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“I particularly hope that you will conclude the merit of the ideas I present
outweigh my defects as a writer.”

–Philip A. Fisher

“To start something is good, but to finish it is a miracle.”
–Richard Strawbridge





Abstract
This Master’s thesis investigates the application of Machine Learning (ML)
in predicting blast-induced ground vibrations in mining, with the aim of sur-
passing the precision of the current industry-standard model that utilizes an
empirical, regression-based method. The study applied a Deep Neural Network
(DNN) model, selected for its capability to consider a broader range of variables
than the industry-standard model, leading to significantly enhanced predictive
capabilities. The evaluation of these models was conducted using three statisti-
cal criteria: coefficient of correlation (R2), mean square error (MSE), and mean
absolute error (MAE).

The key finding is the DNN model’s superior performance, achieving an R2 of
0.94, an MSE of 0.94, and an MAE of 0.60, which represent a significant im-
provement and reduction over the industry-standard model’s predictive results.
Specifically, there is an 84% improvement in the R2 value, an 87% decrease in
MSE, and a 71% decrease in MAE compared to the industry-standardmodel’s R2
of 0.51, MSE of 7.41, and MAE of 2.04. This marked enhancement in predictive
accuracy illustrates the model’s ability to analyze multiple variables concur-
rently and highlights the potential of AI and ML to improve environmental
safety and operational efficiency in the mining industry.
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1
Introduction
Artificial Intelligence (AI) serves as a sub-field of Computer Science,
concentrating on the development of algorithms and models that enables
machines to execute tasks, traditionally requiring human behavior. One of AIs
sub-disciplines, Machine Learning (ML), aims to design algorithms that enable
machines to improve their performance through data extraction and adaption
to the knowledge from this data [23]. AI and ML can provide environmental
data insights, and autonomously take actions that promote sustainability,
reducing company costs and free up time and resources for other priorities.

The mining industry stands as an important component of the global
economic infrastructure, contributing substantially to both development,
labor productivity and employment rates, by discovering and extracting
materials and metals from the earth [58]. Among various operations in the
mining industry, blasting has a significant role, as it is recognized as a
cost-effective means of fracturing rock formations, thus enabling excavation
[9, 8, 28, 27, 6, 49].

Blasting operations are initiated through the controlled detonation of
explosives within blast holes, with the primary aim to fragment and displace
rock masses to enable excavation. The objective is not only to achieve optimal
rock fragmentation but also to minimize the environmental impacts, ensuring
safety, environmental responsibility, and conformance to governing
regulations. [18, 55].

1



2 chapter 1 introduction

When explosives are detonated in a mine, they release a tremendous amount
of energy in the form of shock waves [18]. These shock waves propagate
through the surrounding rock mass, causing the ground or rock at the blast
site to vibrate and move, with the potential to cause structural or
environmental damages [69, 24, 3, 54]. Due to environmental consequences,
controlling blast-induced ground vibration is a crucial aspect of mining
operations. To alleviate these consequences and to control blast-induced
ground vibrations generated by blasting, it is essential to implement effective
control predictive measurements and continuously evaluate blast-induced
ground vibration [69, 24, 3, 54].

To achieve this level of control, it is imperative to identify the parameters that
exert significant influence. The parameter used to predict and evaluate
blast-induced ground vibrations is known as Peak Particle Velocity (PPV). PPV
represents the highest velocity reached by individual particles in the ground
as they respond to these seismic waves. In the context of mining operations,
PPV serves as the key evaluation metric used to characterize the ground
motion resulting from the detonation of explosives [69, 24, 3, 54].

In this complex interplay of human, machine, and the environment,
technology has come to play an increasingly central role [58]. Technological
advancements have enabled the mining industry to scale up production,
enhance safety, and address environmental impacts more effectively. The
integration of cutting-edge technologies, including AI and ML, holds the
promise of tackling industry challenges by refining critical operations and
potentially revolutionizing the sector [58].

Incorporating Machine Learning (ML) into the mining industry, aligns
seamlessly with the industries technological endeavours. The implementation
of a ML model in this context offers a sophisticated approach to addressing
the challenge of predicting and therefore better controlling blast-induced
ground vibrations [33, 34, 64]. Machine Learning models enhance the
analysis of various parameters influencing blast-induced ground vibrations,
offering a more comprehensive approach when compared to traditional
methods. ML’s ability to process and learn from a dataset enables a model to
distinguish complex patterns and relationships between various blasting
parameters and their impact on Peak Particle Velocity (PPV), which could
reduce the limitations of current industry empirical formulas [65].

The implementation of a ML model in the mining industry represents a
paradigm shift towards data-driven decision-making. This shift not only
enhances the precision of PPV predictions but also contributes to reducing
environmental impact and improving safety standards in blasting operations.
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The application of ML in this field demonstrates a commitment to innovation
and sustainability. It aligns with the industry’s goal to optimize operations
while minimizing adverse environmental effects. By improving the accuracy
of PPV predictions, a ML model can be instrumental in ensuring that blasting
vibration outcomes comply with regulatory standards, while also improving
community relations. It achieves this by proactively mitigating the risks
associated with blast-induced ground vibrations. [33, 34, 64, 65].

This thesis explores the application of Machine Learning (ML) within the
mining sector, focusing specifically on enhancing the prediction of
blast-induced ground vibrations. Advancements in this area align well with
the industry’s ongoing focus towards sustainable practices.

1.1 Background And Motivation

Accurately predicting, and therefore controlling blast-induced ground
vibrations is essential in mining. It is vital for ensuring safety, environmental
integrity, and compliance with legal and regulatory standards. In the context
of evolving environmental concerns and stringent safety regulations, accurate
vibration prediction becomes crucial for the protection of nearby structures,
personnel safety, and ecological preservation. Despite its significance, the
industry-standard method, established in the 1970s, often falls short in
capturing the complexities of blast-induced vibrations due to it’s limited ability
to consider multiple variables simultaneously. This highlights a need for more
advanced and comprehensive predictive models to be used in the industry.

The current industry-standard method for predicting blast-induced ground
vibration employs a two-parameter approach for the computation of PPV,
namely, explosive mass per delay, and distance. Distance, in this context, is
specifically defined as the "minimum separation distance between a blast hole
and a designated point of interest". Typically, this point of interest
corresponds to a location dedicated to vibration monitoring, which plays a
critical role in overseeing the vibration aspects of blast operations [46].

Another critical parameter is the determination of ’the maximum charge mass
per delay,’ commonly referred to as the Maximum Instantaneous Charge
(MIC). MIC represents the cumulative charge mass of explosives that initiates
simultaneously during a blasting event. These two parameters constitute
fundamental metrics in the contemporary management of blasting-induced
vibration, serving as the prevailing industry standards for PPV quantification.
[69, 24, 3, 54].
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Artificial Intelligence (AI) provides computers to simulate human intelligence,
offering significant advantages in areas such as task automation, data-driven
decision-making, and digital assistance [17]. By leveraging data, AI
systematically extracts valuable insights that can guide informed
decision-making processes. Machine Learning (ML), a specialized sub field of
AI, utilizes sophisticated algorithms to analyze extensive datasets, and
enables to uncover patterns within the data that are often challenging or
time-consuming for humans to identify. As a result of this, ML is capable of
facilitating more accurate and efficient decisions [17].

Within this framework, ML algorithms play a crucial role as they thoroughly
explore the data, examining each variable to understand underlying patterns
and relationships, which otherwise might be difficult to recognise. This
analytical capability allows for the creation of mathematical models that
reflect these identified patterns. In the context of the mining industry, related
work on applying ML has shown promise in assisting professionals to make
more accurate predictions of PPV, and this thesis aims to build upon those
existing results[36].

