgets and minutes should be the 

same, as they were so in the premise. However, if one takes the time to think through the problem, 

many people realize that it only takes each machine 5 minutes to create a widget, and the answer must 

be 5 minutes, as the number of machines and widgets are the same (however, see Raoelison et al., 

2020). 

Multiple tasks in the rational reasoning battery such as belief bias in syllogistic reasoning (Markovits 

& Nantel, 1989; Toplak et al., 2014) are also based on the premise that Type 2 processing must 

suppress responses created by Type 1 processing. Thus, these problems include an intuitive “lure”. 

Additionally, there are tasks in the rational reasoning battery which have no “lure” option. For 

example the knight and knave problems (Smullyan, 1978) which depend on thinking through all 

options or fully disjunctive reasoning. These tasks are also believed to assess cognitive effort as they 

demand cognitive work find that there is a correct solution. 

In addition to the tasks already mentioned we used a range of tasks including 18 items from Toplak et 

al. (2011), which includes the original CRT (Frederick, 2005). Further, items from the extended and 

alternative CRT were used (Thomson & Oppenheimer, 2016; Toplak et al., 2014), a “marriage 

problem” (Levesque, 1986), a conditional reasoning problem (Lehman et al., 1988), a medical 

statistical reasoning problem (Gigerenzer et al., 2007), and a base-rate problem (West et al., 2008). 
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Correct responses on each problem were scored as 1, and incorrect responses were scored as 0. In 

paper 1, the proportion of correct responses were calculated to compare scores across studies. In paper 

2 a composite score between 0 – 14 was created for each individual and subsequently z-scored across 

participants. 

2.2.5 Need for cognition scale (NFC) 

Need for cognition was used in all studies, and included in both Paper 1 and Paper 2. NFC was 

measured with the abbreviated 18-item version (Cacioppo et al., 1984). This scale measures a thinking 

disposition of engaging in and enjoying effortful cognitive activity. The scale consists of statements 

such as “I would prefer complex to simple problems” and “I find satisfaction in deliberating hard and 

for long hours”. Participants are asked to indicate on a 5-point Likert scale to what degree the 

statements are characteristic of themselves. The end-points of the scale are 1 = “Extremely 

uncharacteristic of me” and 5 = “Extremely characteristic of me”. A total NFC score is calculated by 

adding up the score from all items, thus ranging from 18 – 90. 

2.2.6 NASA task load index 

The NASA task load index was used in Paper 1 and was included in studies 3 – 6. The N-TLX is a 

tool for measuring subjective task demand or mental workload associated with a task (Hart & 

Staveland, 1988). Workload is assessed on five separate scales. The scales use a visual analogue scale 

ranging from 1 = very low to 20 = very high. Participants indicate the experienced subjective mental 

demand, physical demand, temporal demand, performance, effort, and frustration. The scale was used 

to assess the cognitive effort associated with the other task paradigms in Paper 1. 

2.2.7 Teleological reasoning task 

The teleological reasoning task was included in Study 5: Day 1 and was the basis for Paper 2. The task 

was adapted from Kelemen et al. (2013) to be suitable for pupillometry. Teleological explanations 

refer to an endpoint or a final purpose (Kelemen et al., 2013). I.e., things exist for a purpose. An 

example of a teleological explanation is that “trees produce oxygen in order for people to breathe”. 

Although, common in religion, teleological explanations for natural phenomena are rejected in science 

where a mechanistic understanding of the universe prevail. However, teleological reasoning can be 

appropriate in the social-conventional and artifact domains. For example, “Schools exist in order to 

help people learn new things”. Importantly, humans tend to favor teleological explanations from an 

early age (Kelemen, 1999) and show a bias towards accepting false teleological explanations for 

natural phenomena in adulthood (Kelemen et al., 2013). That is, they show a teleological reasoning 

bias. In the teleological reasoning task participants are presented with 34 false teleological 

explanations for natural phenomena. These are test items and correct responding is judging them as 

false. Control items contain true and false physical explanations, and true and false teleological 

explanations. The control items containing true teleological explanations are in the social-conventional 

and artifact domains. The control items that are false teleological explanations are false due to 

incongruity, such as “Noses exist in order to support glasses”. There were 19 control teleological 

items. In addition, there were 24 control physical items that were true “Objects fall downwards 
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because they are affected by gravity” and false “Rivers have rapids because a lot of fish swim in 

them”.  

The Teleological reasoning task was computerized with stimuli presented auditorily. The task was 

self-paced and started by participants pressing the space bar on a keyboard. Start of the trials were 

indicated by the presentation of a fixation cross on screen. After approximately 500 ms (jittered) the 

stimulus sentences were presented auditorily. Stimulus sentences varied in length between 2.3 and 3.7 

seconds. Participants responded by pressing “D” or “K” on the keyboard, indicating if the sentences 

were true or false, respectively. Responses had to be made after the end of the stimulus sentence 

presentation and within 4000ms after presentation. Feedback on responses was given after each trial, 

indicating if the answer was correct or incorrect, indicated by a “V” or “X”, respectively. Feedback 

was presented between 1800 – 2400 ms after responses. Duration of feedback presentation was 

between 4000 – 6200 ms.  

2.2.8 Base-rate task 

The underlying basis of the base-rate task was illustrated with an example “Tom W” in the section 

“1.2 Dual-process models of decision-making”. The base-rate task applied in Paper 3 in this thesis was 

adapted into two different versions to measure eye-gaze (gaze version) and pupil dilation 

(pupillometry version), respectively. The template for the two tasks was the base-rate task structure 

used in Pennycook et al. (2015b), which was adapted from De Neys & Glumicic (2008), who had 

adapted the tasks from Tversky & Kahneman (1973), see example “Tom W”. Data for the base-rate 

task was collected in Study 5: Day 2 and was the basis for Paper 3. 

In the base-rate task from Paper 3, participants are asked to indicate which out of two groups (referred 

to as classes) a person most likely belongs to. Participants must decide based on two pieces of 

information. The first piece of information is the base-rate information. That is the composition of the 

two population groups, or number of people in each class. The base rates were extremely favoring one 

group (997 vs 3, 996 vs 4, 995 vs 5) or neutral (500 vs 500). The second piece of information was the 

personality trait or one-word attribute describing the person. This attribute was always congruent with 

a stereotype of one of the two classes. There were three conditions in both versions of the task, 

congruent, incongruent, and neutral. In the congruent condition both base-rate information and 

attribute favored the same class (20 trials). The correct response is the class favored by both types of 

information. In the incongruent condition the base-rate information and the attribute information favor 

opposing classes (40 trials). The correct response is the one favored by the base-rate information. In 

the neutral condition the base-rates are neutral, but the attribute favors one class (20 trials). The 

correct response is the class favored by the attribute. 

Stimulus materials for the base-rate task were provided by Gordon Pennycook via personal 

correspondence. In this version of the base-rate task participants first receive on paper background 

information. The same as used in Pennycook et al. (2015b) was applied (see original article for 

details). Summarized, the background information describes that a large number of studies were 

carried out in a big research project. Every study contains two population groups (e.g., nannies and 
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lawyers). Participants will receive information regarding the composition of the two population 

groups. Further, a person is drawn at random from each study. This person is described by a one-word 

personality trait or attribute. The participants’ task is to decide which of the two groups the person 

most likely was drawn from. Following the background information, participants were presented with 

a power point presentation familiarizing participants with the task structure. Additionally, participants 

conducted three practice trials before starting the experiment.  

In the gaze version of the task, participants imitate each trial by pressing the spacebar. After 500 ms, a 

fixation cross is presented for 500ms. Followed by the information “this study contains”, and the class 

information (two population groups), presented on screen for 1800ms. Then, a fixation cross appears 

for 200 ms, followed by the attribute describing the person, presented for 1800 ms. Followed by a 

fixation cross, presented for 200 ms. The response slide is presented for maximally 4000 ms or 

terminates when a response is made. On the response slide the class information is presented on top 

and the base-rate associated with each class is presented directly underneath. The response slide is 

followed by a 200 ms fixation cross, then 1800 ms of a blank screen. Participants indicate their choice, 

left or right option (options divided vertically on screen) by pressing “A” or “L”, respectively. 

Figure 3. Trial structure in Base-rate – gaze version. 

Note. The figure illustrates temporal order of a trial. Illustrations do not accurately represent stimuli 

presented on screen. The dotted squares mark the areas of interest for gaze analysis and are not visible 

on the screen. 
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In the pupillometry version of the task, information is split between being presented on screen and 

auditorily via noise cancelling headphones. See figure 4 for an illustration of trial structure. 

 

Figure 4. Temporal structure of the base-rate task - pupillometry version. 

Note. The figure illustrates the structure of a trial in the base-rate task – pupillometry version. 

Illustrations do not accurately represent stimuli presented on screen. Headphones indicate auditory 

stimulus.  

The task is initiated by participants pressing the space bar for each trial. Followed by 200 ms fixation 

cross. Then the text “This study contains:” is presented with the class information for 1800 ms. This is 

followed by 200 ms fixation cross, and subsequently both class information (presented side by side top 

part of screen) and base-rate information (presented below the corresponding class) was presented for 

3600 ms, followed 200 ms fixation cross. Then a blank screen was shown while the attribute 

information was presented auditorily. Length of attribute sound files were between 50 – 120 ms. The 

attribute sound file was followed by 2000 ms of continued blank screen. Then, a fixation cross was 

presented for 200 ms, followed auditory presentation of a question “is this person more likely a…”, 

directly followed by auditory presentation of a class (example “politician”). The length of the question 

audio file was 2400 ms, and class audio file varied between 600 ms and 1700 ms. After both the 

question and class audio files participants had 400 0ms to respond. Pressing “A” to indicate yes, or 

“L” to indicate no. Labels behind the keyboard indicated which response were associated with yes and 

no responses to avoid confusion and additional mental load. 
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2.3 Pupillometry 

In Study 5 (Day 1 and Day 2) pupillometry was an essential measure. Therefore, the following 

exclusion criteria were applied. Participants had to report that they had no previous history of brain 

disease, neurological disorder or brain surgery. Participants could not be taking any medications or 

drugs that affects the central nervous system. Additionally, the stimulus materials were presented in 

English. Therefore, participants had to rate their English proficiency on a 7-point Likert scale where 

the end points were 1 = “understand a few words” and 7 = “master it like native language”. 

Participants who rated their English proficiency lower than 4 (not including 4) were excluded from 

participation. This criterion was set based on a previous study which found no differences in rational 

reasoning due to language for participants scoring higher than 4 on the same scale (Mækelæ & Pfuhl, 

2019). 

For Study 5 (Day 1 and Day 2) a video-based infrared eye-tracker, the Eyelink 1000 (SR Research) 

was used for measuring eye-gaze in the base-rate gaze version, and for measuring pupil size in both 

the teleological reasoning task and the base-rate pupillometry version. Recordings were sampled at a 

rate of 500 Hz. Artifacts caused by eyeblinks, head-movements etc. were detected based on the 

velocity of the signal (Mathôt et al., 2018). Artifacts were corrected with linear interpolation. 

Thresholds for interpolation were adapted on an individual basis. The signal was smoothed with a 3 

Hz low pass Butterworth filter. The signal was treated as missing for artifacts lasting more than 1000 

milliseconds. The signal was visually screened and trials with artifacts remaining in the time-windows 

of interest were excluded. Time-windows of interest where the interpolated signal was missing for 

more than 50% of the time were treated as missing. Before each pupillometry task a 2-minute baseline 

pupil measure was recorded (not included in analyses). 

For Paper 2, pupil size was recorded during the teleological reasoning task. The time-windows of 

interest were trial-baseline pupil size, pupil dilation before decision, and pupil dilation to feedback. 

The trial-baseline pupil size was recorded as the average signal in the 200 ms following fixation cross 

onset at the start of each trial. Indicating fluctuating levels of LC-NE activity and neural gain. Also 

used for baseline correction of pupil dilation measures. Pupil dilation before decision was measured as 

the maximum dilation from stimulus onset until a response was made. Pupil dilation before decision 

was baseline corrected by subtraction (for exploratory measures the non-corrected signal was also 

applied). The measure indicated cognitive effort, or a reverse measure of neural gain (predicted by 

dual-process theory and extensive integration, respectively). Pupil dilation to feedback was recorded 

as the maximum recorded pupil size in the time window from feedback onset and the following 3000 

ms. The signal was used to indicate surprise and uncertainty. Pupil dilation to feedback is not 

discussed further in this thesis. Baseline pupil size and pupil dilation measures were z-scored within-

participants. 

Paper 3, the base-rate task, gaze version. Four quadrants surrounding the class and base-rate 

information were pre-defined as areas-of interest (AOI). The gaze measure of interest was total gaze 

duration inside the AOI’s, recorded during presentation of the response slide (both class and base-rate 

information presented). Proportional gaze was calculated for type of information (class or base-rate). 
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This was calculated as gaze at the two top quadrants surrounding the class information, divided by 

total gaze inside all four AOI’s. Proportional gaze at correct option was recorded, but not further 

discussed in this thesis. Proportional gaze at correct option was calculated as total gaze time inside the 

two AOI’s (top and bottom) on the side of the correct response (vertically divided), left or right, 

divided by total gaze inside all four AOI’s. 

For Paper 3, pupil size was recorded for the base-rate task pupillometry version. The time-windows of 

interest were trial-baseline pupil size, pupil dilation following attribute information (attribute time 

window) and pupil dilation before decision (decision time-window). Pre-processing for the task 

revealed data loss in recordings. Participants with less than 40% valid trials in the congruent and 

incongruent conditions were excluded separately for further analyses in the time-windows of interest. 

The trial-baseline pupil size (N = 47) was measured as the average signal in the 200 ms following 

fixation cross onset at the start of each trial. This measure was used for baseline-correction and 

exploratory investigation of alternative hypotheses (attention, mind-wandering, adaptive-gain theory). 

Pupil dilation in the attribute time-window (N = 37) was measured as the maximum pupil size 

recorded in the time period from the end of the attribute sound file and the following 2000 ms. The 

measure was used to indicate conflict detection and cognitive effort (and also indicates LC activity). 

The pupil dilation before decision (N = 38) was recorded from the end of the question sound file to a 

response was made, maximum 4000 ms. The measures were used to indicate cognitive decoupling and 

cognitive effort (and also indicate LC activity). Both pupil dilation measures were baseline corrected 

by subtracting the baseline pupil size, and z-scored within participants. 

2.4 Data analysis 

Variables were assessed for normality and outliers by Shapiro-Wilks test and visual inspection of box 

plots, frequency distributions and QQ-plots. Non-parametric tests were applied when assumptions of 

parametric tests were not met. Statistical tests were conducted in R using RStudio. Mixed models were 

analyzed with the lme4 package (Bates et al., 2015). Residuals were inspected with the DHARMa 

package (Hartig, 2022) and variance inflation factor with the caret package (Kuhn, 2015). Drift-

diffusion modelling of responses was performed with Python (Patil et al., 2010) version 3.9 using the 

python toolbox HDDM (Wiecki et al., 2013). In Paper 3, a dockerHDDM was used (Pan et al., 2022). 

The DDM’s for Paper 2 and Paper 3 were run with five Markov chains with 20,000 samples, 12,000 

burn-in, and every second sample discarded as thinning. Model convergence was assessed with the 

Gelman-Rubin R statistic and visual inspection of the trace, autocorrelation and marginal posterior. 

The deviance information criterion was used for model comparison. 

In Paper 1, bivariate Pearson correlations between cognitive effort tasks were first calculated for each 

study separately. The metafor package (Viechtbauer, 2010) was then used to calculate mean effect 

sizes based on the correlation coefficients from each study. Linear mixed models were conducted 

separately for COG-ED, DST and rational reasoning battery, to assess if any of the measures could be 

predicted by NFC, perceived effort in N-TLX, working memory capacity, or any of the other 

behavioral cognitive effort measures. 
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In Paper 2, generalized mixed models were applied for analyzing response times, pupil dilation and 

baseline pupil size. Drift-diffusion modelling of responses was applied in two stages. First, the main 

parameters of the model were estimated and tested for differences between the test- and control 

condition. Second, the pupil measures were entered as predictors of trial-by-trial variation in drift-rate, 

threshold and drift-rate variability.  

In Paper 3, for both base-rate tasks, participants with accuracy rates three standard deviations below 

average in the congruent and neutral conditions were excluded. Response times faster than 150 ms and 

slower than 4000 ms were excluded. As accuracy rates in the incongruent condition revealed a bi-

modal distribution, the data was exploratorily analyzed separately for two distinct groups of 

responders. The gaze version and the pupillometry version were analyzed separately. In the gaze 

version of the base-rate task proportional gaze at information type and correct choice option was 

investigated, in addition to accuracy and response times. In the pupillometry version of the base-rate 

task, pupil dilation following attribute (conflict detection) and before decisions (cognitive decoupling) 

were analyzed, in addition to trial baseline pupil size, response times and accuracy. The drift-diffusion 

model was analyzed separately for the two base-rate tasks, investigating differences in the main 

parameters for the three conditions. 

2.4.1 Sample size 

Sample size minimum for Paper 1 (N = 402) allowed to detect correlations of r = .177 and higher at an 

alpha level of 0.05 and with power of .95.  

For study 5, a power calculation was conducted based on a previous study (de Berker et al., 2016) 

finding a pupil measure of uncertainty correlated with performance (effect size r = 0.62, N=22). 

Assuming regression to the mean, the calculation was based on a smaller effect size of r = .4. In 

addition, we used an alpha level of 0.05 (two-sided) and power of 0.8. This resulted in a sample size of 

44 participants. For Paper 2, regarding individual differences large effect sizes have been found with 

partial η2 between 0.3 and 0.6 (Thompson et al., 2018). A sample of 40 participants was considered 

sufficient to find an effect. 

3 Summary of papers 

3.1 Paper 1) 

3.1.1 Aims and background 

Cognitive effort is ubiquitous, however the measurement of cognitive effort remains a challenge 

(Thomson & Oppenheimer, 2022). Cognitive effort is a function of both cognitive ability and 

motivation to perform the task at hand (Shenhav, Musslick, et al., 2017; Westbrook & Braver, 2015). 

Trait differences in cognitive motivation can be reliably measured with the need for cognition (NFC) 

scale (Cacioppo & Petty, 1982; Hussey & Hughes, 2020). In recent years multiple behavioral tools to 

measure cognitive effort have been developed to measure actualized cognitive effort expenditure 

(Frederick, 2005; Kool et al., 2010; Stanovich, 2016; Toplak et al., 2011; Westbrook et al., 2013). This 
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includes the demand selection task (DST), the cognitive effort discounting paradigm (COG-ED), and 

rational reasoning task batteries, applying tasks from the heuristics and bias literature. Further, 

concerns about the reliability and validity of self-report motivate the use of behavioral task paradigms 

(Paulhus & Vazire, 2007). As these behavioral tools are being widely applied and used 

interchangeably there is a need to assess to what extent these tools are related to each other and 

evaluate if they are measuring the same cognitive effort construct (Chang et al., 2020; Culbreth et al., 

2016; J. M. Gold et al., 2015; Puveendrakumaran et al., 2020; Thomson & Oppenheimer, 2022). The 

aim of this paper was to assess the shared variance of three cognitive effort measures, DST, COG-ED 

and rational reasoning battery, and their relationship to NFC. Additionally, investigating test-retest 

reliability of COG-ED, DST, and rational reasoning battery and the relation to working memory and 

subjective perceived mental effort as assessed by the NASA task load index (N-TLX; Hart & 

Staveland, 1988). 

3.1.2 Methods 

Six studies were conducted by two independent labs with a total of 663 participants. Study 1 and 2 

were conducted at Washington University in St. Louis, USA. Study 3 – 6 were conducted at UiT–The 

Arctic University of Norway. All studies included the NFC, and two or three of the behavioral 

measures of cognitive effort. Only three of the studies included the N-TLX. In the COG-ED 

(Westbrook et al., 2013) the n-back task was played for six load levels (N = 1 - 6) in Study 1 and 2, 

and for four levels (N = 1 - 4) in Study 3 – 6. The average subjective indifference point (AIP) across 

all load levels was used as the cognitive effort measure in COG-ED. Working memory capacity was 

measured with the d’ (calculated using signal detection theory) from the n-back task in COG-ED. The 

DST was applied in Study 1 - 5 with an exact replication of study 3 in Kool et al. (2010), with 

cognitive demand avoidance (scored as proportion of high demand choices, 0 – 0.5 indicates demand 

avoidance, 0.5 – 1 indicates demand preference) as the measure of cognitive effort. In Study 6 we used 

the abridged version (Patzelt et al., 2019). Rational reasoning was measured with a combination of 

items from the heuristics and bias literature (see Toplak et al., 2011), including the cognitive reflection 

test (Toplak et al., 2014), number of items varied between 12 – 18. Proportion of correct items (no 

items correct = 0, all items correct = 1) was calculated as the cognitive effort measure. Perceived effort 

was measured with the N-TLX on a visual analogue scale (1 = very low, 20 = very high) (Hart & 

Staveland, 1988). NFC was measured with the 18-item scale in all six studies (Cacioppo et al., 1984). 

A meta-analytic approach was applied to analyze the overall effect sizes. We conducted Pearson’s 

correlations for each study. Based on the effect size from each study we calculated an overall 

correlation based on the effect size and sample size of each study by using the metafor package 

(Viechtbauer, 2010). 

3.1.3 Results 

The results show a significant positive association between NFC and AIP in COG-ED. Meaning 

higher NFC is related to less discounting of monetary rewards due to cognitive effort. Less cognitive 

effort discounting in the COG-ED was also related to higher working memory capacity. The results 

show a significant positive association between NFC and rational reasoning. Indicating that 
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individuals higher in NFC tend to perform better on rational reasoning or heuristics and bias tasks. 

Higher rational reasoning score was also associated with higher working memory capacity and rating 

the task as less effortful. Cognitive effort discounting in COG-ED was not related to rational reasoning 

performance. Additionally, demand avoidance in the DST was not related to any other effort measure, 

nor working memory or perceived effort in N-TLX. 

3.1.4 Conclusion 

Cognitive effort is a difficult concept to measure. We find no association between three behavioral 

measures of cognitive effort. However, both cognitive effort discounting in COG-ED and rational 

reasoning performance were related to NFC and working memory capacity. This study shows that 

results found using one of these cognitive effort measures cannot be assumed to apply to other 

cognitive effort measures. We conclude that the COG-ED paradigm is a valid cognitive effort 

measure, but relies on external rewards, which can be a confounder. Further, the results suggests that 

the rational reasoning battery and the DST are not applicable individual difference measures of 

cognitive effort. Our study highlights the need to develop new behavioral tools for measuring 

cognitive effort. There is an absence of a reliable behavioral measure of internal motivation for 

cognitive effort expenditure. 

3.2 Paper 2) 

3.2.1 Aims and background 

Human decision-making is prone to bias. An example of such a bias is the tendency for humans to see 

purpose and intentionality in phenomena when there is none, that is, a teleological reasoning bias 

(Kelemen et al., 2013). Competing decision-making frameworks propose opposing explanations for 

how bias in reasoning occur (Eldar et al., 2021). The default-interventionist, dual-process account 

proposes that errors in reasoning occur due to the fallibility of fast effortless Type 1 reasoning 

processes, and a failure to engage slower more effortful deliberate Type 2 reasoning process (J. St. B. 

T. Evans & Stanovich, 2013; Kahneman, 2011). An alternative dual-process account, the smart 

intuitor, proposes that smarter individuals have better intuitions compared to individuals of lower 

intelligence (Raoelison et al., 2020). This account maintains that in many cases smarter individuals 

will not make reasoning errors because they have correct intuitions. This account builds upon findings 

that most of correct responses on heuristics and bias tasks result from fast effortless Type 1 processes, 

and only a small portion of correct responses occur due to slower, effortful deliberate Type 2 

processing (Raoelison et al., 2020). However, the account still maintains that slower, effortful, 

deliberate Type 2 processing should more likely lead to correct responses, whereas fast, effortless 

Type 1 processing should result in more biased responses. Importantly, larger pupil dilations are 

associated with more cognitive effort, which can therefore be used as a measure of deliberate Type 2 

processing (Kahneman & Beatty, 1966; van der Wel & van Steenbergen, 2018). On the contrary, the 

extensive integration account proposes that bias in reasoning is exacerbated by more extensive 

evidence accumulation in sequential sampling models (Eldar et al., 2021). The extensive integration 

account builds upon a framework where the decision-making process is seen as a gradual noisy 
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evidence accumulation process towards some alternatives, until a decision threshold is reached, 

triggering a decision (Busemeyer et al., 2006; Krajbich & Rangel, 2011; Usher et al., 2013). 

According to this account, low neural gain is associated with less evidence weighting (Aston-Jones & 

Cohen, 2005; Usher et al., 1999). Thus, requiring more extensive evidence accumulation, leading to 

more bias (Eldar et al., 2021). Neural gain can be assessed using pupillometry as the pupil is highly 

correlated with Locus Coeruleus activity and the Locus Coeruleus - Norepinephrine system modulates 

neural gain (Aston-Jones & Cohen, 2005; Eldar et al., 2013; Gilzenrat et al., 2010; Reimer et al., 

2016). Low neural gain is associated with smaller baseline pupil size and larger pupil dilations, since 

baseline pupil size and baseline-corrected pupil dilations are negatively correlated (Aston-Jones & 

Cohen, 2005; Eldar et al., 2013; Gilzenrat et al., 2010). Thus, the extensive integration account 

predicts that bias in reasoning is associated with larger pupil dilations, indicating low neural gain, and 

longer response times. On the contrary dual-processing accounts propose that bias in reasoning is 

more likely to occur due to fast effortless (Type 1) processing, indicated by smaller pupil dilations and 

faster response times. The aim of this study was to test predictions of competing decision-making 

frameworks explaining bias in reasoning. This is done by testing if bias in reasoning on a teleological 

reasoning task is associated with more or less cognitive effort as measured with pupillometry, and if 

bias is associated with slower or faster response times. Additionally, we included individual difference 

measures of cognitive ability and cognitive motivation to dissociate predictions from the two dual-

process accounts. 

3.2.2 Methods 

Participants (N = 45) performed a teleological reasoning task (Kelemen et al., 2013). The task had 

been computerized and adapted to be suitable for pupillometry with stimulus sentences being 

presented auditorily. Responses were made on a keyboard to signal if the stimulus sentences were true 

or false. The task consisted of false teleological explanations for natural phenomena, referred to as test 

items (34 items), and control statements consisting of true and false physical explanations (24 items) 

as well as true and false teleological explanations in the socio-cultural domain (19 items), where these 

explanations are appropriate. Additionally, participants completed measures of cognitive motivation 

(NFC) and cognitive ability (rational reasoning items from the heuristics and bias literature). Primary 

outcome measures were accuracy rates, response times, and baseline-corrected pupil size on the 

teleological reasoning task. Across participants we looked at individual difference measures. As 

exploratory analyzes we looked separately at baseline pupil size and pupil dilation (non-corrected). 

We analyzed the response times and the pupil measures with a drift-diffusion model to further test 

predictions from the extensive integration account. Lastly, we included measures of pupil dilation to 

feedback to assess uncertainty and surprise. 

3.2.3 Results 

We replicate that individuals are prone to accept false teleological explanations for natural phenomena 

and show a teleological reasoning bias. We find that bias in reasoning as measured by errors on the 

teleological reasoning task is associated with slower response times, smaller baseline pupil size and 

larger pupil dilations. Thus, the results are in line with the extensive integration account of bias in 
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reasoning and show results directly opposing predictions from dual-process theories. We find that 

performance on the teleological reasoning task is related to cognitive ability but not cognitive 

motivation. Additionally, by modelling responses on the teleological reasoning task with a drift 

diffusion model we show that larger baseline pupil size is associated with lower decision threshold and 

higher drift-rate. Conversely, larger pupil dilations are associated with lower drift-rate and higher 

decision-threshold. Thus, following the predicted relationship from the extensive integration account 

between pupil size and evidence accumulation, modulated by neural gain. 

3.2.4 Conclusion 

Bias in teleological reasoning is associated with larger pupil dilations and longer response times. This 

supports sequential sampling models and the extensive integration account of bias in reasoning. It 

highlights the role of the Locus-Coeruleus – Norepinephrine system in decision-making and bias in 

reasoning. The results from the study directly oppose predictions from dual-processing accounts, 

where biases in reasoning result from fast effortless processing. 

3.3 Paper 3) 

3.3.1 Aims and background 

The study of reasoning errors has been highly influential in the development of dual-process theories 

of reasoning and decision making (J. St. B. T. Evans, 2008; Kahneman, 2011; Kahneman & Frederick, 

2002; Kahneman & Tversky, 1973). However, an accumulating body of empirical research finds 

results opposing predictions from classical dual-process theories (Bago & De Neys, 2019; Newman et 

al., 2017; Raoelison et al., 2020). This has led to a new generation of dual-process models of decision 

making (De Neys & Pennycook, 2019; Pennycook et al., 2015b; Raoelison et al., 2020). Pennycook et 

al. (Pennycook et al., 2015b) postulate a three-stage model of analytic engagement. In this model 

competing intuitions give rise to deliberate, slow, effortful Type 2 reasoning. Failure to detect a 

conflict between competing intuitions and rationalization of an incorrect response are considered early 

and late sources of bias in this model. Successful reasoning performance is therefore dependent on 

conflict detection and cognitive decoupling (successful Type 2 reasoning). The model is validated by 

Pennycook et al. (2015) by measuring response times on an adapted version of the classical base-rate 

neglect task (De Neys & Glumicic, 2008; Kahneman & Tversky, 1973). In the base-rate task 

participants are given two pieces of information which should guide them to decide which out of two 

groups a person drawn at random most likely belongs to. The two pieces of information to guide their 

choice are 1) a one-word attribute describing the person, and 2) the number of individuals in each 

group, i.e., the base-rate (Pennycook et al., 2015b). In this study, we adapted the base-rate neglect task 

and created two versions of the task to be compatible with eye-tracking and pupillometry, 

respectively. Our aim was to test the three-stage model of analytic engagement (Pennycook et al., 

2015b), while simultaneously investigating visual attention (eye-tracking) and cognitive effort 

(pupillometry) in a classical decision-making task. 
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3.3.2 Methods 

A total of 60 participants took part in the study. Participants completed two versions of the base-rate 

task. One version (gaze version) of the base-rate task was adapted for the use of eye-tracing to 

measure eye-gaze during performance as an indicator of visual attention. In this task the attribute 

information was displayed before the base-rate information. The second version (pupillometry 

version) of the base-rate task was adapted for pupillometry to measure pupil size during task 

performance as an indicator of cognitive effort. In this version of the task the base-rate information 

was presented before the attribute information. The tasks were counterbalanced across participants. 

Individual difference measures of cognitive ability, cognitive motivation and personality traits were of 

secondary importance and performed before and in between the two base-rate tasks. The outcome 

measures of interest were choices and response times. Additionally, in the gaze version the proportion 

of gaze at the two pieces of information, and the proportion of gaze at the correct option were of 

interest. In the pupillometry version of the task the pupil measures of interest were pupil size at trial 

baseline, after presentation of the attribute information (i.e., in the time window of conflict detection), 

and before making a decision (i.e., measuring cognitive decoupling). We applied a drift diffusion 

model to responses in both base-rate tasks to analyze differences in decision parameters in the three 

conditions, specifically we wanted to test if conflicting information led to increased decision threshold 

(Lin et al., 2023). Lastly, as exploratory analyses we separated participants based on their majority 

response either base-rate congruent or stereotype congruent, as we found evidence for a bi-modal 

distribution of responses across participants. 

3.3.3 Results 

The results from both base-rate tasks revealed that participants could be separated into two groups 

based on their responses in the incongruent condition. One group gave the stereotype congruent 

response on the majority of trials (“stereotype responders”) and the other group gave the base-rate 

congruent response on the majority of trials (“base-rate responders”). Analyses of response times, eye 

gaze and pupil dilation across conditions on the two tasks revealed that there were no significant 

differences for the stereotype responders. The base-rate responders on the other hand showed 

significant differences in response time, eye-gaze and pupil dilation across conditions. This indicates 

that conflict detection failure was prominent among stereotype responders, and base-rate neglect is an 

important source of biased responses on this task. When analyzing responses in the incongruent 

condition (either base-rate congruent or stereotype congruent answers), the two groups were faster 

when giving their majority response (i.e., stereotype congruent response for the stereotype 

responders), compared to when giving the minority response (i.e., base-rate congruent response for the 

stereotype responders). Additionally, response times for the two response options in the incongruent 

condition (stereotype congruent or base-rate congruent) was opposite in the two tasks. That is, base-

rate congruent responses were slower in the incongruent condition in the gaze version of the task, 

whereas the same response was faster in the pupillometry version. A result that was further supported 

by a drift diffusion model showing opposing bias in the two tasks (congruent with the aforementioned 

response times). Analyzes with the drift diffusion model across conditions further showed slower 

drift-rate in the incongruent condition, not increased decision threshold, indicating increased task 
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difficulty rather than increased deliberation. In the gaze version of the task base-rate responders tended 

to look more at the base-rate information compared to stereotype responders. However, both groups 

tended to look more at the class (group) information compared to the base-rate information, and more 

at the option they ended up choosing.  

In the pupillometry version of the task, smaller baseline pupil size and larger pupil dilations before 

decisions were related to performance across conditions. When comparing pupil size across conditions 

in the attribute time window we found no significant difference in pupil dilations for the sample as a 

whole. When looking separately at the groups of responders there was no significant difference for the 

stereotype responders. However, for the base-rate responders pupil dilations in the attribute time 

window were largest in the neutral condition i.e., when the base-rate information was not informative. 

Similarly, before making a decision, pupil dilations were largest in the neutral condition. This effect 

was not significant for the stereotype responders. However, for the base-rate responders both the 

neutral and incongruent condition were associated with larger pupil dilations compared to the 

congruent condition. Accordingly, base-rate responders use more effort before deciding when there is 

conflicting information or when they can no longer use the base-rate information.  

When comparing responses in the incongruent condition in the attribute time window, stereotype 

responders showed larger pupil dilations before making a correct response. For the base-rate 

responders there was no difference between trials where they make errors or correct responses. For the 

sample as a whole pupil dilation was not a significant predictor of correct responses in the attribute 

time window. When comparing responses in the incongruent condition before making a decision, 

pupil size was not a significant predictor of responses. 

3.3.4 Conclusion 

By applying two versions of a well-established reasoning task adapted for eye-tracking and 

pupillometry, respectively, we evaluated the three-stage model of analytic engagement. By analyzing 

two groups of participants separately we find one group which shows the expected base-rate neglect, 

and support for conflict detection failure. The other group is sensitive to changes in base-rate 

information, as seen by changes in response times, eye-gaze and pupil dilation. When analyzing these 

two groups separately, we show that the expected slowing of responses for base-rate congruent 

responses in the incongruent condition can be reversed and is dependent on task manipulations and 

participants majority response, suggesting a gap in the existing literature. By measuring pupil dilation, 

we find preliminary support for the constructs of conflict detection and cognitive decoupling. The 

results suggest that phasic LC activity and cognitive effort may be implicated in changing responses 

from stereotype congruent to base-rate congruent. This is consistent with phasic LC activity acting as 

a neural interrupt signal and perhaps being involved in conflict detection. Further, when comparing 

conditions, we found larger pupil dilations for the neutral condition compared to the congruent 

condition in both the attribute and decision time window for the base-rate responders. Additionally, 

the incongruent condition was associated with larger pupil dilations compared to the congruent 

condition before making a decision for the base-rate responders. Thus, we find evidence of effort 

differences across conditions, contrary to predictions of the three-stage model the neutral condition 
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was associated with the most effort. Note that there was some loss of data due to noise in the 

measurement of pupil dilation. Thus, due to sample size the results regarding pupil dilation should be 

considered preliminary.  

4 Discussion 

The primary aim of this thesis was to investigate the role of cognitive effort in decision-making and 

reasoning errors. In order to do this, we had secondary aims to evaluate tools measuring cognitive 

effort and compare decision-making frameworks explaining errors and bias in reasoning. It has been a 

long-standing proposition that errors in reasoning occur due to fast, effortless reasoning and that more 

cognitive effort and deliberation will lead to better decisions. In this thesis this hypothesis is explored 

through several approaches. Furthermore, the development of new behavioral tools investigating 

cognitive effort has significantly advanced our understanding of cognitive effort. However, there is 

little data comparing these measurement tools with each other to assess their shared variance. This 

thesis compares multiple tools of cognitive effort to elucidate the strength and weaknesses of these 

tools and their shared variance. Lastly, accumulating evidence contradicts predictions from the long-

standing influential default-interventionist, dual-process theory of decision-making. This has inspired 

the development of new decision-making paradigms. In this thesis I test predictions from different 

decision-making paradigms to evaluate them. 

4.1 The role of cognitive effort in reasoning errors 

The main findings concerning the role of cognitive effort in reasoning errors is, in Paper 1, a battery of 

rational reasoning tasks, was found to not be related to other behavioral measures of cognitive effort, 

namely, DST and COG-ED. Additionally, rational reasoning performance was negatively related to 

subjective effort experienced on the task as measured with the N-TLX. However, a thinking 

disposition of enjoying cognitively demanding activity (NFC) was related to higher performance on 

the rational reasoning battery. In Paper 2, I found that errors on a teleological reasoning task was 

related to larger pupil dilations, indicating more cognitive effort. However, in Paper 3 I found that 

larger pupil dilations were associated with base-rate congruent (correct) responding in the incongruent 

condition on the base-rate task. Additionally, when receiving conflicting information in the attribute 

time window, larger pupil dilations were associated with changing responses from stereotype 

congruent, i.e., making a reasoning error, to the correct base-rate congruent response, for those tending 

to make a base-rate neglect reasoning error. 

The finding that there was no relationship between rational reasoning tasks and other behavioral 

measures of cognitive effort indicates that lower individual cost of cognitive effort, or effort 

discounting of rewards, and cognitive demand avoidance cannot predict if individuals are prone to 

make reasoning errors. These results indicate no association between cognitive demand avoidance or 

high cognitive effort costs being related to reasoning errors, and thus no relation between cognitive 

effort and reasoning errors. This study is to my knowledge the first study to assess the relationship 

between rational reasoning tasks and these behavioral cognitive effort measures. The result that there 

is no relationship between these measures is contrary to the long-held assumption of cognitive effort 
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being linked to errors in reasoning (J. St. B. T. Evans, 2008; Kahneman, 2011). Furthermore, I find 

that the subjective mental effort experienced on the rational reasoning tasks, which I assume is an 

indicator of expended cognitive effort, is negatively related to performance on these tasks. That is, 

participants who expended more cognitive effort on the rational reasoning tasks performed worse. 

This finding also goes against the proposal that higher cognitive effort leads to overcoming reasoning 

errors (Frederick, 2005; Kahneman & Frederick, 2002). Importantly, this finding could be explained 

by participants with lower performance on the rational reasoning tasks spending more time and effort 

on the tasks due to their inability to solve the tasks (or solve them quickly) compared to higher 

performing individuals who solve the tasks quickly and with little or less effort. This explanation is 

consistent with the smart intuitor account which proposes that higher cognitive ability individuals 

solve these tasks quickly, whereas few participants, who initially fail to solve the tasks, manage to 

correctly solve them when given more time (Bago & De Neys, 2017; Newman et al., 2017; Raoelison 

et al., 2020). The finding that performance on rational reasoning tasks was related to a thinking 

disposition of enjoying cognitively demanding activity, on the contrary suggests a positive link 

between cognitive effort and overcoming reasoning errors. It might be that individuals who enjoy 

cognitive challenges perform better on the rational reasoning tasks, and that the enjoyment of complex 

challenges measures something different than the cognitive effort paradigms which use repetitive tasks 

such as used in the DST and COG-ED. NFC might capture something more than what is captured with 

DST and COGED. A positive relationship between NFC and performance on heuristics and bias tasks 

is consistent with previous studies (Thomson & Oppenheimer, 2016; Toplak et al., 2014; West et al., 

2008) and will be discussed further, under the section 4.2 Comparing tools measuring cognitive effort. 

Overall, the result from Paper 1 suggests that cognitive effort is not related to errors in reasoning, in 

fact it suggests that participants who make more errors in reasoning invest more effort on rational 

reasoning tasks. However, NFC may measure something that is related to avoiding reasoning errors. 

Teleological reasoning bias was found to be associated with larger pupil dilations, indicating more 

cognitive effort, in Paper 2. This suggests that this error in reasoning is associated with more not less 

cognitive effort. This is contrary to the proposal from Kelemen et al. (Kelemen et al., 2013) that 

teleological reasoning remains a life-long cognitive default in understanding natural phenomena that 

have to be overridden, an effortful process, in order to produce a scientific/mechanistic understanding. 

However, this result is consistent with Eldar et al. (Eldar et al., 2021) who found that larger pupil 

dilations were related to more reasoning bias on three framing tasks. Interestingly, smaller baseline 

pupil size was also related to errors in reasoning on the teleological reasoning tasks. This suggests that 

a certain level of attention, alertness, arousal, and perhaps a minimum level of cognitive effort, need to 

be present for optimal task performance. This is consistent with research on attention and the LC-NE 

system (Aston-Jones & Cohen, 2005; Unsworth & Robison, 2016). Alternatively, as suggested by the 

extensive integration account, low neural gain leads to more extensive information sampling where 

bias accumulates, leading to more biased responses (Eldar et al., 2021). An alternative explanation for 

these results is that participants invested more effort when they experienced more uncertainty or failed 

to come up with the correct answer, similar to the finding of higher subjective effort being related to 

worse performance on rational reasoning battery in Paper 1. However, there were no difference in 

effort between the test and control condition which speaks against this explanation. Overall, the results 
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from Paper 2 suggests that errors in teleological reasoning are associated with more not less cognitive 

effort, which is partly contrary to the findings from Paper 3. 

In the base-rate task, the results indicated that neglecting the base-rate information was a significant 

source of bias on this task for a group of participants, the stereotype responders. Comparing pupil 

dilation in the congruent (non-conflicting information) and the incongruent (conflicting information) 

conditions. I found that base-rate responders showed larger pupil dilations, i.e., more effort, when 

there was conflicting information, whereas stereotype responders showed no difference between 

conflicting and non-conflicting information. Evidence of neglecting base-rate information for 

stereotype responders could also be found in response time differences and eye-gaze differences 

between conditions. Thus, one group of participants made significantly more reasoning errors on this 

task by neglecting the base-rate information, and in doing so, spent less cognitive effort. This finding 

suggests that less cognitive effort is related to reasoning errors on this task. Additionally, stereotype-

responders showed larger pupil dilations when giving the correct (base-rate congruent) response in the 

incongruent condition, further supporting cognitive effort being associated with not making the base-

rate neglect reasoning error on this task. For the stereotype responders it might be that overriding or 

inhibiting their usual response required more effort. For the base-rate responders it is probable that 

errors on the task are related to attentional deficits when not giving the correct response as they on 

average performed well on the task. This would be consistent with studies suggesting that inhibition 

and updating requires cognitive effort (Friedman & Miyake, 2017; van der Wel & van Steenbergen, 

2018) and that lapses of attention are related to smaller phasic pupil dilations (Unsworth & Robison, 

2016). Furthermore, that stereotype responders showed larger pupil dilations after receiving 

conflicting information (incongruent condition) on trials where they made the correct response, which 

was opposite to their majority response is consistent with theories proposing that phasic LC activity 

acts as a “neural interrupt signal” or reorienting (Bouret & Sara, 2005; Dayan & Yu, 2006) and the 

LC-NE system being involved in cognitive flexibility (McGaughy et al., 2008). It should be noted that 

when comparing the three task conditions for the whole sample there was only a difference in pupil 

dilations in the attribute time-window not before making a decision. Importantly, I found that larger 

pupil dilations before decisions were associated with higher performance across conditions. Indicating 

that larger pupil dilations may be associated with general performance (Aston-Jones & Cohen, 2005; 

Unsworth & Robison, 2016; van der Wel & van Steenbergen, 2018). Overall, the results from Paper 3 

suggests that cognitive effort is involved in correct responses on the base-rate task, and that a lack of 

cognitive effort is associated with reasoning errors on this task. 

The results regarding pupil dilation for Paper 2 and Paper 3 show partly opposing results. A central 

difference between these tasks is that in the base-rate task there are multiple pieces of information 

which can be conflicting, or not, and which can be ignored or not. This is in contrast to the teleological 

reasoning task where there was no conflicting information, and no obvious strategy to reduce the 
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amount of information.3 In the base-rate task, performance was dependent on integrating several 

pieces of information, a process similar to the executive function updating. Additionally, some 

participants had to inhibit responses. These executive control actions require cognitive effort which is 

reflected in larger pupil dilations (Friedman & Miyake, 2017; van der Wel & van Steenbergen, 2018). 

Thus, in the base-rate task there was a need for cognitive effort due to the executive functions of 

updating and inhibition. Additionally, participants could ignore some cues and integrate less 

information (Shah & Oppenheimer, 2008). This is in contrast to the teleological reasoning task where 

there were no obvious effort reducing strategies available and no difference in executive control 

demand for correct and error responses. 

Regarding the question of the role of cognitive effort in reasoning errors. A composite of common 

reasoning errors was not related to cognitive effort avoidance or cognitive effort discounting. 

Subjective cognitive effort ratings suggested that more effort was associated with worse performance. 

On a teleological reasoning task more cognitive effort was associated with reasoning errors. These 

findings indicate that more cognitive effort is not associated with overcoming reasoning errors, and 

more cognitive effort can be associated with worse performance. More cognitive effort being 

associated with errors in reasoning is consistent with Eldar et al. (Eldar et al., 2021), and compatible 

with proposals such as rationalization being the main operating mode of Type 2 processing (De Neys, 

2020; J. St. B. T. Evans, 2019) and accounts of motivated reasoning (Kahan, 2013; Kunda, 1990; 

Pennycook & Rand, 2019; Persson et al., 2021). On the contrary, I did find that people who enjoy 

cognitively demanding activity performed better on the reasoning tasks and that more cognitive effort 

was related to better performance on the base-rate task. It is plausible that NFC assesses something 

more than a tendency to expend cognitive effort, which might be related to intelligence and enjoyment 

of mental challenges. The finding that cognitive effort is related to performance on the base-rate task 

suggests that for some reasoning errors a lack of cognitive effort, either in not expending enough 

cognitive effort or not recognizing the need to engage cognitive effort (or integrate information), is a 

central factor. This is consistent with the proposed relationship between cognitive effort and reasoning 

errors put forth by dual-process proponents (J. St. B. T. Evans, 2008; Frederick, 2005; Kahneman, 

2011; Kahneman & Frederick, 2002). To summarize, some reasoning errors might be caused by a lack 

of cognitive effort, however some reasoning errors might be more prominent with more cognitive 

effort. Additionally, more cognitive effort can be linked to worse performance on reasoning tasks. 

When reasoning problems such as used in the heuristics and bias literature are intermixed, they show 

no relation to behavioral measures of cognitive effort. Therefore, one should not assume that errors in 

reasoning occur due to a lack of cognitive effort, or an effortless process. Importantly, one cannot use 

the responses or performance on items from the heuristics and bias literature as a measure of cognitive 

effort. 

 

3 According to the dual-process explanation proposed by Kelemen et al. (2013) there could have been conflicting 

intuitions. This is further discussed in section 4.3 Comparing decision-making frameworks. 
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4.2 Comparing tools measuring cognitive effort 

As reviewed in “the effort paradox” there is a need to compare and contrast tools measuring cognitive 

effort (Thomson & Oppenheimer, 2022). In Paper 1, we found that performance on three behavioral 

measures of cognitive effort, rational reasoning battery, DST and COG-ED, were not related to each 

other. However, we found that both COG-ED and rational reasoning battery were related to both 

working memory capacity, and a tendency to enjoy engaging cognitively demanding activity measured 

with the self-report scale, NFC. Additionally, the subjective mental demand experienced on each task 

was assessed on a visual analog scale with the N-TLX. In Paper 2 and Paper 3, we measured pupil 

dilation during task performance on two reasoning tasks as a physiological measure of cognitive 

effort. Finding more cognitive effort associated with errors in reasoning on a teleological reasoning 

task. On the contrary, more cognitive effort was related to avoiding base-rate neglect and avoiding 

reasoning errors on the base-rate task. 

4.2.1 The need for cognition scale 

The need for cognition scale (NFC) has been a widely applied measure of cognitive effort (Cacioppo 

et al., 1996). After more than 40 years since its invention it is still considered a globally valid trait 

measure of a thinking disposition to enjoy challenging mental activity (Cacioppo & Petty, 1982; 

Hussey & Hughes, 2020). As reviewed by Hussey & Hughes (Hussey & Hughes, 2020) the measure 

has good internal consistency, test-retest reliability, factor structure and measurement invariance. In 

Paper 1, I replicated that individuals higher in NFC show less effort discounting of monetary reward, 

i.e., less effort cost, in the COG-ED (Westbrook et al., 2013), replicating Westbrook et al. (Westbrook 

et al., 2013). Notably, the relationship between these tasks may be attenuated as individuals high in 

NFC have shown to be less responsive to reward incentives (Sandra & Otto, 2018). Furthermore, 

Paper 1 also found that individuals higher in NFC also perform better on rational reasoning tasks. This 

is consistent with multiple studies investigating the relationship between thinking disposition and 

performance on heuristics and bias tasks (Frederick, 2005; Thomson & Oppenheimer, 2016; Toplak et 

al., 2014; West et al., 2008). The NFC scale is an explicit cognitive effort measure as it directly asks 

about preferences for mental work, and enjoyment of cognitive effort (Fleischhauer et al., 2013; 

Strobel et al., 2015). The scale is likely measuring intrinsic motivation for cognitive effort, rather than 

extrinsic motivation as questions pertain to enjoyment and preferences for cognitive effort, or 

avoidance of cognitive work (reverse scored), without any question being related to extrinsic rewards 

or obligations. However, the scale seems to favor a preference for complex and challenging mental 

work rather than all cognitive work, e.g. “I would prefer complex to simple problems”. Indeed, the 

NFC has been associated with complex problem solving (Rudolph et al., 2018). This might partly 

explain why we found that the scale is not related to DST, as even the high demand deck involves 

quite simple problems that do not challenge most individuals intellectually. However, the NFC scale 

does include multiple questions related to avoidance of demanding cognitive work such as “I would 

rather do something that requires little thought than something that is sure to challenge my thinking 

abilities (reverse scored). Additionally, both measures gauge intrinsic cognitive effort. Thus, as the 

NFC is well established and did correlate with the other cognitive effort measures, the lack of a 

relationship between the two measures does bring into question the validity of the DST as a cognitive 
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effort measure. The lack of a relationship between NFC and DST is consistent with Strobel et al. 

(Strobel et al., 2020). Notably, the NFC has also been applied together with pupillometry, finding 

higher NFC being negatively related to baseline (tonic) pupil diameter (da Silva Castanheira et al., 

2021). 

The need for cognition scale differs from the other effort measures reported in Paper 1 on multiple 

dimensions. Unlike the other effort measures used, NFC puts very little strain on the cognitive systems 

involved in cognitive effort such as executive function, working memory and attention. Although, 

NFC has been shown to be related to general intelligence, but not working memory nor executive 

functions (Gärtner et al., 2021; Hill et al., 2013). However, the measure is dependent on meta-

cognitive awareness and self-awareness, which is a potential bias as introspective awareness may be 

limited (Nisbett & Wilson, 1977). Further, unlike the other behavioral measures of cognitive effort in 

Paper 1 there is no performance being measured with the NFC scale, thus the only measure is self-

reported. Furthermore, NFC is considered a relatively stable trait (Cacioppo et al., 1996; Hussey & 

Hughes, 2020; Soubelet & Salthouse, 2017) whereas it is not known to what degree the other 

measures in our study change over time, but likely they are (more) state dependent. Notably, a state 

measure of motivation for cognitive effort has been developed for researchers interested in assessing 

state rather than trait NFC (Blaise et al., 2021). 

In summary, the NFC is a reliable, valid, explicit, self-reported, trait measure of cognitive effort, 

which captures the intrinsic motivation to engage in and enjoy cognitive effort. Researchers should be 

mindful of what aspect of cognitive effort they are interested in measuring, in addition to general 

biases related to self-report questionnaires when applying NFC. 

4.2.2 Rational reasoning battery 

The rational reasoning tasks used in Paper 1 consisted of a mixture of problems selected from the 

heuristics and bias literature. The measure is an implicit performance measure of intrinsic motivation 

to expend cognitive effort. The measure is supposed to be an indicator of reflective capacity 

(Stanovich, 2009b), and be dependent upon working memory for performance (J. St. B. T. Evans & 

Stanovich, 2013; Kahneman, 2011; Pennycook et al., 2015a). However, in Paper 1 performance on the 

rational reasoning battery were not related to any other behavioral measure of cognitive effort. To the 

best of my knowledge Paper 1 is the first study investigating the relationship between rational 

reasoning tasks and the behavioral task paradigms, DST and COG-ED. The finding that these tasks 

measuring cognitive effort are not related is novel and has important implications as it has long been 

assumed that performance on these tasks were associated with cognitive effort (J. St. B. T. Evans, 

2008; J. St. B. T. Evans & Stanovich, 2013; Frederick, 2005; Kahneman, 2011; Kahneman & 

Frederick, 2002; Shah & Oppenheimer, 2008; West et al., 2008). Importantly, subjective cognitive 

effort as rated with N-TLX showed that high performance on the rational reasoning battery was 

associated with less subjective effort, whereas lower performance was associated with higher 

subjective mental demand. This finding should strongly discourage researchers from using these tasks 

as a measure of invested cognitive effort. The finding of high performers reporting less cognitive 

effort is consistent with the smart intuitor dual-process account, suggesting that high cognitive ability 
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individuals answer correctly without deliberation (Bago & De Neys, 2019; Raoelison et al., 2020; 

Raoelison & De Neys, 2019). 

The relationship between rational reasoning and cognitive effort was assessed by measuring pupil 

dilation during task performance on two reasoning tasks in Paper 2 and Paper 3. In Paper 2 we found 

that more not less cognitive effort, as assessed by pupil dilation, was related to errors on a teleological 

reasoning task. This finding is consistent with Eldar et al. (Eldar et al., 2021) who also found errors on 

reasoning tasks being related to larger not smaller pupil dilations. Notably, Eldar et al. (Eldar et al., 

2021) did not find a significant relationship between pupil dilation and performance on all tasks 

measured, but no task showed more effort being related to higher performance. Thus, while measuring 

concurrent cognitive effort during task performance these studies suggests that less effort, not more is 

related to higher performance on rational reasoning tasks. In contrast to this, in Paper 3 we did find 

that errors on a base-rate task was indeed related to smaller pupil dilations, i.e., less cognitive effort. 

Additionally, there was evidence that some pieces of information were neglected by a group of 

participants. Thus, for some rational reasoning tasks more effort could be related to higher 

performance. However, this thesis suggests that researchers should not assume that errors in reasoning 

occur due to a lack of cognitive effort. Rather, as shown in Paper 2, Paper 3 and by Eldar et al. (Eldar 

et al., 2021), individual tasks can be investigated by using psychophysiological measures such as pupil 

dilation and eye-tracking to elucidate the process underlying errors in reasoning. 

Rational reasoning tasks have been proposed to measure both cognitive ability and a disposition 

(Frederick, 2005; Stanovich, 2009b, 2009a). Previous work has indeed found that rational reasoning 

tasks are related to thinking biases (Thomson & Oppenheimer, 2016; Toplak et al., 2014; West et al., 

2008). Consistent with the literature, in Paper 1 we did find a relationship between rational reasoning 

battery and NFC. This association was also present when controlling for working memory capacity, 

measured with performance (discriminability) on the n-back task. Indeed, cognitive ability is an 

important factor that needs to be addressed when discussing the relationship between rational 

reasoning and NFC, or thinking disposition. As mentioned above, NFC has been found to be related to 

general intelligence, but not working memory (Hill et al., 2013), thus we cannot know if the 

relationship between NFC and rational reasoning battery found in Paper 1 would still be present if 

controlling for general intelligence instead of working memory. Notably, the CRT is a substantial 

portion of the rational reasoning battery applied in Paper 1 (up to 50%). A meta-analysis by Otero et 

al. (Otero et al., 2022) found the CRT could be explained by general intelligence and numerical 

ability, and no separate factor of cognitive reflection could be identified. However, the rational 

reasoning battery from Paper 1 consist of more than the CRT. Thinking dispositions have been found 

to correlate with such rational reasoning task batteries even when controlling for cognitive ability, by 

both Toplak et al. (Toplak et al., 2014) and West et al. (West et al., 2008), although the analyses can 

be criticized for not residualizing the variance (Croon, 2002; Hayes & Usami, 2020; Otero et al., 

2022). Thus, rational reasoning tasks are related to cognitive ability. However, it is unclear to what 

degree these rational reasoning tasks measure something more than cognitive ability, they may also 

measure thinking dispositions. Further research is needed to disentangle what these rational reasoning 

tasks are measuring, and critically, there is a need to control for cognitive ability while doing so. 
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Importantly, this thesis suggests that rational reasoning tasks should not be applied as a measure of 

cognitive effort with the current state of knowledge. However, future research might be able to 

identify a set of tasks which do depend on cognitive effort by applying methods such as 

psychophysiological measures and computational modelling, similar to Paper 2 and Paper 3, as well as 

applied by Eldar et al. (Eldar et al., 2021) and Lin et al. (Lin et al., 2023)(2023).  

4.2.3 Cognitive effort discounting paradigm 

The cognitive effort discounting paradigm is an explicit measure of cognitive effort for external 

rewards. By applying a well-established working memory measure, the n-back task, cognitive demand 

can be manipulated by increasing processing quantity in the task (Owen et al., 2005; Westbrook et al., 

2013). Consistent with previous research, Paper 1 replicated that cognitive effort discounting of 

monetary rewards, i.e., cognitive effort, is related to NFC and working memory capacity (A.-W. 

Kramer et al., 2021; Westbrook et al., 2013). As mentioned in the previous section, COG-ED was not 

related to rational reasoning. Additionally, Paper 1 found no relationship between DST and COG-ED. 

This was surprising as both COGED- and DST are commonly used behavioral measures of cognitive 

effort (Culbreth et al., 2016; J. M. Gold et al., 2015; Kool et al., 2010; A.-W. Kramer et al., 2021; 

Nagase et al., 2018; Sayalı & Badre, 2021; Strobel et al., 2020; Vogel et al., 2020; Westbrook et al., 

2013, 2019, 2020; Zerna et al., 2023). The lack of a relationship between COG-ED and DST might be 

due to COG-ED being an explicit measure relying on external motivation, whereas DST is an implicit 

measure of internal motivation to avoid cognitive demand. However, the lack of a relationship 

between COG-ED, and rational reasoning battery and DST, might also be due to limitations of DST 

and rational reasoning battery as measures of cognitive effort (see the respective sections in 4.2 

Comparing tools measuring cognitive effort). The COG-ED paradigm has successfully been applied 

with physiological measures such as fMRI, PET, and eye-tracking, and has helped elucidate the neural 

underpinnings of cognitive effort (Westbrook et al., 2019, 2020). The fact that the measure also 

provides an indicator of cognitive ability (n-back performance) is a strength of COG-ED. This allows 

for adjusting required performance to participants ability. As well as providing a measure to control 

for cognitive ability, which is convenient as cognitive ability is a confound in most cognitive effort 

research. Additionally, the COG-ED paradigm allows for varying load levels by adjusting processing 

quantity. Like most studies using the COG-ED paradigm, Paper 1 applied 1-back as a comparison 

task. However, 1 back may not be the optimal comparison task as some individuals might find the task 

boring and prefer some challenge. Indeed, Zerna et al. (Zerna et al., 2023) found that a significant 

portion (34.5%) of participants preferred higher load levels (although the majority preferred 1-back) 

and created a comparison paradigm which can account for differences in preferred task load. 

Additionally, the study found that discounting is not linear between load levels but is best described by 

a declining logistic curve. Discounting is steepest between 2-back and 3-back, and less steep between 

1-back and 2-back, and 3-back and 4-back. Thus, a version applying 2-back as the comparison task for 

3-back and 4-back may work as a faster COG-ED. Indeed, COG-ED was rated as the most 

subjectively effortful task paradigm in Paper 1. Furthermore, Zerna et al. (Zerna et al., 2023) showed 

that participants high in NFC perceived the highest levels of the n-back task as less aversive and less 

effortful. Thus, researchers need to be mindful when applying COG-ED as cognitive ability, reward 
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sensitivity and individual differences in NFC may influence results (Sandra & Otto, 2018; Westbrook 

et al., 2013; Zerna et al., 2023). However, COG-ED has proved to be a reliable measure of cognitive 

effort. Future research should aim to evaluate different COG-ED task structures and paradigms to 

make effort assessments accurate and convenient. 

4.2.4 Demand selection task 

The demand selection task is an implicit behavioral measure of internal motivation to avoid cognitive 

effort (Kool et al., 2010). The results from Paper 1 showed an overall demand avoidance, although the 

effect was small. However, DST was not related to COG-ED nor rational reasoning battery in Paper 1. 

Perhaps most surprising was that DST was not related to NFC, despite both being intrinsic motivation 

measures of cognitive effort. Furthermore, the test-retest reliability of DST was poor. However, these 

results are consistent with Strobel et al. (Strobel et al., 2020) who found no relationship between NFC 

and DST, and questionable test-retest reliability of DST. The results from Paper 1 and previous studies 

raises concerns regarding this task paradigm, namely that choices on the DST may be influenced by 

color- and side preferences, demand avoidance is not always present, and demand avoidance is 

influenced by detecting the demand manipulation (J. M. Gold et al., 2015; Kool et al., 2010; Tran et 

al., 2022) Although, the DST produces a general demand avoidance, the version applied in Paper 1 

may not be well-suited as an individual difference measure at the current state of knowledge. As the 

DST showed no relation to other cognitive effort measures it is hard to say what the task is measuring. 

However, there are multiple alternative administrations for this task paradigm which might make this 

task paradigm more reliable. Such as, changing the effort level by altering the frequency of rule 

changes between rounds, using forced trials, and applying rewards (Kool et al., 2010; Reddy et al., 

2015; Sayalı & Badre, 2019). However, to date little is known about how the alternate versions of the 

task relate to cognitive effort and alternative cognitive effort measures. Thus, research is needed to 

validate versions of this task paradigm. Importantly, researchers should not assume similarities 

between this task paradigm and other cognitive effort measures. 

4.2.5 NASA task load index 

The NASA task load index has been widely used as a measure of workload and subjective cognitive 

effort for more than 30 years (Hart & Staveland, 1988). It has proven to be a valid and reliable 

measure (Braarud, 2021; Devos et al., 2020; Hart, 2006; Tubbs-Cooley et al., 2018). The measure can 

be applied both during and immediately after task performance. The N-TLX has been used to validate 

the COG-ED by providing subjective effort ratings for each load level of the n-back task (Westbrook 

et al., 2013). In Paper 1, the tool provided valuable information about the subjective cognitive effort 

associated with each task paradigm in their entirety. The measure also provided valuable information 

about the inverse relationship between rational reasoning performance and experienced mental effort. 

Researchers applying the N-TLX should be mindful that the measure is of subjective cognitive effort, 

which may differ from physiological or objective measures of cognitive effort (Kreis et al., 2020), and 

introspective awareness have limitations (Nisbett & Wilson, 1977). 



 

 

56 

 

 

4.2.6 Pupillometry 

Pupil diameter can be applied as a physiological measure of cognitive effort (Hess & Polt, 1964; 

Kahneman & Beatty, 1966; van der Wel & van Steenbergen, 2018). In Study 2 larger pupil dilations 

were associated with errors on a teleological reasoning task, providing evidence that more not less 

cognitive effort was associated with errors in reasoning on this task. Additionally, larger baseline pupil 

size was related to better performance. This may indicate that sufficient arousal or intermediate pupil 

size and tonic LC activity may be optimal for task performance, consistent with the adaptive gain 

theory (Aston-Jones & Cohen, 2005). In paper 3, we found limited evidence that larger pupil size was 

related to conflict detection and cognitive decoupling as proposed by Pennycook et al. (Pennycook et 

al., 2015b), however this depended on the analyses used. There was limited evidence that more 

cognitive effort was related to higher performance on a base-rate task. Additionally, there was 

evidence suggesting that conflicting information elicited more cognitive effort compared to congruent 

information. Regarding baseline pupil, in Paper 3 smaller baseline pupil size was related to higher 

performance on the base-rate task. This could be explained as larger baseline pupil size indicating high 

tonic LC activity and “exploration” or distractibility according to the adaptive gain theory (Aston-

Jones & Cohen, 2005), or mind-wandering (Mittner et al., 2016). Thus, the results from Paper 2 and 

Paper 3 are directly in contrast to each other regarding pupil dynamics and performance.  

According to the adaptive gain-theory there is an inverted-U shaped relationship between arousal and 

performance. If participants baseline pupil size, arousal and LC activity were on opposite sides of the 

inverted U-shape in paper 2 and 3, we would expect on the one hand larger baseline pupil size being 

related to higher performance (Paper 2), and on the other hand smaller baseline pupil size being 

related to higher performance (Paper 3). There are important differences from an attentional point of 

view. Firstly. in the base-rate task half of the participants had already performed a similar version of 

the task. Secondly, the duration of the task and each trial was longer compared to the short statements 

presented in the teleological reasoning task. Thirdly, participants did not receive feedback in the base-

rate task. Thus, it is conceivable that participants were more likely mind-wandering or distracted 

during the base-rate task. This highlights a challenge with pupillometry as a measure of cognitive 

effort. 

Pupil size fluctuates spontaneously through time likely as a result of arousal and LC activity, but also 

other brain areas and neuromodulators such as acetylcholine influence pupil size (Aston-Jones & 

Cohen, 2005; Beatty & Lucero-Wagoner, 2000; Mathot, 2018; Reimer et al., 2016). Thus, changes in 

pupil size are almost impossible to link with certainty to one specific mental process. Additionally, as 

noted above, intermediate baseline pupil size is optimal for on-task performance and both too large 

and too small pupil size can be detrimental for performance (Aston-Jones & Cohen, 2005). Further 

complicating pupillometry as a measure of cognitive effort, is the interaction between baseline pupil 

size and pupil dilations. It can be inverse where larger pupil dilations and high tonic LC activity, is 

associated with smaller pupil dilations (Eldar et al., 2013; Gilzenrat et al., 2010). Alternatively, the 

relationship between baseline pupil size and pupil dilations also shows an inverted-U shape if 

investigating a larger specter of possible pupil sizes, as very small pupils are also associated with 

smaller dilations (Mridha et al., 2021).  
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That larger pupil dilations were associated with higher performance in the base-rate task but not the 

teleological reasoning task can be explained as higher requirements on executive function and 

cognitive control. Performance in the base-rate task required integration of multiple pieces of 

information presented sequentially for successful performance, leading to more information being held 

and updated in working memory over time, requiring more cognitive control and executive functions 

(Friedman & Miyake, 2017; van der Wel & van Steenbergen, 2018). The teleological reasoning task 

on the other hand, presumably did not differ in executive control required for correct and error 

responses. Although this was proposed by Kelemen et al. (Kelemen et al., 2013), the evidence 

suggested that fast and effortless processes were associated with correct responses on the teleological 

reasoning task. 

Pupillometry has proven to be a valid physiological measure of cognitive effort (van der Wel & van 

Steenbergen, 2018). However, the pupil does not only measure cognitive effort. It is influenced by 

virtually any mental processing, in addition to light, near fixation and orienting (Beatty & Lucero-

Wagoner, 2000; Mathot, 2018). Furthermore, spontaneous fluctuations in arousal influence pupil size 

and performance (Aston-Jones & Cohen, 2005; Chiew & Braver, 2013; Gilzenrat et al., 2010; Mathot, 

2018; Reimer et al., 2016)). Lastly, fluctuations in baseline pupil size influence the size of event 

related pupil dilations (Eldar et al., 2013; Mridha et al., 2021). Thus, pupillometry and pupil dilations 

can be used as a physiological measure of cognitive effort. However, researchers need to be mindful 

when designing experiments by considering lighting, time on task, pace, timing of measurement, 

appropriate stimuli and control conditions, see Mathôt & Vilotijević (Mathôt & Vilotijević, 2023) for 

general guidelines. Importantly, I advise researchers to go a step beyond baseline correction as simply 

removing noise and consider the influence of baseline pupil size and arousal when measuring 

cognitive effort as event-related pupil dilations. 

The application of pupillometry to investigate reasoning tasks has elucidated the role of cognitive 

effort in two reasoning tasks in this thesis and has provided valuable evidence for comparing decision-

making frameworks. Except for Eldar et al. (Eldar et al., 2021), this methodology is novel and 

provides a path for research to further elucidate the role of cognitive effort in reasoning tasks and 

errors in reasoning. 

4.3 Comparing decision-making frameworks 

The study of decision-making and errors in reasoning has been influential in popular media, research, 

and has informed behavioral interventions and public policy (Buttenheim et al., 2023; De Neys, 2018; 

J. St. B. T. Evans & Stanovich, 2013; Kahneman, 2011; Kim et al., 2006; United Nations, 2021). 

Several decision-making paradigms have been proposed to explain errors in reasoning and deviations 

from rational behavior. However, these decision-making frameworks make opposing predictions 

regarding some decision biases and errors in reasoning. In this thesis the classical dual-process 

default-interventionist account, along with theoretical advancements such as the smart intuitor and the 

three-stage model of analytic engagement has been investigated alongside the extensive integration 

account of bias in reasoning, building on sequential sampling models of decision-making. 
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4.3.1 Dual-process models 

A simplistic explanation of reasoning errors according to the default-interventionist dual-process 

account is that errors in reasoning occur through fast and effortless processes (or is at least more 

likely). Deliberation, which requires time and working memory resources, is associated with correct 

responses and fewer errors in reasoning. Thus, correct responses should be slower and require more 

effort, whereas errors in reasoning should be fast and require less effort. The smart intuitor account 

holds the same predictions, however, highlighting that correct responses can also be fast and effortless. 

In Paper 1 we found that low performance on a rational reasoning battery, i.e., errors in reasoning, 

were associated with more subjective cognitive effort as measured with the N-TLX. This finding is 

directly opposing predictions from the default-interventionist dual-process account. The CRT which is 

a substantial portion (50% in some studies) of the tasks included in the rational reasoning task battery 

is supposed to measure deliberation (or cognitive reflection) and overriding of intuitive errors 

(Frederick, 2005). However, evidence from more than 350 participants in Paper 1 directly oppose that 

the task is measuring this. Additionally, dual-process theories propose that performance on the 

remaining heuristics and bias tasks should also be associated with more cognitive effort or Type 2 

processing (J. St. B. T. Evans, 2008; J. St. B. T. Evans & Stanovich, 2013). Thus, this provides 

substantial evidence directly opposing the default-interventionist dual-process account of errors in 

reasoning. The finding of subjective effort being negatively related to performance on rational 

reasoning tasks are however compatible with the smart intuitor account. If some individuals have high 

performance and intuitively come up with the correct answer and some don’t find the correct answer it 

is likely that the latter group will work to find the correct answer and thus will report higher effort, 

although they fail and answer incorrectly. However, this would also mean that most errors are not 

intuitive but occur after deliberation. Which then begs the questions of whether the account has any 

predictive value and whether two processes are required to explain the results? 

Performance on rational reasoning tasks were not related to any other behavioral measure of cognitive 

effort in Paper 1. According to the default-interventionist account one would expect that cognitive 

effort avoidance, or higher cognitive effort costs should be associated with more errors in reasoning. 

However, with the smart intuitor account the relationship between effort and reasoning errors is less 

clear, and this result neither favors nor opposes the smart intuitor account. 

Need for cognition was positively related to rational reasoning performance in Paper 1. This result is 

consistent with dual-process theories as it is proposed that high NFC individuals are more likely to 

engage in the demanding deliberate Type 2 processes required for correctly solving rational reasoning 

tasks (J. St. B. T. Evans & Stanovich, 2013; Stanovich, 2009a). According to Stanovich’s tri-partite 

model (Stanovich, 2009a) NFC would be categorized under the reflective mind and individual 

differences in thinking disposition. This is not the same as engaging in Type 2 processing (algorithmic 

mind), but this thinking disposition is associated with more frequently engaging in Type 2 processing 

(Stanovich, 2009a). However, it is not clear that the rational reasoning tasks do measure something 

more than intelligence (Otero et al., 2022), although studies have tried to partial out the influence of 

intelligence (J. St. B. T. Evans, 2008; Toplak et al., 2014). According to Stanovich (Stanovich, 2009b, 
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2016), rational reasoning tasks measure usual performance, whereas tests of intelligence measure 

maximum performance. Although, based on subjective reports of cognitive effort, more effort on these 

tasks do not lead to higher performance. Thus, it is still unclear what rational reasoning tasks are 

measuring and if the relationship with NFC could be due to differences in intelligence. 

In Paper 2 I found that the common reasoning error of accepting false teleological explanations were 

associated with longer response times and larger pupil dilations i.e., more cognitive effort. This result 

is directly opposing dual-process theories, both the default-interventionist and the smart intuitor 

account. One could argue that the results are possible under the smart intuitor account. However, this 

account would lose predictive value if the effort and time premises can be completely reversed. The 

results from Paper 2 are also consistent with the findings of Eldar et al. (Eldar et al., 2021) who found 

that larger pupil dilations were associated with more bias on three framing tasks. Overall, the results 

from Paper 1 and Paper 2 are largely incompatible with dual-process theory and most results directly 

oppose predictions from dual-process theory. 

The base-rate task on the other hand showed mixed evidence regarding predictions from dual-process 

theory. There was an overall effect of larger pupil dilations being associated with correct responses 

across conditions. However, this was not significant in the incongruent condition. Thus, indicating that 

there is an overall effect of effort on performance, but this effect was not specific for reasoning errors. 

According to dual-process theory, the incongruent condition is the only condition where larger pupil 

dilations should have been necessary, however larger pupil dilations should be related to higher 

performance across conditions also. Importantly, an effect of more effort being linked to correct 

responses in the incongruent condition was almost significant for the stereotype responders. Thus, the 

results are inconclusive and there is a need for a replication with higher statistical power to detect if 

smaller effects exist. Thus, the evidence here does not support dual-process theory, however it does 

not contradict dual-process theory either. 

Regarding conflict detection, the results showed larger pupil dilations in the attribute time window for 

stereotype responders when they subsequently gave the base-rate congruent (correct) response, which 

is opposite to their usual response. This partially supports the role of cognitive effort in overriding 

errors in reasoning. Additionally, base-rate responders showed larger pupil dilations in the attribute 

time window in the incongruent condition compared to the congruent condition, supporting conflict 

detection (note they were also larger in the neutral condition). Thus, the results find evidence 

supporting the construct of conflict detection. However, the results should be considered preliminary 

and there is a need to replicate the experiment with increased statistical power. 

A novel finding in Paper 3 was that there were two groups of responders on the base-rate task, 

stereotype responders and base-rate responders. Importantly, the results showed that in the 

incongruent condition these two groups are fastest when giving their majority response i.e., stereotype 

congruent responses for stereotype responders, compared to when giving their minority response. That 

is, base-rate responders were slower when giving the stereotype congruent response. This is contrary 

to predictions of dual-process theory which proposes that stereotype information should be processed 
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fast and effortless, whereas integrating the base-rate information should require time and cognitive 

effort. However, intuitive processing of base-rates has been shown previously (Newman et al., 2017; 

Pennycook et al., 2014). Additionally, a bi-modal distribution of responses in the incongruent 

condition was also found in Pennycook & Thompson (Pennycook & Thompson, 2012), and a re-

analysis might reveal a similar separation of two groups of responders. Notably, across participants the 

usual effect of stereotype congruent responses being fastest was present in the gaze version of the 

base-rate task, which is consistent with the literature (Pennycook et al., 2014, 2015b; Pennycook & 

Thompson, 2012). However, this effect was reversed in the pupillometry version of the base-rate task, 

where the order of presentation for the attribute and base-rate information is switched. This is contrary 

to dual-process theory which supposes that stereotype processing should always be faster than base-

rate integration. Thus, a body of work may have incorrectly assumed that stereotype congruent 

responses result from fast effortless processing, when task structure, stimulus selection and response 

preference may have influenced the result. Note that dual-process models have received criticism for 

assuming intuitive processing based on response times before (Krajbich et al., 2015; Pennycook et al., 

2016). Furthermore, it should be noted that some dual-process proponents argue that the speed of 

processing is a correlate of the two types of processing and cannot be taken as evidence of Type 1 or 

Type 2 processing (J. St. B. T. Evans & Stanovich, 2013). Although others argue for the importance of 

response time in dual-process research (Pennycook et al., 2016). Evidence for a fast use of base-rates, 

statistics, logic, and other information processing types believed to only arise through Type 2 

processing have accumulated in the last decade (Bago & De Neys, 2017; Newman et al., 2017; 

Pennycook et al., 2014; Raoelison et al., 2020; Thompson et al., 2018). 

The results regarding the two groups, quite convincingly show that one group of responders do seem 

to neglect the base-rate information. The stereotype responders are insensitive to the base-rate 

information, and it does not affect response times, gaze, nor pupil dilations. These responders give the 

stereotype congruent response in the incongruent condition on the majority of trials. Thus, supporting 

that neglect of the base-rate information is a significant source of bias on this task. This is predicted by 

dual-process theory and could be considered evidence in support of the dual-process theory. However, 

what does it mean to say that this is a Type 1 process, and does it add any explanatory value? 

Within the default-interventionist account, if a central distinction between the two types of reasoning 

is the mode of operation and the types of information and computations that can be performed by the 

two processes. E.g., Type 1 processing operates by association (or conditional and operant leaning 

principles), and form stereotypes quickly based on past experience, but cannot operate on formal logic, 

probabilities or mathematical principles. It adds explanatory value and is of interest that participants 

neglect some information (base-rates), whereas other information (forming stereotypes) is utilized 

(although, an autonomous process has not been proven), and may require less effort (although the 

results are mixed regarding this in Paper 3).  

In the smart intuitor account, stereotype formation, logic and probabilities can be intuitive (Newman et 

al., 2017; Pennycook & Thompson, 2012; Raoelison et al., 2020; Thompson et al., 2018). 

Additionally, Type 2 processing can be belief based, improperly use statistics, lead to incorrect 
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responses, and rarely lead to an improvement in responses (Ferreira et al., 2022; Newman et al., 2017; 

Pennycook & Thompson, 2012; Raoelison et al., 2020; Thompson et al., 2018). If this is the case, then 

it is unclear whether it adds any value to say that some process was Type 1 or Type 2. Additionally, 

there seems to be a tendency towards looking at the two types of processing as acting in parallel 

(Trippas et al., 2017; Trippas & Handley, 2018), or even opening up for the possibility of a continuum 

model (Kruglanski & Gigerenzer, 2011; Newman et al., 2017; Osman, 2004; Raoelison et al., 2020; 

Thompson & Newman, 2020). According to Stanovich and Evans (J. St. B. T. Evans & Stanovich, 

2013), the defining feature of Type 1 processing is that it is autonomous, whereas Type 2 processing 

relies on working memory (and speed is just a correlate of the two). However, the tasks usually 

applied to investigate dual-process theory are rarely applied for such a distinction to be made 

(Thompson & Newman, 2020). 

The results from this thesis overwhelmingly oppose predictions from the classical default-

interventionist account, although some results are in line with the model. Within the smart intuitor 

account, many of the results could be accommodated under this model by post-hoc explanations of the 

results, but the model would lose predictive value and virtually become unfalsifiable. It is unclear if 

the distinction between the two processes is helpful under the smart intuitor account. If we accept that 

the output of a decision process cannot distinguish between the two processes through which it was 

made (J. St. B. T. Evans & Stanovich, 2013). And all types of information can be processed as both a 

Type 1 and Type 2 process depending on mindware or automatization (Stanovich, 2018). Is the most 

fruitful path forward for decision science to determine if a process was autonomous or relied on 

working memory? Or should efforts be focused on multiple aspects of the decision process? Such as 

what changes in the decision process when working memory load or cognitive effort is increased, or a 

conflict is detected? Does this change information sampling, breadth of attention, the influence of 

context, speed of accumulation or change of threshold? How does attention, memory and the internal 

representation of the problem evolve over time and interact with available information? Alternative 

approaches such as investigating reasoning strategies suggests that other factors than working memory 

may carry more explanatory value (de Chantal et al., 2020; Markovits et al., 2021; Thompson & 

Markovits, 2021). 

Do the labels of Type 1 and Type 2 processing help advance research because they are useful 

constructs? I would argue these constructs have led to issues with communication as the constructs are 

too broad and general, and there is disagreement about their nature (J. St. B. T. Evans & Stanovich, 

2013). Additionally, as these constructs are too broad and general researchers have struggled to be 

specific with their hypotheses and to specify the underlying mechanisms they are trying to investigate. 

I advise dual-process researchers to be more specific with their research questions and explicitly state 

the proposed underlying mechanism of investigation. Further, models should be tested against 

competing models, not a null model. Lastly, dual-process researchers could benefit from looking 

across research fields to expand their toolbox, notably psychophysiological measurements and 

computational modelling could aid researchers in specifying and testing competing models and the 

underlying neural structure. 
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It could be argued, perhaps rightfully so, that the portrayal of dual-process models has been simplified 

in this thesis. However, if the most basic assumptions of the models, that differences in cognitive 

effort and speed of responses are related to performance, do not hold in general, I argue that something 

is wrong with the model. This is important as dual-process models and decision-science have been 

highly influential, informing behavioral interventions and public policy (Buttenheim et al., 2023; 

Kahneman, 2011; Kim et al., 2006; United Nations, 2021). If the underlying theory is not correct it 

can lead to unintended consequences. For example, behavioral interventions aimed at increasing 

deliberation can have the intended effect, but not due to increased deliberation (Lin et al., 2023), or 

have the opposite effect (Van Gestel et al., 2021). 