1.2 Problem Definition

This study addresses the critical challenge of improving the accuracy of
predictions for blast-induced ground vibrations in the mining sector. The
sector currently relies on a predictive method developed in the 1970s, which is
constrained to considering only two blast design variables. Given the
capability of ML to analyze a multitude of variables comprehensively, this
industry-standard method is likely producing sub-optimal results in
comparison. Such limitations can lead to inadequate risk management,
especially in areas critical to safety, environmental responsibility, and
regulatory compliance. Persisting with this outdated approach risks
neglecting more advanced models that could significantly improve predictive
accuracy and, consequently, risk management practices.

1.3 Goal

The overarching goal of this thesis is to apply Machine Learning (ML) to
develop a more advanced predictive model that offers improved accuracy in
predicting blast-induced ground vibration outcomes, compared to the current
industry-standard model.
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This ML model aims to overcome the limitations of existing methods, which
are restricted by their reliance on a limited range of variables. By harnessing
the capabilities of ML, the study seeks to incorporate a broader and more
comprehensive set of influential variables into the prediction process.

The objectives of this thesis are to explore, implement, evaluate, and identify
a specific model that not only demonstrates superior predictive accuracy but
also can be integrated into existing mining operations. This integration aims
to foster advancements in blast design and risk management, ultimately
enhancing overall industry practices.

1.4 Methodology

This thesis explores the contribution of Machine Learning in blast operations,
and the prediction of blast-induced ground vibration using a multifaceted
research approach by combining both quantitative and qualitative
methodologies.

Qualitative research predominantly draws upon existing knowledge within
the field to thoroughly examine the subject matter, enriching the development
of theories, products, and innovations based on this knowledge. In contrast,
quantitative research is oriented towards experimentation and empirical
testing to establish theories and principles. Qualitative research primarily
seeks to formulate hypotheses, while quantitative research aims to rigorously
assess the validity of these hypotheses [11, 22].

The methodological choices are compatible with the overarching project objec-
tive, which focus on the development of a system prototype. A prototype is a
sample implementation of a system, that provides limited and main functional
capabilities of a proposed system. The development and has been guided by
the principles of:

• The Design Science Method.
• Task Force Approach.
• Prototyping Methodology.

The utilization of a design science method entails a structured and systematic
approach to the creation and evaluation of innovative systems. In the context of
this project, this method serves as the foundational framework through which
the system prototype is conceived, designed, implemented, and assessed. With
an active engagement of a task force, the project benefits from a dedicated
group of experts assembled to collaborate on various aspects of the research
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[11, 22].

The task force plays a vital role in the research process by providing specialized
knowledge, valuable insights, and evaluation of the prototype. The research
approach employed in this project integrates quantitative and qualitative meth-
ods within the framework of the design science method. These methodological
choices are carefully tailored to support the overarching project goal of devel-
oping an innovative system prototype [11, 22].

1.5 Contribution

The main contribution of this thesis is to research the possibilities for Machine
Learning in blast operations. More specific the contributions include

• A discussion of the possibilities and limitations ofMachine Learning being
used with blast operations, and assumptions of beneficial use in relation
to current industry method.

• A proposed system design, for enabling the use of all the features in a
dataset and all the features noted around a blast operation.

• A prototype of a Machine Learning model, that takes into account the
entire dataset with all of its features that may impact on the calculated
output. The system provides an implementation of a Machine Learning
model.

1.6 Stakeholders

In this research, understanding the roles and interests of the stakeholders is
key to appreciating the context and impact of this study. Two primary
stakeholders are central to this thesis: The Arctic University of Norway (UiT)
and a mining consultancy company whose identity remains confidential as
per their request.

The Arctic University of Norway (UiT), specifically the Faculty of Science and
Technology, and Department of Computer Science played a critical role in this
research, providing academic support, resources, and a platform for
intellectual inquiry. Their interest lies in contributing to the advancement in
predictive modeling techniques. The success of this study aligns with the
university’s objectives of academic excellence and innovation.
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In line with the confidentiality agreement, the second key stakeholder is
referred to as ’a Mining Consultancy Company.’ Their anonymity is
maintained throughout this thesis to respect their privacy and commercial
interests. This company has been pivotal in shaping the research’s direction,
providing the initial topic, a comprehensive dataset, and practical insights
into the industry’s needs. Their expectation is to gain valuable knowledge
from outcomes of this study, with the potential of re-shaping their approach to
predictive modeling for future blasting projects.

The thesis follows certain requirements in agreement with the Mining
Consultant Company.

Requirements

• Data Quality and Quantity: Access to high-quality dataset that covers
relevant blasting parameters.

• Model Performance: Themodel should ideally provide greater predictive
capabilities for Peak Particle Velocity (PPV) when compared with the
current industry-standard model (USBM equation).

• Security and Privacy: The study should ensure confidentiality and in-
tegrity of shared data.

• Evaluation and Reporting: Clear metrics for evaluating the model’s per-
formance.

The partnership between the academic environment of the UiT and the practi-
cal, industry-focused approach of the mining consultancy company created a
unique collaboration. This collaboration ensured that the researchwas grounded
in real-world applicability while being anchored in academic methodology. The
combination of these different stakeholders and their viewpoints is expected
to make the study more valuable and useful for both the academic world and
the mining industry.

1.7 Limitations

In this thesis, developing a Machine Learning (ML) model for the mining in-
dustry faced key limitations. A list of limitations of the thesis is provided be-
low:

• Scope of Expertise: The task force’s collective expertise might not fully
cover all the specialized areas needed for ML development and mining
industry applications. This may limit the depth of analysis or the sophis-
tication of the ML model.
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• Time Constraints: Master’s thesis projects have strict deadlines. Col-
laborating with a task force required coordinating schedules, which was
challenging through-out this study, and lead to some delays. These de-
lays were predominately associated with receiving the compiled dataset
required to advance the study.

• Data Availability and Quality: Access to high-quality, relevant data is
crucial for ML. This was limiting as the mining industry has strict re-
strictions on sharing data due to confidentiality or proprietary concerns.
The provided data set was restrictive in the amount of variables being
included, due to confidentially reasons.

• Generalizability of the Model: The model developed may be tailored to
specific conditions of the collaborating company or dataset, which may
not be generalizable to other scenarios or mining operations.

• Regulatory and Ethical Considerations: In the mining industry, regu-
latory compliance is crucial [16]. The thesis might not fully address the
complex regulatory landscape, especially regarding the use of AI and ML.

• Intellectual Property and Publication Restrictions: Due to the dataset
being filtered for sensitive information prior to being shared, there is no
restrictions applied to the publication of this study.

• Expectation Management: Aligning the academic goals of a thesis with
the practical objectives of the industry partner can be challenging. There
might be a gap between academic exploration and industry applicability.

In this thesis, the use of Machine Learning (ML) models are explored and
developed in the context of the mining industry. While these models offer
innovative solutions, they also present inherent limitations, which are critical
to acknowledge for a comprehensive understanding of their capabilities and
constraints, and is listed below:

• Model Complexity and Interpretability: ML models, especially deep
learning networks, can become highly complex, making them difficult
to interpret. This can lead to challenges in understanding how decisions
are made, which is crucial in mining where safety and precision are
paramount.

• Data-Driven Nature of ML Models: ML models heavily rely on the qual-
ity and quantity of data available. In mining, the variability and incon-
sistency of data can affect the model’s accuracy and reliability.



1.8 outline 9

• Transferability and Scalability:WhileMLmodels can be highly effective
in specific scenarios, their ability to generalize across different mining
environments is limited. A model trained on data from one mine may not
perform well in another due to geological and operational differences,
raising concerns about its scalability and transferability.

• Real-World Application vs. Theoretical Modeling: There often exists a
gap between theoretical modeling and real-world applications. Models
that perform well in simulated environments may not yield the same
results under actual mining conditions, due to unforeseen variables and
complex interactions not accounted for in the model.

• Technological Constraints: The implementation ofMLmodels in mining
is constrained by the available technology. Limitations in computational
resources, data storage, and processing capabilities can restrict the com-
plexity and efficiency of the models.