4.3.2 The three-stage model of analytic engagement 

The three-stage model of analytic engagement proposes that multiple responses may be produced as a 

Type 1 process and that conflicts between these responses cause Type 2 processing. Further, the model 

separates between failure in conflict detection and cognitive decoupling as early and late sources of 

bias in reasoning (Pennycook et al., 2015b). The novel contributions of the model will be addressed in 

this section, for a discussion regarding Type 1 and Type 2 processing in general, see section 4.3.1 

Dual-process models. 

Conflict detection failure was a significant source of bias in Paper 3, where a large group of 

participants neglected the base-rate information. Thus, supporting the model assumption that conflict 

detection failure is a major source of bias in reasoning. Regarding conflict detection the evidence was 

mixed. There was difference in pupil dilation in the attribute time window between the congruent 

condition and the neutral condition but not between the congruent and incongruent condition as 

proposed by the model. Further, this difference was significant for the base-rate group but not the 

stereotype group. Thus, increased cognitive effort was found when the base-rates were non-

informative. And this applied to the base-rate group but not the stereotype group. According to the 

model it is difficult to see how neutral base-rates should generate a response. Thus, the evidence 

seems to suggest that cognitive effort was engaged, or a “conflict was detected”, not when there was 

conflicting responses. But perhaps when the base-rate group had to change strategy from base-rate 

information to the stereotype (class) information. This would be consistent with switching requiring 

cognitive effort (Friedman & Miyake, 2017; van der Wel & van Steenbergen, 2018), and also with LC 

activity being involved in reorienting or acting as a neural interrupt signal (Bouret & Sara, 2005; 

Dayan & Yu, 2006). However, these results do not support the hypothesis that conflicting responses 

causes Type 2 processing or analytic thinking (note that the model do not oppose other sources of 

analytic engagement). An addition to the model that would explain the result of the neutral condition 

being associated with larger pupil dilations is that an initial response or strategy could be evaluated as 

not leading to a correct answer, triggering a new process (not stating if this process would be Type 1 

or Type 2 process, but rather asking if this process is similar or different, and how it is different, 

opening this up as a potential research avenue). Furthermore, it was found that stereotype responders 

did show larger pupil dilations, i.e., more cognitive effort, before giving the stereotype congruent 

response, which was opposite to their majority response. Indicating that the time window of conflict 

detection was important for correct responses and avoiding bias in reasoning. The same analysis 
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barely missed significance when including the base-rate group. Thus, there is evidence that conflict 

detection and conflict detection failure may be important for avoiding bias on the base-rate task. 

However, we did not find evidence that conflicting intuitions were the source of conflict, triggering 

Type 2 processing. However, our data do not exclude that this could happen, and a larger powered 

study might detect a difference in pupil dilations in the attribute time window between the congruent 

and incongruent conditions as the direction of the effect was in the expected direction. 

The evidence regarding cognitive decoupling in Paper 3 was mixed. When comparing pupil dilations 

before making a decision across conditions, base-rate responders showed larger pupil dilations in the 

incongruent condition compared to the congruent condition, whereas stereotype responders did not. 

However, the neutral condition also showed larger pupil dilations compared to the congruent condition 

for base-rate responders. Thus, for the base-rate responders it might be that integrating opposing 

evidence, or changing what type of information they were relying on might have required more effort. 

Additionally, there was an effect of larger pupil dilations before decisions being associated with 

correct responses across conditions. When looking solely at correct and error responses in the 

incongruent condition, there was no significant effect of pupil dilation before making a decision. 

However, the effect was in the expected direction and was nearly significant for the stereotype group. 

Thus, the evidence is ambiguous regarding cognitive decoupling. There might be smaller effects that 

Paper 3 were not able to detect. However, there may be a general effect of cognitive effort on 

performance. This is in accordance with previous work (Bonner & Sprinkle, 2002; van der Wel & van 

Steenbergen, 2018).  

The three stage-model may be criticized as both Type 1 processes and Type 2 processes can both lead 

to errors and correct responses (see section 4.3.1 Dual-process models for a discussion on this point). 

The flexibility of the model is both a strength, as it can account for many different possibilities, and a 

weakness, as the flexibility makes it hard to make predictions. However, despite the flexibility of the 

model, there are a number of findings in Paper 3 the model cannot account for. Detecting a conflict is 

supposed to engage analytic thinking, which can be operationalized as increased decision threshold 

(Lin et al., 2023). However, modelling responses with a drift-diffusion model showed no difference in 

decision threshold. Rather the DDM suggested that response time differences across conditions is due 

to increased task difficulty, as indicated by lower drift-rate in the DDM. Further, the changes in 

response times due to the majority and minority responses are not easily explained by the model 

(although it is possible). Lastly, the changes due to task structure (gaze version and pupillometry 

version) in response times for correct and error responses in the incongruent condition is not possible 

to explain with the three-stage model of analytic engagement. However, the model adds valuable 

contributions by dissociating conflict detection failure and failure to come up with the correct response 

after having detected a conflict. Paper 3 overall supports the notion of dissociable sources of bias. 

Additionally, the proposal of multiple intuitions being generated internally, and this as a source of 

conflict that can influence subsequent processing is a valuable contribution, although not assessed 

here. Lastly, due to model flexibility the model could probably account for findings in Paper 1 and 

Paper 2. However, the criticism that the main predictions from dual-process models do not hold in 
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general, i.e., more effort and longer deliberation time leads to better reasoning performance, is still 

valid and discredits the dual-process aspect of the model.  

4.3.3 Sequential sampling models and the extensive integration account 

Sequential sampling models are a class of computational decision-making models applied in different 

domains such as perceptual reasoning, memory, and value-based decision-making (Krajbich, 2019; 

Krajbich & Rangel, 2011; Ratcliff & McKoon, 2008). Additionally, they have been able to explain 

reasoning biases such as framing effects, loss aversion, preference reversals, and the similarity-, 

attraction-, and compromise effects (Busemeyer et al., 2006; J. G. Johnson & Busemeyer, 2005; 

Noguchi & Stewart, 2018; Trueblood et al., 2014; Tsetsos et al., 2012; Usher et al., 2013; Usher & 

McClelland, 2004). Notably, Eldar et al. (Eldar et al., 2021) noted that these models make the opposite 

assumption regarding pupil dilations and response time, compared to dual-process models. In paper 2, 

the theory of extensive integration as a source of reasoning bias was put to the test. Further, the drift-

diffusion model was applied as a tool in Paper 2 and Paper 3 for investigation of latent parameters of 

the decision process.  

The finding in Paper 1 that more subjective effort was associated with worse performance on 

reasoning tasks is in line with the extensive integration account, which predicts that more time and 

effort is associated with more bias. Note that Paper 1 did not set out to test sequential sampling 

models, nor the extensive integration account.  

In Paper 2, we found that smaller pupil dilations and faster response times were associated with 

correct responses, i.e., less bias on a teleological reasoning task. Thus, our main outcome measures 

were in accordance with the predictions of the extensive integration account. Further corroborating the 

predictions from the extensive integration account, we found that larger baseline pupil size was related 

to correct responses. Indicating that smaller baseline pupil size, which was used as a proxy for low 

tonic LC activity and low neural gain, was associated with more bias in reasoning. Furthermore, 

results from analyzing trial-by trial variations in pupil size with the drift-diffusion model showed that 

smaller baseline pupil size and larger pupil dilations were associated with higher decision threshold 

and lower drift-rate, thus, requiring more evidence accumulation to make a decision. Conversely, 

larger baseline pupil size and smaller pupil dilations were associated with lower decision threshold 

and higher drift-rate, leading to less evidence accumulation, fewer errors in reasoning. Overall, the 

result from Paper 2 follows all predictions from the extensive integration account, providing 

convincing evidence in favor of this account of bias in reasoning. The application of modelling 

response times with a drift-diffusion model provided further evidence in favor of the extensive 

integration account and the link between pupil size, LC activity and neural gain (Aston-Jones & 

Cohen, 2005; Eldar, Cohen, et al., 2016; Eldar et al., 2013, 2021). 

Paper 3 was not meant to test the extensive integration account of bias in reasoning. It is hard to make 

predictions for the extensive integration account for the base-rate task. On one hand, if there is a bias 

to attend the class/stereotype stimuli, this bias could be exacerbated by more time and extensive 

integration. On the other hand, lower neural gain could lead to slower, broader and more extensive 
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integration, which includes integrating both types of information, which should result in less bias in 

reasoning. Thus, the task is not suited to make predictions regarding this account vs dual-process 

models, as post-hoc justifications for either result could be made. 

The drift-diffusion model was applied as a tool in Paper 3 to assess if conflicting information did 

increase decision-threshold. An advantage of DDM’s is that they decompose the entire response time-

distributions into latent decision parameters, rather than relying on mean response times. The results 

from modelling the responses on the base-rate task with the DDM showed that there was no difference 

in threshold across conditions. Instead, the differences in response times across conditions could be 

explained by lower drift-rate, indicating higher task difficulty in the incongruent and neutral 

conditions compared to the congruent condition. This finding has important implications for dual-

process research as mean differences in response times are often interpreted to indicate more 

deliberation or Type 2 processing (Bago & De Neys, 2017; De Neys, 2006; De Neys & Glumicic, 

2008; J. St. B. T. Evans & Curtis-Holmes, 2005; Frederick, 2005; Kahneman, 2011; Pennycook & 

Thompson, 2012; Rubinstein, 2007). However, the fact that task difficulty may be manipulated 

through changing conditions is often overlooked. As highlighted in N.J. Evans & Wagenmakers (N. J. 

Evans & Wagenmakers, 2020) sequential sampling models (or evidence accumulation models) should 

be implemented as a default method for inference, rather than mean response times and accuracy rates. 

Response bias was also found to differ between the gaze version and the pupillometry version of the 

base-rate tasks. This finding is hard to explain through dual-process models. However, if the decision 

process is viewed as a sequential sampling process this could be neatly explained. In the gaze version 

of the task participants receive first the class information, then the attribute. At this point a decision-

process has likely started, where evidence is accumulated towards the class/group which is most 

congruent with the attribute information, i.e., the stereotype. Thus, when the response slide is 

presented together with the base-rate information, evidence has already started accumulating towards 

the group that is congruent with the attribute/stereotype, resulting in a starting point bias in the model 

towards the stereotype congruent option. Conversely, in the pupillometry version the task presentation 

order is switched. In the pupillometry version participants see the class/groups, then they are presented 

both the groups and the base-rate information. At this point evidence accumulation towards the higher 

base-rate group likely starts, as there is no stereotype information available. Then, the attribute 

information is presented. Lastly, a question regarding which group the person most likely belongs is 

presented. The results show that the starting point bias in this version is towards the base-rate 

congruent response. This could be due to the fact that this information is available earlier, and 

accumulation towards this option can start sooner. Alternatively, the change of modality can matter. 

The participants see both the class and base-rate information on the same slide, whereas they have to 

remember the two groups when the attribute is being presented. The exact mechanism is not known. 

However, sequential sampling models can provide a simple explanation for why the starting point bias 

change when task structure is alternated. Additionally, the change in response times in the incongruent 

condition between correct and error responses for base-rate responders and stereotype responders can 

be explained through the same mechanism as laid out in Krajbich et al.’s (Krajbich et al., 2015) 

criticisms of dual-process research. 
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It is beyond the scope of this thesis (and Paper 3) to provide formal models of the base-rate task with 

sequential sampling models. However, it might be fruitful to ask how visual attention influence the 

decision process, perhaps with an adopted version of the attentional drift-diffusion model (Krajbich & 

Rangel, 2011; Yang & Krajbich, 2023). Or one could ask why the stereotype/class information seem 

to draw more attention, is it due to being more uncertain, and it is optimal to pay more attention to 

options that are high in value and uncertain (Callaway et al., 2021).  

Outside of Paper 2, there was no strong tests of sequential sampling models or the extensive 

integration account of bias in reasoning in this thesis. Therefore, sequential sampling models have not 

been tested or evaluated to the same degree as dual-process models have in this thesis. To my 

knowledge there is no strong evidence against sequential sampling models in the papers in this thesis. 

However, sequential sampling models can be criticized for being to restrictive and not applicable to 

complex problems such as those studied in the heuristics and bias literature. It is true that the models 

are limited in the timeframes they are applicable for and depend on sufficient response data. However, 

Paper 2 and Paper 3 provide evidence that these models can be applied to reasoning problems by 

adapting the presentation format of the problems. Additionally, the models can be criticized for being 

too general and do not provide in-depth task specific explanations of cognitive phenomena. However, 

task-specific extensions of the models can overcome this issue.  

4.4 The role of cognitive effort in decision-making 

Decision-making paradigms have been employed to study cognitive effort costs and cognitive demand 

avoidance (Kool et al., 2010; Westbrook et al., 2013). In general, cognitive effort is expected to have a 

beneficial effect on task performance and decision making (Bonner & Sprinkle, 2002; G. R. Hockey, 

1997; Shenhav et al., 2013; Shenhav, Musslick, et al., 2017; van der Wel & van Steenbergen, 2018). 

Additionally, it has been proposed that a lack of cognitive effort is associated with errors in reasoning 

(J. St. B. T. Evans, 2008; J. St. B. T. Evans & Stanovich, 2013; Frederick, 2005; Kahneman, 2011; 

Kahneman & Frederick, 2002).  

Paper 1 assessed two common behavioral measures for investigating cognitive effort through decision-

making. The COG-ED investigates cognitive effort through decisions to expend more cognitive effort 

for a larger reward or less effort for a smaller reward. The task paradigm was reported as being 

subjectively effortful and provided reliable individual difference measures of cognitive effort 

discounting of monetary rewards. The task was related to working memory performance and NFC, 

thus replicating previous work (Westbrook et al., 2013). The task was assessed as being a valid 

paradigm for studying cognitive effort through decision-making. The DST studies cognitive effort 

implicitly through studying a series of behavioral choices between two decks, which unbeknownst to 

participants, differ in cognitive effort. The DST did show cognitive effort avoidance as there was a 

small overall tendency to avoid the high cognitive demand deck, replicating Kool et al. (Kool et al., 

2010). However, the task paradigm was not related to any other cognitive effort measures in Paper 1. 

Thus, the task paradigm shows cognitive demand avoidance, but the task version applied in Paper 1 

may not be suitable as a paradigm to study individual differences in cognitive effort through decision-

making. Overall, decision-making paradigms can be a valuable tool for studying cognitive effort, 
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however researchers need to be mindful that cognitive effort is not a unitary construct and different 

task paradigms measure different aspects of cognitive effort and have different strengths and 

weaknesses (see section 4.2 Comparing tools measuring cognitive effort). 

In paper 3, we found an overall effect of larger pupil dilations and more cognitive effort being related 

to better performance across conditions. This is in line with previous work showing a general effect of 

higher cognitive effort being linked to better performance (Bonner & Sprinkle, 2002; G. R. Hockey, 

1997; Shenhav et al., 2013; Shenhav, Musslick, et al., 2017; van der Wel & van Steenbergen, 2018). 

However, researchers investigating cognitive effort and performance need to be mindful of the 

influence of arousal which can be detrimental to task performance at both too high and too low levels 

(Aston-Jones & Cohen, 2005). Further, arousal will influence neural gain and pupil size, which can 

impact performance (Eldar et al., 2013; Reimer et al., 2016). Additionally, different levels of arousal 

may benefit different cognitive operations (Berridge & Spencer, 2016; Spencer & Berridge, 2019). 

Dual-process theories generally assume that more cognitive effort should be associated with better 

performance on reasoning tasks, and a lack of cognitive effort is associated with more bias and errors 

in reasoning (J. St. B. T. Evans & Stanovich, 2013; Kahneman, 2011; Kahneman & Frederick, 2002). 

Contrary to this prediction, we found that performance on rational reasoning tasks was negatively 

associated with subjective reports of cognitive effort demand on these tasks. Additionally, in Study 2 

we found that larger pupil dilations indicating more cognitive effort was associate with more 

acceptance of false teleological explanations for natural phenomena, i.e., more reasoning bias. This is 

in line with a body of work contradicting the predictions of the default-interventionist dual-process 

account (Bago & De Neys, 2017; Eldar et al., 2021; Newman et al., 2017; Raoelison et al., 2020). 

However, in Paper 3 we found some evidence of more cognitive effort after detecting a conflict being 

related to overcoming reasoning errors. Thus, the evidence indicates that more cognitive effort could 

lead to overcoming some reasoning errors, however more effort could be related to more reasoning 

errors on other tasks. The evidence therefore quite clearly shows that errors in reasoning is not 

generally due to a lack of cognitive effort, and one cannot assume that errors in reasoning occur due to 

a lack of cognitive effort. There is therefore a need for future research to determine which errors in 

reasoning occur due to a lack of cognitive effort and disentangle cognitive effort from other factors 

leading to bias and errors in reasoning. 

In summary, cognitive effort is generally linked to higher task performance in decision-making tasks 

(E. K. Miller & Cohen, 2001; Shenhav et al., 2013; Shenhav, Musslick, et al., 2017; van der Wel & 

van Steenbergen, 2018). However, there are exceptions to this, and the evidence clearly shows that it 

is not warranted to assume that errors in reasoning occur due to a lack of cognitive effort. Indeed, 

some errors in reasoning are associated with more, not less, cognitive effort (Eldar et al., 2021). This 

indicates that general assumptions of the default-interventionist dual-process model do not hold. 

Furthermore, studying cognitive effort through decision-making is a promising research avenue. 

However, there is a need to validate that the tasks are indeed measuring cognitive effort and specify 

the aspects of cognitive effort that is being measured, and further investigate how the cognitive effort 

measures are related to other measures of cognitive effort, cognitive ability and motivation. 
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4.5 Limitations and future directions 

Limitations of the presented Papers have been noted in the preceding sections of the discussion, 

however there are some overall factors which should be highlighted in a more structured manner. 

4.5.1 Task- selection and structure 

Task selection and task structure are important factors in research design and have important 

implications for the outcome of empirical studies and the inferences that can be drawn from them.  

Paper 1 highlights the importance of cross-validating research tasks measuring related constructs. 

Notably, task selection is an important factor to consider in Paper 1. Firstly, there are alternative tasks 

that were not included such as the cognitive effort expenditure for rewards task (Lopez-Gamundi & 

Wardle, 2018). This task was not included as we were not aware of this task when starting our data 

collection. Additionally, we did not include measures of physical effort and perceptual effort (Horan et 

al., 2015; Reddy et al., 2015). Secondly, the tasks included come in several variants and it is not 

known how different variants of the task paradigms would relate to each other. As an example, the 

COG-ED used explicit labeling of the N-back levels, rather than associating the levels of N with 

colors (Westbrook et al., 2013). This made the task choices more explicit regarding the demand 

manipulation. It is not known if, or how, the manipulation of associating levels of N with colors 

influence choices. There is a possibility that making the demand manipulation less obvious would 

make the task more similar to the DST, which might influence covariance between the tasks. 

Additionally, it is not clear how subjective indifference points in COG-ED are influenced by applying 

higher load levels such as N = 5 or N = 6, as was done in Study 1 and Study 2 in Paper 1. As the load 

discrepancy between tasks is larger it is probable that subjective indifference points may become 

higher. Further, it is possible that higher load levels are more influenced by error rates compared to 

lower levels of N (Zerna et al., 2023). Furthermore, the DST has been used in several variants (Kool et 

al., 2010; Reddy et al., 2015; Sayalı & Badre, 2019). And it is unknown if using an incentivized 

version of the DST, or by changing the demand manipulation, or adding more demand levels, the DST 

might become a better measure of individual differences in cognitive effort expenditure. This might be 

related to other cognitive effort measures. Furthermore, boredom might be a factor in these tasks. 

Preferences for cognitive work vary between individuals and some individuals prefer higher levels of 

cognitive effort (Bustamante et al., 2023; Cacioppo & Petty, 1982; Zerna et al., 2023). This is an 

important point as the low demand tasks in Paper 1, COG-ED (N = 1) and DST (10 % task switch) had 

very low demand. Some participants may have found the low demand tasks boring and preferred the 

higher demand tasks. Zerna et al. (Zerna et al., 2023) proposes an approach where the preferred 

cognitive effort level is not assumed but rather assessed prior to monetary discounting choices in 

COG-ED. However, Zerna et al. (Zerna et al., 2023) found that most participants favored the lowest 

cognitive effort option (N = 1). Notably, the discounting was shallower between N = 1 vs. N = 2, 

compared to N = 2 vs. N = 3 choices. Thus, a simple approach to account for effects of boredom might 

be to have the N = 2 as the low demand option. Alternatively, assess the preferred load level as in 

Zerna et al. (Zerna et al., 2023). Furthermore, higher NFC may be associated with higher demand 
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preference (Zerna et al., 2023), but lower reward sensitivity (Sandra & Otto, 2018). Thus, future 

research may therefore benefit from including measures of reward sensitivity when using incentivized 

cognitive effort paradigms. 

The rational reasoning task battery consisted of a selection of problems taken from the heuristics and 

biases literature. However, this selection was based on previous studies applying these tasks and not a 

complete assessment of all possible tasks and a stringent selection based on formalized criteria. Thus, 

the selection of tasks was based mostly on previous application and could be argued was somewhat 

arbitrary. The validity of such an approach is therefore up for discussion. The application in Paper 1, 

aiming to assess behavioral reasoning tasks as a measure of cognitive effort against other measures of 

cognitive effort, I argue is valid. The tasks are indeed used as measures of analytic-, deliberate-, Type 

2-, thinking/processing and are assumed to measure cognitive effort or a cognitive style of expending 

cognitive effort (J. St. B. T. Evans, 2008; J. St. B. T. Evans & Stanovich, 2013; Frederick, 2005; 

Kahneman, 2011; Kahneman & Frederick, 2002; Shah & Oppenheimer, 2008; Trippas et al., 2015; 

West et al., 2008). However, the results from Paper 1 suggests that these tasks should not be applied as 

such. Further criticism might be directed toward the application of N-TLX after completing entire 

cognitive effort task paradigms. One could argue that it would be more beneficial to measure 

subjective cognitive effort after individual N-back tasks as in Westbrook et al. (Westbrook et al., 

2013), or after each individual reasoning problem in the rational reasoning task battery. Indeed, this 

would be a more nuanced approach with more data regarding cognitive effort experienced under 

different task loads and demands. However, this approach would require a substantial increase in N-

TLX measurements for participants to fill out, which would require more time, more repetition and 

would probably have a negative influence on motivation to complete the experiments. Secondly, this 

would not allow for comparisons of how subjectively effortful the task paradigms are compared to 

each other. However, Paper 2 and Paper 3 shows that different reasoning biases may be differentially 

influenced by cognitive effort and further research is necessary to determine which tasks depend on 

cognitive effort and what the other contributing factors in reasoning bias is. Future research efforts 

could inform what tasks should be applied together and which should not. Importantly, the tasks 

selected and the task structure in Paper 2 and Paper 3 also influence the inferences that can be drawn 

in the individual papers and this thesis. 

In Paper 2 the teleological reasoning task was adapted for concurrent pupil measurement. For this 

purpose, the task had to be adapted to include a time limit. This time limit was longer than speeded 

trials in Kelemen et al. (Kelemen et al., 2013), and the mean response times indicated that time was 

not an issue. Additionally, we found that errors were slow on the task, not fast, indicating time was not 

a major factor and errors were not impulsive. However, including a variant of the teleological 

reasoning task without a time limit would have allowed further disentangling of the effects of speed 

vs. accuracy, and bias as accumulating over time or occurring due to fast processing. Furthermore, the 

time-window for analyzing the decision was externally imposed and only peak dilation was utilized in 

further analyses. Applying a version without time restrictions and with analyses across the full 

timeseries of pupil dilation could reveal differences in the reasoning processing in terms of attention, 

effort, uncertainty and mind-wandering (Mittner et al., 2016; Unsworth & Robison, 2016, 2017; Urai 
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et al., 2017). However, this would likely exclude drift-diffusion modelling of responses and make 

comparisons between the competing accounts of reasoning bias more complex. Another concern 

regarding task selection in Paper 2 is the inclusion of rational reasoning tasks as a measure of 

cognitive ability. In paper 1, this was used as a measure of cognitive effort. However, Paper 1 showed 

that this is not a valid measure of cognitive effort. The application of reasoning tasks as measures of 

cognitive ability can be justified as Otero et al. (Otero et al., 2022) found that the cognitive reflection 

test does indeed index cognitive ability and has been applied as a measure of cognitive ability in other 

studies (Raoelison et al., 2020). However, we do note that it is not entirely clear what this task battery 

of rational reasoning tasks measure, there is uncertainty involved when utilizing this measure, and 

caution should be made with interpretations. 

In Paper 3 two variants of the base-rate task were applied. Both versions of the task did include many 

exposures to the same type of problem with conditions providing small differences in the presented 

task. It is not clear how multiple exposures to the same problem type influence responses. Previous 

work has shown that responses are influenced by which type of information is presented (or not 

presented), the order of the presented information and the extremity of the base-rates (Koehler, 1996; 

Pennycook et al., 2014, 2015b; Pennycook & Thompson, 2012). Notably, Paper 3 did not include a 

non-informative stereotype condition, which possibly could have influenced the stereotype 

responder’s strategy. Further, using moderate base-rates may have influenced both participant groups 

by base-rate responders becoming more likely to give the stereotype congruent response. Or 

stereotype responders becoming more aware of the base-rates and thus weight them more heavily. 

Perhaps it would not be possible to separate two groups of responders. Multiple exposures to the same 

problem may have resulted in participants choosing a strategy for solving the task. This is consistent 

with the results showing two types of responders. Recent research has highlighted the influence of 

reasoning strategy in rational reasoning problems (de Chantal et al., 2020; Thompson & Markovits, 

2021). Future research could help disentangle how task structure and presentation influence reasoning 

strategy and changes in reasoning strategy. However, task length is a limiting factor in task design as 

participants might get bored, which may influence performance, attention and pupil size (Aston-Jones 

& Cohen, 2005; Mittner et al., 2016; Unsworth & Robison, 2016). The finding of larger baseline pupil 

size being related to errors on the base-rate task in Paper 3, indicates that boredom, distractibility, or 

mind-wandering may have been a factor in Paper 3. Suggesting that there is a limit to the possible 

combinations that can be utilized in the base-rate task in single experiments. An additional factor in 

the design of the pupillometry version of the base-rate task was the change in modality during trials of 

the task, from information being presented visually for the two groups and the base-rate information, 

to auditorily for the attribute and question. This likely put a larger demand on working memory as 

more information had to be retained in working memory compared to the gaze version of the task. The 

reason for this change was to maintain illuminance and avoid light related changes in pupil size. 

However, increased working memory load may have increased cognitive effort expenditure, and the 

influence of motivation and cognitive ability.  
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4.5.2 Pupillometry 

Pupil size was applied as a physiological measure of cognitive effort in Paper 2 and Paper 3. However, 

in Paper 2 it was also applied as a proxy for neural gain and activity of the LC-NE system. The pupil 

may be a “window to the preconscious” as noted by Laeng et al. (Laeng et al., 2012), providing 

valuable information about cognitive processing. However, the difficulty with using pupil dilation as a 

measure of cognitive processing is that anything that activates the mind or increases processing load 

also causes the pupil to dilate (Mathot, 2018). Thus, it is nearly impossible to link pupil dilation to a 

single cognitive action. In this thesis, it has been noted that pupil size may reflect cognitive effort, 

arousal, LC activity, neural gain, uncertainty, and mind-wandering. Notably, these concepts and neural 

structures are likely interrelated. Very low levels of arousal are likely associated with little cognitive 

effort, rising uncertainty may be accompanied by engagement of cognitive effort, and as mentioned, 

LC activity may influence neural gain and regulate task engagement. However, the issue of not 

knowing what one is measuring remains. Only briefly mention earlier is the fact that changes in pupil 

dilation are influenced by acetylcholine. Whereas LC phasic activity causes rapid changes in pupil 

size, longer lasting fluctuations in pupil size are influenced by cholinergic activity, such as those 

produced by locomotion (Reimer et al., 2016). Thus, in the case of the experiments in Paper 2 and 

Paper 3, where participants are seated with only small motor movements such as pressing a button, the 

systematic changes in pupil dilation are more likely related to LC activity. However, it cannot be 

excluded that cholinergic activity may have had a small influence on the results, or at least contributed 

to noise in the data. Further, fluctuations in arousal and LC activity may influence performance and 

task evoked pupil dilations (Aston-Jones & Cohen, 2005; Chiew & Braver, 2013; Eldar et al., 2013; 

Gilzenrat et al., 2010; Mathot, 2018; Mridha et al., 2021; Reimer et al., 2016). Thus, simple baseline 

corrections may hide information and influence results if not considered as a relevant or contributing 

factor. Designing experiments and task for concurrent measure of pupil dilation therefore requires 

careful consideration by researchers. 

The timing of the pupil response is an important factor in pupillometry research. Ideally, there should 

be no external activity while pupil size is being measured (Mathôt & Vilotijević, 2023). The delay of 

the pupil response should be taken into consideration. In Paper 2 and Paper 3 the time window of pupil 

dilations before decisions (ending with the decision) may have been short, as the pupil response likely 

did not have time to fully develop. However, motor actions such as pressing a button also cause pupil 

dilation. Thus, the time window utilized was a compromise between capturing as much of the 

processing activity or intensity, i.e., cognitive effort leading up to the decision and avoiding dilation 

caused by motor-planning and motor action. An alternative approach could have been to instruct 

participants to delay responding by 2 seconds after making their decision. However, delaying the 

decision could be considered a factor influencing the decision (Chen & Krajbich, 2018; Martiny-

Huenger et al., 2021; van de Ven et al., 2010) and would interfere with response time measures and 

drift-diffusion modelling. However, timing of the attribute time window in the base-rate task may 

have provided a good measure of mental activity related changes in pupil dilation, as participants 

waited for 2 seconds after the attribute presentation with no changes in the environment. 



 

 

72 

 

 

The stimuli should ideally be constant between conditions when designing pupillometry experiments. 

In the base-rate task, both the visual stimuli and the audio stimuli had minor differences in length 

(class and attribute), but these differences were small and not systematic. In the teleological reasoning 

task however, the differences in length of the statements presented varied with 1.4 seconds between 

the shortest and the longest audio clips (statements). The difference between listening for 2.3 second 

and 3.7 seconds most likely cause differences in pupil dilation and cognitive effort regardless of 

content. This is a confounding factor in the experiment that was not controlled for in the analyses. 

However, there are no known systematic differences in sentence length in the different statement 

categories. Another factor not yet discussed in the teleological reasoning task is that participants 

received feedback. Errors on the teleological reasoning task was accompanied by the expected 

increase in pupil dilations (Urai et al., 2017). It is possible that error trials on the task was 

accompanied by increased cognitive effort on the subsequent trial (Murphy et al., 2016). However, 

randomization of the items likely attenuates any systematic effect across trial types in pupil dilation 

and performance from error related engagement. Additionally, Paper 2 did not control for a learning 

effect due to feedback. However, a learning effect would not alter the predictions tested in Paper 2 and 

therefore not be consequential for the main results. Furthermore, it is possible that feedback in the 

teleological reasoning task may have had a positive effect on participants motivation (Burgers et al., 

2015). 

Recordings of pupil size are noisy even with high quality recordings, this is due to blinking, 

measurement errors and more (Mathot, 2018; Mathôt & Vilotijević, 2023). In both Paper 2 and Paper 

3, there was loss of data due to low quality pupil data. The quality of the pupil recordings varied 

substantially between individuals, leading to exclusions of participants from analyses of pupil dilation. 

The sample size calculations had accounted for some loss of data due to pupil measurement 

inaccuracies. However, this did affect the statistical power of Paper 2, and in particular Paper 3. The 

findings from Paper 3 regarding pupil dilation should be considered preliminary as there were small 

effects in the expected direction that barely missed significance, and the level of significance likely 

depended on the analysis approach. To attain the most reliable data for publication, participants with 

too low quality pupil recordings were excluded. In addition, to remain transparent the supplementary 

analyses included additional analyses without exclusion of individual participants. However, the low 

quality of pupil recordings for some participants is a weakness of Paper 3. Additionally, the loss of 

data prevented exploration of interacting effects between individual difference measures such as 

cognitive ability and pupil measures. As mentioned previously, studies have shown an interaction 

between pupil dilation and cognitive ability (Granholm et al., 1996; Kreis et al., 2020; Poock, 1973). 

4.5.3 Application of the drift-diffusion model 

The drift-diffusion model was applied in Paper 2 and Paper 3 to investigate differences in responses 

across conditions. Additionally, in Paper 2 the pupil measures were included in the model as 

predictors of trial-by-trial variation in decision parameters. It has been recommended that the DDM 

should be applied to forced two-choice tasks with mean response times below 1.5 seconds (Ratcliff & 

McKoon, 2008). Before data collection it was not known if mean responses time on the teleological 

reasoning task would be below 1.5 seconds. However, Lerche & Voss (Lerche & Voss, 2019) have 
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validated the DDM with tasks requiring longer response times. Mean response time in both the 

teleological reasoning task and the base-rate task was well below 1.5 seconds indicating no issues due 

to duration of responses in the two tasks. Additionally, it has been shown that the model parameters 

can be estimated with trial numbers as low as 50 – 200 with sufficient reliability (Lerche et al., 2017; 

Lerche & Voss, 2017, 2019). Thus, estimation of parameters should be reliable in Paper 2 (77 trials) 

and Paper 3 (80 trials). Notably, there was no convergence issues in estimating the parameters of the 

models and the model fit was good. The DDM has previously been applied to perceptual 

discrimination, lexical decision making, recognition memory, sentence comprehension, probabilistic- 

and reward- learning tasks, and decisions of cognitive effort and reward (Cavanagh et al., 2014; 

Germar et al., 2016; Ratcliff, 1978; Ratcliff & McKoon, 2008; Spaniol et al., 2008; Westbrook et al., 

2020). The teleological reasoning task has similarities to sentence comprehension, lexical decision-

making and recognition memory tasks. Decisions regarding a statement’s veracity depends on 

knowledge about the world (recognition memory), detecting if information is not true or is flawed 

(similar to lexical decisions regarding detecting words vs. non-words), and inferring meaning from a 

statement (similar to sentence comprehension or understanding metaphors). Thus, there is precedence 

for applying DDM’s to comparable tasks to the teleological reasoning task. Regarding the base-rate 

task there is no direct precedence for analyzing responses with a DDM. However, a comparable task is 

the effort decisions made in a COG-ED paradigm by Westbrook et al. (Westbrook et al., 2020). In this 

paradigm the participants made choices regarding which N-back and reward combination they wanted 

to perform, high effort and high reward vs. low effort and low reward. Choice options were vertically 

divided on the screen (left and right, similar to the base-rate task), and the information types (effort 

demands and rewards) associated with each option is horizontally divided, similar to the base-rate 

task. Thus, in both tasks the different information types favor opposing options, and one may be more 

heavily weighted than the other in the decision-making process. Furthermore, if the base-rate task had 

been divided into two sub tasks, making choices regarding if it is more likely that a person comes from 

a group of 3 vs. 997 people, it would be comparable to a probabilistic selection task (Cavanagh et al., 

2014). Similarly, if the task was to state if an attribute (e.g., kind) was most likely describing one out 

of two groups (lawyers or nurses), the underlying process is comparable to a combination of 

recognition memory, perceptual discrimination, or value task (B. Forstmann et al., 2010; Krajbich et 

al., 2010; Krajbich & Rangel, 2011; Ratcliff, 1978). Thus, there are comparable task paradigms that 

have applied DDM’s to analyze responses. However, it could be argued that the attentional drift 

diffusion model or a multi-attribute drift diffusion model might have been more appropriate for 

analyzing responses on the base-rate task (Fisher, 2021; Krajbich et al., 2010; Krajbich & Rangel, 

2011). However, for a simple comparison of the main parameters of the model, I would argue that 

applying a standard DDM is sufficient. 

4.5.4 General limitations of the thesis 

This thesis has provided evidence that cognitive effort can be associated with more or less errors and 

bias in reasoning. As such it has provided evidence against the default-interventionist dual-process 

model. Further, tools measuring cognitive effort have been compared against each other. However, 

there are notable limitations to this thesis. 
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All cognitive effort measures applied in this thesis have their shortcomings and there is no objective 

benchmark to be compared against. Thus, uncertainty remains after comparing cognitive effort 

measures against each other. The uncertainty of what is being measured also applies to physiological 

measures of cognitive effort such as pupil dilation. Therefore, strengths and weaknesses of paradigms 

have been highlighted but there is no clear answer to how one should measure cognitive effort. As 

cognitive effort is a multi-faceted construct a single objective measure is likely not possible to find. As 

highlighted in the “effort paradox” (Thomson & Oppenheimer, 2022), the best current approach is to 

integrate research across fields to highlight different aspects of cognitive effort. 

The interaction between cognitive ability and cognitive effort is an important factor in performance 

and for cognitive effort research. However, none of the papers in this thesis applied a valid measure of 

general intelligence. Rather, proxy measures such as working memory capacity were applied. Thus, 

there are questions regarding the interaction between cognitive ability and cognitive effort measures 

which remain unanswered. 

The default-interventionist dual-process model was tested in several ways in this thesis finding strong 

evidence against this theory. However, sequential sampling models and the extensive integration 

account of bias in reasoning was not tested in the same manner. Apart from Paper 2, drift-diffusion 

models were only applied as a tool. Therefore, sequential sampling modes have not been properly 

tested in this thesis as a framework of decision-making. Thus, this thesis should not be taken as strong 

evidence in favor of these models. 

The role of effort in decision-making and errors in reasoning still have many unanswered questions. 

This thesis showed that both more and less cognitive effort can be associated with errors in reasoning. 

However, the thesis does not provide an overarching theory for when effort will benefit decision-

making and when it will be detrimental. 

4.5.5 Future directions 

The evidence from this thesis clearly opposes predictions from the default-interventionist dual-process 

model. This is in line with an accumulating body of research over the past decade. Notably, the thesis 

present evidence showing that one should not assume errors in reasoning generally occur due to a lack 

of cognitive effort. This presents an opportunity for future research to investigate reasoning errors 

separately, to investigate if cognitive effort is a contributing factor in making specific errors. 

Importantly, researchers should investigate alternative factors contributing to the specific reasoning 

errors apart from, or in addition to, cognitive effort. Furthermore, the labels of Type 1 and Type 2 

reasoning may be too broad and lead to hypotheses and explanations that also suffer from being too 

broad and general. This can create an illusion of understanding a phenomenon by putting a label on it 

or presenting an “explanation”, without the underlying mechanism being explicit or tested. I advise 

researchers to question if their hypotheses could be more specific and consider if a single process 

could explain the phenomena at hand before applying the labels of Type 1 and Type 2 processing. 

Furthermore, researchers should aim to be specific in their hypotheses and test competing alternative 

explanations against each other, rather than relying on null hypothesis testing.  
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In this thesis, a combination of tools has been applied, such as pupillometry, eye-gaze and 

computational modelling. All these tools have previously been applied separately to investigate errors 

in reasoning. However, the combination of these tool, applied to reasoning problems is novel. Future, 

research on reasoning problems and cognitive effort could benefit from applying a variety of tools 

from related fields of research to advance the studies of decision-making, reasoning biases, heuristics, 

and cognitive effort. 

This thesis has exposed weaknesses in several cognitive effort paradigms, and low correlations among 

cognitive effort measures. Thus, there is a need to create and validate new cognitive effort measures, 

and further evaluate and cross-validate alternative versions of existing task paradigms. Further, there is 

a need to communicate explicitly regarding the cognitive effort “construct”. What part of cognitive 

effort is being measured, how is this (or is not) related to other cognitive effort measures and 

constructs? The framework outlined in the “effort paradox” could serve as a starting point (Thomson 

& Oppenheimer, 2022). 

The involvement of the LC-NE system in cognitive effort and errors in reasoning suggests that a range 

of factors may influence decisions. Notably, the influence of arousal, sleep, and medications acting on 

the LC-NE system may have significant effects on decision-making and errors in reasoning. Future 

studies could manipulate levels of NE to provide further tests of the underlying theories regarding 

evidence accumulation, neural gain, and bias in decision-making. As the LC-NE system is involved in 

regulating arousal and attention further knowledge regarding the involvement of the LC-NE system in 

decision-making has widespread potential applications, e.g., air-traffic controllers, psychiatric 

disorders, medications, and more. 

Lastly, the default-interventionist dual-process model has spread beyond research, influencing popular 

culture and behavioral interventions (Buttenheim et al., 2023; De Neys, 2018; Kahneman, 2011; Kim 

et al., 2006; Thaler & Sunstein, 2008; United Nations, 2021). If the underlying idea of reasoning errors 

resulting from a lack of cognitive effort is wrong this should be communicated to a wider audience as 

behavioral interventions should not be based on a flawed theory. 

5 Conclusion 

This thesis has provided evidence that a lack of cognitive effort is not a general cause of errors in 

reasoning. Reasoning errors are associated with both more cognitive effort and less cognitive effort, 

dependent on the task at hand. In general, cognitive effort has been associated with increased task 

performance. However, performance on rational reasoning tasks from the heuristics and bias literature 

is negatively related to subjective cognitive effort experienced on the task. Suggesting that less 

cognitive effort, not more, is associated with higher performance on these tasks. Thus, providing 

evidence against the default-interventionist account of bias in reasoning. Furthermore, this indicates 

that these tasks should not be applied as measures of cognitive effort. The results from this thesis 

further indicate that NFC, N-TLX, COG-ED, and pupillometry can be applied as measures of 

cognitive effort, although they have separate strengths and weaknesses. However, the DST in the 
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current version should not be applied as an individual difference measure of cognitive effort. There is 

a need to develop and validate new cognitive effort measures and further evaluate and cross-validate 

alternative versions of existing task paradigms. 

The results from this thesis largely oppose dual-process models. From the three-stage model of 

analytic engagement, the concept of conflict detection failure as a source of bias is supported. Further, 

the dissociation between conflict detection and cognitive decoupling as dissociable sources of bias in 

reasoning is partially supported. However, the results are mixed regarding competing intuitions as a 

source of analytic engagement. Importantly, it is not clear that two separate processes are necessary or 

add explanatory power above single process models of decision-making The thesis highlights the role 

of the LC-NE system in errors in reasoning. Further, the thesis presents results in line with sequential 

sampling models and the extensive integration account of bias in reasoning. However, it should be 

noted that these models were not tested to the same degree as dual-process models. The results 

supporting sequential sampling models and the extensive integration account should therefore be 

considered preliminary. However, these models and the methodology applied in this thesis provides a 

path forward for research on bias and errors in reasoning. 
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Abstract

Measuring individual differences in cognitive effort can be elusive as effort is a function of

motivation and ability. We report six studies (N = 663) investigating the relationship of Need

for Cognition and working memory capacity with three cognitive effort measures: demand

avoidance in the Demand Selection Task, effort discounting measured as the indifference

point in the Cognitive Effort Discounting paradigm, and rational reasoning score with items

from the heuristic and bias literature. We measured perceived mental effort with the NASA

task load index. The three tasks were not correlated with each other (all r’s < .1, all p’s > .1).

Need for Cognition was positively associated with effort discounting (r = .168, p < .001) and

rational reasoning (r = .176, p < .001), but not demand avoidance (r = .085, p = .186). Work-

ing memory capacity was related to effort discounting (r = .185, p = .004). Higher perceived

effort was related to poorer rational reasoning. Our data indicate that two of the tasks are

related to Need for Cognition but are also influenced by a participant’s working memory

capacity. We discuss whether any of the tasks measure cognitive effort.

Introduction

Laziness is built deep into our nature (Kahneman, 2011, p. 39)
People tend to choose the least demanding line of action, famously formulated as the “Law

of least work” [1]. Although originally applied to physical effort, it also applies to effort in the

cognitive domain [2]. The underlying assumption is that there is a cost associated with cogni-

tive effort [3, 4]. The nature of this cost is uncertain [5] but brain imaging studies have shown

that increased cognitive effort reduces activity in the reward network [6–8]. It has been pro-

posed that cognitive effort depends on a cost-benefit analysis to find an optimal balance of

expenditure [3, 9–12]. However, cognitive effort is everything but well operationalized [13].

Effort has been described as the use of executive functions, use of attention, workload or

computational constraints [13].
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Proposed explanations for cognitive effort costs include resource limits and computational

costs [4, 14–18], metabolic costs or accumulation of by-products [19], and opportunity costs

[4, 12]. Assertions of cognitive effort costs and minimization have been proposed to be impli-

cated in a range of fields e.g., behavioral economics [20, 21], executive functions [22], linguis-

tics [23], and judgment and decision-making [24]. Effort is often inferred from the outcome,

i.e., answering intuitively is effortless whereas analytically is effortful. As such, effort is often

assumed but rarely validated. Not least because of a missing operationalization and its tight

relationship with motivation and cognitive ability. This paper is beyond solving the effort

problem [13]. Instead, we present six experiments where we compare three measures of cogni-

tive effort against the benchmark Need for Cognition scale (NCS) and report the subjective

task demands of each task with the NASA task load index (N-TLX).

There are well-established individual differences in the willingness to engage in cognitively

effortful tasks. Those individual differences can be reliably measured with the Need for Cogni-

tion Scale [25, 26]. Still, behavioral paradigms measuring cognitive effort are useful for investi-

gating actualized cognitive effort expenditure, decision-making, developmental trajectories

and neural underpinnings. Additionally, concerns about the reliability and validity of self-

report motivate the use of behavioral paradigms to complement self-report instruments [27].

Behavioral tasks can be combined with physiological measures and used across the lifespan.

Accordingly, a range of tasks have been developed to measure cognitive effort spent in a task.

We here focus on cognitive effort, though physical and perceptual effort tasks have been devel-

oped too [for a review see e.g., 28, 29].

One strand of research uses computerized tasks for measuring choices between cognitively

more or less demanding options. Here, choice patterns are seen as an indication of cognitive

effort costs or preferences to avoid cognitive effort [30–34]. Another strand of research gauges

typical cognitive effort expenditure by using tasks that require cognitively demanding deliber-

ate processing to answer correctly [35–38]. These approaches differ in numerous ways and

show partly opposing results, also when used in clinical samples [32, 39–43]. It is therefore of

importance to assess to what degree the paradigms measure the same “cognitive effort”

construct.

Task paradigms for measuring cognitive effort

Rationality battery. Task performance on rational reasoning tasks (RQ) is an alternative

way of measuring thinking disposition or “cognitive miserliness” [35, 44–46]. Thinking dispo-

sition is proposed to be on a spectrum with one end being the preference for using computa-

tionally more demanding mechanisms for solving tasks, known as an analytic thinking

disposition. On the other end of the spectrum is a preference for cognitive shortcuts, namely

an intuitive thinking disposition. An intuitive thinking disposition is prone to rely more on

heuristics, which can serve to reduce cognitive effort [24]. Task performance on rational rea-

soning tasks is proposed to depend on using more cognitively demanding mechanisms and

avoiding overreliance on heuristic responses (avoiding “miserly information processing”) [47].

Suppression of intuitive but wrong answers requires cognitive control [38]. Individual differ-

ences have previously been noticed in tasks measuring deliberate reasoning [48]. Toplak et al.

[37] showed that the cognitive reflection task, assesses both the ability and willingness to per-

form cognitive work. However, recent work has questioned whether normative responding is

effortful [49–53]. Performance may depend on cognitive ability, not effort [35–37, 54]. Firstly,

normative responding can be as fast as heuristic responding [50, 53]. Secondly, the CRT has

been shown to correlate highly with numerical tasks [55] and deliberation and rational think-

ing are highly correlated with cognitive ability [51]. Note, the rationality battery used here is
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more than the cognitive reflection test (Fig 1). Such items have been shown to correlate posi-

tively with the CRT [37, 56] and the Need for Cognition scale [56]. The CRT has been shown

to be positively associated with the Need for Cognition scale too [38], but see [55].

Demand selection task. Evidence to support cognitive effort minimization or demand

avoidance was shown with the Demand Selection Task paradigm (DST, Fig 2) by Kool,

McGuire et al. [30]. In this task, participants make either parity or magnitude judgements for

numerical digits. Effort demands are manipulated by the frequency of task shifts: one line of

action (high demand) has more frequent task shifts, thus increasing effort demand [57]. DST

can be considered an implicit measure of cognitive effort or demand avoidance as participants

are not informed of the demands of the tasks or given any incentive to choose high or low

demand lines of action. However, several participants detect the demand manipulation, and

some evidence suggests this leads to increased effort avoidance [41].

Cognitive effort discounting paradigm. Westbrook et al. [32] were able to quantify the

individual differences in effort costs with the Cognitive Effort Discounting Paradigm

(COGED, Fig 3). In this paradigm, participants make repeated choices between performing a

low demand working memory task (1-back) for a small reward or performing a high demand

working memory task for a larger reward (n-back, n being 2, 3, 4, 5, or 6). The reward for the

low demand task is titrated in response to participants’ choices with the aim to find a subjective

indifference point between the low demand and high demand option. The COGED thereby

quantifies the subjective monetary discounting due to cognitive effort costs across multiple

demand levels. Given that task load levels and offer amounts are all explicit, COGED is an

explicit cognitive effort measure. Participants experience the effort demand for each load level

prior to making choices between explicit monetary offers.

Fig 1. Example of a task from the rationality battery. Imagine that there are three inhabitants of a fictitious country,

A, B, and C, each of whom is either a knight or a knave. Knights always tell the truth. Knaves always lie. Two people are

said to be of the same type if they are both knights or both knaves. A and B make the following statements: A says: “B is

a knave.” B says: “A and C are of the same type.” What is C?.

https://doi.org/10.1371/journal.pone.0290177.g001

Fig 2. Schematic illustration of the demand selection task. In this trial correct responding is by pressing the right

mouse button. Note: Participants saw the rules at the beginning and had to remember them during the test blocks.

https://doi.org/10.1371/journal.pone.0290177.g002
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The current studies

An outstanding question is whether cognitive effort can reliably be measured. If the three tasks

share a common latent construct, that of willingness or propensity to exert cognitive effort, we

would expect that all three tasks are related to a measure of enjoying and engaging in cogni-

tively demanding tasks. These individual trait differences in thinking disposition can reliably

be measured with the Need for Cognition Scale [25]. The scale has good internal consistency,

test-retest reliability, and measurement invariance [26]. People who score high on Need for

Cognition (cognizers) seek, evaluate and integrate multiple relevant sources before arriving at

an opinion. People who score low on Need for Cognition (cogmisers) tend to use less demand-

ing cognitive processes [25, 58]. Cognizers may value effort whereas cogmisers may avoid

effort [59].

If the three behavioral tasks index task-invariant cognitive effort, we expect them to be posi-

tively correlated with each other and with the NCS. If the behavioral tasks are not related to

each other, the propensity to exert cognitive effort is task-specific. Each task might still be

related to the NCS.

Previous work has already shown a positive relationship between effort discounting in the

COGED and NCS, and between rational reasoning and NCS [32, 35, 36, 60], but no relation-

ship between demand avoidance in the DST and NCS [42]. It is also not known whether effort

discounting is related to rational reasoning and whether cognitive demand avoidance is related

to effort discounting and or rational reasoning. Notably, both COGED and DST have been

used as measures of cognitive effort in clinical and developmental research [32, 41, 61–64].

We measured test-retest reliability for the DST, COGED and rationality battery. Previously,

Stagnaro, Pennycook et al. [65] have shown good test-retest reliability (r = .806) for the cogni-

tive reflection test. Strobel et al. [2020] found questionable test-retest reliability for the DST (ρ
= .61). To the best of our knowledge test-retest reliability of the COGED has not been shown.

Finally, subjective effort, which may deviate from objective effort [e.g., 66], can be assessed

with the NASA task load index (N-TLX) [67]. Westbrook et al. [32] found increasing subjec-

tive ratings of mental and physical effort, temporal demand, failure rate, effort demand and

frustration for increasing working memory load levels in the COGED but did not assess it for

the choice phase. Here, we report six studies from two independent labs investigating the rela-

tionship between demand avoidance in the DST, effort discounting in the COGED, rational

reasoning score, NCS and N-TLX. We controlled for working memory capacity by using the

n-back performance assessed in the practice phase of the COGED. We also assessed test-retest

reliability for the rationality battery, DST and COGED. We report two-sided and non-cor-

rected p-values per study and the mean effect size based on meta-analysis approach. The

Fig 3. Schematic illustration of the choice phase of the cognitive effort discounting task. Note: Participants saw the

n-back instructions during training, in the choice phase they were asked to play 1-back vs n-back and the value for

1-back was titrated either up (if n-back chosen) or down (if 1-back chosen).

https://doi.org/10.1371/journal.pone.0290177.g003
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S1 File contains details to methods and results of the studies as well as an alternative analysis

and plots.

Study 1–6

Participants: Study 1 and 2

All study procedures including informed consent were approved by the Institutional Review

Board at Washington University in Saint Louis. The studies were conducted in 2013. Partici-

pants provided written informed consent.

In study 1 all participants were undergraduate students at Washington University in

St. Louis, USA (N = 76, 49 female). The mean age was 21.43 (range 18 to 32 years). In study 2

participants were 91 undergraduate students (47 female, 35 male) at Washington University in

St. Louis. The mean age was 23.62 (range 18 to 40 years). Two participants each in study 1 and

2 were excluded due to very bad performance in the n-back task (negative d’). Final sample

size for study 1 is N = 74, and for study 2 is N = 80. There was no missing data.

Participants: Study 3–6

The studies were approved by the institutional review board at the Department of Psychology,

UiT–The Arctic University of Norway. The studies were conducted in 2018–2022. All partici-

pants provided written informed consent on paper and informed consent (online study 6),

respectively.

In study 3 participants were 102 (62 female, 25 male, 15 unknown) undergraduate psychol-

ogy students at UiT–The Arctic University of Norway and testing was over two sessions. 65

completed both sessions, 82 completed the NCS and the rational reasoning battery, 78 com-

pleted the COGED and rational reasoning battery, 63 completed the NCS and COGED. The

mean age was 22.6 (range 20 to 38 years).

In study 4 we recruited 40 participants (27 female, range 18 to 37 years). 34 were students at

UiT–The Arctic University of Norway, three were full-time workers, and three were high

school students. All participants completed both testing sessions. One participant performed

randomly in the Demand Selection task and was excluded, i.e., N = 39. Another participant

had missing data for the rational reasoning battery.

In study 5 all participants were students (non-psychology) at UiT–The Arctic University of

Norway (N = 45, 27 female), mean age was 23.35 (range 18 to 37 years). There was no missing

data.

In study 6 participants (M = 26.64 years) were recruited from two psychology courses at

UiT–The Arctic University of Norway (N = 91, 67 female, 22 male, 2 non-binary; range 19 to

38 years) and from Prolific (prolific.co) (N = 227, 113 female, 110 male, 4 non-binary, range

18 to 62 years). Three participants aborted the choice phase in the COGED and were excluded

for parts of the data analysis.

Materials

Effort discounting (alterations across studies in brackets). The COGED task was

administered through E-prime 2.0 (Psychology Software Tools, Inc., Sharpsburg, PA) in study

1+2 and through Inquisit (Millisecond.com) in study 3–6. The task started with a practice

phase of the n-back task [68]. Participants played all load levels for three runs (six levels in

study 1 and 2, four levels in study 3–6).
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Study 1 and 2

All runs consisted of 64 items (consonants, presented in Courier New font, font size 24). Items

were presented on screen for 1.5 seconds, during which participants could respond. After 1.5

seconds the items were replaced by a fixation cross. The inter-trial interval was 3.5 seconds.

Participants were given feedback about % of targets and % of non-targets correct. Feedback of

“Good job!” was given if both scores were above 50% or “Please try harder!” if not. From this

phase d’ was calculated as an index of working memory capacity (see below).

In the discounting procedure participants were offered to play n = 1 for a small reward or

n> 1 for a larger reward. Participants were offered six choices for each load level. The amount

for the higher offer (n> 1) was always $2. The reward amount for the lower offer (n = 1)

started at $1 and was adjusted up if participants chose the high offer and was adjusted down if

participants chose the low offer. Each time a choice was made, the reward amount was

adjusted to half as much as in the previous choice. After the last choice (six choices in total),

the amount was adjusted to $0.015. The final amount was taken as the participants’ subjective

indifference point. Participants played five load levels and made six choices for each level,

yielding 30 choices in total. To ensure choices reflected participants’ preferences, they were

told that one of the choices would be selected for them to repeat 10 more times and they would

be paid for each repetition. Further, they were told that payment was contingent on maintain-

ing effort, but not on performance. Effort would be monitored by “behavioral clues”. All par-

ticipants completed their randomly selected offer four times and were paid the associated

amount.

Study 3–6

The first phase consisted of five runs per n-back level (2, 3, & 4), each run with five target trials

(responding would be a hit), and 10+N non-target trials (responding would be a false alarm)

in a pseudo-random sequence. Each trial lasted 2.5 s, and in each trial, participants were pre-

sented with a stimulus (one of 20 consonants, centered white letters on a black screen, sans-

serif font) for 0.5 s, followed by a black screen for 2.0 s, and during the 2 seconds had to either

respond (press ’A’ on the keyboard) or not to respond. After each run, the participants were

presented with a summary feedback of their accuracy, and after the last run on each n-back

level they were presented with a level summary. The second phase consisted of the discounting

procedure for 1-back vs. 2-back, 1-back vs. 3-back, and 1-back vs. 4-back, presented in a

pseudo-random order across participants. Each block had six runs in which the participants

chose between a 1-back task or n-back task. The tasks themselves were equal to the n-back task

described above. The discounting amounts were identical to study 1 and 2. In study 3 and 5

participants were informed that they would not receive extra money, thereby eliminating

external reward as motivation. In study 4 they could earn a bonus on top of the show-up fee.

In study 6 performance in the discounting procedure phase had to be at least 80% (previously

80% for 1-back but at least 100% of that from the practice phase for 2-back, 3-back and

4-back) to count as success. Participants could earn vouchers (students) or a bonus (Prolific).

The bonus was related to the amount earned in the discounting phase of the task.

The Average Indifference Point (AIP) across all load levels is the cognitive effort discount-

ing measure used for the bi-variate correlations and regression analysis.

Cognitive demand avoidance

We used an exact replication of Experiment 3 in Kool et al. (2010). The task was administered

on a computer, using MatLab 2018a (The MathWorks, MATLAB, Version 9.4, 2018), with

Psychophysics Toolbox 3 extension [69–71]. The task starts with a training phase where
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participants complete two different tasks. Participants are presented with a number (between 1

and 9, excluding 5). The number can be either blue or yellow. The color of the number sig-

naled the task required on that trial. If the number is blue, participants must decide if the num-

ber is higher or lower than 5. If the number is yellow, then participants must decide if the

number is odd or even. Participants indicate their choice by clicking on the right or left side of

a computer mouse. During the training phase (60 trials), participants received feedback on

their performance. None of the participants had to redo the training phase. In the main task,

participants see two colorful balls on screen (they appear along an invisible circle at an angular

distance of 45 degrees). The location of the balls changes between runs but is stable throughout

a run. Participants must sample from each option but are told they can stay with one if they

develop a preference. There are eight runs with 75 trials in each run (600 in total). There is one

high demand option (ball) where the task switches with a probability of 0.9, and there is a low

demand option where the probability of task switch is 0.1. Task instructions were available in

paper format in case participants forgot the rules. Demand avoidance is quantified in terms of

the proportion selection of the high demand decks (ball)–thus a demand avoidant participant

would score between 0 and .5 and preferring the low demand deck, respectively.

In study 6 the abridged version, i.e., four rounds and 300 trials in total, was used [61].

Rational reasoning

In study 2 we used the 18 items scale from Toplak, West [37]. This scale includes the original

3-item Cognitive Reflection Test, measuring individual differences in detecting errors and

overriding an initial intuitive response [48]. The remaining 15 items were problems from the

heuristics and biases literature: two-sample size problems, two gambler’s fallacy problems,

regression to the mean, a base rate problem, a covariation detection problem, one Bayesian

reasoning problem, one conjunction fallacy problem, a denominator neglect problem, a meth-

odological reasoning problem, a probability matching problem, a sunk cost fallacy problem,

one outcome bias problem, and a framing problem. Correct answers were scored as 1, incor-

rect as 0. Total composite score, the rationality quotient RQ, ranged between 0 and 18.

In study 3, 4 and 5 we used 14 items from the heuristics and biases literature. We used

items 2–7 from the Cognitive Reflection Test [35], one fully disjunctive reasoning problem

“the marriage problem” [72], one probability matching task [73], one probability estimation

task “the bus problem” [74], one making sense of medical results problem [75], one Bayesian

reasoning problem [76], one covariation detection problem [77], one knight and knave prob-

lem [78], one conditional reasoning problem [79]. Correct answers were scored as 1, incorrect

as 0. Total composite score ranged between 0 and 14.

In study 6 we used 12 items. These were items 2–7 from the Cognitive Reflection Test [35],

one fully disjunctive reasoning problem, “the marriage problem” [72], one knight and knave

problem [78], one conditional reasoning problem [79], one covariation problem [37], one base

rate problem [36], one making sense of medical results problem [75]. We calculated the pro-

portion of correct items, i.e., the score ranged from 0 (no item correct) to 1 (all items correct).

Thinking disposition was measured with the 18-item Need for Cognition Scale (NCS) [80].

An example item is “I prefer complex to simple problems”. The 18 items are rated on a 5-point

Likert scale from 1 = “Extremely uncharacteristic of me” to 5 = “Extremely characteristic of me”.

Total score range is from 18 to 90.

Working memory capacity was measured with the d’ from the n-back portion of the

COGED task. Here, responding to a previously seen stimulus at the n-th position is a hit, not

responding is a miss. Responding too early or too late is a false alarm, not responding to an

incorrect letter is a correct rejection. We calculated d’ from signal detection theory, i.e., d’ = z
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(H)–z(FA) where z(H) and z(FA) are the z transforms of hit rate and false alarm rate, respec-

tively. The larger d’ the better is a participant’s working memory capacity. Study 1 and 2: In

the O-Span task participants have to remember sequentially presented words and solve simple,

interspersed math problems. The length of the sequence reproduced error-free is used as the

maximal working memory capacity.

Perceived effort. We asked participants to rate their perceived effort, both mental, physical,

temporal, as well as performance, overall effort and frustration using the NASA task load

index (N-TLX) [67, 81]. Rating was on a visual analogue scale ranging from 1 = very low to

20 = very high.

Procedure

Study 1 and 2: Participants were paid 10$ per hour for their participation, and they could earn

additional money based on their choice in the COGED. Participants received their payment at

the end of the testing session. Testing was completed individually at Washington University in

St. Louis.

Study 1: Order of the tasks was: DST, COGED, NCS, O-Span (not reported). Usual participa-

tion time was approximately two hours.

Study 2: Order of the tasks was: rational reasoning problems, COGED, NCS, O-Span (not

reported). Usual participation time was approximately two hours.

Study 3: Testing took place over two separate sessions in small groups in a computer pool at

the campus (UiT). Students took part for course credit and received no monetary compen-

sation. Students could choose to partake in only one session. On day 1, 82 students took

part, and were tested on COGED and N-TLXCOGED. On day 2, approximately 3 weeks later,

84 students took the Rational reasoning items, N-TLXRQ, and NCS. 65 students took part

in both test sessions. Participants could withdraw or indicate on the consent form that they

do not permit to use their data for research, which was once the case. Each session includ-

ing debriefing and took approximately 1 hour.

Study 4: All participants were tested individually at UiT–The Arctic University of Norway. All

participants completed a second testing session between four and eight weeks after the first

testing session. Day 1 task order was; DST, Rational reasoning, Bullshit receptivity scale

(not included in analysis), NCS, Effort expenditure for rewards task (EEfRT, [82], not

included in analysis) and N-TLXEEfRT (not included). Day 2 task order was; DST, NCS,

Handgrip [83], not included in analysis), COGED, and N-TLXCOGED. Participants received

a voucher with a fixed amount of 200 NOK (approx. $25) for participation, plus between 50

and 150 NOK depending on task performance in the COGED and EEfRT.

Study 5: Participants were tested individually at UiT–The Arctic University of Norway. All

participants received a voucher worth 400 NOK after completing two days of testing (day 2

involved eye tracking, not included here). Each testing session lasted approximately

between 1.5 and 2 hours. Relevant is only the first test session. Task order for day 1 was:

DST, rational reasoning task, NCS, Teleological reasoning (not reported here).

Study 6: The study was done fully online. Participants read the informed consent and then

were randomly assigned to one of the six orders for the three tasks (COGED, DST, rational-

ity reasoning). After each task, they filled out the N-TLX. The NCS was always presented at

the end (Prolific sample) and the day after for the UiT students. The tasks were imple-

mented in Inquisit (Millisecond.com). The NCS for UiT participants was implemented in
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Qualtrics. Duration was 50–60 min. UiT students received course credit and could earn

vouchers and Prolific participants at least £8 for participation plus bonus payment for good

performance.

None of the studies was preregistered. All analyses are thus exploratory. With the present

sample sizes (minimum is N = 402), we were able to detect correlations of at least r = .177 at an

alpha level of .05 and power of .95. Data analysis was done in R [84].

Results across the six studies

Fig 4 presents the descriptive data for rational reasoning (as percentage of maximum score),

demand avoidance (choice of high demand option), cognitive effort discounting (average

indifference point), NCS, d’, and subjective mental effort rating across the six studies (for

study 6 N-TLX values have been converted from the 20-point scale to the 100-point scale). Dif-

ferences between the six studies are reported in S1 File, including a comparison between lab vs

online studies.

We performed bi-variate Pearson product-moment correlations per study. Based on the

study-wise correlation coefficients we calculated the mean effect size by using the meta for

package [85]. The correlation coefficients are shown in Table 1 and the scatterplots per study

in S1 File. An alternative analysis using z-scored values and Bayes Factor is provided in the S1

File.

As can be seen from Table 1, we found a significant positive association between NCS and

cognitive effort discounting, and between NCS and rational reasoning score. However, there

was no association between demand avoidance in the DST and NCS. This is consistent with

previous work. Importantly, there were no significant associations between rational reasoning,

cognitive effort discounting or demand avoidance. Thus, the results show that none of the

three behavioral tasks measuring cognitive effort are related to each other. Rational reasoning

and effort discounting were related to working memory capacity (d’).

We next performed three linear mixed regressions to assess whether demand avoidance,

rational reasoning or cognitive effort discounting (outcome) was predicted by Need for

Fig 4. Descriptive data (box plots) for the main outcome variables per study.

https://doi.org/10.1371/journal.pone.0290177.g004
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Cognition, working memory capacity, any of the other two tasks, or perceived mental effort

from the N-TLX, i.e., in each of the three tasks there were five predictors and data was nested

within study.

For rational reasoning the fixed effects NCS (t(353) = 3.681, p = .0003), d’ (t(353) = 4.797, p

< .001) and perceived mental effort (t(353) = -2.518, p = .0124) were significant. Thus, the less

effortful the task was perceived, the higher the NCS and the better working memory capacity,

the higher was the rational reasoning score.

For demand avoidance none of the fixed effects was significant (all p’s> .128). Thus, nei-

ther NCS, working memory capacity, perceived mental effort, rational reasoning score or

effort discounting were related to the proportion of high demand choices.

For cognitive effort discounting the fixed effect NCS (t(353) = 3.016, p = .0028) was signifi-

cant. Working memory capacity was not (p = .051), nor any of the other three predictors.

Reliability

In study 4 we assessed test-retest reliability of the DST. Demand avoidance showed acceptable

internal consistency on Day 1 (Cronbach’s α = .71), but poor internal consistency on Day 2

(Cronbach’s α = .52), and poor reliability across the two testing sessions (r = 0.537, p< 0.001).

In two adjacent experiments (see S1 File) we assessed test-retest reliability of a rationality

battery (similar items to study 3–6) and the choice pattern in the COGED (average indiffer-

ence points). Test-retest reliability for the rationality items was good, i.e., Pearson’s r(83) =

0.70. Test-retest reliability for effort discounting was good, r(25) = 0.804 (average over three

test sessions, session 1 with 2: r = 0.789, session 2 with 3: r = 0.819).

General discussion

In six studies we did not find that two common cognitive effort tasks, COGED and DST, as

well as items from the problem solving and reasoning literature (rationality battery) were

related to each other. However, the COGED and the rational reasoning score were positively

correlated with the Need for Cognition score and working memory capacity. This was not the

case for the Demand Selection task.

COGED is an explicit incentivized choice task between n-back levels. In contrast, the DST

requires detecting which of the decks has fewer rule changes and thereby less effortful. Rational

reasoning is not necessarily effortful for participants with high cognitive ability [53]. Thus,

there are good reasons which may explain why the three tasks do not relate to each other. Still,

of the three tasks the COGED and rational reasoning score had positive correlations with

Table 1. Pearson’s Correlations per study and overall effect size including confidence intervals and p-value.

Correlations/ study Study 1 Study 2 Study 3 Study 4 Study 5 Study 6 mean r upper CI lower CI p

NCS–d’ 0.015 0.091 -0.096 0.180 0.033 0.042 0.117 -0.048 0.208

NCS—IP 0.296 0.115 0.090 0.071 0.177 0.168 0.248 0.086 <0.001

NCS—High Demand 0.060 0.421 -0.190 0.071 0.085 0.265 -0.101 0.186

NCS—RQ 0.171 0.007 0.405 0.225 0.184 0.176 0.270 0.079 <0.001

d’—IP 0.075 0.411 0.094 0.286 0.107 0.185 0.313 0.050 0.004

d’—High demand 0.173 0.106 -0.043 0.040 0.184 -0.107 0.298

d’—RQ 0.501 0.208 0.226 0.257 0.304 0.429 0.166 <0.001

IP—High demand 0.074 0.258 0.038 0.063 0.158 -0.033 0.098

IP—RQ 0.192 -0.002 -0.016 0.067 0.070 0.157 -0.017 0.058

High demand—RQ 0.248 0.076 0.007 0.037 0.15 -0.062 0.233

https://doi.org/10.1371/journal.pone.0290177.t001
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Need for Cognition, i.e., less effort discounting and better rational reasoning was associated

with a thinking disposition for engaging in cognitively effortful tasks, replicating previous

studies [32, 35, 36, 60]. Relatedly, better working memory, i.e., how good a participant is in the

n-back task, was associated with less effort discounting and also a higher rational reasoning

score. The latter is in line with a range of studies finding that cognitive ability predicts perfor-

mance in heuristic and bias tasks [36, 50]. Neither Need for Cognition nor working memory

were related to demand avoidance in the DST. This might be due to the implicit nature of the

task or perceptual preferences [30]. Note though, that on average participants did prefer the

low demand deck, showing that the task does capture a preference for demand avoidance

(Fig 4).

Interestingly, and in line with the smart intuitor account, participants scoring well on the

rational reasoning items perceived the task as less effortful. Less effort discounting leads to per-

forming harder n-back trials in the task, i.e., task demand becomes higher, thus participants

engaging in least effort discounting perceived the task as more effortful. There was no relation

between perceived effort and demand avoidance in the DST.

Regarding test-retest reliability, the demand selection task was not reliable, replicating Stro-

bel, Wieder et al. [43]. The rationality items were reasonable reliable and the COGED had

good test-retest reliability.

Rational reasoning items may not measure cognitive effort

Rational reasoning tasks have been used as a convenient, fast and implicit measure of success-

fully engaging in deliberate reasoning. Indeed, those scoring high on the Need for Cognition

scale do perform better on these tasks. Remarkable is also its good test-retest reliability [63].

However, a range of studies question the assumption that performing well on those items is

effortful [86–88]. Deliberation can still be effortful, but the items commonly used, also in our

studies, may not require deliberation but can be solved by intuition [53]. Researchers should

be mindful that performance is dependent on sufficient analytical and reflective abilities yet to

be properly defined [89]. Despite task performance being linked to multiple real-world out-

comes [90], we caution the use of rational reasoning items to gauge cognitive effort.

Cognitive effort discounting measures cognitive effort

COGED is a behavioral economic approach to assess cognitive effort discounting of monetary

rewards. It is a useful tool for explicitly assessing cognitive effort expenditure and cognitive

effort costs. The task was subjectively rated as the most mentally demanding task in our stud-

ies. COGED is based on the n-back, a well-established working memory paradigm with para-

metrically varying cognitive load. Thus, a strength of the COGED paradigm is that

performance level is adjusted to a participant’s ability and performance in the practice phase.

In addition, the measure can provide an estimate of working memory, which is convenient as

this allows for correction of cognitive ability which is a confounding variable with most cogni-

tive effort measures. By providing feedback through presenting d’ after each round, participant

may base their choice of n-back level on this feedback. Participants may prefer levels where

they performed better. However, high performing individuals might find the 1-back boring,

particularly after engaging in higher levels [91]. This could be mitigated by offering e.g., 2 vs

3-back choice options. COGED might be influenced by individual differences in reward sensi-

tivity, as individuals high in Need for Cognition are less sensitive to rewards [92], but see [7].

This underlines the importance of disentangling intrinsic and extrinsic motivation. Notably,

real-world academic achievement was not related to effort discounting in adolescents [93] but
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intrinsic motivation assessed with a questionnaire was. We recommend measuring Need for

Cognition or Motivation for Cognitive effort [94] to regress out intrinsic motivation.

Demand avoidance may measure cognitive effort but not reliably

The implicit nature of the DST makes it appealing, however the implicit nature may also limit

the tasks’ predictive capacity as the task is subject to choices being influenced by factors such

as side- and color preferences and also whether or not demand differences were perceived in

the first place. In addition, those who detect the demand manipulation show higher demand

avoidance compared to those who have not, making the task more into a game to discover the

least effortful strategy [30]. The DST showed low test-retest reliability, replicating the finding

of [43]. The task was not related to NCS, COGED, or rational reasoning. Given that on average

participants did avoid the high demand deck, it is surprising to not find a significant relation

with Need for Cognition. For future studies we recommend using a modification of the DST,

varying the effort level by changing the frequency of rule changes between rounds [6] and use

forced trials to gauge reliable switch costs [30]. Switch costs may index cognitive flexibility and

thereby allow to assess relative effort, similar to performance being based on d’ in the COGED.

Limitations and strength

Our samples are mostly students, cautioning generalizability beyond young, healthy, well-edu-

cated participants. Since the tasks can feel quite repetitive, a subset of participants might have

become bored. We did not inquire about participants’ level of boredom. The studies used

working memory capacity based on the practice phase in the COGED (n-back task) for indi-

vidual differences in cognitive abilities. The COGED used in study 1 and 2 does differ from the

COGED used in study 3 to 6. We did not measure reward sensitivity or liking of challenges

[95]. We limited the comparison to these three tasks, not including the Cognitive Effort

Expenditure for Rewards task [96] as we were not aware of the task when starting our studies.

This paradigm is an incentivized version of the DST.

Our study is the first to compare three common paradigms for measuring cognitive effort.

The results replicated across various samples (psychology undergraduates, non-psychology

undergraduates, non-students and students recruited at Prolific) and whether instructions

were individually, in groups or solely on screen (online testing). Task-specific effects cannot

explain why the three tasks do not relate to each other. However, theoretically, demand avoid-

ance in the DST has to be discovered, rational reasoning has been shown to be intuitive for

high performers, and effort discounting is reward sensitive. Future studies should carefully

manipulate only one of the aspects the three tasks differ on, to identify which component

reflects best individual differences in cognitive effort. Cognitive effort may depend on differ-

ences in cognitive ability, intrinsic- and extrinsic motivation, reward sensitivity, task automa-

ticity, and effort costs [5]. Using Thomson and Oppenheimer’s framework [13], we have not

touched on all levels of analysis, i.e., our studies do not include physiological mechanisms.

Conclusion

Cognitive effort remains an elusive concept to capture [13]. We did not find that demand

avoidance in the DST, cognitive effort discounting in COGED and rational reasoning items

measure the same latent construct of cognitive effort. However, both effort discounting and

rational reasoning were related to Need for Cognition and working memory capacity. Demand

avoidance in the DST had no association with Need for Cognition or any of the other mea-

sures. As both DST and COGED are used frequently as measures of cognitive effort including

clinical samples, our findings have large implications for interpretations of previous findings.
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If the two tasks are measuring different constructs, then findings with one task should not be

interpreted as applying to the other task. Lastly, our work highlights the need for developing

new behavioral paradigms for measuring cognitive effort [13]. We recommend considering

multiple tasks for estimating the latent construct of sensitivity to cognitive effort costs as well

as a rating of perceived mental effort.
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Supplementary material for: “Is it cognitive effort you measure? Comparing three task 

paradigms to the Need for Cognition scale” 

 

Additional information for Study 1 

Results: Participants had a demand avoidance (preference for the high demand deck: M = .42, 

SD = .17) that was not significantly different from indifference between the high and low 

demand option (Z = 0.674, p < 0.5, d = .077). Accuracy in the DST was high (M = 0.94, SD = 

0.07). The COGED paradigm showed significantly larger monetary discounting with 

increasing load levels F(4, 380) = 24.109, p < .001, η2 = .202. The average indifference point 

was 1.46 (SD = .44). Across all six n-back levels the discriminability d’ was 2.06 (SD = .7) 

and perceived mental effort was 66 (SD = 18.2) on a scale from 0 to 100. The Need for 

Cognition Score ranged from 35 to 86, with a mean of 65.1 (SD = 11.3). The average O-span 

performance was 51.82 (SD = 16.81). 

None of the tasks was related to working memory as assessed with the O-Span task, all τ < 

.01, all p > .2. O-Span and d’ were not associated, τ = .101, p = .2. 

Additional information for Study 2 

Results: Like study 1, participants performed well on the O-span (M = 50.78, SD = 18.57), 

their NCS ranged from 36 to 84 with a mean of 66.56 (SD = 9.82). They had on average over 

half of the rational reasoning items correct (M = 10.04, SD = 4.04). The COGED paradigm 

showed significantly larger monetary discounting with increasing load levels, F(4, 240) = 

24.734, p < .001, η2 = .191. The average indifference point was 1.58 (SD = .42). Across all six 

n-back levels the discriminability d’ was 1.68 (SD = .76). 

O-Span was positively correlated with rational reasoning, τ = .209, p = .008 and d’, τ = .153, p 

= .045, but not with cognitive effort discounting, τ = .096, p = .226; or Need for Cognition, τ 

= .006, p = .422. 

Additional information for Study 3 

Methods: Regarding the rational reasoning items we used items 2-7 from the Cognitive 

Reflection Test [1], one fully disjunctive reasoning problem “the marriage problem” [2], one 

probability matching task [3], one probability estimation task “the bus problem” [4], one 

making sense of medical results problem [5], one Bayesian reasoning problem [6], one 

covariation detection problem [7], one knight and knave problem [8], one conditional 

reasoning problem [9]. 



Results: The Need for Cognition score ranged from 42 to 81 with a mean of 61.73 (SD = 

9.15). The indifference point was M = 1.18 (SD = .56), discriminability d’ was M = 2.08 (SD 

= .66) and perceived mental demand was high, M = 73.13 (SD = 16.04). The rational 

reasoning score was M = 5.08 (SD = 2.49) and perceived mental demand was M = 67.2 (SD = 

14.95). 

Additional information for Study 4 

Methods: Filler tasks in study 4: On day 1 participants did also the Bullshit receptivity scale 

[10]), the Effort expenditure for rewards task (EEfRT, [11]) and N-TLXEEfRT. On Day 2 they 

did after the DST and NCS a Handgrip task [12] 

Results: For the Demand Selection Task, accuracy was high on Day 1 (M = 0.98, SD = 0.02) 

and Day 2 (M = 0.96, SD = 0.08). The median of high demand choice was 0.49 for Day 1 and 

Day 2. Demand avoidance was not different from .5, neither on day Day 1 (Z = .21, p = .834, 

d = .034) nor on Day 2 (Z = .238, p = .812, d = .039). Debriefing identified 5 participants on 

Day 1 that identified the manipulation (two types of decks) and 11 participants who might 

have. On Day 2 the manipulation was found by 13 participants, and another 22 might have 

found it. Among those who discovered the manipulation the high demand avoidance was .6 

on Day 1 and .54 on Day 2. One participant who noticed the manipulation said they tried not 

to exploit it. On Day 2 demand avoidance was not related to NCS (τ = .165, p = .16).  

The COGED paradigm showed significant increases in monetary discounting with 

increasing load levels, F(2, 114) = 4.432, p = .014, η2 = .072. The average indifference point 

was 1.16 (SD = .51) and discriminability d’ had M = 2.37 (SD = .3). Participants had on 

average half of the rational reasoning items correct, M = 7.0 (SD = 2.7). The Need for 

Cognition score had M = 62 (SD = 10.11) on day 1 and M = 65 (SD = 11.5) on day 2. Need 

for Cognition had good internal consistency on Day 1 (Cronbach’s α = .83) and Day 2 

(Cronbach’s α = .89), and good reliability across the two testing sessions (r = .823, p < .001). 

Additional information for Study 5 

The Need for Cognition score ranged from 33 to 83, M = 63.46 (SD = 9.77). On average 

participants solved half of the items correctly, M = 6.82 (SD = 2.61) and perceived mental 

demand was high, M = 79.11 (SD = 18.87). Accuracy on the demand selection task was high, 

M = 0.97 (SD = 0.04), perceived mental demand low, M = 45.56 (SD = 24.5). Participants 

avoided cognitive demand, M = .45 (SD = .12, Md = 0.47) but demand preference was not 

significantly different from chance (Z test, Z = .37, p < 0.711, d = .055). 