1.8 Outline

This thesis contributes to an improvement in prediction of blast-induced
ground vibration by considering more than the two variables used to predict
PPV in the industry today. It provides the design, implementation and
evaluation of a deep learning model to predict blast-induced ground vibration.

The remainder of this thesis is structured as follows:

Chapter 2 provides an exploration of the technical background underlying
this thesis. It encompasses essential blast-induced ground vibration
fundamentals, gives an description of considerations related to designing a
blast event, and goes on to describing Peak Particle Velocity and its
application and implication. Lastly, the chapter looks at models currently used
in the industry.

Chapter 3 provides descriptions of an Artificial Neural Network and Deep Neu-
ral Network and the steps of creating a Deep Neural Network model, involv-
ing the description of techniques for training and validating the model. This
chapter provides a summary and in depth description of related work that has
succesfully used Machine Learning and Artificial Neural Network in mining
operations.
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Chapter 4 outlines the methods and methodological framework of the
research, detailing the chosen research methods, their theoretical
foundations, the dataset utilized, and specifics of the implementation. It
describes the chosen research approach, the research strategies, data
collection methods, and the Machine Learning frameworks.

Chapter 5 presents the system’s design, requirements and architectural
blueprint, delineates the functional and non-functional requirements, and
establishes the criteria for evaluating the system’s performance and
effectiveness, as relevant to the objectives of this thesis.

Chapter 6 details the implementation of the prototype of a Machine Learning
model. It describes the steps of implementing a Deep Neural Network model
utilizing a dataset compiled from multiple mining operations.

Chapter 7 provides a comprehensive account of the experiments conducted
using the Machine Learning models. It details the experimental setup, the
methodology followed for testing the models, and the specific metrics used for
evaluation. This chapter also includes a thorough analysis of the experimental
results, highlighting the model’s performance in various scenarios.

Chapter 8 covers the validity and reliability of the research findings, as well
as presenting performance metrics and compares results towards related
work. The chapter presents interpretation of results, discusses strengths and
weaknesses of the Deep Neural Network by presenting analysis of the model
and patterns of error. This section reflects on the thesis objectives by
demonstrating the Deep Neural Network’s contribution to the field.

Chapter 9 reflects on the encountered challenges and obstacles throughout
the research process. This chapter provides insights into the practical
difficulties, theoretical limitations, and unexpected findings that emerged
during the study.

Chapter 10 summarizes the thesis, recapping the key findings, contributions
to the field of Machine Learning in mining, and the implications of this
research. It also provides a critical reflection on the research objectives and
the extent to which they were achieved. The chapter proposes directions for
future research, building on the findings of this thesis. It suggests potential
areas for further exploration and improvements, both in terms of the
methodology and application of Machine Learning in the mining industry.





2
Background
This chapter details the mining sector, focusing on blasting operations and their
environmental impact. It outlines the steps of a blast event and the crucial role
of blasting engineers in managing both controllable factors and uncontrollable
factors. It includes the critical aspects of designing a blast event, and the effects
of the blast in blast-induced ground vibrations. It categorizes these blast factors
into those that can be controlled and those that cannot, illustrating the complex
nature of managing blast-induced vibrations.

This chapter introduces Peak Particle Velocity (PPV) as the primary metric
for measuring blast-induced ground vibrations, and describes its relevance in
industry standards and environmental assessments.

It then examines the traditional industry method for predicting PPV, which uses
linear regression, and an empirical formula.

2.1 Blasting Operations

The operation of blasting is fundamental in the mining industry, serving as the
primary method for rock fragmentation, which is crucial for enabling various
subsequent activities like excavation andmaterial removal inmining projects.

13
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Blasting operations employ the controlled use of explosives to induce frac-
tures in rock masses, thereby facilitating the desired level of fragmentation
and displacement of materials. While effective, this process is not without its
challenges [40].

The controlled detonation of explosives releases a significant amount of energy.
While a large portion of this energy is used for the intended purpose of breaking
the rock, there is often a residual release of energy that can manifest in various
forms. One of the most significant environmental implication associated with
blasting is referred to as blast-induced ground vibration.

Blast-induced ground vibrations transmit through the ground over distances,
affecting not only the immediate blast site but also surrounding ecosystems, hu-
man settlements, and structures. Blast-induced ground vibrations could lead to
structural damage in nearby buildings, and poorly controlled blasts may result
in the unnecessary use of explosives, which further intensifies environmental
issues and elevates operational costs [40].

2.1.1 Environmental Consequences

The environmental consequences that originates from blasting operations have
received significant research attention. Research by Bakhtavar et al. (2021),
Hosseini et al. (2021, 2022), Armaghani et al. (2018) and Nguyen et al. (2020)
have extensively explored these implications [9, 28, 27, 6, 49, 8, 32]. They found
that unintended blast-induced vibrations holds the potential to cause structural
damage and to compromise the stability of mining pit walls, thereby present-
ing substantial risks to peoples safety, infrastructure, groundwater, railways,
highways, heritage sites, and nearby communities [41, 32, 35, 18].

These findings emphasizes that the need for precise control and accurate pre-
diction of blast outcomes is not only a matter of operational efficiency, but also
of environmental protection and community safety. It is within this context that
the potential of Machine Learning (ML) algorithms to improve the accuracy of
blast-induced effects is explored.

2.1.2 Controllable And Uncontrollable Blasting Variables

Research has identified a number of factors influencing blast-induced ground
vibration during blasting operations. These factors can be broadly categorized
as controllable, falling within the domain of blast engineers, and uncontrollable,
encompassing geological parameters beyond human control [45, 24].
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Controllable factors encompass a range of blast design parameters and ex-
plosive characteristics, allowing engineers to tailor blast designs to specific
requirements. In contrast, uncontrollable factors, such as site location, and
geological features like rock strength, rock structure, ground water presence,
pose inherent challenges in predicting and mitigating blast-induced ground
vibration [5, 25].

In the mining industry, understanding controllable factors of blast design and
uncontrollable factors such as rock strength, is crucial for optimizing blast-
ing operations. Machine Learning can potentially analyze these variables to
identify influential patterns, enhancing efficiency and safety. This would be
particularly useful for risk mitigation and environmental compliance, as Ma-
chine Learning could predict the impacts of various blasting scenarios by adapt-
ing to the complex, variable conditions typical in mining, learning from high-
dimensional data. A Machine Learning’s predictive analytics and continuous
learning capabilities is believed to be beneficial for site-specific customization
and operational decision-making in mining.

2.1.3 Designing A Blast Event

A blasting engineer is one who is responsible for designing a blast, and must
carefully consider the design variables which can influence the magnitude of
blast-induced ground vibrations [38]. By having an improved understanding of
how the design variables contribute to the magnitude of blast-induced ground
vibrations, the blasting engineer is able to make more informed decisions to
aid risk assessments. As well as producing blast designs that meet specific re-
quirements, while minimising the environmental footprint of a blasting activity.
Below is a more detailed description of some considerations a blasting engi-
neers must consider at the design stage:

• Safety: Ensuring the safety of personnel, equipment, and nearby com-
munities is the foremost concern in any blasting operation. By meticu-
lously controlling factors such as blast design, charge size, and initiation
sequence, blasting engineers can reduce the risk of accidents related
blast-induced ground vibrations.

• Structural and Environmental Protection: Blasting near existing struc-
tures or environmentally sensitive areas demands precise control over
blast parameters. Effective blast design helps safeguard these elements
by limiting blast-induced ground vibrations, ground displacement, and
other potential disturbances.
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• Design Optimization: Blasting engineers are challenged in the need
to balance multiple, often conflicting, objectives such as minimising to-
tal blast cost, maximising material recovery, minimising environmental
impacts, and optimising rock fragmentation distribution.