Additional information for Study 6 

Methods: Regarding the rational reasoning items we used items 2-7 from the Cognitive 

Reflection Test [1], one fully disjunctive reasoning problem, “the marriage problem” [2], one 

knight and knave problem [8], one conditional reasoning problem [9], one covariation 

problem [13], one base rate problem [14], one making sense of medical results problem [5]. 

Results: The two samples had similar NCS scores, t(197.38) = .838, p = .403, Mpooled = 61.59, 

SD = 10.94, similar working memory capacity, t(203.32) = -.12, p = .904, Mpooled = 3.31, SD 

= 2.13, similar accuracy in the DST, t(208.31) = -.062, p = .95, Mpooled = .92, SD = .076 and 

similar demand avoidance, t(127.77) = 1.074, p = .285, Mpooled = .44, SD = .23. The rational 

reasoning score was higher in the UiT sample (M = 6.01, SD = 2.71) compared to the Prolific 

sample (M = 4.83, SD = 2.62). This difference was significant; t(163.75) = -3.633, p = 

.00037). The average indifference point in COGED was higher in the Prolific sample (M = 

1.24, SD = .57) than in the UiT sample (M = 1.01, SD = .58). This difference was significant, 

t(164.97) = 3.157, p = .002). 

Differences between the six studies 



We expressed the rational reasoning score as percentage correct. A one-way ANOVA yielded 

a significant difference between studies (F(4, 577) = 11.253, p < .001, η2 = .072). Post-hoc 

Tukey HSD found a significant difference between study 2 and 3 (t = 6.389, p < .001), study 2 

and 6 (t = 5.108, p < .001), study 3 and 4 (t = 2.741, p = .049), study 3 and 5 (t = 3.271, p = 

.01) and study 3 and 6 (t = 2.786, p = .044). Since the total number of items differed across 

studies, we z-scored the values.  

One-way ANOVA yielded a significant difference between studies for cognitive effort 

discounting (indifference point) in the COGED (F(4, 585) = 12.683, p < .001, η2 = .08. Post-

hoc Tukey HSD test was significant for study 1 versus study 3 (t = 3.571, p = .004) and study 

1 versus study 6 (t = 4.372, p < .001), study 2 differed from study 3 (t = 4.869, p < .001), 

study 4 (t = 2.817, p = .04) and study 6 (t = 6.05, p < .001). Since study 1 and 2 used up to 6-

back whereas studies 3-6 used only up to 4-back, we z-scored the indifference point values. 

One-way ANOVA yielded no significant difference between studies for the DST (F(3, 472) = 

.386, p = .763, η2 = .002).  The DST was significantly below .5 (M = .44, SD = .2), i.e., on 

average participants avoided the high demand option (t(475) = 6.555, p < .001, Cohen’s d= 

.3). 

One-way ANOVA yielded a significant difference between studies for NCS (F(5, 634) = 

4.058, p < .001, η2 = .031). Post-hoc Tukey HSD test was significant for the comparison of 

study 2 with study 3 (t = 3.084, p = .026) and study 2 with study 6 (t = 3.96, p = .001). No 

other comparison was significant (see SOM for details). 

One-way ANOVA yielded a significant difference between studies for d’ (F(4, 588) = 19.281, 

p < .001, η2 = .116). Post-hoc Tukey HSD test was significant for the comparison of study 1 

with study 6 (t = 4.467, p < .001), study 2 with study 3 (t = 2.849, p = .037), study 2 with 

study 6 (t = 7.428, p < .001), study 3 with study 6 (t = 3.887, p < .001) and study 4 with study 

6 (t = 3.136, p = .015).  

Study-wise bi-variate scatterplots 
 



Figure S1: Need for Cognition Score (NCS) and d’ (dprime) from n-back phase from COGED 

 

 

Figure S2: Need for Cognition Score (NCS) and average indifference point from COGED 

 

 



Figure S3: Need for Cognition Score (NCS) and proportions high demand choices in DST 

 

Figure S4: Need for Cognition Score (NCS) and rational reasoning score 

 



Figure S5 d‘ and indifference point from COGED 

 

Figure S6 d‘ and proportion high demand choices in DST 

 



Figure S7 d‘ and rational reasoning score 

 

Figure S8 indifference point from COGED and proportion high demand choices in DST 

 



Figure S9 indifference point from COGED and rational reasoning score 

 

Figure S10 proportion high demand choices in DST and rational reasoning score 

 

Alternative analysis: Pooling after z-scoring 
 

We z-scored all values per study to compare across studies. The Pearson product-moment 

correlations with p-value and Bayes Factor (BF) are shown in Table 1. BF10 < .3 provides 

support for an absence of a relationship between the tasks. BF10 > 3 provides support for the 

hypothesis that there is an association between the tasks.  

Table S1. Pearson's Correlations and Bayes Factors  

         n  Pearson's r  p  
Lower 

95% CI  

 Upper 

95% CI   

BF10 

Effort discounting, AIP   -   Demand Avoidance   430   0.0669   0.1661   -0.0278   0.1605  0.1571   

Effort discounting, AIP   -   Rational reasoning score   516   0.0535   0.2254   -0.0330   0.1391  0.1147   



Table S1. Pearson's Correlations and Bayes Factors  

         n  Pearson's r  p  
Lower 

95% CI  

 Upper 

95% CI   

BF10 

Effort discounting, AIP   -   Need for Cognition score   577   0.1769   < .001   0.0967   0.2549  473.0110   

Effort discounting, AIP   -   n-back d’  591   0.1092   0.0079   0.0288   0.1882  1.7421   

Demand Avoidance   -   Rational reasoning score   402   0.0326   0.5146   -0.0654   0.1300  0.0772   

Demand Avoidance   -   Need for Cognition score  478   0.0692   0.1310   -0.0206   0.1579  0.1786   

Demand Avoidance  -   n-back d’   431   0.0067   0.8897   -0.0878   0.1011  0.0609   

Rational reasoning score   -   Need for Cognition score   568   0.1768   < .001   0.0960   0.2554  409.2896   

Rational reasoning score  -   n-back d’   519   0.2736   < .001  0.1921   0.3514  2.7843e +7   

Need for Cognition score   -   n-back d’   579   0.0420   0.3126   -0.0396   0.1231  0.0866   

  

Legend: BF10 in bold support the null hypothesis, BF10 in italic support the alternative 

hypothesis. P value in italic support the alternative hypothesis 

 

There are no differences to the meta-analytical approach regarding significance. This analysis 

complements the analysis reported in the main text by providing Bayes Factors and hence 

support for the null hypothesis.  

 

Lab vs online studies 

 

The demand selection task yielded similar demand avoidance in lab and online samples, 

t(456.017) = .049, p = .961, Cohen’s d = .004. The Need for Cognition score was higher 

among lab- than online participants, t(633.279) = 2.878, p = .004, Cohen’s d = .228. Working 

memory capacity was higher in the online than the lab samples, t(434.607) = -8.64, p < .001, 

Cohen’s d = .693. The average indifference point was higher in the lab than online sample, 

t(587.977) = 4.784, p < .001, Cohen’s d = .393. Rational reasoning score (percentage correct) 

was similar in the lab and the online sample, t(580) = 1.715, p = .087, Cohen’s d = .143.  

 

Study S1: Test – re-test reliability of rationality items 

Methods 

Ethics 

All methods were performed in accordance with the relevant guidelines and regulations and 

approved by the Institutional Review Board at the Department of Psychology at UiT – The 

Arctic University of Norway. Written informed consent was obtained from all participants. 



Participants  

In total 136 participants were recruited at Prolific (prolific.co). Of the 136, 83 completed both 

sessions and all questionnaires and had sufficient proficiency in English (assessed with the 

Word sum test, cut-off was 3 out of 10). 36 of the participants were women (aged 18- 49) and 

46 were men (aged 18-64), one indicated as gender other. The experiment was conducted 

online, allowing people from several countries to participate (24% from Poland, 13.5% 

Portugal, 12.5% Italy, 10% England, remaining were from 13 other countries). Participants 

received ca. £10 pounds after completion. Participation was voluntary and participants could 

withdraw their consent at any moment.  

 

Materials  

The experiment was conducted in English and all instructions were in English.  

Regarding rational reasoning items we used 14 items from the problem solving and reasoning 

literature:  

- One item from [15]. 

- One item from [16].  

- Items two and three from [17]. 

- Items 4-6 from [18]. 

- One item from [2].  

- One item from [19]. 

- One item from [14]. 

- One item from [20].  

- One item from [8] 

- One item from the Wason selection task (Wason, 1966; as cited in [21]).  

- One item from [22]. 

 

Although the degree of difficulty varied in these items, deliberate reasoning was required in 

all to reach the correct answer. The 14 items were sequentially and randomly presented to all 

participants. Participants had to provide an answer before proceeding to the next item. There 

were no time limits for answering the RQ items in session 1.  

In session 1 we measured also cognitive abilities with the Berlin numeracy test [23] and the 

word sum test [24], as well as we used the Need for Cognition scale. These questionnaires are 

not of interest here. We also used the NASA Task load index. 



The 14 items were divided into two sets after session 1 (based on response times). Set 1 were; 

both items from Thomson and Oppenheimer, one from Finucane and Gullion, the item from 

Wason and Brooks, the item from Kahneman and Tversky, the item from Wason, and the item 

from Shafir. The remaining seven items made up set 2. 

Approximately three weeks after session 1 participants got either set 1 or 2 again (after having 

played the Dice task, an information sampling task, not of interest here).  

The study was administered in Qualtrics (Qualtrics, Provo, UT). 

Analysis 

The test – retest score is based on the performance of the 7 items in session 1 that are identical 

with the items received in session 2. 

Results  

Participants got on average 49% of the items correct in session 1 and 50% in session 2. Test – 

retest correlation was Pearson’s ρ = .701, p < .001. Test - retest correlation between all 14 

items in session 1 and the seven items in session 2 was ρ = .8809, p < .001.  

 

Study S2: Test – retest reliability of the Cognitive Effort discounting task 

Methods 

Ethics 

All methods were performed in accordance with the relevant guidelines and regulations and 

approved by the Institutional Review Board at the Department of Psychology at UiT – The 

Arctic University of Norway. Written informed consent was obtained from all participants. 

Participants  

In total 25 participants were recruited, and all completed all three sessions (10 women, 15 

men, aged 19-31 years). Inclusion criteria were good health, tolerance for caffeine, sucrose or 

artificial sweetener as this study served as pilot for a study on the effect of energy drinks on 

cognitive ability and effort. The participants were compensated for their time with a gift card 

at their local grocery store valued at 400 NOK (approximately $40). 

Materials  

The experiment was conducted in English and all instructions were in English. We used the 

COGED as in experiment 6 with two modifications. In the training phase participants filled 

out the N-TLX after each n-back level. The instruction slides had a fixed time to ensure that 



all spent a similar amount of time on the instructions. COGED testing lasted approximately 35 

min.  

 

Analysis 

We averaged the indifference point (IP) for the choice options 1- vs 2-back, 1- vs-3-back and 

1- vs 4-back. Correlation between the averaged IP from session 1 and 2, and session 2 and 3 

were calculated. 

Results 

The average IP was 1.41 in session 1, 1.57 in session 2 and 1.74 in session 3. Participants 

choose higher n-back levels the more proficient they got with the task. Test – retest 

correlation was high, Pearson’s ρ = .789 for session 1 with session 2, and ρ = .819 for session 

2 with session 3.  
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1   |   INTRODUCTION

Human reasoning and decision-making are prone to 
bias. A salient example is the tendency to see purpose 
and intentionality in natural phenomena when there is 
none. This is known as teleological reasoning (Kelemen 
et al., 2013). As with other well-documented reasoning bi-
ases, what causes this non-normative reasoning remains 

elusive (Kelemen,  1999). In this paper, we assess three 
competing theories on how bias in reasoning arises by 
examining performance on a teleological reasoning task 
while measuring pupil size and response times.

Teleological reasoning is seen early in children's rea-
soning development as an explanatory default (DiYanni 
& Kelemen,  2005). This bias is so persistent that even 
physical scientists have been shown to endorse false 
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teleological explanations, such as “Trees produce oxy-
gen so that animals can breathe.” under time pressure 
(Kelemen et  al.,  2013). It is proposed that teleological 
reasoning remains a cognitive default throughout life 
(Kelemen et al., 2013). Teleological beliefs may be replaced 
later in life with scientific normative explanations such as 
“Oxygen produced by trees is a by-product of photosyn-
thesis.” It is not known if this new mindware (scientific 
explanations) becomes intuitive knowledge for smarter 
individuals (Raoelison et al., 2020; Stanovich, 2018) or if 
teleological reasoning always needs to be suppressed by 
deliberative processing (Evans,  2008; Kahneman,  2011). 
These two explanations are in line with the Smart intuitor 
and Default-Interventionist dual-process models, respec-
tively, which have been highly influential in research on 
bias in reasoning (Evans, 2008; Evans & Stanovich, 2013; 
Kahneman, 2011; Pennycook et al., 2015; Stanovich, 2009a, 
2009b). We here briefly introduce two dual-process mod-
els, the Default-Interventionist account and the Smart in-
tuitor account. Alternative dual-process models were not 
included as they failed to make clear and distinct predic-
tions from the Default-Interventionist and Smart intuitor 
accounts in this task (Epstein, 1994; Sloman, 1996).

1.1  |  Dual-process models

At the core, dual-processing accounts state that human 
reasoning can be separated into two different modes 
of processing (Evans,  2008; Evans & Stanovich,  2013; 
Kahneman, 2011). Type 1 processing, often called intui-
tive or heuristic, is automatic and does not require work-
ing memory capacity, that is, measurable features of Type 
1 processing are being fast and effortless. Type 2 process-
ing, often called analytic or deliberate, relies on working 
memory resources and uses mental simulation to generate 
responses. Measurable features of Type 2 processing are 
being slow and effortful. Accordingly, these processes can 
be gauged by measuring response times and pupil dila-
tions, as the pupil is known to dilate with increasing cog-
nitive effort (Hess & Polt, 1964; Kahneman & Beatty, 1966; 
van der Wel & van Steenbergen, 2018).

1.2  |  Default-interventionist account

The Default-Interventionist account (Evans, 2008; Evans 
& Stanovich, 2013; Kahneman, 2011) proposes that Type 
1 processes are the default. Type 2 processes are engaged 
at later stages of reasoning, or not at all. The Default-
Interventionist account proposes that humans are cog-
nitive misers because their default is to conserve effort 
expenditure by relying on Type 1 processing. Thus, bias 

in reasoning occurs due to overreliance on fast effortless 
Type 1 processing and failure to engage in slow, effort-
ful Type 2 processing when called for. According to the 
Default-Interventionist account, an intuitive teleological 
explanatory default produced by Type 1 processes (e.g., 
“Trees produce oxygen so that animals can breathe.”) 
would have to be inhibited and overridden by Type 2 
processing to produce a normative scientifically accurate 
explanation (e.g., “Oxygen is a by-product of photosyn-
thesis./Trees do not produce oxygen so that animals can 
breathe.”) when trying to understand events and phenom-
ena. Importantly, the Default-Interventionist account pre-
dicts that overriding a false teleological explanation would 
require longer response times and more effort, compared 
to accepting a false teleological explanation which should 
be fast and effortless.

1.3  |  The smart intuitor account

The Smart intuitor account has evolved from the Default-
Interventionist account as an increasing number of 
studies show evidence opposing predictions from the 
Default-Interventionist account (Bago & De Neys,  2017, 
2019; Newman et al., 2017; Raoelison et al., 2020; Raoelison 
& De Neys, 2019; Thompson et al., 2011). An example of this 
was shown by Raoelison et al. (2020) with a two-response 
paradigm for the cognitive reflection test (Frederick, 2005). 
The cognitive reflection test has been developed to assess 
an individual's ability to override an initial intuitive incor-
rect response in order to produce a deliberate correct re-
sponse (consistent with Default-Interventionist account). 
However, Raoelison et al. (2020) showed that most correct 
responses were made fast (intuitively), and very few correct 
responses were due to respondents' initial wrong response 
followed by a correction after deliberation. Accordingly, the 
Smart intuitor account proposes that Type 1 processing can 
produce many types of intuitions which were previously 
believed could only arise from Type 2 processing (Bago & 
De Neys, 2019; Evans & Stanovich, 2013; Kahneman, 2011; 
Sloman,  1996; Thompson et  al.,  2018). Importantly, the 
Smart intuitor account proposes that high cognitive capacity 
individuals are more likely to answer correctly on reasoning 
tasks by having “better” or more accurate intuitions (Bago & 
De Neys, 2017, 2019; Raoelison et al., 2020). A corrective de-
liberate process (as proposed by Default-Interventionist) can 
still happen, but most correct responses in decision-making 
tasks are due to accurate intuitions rather than overriding 
faulty intuitions (Raoelison et al.,  2020). The Smart intui-
tor account predicts then that overriding of false teleological 
explanations is not always necessary. Both teleological in-
tuitions and scientifically normative intuitions can be made 
intuitively through a fast and effortless Type 1 process. More 
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generally, the Smart intuitor account predicts that both nor-
mative responses and errors can be made fast and with little 
effort. However, when engaging in Type 2 processing, seen 
by longer response times and more effort, the normative re-
sponse is more likely.

To distinguish between the Default-Interventionist 
and Smart intuitor accounts, we included individual 
difference measures of cognitive ability and cognitive 
motivation. According to the Default-Interventionist 
account, engaging in Type 2 processing increases the 
probability of normative responses. Therefore, perfor-
mance on the teleological reasoning task should be asso-
ciated with higher trait cognitive motivation (Cacioppo 
et al., 1996; Stanovich, 2009b; Toplak et al., 2011, 2014; 
West et  al.,  2008). However, if normative responses are 
made intuitively by individuals high in cognitive ability 
as proposed by the Smart intuitor account, then cognitive 
ability should be associated with performance and cogni-
tive motivation should have less influence on normative 
responding (Raoelison et al., 2020).

Importantly, underlying both the Default-Interventionist 
and Smart intuitor account is the assumption that more ef-
fortful and extensive processing (Type 2) leads to more nor-
mative responses and less bias. However, a single-process 
framework, the Extensive integration account, makes the 
opposite prediction, namely that bias in reasoning is ex-
acerbated by more extensive processing. Recently, Eldar 
et al. (2021) highlighted that dual-process theories and the 
Extensive integration account make opposing predictions 
regarding pupil dilation and found support for the Extensive 
integration account in three framing tasks.

1.4  |  Extensive integration, neural 
gain, and the locus coeruleus–
norepinephrine system

The Extensive integration account builds on a single-
process framework where decision-making is seen as a dy-
namic process of gradual noisy evidence accumulation and 
integration leading up to a decision (Busemeyer et al., 2006; 
Busemeyer & Townsend, 1993; Krajbich & Rangel, 2011; 
Usher et al., 2013; Usher & McClelland, 2004). Here, bias 
accumulates if the decision-making process unfolds over 
many time steps. Thus, a small bias will have larger ef-
fects if each piece of evidence has lower weighting and 
the decision requires a longer evidence accumulation pro-
cess. Thus, more extensive integration is associated with 
more bias (Eldar et al., 2021; Usher & McClelland, 2004). 
Importantly, it is proposed that evidence integration is in-
fluenced by the Locus Coeruleus–Norepinephrine system, 
as norepinephrine modulates neural gain (Aston-Jones & 
Cohen, 2005; Eldar et al., 2013; Eldar, Cohen, et al., 2016; 

Eldar, Niv, et al., 2016; Jepma & Nieuwenhuis, 2011; Joshi 
et  al.,  2016). Low neural gain leads to lower weighting 
of each piece of evidence, and thus more extensive in-
tegration is required to reach a decision (Eldar, Cohen, 
et  al.,  2016; Eldar et  al.,  2013, 2021). Conversely, high 
neural gain leads to increased weighting of each piece of 
evidence. Importantly, neural gain can be gauged with 
pupillometry as pupil diameter is highly correlated with 
Locus Coeruleus activity (Aston-Jones & Cohen,  2005; 
Eldar et  al.,  2021; Gilzenrat et  al.,  2010; Reimer 
et  al.,  2016). Smaller baseline pupil diameter indicates 
low tonic Locus Coeruleus activity, low norepinephrine 
levels, and low neural gain (Aston-Jones & Cohen, 2005; 
Berridge & Waterhouse,  2003; Eldar et  al.,  2013; Eldar, 
Niv, et  al.,  2016; Joshi et  al.,  2016; Reimer et  al.,  2016). 
Additionally, larger pupil dilations can also indicate low 
neural gain as baseline pupil size and baseline-corrected 
pupil dilations are inversely correlated (Aston-Jones & 
Cohen,  2005; Eldar et  al.,  2013; Gilzenrat et  al.,  2010). 
Thus, according to the Extensive integration account, 
bias in reasoning occurs due to more extensive evidence 
integration, which is exacerbated by low neural gain. 
Therefore, the Extensive integration account predicts that 
biased responses (i.e., teleological reasoning errors) are 
associated with longer response times and larger pupil di-
lations (indicating low neural gain).

In this study, we assessed which of the three accounts 
best explains teleological reasoning bias by evaluating 
performance on a teleological reasoning task. A teleolog-
ical reasoning bias is evident if participants make more 
errors when evaluating the truth of false teleological ex-
planations compared to comparable control statements 
(such as physical  explanations and true teleological 
explanations, see methods). Both dual-process models 
predict that slower response times and larger pupil di-
lations are associated with more normative responses, 
that is, rejecting false teleological explanations (e.g., 
“Trees produce oxygen so that animals can breathe”). 
The Extensive integration account makes opposing 
predictions, namely that normative responses are asso-
ciated with fast responses and smaller pupil dilations. 
Additionally, the Extensive integration account predicts 
that larger baseline pupil size is associated with norma-
tive responding.

Table  1 summarizes the predictions across the three 
accounts.

1.5  |  Exploratory analyses and 
pre-registration

As an exploratory measure we recorded pupil dila-
tions following feedback (correct or incorrect) that 
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participants received after their responses in the tele-
ological reasoning task. Pupil dilation has been linked 
to decision uncertainty and the following surprise 
after feedback (Colizoli et al., 2018; de Gee et al., 2021; 
Preuschoff et al., 2011; Urai et al., 2017). We expected 
larger pupil dilation, signaling surprise, for error tri-
als compared to trials with correct responses. Further, 
we expected larger pupil dilation where decision con-
fidence was high, but the feedback indicated being in-
correct, and smaller dilations on trials where decision 
confidence was low. Pupil dilation to feedback cannot 
confirm or disconfirm any account.

Lastly, in accordance with the Extensive integra-
tion account, we modeled responses on the teleological 
reasoning task with an established sequential sam-
pling model of the decision process, the drift-diffusion 
model (Ratcliff,  1978; Ratcliff & McKoon,  2008; Smith 
& Ratcliff,  2004). The drift-diffusion model allows for 
the investigation of latent psychological processes un-
derlying decisions (Ratcliff & McKoon,  2008; Wiecki 
et al.,  2013). Additionally, the drift-diffusion model en-
ables investigation of the link between psychological 
processes and neural mechanisms by utilizing physiolog-
ical measures (i.e., pupil dilation) as predictors of param-
eters in the drift-diffusion model (Cavanagh et al., 2011, 
2014; Wiecki et al., 2013).

Pre-registration for this study is available on OSF 
(https://​osf.​io/​vk7r4/​​). Our pre-registered hypotheses 
were in line with the Default-Interventionist dual-process 
account. Please note, we deviate from the pre-registration 
as the analysis plan was found to be inadequate. 
Additionally, the pre-registration included plans to assess 
heart-rate variability; however, due to low-quality record-
ings (Empatica E4), these data could not be analyzed and 
are hence not described further.

2   |   METHODS

2.1  |  Participants

Participants were non-psychology students, N = 45 (27 
female), and mean age was 23.35 years (range 18–37). 
Participants reported not having any neurological disorder, 
history of brain disease or surgery, and not taking any cen-
tral nervous system medication or drugs. In addition, as all 
test stimuli were in English and participants had different 
native languages, self-rated English proficiency had to be 
higher than 4 on a scale from 1 to 7, where 1 = “understand 
a few words” and 7 = “Master it like native language”. The 
threshold was set based on a previous study showing no dif-
ference in deliberate reasoning performance between native 
and second language, and no effect of English proficiency on 
deliberate reasoning for participants scoring above 4 on the 
same English proficiency scale (Mækelæ & Pfuhl, 2019). All 
participants gave written informed consent prior to partici-
pation. The study was approved by the institutional review 
board at the Department of Psychology, UiT, The Arctic 
University of Norway. Participants received a voucher 
worth 400 NOK (approximately 40 USD) for participating 
in two test sessions (from test session two we included two 
cognitive ability measures in the SOM where we report the 
relationship between performance on the teleological rea-
soning task and two cognitive ability measures).

2.2  |  Materials

2.2.1  |  Cognitive motivation

We used the 18-item Need for Cognition Scale (NFC) 
(Cacioppo et  al.,  1984), which measures a person's 

T A B L E  1   Predictions of the three accounts for responses in the teleological reasoning task.

Parameter Default-interventionist Smart intuitor Extensive integration

Response time Slow responses are more likely 
normative. Fast responses are more 
likely errors

Slow responses are more likely 
normative. Fast responses can be 
both normative and errors

Fast responses are more likely 
normative. Slow responses are 
more likely errors

Pupil dilation Larger dilations are more likely 
normative responses. Smaller 
dilations are more likely errors

Larger dilations are more likely 
normative responses. Smaller 
dilations can be both errors and 
normative responses

Smaller dilations are more likely 
normative responses. Larger 
dilations are more likely errors

Baseline pupil 
size

N/A N/A Larger baseline more likely leads to 
normative responses

Cognitive 
ability

High ability predicts better performance 
(but see Stanovich and West [2008])

High ability predicts better 
performance

N/A

Cognitive 
motivation

High cognitive motivation predicts 
better performance

Cognitive motivation has less impact 
on performance than cognitive 
ability

N/A

Note: Predictions where the three accounts make similar predictions are not included, for example, pupil dilation to feedback (see text).
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tendency to engage in and enjoy cognitively effortful activ-
ities. An example item is “I prefer complex to simple prob-
lems.” The 18 items are rated on a 5-point Likert scale from 
1 = “Extremely uncharacteristic of me” to 5 = “Extremely 
characteristic of me.” Total score can range from 18 to 90. 
Internal consistency was high, McDonalds ω = 0.86. The 
scale was implemented in Qualtrics (Qualtrics, Provo, 
UT).

2.2.2  |  Cognitive ability

We used a composite of rational reasoning tasks to 
measure cognitive ability. The battery of rational rea-
soning tasks was created with 14 items from the heuris-
tics and biases literature. We used items 2–7 from the 
Cognitive Reflection Test (Toplak et al., 2014), one fully 
disjunctive reasoning problem; “the marriage problem” 
(Levesque, 1986), one probability matching task (Koehler 
& James, 2010), one probability estimation task; “the bus 
problem” (Teigen & Keren,  2007), one making sense of 
medical results problem (Gigerenzer et  al.,  2007), one 
Bayesian reasoning problem (Toplak et al., 2007), adapted 
from Fischhoff and Beyth-Marom (1983), one covariation 
detection problem (Stanovich & West, 1998), one knight 
and knave problem (Smullyan, 1978), and one conditional 
reasoning problem (Lehman et al., 1988). Correct answers 
were scored as 1, incorrect as 0. Total composite rational 
reasoning score ranged between 0 and 14. The task was 
implemented in Qualtrics (Qualtrics, Provo, UT).

2.2.3  |  Teleological reasoning

The teleological reasoning task consisted of statements 
containing false teleological explanations (test items), as 
well as control statements (control items) that participants 
were asked to judge as true or false (Kelemen et al., 2013; 
Kelemen & Rosset,  2009). There were 77 items in total, 
34 of which were test items consisting of false teleological 

explanations for natural phenomena (e.g., “Trees pro-
duce oxygen so that animals can breathe.”). The 43 con-
trol items consisted of 24 physical explanations that were 
either true (“Objects fall downwards because they are 
affected by gravity.”) or false (“Soup is hot because it is pri-
marily liquid.”), and 19 control teleological explanations 
that were either true (“Schools exist in order to help peo-
ple learn new things.”) or false (“Mice run away from cats 
in order to get exercise.”). Thus, test sentences are false 
teleological explanations in the domain of natural phe-
nomena where the stated explanations are inappropriate. 
Control sentences are teleological explanations concern-
ing the social–conventional and artifact domains where 
these explanations are appropriate.

The task was computerized with stimulus sentences 
presented auditorily via noise-canceling headphones. The 
task was self-paced, and each trial was initiated by pressing 
the space bar. Trials started with a fixation cross appearing 
on screen, and the auditory stimulus was presented after 
a delay of 0.5 s (see Figure 1). Stimulus sentences varied 
in duration between 2.3 and 3.7 s. After the stimulus sen-
tence ended, participants had 4 s to respond, indicating 
whether the statement was true or false by pressing “D” 
or “K” on a QWERTY keyboard, respectively. Participants 
received feedback 1.8–2.4 s after their answer, by a “V” or 
“X” appearing in place of the fixation cross (feedback du-
ration 4.0–6.2 s, uniformly jittered), representing correct 
and incorrect responses, respectively. If a participant did 
not respond within the 4 s, the trial was amended to the 
end of the task for repetition. All stimuli presented on 
screen were isoluminant. Items were pseudo-randomized 
with the constraint of not more than three in a row of the 
same type (test items or control items).

Instructions, fixation cross, and feedback for the task 
were presented on a monitor (width 34 cm, height 27 cm, 
resolution 1280 × 1024). The teleological reasoning task 
was programmed in Python (version 3.7) and presented 
in Psychopy (Peirce et al., 2019), script available on OSF 
(https://​osf.​io/​vk7r4/​​). The auditory test stimuli for the 
teleological reasoning task were created by entering the 

F I G U R E  1   Teleological reasoning task. Trial structure of the Teleological reasoning task. Fixation cross, duration 200 ms. Statement 
(stimulus onset delayed by 0.5 s) presented auditorily (length 2.3–3.7 s). Feedback (onset 1.8–2.4 s after response, jittered) indicating correct 
and incorrect responses (here X for being wrong) presented on screen (4.0–6.2 s). Figures not to scale.
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stimulus statements into Google Cloud ‘s speech-to-text 
API (Demo provided by Google Cloud online (available 
at: https://​cloud.​google.​com/​speec​h-​to-​text, [accessed 
08.27.2019])). The resulting output was recorded with the 
audio recording and editing software Audacity® (Version 
2.3.2, Audacity Team, 2019), audio files are available on 
OSF (https://​osf.​io/​vk7r4/​​).

2.3  |  Pupil recording

Pupil size was recorded during the teleological reason-
ing task with a desk-mounted Eyelink 1000 eye tracker 
(SR-Research, Ontario, Canada) with a sampling rate of 
500 Hz. A chinrest was used to stabilize head position 
and viewing distance (65 cm from top of screen, 69 cm 
from screen bottom). A two-minute baseline measure-
ment of pupil dilation was recorded in a sitting position 
in front of the computer before the teleological reasoning 
task started. Participants were instructed to fixate on the 
center of the screen.

2.3.1  |  Procedure

Participants were recruited through flyers at UiT, The 
Arctic University of Norway. Participants were individ-
ually tested by a trained experimenter. The order of the 
tasks were cognitive ability, cognitive motivation, and 
teleological reasoning task. The test session included 
assessments for a separate replication project (Mækelæ 
et  al.,  2023), with a Demand selection task (Kool 
et al., 2010) followed by NASA task load index (Hart & 
Staveland, 1988) and another N-TLX assessment follow-
ing cognitive ability, administered at the beginning of 
the session in a different room. However, these assess-
ments are not relevant to the current study and were 
not expected to affect performance in any of the other 
assessments.

2.4  |  Data processing

Data processing of pupil measurement was performed 
in the statistical environment R (version 4.1.2.) (R Core 
Team, 2021). Eyeblinks and other artifacts (rapid changes 
in pupil size, caused by head movements, lid flicker-
ing, etc.) were detected based on the signal's velocity 
(Mathot,  2018) and corrected using linear interpolation. 
Here, thresholds and on- and offset margins for the in-
terpolation window were adapted on an individual basis, 
due to inter-individual differences in signal recovery (the 
speed at which the signal returns back to normal). The 

interpolated signal was smoothed with a 3 Hz low-pass 
Butterworth filter. If blinks or artifacts spanned more 
than 1000 consecutive milliseconds, the respective inter-
polated signal was treated as missing. Finally, the signal 
was visually screened, and trials with remaining artifacts 
were identified and excluded from further analysis if the 
artifacts occurred during time windows of interest (trial 
baseline, decision, and feedback; n = 0.5 trials per par-
ticipant on average). For each trial, baseline pupil size 
(“Baseline pupil”) was calculated as the average signal 
across the first 200 ms following the onset of the fixation 
cross. Pupil dilation during decision-making, that is, the 
time window from onset of the auditory stimulus until re-
sponse made, and during feedback processing, that is, the 
time window between feedback onset and the subsequent 
3000 ms, was baseline-corrected by subtracting baseline 
pupil from every sample within the respective time win-
dow of interest. Maximum pupil dilation during decision-
making (“PDmax-BL”) and during feedback (“Feedback 
PDmax-BL”) were extracted. For decision-making, maxi-
mum pupil dilation was further calculated based on the 
raw signal, without prior baseline correction (“PDmax”).

Baseline pupil, PDmax, PDmax-BL, and Feedback 
PDmax-BL measures were treated as missing (NA) if more 
than 50% of the signal within the respective time window 
were missing and/or interpolated.

2.5  |  Data analyses

Linear mixed models were analyzed with the lme4 pack-
age (Bates et al., 2015). Modeling of responses on the base-
rate tasks with the drift-diffusion model was performed 
with Python (version 3.9) (Patil et al., 2010). The model 
was implemented with the hierarchical drift-diffusion 
model, contained in the dockerHDDM (Pan et al., 2022; 
Wiecki et al., 2013).

First, we aimed to replicate that humans show a tele-
ological reasoning bias. We assessed whether false teleo-
logical explanations (test condition) lead to more errors in 
reasoning compared to comparable explanations (control 
condition) by testing if there was a significant difference 
in accuracy between the test and control conditions.

Second, to investigate which of the three accounts 
best explains performance in the teleological reasoning 
task we applied separate generalized linear mixed mod-
els (GLMM) for response times and pupil dilations. All 
reported models successfully converged. We only report 
relevant estimates of fixed factors in the manuscript; 
for more details on the models, see SOM (Tables  S1–S5 
and S7–S10). For the pupil analysis, the main analysis is 
conducted with maximum pupil dilation with Baseline 
pupil subtracted (“PDmax-BL”) as this is a common way 
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to report pupil dilation (Mathot,  2018), also referred to 
as phasic response. Further, we report analyses with 
Baseline pupil (also referred to as tonic response) and 
PDmax (uncorrected) entered separately as this is of par-
ticular interest for the Extensive integration account. We 
note that the latter approach may lead to multicollinearity 
issues; however, centering of the variables alleviates this. 
Assessment of variance inflation factor with the “caret” 
package (Kuhn, 2015) and visual inspection of the resid-
uals with the “DHARMa” package (Hartig, 2022) showed 
no multicollinearity issues.

Third, to investigate how individual differences in cog-
nitive ability and cognitive motivation influence suscep-
tibility to false teleological explanations, we performed a 
linear model with cognitive motivation and cognitive abil-
ity as predictors of accuracy in the test condition.

Values for “Baseline pupil”, “PDmax”, “PDmax-BL”, 
and “Feedback PDmax-BL” were separately z-scored 
within participants. Cognitive motivation and cognitive 
ability were z-scored across participants.

2.6  |  Exploratory analyses

Pupil dilations following feedback were recorded to inves-
tigate uncertainty and surprise in the teleological reason-
ing task. We applied a Linear mixed model (LMM) with 
Feedback PDmax-BL as outcome with condition and ac-
curacy as fixed factors.

A drift-diffusion model was applied to investigate la-
tent psychological processes underlying decision in the 
teleological reasoning task and the influence of pupil dy-
namics. The drift-diffusion model is an established com-
putational model of the decision process consistent with 
the Extensive integration account (Ratcliff, 1978; Ratcliff 
& McKoon, 2008; Smith & Ratcliff, 2004). We note that the 
drift-diffusion model was accuracy coded, meaning the 
decision boundaries are correct and incorrect responses, 
and accordingly do not include a bias parameter.

First, we assessed whether there was a difference in the 
decision process when evaluating false teleological expla-
nations compared to control statements, by testing if there 
were significant differences in the main parameters of the 
drift-diffusion model in the test and control condition. 
Second, pupil data were applied as a linear predictor of 
trial-by-trial variation in drift rate, threshold, and drift-rate 
variability. We ran the analyses with both “PDmax-BL” 
and separately entered “PDmax” and “Baseline pupil” as 
predictors.

For each model, we ran five Markov chains with 20,000 
samples each, 12,000 of which were burn-in. Every second 
sample was discarded as thinning in order to reduce au-
tocorrelation in chains. Model convergence was assessed 

with visual inspection of the trace, autocorrelation, the 
marginal posterior, and the Gelman-Rubin R statistic. All 
parameters had an R-hat value below 1.01. Model com-
parison was conducted with the deviance information 
criterion (DIC). Lower DIC indicates better fit. However, 
we note results of models with fit in similar range as DIC 
has limitations when comparing fit. See SOM Table S11 
for comparison of all models.

2.7  |  Sample size

Our sample size rationale was based on a comparable 
study linking pupil responses to prediction-making in en-
vironments with changing stochastic structure (de Berker 
et al., 2016; Kreis et al., 2023). In this study, a pupillary 
sensitivity measure to uncertainty correlated highly posi-
tively with performance (Pearson correlation coefficient 
r = .62, n = 22). Assuming some regression to the mean, 
we based our sample size calculation on a smaller effect 
size, r = .4, α of 0.05 (two-sided test), power of 0.8, which 
yielded 44 participants in the analysis (G power 3.1). 
Regarding individual differences, Thompson et al. (2018) 
report large effect sizes (η2 of 0.3 to 0.6), and thus a sam-
ple of 40 participants would be sufficient to find an effect. 
Our final sample after exclusions was deemed sufficient to 
continue with analyses.

3   |   RESULTS

A total of six participants were excluded, two by their be-
havioral responses (one failed to respond, one mixed up 
buttons), and four had too low quality of their pupil data 
or calibration failed, leaving a total of 39 participants (see 
SOM for behavioral analysis prior to exclusions by low-
quality pupil data, i.e., with n = 43).

Descriptive statistics for all variables can be found in 
Table 2.

3.1  |  Accuracy

To assess if participants showed a teleological reasoning 
bias, we compared participants' performance in the test 
condition to the control condition. A Mann–Whitney U 
test showed that the percentage of correct responses in the 
control condition (Mdn = 91.9, SD = 5.4) was significantly 
higher than the percentage of correct responses in the 
test condition (Mdn = 75.0, SD = 14.4), U = 1315, p < .001. 
This indicates that participants on average showed a tele-
ological reasoning bias and endorsed false teleological 
explanations.
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8 of 17  |      MÆKELÆ et al.

3.2  |  Response times

To assess if normative responses were associated with 
longer (as predicted by dual-process models) or shorter (as 
predicted by the Extensive integration account) response 
times, we applied a GLMM with accuracy as outcome 
(normative–error responses) and z-scored response times 
and condition as fixed factors and participants as random 
factors.

The results showed that correct responses were asso-
ciated with shorter response times (β = −0.48, SE = 0.06, 
z = −8.59, p < .001), and that more errors were made in the 

test condition (β = −1.18, SE = 0.13, z = −9.28, p < .001), 
see Figure 2.

3.3  |  Pupil dilation – Decision

The most important question in this study is whether er-
rors in teleological reasoning are associated with small or 
large pupil dilations. The Default-Interventionist account 
predicts that errors occur through a fast effortless pro-
cess and would therefore be associated with smaller pupil 
dilations. The Smart intuitor account predicts that both 

Mean SD Minimum Maximum

Baseline pupil (tonic response) 32.81 4.99 21.92 51.59

PDmax 35.73 5.65 24.37 58.49

PDmax-BL (phasic response) 2.91 1.93 −1.54 14.87

Feedback PDmax-BL 1.83 2.33 −11.92 14.29

Response time in seconds 1.21 0.80 0.01 3.96

Cognitive ability 7.21 2.48 3.00 13.00

Cognitive motivation 55.10 10.19 24.00 74.00

Note: Variables not z-scored.

T A B L E  2   Descriptive statistics.

F I G U R E  2   Response times separated by condition and accuracy. Response times, average per participant in seconds for the teleological 
reasoning task. Responses are separated by condition and accuracy.
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      |  9 of 17MÆKELÆ et al.

errors and normative responses can be associated with 
small pupil dilations; however, if pupil dilations are large, 
the account predicts that normative responses are more 
likely. The Extensive integration account, on the other 
hand, predicts that errors should be associated with larger 
pupil dilations.

To test if larger or smaller pupil dilations were pre-
dictive of correct responses on the teleological reason-
ing task, we applied a GLMM with accuracy as outcome, 
PDmax-BL (phasic response) and condition as fixed 
factors and by-participant random intercepts (see SOM 
Table  S6 for analysis with pupil dilation and effort as 
outcome).

The results showed that smaller pupil dilations were a 
significant predictor of normative responses (β = −0.19, 
SE = 0.06, z = 3.15, p = .002), and that participants made 
more errors in the test condition (β = −1.30, SE = 0.12, 
z = −10.51, p < .001). Thus, the results indicate that er-
rors are associated with larger pupil dilations (i.e., larger 
phasic responses). Figure 3 shows average pupil wave-
form for correct and incorrect responses (see also, SOM 
Figure  S1 for phasic response (z-scored PDmax-BL) in 
the time window from stimulus sentence onset until 
response).

Next, the Extensive integration account specifi-
cally predicts that lower baseline pupil size and larger 
pupil dilations are associated with more bias and thus 
more incorrect responses. To assess the contribution of 

both Baseline pupil and PDmax, we applied a GLMM 
with accuracy as outcome, Baseline pupil, PDmax, and 
condition as fixed factors and by-participant random 
intercepts.

The results showed that higher Baseline pupil was as-
sociated with more correct responses (β = 0.24, SE = 0.08, 
z = 3.06, p = .002). Conversely, larger PDmax were asso-
ciated with more errors (β = −0.21, SE = 0.08, z = −2.76, 
p = .006), and the test condition was associated with more 
errors (β = −1.31, SE = 0.12, z = 10.53, p < .001). The results 
showed that errors in teleological reasoning are associ-
ated with smaller baseline pupil size (tonic response) and 
larger pupil dilations (phasic response).

3.4  |  Individual differences

To distinguish between the Default-Interventionist and 
Smart intuitor account, we included individual differ-
ence measures of cognitive ability and cognitive motiva-
tion. According to the Default-Interventionist account, 
engaging in Type 2 thinking, thus increasing probability 
of normative responses, is related to trait differences in 
cognitive motivation. However, if normative responses 
are made intuitively by individuals high in cognitive abil-
ity as proposed by the Smart intuitor account, then cogni-
tive motivation should make little difference in normative 
responding.

F I G U R E  3   Pupil waveform for correct and incorrect responses in the control and test conditions during listening and until a response 
was made. Change in pupil waveform from onset of the statement until a response was made in the teleological reasoning task. Minimum 
duration is 2.4 s (shortest statement and immediate responding), maximum is 7.7 s. Pupil waveform is averaged across all participants and 
trials. Exclusions applied. Shaded area represents standard error. ms, milliseconds.
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10 of 17  |      MÆKELÆ et al.

To investigate how individual differences in cognitive 
motivation and cognitive ability influence performance, 
we conducted a linear model with cognitive motivation 
and cognitive ability as predictors of accuracy in the test 
condition. The model explained 28.1% of the variance in 
accuracy, with cognitive ability (β = 0.08, SE = 0.02, t = 3.74, 
p = .001) but not cognitive motivation (β = −0.01, SE = 0.02, 
t = −0.38, p = .710) as a significant predictor of perfor-
mance in the test condition. The results show that higher 
cognitive ability, but not higher cognitive motivation, is 
associated with successfully rejecting false teleological 
explanations.1

3.5  |  Exploratory analyses

3.5.1  |  Pupil dilation to feedback

As an exploratory investigation we looked at pupil dila-
tion following feedback, as pupil dilation has been known 
to signal decision uncertainty and surprise after feedback 

(de Gee et  al.,  2021). We interpret large pupil dilations 
here to indicate more surprise (see Figure 4).

To assess decision uncertainty and surprise for errors 
and normative responses in the two conditions, we con-
ducted a linear mixed model with Feedback PDmax-BL as 
outcome and response, and condition and their two-way 
interaction as fixed factors and by-item2 random 
intercepts.

The results yielded a significant interaction (β = 0.36, 
SE = 0.12, t = 2.89, p = .004), that is, pupil dilation was larg-
est for incorrect responses in the control condition and 
smallest for correct responses in the control condition. On 
average, correct responses were associated with smaller 
pupil dilations to feedback (β = −0.84, SE = 0.10, t = −8.58, 
p < .001) compared to incorrect responses, and pupil di-
lations were on average larger in the control condition 
(β = −0.31, SE = 0.11, t = −2.73, p = .006) compared to the 
test condition. The result from the analyses of pupil dila-
tion to feedback showed larger pupil dilations for errors, 
and this effect was larger in the control condition than in 
the test condition.

 1SOM contains analysis for two additional measures of cognitive ability 
for a sub-sample of participants which participated on a separate day 
for a separate project.

 2By-item random intercepts were applied as the model failed to 
converge when including by-participant random intercepts.

F I G U R E  4   Phasic response (z-scored maximum pupil dilation with baseline subtracted) during feedback. Phasic response during 
feedback is the z-scored maximum pupil dilation with baseline subtracted and averaged per participant. Responses are separated by 
condition and accuracy.
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      |  11 of 17MÆKELÆ et al.

3.5.2  |  Drift-diffusion model

To find the model with the best fit, we analyzed the models 
in two steps. First, we assessed whether any of the main 
parameters of the drift-diffusion model differed between 
the test and control condition. In the second step, we as-
sessed whether pupil measures could predict trial-by-trial 
variation in parameters of the drift-diffusion model.

In the first step, we found that drift rate was signifi-
cantly lower in the test condition compared to the control 
condition (probability of drift rate in test condition being 
larger than mean in control = 0.01). Posterior estimates of 
drift rate in test and control conditions can be seen in 
Figure 5. Threshold was not significantly different in the 
two conditions (although, near significance level for the 
threshold being higher in the test condition), with a 0.077 
probability of the mean threshold in the test condition 
being higher than the mean threshold in the control con-
dition (see SOM Figure S2).3

In the second step, we applied pupil measures as pre-
dictors of trial-by-trial variation in parameters of the drift-
diffusion model. According to the Extensive integration 
account, lower baseline pupil size, and thus also larger 
pupil dilations (as they are inversely correlated), should be 
linked to more extensive integration. More extensive inte-
gration in the drift-diffusion model can be achieved from 
either decreased drift rate (lower rate of accumulation to-
ward decision boundary) or increased threshold (response 
caution) or both.

The winning model indicated by lowest DIC value 
was the model with z-scored Baseline pupil and z-scored 
PDmax as predictors of threshold, with separate drift rate 
by condition. As can be seen from Figure 6, Baseline pupil 
and PDmax had opposite effects on the decision thresh-
old. Higher Baseline pupil was linked to lower threshold, 
whereas higher PDmax was associated with higher deci-
sion threshold.

We note that the winning model (Figure 6, DIC = 6088) 
showed only slightly better fit compared to the model with 
PDmax-BL as a predictor of drift rate (DIC = 6098) and 
the model with Baseline pupil and PDmax as predictors 
of drift rate (DIC = 6100). Importantly, the effect of pupil 
measures on drift rate was opposite to the effect these 
measures had on threshold (see SOM Figure S3). That is, 
higher PDmax-BL was associated with both lower drift 
rate and higher decision threshold (see SOM Figures S4 
and S5). Posterior predictive modeling supported that 
PDmax-BL as a predictor of threshold had slightly better 
fit compared to PDmax-BL as a predictor of drift rate (see 
SOM Figures  S7 and S8). Lastly, PDmax-BL was not re-
lated to drift-rate variability (see SOM Figure S6).

4   |   DISCUSSION

The purpose of this study was to investigate theoretical 
frameworks that explain bias in reasoning, in particular, 
teleological reasoning. The participants in the study did 
show a teleological reasoning bias, as evidenced by their 
acceptance of false teleological explanations for natural 
phenomena at a significantly higher rate compared to 
errors made on comparable control statements. This is 

 3Including drift-rate variability to the model or both separate threshold 
and drift rate was evaluated as not adding significant improvement to 
the model.

F I G U R E  5   Posterior estimate of group mean drift rate in 
the test and control condition. Significant difference in posterior 
estimates of group mean drift rate in the test and control condition 
in the Teleological reasoning task.

F I G U R E  6   Effect of z-scored baseline pupil and PDmax on 
decision threshold. Posterior estimates of regression coefficients 
for z-scored trial-baseline pupil size and z-scored maximum pupil 
dilation as predictors of trial-by-trial variation in threshold.
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12 of 17  |      MÆKELÆ et al.

consistent with previous studies on teleological reason-
ing (Kelemen et al., 2013). By modeling responses with a 
drift-diffusion model, we found further support for false 
teleological explanations being harder to evaluate as the 
test condition yielded a lower drift rate.

Errors in reasoning were associated with slower 
response times and larger pupil dilations. Further, 
smaller baseline pupil size and larger pupil dilations 
were associated with errors in reasoning. Thus, the re-
sults strongly support the extensive integration account 
of bias in reasoning and provide no support for dual-
processing accounts.

The extensive integration account relies on a frame-
work where decision-making is seen as a noisy sequen-
tial sampling process where evidence is accumulated over 
time toward decision bounds, and a response is made 
when the evidence reaches a decision boundary. In this 
task, a possible mechanism for the decision-making pro-
cess is that the statement presented is compared to pieces 
of knowledge about the world represented in memory. 
This comparison results in a weighting where the prob-
ability can favor the statement being true or false. Each 
comparison is counted as a piece of evidence with varying 
strength for the statement being true or false. Evidence is 
accumulated over time until the relative evidence weight-
ing is strongly favoring the statement either being true or 
false (accumulation reaches decision boundary), and a re-
sponse is made for the favored option. A small bias favor-
ing acceptance of teleological explanations for each piece 
of evidence increases the chance of accepting a false te-
leological explanation with more extensive accumulation. 
Alternatively, the mechanism through which biases arise 
may be weighting too heavily information that should not 
influence the outcome of the decision. For example, when 
evaluating the test statement “The sun makes light so that 
plants can photosynthesize” the piece of knowledge that 
plants use light in the photosynthesis process can bias the 
evaluation of the statement as a whole toward being true, 
when it is not. This is coherent with evidence showing 
that low neural gain can broaden attention, which could 
allow irrelevant information to influence and bias deci-
sions (Eldar et al., 2013, 2021).

The extensive integration account further draws on re-
search showing that the Locus Coeruleus–Norepinephrine 
system modulates neural gain in the brain which influences 
neural communication, such that when gain is high, acti-
vated neurons become more active, and inhibited neurons 
become less active (Aston-Jones & Cohen, 2005; Berridge & 
Waterhouse, 2003; Eldar, Niv, et al., 2016; Joshi et al., 2016). 
In the sequential sampling process, this means that when 
gain is high each piece of evidence is more heavily weighted, 
and fever pieces of evidence are needed to reach a decision 

boundary (Eldar et al., 2021; Eldar, Niv, et al., 2016). By an-
alyzing trial-by-trial variation in pupil size with the drift-
diffusion model, the results strongly support that pupil 
dynamics reflect changes in neural gain. Larger baseline 
pupil size was associated with both lower decision threshold 
and higher drift rate. Thus, larger (tonic) baseline pupil size, 
indicating higher gain, was associated with less evidence ac-
cumulation which led to faster responses and importantly, 
fewer errors. Conversely, larger phasic pupil dilations were 
associated with higher decision threshold and lower drift 
rate. Thus, larger phasic pupil dilations, indicating low 
neural gain, were associated with more evidence accumula-
tion which led to slower response times and more errors in 
reasoning. Accordingly, the results corroborate predictions 
from the extensive integration account.

According to dual-process theories, when Type 2 pro-
cesses are engaged the normative answer should be more 
likely. Type 2 processes are indicated by longer response 
times and more effort, reflected in larger pupil dilations. 
In this study, we found that normative responses were 
associated with shorter response times and less effort as 
reflected in smaller (phasic) pupil dilations, which contra-
dicts dual-process predictions.

Response time in this study was limited but not 
speeded, that is, time was sufficient as the mean response 
time was more than two standard deviations below the 
time limit. The error rate in the test condition in this study 
was comparable to the error rate in the unspeeded con-
dition in Kelemen et al. (2013). We have no indication of 
participants having felt time-pressured. But even if so, the 
speed-accuracy trade-off would have affected the test and 
control condition similarly (Kelemen et al., 2013).

Pupil dilation leading up to the decision was pre-
dicted by response accuracy. On one hand, higher base-
line pupil size could indicate an optimal level of arousal 
and attention (Aston-Jones & Cohen,  2005; Berridge & 
Waterhouse, 2003). On the other hand, larger pupil dila-
tions could reflect higher uncertainty (Colizoli et al., 2018; 
Preuschoff et al., 2011; Urai et al., 2017; Yu & Dayan, 2005) 
on subjectively more difficult trials, where errors indeed 
are more likely. These explanations are not mutually ex-
clusive but describe separate processes. A less likely expla-
nation, in a dual-process framework, explains the results 
by rationalization of intuitive errors (however, the authors 
advise against post-hoc justifications). Additionally, the 
results could be explained by unsuccessfully invested ef-
fort in trials where errors were made. However, there were 
no differences in effort by condition (see SOM Table S6 for 
analysis of pupil dilation/effort), which speaks against 
an explanation of unsuccessfully invested effort. Finding 
no difference by condition in pupil dilation could be ex-
plained by participants not experiencing a difference with 
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regard to conditions in terms of difficulty or not recogniz-
ing a need to spend more effort.

Trial-by-trial variation in pupil dilation (and trial 
baseline and pupil dilation separately) was associated 
with changes in both threshold and drift rate in the drift-
diffusion model, with the model for threshold showing 
a slightly better fit. This is coherent with findings from 
Cavanagh et al. (2014) who found that pupil dilation pre-
dicted threshold and found a slightly worse fit for drift rate. 
Other studies have linked pupil dilation to bias and vari-
ability in drift rate (de Gee et al., 2020; Leong et al., 2021; 
Murphy et al., 2014). In this study, pupil dilation had no 
relation to variability in drift rate. Bias in drift rate was 
not investigated. The difference in results across studies 
is probably due to task differences which influence the 
parameters of the drift-diffusion model, as well as differ-
ent influences on pupil dilation, that is, arousal, surprise, 
reward, uncertainty, cognitive effort, and more (Beatty & 
Lucero-Wagoner,  2000; Laeng et  al.,  2012). Considering 
variation in both tasks and influence on pupil dynamics, 
it is unlikely that pupil dilation would converge on influ-
encing a single parameter of the drift-diffusion model. 
However, within the context of this study, the influence 
of both baseline pupil size and pupil dilation on drift rate 
and threshold fit the predictions from the Extensive inte-
gration account.

Feedback-evoked pupil dilations were larger for errors 
compared to normative responses, which is consistent 
with an account of pupil dilation signaling uncertainty 
and surprise (Colizoli et  al.,  2018; de Gee et  al.,  2021; 
Preuschoff et  al.,  2011; Urai et  al.,  2017). Additionally, 
pupil dilations to errors were larger in the control con-
dition indicating higher degree of surprise and higher 
confidence in the control condition. Higher uncertainty 
in the test condition compared to the control condition 
is consistent with the results from drift-diffusion model 
showing lower drift rate in the test condition indicating 
higher stimulus difficulty. The results also reflect the be-
havioral finding of the test condition being more difficult 
than the control condition.

Individual difference measures of cognitive ability 
and cognitive motivation were included in the study as 
predictions from the Default-Interventionist and Smart 
intuitor accounts differed. Performance on the teleolog-
ical reasoning task was associated with higher cogni-
tive ability and not cognitive motivation, supporting the 
Smart intuitor account. The measures of cognitive ability 
(see SOM for all measures) in this study were included 
as a convenient indicator of cognitive ability. However, 
the measures have several limitations and should only 
be interpreted as indicators of cognitive ability. They 
should not be interpreted as valid measures of general 

intelligence. The results should therefore be evaluated 
with caution. Rational reasoning tasks have been used as 
a measure dependent on both cognitive ability and cog-
nitive motivation (Stanovich, 2016; Trippas et al., 2015). 
However, recent evidence suggests performance can be 
explained by cognitive ability and is not related to cog-
nitive effort (Mækelæ et  al.,  2023; Otero et  al.,  2022). 
We also note that sample size was low and results from 
individual difference measures should be considered 
exploratory.

4.1  |  Limitations

A limitation of this study is that performance on the tele-
ological reasoning task was not assessed both speeded and 
unspeeded but with a fixed 4-s time limit for responding. 
Participants might differ in how time-pressured they felt. 
Hence, we do not know participants’ maximum perfor-
mance, or how the decision process would unfold with-
out any time restrictions. However, the time to evaluate 
the truth of statements about the world in real life may 
not be much longer as there are often implicit time con-
straints such as flow of conversation, opportunity costs, in 
addition to cognitive effort costs. Importantly, we do note 
that there is no known anatomical link between the pupil 
and the Locus Coeruleus, and the relationship is likely re-
lated to common downstream influences (Nieuwenhuis 
et al., 2011). We therefore have no direct measures of neu-
ral gain or the Locus Coeruleus–Norepinephrine system. 
Variation in pupil size may also be influenced by other 
factors.

5   |   CONCLUSION

Teleological reasoning bias measured as errors in a teleo-
logical reasoning task was associated with larger pupil di-
lations and slower response times. The results support the 
extensive integration account of bias in reasoning and di-
rectly oppose predictions from dual-processing accounts.
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Supplementary materials 

From article: Teleological reasoning is predicted by pupil dynamics: Evidence for the 

Extensive Integration Account of Bias in Reasoning. 

All reported mixed models from manuscript and pupil waveform. 

Analyzed with R version 4.1.2 (2021-11-01) 

Packages: lme4, sjPlot 

Exclusion criteria applied, N = 39 

“” = main text associated with each analysis. 

LMM = Linear mixed model 

GLMM = Generalized linear mixed model 

Response time 

“To assess if normative responses were associated with longer (as predicted by dual-process 

models) or shorter (as predicted by Extensive Integration account) response times, we 

applied a GLMM with accuracy as outcome (normative – error responses) and z-scored 

response times and condition as fixed factors and participants as random factors.” – Table 

S1. 

Table S1.  

Accuracy ~ 1 + Z-scored Response time + Condition + (1|Participants) 

  Accuracy 

Predictors Estimates CI Statistic p 

(Intercept) 2.44 2.17 – 2.71 17.90 <0.001 

Z-scored Response time -0.48 -0.59 – -0.37 -8.59 <0.001 

Condition [test] -1.18 -1.42 – -0.93 -9.28 <0.001 

Random Effects 

σ2 3.29 

τ00 subj_idx 0.30 

ICC 0.08 

N subj_idx 39 

Observations 2295 

Marginal R2 / Conditional R2 0.154 / 0.225 

Pupil dilation - Decision 



“To test if larger or smaller pupil dilations were predictive of correct responses on the 
teleological reasoning task, we applied a GLMM with accuracy as outcome, PDmax-BL and 
condition as fixed factors and by-participant random intercepts.” – Table S2. 

Table S2. 

Accuracy ~ 1 + Z- scored PDmax-BL+ Condition + (1|Participants) 

  Accuracy 

Predictors Estimates CI Statistic p 

(Intercept) 2.43 2.17 – 2.69 18.40 <0.001 

Z-scored PDmax-BL -0.19 -0.30 – -0.07 -3.15 0.002 

Condition [test] -1.30 -1.55 – -1.06 -10.51 <0.001 

Random Effects 

σ2 3.29 

τ00 subj_idx 0.27 

ICC 0.08 

N subj_idx 39 

Observations 2295 

Marginal R2 / Conditional R2 0.112 / 0.180 

Figure S1. 

Phasic response (z-scored Maximum Pupil Dilation with Baseline Subtracted) during Listening 
and Responding. 

Note. Phasic response (z-scored maximum pupil dilation with baseline subtracted) during 
listening and responding in the teleological reasoning task. Responses are separated by 



condition and accuracy. Accuracy is coded 0 for incorrect responses and 1 for correct 
responses. Overall, pupil dilation was larger for incorrect trials. 

“The Extensive Integration account specifically predicts that lower baseline pupil size and 

larger pupil dilations are associated with more bias and thus more incorrect responses. To 

assesses the contribution of both Baseline pupil and PDmax, we applied a GLMM with 

accuracy as outcome, Baseline pupil, PDmax and condition as fixed factors and by-

participant random intercepts.” – Table S3. 

Table S3. 

Accuracy ~ 1 + Z-scored Baseline pupil + Z-scored Pdmax + Condition + (1|Participants) 

  Accuracy 

Predictors Estimates CI Statistic p 

(Intercept) 2.43 2.17 – 2.69 18.42 <0.001 

Z-scored Baseline pupil 0.24 0.08 – 0.39 3.06 0.002 

Z-scored PDmax -0.21 -0.36 – -0.06 -2.76 0.006 

Condition [test] -1.31 -1.55 – -1.06 -10.53 <0.001 

Random Effects 

σ2 3.29 

τ00 subj_idx 0.27 

ICC 0.08 

N subj_idx 39 

Observations 2295 

Marginal R2 / Conditional R2 0.113 / 0.180 

Individual difference 

“To investigate how individual differences in cognitive motivation and cognitive ability 

influence performance we conducted a linear model with cognitive motivation and cognitive 

ability as predictors of accuracy in the test condition.” – Table S4 

Table S4. 

Accuracy ~ Z-scored Rational reasoning + Z-scored Need for Cognition 

  Accuracy in test condition 

Predictors Estimates CI p 

(Intercept) 0.74 0.70 – 0.78 <0.001 

Z-scored Rational reasoning 0.08 0.04 – 0.12 0.001 



Z-scored Need for Cognition -0.01 -0.05 – 0.03 0.710 

Observations 39   

R2 / R2 adjusted 0.281 / 0.241 

  

Pupil – Feedback 

“To assess uncertainty and surprise for errors and normative responses in the two conditions 
we conducted a linear mixed model with Feedback PDmax-BL as outcome and response, 
condition and their two-way interaction as fixed factors and by-item random intercepts.” -
Table S5. 

Table S5. 

Feedback PDmax-BL ~ 1 + Accuracy * Condition + (1|Item) 

  Feedback PDmax-BL 

Predictors Estimates CI Statistic p 

(Intercept) 0.73 0.55 – 0.92 7.72 <0.001 

Accuracy -0.84 -1.04 – -0.65 -8.58 <0.001 

Condition [test] -0.31 -0.54 – -0.09 -2.73 0.006 

Accuracy * Condition [test] 0.36 0.11 – 0.60 2.89 0.004 

Random Effects 

σ2 0.92 

τ00 trial 0.02 

ICC 0.02 

N trial 75 

Observations 2181 

Marginal R2 / Conditional R2 0.052 / 0.069 

We report additional analysis of pupil dilation / effort as mentioned in manuscript. 

Pupil dilation – Decision 

We applied a LMM to assess if discerning the truth of false teleological statements (test 
condition) requires more effort than control statements. We compared PDmax-BL in the test 
condition and the control condition by applying a LMM with PDmax-BL as outcome, and 
condition and response as fixed factors and by-item random intercepts. – Table S6 

Table S6. 

Z-scored PDmax-BL ~ 1 + Condition + Accuracy + (1|Item) 



  Z-scored Pdmax-BL 

Predictors Estimates CI Statistic p 

(Intercept) 0.16 0.03 – 0.28 2.49 0.013 

Condition [test] -0.04 -0.12 – 0.05 -0.87 0.384 

Accuracy -0.17 -0.28 – -0.05 -2.90 0.004 

Random Effects 

σ2 0.95 

τ00 trial 0.03 

ICC 0.03 

N trial 75 

Observations 2295 

Marginal R2 / Conditional R2 0.004 / 0.036 

The results show that there was no significant difference in pupil size due to condition. 
However, normative answers were significantly associated with smaller pupil dilations. The 
results show that there was no significant difference in effort, measured as pupil dilation, in 
the two conditions. However, the results support the EI as smaller pupil dilations are 
associated with normative answers. 

Re-analysis of behavioral data and inclusion of cognitive ability measures 

We present a re-analysis of behavioral data with full sample, i.e., exclusions due to pupil 

data not applied. Additionally, we include two cognitive ability measures for a subsample of 

participants (N = 33) tested at the beginning of a second test session for a different project.  

Additional measures of cognitive ability 

The Digit Symbol Substitution Test (DSST) is a timed (90 seconds) paper and pencil measure 

of processing speed. Participants have to fill in symbols that are paired to each digit (1-9) 

following a digit-symbol pair code. Performance is measured as the number of symbols 

correctly coded. The DSST may in addition to processing speed measure psychomotor speed, 

short-term-visual memory, attention, cognitive flexibility and motivation (Coalson et al., 

2010).  

The Trail making test (TMT) is a measure dependent on several mental abilities such as 

psychomotor speed, mental flexibility, visual scanning, and executive function (Halstead-

Reitan; Tombaugh, 2004; Salthouse, 2012). The TMT consists of two parts, A and B. In part A 

(TMT-A) participants are instructed to draw a line between 25 dots, containing numbers 

from 1 -25, in ascending order. Performance is measured in seconds to complete the task 

(reverse scored). Part B (TMT-B) consists of 25 dots with both letters and numbers inside. 

Participants are instructed to draw a line in ascending order, alternating between letters and 

numbers (1 – A – 2 – B – 3 – C… 13) until the end. Part B scoring is the same as for Part A. We 



here use time on Part B (reverse scored) as a measure of cognitive ability as Part B has the 

highest relation to full scale intelligence and fluid intelligence (Corrigan & Hinkeldey, 1987; 

Salthouse, 2012).  

See Table S7 for descriptive statistics for the full sample. 

Table S7.  

Descriptive statistics 

  Mean SD Minimum Maximum 

Response time in seconds (n=42)  1.22  0.80  0.01  3.96  

Rational reasoning (range 0 to 14) (n=42)  6.93  2.62  2.00  13.00  

Need for Cognition (range 18 to 90) (n=42)  54.67  9.98  24.0  74.00  

TMT-B in seconds (n = 33)  58.96  19.786  27.75  149.30  

DSST score (n = 33)  61.48  11.02  41.00  86.00  

Accuracy 

A Mann-Whitney U test showed that the percentage of correct responses in the control 

condition (Mdn = 90.7, SD = 0.6) was significantly higher than the percentage of correct 

responses in the test condition (Mdn = 73.9, SD = 13.3), U = 1530, p < .001. 

Response time 

“To assess if normative responses were associated with longer (as predicted by dual-process 

models) or shorter (as predicted by Extensive Integration account) response times, we 

applied a GLMM with accuracy as outcome (normative – error responses) and z-scored 

response times and condition as fixed factors and participants as random factors.” – Table 

S8. 

Table S8. 

Accuracy ~ 1 + Z-scored Response time + Condition + (1|Participants) 

  Accuracy 

Predictors Estimates CI Statistic p 

(Intercept) 2.37 2.15 – 2.58 21.67 <0.001 

Z-scored Response time -0.53 -0.63 – -0.43 -10.83 <0.001 

Condition [test] -1.12 -1.33 – -0.91 -10.45 <0.001 

Random Effects 

σ2 3.29 



τ00 ID 0.18 

ICC 0.05 

N ID 42 

Observations 3053 

Marginal R2 / Conditional R2 0.162 / 0.206 

Individual differences 

“To investigate how individual differences in cognitive motivation and cognitive ability 

influence performance we conducted a linear model with cognitive motivation and cognitive 

ability as predictors of accuracy in the test condition.” – Table S9 

Table S9. 

Accuracy ~ Z-scored Rational reasoning + Z-scored Need for Cognition 

  Accuracy in test condition 

Predictors Estimates CI p 

(Intercept) 0.74 0.71 – 0.77 <0.001 

Z-scored Rational reasoning 0.09 0.05 – 0.12 <0.001 

Z-scored Need for Cognition -0.02 -0.05 – 0.02 0.275 

Observations 42 

R2 / R2 adjusted 0.420 / 0.390 

Additional measures of cognitive ability 

A general linear model was applied with accuracy in the test condition as outcome and 

Rational reasoning, Need for Cognition, Trail Making Test Part B (TMT-B), and Digit Symbol 

Substitution Test as predictors. – Table S10 

Table S10. 

Accuracy ~ Z-scored Rational reasoning + Z-scored Need for Cognition + Z-scored Trail 

Making Test Part B + Z-scored Digit Symbol Substitution Test 

  Accuracy in test condition 

Predictors Estimates CI p 

(Intercept) 0.74 0.70 – 0.78 <0.001 

Z-scored Rational reasoning 0.07 0.02 – 0.11 0.005 

Z-scored Need for Cognition -0.03 -0.06 – 0.01 0.175 

Z-scored Trail Making Test Part B -0.01 -0.05 – 0.04 0.803 



Z-scored Coding 0.04 -0.01 – 0.09 0.077 

Observations 33 

R2 / R2 adjusted 0.484 / 0.410 

 

Hierarchical Drift-diffusion model 

The models were implemented with the HDDM Python toolbox (Wiecki et al., 2013; HDDM 

Version 0.9.7, Python Version 3.9 (Patil et al., 2010).  

In the first stage we assessed if there were any significant difference due to condition in the 

main parameters of the model. In the second stage we investigated if trial-by-trial variation 

in measures of pupil dilation could predict threshold, drift-rate or drift-rate variability. The 

models in the second stage included either z-scored PDmax-BL “(zpdmaxsubtrbl”) or both z-

scored Baseline Pupil (“zbl”) and z-scored PDmax (“zPD”) as predictors. 

The second stage only included separate drift-rate for each condition as including both 

separate threshold and drift-rate only improved DIC by 6 (6196 – 6190 = 6), and the 

improvement was evaluated as not adding significant improvement to justify the added 

model complexity. See Table S11 for comparison of all models. 

Note that the model with both z-scored Baseline pupil and z-scored PDmax as predictors of 

threshold had the best fit (DIC 6088). However, the model with pupil dilation with baseline 

subtracted as a predictor of drift-rate (DIC 6098) had only slightly worse fit (DIC -10). 

Arguments 

“v” = Drift-rate 

“a” = Threshold 

“sv” = Drift-rate variability 

include=('sv') = include drift-rate variability in model 

“Depends_on=” = separate parameter for each condition 

Table S11. 

Hierarchical Drift-Diffusion Model Comparison 

First stage 

Null model DIC 6377 

include=('sv') DIC 6370 

depends_on={"a": "trialtype"}) DIC 6362 

depends_on={"v": "trialtype"} DIC 6196 

depends_on={"v": "trialtype", "a": "trialtype"}) DIC 6190 



Second stage 

sv ~ zpdmaxsubtrbl, include=('sv'), depends_on={"v": "trialtype"}) DIC 6140 

v ~ zbl+zpdmax, depends on = {"v": "trialtype"} DIC 6100 

v ~ zPD, depends on = {"v": "trialtype"}  DIC 6098 

a ~ zPD, depends on = {"v": "trialtype"}  DIC 6093 

a ~ zbl+zpdmax, depends on = {"v": "trialtype"}  DIC 6088 

 

Figure S2. 

Posterior Estimate of Group Mean Threshold in Test and Control Condition. 

 
Note. Model specification: depends_on={"a": "trialtype"}). 

Figure S3. 

Effect of Z-scored Baseline and Z-scored PDmax on Drift-Rate 



 

Note. Model specification: v ~ zbl+zpdmax, depends_on={"v": "trialtype"}). 

Figure S4. 

Effect of Z-scored PDmax-BL on Drift-Rate 

 
Note. Model specification: v ~ zpdmaxsubtrbl, depends_on={"v": "trialtype"}.  

Figure S5.  



Effect of Z-scored PDmax-BL on Threshold 

 
Note. Model specification: a ~ zpdmaxsubtrbl, depends_on={"v": "trialtype"}). 

Figure S6. 

Effect of Z-scored PDmax-BL on Drift-Rate Variability 

 

Note. Model specification: sv ~ zpdmaxsubtrbl, include=('sv'), depends_on={"v": "trialtype"}). 

Posterior predictive checks for regression 



Figure S7.  

Posterior Predictive for PDmax-BL as a Predictor of Threshold.  

 

 
Note. Model specification: a ~ zpdmaxsubtrbl, depends_on("v": "trialtype"). 

Figure S8.  

Posterior Predictive for PDmax-BL as a Predictor of Drift-Rate. 

 

Note: Model specification: v ~ zpdmaxsubtrbl, depends_on("v": "trialtype"). 
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Abstract 

Research on errors in reasoning have been crucial in the development of dual-process 

theories of reasoning. As accumulating research contradicts predictions from classic dual-

process models Pennycook et al. (2015) developed a three-stage model of analytic 

engagement. To test this model, we adapted a base-rate neglect task to be suitable for eye-

tracking and pupillometry. The task commonly has a congruent and an incongruent 

condition, and the base rate information can be given before or after the stereotype 

information. We alternated the order of information presentation between the two tasks 

and included a neutral condition where base-rates were equal (non-informative). There 

were two groups of responders in the task. Stereotype responders mostly neglected base-

rate information, responded with the stereotype-congruent response and were insensitive 

to changes in base-rates. Base-rate responders integrated both base-rate and stereotype 

information, primarily responded with the base-rate-congruent option and were sensitive to 

changes in base-rates. Response times were dependent on task structure and usual 

response. Drift-diffusion modelling yielded no increased decision threshold for conflicting 

information, disfavoring increased information sampling, response caution or “deliberation”. 

Starting point bias was dependent on task structure. Pupil dilations were related to changing 

responses from stereotype congruent to base-rate congruent, implicating the Locus 

Coeruleus – Noradrenaline system in conflict detection and cognitive decoupling. The results 

question the need for dual-processes. 

  



Introduction 

Research on human error in judgement and reasoning has given rise to competing theories 

of decision-making, where dual-process theories have gained attention and influence in 

explaining these errors (J. St. B. T. Evans, 2008; Kahneman, 2011). However, a growing body 

of work contradicts predictions from classical dual-process theories (Bago & De Neys, 2017, 

2019; Newman et al., 2017; Raoelison et al., 2020; Raoelison & De Neys, 2019; Thompson et 

al., 2011), giving rise to a new generation of dual process-models (De Neys & Pennycook, 

2019; Pennycook et al., 2015; Raoelison et al., 2020). In this study we test predictions from 

Pennycook et al. (2015)’s ‘Three-stage model of analytic engagement’. By adapting the base-

rate task presented in Pennycook et al. (2015) to be compatible with eye-tracking and 

pupillometry we investigate the role of visual attention and cognitive effort in decision-

making. We also model the responses with a drift-diffusion model (DDM). 

A dual-process account of errors in reasoning 

Errors in reasoning have traditionally been explained in a dual-process framework (J. St. B. T. 

Evans, 2008; Kahneman, 2011; Tversky & Kahneman, 1973). Dual-process theories broadly 

propose that decision making relies on two types of processing. Type 1 (intuitive) is 

automatic, fast, and effortless. Type 2 (deliberate) depends on working memory and is slow 

and effortful. In the influential default-interventionist (DI) account, errors in reasoning are 

believed to arise due to overreliance on fast intuitive heuristics and a lack of engagement in 

deliberate reasoning. The DI account can be exemplified with a classical decision-making task 

where most participants make a normative error in reasoning by neglecting base-rates. 

Consider this example problem from De Neys & Gucimic (2008), adapted from Kahneman & 

Tversky (1973).  

In a study 1000 people were tested. Among the participants there were 5 engineers and 995 

lawyers. Jack is a randomly chosen participant of this study. Jack is 36 years old. He is not 

married and is somewhat introverted. He likes to spend his free time reading science fiction 

and writing computer programs. 

What is most likely? 

a. Jack is an engineer 

b. Jack is a lawyer  

Participants receive two important pieces of information, the base-rate of each class (5 

engineers and 995 lawyers) and a character description (Jack). These pieces of information 

are assumed to create conflicting outputs from Type 1 and Type 2 processing. According to 

the DI account, people intuitively process that Jack is a stereotypical representative of an 

engineer and intuitively, with little effort, answer that Jack is more likely an engineer. On the 

other hand, integrating the base-rate information with the character description should 

produce the normative answer, ‘Jack is more likely a lawyer’ (considered normative as the 

base-rates are extremely in favor of Jack being a lawyer, but see Gigerenzer (1991, 1994, 



1996)). This Type 2 process demands more computational power, more cognitive effort and 

responding is slower. As humans tend to avoid effort, other things being equal (Kool et al., 

2010; Simon, 1957), many participants don’t notice the conflict, ignore the base-rates, and 

give the intuitive incorrect answer (J. St. B. T. Evans, 2003; Kahneman & Frederick, 2002). 

The default-interventionist account proposes that errors in reasoning occur due to a failure 

of engaging in deliberate Type 2 processing to produce normative responses and overriding 

faulty intuitions. 

Advances in dual-process models 

A growing body of work contradicts predictions from the default-interventionist account. 

First, even when giving the stereotype congruent response, participants seem to have 

detected a conflict (De Neys & Glumicic, 2008; Neys et al., 2008; Vartanian et al., 2018). 

Second, intuitions can be logical, probabilistic and the normative response is often given 

intuitively (Bago & De Neys, 2017, 2019; Newman et al., 2017; Raoelison et al., 2020). Third, 

dual-process models have been unclear on how and when Type 2 processing will be 

engaged. This has given rise to a new generation of dual-process models (De Neys & 

Pennycook, 2019; Pennycook et al., 2015; Raoelison et al., 2020). Pennycook et al. (2015) 

proposed a three-stage model of analytic engagement which addresses all three of these 

critiques (De Neys & Pennycook, 2019; see also Pennycook et al., 2015). In this model many 

types of intuitions can be produced as a Type 1 process, and competing intuitions are the 

mechanism causing deliberation. The model suggests that failure in conflict monitoring is an 

early source of bias, as this leads to the initial response being given (similar to the DI 

account). The model proposes that if the conflict is detected a Type 2 process will be 

engaged. This may be rationalizing the initial response, a late source of bias, or it may be 

cognitive decoupling, leading to suppression and overriding of the initial incorrect response 

in favor of another response which upon reflection is evaluated as a better response. The 

separation of early and late sources of bias was demonstrated by adapting the base-rate task 

for measuring response times (Pennycook et al., 2015).  

We adapted the base-rate task to be compatible with eye-tracking and pupillometry to 

evaluate propositions from the three-stage model of analytic engagement and the role of 

attention and effort in base-rate neglect. We added a neutral condition where base-rates are 

equal, thereby one information type does not generate an initial response, assessing the 

boundary conditions of the model. We model responses with a drift-diffusion model (DDM) 

as a tool to decompose response time distributions, rather than rely on mean response 

times (N. J. Evans & Wagenmakers, 2020; Krajbich et al., 2015). Lin et al. (2023) proposed 

that increased decision threshold in the DDM corresponds with increased deliberation or 

Type 2 processing. Thus, we investigated whether conflicting information leads to higher 

decision threshold compared to non-conflicting information.   

Using gaze to infer attention and pupil dilation to infer cognitive effort 



The use of base-rates depends on the format and structure of the information in the 

problem and the attention allocated to that information (Barbey & Sloman, 2007; Bar-Hillel, 

1980; De Neys & Glumicic, 2008; Gigerenzer et al., 1988; Koehler, 1996; Pennycook & 

Thompson, 2012). Gaze is a common measure of visual attention in cognitive science as 

attention and eye movements are interlinked and gaze is known to influence decisions 

(Armstrong & Olatunji, 2012; Glimcher, 2003; Krajbich, 2019; Petersen & Posner, 2012; 

Smith & Ratcliff, 2004; Vehlen et al., 2021). 

Working memory load and cognitive effort can be gauged with pupillometry (Hess & Polt, 

1964; Kahneman & Beatty, 1966; van der Wel & van Steenbergen, 2018). Pupil dilation 

reflects changes in the Locus Coeruleus (LC) – Norepinephrine (NE) system (Aston-Jones & 

Cohen, 2005; Eldar, Niv, et al., 2016; Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011; 

Joshi et al., 2016; Joshi & Gold, 2020; Reimer et al., 2016) which might be involved in conflict 

detection and possibly cognitive decoupling (Arnsten, 2011; Botvinick et al., 2001, 2004; 

Joshi & Gold, 2020; Shenhav et al., 2013; Spencer & Berridge, 2019; Unsworth & Robison, 

2017; Usher et al., 1999). Phasic LC activity has been proposed as a neural interrupt or a 

network reset signal (Bouret & Sara, 2005; Dayan & Yu, 2006), a putative mechanism for 

conflict detection.  