• Economic Efficiency: Controlling factors in blast design contribute to
cost-effectiveness in mining operations. By optimizing blast parameters,
engineers can reduce drilling and blasting costs, minimize secondary
breakage, and improve fragmentation. This leads to lower operational
expenses and increased profitability.

• Environmental Responsibility: Modern mining operations are under
increasing scrutiny regarding their environmental impact. By carefully
considering specific design variables, blasting engineers can mitigate ad-
verse effects related to environmental disturbance.

• Regulatory Compliance: Compliance with local, national, and interna-
tional regulations is mandatory for mining operations. Ensuring blasts
are designed to adhere to legal limits on blast-induced ground vibrations,
airblast levels, and other environmental parameters.

• Community Relations: Maintaining a harmonious relationship with
neighboring communities is vital for the mining industry’s social license
to operate. Well-designed blasts that minimize noise, dust, and vibrations
reduce disturbances to nearby residents. This, in turn, helps build trust
and goodwill within the community.

There are specific fundamental components of a blast event that are required.
These components are listed below:

• Drill Holes: Precisely drilled into the rock, these holes serve as the con-
tainers for the explosives. The drill hole size, pattern spacing, are all
important for the blast’s efficiency, and impact the blast-induced ground
vibration response.

• Explosive Products: Depending on the type of rock and the intended
outcome, various explosive materials are used. These are carefully in-
serted into the drill holes. Different explosive types can influence the
amount of energy transmitted to fracturing the surrounding rock mass.

• Capping or Stemming: To focus the explosive energy to fracturing the
rock, the blast holes are typically sealed with stemming material, like
sand or crushed aggregate rock after the explosives have been loaded
into the hole.
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• Detonation: A detonator placed within the explosive product of each
blast hole initiates the explosion, causing a nearly simultaneous deto-
nation of the explosive within the blast hole. The timing of each blast
hole detonation is a design variable which is considered by the blasting
engineer, and impacts on the propagation of the blast-induced ground
vibration generated [7].

• Blast Pattern: The arrangement and sequencing of the multiple drill
holes contribute to the direction and extent of rock fragmentation [26].

2.2 Blast-Induced Ground Vibration

Blast-induced ground vibration is considered one of the most undesirable ef-
fects of surface mining blasting operations. Blast-induced ground vibrations
are especially relevant in mining and civil operations where blasting activities
are common. These vibrations pose potential risks to sensitive locations, in-
cluding buildings, natural heritage sites, and other structures. When explosives
are detonated within a blasthole, they undergo a rapid chemical reaction that
produces a tremendous release of energy in the form of a shockwave. This
shockwave initiates the vibration waves, which then propagate outward from
the blast site. A multitude of factors contribute to the characteristics and impact
of blast-induced ground vibrations. These encompass blast design elements,
the properties of the explosives used, the distance from the blast site, as well
as the prevailing geological condition [67, 39, 59].

2.2.1 Peak Particle Velocity

The key parameter to evaluate the vibration impact in mining operations, and
considered a measurement to both predict and control blast-induced ground
vibrations, is known as Peak Particle Velocity (PPV) [13]. In the domain of
mining, construction, and various technical engineering applications, PPV is
commonly used to quantify the intensity of blast-induced ground vibrations
caused by activities such as blasting.

PPV is expressed in terms of velocity (often in millimeters per second, mm/s)
and represents the highest particle velocity reached by any particle in the
ground during a vibration event. It is considered as a crucial metric because it
is directly related to the potential for damage to structures and is often used
in regulations and guidelines for blasting and other activities that produce
blast-induced ground vibrations [56, 46].
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2.2.2 Initial Predictor Of Peak Particle Velocity

The initial notable predictor of Peak Particle Velocity (PPV) was conceived
through collaborative efforts of the United States Bureau of Mines (USBM),
Duvall, and Fogleson, and is still used as the industry standard predictor for
PPV.

PPV is a measurement of the velocity of the most forward particles in terms of
transverse (T), vertical (V), and longitudinal (L) velocities [19]. The technique is
mathematically expressed in the Equation 8.1, and can be viewed below.

Duvall and Fogleson (USBM) 𝑃𝑃𝑉 = 𝐾 ( 𝐷

𝑄1/2 )
−𝑏 (2.1)

Scaled Distance 𝑆𝐷 = ( 𝐷

𝑄1/2 ) (2.2)

Where:

• PPV is the Peak Particle Velocity, typically measured in millimeters per
second (mm/s).

• 𝐾 is the site constant value, representing the geological and environmen-
tal characteristics of the blast site. It is derived by linear regression.

• 𝑄 is the Maximum Instantaneous Charge (MIC), the maximum charge
per delay, measured in kilograms (Kg).

• 𝐷 represents the distance from the blast source to the monitoring point,
measured in meters (m).

• SD is the Scaled Distance, measured in kg/m0.5 (mm/s), is a ratio that
standardizes the distance from a blast site relative to the amount of
explosives used.

• 𝑏 is the attenuation constant value, which represents how the wave’s
energy decreases with distance. It is derived by linear regression.

PPV is used extensively in mining operations for several reasons. These be-
ing:

• Safety and Structural Integrity: High levels of blast-induced ground
vibration can cause damage to nearby structures, both above and under-
ground. Predicting and controlling PPV helps in maintaining the safety
of these structures.
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• Regulatory Compliance:Many regions have legal limits on blast-induced
ground vibration levels to protect surrounding communities and infras-
tructure. Accurate prediction of PPV can assist in maintaining compliance
with these regulations.

• Blast Optimization: Understanding and controlling PPV helps in opti-
mizing the blasting process. This optimization can lead to more efficient
fragmentation, and reduce environmental impact.

• Community Relations: Excessive vibration can be a nuisance or cause
concern for nearby communities. Managing PPV levels is essential for
maintaining good community relations and minimizing complaints.

• Environmental Conservation: PPV is also important for the protection of
sensitive environments. Improved prediction in PPV helps in assessing the
potential impact of blasting activities on nearby wildlife and ecosystems
[19].

2.2.3 Measurement And Representation

Mining engineers, geotechnical experts, and construction professionals rely
on PPV measurements to determine the safety of nearby structures, evaluate
the potential for structural damage, and formulate blast design strategies that
adhere to permissible limits.

PPV ismeticulouslymeasured through the use of specialized instruments known
as seismographs or blast-induced ground vibration monitors. These devices are
strategically positioned within the surrounding area of the blasting activity to
capture the precise ground motion data. The output from these instruments,
typically in the form of time-series data, is subsequently analyzed to recognize
the peak amplitude, which corresponds to the highest instantaneous particle
velocity achieved during the blast event [56, 46].

Blast-induced ground vibration monitors use a transducer, also called a geo-
phone, to measure vibrations. To properly measure these vibrations, the geo-
phone is securely coupled to either the ground or a structure. This ensures that
the geophone sense all the energy in the ground [25, 40].

2.2.4 Multidimensional Characterization

One distinctive aspect of PPV is its capacity to provide a multidimensional
groundmotion characterization. This metric accounts for particle velocity along
three orthogonal axes: transverse (T), vertical (V), and longitudinal (L).
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These components collectively offer a comprehensive description of how ground
particles oscillate in space as they respond to the propagating wavefront,
thereby enhancing the precision of assessment [19].

2.2.5 Regulatory And Industry Standards

Peak Particle Velocity (PPV) is a universal recognized benchmark metric used
in the mining industry, featuring prominently in various regulatory frameworks
and guidelines that govern blasting activities globally. These frameworks typ-
ically establish criteria for acceptable PPV levels. Monitoring and controlling
PPV is often mandated to ensure that blasting activities fall within acceptable
safety and environmental parameters [13].

2.3 Industry Standard Prediction Method

The USBM empirical equation, as outlined in 8.1, is the prevailing industry
standard for predicting Peak Particle Velocity (PPV) resulting from blasting
operations. This equation fundamentally incorporates two key variables: the
Maximum Charge per delay (MIC) and the distance between the blast site
and the measurement point. These two variables combined to quantify a third
parameter being Scaled Distance (SD) which is described in equation 2.2.