In summary, we evaluate propositions from the three-stage model of analytic engagement 

(Pennycook et al., 2015) by adapting a version to measure gaze, investigating the role of 

attention in the task and adapting a version for pupillometry, investigating cognitive effort 

and indirectly LC activity. Lastly, we model responses on both tasks with a drift-diffusion 

model. We expect slower response times in the incongruent condition, gaze location being 

related to the decision made, and larger pupil dilation when cognitive decoupling occurred. 

Methods 

Participants 

In total 60 participants took part in the study. Participants reported not having any 

neurological disorder or history of brain disease or surgery, and not taking any drugs or 

medications affecting the central nervous system. Participants self-rated their English 

proficiency on a seven-point Likert scale (1 = “understand a few words” and 7 = “master it 

like native language”). Only participants with a score of four or higher were included as all 

material was presented in English (Mækelæ & Pfuhl, 2019). The institutional review board at 

the Department of Psychology at UiT – The Arctic University of Norway approved the study. 

All participants gave written consent before participating in the study. Participants received 

either a voucher worth 400NOK (two test sessions) or a voucher worth 150NOK (single test 

session). 

Materials 



Base rate task 

The base-rate task from Pennycook et al. (2015) was used as a template for the two versions 

of the task presented below. We received the original stimulus materials (list of classes, 

personality trait, and base-rates) from Gordon Pennycook via personal correspondence and 

created the adapted versions of the task. Briefly, participants are provided with two pieces 

of information. 1) Base-rate information. The number of people that are in each class. The 

base-rates were extremely favoring one class (995 vs. 5, 996 vs. 4, and 997 vs. 3) or they 

were neutral (e.g., 500 vs. 500). 2) Personality trait. One word describing the person, always 

fitting to the stereotype of one of the classes and not the other. The task has three 

conditions; Congruent condition (20 trials), base-rate and personality trait information are 

favoring the same class. Correct answer is the class favored by both types of information. 

Incongruent condition (40 trials), base-rate and personality trait information are favoring 

opposite classes. Correct answer is the class favored by the base-rate information. Neutral 

condition (20 trials), base-rates are neutral and the personality trait is favoring one class. 

Correct answer is the class favored by the personality information. The neutral condition 

creates no conflict but requires decoupling from the base-rate. 

Participants first received, on paper, the same background information as in Pennycook et al. 

(2015, see SOM). Next, participants clicked through a PowerPoint presentation explaining 

the structure of the task, i.e., a description of the information that were to be presented on 

the screen during the task, response buttons, and time limit. Participants performed three 

practice trials, before they completed 80 test trials. There were two versions, 

counterbalanced across participants. In the gaze version (Fig 1a) the personality trait was 

given before the base rate information. In the pupillometry version (Fig 2b), the personality 

trait information was given auditorily after the base rate information. The first 3 seconds are 

identical.  

Figure 1  

Trial structure of the two versions of the base-rate task  



Top row: Temporal structure of the gaze version.  Bottom row: Temporal structure of the 

pupillometry version.

 
Legend:  A) The trial started by pressing the spacebar followed by a 500ms blank screen (not shown), then by a 

500ms fixation cross. For 1800ms the class information was shown, followed by a 200ms fixation cross. Next, 

for 1800ms the personality trait was shown, followed by a 200ms fixation cross. Up to 4 seconds, the class and 

base rate information was shown, terminating after a response was made. This was followed by a 200ms 

fixation cross and 1800ms blank screen used to record post response gaze activity (not shown). There were two 

response options; left and right, indicated by their relative location on screen. Responses were made by 

pressing “A” for left option or “L” for right option, on a QWERTY keyboard. Participants were instructed to 

place their respective index fingers on the response buttons (left index finger on “A” for left option and right 

index finger on “L” for right option) during task performance. The dotted squares mark the Region of Interest 

for gaze analysis and were not visible on the screen. B) A trial starts by pressing the spacebar. This was followed 

by a 500ms blank screen (not shown) and followed by a 500ms fixation cross. For 1800ms the class information 

was shown, followed by a 200ms fixation cross. Next, for 3600ms both class and base-rate information were 

displayed, followed by a 200ms fixation cross. Then, a blank screen was displayed while a sound file with the 

attribute information was played (audio file length, 50ms – 125ms), followed by 2000ms of continued blank 

screen (allowing recording of pupil dilation). Next, a 200ms fixation cross was presented before a question was 

presented auditorily. The question was separated by two files. File 1 was the statement “is this person more 

likely a”, audio file length was 2400ms. File 2 was one of the two classes, audio file length 600ms – 1700ms. 

The files were separated by 100ms. An example question was “Is this person more likely a politician?”. After 

the audio files for the question, participants had 4000ms to respond “yes” or “no”, by pressing “A” or “L”, 

respectively. Small notes with “yes” and “no” written visibly were placed behind the respective keys on the 

keyboard to avoid confusion or working memory demand.  

Details regarding the individual difference measures are reported in the SOM. 

Procedure 

Participants were recruited via flyers at UiT, The Arctic University of Norway. The testing 

session lasted between 70 – 100 minutes and was conducted individually for each 



participant during 2020-20211. The base-rate task versions were presented in a 

counterbalanced order between participants. The structure of testing sessions was as 

follows. The experimental session started with reading and signing the consent form, and a 

paper and pencil version of the Trail Making Test (Broshek & Barth, 2000; Salthouse, 2011), 

followed by the Digit Symbol Substitution Test (Coalson et al., 2010) After instructing on 

paper and power point on the respective version of the Base-rate task, the participant 

entered the sound-isolated eye-tracking chamber, and calibration was conducted. 

Thereafter, participants completed the respective Base-rate task version and rated perceived 

effort on the N-TLX. Next, participants were offered a 5-minute break and some water. Then 

participants completed the rational reasoning composite (Mækelæ et al., 2023) and curiosity 

scale (Kashdan et al., 2018) in Qualtrics (Qualtrics, Provo, UT) on a computer outside the 

eye-tracking chamber. After completing the individual difference measures, participants 

were given the instructions (paper and power point) for the other base-rate task version. 

Participants completed a new calibration procedure on the eye-tracker before starting the 

base-rate task. They filled out a N-TLX and were debriefed. Participants that took part in the 

two-day testing, filled out the Need For Cognition (Cacioppo et al., 1984) and personality BFI-

20 (Engvik & Clausen, 2011) on day 1. Participants recruited solely for single-day testing filled 

out the Need For Cognition on a separate day but not the BFI-20. 

Gaze and pupil recording 

Gaze and pupil size was recorded during both base-rate task versions with a desk-mounted 

Eyelink 1000 eye tracker (SR-Research, Ontario, Canada) with a sampling rate of 500 Hz. 

Head position was stabilized by a chinrest at a distance of 65 cm from top of the screen and 

69 cm from the screen bottom. Baseline pupil dilation was recorded for two minutes before 

the start of each task. Participants were instructed to fixate on the center of the screen. 

Gaze was defined as recorded gaze inside four pre-defined areas of interest (AOI), for both 

tasks. The areas of interest were four quadrants surrounding the area where class and base-

rate information was displayed on screen (Figure 1, AOI not to scale) with upper left / right 

for class 1 / class 2, and lower left / right for base-rate 1 / base-rate 2. For the Base-rate – 

gaze version, total gaze time in each AOI was recorded during responding. For the Base-rate 

– pupillometry version, total gaze time in each AOI was recorded during presentation of the 

class and base rate information. 

Data Processing 

Processing of pupil measures were performed in the statistical environment R (version 4.1.2. 

(R Core Team, 2021). Artifacts such as eyeblinks, rapid changes in pupil size caused by head 

movements, and alike, were detected based on the signal’s velocity (Mathot, 2018). The 

signal was corrected using linear interpolation. Thresholds for the interpolation window 

 
1 Due to the pandemic and a 6-month closure of the lab, a fair number of participants could not be recruited 
(e.g., graduated and left town) for the second testing session, hence we recruited participants solely for the 
base rate task. 



were adapted for each participant, this due to inter-individual differences in signal recovery 

speed. The interpolated signal was smoothed with a low pass Butterworth filter (3Hz). 

Artifacts spanning more than 1000 consecutive milliseconds were treated as missing. The 

signal was visually assessed and trials with remaining artifacts were excluded from further 

analysis when artifacts occurred during time windows of interest (task-baseline, trial-

baseline, attribute, and decision). For the task-baseline measurement the signal within the 

two-minute pre-task recording of pupil size was averaged to calculate a participant specific 

task-baseline measure. Subsequently, for each trial, a trial-baseline pupil size was calculated 

as the average signal during the first 200ms following fixation cross onset. Pupil dilation 

following presentation of the attribute information was recorded from the end of the sound 

file with attribute information and the following 2000ms (attribute time-window). The 

maximum pupil dilation recorded in the attribute time-window was extracted and baseline-

corrected by subtracting trial-baseline for each corresponding trial. Pupil dilation during 

decision was recorded from the end of the question sound files and lasting until a response 

was given, maximum 4000ms. The maximum pupil dilation recorded in the decision time-

window was extracted and baseline-corrected by subtracting the trial-baseline. The task-

baseline pupil size, trial-baseline pupil size, attribute pupil dilation, and decision pupil 

dilation measures were treated as missing (NA) if the interpolated signal was missing in 

more than 50% of the respective time windows. 

 

Data analyses 

Modelling of behavioral responses on the two base-rate tasks with the DDM was performed 

with Python (version 3.9) (Patil et al., 2010). The models were implemented with the HDDM 

Python toolbox by using a dockerHDDM (Pan et al., 2022; Wiecki et al., 2013). Linear mixed 

models were analyzed with the lme4 package (Bates et al., 2015) in R. Non-parametric tests 

were applied when assumptions of parametric tests were not satisfied. Mann-Whitney U 

tests were used instead of the Students T-test. Kruskal-Wallis tests with Dunn’s post hoc 

comparisons and Holm corrections were applied instead of one-way ANOVA’s. 

Participants with accuracy rates more than 3 standard deviations below average in the 

congruent and neutral conditions were excluded in the base-rate tasks. Response times 

faster than 150ms and slower than 4000ms were excluded for both base-rate task versions.  

Gaze data was used for two measures, proportional gaze at information type (class or base-

rate) and proportional gaze at correct option. Proportional gaze at information type 

indicates if participants are gazing more at the class information (AOI top left and AOI top 

right) or at the base-rate information (AOI bottom left and AOI bottom right). Proportional 

gaze at information type was calculated as gaze at the top AOI’s (class) divided by total gaze 

time at all AOI’s, resulting in a proportional gaze score where scores above 0.5 indicates 

more gaze time at the class (top AOI’s), and scores below 0.5 indicates more gaze time at the 

base-rate information (bottom AOI’s). Gaze at correct option indicates if participants are 

gazing more at the option (left or right) which corresponds to the correct response, i.e., if 



left correct then AOI top left + AOI bottom left. Proportional gaze at correct option was 

calculated as gaze at correct option (top and bottom for correct side) divided by total gaze at 

AOI’s, where scores above 0.5 indicate more gazing at the correct option and scores below 

0.5 indicate more gazing at the incorrect option.  

The preprocessing of pupil recordings for the Base-rate pupillometry task revealed some 

data loss in recordings of pupil size. To ensure the quality of the data, only participants with 

40% or more valid trials in the congruent and incongruent conditions were retained for 

further analyses. Pupil measures were analyzed separately for the respective time-windows 

of interest. Exclusions due to missing pupil data for each trial were based on the presence of 

valid data in the time windows of interest. Pupil measures, trial-baseline, attribute pupil 

dilation, decision pupil dilation, were z-scored within participants.  

 

Exploratory analyses 

As we found evidence for two groups of responders in both base-rate tasks, based on their 

accuracy in the incongruent condition, we further analyzed these groups separately in 

addition to the analyses for the full sample. 

Results and discussion 

Base-rate – gaze version: Result and discussion 

Two participants were excluded in the Base-rate - gaze version due to low accuracy rates in 

both the congruent and neutral conditions. Additionally, nine participants failed to make any 

response in the task and were thus excluded. There were 48 participants after exclusions. 

Descriptive statistics for the Base-rate - gaze version can be found in Table 1. 

Table 1 
Descriptive statistics for Base-rate – gaze version 

 Congruent Incongruent Neutral 

 Mean SD Mean SD Mean SD 

Accuracy 0.98 0.0

5 

0.63 0.39 0.93 0.08 

Mean response time in seconds 1.14 0.6

5 

1.26 0.74 1.46 0.79 

proportion of gaze at class  0.65 0.3

1 

0.65 0.31 0.69 0.28 

proportion of gaze at correct option 0.73 0.2

6 

0.56 0.32 0.62 0.25 

Note. Based on n=48 



Accuracy rates reveal two distinct groups, stereotype and base-rate responders 

We compared accuracy rates across conditions. A Kruskal-Wallis one-way ANOVA showed a 

significant group difference, Χ2= 27.955, p < .001, df = 2. Pairwise comparisons using Dunn’s 

test showed that there were significant differences in accuracy between a) the congruent 

and incongruent condition (p < .001), b) the incongruent and neutral condition (p < .001), 

but not between the congruent and neutral condition (p = 0.346). Consistent with previous 

studies we find lower accuracy in the incongruent condition compared to the congruent and 

neutral conditions. 

Of particular interest in the base-rate task is the incongruent condition where the attribute 

information favors another response than the base-rate information. When investigating the 

distribution of accuracy rates in the incongruent condition across participants we found a bi-

modal distribution (Shilling et al., 2002). We classified participants into a) stereotype 

responders (N = 18) if their accuracy score was lower than 0.5 in the incongruent condition 

and b) base-rate responders (N = 30) if their score was larger than 0.5. Stereotype 

responders had an accuracy ranging from 0 to 0.31, with a mean of 0.15 (SD = 0.11). Base-

rate responders had an accuracy ranging from .69 to 1, with a mean of 0.91 (SD = 0.12). 18 

participants gave the base-rate congruent response every time, and no participant had an 

accuracy rate between 31% and 69%. Thus, participants tended to choose either stereotype 

congruent responses or base-rate congruent responses in the incongruent condition. As 

these responder groups were clearly distinct, we used them for further analysis.  

Response times across conditions differ for the base-rate responders but not for the 

stereotype responders 

A common finding in dual-process research and the base-rate task is that conflicting 

information causes an increase in response times. We expected longer response times in the 

incongruent condition compared to the congruent condition, and had no specified prediction 

for the neutral condition. Response times in the congruent, incongruent, and neutral 

conditions were significantly different, Χ2 = 90.585, p < .001, df = 2. Pairwise comparisons 

using Dunn’s test showed that there were significant differences in response times between 

the congruent and incongruent condition (p < .001), the incongruent and neutral condition 

(p < .001), and between the congruent and neutral condition (p < .001). Consistent with 

previous studies the congruent condition had the fastest response times, followed by the 

incongruent condition. The neutral condition (Table 1, Fig. 2) showed longer response times 

than both the congruent and incongruent condition. 

Figure 2 

Response times across conditions for the stereotype and base-rate responders and separate 

for correct and incorrect responses 



   

 

When investigating response times across conditions separately for the stereotype 

responders and the base-rate responders, we found no difference in response times across 

conditions for the stereotype responders, Χ2 = 0.181, p = .913, df = 2. Base-rate responders 

had significant response time differences across the three conditions, Χ2 = 169.386, p < .001, 

df = 2. Dunn’s post hoc comparisons showed that all three conditions were significantly 

different for the base-rate responders (all p-values < .001). As seen in Figure 2, the base-rate 

responders had slower response times in the incongruent condition compared to the 

congruent condition and significantly longer response times in the neutral condition.  

Response times in the incongruent condition are dependent on response preference 

A common finding supporting the intuitive nature of stereotype processing (Type 1 

processing) is that stereotype congruent responses are given faster than base-rate responses 

in the incongruent condition. A Mann-Whitney U test (full sample) showed that response 

times for correct (base-rate congruent) responses (M = 1.31, SD = 0.70) were significantly 

slower compared to incorrect (stereotype congruent) responses (M = 1.16, SD= 0.78) in the 

incongruent condition, U = 295717.500, d = -0.194, p < .001. This was mainly driven by the 

stereotype responders, i.e., base-rate consistent responses were slower than stereotype 

consistent responses, U = 14963.500, d = -0.42, p < .001. The opposite was the case for the 

base-rate responders where base-rate consistent responses were faster than the stereotype 

congruent responses, U = 70646.500, d = 0.38, p < .001. Participants were faster when 

responding with their majority response than when giving the response opposite to their 

typical response (Fig. 2).  



Gaze at information type differ across conditions for the base-rate responders but not for 

the stereotype responders 

Participants tended to look more at the class (stereotype) information compared to the 

base-rate information (proportional gaze > 0.5) in the congruent (M = 0.65, SD = 0.31), 

incongruent (M = 0.65, SD = 0.31) and neutral conditions (M = 0.69, SD = 0.28). 

Conflicting information influenced participants proportional gaze at information type, Χ2 = 

7.677, p = .022, df = 2. A Dunn’s post hoc pairwise comparison showed no difference 

between the congruent and incongruent condition (p = 0.922), but in the neutral condition 

the proportional gaze at information type was significantly higher compared to the 

congruent (p = 0.04) and the incongruent (p = 0.029) condition. This was driven by the base-

rate responders, i.e., there was a significant difference in gaze at information type, Χ2 = 

14.386, p < .001, df = 2. Dunn’s post hoc comparisons showed no difference between the 

congruent and incongruent condition (p = .960), but in the neutral condition the 

proportional gaze at information type was significantly higher compared to the congruent (p 

= 0.003) and the incongruent (p <.001) condition. The stereo-type responders had no 

difference in gaze at information type across the three conditions, Χ2 = .050, p = .975, df = 2.  

Figure 3 

Proportional gaze at class information and gaze at correct option by condition separate for 

stereotype and base-rate responders 

 

Legend. Base-rate responders looked significantly less at the class and more at the base-rate information (left-

hand panel) compared to the Stereotype responders (U = 1.437, rrb= 0.10, p < .001). This was largely due to 

differences in gaze in the congruent and incongruent condition. Base-rate responders looked more at the 

correct option in the incongruent condition (right-hand panel). 



Further, we separated correct (base-rate congruent) and incorrect (stereotype-congruent) 

responses in the incongruent condition. A Mann-Whitey U test showed that correct (base-

rate congruent) responses (M = 0.63, SD = 0.28) were associated with significantly less time 

looking at class, compared to incorrect (stereotype congruent) responses (M = 0.68, SD = 

0.34, U = 391078.500, d = 0.16, p < .001). Participants giving the base-rate congruent 

response did look more at the base-rate information (Fig 3, left-hand panel).  

Overall, the results show no significant differences in proportional gaze at information type 

for the congruent and incongruent condition. However, when the base-rates were non-

informative (neutral condition) participants looked longer at the stereotype information. 

Conflicting information between base-rates and attribute (stereotype) does not lead to 

overall increased investigation of the base-rate information. However, participants spend 

less time on the base-rate information when the base-rates are non-informative for their 

decision, i.e., the neutral condition (Fig. 3).  

Drift-diffusion modelling - Lower drift-rate not higher threshold in incongruent condition 

According to Pennycook et al. (2015) conflicting responses engage Type 2 processing. In the 

drift-diffusion model an increased threshold would indicate increased information sampling 

and more cautious responding, and the incongruent condition should lead to a higher 

threshold (Lin et al., 2023; Pennycook et al., 2015).  

The model with the best fit to the data was a model with separate drift-rate for each 

condition (see SOM for model comparison). Drift-rate was lowest in the incongruent 

condition (p-values < .001) and highest in the neutral condition (p-values < .016). Separate 

threshold by condition did not improve model fit. These results indicate that the conflicting 

information in the incongruent condition does not lead to increased threshold or engage 

Type 2 reasoning, rather the stimulus difficulty is higher as seen in lower drift-rate.  

An additional analysis of response bias revealed a bias towards stereotype congruent 

responses in the incongruent condition (see SOM). 

Discussion Base-rate - gaze version 

In the Base-rate – gaze version, the data reproduced behavioral results consistent with 

previous literature, namely lower accuracy in the incongruent condition and longer response 

times in the incongruent condition compared to the congruent condition (Pennycook et al., 

2014, 2015; Pennycook & Thompson, 2012). Importantly, we found two groups of 

responders (or response strategies) base-rate responders and stereotype responders. The 

base-rate responders were affected by base-rates whereas the stereotype responders were 

not affected. This was reflected in both response times and proportional gaze at information 

type. Base-rate responders showed slower response times in the incongruent condition 

compared to the congruent condition, and the slowest response times in the neutral 

condition. Base-rate responders changed their proportional gaze towards the class 

information when the base-rates were not informative in the neutral condition. Stereotype 



responders did not show significant differences in response times or gaze across the three 

conditions. Thus, base-rate responders integrated both types of information whereas 

stereotype responders relied on the stereotype information, and largely ignored the base-

rate information. This suggests that stereotype responders do not detect conflicting 

information and “conflict detection failure” is a significant source of “biased responses” in 

this task. 

An important insight gained from analyzing separately the stereotype responders and base-

rate responders is that they differed markedly in their response times in the incongruent 

condition. The classical pattern is that stereotype-congruent responses are faster compared 

to base-rate-congruent responses, as also found for the full sample. However, when 

analyzing the two groups separately we found that base-rate responders responded faster 

when giving the base-rate congruent response than when giving the stereotype-congruent 

response, whereas the stereotype responders showed the classical pattern. Thus, overriding 

one’s dominant or default response seems to require more time. This explains also why the 

base-rate responders but not the stereotype responders responded slow in the neutral 

condition.  

Investigating the influence of gaze on responses showed that participants tended to look 

more at the class information. This may be due to the ease of processing the relative group 

difference using extreme base-rates. The judgement of which group is congruent with the 

stereotype may have been comparatively harder. Interestingly, for base-rate responders the 

neutral condition was the condition where they looked proportionally the least at the 

correct option, indicating that they may have found the task of finding the stereotype 

congruent response harder compared to when they could use the base-rate information for 

their judgement. Participants tended to look more at the option they ended up choosing. 

Further, both gaze at information type and option type was associated with responses, with 

the latter having a larger effect. These results are in line with recent work investigating the 

effect of gaze on choice (Yang & Krajbich, 2023). 

A significant contribution in this work is the modelling of response times with the drift-

diffusion model. If conflicting information does trigger Type 2 processing there would be a 

larger threshold in the incongruent compared to the congruent condition, indicating 

increased information sampling and response caution (Lin et al., 2023). Contrary to this 

prediction we found a lower drift-rate in the incongruent condition but not larger threshold. 

Thus, conflicting information does not trigger increased information sampling, response 

caution or “deliberation”, rather, task difficulty is higher, leading to a slower drift towards 

response boundaries, and longer response times. 

Base-rate pupillometry version: Result and discussion 

Two participants were excluded in the Base-rate Pupillometry version due to low accuracy 

rates in both the congruent and neutral conditions. There were 55 participants with valid 

behavioral data after exclusions. The pre-processing of pupil recording revealed some data 



loss in recordings of pupil size (see “Data pre-processing” section). Descriptive statistics for 

the Base-rate pupillometry task are presented in Table 2. 

Table 2  

Descriptive statistics for the Base-rate pupillometry task 

 Congruent Incongruent Neutral Valid 

N 

 Mean SD Mean SD Mean SD  

Accuracy 0.95 0.06 0.57 0.35 0.90 0.15 55 

Response time 1.02 0.34 1.07 0.36 1.00 0.30 55 

PS: Trial baseline (BL) 34.16 4.32 34.17 4.40 34.21 4.51 47 

PD: Decision  36.30 4.46 36.64 4.55 36.67 4.48 38 

PD: Decision - BL 2.25 2.98 2.48 2.74 2.53 2.74 38 

PD: Attribute 36.32 4.38 36.54 4.44 36.60 4.38 37 

PD: Attribute - BL 2.26 2.68 2.45 2.53 2.58 2.47 37 

Note. Abbreviations: PD = pupil dilation, PS = pupil size.   

Accuracy ratings identify two response groups 

Accuracy was high in the congruent and neutral conditions, and low in the incongruent 

condition (Table 2). A Kruskal-Wallis one-way ANOVA showed a significant difference, Χ2 = 

63.622, p < .001, df = 2. Dunn’s post-hoc test yielded significant differences in accuracy 

between the congruent and incongruent condition (p < .001), and the incongruent and 

neutral condition (p < .001), but not between the congruent and neutral condition (p = .120). 

Similar to the Base-rate – gaze version we find lower accuracy in the incongruent condition 

compared to the congruent and neutral condition. 

We found strong evidence for a bi-modal distribution with base-rate responders showing 

substantially higher accuracy rates (N = 34, M = 0.83, SD = 0.11) compared to stereotype 

responders (N = 20, M = 0.14, SD = 0.11). Two participants had changed group membership 

from stereotype-responder in the gaze version to base-rate responder in the pupillometry 

version. One participant had an accuracy rating of 0.5, and was excluded from analyses 

regarding the two groups. Participants gave more base-rate congruent responses in the 

incongruent condition as the task progressed (see SOM, section learning effects). 

Response times differ for base-rate responders but not for stereotype responders 

In the full sample, response times did not significantly differ between conditions (Χ2 = 5.439, 

p = .066, df = 2). This was also true for stereotype responders (Χ2 = 0.912, p = .634, df = 2). 

Base rate responders differed in response time by condition (Χ2 = 11, p = .004, df = 2). 

Pairwise comparisons using Dunn’s test showed significant differences in response time 

between the congruent and incongruent condition (p = .005), but not between the 



incongruent and neutral condition (p = .083), or between the congruent and neutral 

condition (p = 0.339). The neutral condition was not significantly different from the other 

conditions, however consistent with the Base-rate – gaze version and previous literature the 

incongruent condition was significantly different from the congruent condition. Thus, there 

was a slowing of response times due to incongruent information for base-rate responders 

but not for stereotype responders (Fig. 4). 

Figure 4 

Response times across conditions, separately for correct and incorrect responses and 

separately for base-rate responders and stereotype responders

 

Response times in the incongruent condition are dependent on response preference 

In the incongruent condition stereotype-congruent responses were significantly slower than 

base-rate-congruent responses, U = 527214.00, p < .034, d = 0.06. Next, we separately 

analyzed responses in the incongruent condition for base-rate responders and stereotype 

responders. Stereotype responders had significantly slower base-rate congruent responses 

than stereotype congruent responses, U = 26840.500, p = .017, d = -0.15. For base-rate 

responders stereotype-congruent responses were significantly slower than base-rate 

congruent responses, U = 130713.000, p < .001, d = 0.19. Thus, we replicate the finding from 

the Base-rate gaze version that participants are faster when responding with their majority 

response and slower when giving the response opposite to their majority response (Fig. 4). 

Base-rate responders look more at the base-rate information 



Similar to the gaze version of the task we find that base-rate responders, but not stereo-type 

responders look more at the base-rate information (see SOM, section 3. Base-rate - 

pupillometry version. Fig S1). 

Pupil size is related to performance, support for conflict detection and cognitive 

decoupling  

For the pupil analysis we first assessed if there were significant differences in pupil size in 

the attribute time window. If conflicting information does engage Type 2 reasoning, we 

expect to see larger pupil dilations following the attribute information in the incongruent 

condition. 

In the attribute time window, there was a significant difference between conditions F(2,111) 

= 4.344, η2 = 0.07, p = .015. Post hoc comparisons showed that pupil dilations were 

significantly larger in the neutral condition compared to the congruent condition (p = .011), 

but there was no significant difference between the congruent and incongruent condition (p 

= .320), nor between the neutral and incongruent condition (p = .295). When analyzing the 

two groups of responders separately there were no significant difference in pupil dilation 

between conditions in the attribute time window for the stereotype responders, F(2,27) = 

1.059, η2 = 0.07, p = .361. However, there was a significant difference in pupil dilation 

between conditions in the attribute time window for the base-rate responders, F(2,78) = 

3.279, η2 = 0.08, p = .043. Post hoc comparisons showed that pupil dilations in the neutral 

condition was significantly larger compared to the congruent condition (p = .034), but there 

was neither a difference between the incongruent and congruent conditions (p = .546), nor 

between the incongruent and neutral conditions (p = .299).  

Contrary to the predictions of the three-stage model of analytic engagement there was no 

significant difference in pupil dilation in the attribute time window between the congruent 

and incongruent conditions. However, there was a significant difference between the 

congruent and neutral conditions. This effect was significant for the base-rate responders 

but not for the stereotype responders. A possible explanation for these results is that the 

base-rate responders have to expend more cognitive effort when they have to change 

strategy from relying on the base-rate information to using the attribute information to find 

the correct stereotype. 

Of particular interest for the three-stage model of analytic engagement are responses in the 

incongruent condition. The model proposes that conflict detection is necessary for Type 2 

processing, which is more likely associated with normative base-rate congruent responses. 

A GLMM with response as outcome, pupil dilation in the attribute time window as a fixed 

factor and subjects as a random factor showed that pupil dilation was not a significant 

predictor of responses in the incongruent condition (β = 0.15, SE = 0.08, z = 1.81, p = .071). 

However, when analyzing the stereotype group separately pupil dilation in the attribute time 

window was a significant predictor of normative responses (β = 0.37, SE = 0.17, z = 2.20, p= 



.028). In contrast, for the base-rate group, pupil dilation was not a significant predictor of 

responses (β = 0.08, SE = 0.10, z = 0.78, p = .433). 

These results indicate that conflict detection, measured as pupil dilation following the 

attribute information was associated with changing responses from the usual response 

(stereotype congruent) to the normative (base-rate congruent) response for stereotype 

responders. However, there was no significant effect that could be detected across 

participants, nor for base-rate responders (Fig 5). 

Figure 5  

Pupil dilation (z-scored) in the attribute time window and decision time window for the 

three conditions and separately for base-rate responders and stereotype responders 

 

Next, we compared pupil dilations in the decision time window across conditions. If 

conflicting information engage type 2 processing there should be larger pupil dilations in the 

incongruent condition. 

The results showed that there was a significant difference in pupil dilations across conditions 

in the decision time window F(2,111) = 4.004, η2 = 0.07, p = .021. Post hoc comparisons 

showed that pupil dilations in the incongruent condition was not significantly larger 

(although descriptively larger) compared to the congruent condition (p = .082). However, 

pupil dilations in the neutral condition were significantly larger than the congruent condition 

(p = .024). There was no significant difference between the neutral and incongruent 

condition (p = .871). When analyzing pupil dilations in the decision time window for the 

stereotype responders there were no significant difference across conditions F(2,27) = 0.095, 

η2 = 0.01, p = .910. In contrast, for the base-rate responders there was a significant 



difference F(2,78) = 4.842, η2 = 0.11, p = .010. Post hoc analyses revealed that pupil dilations 

in the incongruent condition were significantly larger than the congruent condition (p = 

.034). Additionally, pupil dilations were larger in the neutral condition compared to the 

congruent condition (p = .016). There was no significant difference between the incongruent 

and neutral conditions (p = .958). 

The results show that there is an effect of condition on pupil dilations before decisions, 

restricted to base-rate responders. As proposed by the three-stage model of analytic 

engagement conflicting information in the incongruent condition was associated with larger 

pupil dilations compared to the congruent condition, restricted to base-rate responders. 

Importantly, the largest pupil dilations were seen in the neutral condition, thus indicating 

that other alternative sources, such as having to change strategy, may also engage Type 2 

processing.  

To assess if cognitive decoupling was associated with normative responses in the 

incongruent condition. A GLMM with response as outcome and pupil dilation before decision 

as fixed factor and participants as random factor was conducted. The result shows that pupil 

dilations before decisions were not a significant predictor of responses in the incongruent 

condition (β = 0.13, SE = 0.09, z = 1.51, p = .130). When analyzing the two groups of 

responders separately pupil dilation was neither a significant predictor of responses in the 

incongruent condition for stereotype responders (β = 0.31, SE = 0.17, z = 1.88, p = .061), nor 

for base-rate responders (β = 0., SE = 0.09, z = 1.51, p = .130). 

The results indicate that pupil dilations before decisions were not a significant predictor of 

normative responses in the incongruent condition. However, it should be noted that for the 

stereotype responders there is an effect in the expected direction.  

To test if pupil size is predictive of performance on the Base-rate pupillometry task across 

conditions we conducted a series of GLMM’s with response as outcome, condition and pupil 

measures (trial-baseline, attribute and decision) as fixed factors and participants as random 

factor. A model with condition and trial baseline pupil size as predictors of normative 

responses showed that smaller trial baseline pupil size was a significant predictor of 

normative responses (β = -0.25, SE = 0.06, z = -4.33, p < .001) and explained 23.5% of the 

variance.2 A model with condition and pupil dilation following attribute presentation as 

predictors showed that pupil dilations following the attribute was a not a significant 

predictor of normative responses (β = 0.10, SE = 0.06, z = 1.56, p = .119), but explained 

23.2% of the variance. A model with condition and pupil dilation leading up to decision as 

predictors of responses showed that larger pupil dilations were a significant predictor of 

normative responses (β = 0.15, SE = 0.06, z = 2.37, p = .0018) and explained 22.1% of the 

variance. There were no significant interactions between pupil measures that could predict 

responses in any of the models (see SOM). Thus, we find that smaller baseline pupil size and 

 
2 The effect may be driven by the incongruent condition, see SOM (section 6. The role of the 
Locus Coeruleus – Noradrenaline system). 



larger pupil dilation before decisions are predictive of normative responding across 

conditions, whereas pupil dilations following attribute presentation was not.  

Drift-diffusion modelling - Lower drift-rate not higher threshold in incongruent condition 

Model comparison of the behavioral data showed that a model with separate drift-rate by 

condition provided the best fit. In this model drift-rate in the incongruent condition was 

significantly lower compared to the congruent (p < .001) and neutral (p < .001) conditions, 

while there was no significant differences between drift-rates in the congruent and neutral 

condition (p = .174). An additional analysis of response bias revealed a bias towards base-

rate congruent responses in the incongruent condition (see SOM “Hierarchical drift-diffusion 

modelling” for details). Thus, similar to the gaze version, task difficulty was higher in the 

incongruent condition, but did not lead to more deliberation (higher decision threshold). 

Discussion Base-rate pupillometry version 

The results from the Base-rate pupillometry version replicated a number of important 

findings from the Base-rate - gaze version. We again found that there were two groups of 

responders, base-rate responders and stereotype responders. There was an increase in 

response time in the incongruent condition compared to the congruent condition for base-

rate responders, however this effect was not significant for stereotype responders or in the 

full sample. The results show that the base-rate responders looked significantly more at the 

base-rate information compared to the stereotype responders. Additionally, base-rate 

responders looked significantly less at the base-rate information in the neutral condition 

(when the information was non-informative) compared to the congruent and incongruent 

condition. This effect was not significant (although trending in the same direction) for the 

stereotype responders. Thus, we again find that base-rate responders seem to be influenced 

by changes due to condition whereas the stereotype responders do not show significant 

changes in response times or gaze due to condition. 

The results from analyzing pupil size during task performance shows that smaller trial-

baseline pupil size and larger pupil dilations before a decision is predictive of normative 

responses. Thus, we find evidence that attention and cognitive effort is related to 

performance on the Base-rate pupillometry version. This is consistent with previous work 

showing a relationship between pupil dilation and performance (Aston-Jones & Cohen, 2005; 

Laeng et al., 2011; van der Wel & van Steenbergen, 2018; van Steenbergen & Band, 2013). 

Pupil dilations following attribute presentation was significantly different across conditions, 

with larger pupil dilations in the neutral condition compared to the congruent condition. This 

effect was present for the base-rate responders but not for the stereotype responders. 

However, when analyzing responses in the incongruent condition stereotype responders 

showed larger pupil dilations after attribute presentation on the trials when they gave the 

normative base-rate congruent response and thereby successfully override their default 

response. This supports conflict detection, and cognitive effort when overriding one’s 



intuitive response. Across participants and conditions there was not a general effect of larger 

pupil dilations following attribute presentation being linked to correct responses. Thus, the 

effect was specific to the incongruent condition and the group overriding their majority 

response. However, we note that we cannot exclude that small effects of condition and 

general performance may be present as we lack the power to detect them. Importantly, the 

presence of such effects does not exclude a separate effect of conflict detection. 

Regarding pupil dilations preceding decisions, we found that base-rate responders showed 

larger pupil dilations in the incongruent and neutral conditions compared to the congruent 

condition. Indicating that pupils may dilate either when facing conflicting information, 

changing strategy, integrating two pieces of information, or when task difficulty is high (van 

der Wel & van Steenbergen, 2018). There were no differences in pupil dilations before 

decisions for the stereotype responders. 

In the incongruent condition we did not find that pupil dilations were associated with 

responses across participants. However, for the stereotype responders we did find that pupil 

dilations in the attribute time window was associated with giving the normative response. In 

the decision time window, the effect was of similar size and direction, barely missing 

significance for the stereotype responders. Thus, it may be that pupil dilation and cognitive 

effort are related to giving the response opposite to one’s majority response. Larger pupil 

dilations before decisions were associated with performance across conditions, showing a 

general effect of cognitive effort or attention for performance in the base-rate task.  

General discussion 

In this study, we used two base-rate task versions to investigate the role of attention and 

effort. In both versions we replicated that accuracy was lower in the incongruent than the 

congruent condition. The incongruent condition was also associated with longer response 

times compared to the congruent condition. Consistently for both versions we could classify 

participants into two groups based on their performance in the incongruent condition. 

Participants tended to mainly answer either base-rate congruently (base-rate responders) or 

stereotype congruently (stereotype responders). When investigating the effect of condition 

on response times, gaze and pupil dilation, we found significant differences due to condition 

in the base-rate responders. However, for stereotype responders there were no significant 

differences due to condition in many of these measures. Stereotype responders seem to be 

insensitive to, or neglect, the base-rate information on this task. These results support that 

“conflict detection failure” and neglecting base-rates are a significant source of “biased” 

responses. The base-rate responders processed both types of information as they showed 

slowing of responses when the information was conflicting, or the base-rates were non-

informative, and their gaze changed toward the class information when the base-rates were 

non-informative. Thus, this group did integrate both types of information. 

Response times in this study showed that the majority response given in the incongruent 

condition is faster compared to the minority response (stereotype congruent for stereotype 



responders and base-rate congruent for base-rate responders, respectively). Participants 

spend more time when overriding their majority response (Pennycook et al., 2015). This 

suggests that both stereotype and base-rate responses can be made fast and intuitively 

(Bago & De Neys, 2017; Pennycook et al., 2015; Raoelison et al., 2020). There were slower 

response times in the incongruent condition for base-rate responders in both base-rate 

versions, suggesting non-negligible interference from stereotype information. Previous 

studies have interpreted slower response times in the incongruent condition as evidence 

that using base-rates requires Type 2 processing. We argue against this interpretation as 

Pennycook et al. (2015) showed that reversing the order of the different information types 

(attribute/stereotype vs. base-rate) can alter which response is slower. Further, this study 

highlights that the majority response is a major determinant of which response is slowest. 

Additionally, the items selected for inclusion in a task and majority preference for a certain 

outcome can substantially influence and even reverse response times (Krajbich et al., 2015). 

Response times in the neutral condition was slower in Base-rate gaze version but not in the 

pupillometry version. Base rates were presented on the first slide in the Base-rate 

pupillometry version compared to being displayed during the decision phase in the gaze 

version. Thus, participants could early understand that they were not informative and focus 

on the stereotype information. Slower responses in the neutral condition in the Base-rate – 

gaze version may be due to a change of strategy in the base-rate responders, from relying on 

base-rate information to using the stereotype information. Alternatively, it may be due to 

the novelty of the stimulus, as only a quarter of the trials had equal base-rates. 

Gaze - Participants look more at class information and the option they choose 

Investigating gaze times showed that participants in general tend to look more at the class 

information compared to the base-rate information. This may be due to the base-rates being 

faster to read, or the comparison between option may be fast as the relative base-rates 

were extreme. Participants also spend less time looking at the base-rates when they were 

equal. Indicating that participants quickly evaluated them as non-informative. There were 

group differences in relative gaze at the information types, where the base-rate responders 

did look more at the base-rate information. Conflicting information in the incongruent 

condition did not change the relative gaze time investigating the base-rate information. 

Possibly, the extreme base-rates made comparison of base-rates easy. Further investigation 

with moderate or more similar base-rates may show a different pattern. Participants tended 

to look substantially more at the option they ended up choosing. Potentially, gaze may have 

biased choices toward the attended option (Krajbich, 2019; Krajbich et al., 2015) in addition 

to reflect choice (Westbrook et al., 2020), or rationalization of their choice (J. St. B. T. Evans, 

2019; Pennycook et al., 2015). 

Drift diffusion modelling – conflicting information increases task difficulty not deliberation 

For both versions the incongruent condition did not have a higher decision threshold, but 

rather a lower drift-rate compared to the congruent and neutral condition. Conflicting 



information does not increase evidence accumulation, response caution, or increase 

deliberation, but rather subjective task difficulty is higher in the incongruent condition. Thus, 

slower response times in the incongruent condition should not be interpreted as indicating 

Type 2 processing or deliberation. Conflicting intuitions are likely not the source of increased 

threshold or Type 2 processing on the base-rate task. Other factors such as change of 

strategy (or novelty) may increase decision threshold or engage Type 2 processing, as 

suggested by longer response times in the neutral condition in the Base-rate - gaze version. 

The DDM yielded a response bias toward stereotype congruent responses in the Base-rate 

gaze version, and a response bias toward base-rate congruent responses in the Base-rate - 

pupillometry version (SOM). The two versions showed a reversal of which response type was 

fastest for the full sample. Therefore, we highlight that response bias can be altered by the 

task structure and may not be consistent across participants. We regard this study as 

evidence against the presence of a general response bias favoring stereotype responses. As 

task structure, choice preference, and stimulus materials can substantially alter response 

times we advise researchers to carefully consider these factors when investigating response 

biases in dual-process research. Further, we advise against relying on comparison of mean 

response times, and rather use tools such as evidence accumulation models which can 

decompose response time distributions into latent decision parameters (Myers et al., 2022). 

Pupil size is related to performance, preliminary support for conflict detection and 

cognitive decoupling 

Across conditions we found a significant difference in pupil dilation in the decision time-

window. For base-rate responders we found larger pupil dilations in the incongruent and 

neutral conditions compared to the congruent condition. This could be interpreted as 

evidence supporting “cognitive decoupling” following conflicting information or change of 

strategy. Alternatively, it could be seen as increased effort due to higher task difficulty, as 

indicated by lower drift-rate, that is, the condition is more demanding due to the need to 

integrate two sources of information that do not converge on the same response. The 

neutral condition where they had to use the stereotype information may be more 

demanding for this group as they mainly relied on base-rate information. Indeed, updating 

and shifting does require cognitive effort and are linked to larger pupil dilations (Friedman & 

Miyake, 2017; van der Wel & van Steenbergen, 2018). However, in the incongruent 

condition pupil dilations before decisions were not significantly related to responses. Thus, 

the evidence is mixed but there is some evidence supporting the construct of cognitive 

decoupling, however there are valid alternative explanations. 

For stereotype responders there were larger pupil dilations after attribute presentation and 

before decisions (missing statistical significance) when giving the base-rate congruent 

response. This could be seen as evidence for both “conflict detection” following the attribute 

presentation and “cognitive decoupling” leading to larger pupil dilations before decisions, 

resulting in the correct response, opposite to their majority response. The presence of pupil 



dilations corresponding to “conflict detection” and the following changed response, is 

coherent with a line of work showing that phasic LC activity (as indicated by pupil dilation) 

may function as a neural interrupt signal and is involved in the change of attentional set, 

reorienting, and cognitive flexibility (Bouret & Sara, 2005; Dayan & Yu, 2006; McGaughy et 

al., 2008). LC activity has been linked to proactive and preparatory processes enabling 

cognitive and inhibitory control, thus enabling further processing of relevant stimuli or multi-

component behavior (Chmielewski et al., 2017). This separation between preparatory 

processes and the following decision related processes is consistent with a separation of 

“conflict detection” and “cognitive decoupling”.  

Smaller baseline pupil size, predicted performance and indicates that participants may have 

had too high tonic LC activity, leading to lower task performance and higher distractibility 

(Aston-Jones & Cohen, 2005; Mittner et al., 2016) (SOM, analysis of pupil size and 

exploratory behavior). Alternatively, high neural gain may focus attention to the most salient 

features of the information, or in accordance with a pre-disposition (Eldar et al., 2013), 

leading to more focus on the stereotype information, resulting in more stereotype 

congruent responses (SOM). 

In summary, we do find some evidence supporting the constructs of “conflict detection 

failure”, “conflict detection” and “cognitive decoupling” from Pennycook et al. (2015). 

Further, we highlight that the LC – NE system may be implicated in the implementation of 

these or similar mechanisms. It is possible that high tonic LC activity constrains attention and 

enhances salient representations, leading to errors in reasoning typically associated with 

Type 1 processing. Further, that intermediate LC tonic activity allows for phasic LC activity 

and is associated with both “conflict detection” or neural interrupt signal, and a subsequent 

increase in cognitive effort or “cognitive decoupling” (Type 2 processing). However, the 

evidence in this study can be explained without two separate processes.  

That conflicting information in the incongruent condition is associated with slower response 

times and more cognitive effort compared to non-conflicting information in the congruent 

condition can be explained by higher stimulus difficulty. Slower response times in the 

incongruent condition may just reflect higher stimulus difficulty. Relatedly, that conflicting 

information is associated with larger pupil dilations as a conflict is detected is similar to 

many task paradigms investigating conflict detection (Laeng et al., 2011; van der Wel & van 

Steenbergen, 2018, but see Schacht et al., 2010). Thus, the results can be explained through 

other models such as sequential sampling models integrating the role of attention, gaze and 

the LC-NE system (Busemeyer & Townsend, 1993; Eldar, Cohen, et al., 2016; Eldar et al., 

2013; Eldar, Niv, et al., 2016; Gold & Shadlen, 2007; Krajbich, 2019; Roe et al., 2001). 

However, the tasks in this study were not designed to test these models and it is thus 

considered outside the scope of this article. 

Limitations 



Due to errors in implementation of individual difference measures we were not able to 

further investigate individual differences between the two responder groups or the 

relationship with gaze and pupil dilation. Some data loss in pupil recording decreased 

statistical power, however the sample was deemed adequate to continue with analyses. 

There did seem to be a small learning effect in the Base-rate – Pupillometry version, 

however this effect was small and is not expected to have influenced the results in any 

substantial way (SOM section 4, Learning effects). 

Conclusion 

In two base-rate tasks we find evidence that participants can be separated into two groups 

based on their responses in the incongruent condition, stereotype responders and base-rate 

responders. We observed that base-rate responders were sensitive to changes across 

conditions in terms of response times, gaze and pupil dilation, whereas stereotype 

responders were not. Thus, finding evidence for “conflict detection failure” and base-rate 

neglect for stereotype responders. Pupil dilation results showed preliminary support for the 

constructs of conflict detection and cognitive decoupling. We found preliminary evidence 

that pupil dilations following attribute presentation may be implicated in changing responses 

from stereotype congruent to base-rate congruent, implicating phasic LC activity in conflict 

monitoring or acting as a neural interrupt signal. Additionally, we observed larger pupil 

dilations for base-rate responses in the incongruent condition, thus supporting the notion of 

cognitive effort and possibly “cognitive decoupling” being associated with base-rate 

congruent responses on the base-rate task. However, the results can be explained without 

reference to dual-process and were consistent with alternative models of decision-making. 
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The influence of visual attention and cognitive effort on base-rate neglect 

Overview of SOM 
1. Individual difference measures 

2. Base-rate - gaze version 

3. Base-rate - pupillometry version 

4. Learning effects 

5. Hierarchical drift-diffusion modelling 

6. The role of the Locus Coeruleus – Noradrenaline system 

7. Instructions 

All reported mixed models from manuscript analyzed with the “lme4” package (Bates et al., 

2015) in the statistical environment R (RStudio, version 4.1.2). 

Hierarchical drift-diffusion models were implemented with the HDDM Python toolbox 

(HDDM version 0.9.5) using a dockerHDDM (Pan et al., 2022; Wiecki et al., 2013). 

1. Individual difference measures 

1.1 Materials 

Thinking disposition.  

Thinking disposition was measured with the abbreviated Need for Cognition scale (NFC) 

(Cacioppo et al., 1984). The NFC measures individual differences in the tendency to engage 

in and enjoy cognitively effortful activities. The scale consists of 18 items that are rated on a 

5-point Likert scale from 1 = “Extremely uncharacteristic of me” to 5 = “Extremely 

characteristic of me”. An example item is “I find satisfaction in deliberating hard and for long 

hours”. The scale total ranges from 18 to 90. The scale was presented on a computer and 

implemented in Qualtrics (Qualtrics, Provo, UT). 

Cognitive ability 

Cognitive ability was measured with a battery of rational reasoning tasks, the digit-symbol 

substitution test and the trail-making test part-B. 

Rational reasoning 

A battery of rational reasoning tasks from the heuristics and bias literature was used to 

create a rational reasoning ability composite score. The battery included 14 items. Correct 

answers were scored as 1, incorrect as 0. The complete composite rational reasoning score 

ranged 0 to 14. From the extended Cognitive reflection test (Toplak et al., 2014) we used 

items 2-7. We used two fully disjunctive reasoning problems, “the marriage problem” 

(Levesque, 1986) and a “knight and knave problem” (Smullyan, 1978), one probability 

matching task (J. Koehler & James, 2010), one conditional reasoning problem (Lehman et al., 

1988), one covariation detection problem (Stanovich & West, 1998), one Bayesian reasoning 

problem (Toplak et al., 2007; adapted from Fischoff & Beyth-Mayrom, 1983), one probability 



estimation problem “the bus problem” (Teigen & Keren, 2007), one medical Bayesian 

reasoning problem (Gigerenzer et al., 2007). 

Digit Symbol Substitution Test (DSST) 

The DSST is a timed (90 seconds) paper and pencil measure of processing speed. Participants 

have to fill in symbols that are paired to each digit (1-9) following a digit-symbol pair code. 

Performance is measured as the number of symbols correctly coded. The DSST may in 

addition to processing speed measure psychomotor speed, short-term-visual memory, 

attention, cognitive flexibility and motivation (Coalson et al., 2010). 

Trail making test (TMT) 

The TMT is a measure dependent on several mental abilities such as psychomotor speed, 

mental flexibility, visual scanning, and executive function (Halstead-Reitan; Tombaugh, 2004; 

Salthouse, 2012). The TMT consists of two parts; A and B. In part A (TMT-A) participants are 

instructed to draw a line between 25 dots, containing numbers from 1 -25, in ascending 

order. Performance is measured in seconds to complete the task (reverse scored). Part B 

(TMT-B) consists of 25 dots with both letters and numbers inside. Participants are instructed 

to draw a line in ascending order, alternating between letters and numbers (1 – A – 2 -B – 3 - 

C… 13) until the end. Part B scoring is the same as for Part A. We here use time on Part B 

(reverse scored) as a measure of cognitive ability as Part B has the highest relation to full 

scale intelligence and fluid intelligence (Corrigan & Hinkeldey, 1987; Salthouse, 2012). 

Curiosity 

Curiosity was measured with two subscales, Joyous exploration and social curiosity, from the 

five-dimensional curiosity scale (Kashdan et al., 2018). Joyous exploration was measured 

with five items and is a central part of curiosity capturing a preference for new information, 

new experiences and favoring self-expansion over security. Social curiosity was measured 

with five items and captures an interest in how other people think and behave. 

Personality 

Personality was measured with a short 20 item version of the big five inventory (BFI-20) 

(Engvik & Clausen, 2011; John & Srivastava, 1999). The inventory was included for 

participants (N = 30) taking part in 2 days of testing, the inventory was included on Day 1 

(Mækelæ et al., 2023), but not when the base-rate tasks were completed (day 2). After the 

interruption (COVID-19) this scale was dropped. Given the low N, the scale was not used at 

all. 

1.2 Procedure notes 

A sample of participants (N = 30) for the study was recruited for two days of testing where 

day 1 was a separate project (Mækelæ et al., 2023) and day 2 was the current study. The 

remaining participants were recruited to take part in this study only. Due to an error in 

implementation of surveys in Qualtrics (Qualtrics, Provo, UT) NFC was not included for 

participants taking part in only 1 day of testing. Regarding the TMT, one experimenter, 

testing eleven participants, did not correctly instruct participants who made errors when 

performing the task. Therefore, a subsample of the TMT scores had to be removed. 

Additionally, there were exclusions due to behavioral performance and low-quality pupil 



recording (see main manuscript). Therefore, it was decided that the sample size for 

individual difference measures were too low to be reliable and was thus not included in the 

main manuscript. Results are reported for transparency. 

Accuracy for each task is reported as number of correct responses, this includes base-rate congruent 

responses in the incongruent condition. 

1.3 Results 
Descriptive statistics for individual difference measures can be found in Table S1. 

Table S1 

Descriptive statistic for individual difference measures 

 Mean SD Minimum Maximum N 

RQ 5.27 2.27 0 10 59 

NFC 59.03 12.82 24 81 40 

DSST 61.93 10.39 38 86 59 

TMT-B 58.30 27.13 28 149 55 

Curiosity - JE 27.09 4.83 15 35 53 

Curiosity - SC 24.25 6.36 7 35 53 

Gaze 0.78 0.22 0.43 1 49 

Pupillometry 0.74 0.18 0.44 0.99 54 

Note. RQ = rational reasoning composite score, NFC = Need for cognition, DSST = Digit-symbol 

substitution test, TMT-b = Trail making test part B. TMT-B measured in seconds, Curiosity - JE = 

Curiosity - Joyous exploration subscale, Curiosity - JC = Curiosity – Social curiosity subscale. Gaze = 

Accuracy in base-rate – gaze version. Pupillometry = Accuracy in base-rate – pupillometry version. 

Correlations between individual difference measures and accuracy in both base-rate tasks 

are presented in Table S2. 

Table S2 

Base-rate tasks and correlations with individual difference measures 

  NFC RQ DSST TMT-B Curiosity - JE Curiosity - SC 

Gaze  N =36 N = 48 N = 48 N = 47 N = 46 N = 47 

 Corr. .03 .27 .23 .23 -.09 .32 

 p-value .885 .066 .124 .116 .537 .028 

Pupil  N = 38 N = 54 N = 54 N = 51 N = 52 N = 52 

 Corr. .25 .15 .06 -.22 -.06 .33 

 p-value .127 .268 .687 .125 .663 .017 

NFC   N = 36 N = 36 N = 36 N = 35 N = 36 

 Corr.  .18 .21 -.03 .67 -.05 

 p-value  .304 .222 .886 <.001 .776 

RQ    N = 48 N = 47 N = 46 N = 47 



 Corr.   .42 -.13 .09 .01 

 p-value   .003 .369 .549 .961 

DSST     N = 47 N = 46 N = 47 

 Corr.    -.35 .02 -.00 

 p-value    .016 .977 .977 

TMT-B      N = 45 N = 46 

 Corr.     .05 -.13 

 p-value     .740 .402 

C - JE       N = 46 

 Corr.      -.05 

 p-value      .742 

Legend. Corr. = Spearman’s rho. Significant correlations in bold, p < .05. Gaze = Accuracy in the 

Base-rate -gaze version.  Pupil = Accuracy in the Base-rate -pupillometry version.  NFC = Need 

for cognition scale, RQ = rational reasoning composite score, DSST = Digit-symbol substitution 

test, TMT-B = Trail making test part B, Curiosity - JE (C-JE) = Curiosity - Joyous exploration 

subscale, Curiosity - JC = Curiosity – Social curiosity subscale. 

2. Base-rate - gaze version 

Gaze at option predicts choice 
We investigated whether proportional gaze time at the correct vs. the incorrect option (both 

group and base-rate information) was different across the three conditions. A Kruskal-Wallis 

one-way ANOVA with Dunn’s post-hoc comparisons showed that there was a significant 

group difference across conditions (Χ2 = 170.650, p < .001, df = 2), and that there was a 

significant difference between all groups (all p-values < 0.01). Participants spent the most 

time looking at the correct option in the congruent condition, followed by the neutral 

condition, and the incongruent condition had the lowest proportional gaze time at the 

correct option (Fig. 6). However, the response groups did differ with “base-rate responders” 

looking most at the correct option in the congruent, then incongruent and lastly neutral 

condition (Χ2 = 114.589, p < .001, df = 2, Dunn’s post-hoc test all pair-wise comparisons p < 

.001). “Stereotype responders” looked most at the correct option in the congruent, then 

neutral and lastly incongruent condition (Χ2 = 246.765, p < .001, df = 2, Dunn’s post-hoc 

comparisons all but congruent vs neutral pair-wise comparisons p < .001, Fig. 3 right-hand 

panel in main manuscript). 

Next, we in looked at proportional gaze in the incongruent condition, comparing correct 

(base-rate congruent) responses and incorrect (stereotype congruent) responses. Correct 

responses were associated with significantly more time looking at the correct option 

compared to incorrect responses (U = 115460.500, d = -0.66, p < .001). Participants giving 



the correct response (M = 0.70, SD = 0.23) proportionally looked more at the correct option, 

whereas participants giving the incorrect response (M = 0.33, SD = 0.31) tended to look more 

at the incorrect option (both significantly different from 0.5 one-sided t-test p’s < .001).1  

Gaze at option type and information type predicts choice in incongruent condition 
To assess the relative influence of gaze at information type (class vs. base-rate, information 

split on screen between top and bottom) and choice options (correct vs. incorrect option, 

information split on screen left and right) on responses in the incongruent condition, we 

conducted generalized linear mixed models (GLMM’s). A model with response (correct vs. 

incorrect) as outcome and proportional gaze at information type (class > 0.5 > base-rate) as 

a fixed factor and participants as a random factor showed that gaze at information type was 

a significant predictor of response (b = -1.10, SE = 0.35, Z = -3.11, p = 0.002) where gaze at 

information type accounted for 0.6% of the variance in responses (Table S3). A model with 

response as outcome and proportional gaze at correct option as a fixed factor and 

participants as random factor showed that proportional gaze at correct option was a 

significant predictor of responses (b = 5.16, SE = 0.44, Z = 11.84, p < .001) and gaze at option 

accounted for 12.4% of the variance in responses (Table S4). When including both fixed 

factors as predictors of responses proportional gaze at group information was no longer a 

significant predictor (p = 0.094), whereas gaze at correct option still was (p < .001), see Table 

S5. These results indicate that gaze at information type is associated with responses, but the 

effect is small. Gaze at options on the other hand has a medium to large association with 

choice. 

Table S3 

Generalized linear mixed model with response as outcome, proportional gaze at information type as 

fixed factor and participants as random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 2.60 1.18; 4.02 3.59 <.001 

Proportional gaze –  
Information Type 

-1.10 -1.79; -0.41 -3.11 .002 

Random Effects 

σ2 3.29 

τ00 subj_idx 16.45 

ICC 0.83 

N subj_idx 49 

Observations 1696 

Marginal R2 / Conditional R2 0.006 / 0.834 

 
 



Table S4 

Generalized linear mixed model with response as outcome, proportional gaze at choice option as 

fixed factor and participants as random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) -0.97 -2.33;  0.40 -1.39 .165 

Proportional gaze –  
Choice option 

5.16 4.31; 6.01 11.84 <.001 

Random Effects 

σ2 3.29 

τ00 subj_idx 15.32 

ICC 0.82 

N subj_idx 49 

Observations 1696 

Marginal R2 / Conditional R2 0.124 / 0.845 

Table S5 

Generalized linear mixed model with response as outcome, proportional gaze at information type 

and option type as fixed factors and participants as random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) -0.47 -1.95; 1.02 -0.62 .538 

Proportional gaze –  
Information Type 

-0.72 -1.55; 0.12 -1.68 .094 

Proportional gaze –  
Choice option 

5.11 4.25; 5.97 11.70 <.001 

Random Effects 

σ2 3.29 

τ00 subj_idx 15.30 

ICC 0.82 

N subj_idx 49 

Observations 1696 

Marginal R2 / Conditional R2 0.128 / 0.846 



Both Stereotype responders and Base-rate responders look more at the option they 

choose.” 
Stereotype responders looked more at the correct (base-rate congruent) option in the 

incongruent condition when giving the correct response, M = 0.70, SD = 0.22 and more at 

the incorrect option when giving the incorrect response, M = 0.32, SD =0.31, and this 

difference was significant U = 7666.000, d = -0.67, p < .001. 

Base-rate responders looked more at the correct option when giving the correct response in 

the incongruent condition, M = 0.70, SD = 0.23 and more at the incorrect option (stereotype 

congruent) when giving the incorrect response, M = 0.41, SD = 0.27, and this difference was 

significant U = 19443.500, d = -0.60, p < .001). 

3. Base-rate - pupillometry version 
In the Base-rate - pupillometry version the base-rate responders looks more at the base-rate 

information, similar to results from Base-rate – gaze version. 

We assessed if there were differences in gaze at information type (class vs. base-rate) across 

conditions and groups (stereotype- and base-rate – responders), as we found in base-rate – 

gaze version. We note that the task structure differs between the two tasks. In the Base-rate 

- pupillometry version, gaze is measured before the attribute information, whereas gaze is 

measured after attribute information in the Base-rate – gaze version.  

A Kruskal-Wallis one-way ANOVA showed there was a significant difference in gaze at 

information type for the three conditions (χ2 = 22.123, p < .001, df = 2). Dunn’s post hoc 

comparisons showed that participants spend less time looking at the non-informative base-

rates in the neutral condition compared to the congruent (p < .001) and incongruent (p < 

.001) conditions. Similar to the Base-rate - gaze version there were no differences in gaze at 

information type in the congruent and incongruent conditions (p = .860).  

Figure S1 



Proportional gaze at information type (class vs base rate) and proportional gaze at correct 

option separately for Stereotype responders and Base-rate responders.

 

Comparing stereotype responders and base-rate responders we find that base-rate 

responders (M = 0.70, SD = 0.22) look significantly more at the base-rate information 

compared to stereotype responders (M = 0.75, SD = 0.25, U = 1.275, d = 0.06, p = .005). 

When analyzing stereotype responders and base-rate responders separately we find no 

difference in the three conditions for the stereotype responders (χ2 = 1.280, p = .527, df = 2). 

However, base-rate responders showed a significant group difference (χ2 = 26.741, p < .001 

.527, df = 2). Dunn’s post hoc comparisons showed that again the neutral condition is 

significantly different from the congruent (p < .001) and incongruent (p < .001) conditions, 

but there is no difference between the congruent and incongruent conditions (p = .410). 

Thus, replicating that base-rate responders look more at the base rate information and seem 

to be sensitive to changes due to condition whereas stereotype responders are not. 

Generalized mixed models reported in Base-rate - pupillometry version 
From main text: “To test if pupil size is predictive of performance on the Base-rate 

pupillometry task across conditions we conducted a series of GLMM’s with response as 

outcome, condition and pupil measures (trial-baseline, attribute and decision) as fixed 

factors and participants as random factor.” 

Table S6 

Generalized linear mixed model with response as outcome, condition and trial baseline pupil size as 

fixed factors and participants as random factor 

  Response 

Predictors Estimates CI Statistic p 



(Intercept) 3.46 2.91; 4.01 12.29 <.001 

Condition –  
Incongruent 

-2.75 -3.16; -2.35 -13.35 <.001 

Condition –  
Neutral 

-0.88 -1.33; -0.42 -3.79 <.001 

Trial Baseline -0.25 -0.37; -0.14 -4.33 <.001 

Random Effects 

σ2 3.29 

τ00 subj_idx 1.51 

ICC 0.32 

N subj_idx 38 

Observations 2444 

Marginal R2 / Conditional R2 0.235 / 0.476 

Table S7 

Generalized linear mixed model with response as outcome, condition and pupil dilation in attribute 

time window as fixed factors and participants as random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 3.49 2.92; 4.07 11.95 <.001 

Condition –  
Incongruent 

-2.80 -3.23; -2.36 -12.61 <.001 

Condition –  
Neutral 

-0.94 -1.43; -0.45 -3.79 <.001 

Pupil dilation –  
Attribute 

0.10 -0.02; 0.22 1.56 .119 

Random Effects 

σ2 3.29 

τ00 subj_idx 1.50 

ICC 0.31 

N subj_idx 38 

Observations 2142 

Marginal R2 / Conditional R2 0.232 / 0.473 

Table S8 



Generalized linear mixed model with response as outcome, condition and pupil dilation in decision 

time window as fixed factors and participants as random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 3.42 2.86; 3.98 11.92 <.001 

Condition –  
Incongruent 

-2.69 -3.12; -2.26 -12.36 <.001 

Condition –  
Neutral 

-0.92 -1.39; -0.44 -3.77 <.001 

Pupil dilation –  
Decision 

0.15 0.03; 0.27 2.37 .018 

Random Effects 

σ2 3.29 

τ00 subj_idx 1.45 

ICC 0.31 

N subj_idx 38 

Observations 2145 

Marginal R2 / Conditional R2 0.221 / 0.459 

Table S9 

Generalized linear mixed model with response as outcome, condition, trial baseline pupil size and 

pupil dilation in attribute time window and their interaction as fixed factors and participants as 

random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 3.53 2.95; 4.11 11.92 <.001 

Condition –  
Incongruent 

-2.81 -3.25; -2.37 -12.60 <.001 

Condition –  
Neutral 

-0.92 -1.41; -0.43 -3.68 <.001 

Trial Baseline -0.29 -0.45; -0.13 -3.61 <.001 

Pupil dilation –  
Attribute 

-0.09 -0.24; 0.07 -1.12 .264 

Baseline:Attribute 0.03 -0.06; 0.12 0.64 .523 

Random Effects 



σ2 3.29 

τ00 subj_idx 1.53 

ICC 0.32 

N subj_idx 38 

Observations 2142 

Marginal R2 / Conditional R2 0.241 / 0.482 

Table S10 

Generalized linear mixed model with response as outcome, condition, trial baseline pupil size and 

pupil dilation in decision time window and their interaction as fixed factors and participants as 

random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 3.47 2.90; 4.04 11.89 <.001 

Condition –  
Incongruent 

-2.71 -3.14; -2.28 -12.34 <.001 

Condition –  
Neutral 

-0.91 -1.39; -0.43 -3.71 <.001 

Trial Baseline -0.29 -0.44; -0.14 -3.80 <.001 

Pupil dilation –  
Decision 

-0.03 -0.18; 0.12 -0.41 .685 

Baseline:Decision 0.04 -0.06; 0.13 0.76 .448 

Random Effects 

σ2 3.29 

τ00 subj_idx 1.49 

ICC 0.31 

N subj_idx 38 

Observations 2145 

Marginal R2 / Conditional R2 0.231 / 0.471 

A model with a three-way interaction between pupil measures in the trial baseline-, 

attribute- and decision- time windows did not converge. 



4. Learning effects 

Base-rate – gaze version 
To investigate if there were any learning effects in the Base-rate – gaze version we 

compared trial number by correct and incorrect responses in the incongruent condition. A 

logistic regression showed that there was no significant difference in trial number between 

correct and incorrect responses χ2 (1767) = 0.372, p = .372. Thus, we found no evidence of 

learning effects in the Base-rate – gaze version. 

Base-rate – pupillometry version 

To investigate if there were any learning effects in the Base-rate – pupillometry version we 

compared trial number by correct and incorrect responses in the incongruent condition. A 

logistic regression showed that there was a significant difference in trial number between 

correct and incorrect responses χ2 (2021) = 20.789, p < .001. The model explained 1% of the 

variance in responses, and trial number was a significant predictor of correct responses (β = 

0.009, SE = 0.002, z = 4.53, p < .001. The results show that there was a small learning effect 

in the Base-rate – pupillometry version where participants responded more correct in the 

incongruent condition as the task progressed. The effect was very small, 1% of variance in 

responses, thus no further steps were considered necessary to correct for learning effects. 

5. Hierarchical drift-diffusion modelling 
We used hierarchical drift-diffusion modelling to investigate if conflicting responses engages 

Type 2 processing. In the drift-diffusion model an increased threshold would indicate 

increased information sampling and more cautious responding and thus corresponds to Type 

2 processing (Lin et al., 2023).  

For each model we ran 5 Markov chains with 20,000 samples each, 12,000 of which were 

burn-in. Every second sample was discarded as thinning to reduce autocorrelation in chains. 

For the models looking at bias in the incongruent condition, sample size was increased to 

35,000 with 20,000 as burn-in and every second sample discarded. Model convergence was 

assessed with visual inspection of the trace, autocorrelation, the marginal posterior, and the 

Gelman-Rubin R statistic. All parameters had an R-hat value below 1.05. Model comparison 

was conducted with the deviance information criterion (DIC). Lower DIC indicates better fit. 

See model comparison for Base-rate – gaze version in Table S11 and model comparison for 

Base-rate – pupillometry version in Table S12.  

Table S11 

Hierarchical Drift-Diffusion Model Comparison Base-Rate – gaze version 
 

M11 Null model DIC 7166 

M12 Separate threshold DIC 6910 

M13 Separate drift-rate DIC 5748 

M14  Separate drift-rate and threshold DIC 5755 

 



Table S12 
Hierarchical Drift-Diffusion Model Comparison Base-Rate – pupillometry version  

M21 Null model DIC 9728 

M22 Separate threshold DIC 9826 

M23 Separate drift-rate DIC 8469 

M24  Separate drift-rate and threshold DIC 8510 

 

For both tasks the model with the best fit for the data was a model with separate drift-rate 

for each condition (M13 and M23, Fig S2 and S4). Additionally, as seen from Figure S3 and 

Figure S5 (models with both separate drift-rate and threshold by condition, second best fit) 

the threshold in the incongruent condition was not higher compared to the other conditions. 

Thus, we find no evidence supporting higher decision threshold due to conflicting 

information in the two base-rate tasks. 

For transparency we present visual representation of the posterior distribution for drift-rates 

for models M13 and M23 (separate drift-rate by condition, best fit), and the posterior 

distribution for thresholds for models M14 and M24 (separate threshold and drift-rate by 

condition, second best fit).  

 

Figure S2  

Posterior distribution of drift-rates in M13 – Base-rate – gaze version, separate drift-rate by 

condition. 

 
Legend. V = Drift-rate. V(C) = Drift rate in congruent condition. v(I) = Drift rate in incongruent 

condition. v(N) = Drift rate in neutral condition. 

Figure S3 



Posterior distribution of threshold in M–4 - Base-rate – gaze version, separate drift-rate and 

threshold by condition 

 

Legend. a = Threshold, a(C) = Threshold in congruent condition. a(I) = Threshold in 

incongruent condition. a(N) = Threshold in neutral condition. 

 

Figure S4 

Posterior distribution of drift-rates i– M23 - Base-rate – pupillometry version, separate drift-

rate by condition. 

 
Legend. v = Drift-RI. v(C) = Drift rate in congruent condition. v(I) = Drift rate in incongruent 

condition. v(N) = Drift rate in neutral condition. 



Figure S5 

Posterior distribution of thresholds in M24 Base-rate – pupillometry version, separate drift-

rate and threshold by condition. 

 
Legend. a = Threshold. a(C) = Threshold in congruent condition. a(I) = Threshold in 

incongruent condition. a(N) = Threshold in neutral condition. 

Bias is dependent on task structure 
To assess if there is a response bias towards stereotype congruent responses we applied a 

stimulus coded DDM for responses in the incongruent condition. Response boundaries 

indicated stereotype congruent (0) and base-rate congruent (1) responses. A bias parameter 

of 0.5 indicates no bias. Bias parameter values < 0.5 indicate a bias towards stereotype 

congruent responses. Bias parameter values > 0.5 indicate a bias towards base-rate 

congruent responses. 

Base-rate – gaze version 

For the Base-rate – gaze version visual inspection of trace and autocorrelation showed minor 

issues. Gelman-Rubin statistic was < 1.034. Thus, there may be minor convergence issues 

and interpretation of results should thus be made with caution. A model with a bias 

parameter included (DIC = 2964) provided slightly better fit compared to a model without 

bias for the incongruent condition (DIC = 2971). The model had an estimated bias parameter 

of 0.43 with the full posterior distribution below 0.5, indicating a response bias toward the 

stereotype congruent response. As all information needed to produce a stereotype (class 

and attribute information) had been presented before the response slide, there is good 

reason that a response bias toward the stereotype congruent answer was present in the 

base-rate – gaze version. 



Base-rate – pupillometry version 

For the Base-rate – pupillometry version a model with a bias parameter (DIC = 4635) 

provided a slightly improved fit compared to a model without a bias parameter (DIC = 4638). 

The bias parameter was estimated at 0.52 (SD = 0.04) indicating a small bias towards base-

rate congruent responses. The posterior distribution of the bias parameter showed a small 

overlap with 0.5, indicating that the bias may not be significantly different from 0.5. Thus, 

we find some evidence for a response bias for base-rate congruent responses. As the base-

rate information was presented before the attribute information, evidence accumulation 

towards the base-rate congruent response early in the trial may have biased the responses 

in this task toward the base-rate congruent response. 

Modelling responses in the incongruent condition with a stimulus coded DDM yielded a 

response bias toward stereotype congruent responses in the Base-rate gaze version, and a 

response bias toward base-rate congruent responses in the Base-rate - pupillometry version. 

Therefore, we highlight that response bias can be altered by the task structure and may not 

be consistent across participants. We therefore regard this study as evidence against the 

presence of a general response bias favoring stereotype responses.  As task structure, 

individual differences, and selection of stimulus materials can substantially alter response 

times we advise researchers to carefully consider these factors when investigating response 

biases in dual-process research. Further, we advise against relying on comparison of mean 

response times, and rather use tools such as evidence accumulation models which can 

decompose response time distributions into latent decision parameters. 

6. The role of the Locus Coeruleus – Noradrenaline system 
In the current study pupil dilation was primarily included as a measure of cognitive effort 

(Hess & Polt, 1964; Kahneman & Beatty, 1966; van der Wel & van Steenbergen, 2018), 

however pupil dilation also reflects changes in the Locus Coeruleus (LC) – Norepinephrine 

(NE) system (Aston-Jones & Cohen, 2005; Eldar et al., 2016; Gilzenrat et al., 2010; Jepma & 

Nieuwenhuis, 2011; Joshi et al., 2016; Reimer et al., 2016). The LC-NE system is a candidate 

mechanism involved in “conflict detection” and possibly “cognitive decoupling”. The LC has 

widespread connections to most of the forebrain and modulates neural gain (Aston-Jones & 

Cohen, 2005; Chandler et al., 2016; Eldar et al., 2013; Waterhouse & Chandler, 2014). The LC 

is functionally connected to areas involved in both conflict monitoring and cognitive control, 

as well as working memory and executive functions, hereunder, the dorsomedial prefrontal 

cortex, including the anterior cingulate cortex, and the lateral prefrontal cortex (Arnsten, 

2011; Botvinick et al., 2001: Botvinick et al., 2004; Joshi et al., 2016; Joshi & Gold, 2002; 

Shenhav et al., 2013; Spencer & Berridge, 2019; Unsworth & Robison, 2017; Usher et al., 

1999). The LC-NE system has previously been linked to cognitive flexibility, attentional set 

shifting, inhibitory control processes, reorienting, surprise, working memory, and sustained 

attention (Bouret & Sara 2005; Corbetta et al., 2008; Dayan & Yu, 2006; McGaughy et al., 

2008; Poe et al., 2020; Preuschoff et al., 2011; Sara & Bouret, 2012; Spencer & Berridge, 

2019; Wolff et al., 2018). According to the adaptive gain theory (Aston-Jones & Cohen, 

2005), the LC-NE system regulates behavioral change in the adaptive dilemma between 

exploiting and exploring the environment. The adaptive gain theory proposes that high tonic 



LC activity (indicated by larger baseline pupil size) is related to exploratory behavior, 

decreased on task performance, and is marked by a reduction in phasic activity. 

Intermediate levels of tonic LC activity (indicated by smaller baseline pupil size) on the other 

hand is related to be higher on task performance and the presence of phasic activity (larger 

pupil dilations). Notably, phasic LC activity has also been proposed as a neural interrupt or a 

network reset signal (Bouret & Sara, 2005; Dayan & Yu, 2006), thus a possible mechanism for 

“conflict detection”. Further, the LC-NE system may modulate breadth of attention such that 

high gain focuses attention on information that is salient, or one is predisposed to attend (in 

this study, salient stereotypes), whereas low gain broadens attention and increases 

information sampling (Eldar et al., 2013). 

In the main manuscript we found that smaller baseline pupil size and larger pupil dilations 

before decisions were predictive of normative responding, whereas pupil dilations following 

attribute presentation was not. These results are consistent with the adaptive gain theory 

prediction that intermediate baseline pupil size is linked to higher on-task performance and 

that high tonic LC activity is related to decreased task performance. However, an alternative 

explanation for larger baseline being linked to decreased performance is that high neural 

gain may have enhanced the salient stereotype information and constrained attention, 

leading to stereotype congruent responses in the incongruent condition. Note that this 

applies to the incongruent condition in particular and should not influence the congruent or 

neutral conditions. 

To test the two hypotheses: 1. Exploratory behavior and distractibility leads decreased on- 

task performance as predicted by the adaptive gain theory.  2. Constrained attention and 

enhanced salience of the stereotype information leads to stereotype responding in the 

incongruent condition. We assessed independently for the three conditions whether 

performance and trial-baseline pupil size is associated. The adaptive gain theory predicts 

that the relationship should be present for all three conditions (note, task difficulty is a 

possible confounder). Constrained attention predicts that the relationship between high 

baseline pupil size and performance should only be present in the incongruent condition. 

We conducted three separate GLMM’s (one for each condition), predicting response with 

trial-baseline pupil size as a fixed factor and participants as a random factor, see results in 

Table S11 – S13. 

Table S11 

Incongruent condition – GLMM predicting response with trial-baseline pupil size as a fixed factor and 

participants as a random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 0.74 0.05; 1.42 2.11 .035 

Trial Baseline -0.42 -0.58; -0.26 -5.13 <.001 

Random Effects 



σ2 3.29 

τ00 subj_idx 4.31 

ICC 0.57 

N subj_idx 38 

Observations 1260 

Marginal R2 / Conditional R2 0.022 / 0.576 

Table S12 

Congruent condition – GLMM predicting response with trial-baseline pupil size as a fixed factor and 

participants as a random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 2.93 2.43; 3.42 11.57 <.001 

Trial Baseline 0.02 -0.35; 0.39 0.09 .928 

Random Effects 

σ2 3.29 

τ00 subj_idx 0.31 

ICC 0.08 

N subj_idx 38 

Observations 576 

Marginal R2 / Conditional R2 0.000 / 0.085 

Table S13 

Neutral condition – GLMM predicting response with trial-baseline pupil size as a fixed factor and 

participants as a random factor 

  Response 

Predictors Estimates CI Statistic p 

(Intercept) 2.67 2.04; 3.29 8.32 <.001 

Trial Baseline -0.03 -0.29; 0.23 -0.20 .843 

Random Effects 

σ2 3.29 

τ00 subj_idx 1.82 

ICC 0.36 

N subj_idx 38 

Observations 608 



Marginal R2 / Conditional R2 0.000/ 0.357 

The results showed that trial baseline pupil size was a significant predictor of performance in 

the incongruent condition, but not in the congruent or neutral conditions. The results are 

thus consistent with the hypothesis that high neural gain constrains attention and enhances 

the salient stereotype information, resulting in more stereotype congruent responses in the 

incongruent condition. Thus, base-rate neglect may in part be influenced by high neural gain 

that focuses attention on the salient stereotype information, the representation is further 

enhanced by high neural gain at the cost of integrating more information, leading to a failure 

to integrate the base-rate information. This mechanism of reasoning errors on the base-rate 

task is similar to the Type 1 processing errors proposed by the default-interventionist 

account. Here Type 1 processing favors stereotype information, processes this information 

fast, ignores the base-rate information, and gives the stereotype congruent response. 

We note that the results from these supplementary analyses are not inconsistent with the 

adaptive gain theory, as the two hypotheses are consistent with the same framework. 

Rather, the analyses aimed to disentangle the relationship between pupil size and 

performance in this particular task. Further, we cannot exclude that that high baseline pupil 

size was related to decreased performance, but higher decision difficulty led to worse 

performance in the incongruent condition, but not in the easier conditions.  

An additional prediction from the adaptive gain theory is that higher tonic LC activity is 

related to more exploratory behavior. To assess this, we tested whether higher task baseline 

pupil size, as a measure of high tonic LC activity, was related to more gaze changes between 

areas of interests (AOI’s), as a measure of exploratory behavior.  

For this analysis we relied on data collected for the Base-rate – pupillometry version. Task 

baseline pupil size measured before the task had a mean of 35.53 and a standard deviation 

of 3.64. Gaze change was measured as the total number of recorded gaze changes between 

AOI’s during the presentation of both class and base-rate information in the beginning of 

each trial in the Base-rate – pupillometry version task. Mean gaze change was calculated 

separately for each participant, with a group mean change between AOI’s of 7.69 (SD = 

2.20). A Pearson’s correlation showed that task baseline pupil size had a positive medium 

correlation with gaze change (r = .35, p = .012). The results show that larger baseline pupil 

size was indeed related to more exploratory behavior measured as gaze changes. This 

supports that high tonic LC activity is related to exploratory behavior as predicted by the 

adaptive gain theory of LC function.  

Instructions 
“In a big research project a large number of studies were carried out where short personality 

descriptions of the participants were made. In every study there were participants from two 

population groups (e.g., politicians and nannies). 



In each study one participant was drawn at random from the sample. You’ll get to see a 

personality trait for this randomly chosen participant. You’ll also get information about the 

composition of the population groups tested in the study in question.  

You’ll be asked to indicate to which population group the participant most likely belongs. 

Please answer the problems as quickly and accurately as possible.” 
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