The equation’s efficacy depends on the accurate determination of the two
constants,𝐾 and 𝑏, derived from the statistical analysis model linear regression.
Linear regression analysis is used to predict the value of a variable based on
the value of another variable.

Constant 𝐾 refers to the site constant value that represents the geological and
environmental characteristics of the blast site, and constant 𝑏 refers to the
attenuation constant value, representing how the wave’s energy decreases with
distance.

These constants are more than numerical placeholders; they embody the com-
plex interplay of geological variability and the inherent uncertainties associ-
ated with design variables and operational conditions in blasting scenarios.
These constants are derived through regression fitting process as previously
mentioned, ensuring that they reflect the specific geological and operational
context of each blasting site as accurately as possible [43].
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In essence, 𝐾 and 𝑏 are not static values but are dynamically derived to adapt
the USBM equation to vary geological settings and blasting conditions. This
adaptability underscores the USBM equation’s widespread acceptance and
utility in the industry, providing a tailored approach to predicting PPV for
diverse blasting scenarios.

2.3.1 Linear Equation

The essence of linear regression lies in establishing a linear equation of the
form:

𝑌 = 𝑎 ∗ 𝑋 + 𝑏 (2.3)

In this equation:

• Y - Dependent Variable
• a - Slope
• X - Independent Variable
• b - Intercept

The coefficients a (slope) and b (intercept) are directly interpretable [70]. The
slope a indicates the change in the dependent variable Y for a one-unit change
in the independent variable X. The slope and intercept are derived based on
minimizing the sum of the squared difference of distance between data points
and the regression line, and the model gets the best regression fit line by finding
the best a and b values.

2.3.2 Liner Regression

Linear regression is often used to model or analyze data for estimating the
relationship between a set of independent and dependent variables [70, 31].
Some of the benefits of linear regressions to measure Peak Particle Velocity
(PPV) in the field of mining is listed below:

• Simple Mathematical Formulation: Its formula is simple with one in-
dependent variable and an extension for multiple independent variables,
making the linear equation easy to compute and interpret.

• Minimal Assumptions: Linear regression requires fewer assumptions
compared to more complex models. The primary assumptions are lin-
earity, independence, constant variance of errors, and normality of error
terms.
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• Effectiveness in Establishing Relationships: Linear regression is ef-
fective at identifying and quantifying the relationship between a value
and various influencing factors. In regards to measuring PPV, this would
involve the relationship between PPV and influencing factors such as
the amount of explosive used, distance from the blast, and geological
conditions.

• Computational Efficiency: Linear regression models can be fit quickly,
even with large datasets, due to their mathematical simplicity. This effi-
ciency is a contrast to more complex models, which often require signifi-
cantly more computational resources and time.

• Data Availability: Mining operations often collect data that linearly cor-
relates with PPV, such as blast design parameters and geological data.
Linear regression can effectively utilize this available data to make reli-
able predictions.

• Historical Precedence: Linear regression has a long history of application
in various fields, including mining. Its proven effectiveness over time has
made it a go-to method for predictive modeling in this industry.

• Ease of Interpretation: The results of a linear regression model are
easy to interpret, making them user-friendly for engineers and decision-
makers who may not have extensive statistical training.

2.3.3 Linear Regression Analysis

Linear regression is an algorithm extensively applied to predict target outputs
from input variables, assuming a linear relationship between them [44]. The
regression line is defined by its slope and intercept, which are derived mathe-
matically to minimize the sum of the squared differences between the observed
values and the values predicted by the model.

A linear regression technique creates a link between independent and depen-
dent variables by determining the most suitable line, often referred to as the
line of best fit. This line illustrates how the dependent variable is expected to
change in response to the independent variable.





3
Artificial Neural Network
This chapter explores the technical aspects of Machine Learning (ML) and
Artificial Neural Networks (ANNs), focusing on the development and appli-
cation of algorithms essential for predicting Peak Particle Velocity (PPV). It
provides an insightful overview of the Machine Learning pipeline and refer-
ences relevant studies to highlight challenges and variances in ML modeling
approaches.

The chapter begins with an introduction to ML models, emphasizing their abil-
ity to learn from data and make predictions autonomously. It further explains
how these models recognize patterns, adapt to changes, and enhance their
performance with exposure to new data. The chapter emphasizes the signifi-
cance of ML in predicting blast-induced ground vibrations, noting the models’
capacity to autonomously learn from historical data and uncover underlying
patterns crucial for accurate predictions.

ANNs are introduced as a subset of ML models, where Deep Neural Networks
are an extension of ANNs. The chapter explains their structure, inspired by
biological Neural Networks, comprising interconnected nodes organized into
input, hidden, and output layers. The chapter explains activation, optimization
and loss functions, and their relevance for Deep Neural Networks, as well as pre-
senting their mathematical formulas. The chapter concludes with an overview
of related work in the field, summarizing key findings, methodologies, and
algorithms from various studies that have informed this thesis’s approach to
ML in mining operations.
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3.1 Machine Learning Models

Machine Learning (ML) focuses on developing algorithms and models to be
capable of learning from data and make decisions or predictions without be-
ing explicitly programmed. Machine Learning systems, also called Machine
Learning models, can solve complex problems and extract valuable insights
from the data it is given. The models are capable of recognizing patterns, adapt
to changing conditions, and improve their performance over time as they are
exposed to new and more data [44].

A Machine Learning model is a mathematical representation of a real-world
process based on data, and can serve as a critical component in the pursuit of
predicting blast-induced ground vibrations with accuracy and precision. These
models possess the ability to autonomously learn from historical data, to cap-
ture underlying patterns or relationships, enabling the mapping of inputs to
outputs in a manner that is essential to the research goal [44].

3.2 Artificial Neural Network

An Artificial Neural Network (ANN) is a subset of Machine Learning, inspired
by the structure and function of biological neural networks. ANNs consists of
interconnected neurons (nodes) which are simplified computational models
that receive and process information. An ANN is structured into layers: an
input layer, one or more hidden layers, and an output layer. The input layer
receives the initial data, the hidden layers process the information, and the
output layer produces the final result [20].

They layers are created and connected together. When the network is asked to
solve a problem, it attempts to do so over and over, each time strengthening
the connections that lead to success and diminishing those that lead to failure.
An ANN is considered a tool for creating predictive modeling since it consist of
interconnected nodes that collectively learn complex patterns from data.

3.3 Deep Neural Network

A Deep Neural Network (DNN) is an extension of an Artificial Neural Network
(ANN) that includes more hidden layers between the input and output layers
than an ANN. These additional layers enable the network to learnmore complex
and abstract features in the data [42].
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DNNs are particularly useful for handling large and complex data sets, though
they require more computational resources and are prone to overfitting if not
properly regulated. Overfitting occurs when the model cannot generalize and
fits too closely to the training dataset instead.

Each neuron in a DNN performs a linear transformation on its inputs. With an
input vector 𝑥 , each neuron has a weight vector 𝑞 and a bias term 𝑏, the linear
transformation is represented as:

𝑧 = w𝑇 x + 𝑏 (3.1)

𝑧 = 𝑤1𝑥1 +𝑤2𝑥2 + ... +𝑤𝑛𝑥𝑛 + 𝑏 (3.2)

• 𝑧 represents the weighted sum of the inputs plus the bias.
• 𝑤𝑖 represents the weight associated with the 𝑖-th input.
• 𝑥𝑖 represents the 𝑖-th input from the previous layer.
• 𝑏 represents the bias term.

The formula 3.1 uses vector notation and is more favored when dealing with
high-dimensional data or the need to emphasize the operations in a general-
ized form. In this context, 𝑧 denotes the calculated value for a neuron prior to
the application of an activation function. This value is the sum of the products
of each input 𝑥𝑖 as the input vector, and its corresponding weight𝑤𝑖 that rep-
resents the invert of the weight vector, along with a bias term 𝑏. The operation
𝑤𝑇 is the dot product between the two vectors, which is a compact way of
expressing the weighted sum of the inputs.

Both formula achieve the same results, but formula 3.2 expands the vector
notation into its full scalar form. It sums the product of each weight𝑤𝑖 with its
corresponding input 𝑥𝑖 and then adds the bias 𝑏. This linear transformation is
performed across all neurons within a layer. In neural networks, vector notation
is used since it aligns with how these computations are implemented in libraries
like TensorFlow, which are optimized for vector and matrix operations.

3.3.1 Weights And Biases

In a Deep Neural Network, weights and biases are fundamental components
that determine how the input data is transformed and processed through the
network layers [62]. The components are described below:
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• Weights: These are the parameters within the network that are adjusted
during training. Each connection between neurons in different layers has
a weight associated with it. In a Deep Neural Network, weights represent
the strength or importance of the connection between neurons.

• Biases: A bias is an additional parameter in a Deep Neural Network
which is used along with the weighted sum of inputs to a neuron. It is
a constant value for each neuron that is added to the product of inputs
and weights before the activation function 3.3.11.

Weights and biases are learnable parameters of a Deep Neural Network, and
adjusted through the training process to minimize the difference between the
actual output of the network and the desired output. Effectively ’learning’ from
the training data. The appropriate tuning of weights and biases allows the
network to model complex relationships between inputs and outputs, making
accurate predictions [62].

Updating weights and biases involves:

• Forward Propagation: For each input, the network computes the output
by applying weighted sums and activation functions. During the forward
pass, each neuron computes its output which is mathematically is repre-
sented here 3.6.

• Loss Calculation: The difference between the network output and the
true value is calculated using a loss functions, the specific functions can
be found in section 3.3.14.

• Backpropagation: Begins after the loss has been computed, and involves
calculating the gradient, also known as the derivative, of the loss function
with respect to each weight and bias. This is achieved by applying the
chain rule of calculus, and its mathematical formula shown can be found
here 3.3.8.

• Gradient Descent: The weights and biases are updated in the direction
that reduces the loss. The optimization algorithm used is called Adam,
with its mathematical formulas found here 3.11.

3.3.2 Generalization

Generalization refers to the ability of a Neural Network to perform well on new,
unseen data, not just the data it was trained on. Generalization determines how
well the network can apply its learned knowledge to different scenarios.
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A model that generalizes well can accurately interpret and predict outcomes for
data that it has not yet encountered, indicating robustness and reliability.

Poor generalization, often due to overfitting, means the model performs well
on its training data but fails to predict accurately on new data. Achieving gen-
eralization is possible through regularization techniques known as L1- and L2
Regularization, dropout, and early stopping, to prevent overfitting. Generaliza-
tion can be achieved with using diverse and representative training data, and
with the use of cross-validation techniques to ensure the models performance
is consistent across different subsets of the data [10].

3.3.3 Regularization

Regularization techniques in Deep Neural Networks are strategies used to pre-
vent overfitting. Overfitting occurs when a model learns the training data by
capturing the underlying patterns and the random fluctuations, and performs
poorly on unseen data. The goal of regularization is to improve the model’s
generalization ability, ensuring it performs well on new, unseen data. Reg-
ularization is used to prevent overfitting by penalizing complex models and
encouraging the learning of simpler models that generalize better. Is is used
to improve generalization, by constraining the learning capacity of the model,
regularization ensures that the model does not learn the noise and specifics of
the training data but captures the underlying trends [63].

Common Regularization Techniques:

• L1 Regularization (Weight Decay): L1 regularization adds a penalty
equal to the absolute value of the magnitude of coefficients. It can lead
to sparse models where some weights become zero.

• L2 Regularization (Weight Decay): L2 regularization adds a penalty
equal to the square of the magnitude of coefficients. It encourages weight
values toward zero but not exactly zero.

3.3.4 Overfitting

In the context of Machine Learning, overfitting occurs when a model captures
the underlying patterns in the training data, and the noise and random data
fluctuations [44, 63]. This will result in a model that adapts to irrelevant details
and random error in the training set, while also learning the useful informa-
tion.
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An overfittedmodel may show excellent evaluation metrics on the training data,
but its evaluation results will significantly drop when it encounters real-world
data. This is because the real-world data will likely not have the same noise
characteristics as the training set. Overfitting can lead to misleading results
when making predictions about data, since it might make decisions based on
irrelevant features that happened to correlate with the target variable in the
training set but do not have a causal relationship.

Overfitting can occur due to different reasons listed below:

• Learning the Noise: In a dataset, there are generally two components,
the actual underlying pattern and random variations or errors (noise).
A model that is overfitting learns to reproduce these random variations
as if they were significant patterns.

• Too Complex Models: Overfitting is often a result of a model being too
complex relative to the simplicity of the data. Suchmodels have too many
parameters and are capable of learning intricate details and patterns.

• Loss of Generalization: The primary goal of a Machine Learning model
is to make accurate predictions on new, unseen data, known as gener-
alization. When a model is overfitted, it performs well on the training
data, because it has effectively memorized it, but fails to predict accu-
rately on new data because the intricate details it learned are specific to
the training set and don not apply to other data.

3.3.5 Dropout

Dropout is a regularization technique used in Neural Networks, particularly
Deep Neural Networks to prevent overfitting [10] Dropout is applied during
the training of a neural network and works by randomly "dropping out" or
deactivating a subset of neurons in a layer during a forward propagation, ef-
fectively making the network smaller. This randomness forces the network to
learn more robust features that are useful in conjunction with many different
random subsets of the other neurons.

The importance of Dropout is:

• Reduce Complexity: Dropout reduces the complexity of the model by
preventing units from collaborating. Since a neuron cannot rely on the
presence of other neurons, it outputa features that are generally useful.

• Learning Method: It simulates a powerful ensemble learning method,
similar to training a large number of neural networks with different ar-
chitectures in parallel.

• Scaled Down: During testing and in actual use, which is after training,
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dropout is not used; instead, the full network is utilized for performance.
The weights of the neurons are typically scaled down by the dropout rate
to balance the larger number of active neurons compared to the training
phase.

3.3.6 Early Stopping

Early stopping is a regularization technique used in training Deep Neural Net-
works to prevent overfitting. Early Stopping works by stopping training as soon
as the performance on a validation set starts to deterorate, rather than con-
tinuing to train until the iteration limit is reached. It involves monitoring the
model’s performance on a validation dataset during the training process. If
the model’s performance begins to reduce, which leads to the validation er-
ror starting to increase, it indicates that the model is starting to overfit to the
training data [60].

The primary goal of early stopping is to stop the training process at the point
where the model performs best on unseen data. By halting the training before
the model becomes too specialized to the training data, early stopping ensures
that the model maintains generalization capability, and making it capable of
performing well on new, unseen data.

3.3.7 Feedforward Neural Network

A Feedforward Neural Network (FNN) is a basic form of neural network where
connections between the nodes do not form a cycle [44]. It is comprised of an
input layer, one or more hidden layers, and an output layer, where information
moves in only one direction, forward, from the input nodes, through the hidden
nodes, and to the output node. Feedforward Neural Networks are often used
when the task involves a straightforward mapping of input to output, like in
regression task.

3.3.8 Backpropagation

Backpropagation is a technique for training feedforward Neural Networks. The
process begins by comparing the network’s predicted output with the desired
output, identifying inconsistency as an error rate. This error rate informs the
adjustment of weights for each neuron. Backpropagation systematically works
its way backward through the network, updating weights in each layer based
on the calculated error [23]
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Backpropagation computes the gradient of the loss function with respect to the
output of the network. It then proceeds to calculate gradients with respect to
the parameters (weights and biases) of each layer. Its mathematical formula is
shown here:

𝑑

𝑑𝑥
𝑓 (𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥)) · 𝑔′(𝑥) (3.3)

The output of each neuron is the result of applying an activation function 𝑓 to
the linear combination of inputs𝑔(𝑥), forming a composite function. The output
of each layer is a function of both the linear transformation and the subsequent
non-linear activation, so the gradient of the loss with respect to the weights
and biases contains derivatives of both these components. The forward and
backpropagation processes are repeated iteratively across multiple iterations
to minimize the loss function.

3.3.9 Forward Propagation

Forward propagation is the mechanism where a neural network processes input
data to generate predictions [23]. The input layer takes raw data, and each
neuron from the layer corresponds to one input feature. These inputs are then
transformed by a series of weighted sums and biases as they pass through the
network’s layers.

The general linear combination formula of inputs in forward propagation is:

𝑔(𝑥) =
∑︁
𝑖

(𝑤𝑖 · 𝑥𝑖) + 𝑏 (3.4)

Here,𝑤𝑖 are the weights, 𝑥𝑖 are the input values to the neuron, and 𝑏 is the bias.
This builds on the mathematical formula for backpropagation 3.3 with linear
transformation that occurs at each neuron in a layer of a neural network.

𝑓 (𝑔(𝑥)) (3.5)
This equation represents the application of an activation function 𝑓 to the
result of the linear transformation 𝑔(𝑥). The activation function named ReLU
3.8 is applied to introduce non-linearity, before the process continues across all
layers until reaching the output, where the network reaches its final prediction.
Forward propagation involves no learning, it is used only for inference learning
as it occurs during the backpropagation phase,which adjusts the network based
on prediction errors.
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This equation is specially for a layer 𝑙 in a neural network, and represents the
combined input to the neurons in layer 𝑙 after applying the weights and biases.
Each layer 𝑙 in a neural network a linear transformation is performed on its
inputs, and is represented as:

𝑧 (𝑙 ) =𝑊 (𝑙 )𝑎 (𝑙−1) + 𝑏 (𝑙 ) (3.6)

Where:

• 𝑧 (𝑙 ) is the input to the activation function in the 𝑙𝑡ℎ layer (weighted sum
of activations from the previous layer plus bias).

• 𝑊 (𝑙 ) is the weight matrix associated with the 𝑙𝑡ℎ layer.
• 𝑎 (𝑙−1) is the activation vector from the (𝑙 − 1)𝑡ℎ layer (outputs of the

neurons in the previous layer).
• 𝑏 (𝑙 ) is the bias vector for the 𝑙𝑡ℎ layer.

The results of the linear transformation 𝑧 (𝑙 ) is passed through a non-linear
activation function to produce 𝑎 (𝑙 ) , the output of layer 𝑙 .

3.3.10 Supervised Learning

Supervised learning is a Machine Learning model approach, that requires la-
beled input and output data during the training phase of the Machine Learning
model. The vast majority of available data is unlabelled and raw data. Su-
pervised Machine Learning is used to classify unseen data into established
categories and forecast trends and future change as a predictive model. A
model developed through supervised Machine Learning will learn to recog-
nize objects and the features that classify them. Supervised Machine Learning
models can predict outcomes from new and unseen data by learning patterns
between input and output data [4].

3.3.11 Activation Functions

The main purpose of an activation function is to introduce non-linearity into
the output of a neuron. This non-linearity allows the network to model complex
relationships in the data. Without non-linearity, a Neural Network, regardless
of howmany layers it has, would behave like a linear regression model, limiting
its ability to capture complex patterns. Activation functions in Neural Networks
are mathematical equations that determine the output of a Neural Network.
The function is attached to each neuron in the network and determines if the
neuron should be activated or not. This decision is based on the input of each
neuron and if the input is relevant for the model’s prediction [2].
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The formula of the activation function is:

𝑎 = 𝜎 (𝑧) (3.7)

where 𝜎 is the activation function.

To introduce non-linearity, an activation function 𝜎 is applied to the linear
transformation result 𝑧, of the linear transformation formula for Deep Neural
Networks, found here 3.1.

ReLU, which stands for Rectified Linear Unit, is a type of activation function
widely used in Deep Neural Networks. ReLU is computationally efficient be-
cause it involves simple thresholding at zero. The mathematical formula for
ReLU is:

ReLU(𝑓 𝑥) =𝑚𝑎𝑥 (0, 𝑥) (3.8)

The gradient of ReLU is constant for positive inputs, and therefor allows deeper
networks to be trained more effectively. The ReLU function and its derivative
are monotonic,which involves the function to return 0 if it receives any negative
input, andwhen it receives any positive value 𝑥 , it returns that value. As a result,
the output has a range of 0 to infinite. Since ReLu sets all negative values to
zero, a certain proportion of the neuron outputs will be zero, naturally leading
to sparsity in the hidden layers of the network [2].

3.3.12 Normalization

Normalization in Deep Neural Networks is a technique used to standardize
the inputs of neurons within a network layer [30]. It helps in stabilizing and
speeding up the training of Deep Neural networks. The most common form of
normalization is Batch Normalization (BN), and its formula is:

BN(x) = 𝛾
(

x − `
√
𝜎2 + 𝜖

)
+ 𝛽 (3.9)

• 𝑥 represents the input to the batch normalization layer.
• ` is the mean of the inputs in the batch.
• 𝜎2 is the variance of the inputs in the batch.
• 𝜖 is a small constant added for numerical stability (to avoid division by

zero).
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• 𝛾 and 𝛽 are parameters that the model learns.

After normalizing the inputs, 𝛾 scales and 𝛽 shifts them. The normalization
could limit the network’s ability to represent complex relationships, as it forces
the inputs to take a standard distribution. 𝛾 and 𝛽 restore this capability.

The impacts of normalization is described below:

• Inputs of a layer: Normalization adjusts the inputs of a layer so that they
have a mean of zero and a standard deviation of one. This is achieved by
subtracting the mean of the batch from each input and then dividing by
the standard deviation of the batch.

• Efficient training: This process makes the training more efficient by
reducing internal covariate shift, which involves the distribution of each
layer’s inputs change during training, slowing down the training process
and making it harder to tune hyperparameters.

• Batch Normalization: It is typically applied after a convolutional or fully
connected layer but before the activation function.

• Initialization: It helps in reducing the dependence on initialization, it
acts as a form of regularization, and can sometimes eliminate the need
for Dropout.

• Learning rates: It often allows for the use of higher learning rates, which
can further speed up training [30].

3.3.13 Optimization Functions

Optimization functions, are algorithms used in the training of Deep Neural
Networks to minimize or maximize, a given objective function, typically a loss
function. The loss function measures the difference between the predicted
output of the network and the actual output. The role of the optimizer is to
adjust the weights and biases of the network to reduce this loss [61].

Optimization functions determine how quickly and effectively a Deep Neural
Network learns from data, and can significantly speed up the training process
and improve the performance of the model. They ensure that the training pro-
cess converges, meaning that it reaches a point where additional training does
not significantly improve the model. Some are better at avoiding local minima
and plateaus, common challenges in training Deep Neural Networks.

Optimization functions influence the stability of the learning process and the
ability of the model to generalize from the training data to unseen data, and
help in avoiding overfitting, where the model performs well on training data
but poorly on new, unseen data.
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The optimization functions used in this thesis are:

• Adam (Adaptive Moment Estimation): which combines ideas from RM-
Sprop and Momentum. It calculates adaptive learning rates for each pa-
rameter and is often effective in practice.

• Stochastic Gradient Descent (SGD): Finds the model parameters that
correspond to the best fit between predicted and actual outputs. SGD
randomly picks one data point from the whole data set at each iteration
to reduce the computations enormously. Adam optimizer is the extended
version of stochastic gradient descent.

In the Stochastic Gradient Descent (SGD) optimization function:

\ = \ − [ · ∇\ 𝐽 (\ ;𝑥 (𝑖 ) , 𝑦 (𝑖 ) ) (3.10)

the terms represent the following:

• \ represents the parameters (weights) of the model.
• [ is the learning rate, which determines the step size during the opti-

mization process.
• ∇\ 𝐽 (\ ;𝑥 (𝑖 ) , 𝑦 (𝑖 ) ) is the gradient of the model’s loss function 𝐽 , evaluated

at the current parameter \ for a single data sample (𝑥 (𝑖 ) , 𝑦 (𝑖 ) ). This
gradient indicates the direction in which the model’s weights need to be
adjusted to minimize the loss.

Adam (Adaptive Moment Estimation), is an extension of SGD that combines
the advantages of RMSprop and Adagrad, and its optimization algorithm can
be viewed in 3.11

𝑚𝑡 = 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡 (3.11)
𝑣𝑡 = 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2) · 𝑔2𝑡 (3.12)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
(3.13)

𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
(3.14)

\ = \ − [
√
𝑣𝑡 + 𝜖

· �̂�𝑡 (3.15)

the terms represent the following:

• \𝑡 and \𝑡+1 represent the parameter vectors at time steps 𝑡 and 𝑡 + 1,
respectively.

• [ is the learning rate, which determines the step size during the opti-
mization process.
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• 𝑚𝑡 and 𝑣𝑡 are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients, respectively.

• �̂�𝑡 and 𝑣𝑡 are bias-corrected versions of𝑚𝑡 and 𝑣𝑡 .
• 𝛽1 and 𝛽2 are exponential decay rates for the moment estimates of𝑚𝑡

and 𝑣𝑡 , respectively.
• 𝑔𝑡 is the gradient at time step 𝑡 .
• 𝜖 is a small scalar used to prevent division by zero.

This thesis uses Adam since it adjusts the learning rate for each parameter
individually based on estimates of first and second moments of the gradients,
which means it scales the learning rate for each parameter dynamically.

This can be effective for complex models and datasets, and makes Adam per-
form well with objectives that are noisy or change over time. Adam does not
require a significant amount of memory, making it is advantageous when deal-
ing with large models or datasets.

3.3.14 Loss Functions

A loss function, in the context of Deep Neural Networks, is a mathematical
tool used to measure the performance of the model. It quantifies how well the
model’s predictions match the actual data by calculating the error or difference
between the predicted outputs of the model, and the actual target.

The goal of training a Deep Neural Network model is to minimize this loss [61].
This thesis uses the Mean Squared Error (MSE) optimization function, com-
monly used for regression problems, and its calculation is represented below
3.16:

Mean Square Error (MSE):

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (3.16)

Where 𝑛 is the total number of data points, 𝑦𝑖 is the actual value for the 𝑖𝑡ℎ
data point, in relation to this thesis it is measured as PPV. The 𝑦𝑖 is the model’s
prediction for the 𝑖𝑡ℎ data point,which is considered as the predicted PPV.

To achieve the best-fit regression line, the model aims to predict the target value
such that the error difference between the predicted value and the true value is
minimal, where the importance lies in updating the slope value a and intercept
value b, to reach the best value that minimizes the error between the predicted
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value and the true y value. The MSE was chosen based on the goal of the
thesis of creating a the Deep Neural Network, designed to perform a predictive
modeling task. A single-task model with a clear objective in predicting PPV,
benefits from the simplicity and direct focus of a single loss function.

Root Mean Square Error (RMSE)):

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (3.17)

Where 𝑛 is the total number of data points, 𝑦𝑖 is measured as PPV, 𝑦𝑖 is the
predicted PPV.

RMSE is a measure of the differences between values predicted by a model
and the values actually observed from the environment being modeled. RMSE
is a standard way to measure the error of a model in predicting quantitative
data. Lower RMSE values indicate better fit. However, it can be sensitive to
outliers.

MSE is similar to RMSE , but is the average of the squares of the errors, which
is the average squared difference between the estimated values and the actual
value. MSE is a risk evaluation metric corresponding to the expected value
of the squared error loss. The lower the MSE, the better the model’s perfor-
mance.

Mean Absolute Error (MAE):

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (3.18)

Where 𝑛 is the total number of data points, 𝑦𝑖 is measured as PPV, 𝑦𝑖 is the
predicted PPV.

MAE measures the average magnitude of the errors in a set of predictions,
without considering their direction. It is the average over the test sample of
the absolute differences between prediction and actual observation where all
individual differences have equal weight. MAE is considered less sensitive to
outliers when compared to RMSE and MSE.
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3.3.15 Coefficient of Determination (R-squared):

The Coefficient of Determination, also known R-squared or 𝑅2 is considered a
critical measurement when evaluating the performance of regression models,
including those used in deep learning. It is not a direct output like training
or validation loss, but provides a complementary perspective on model perfor-
mance.

R-squared is the proportion of the variance in the dependent variable that is
predictable from the independent variables. For Deep Neural Network models
this addresses regression tasks, such as predicting Peak Particle Velocity (PPV)
in mining operations.

R-squared is a statistical measure of how close the data are to the fitted regres-
sion line, and a higher 𝑅2 value indicates that a larger proportion of variance
in the dependent variable is explained by the model, which generally implies
a better fit to the observed data.

R-squared 𝑅2 serves as a measurement instrument of model accuracy, which is
considered useful for comparing the predictive performance of different models
or assessing the improvements in model performance after tuning parameters
or adding complexity.

Mathematically, R-squared is defined as:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

(3.19)

Where𝑛 is the total number of data points,𝑦𝑖 is measured as the actual observed
values of PPV, 𝑦𝑖 is the predicted PPV values predicted by the model, and 𝑦 is
the mean of measured PPVs of the observed data.

3.4 Related Work

Numerous related work have been conducted in applying artificial Artificial
Neural Networks (ANNs) and Machine Learning (ML) to mining operations,
demonstrating promising outcomes. These studies collectively contribute to
an evolving understanding of how ML techniques can optimize mining prac-
tices, particularly in blast-induced ground vibration prediction and operational
strategy optimization.
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This section provides an overview of various studies that have applied different
ML methods to mining. These methods range from simple regression models
to more complex like decision trees and ensemble methods.

A short description of the main findings and approaches, methodologies, al-
gorithms and results of these studies are summarized in table 3.4. A list and
description of the type of Machine Learning models and algorithms can be
found in 3.4.2. Researchers have used specific evaluation metrics to measure
performance, the amount of error in predictions, and howwell a model explains
the data it’s been given. These metrics are listed in the summarized studies 3.4,
but their mathematical formula with descriptions be found in section 3.3.14,
or the description of R-squared, 3.19, or section of the metrics used in related
work 3.4.1.

For readers seeking an in-depth analysis and a more thorough exploration of
each study, a detailed summary can be found in related work 3.4.3. These sum-
maries go into each study in more depth, describing their methods, models and
algorithms, their results and how the research contributes to the field.
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Summary of Related Work
Authors Year Study

Method
Algorithms
Used

Evaluation
Metrics

Location Results and Key Findings

Fissha,
Ikeda,
Toriya,
Adachi,
and
Kawa-
mura

2023 Compara-
tive Evalu-
ation

Bayesian
Neural
Network
(BNN),
Random
Forest,
Gradient
Boost-
ing, K-
Neighbors,
Decision
Tree

Root Mean
Square
Error
(RMSE),
Root (R),
Mean
Square
Error
(MSE)

Mikur-
ahana
quarry,
Japan

Bayesian Neural Network
(BNN) a directed probabilistic
graphical model, represent-
ing variables and conditional
dependencies via a directed
acyclic graph, here with 8 input
parameters and 100 datasets
from blasting outperformed
traditional ML methods in
predicting PPV. The nonlinear
structure and adaptability of
the BNN model enabled more
precise estimation of PPV [19].

Monjezi,
Ahmadi,
Sheikhan,
Bahrami
and
Salimi

2010 Predictive
Analysis

Mulitlayer
perception
Neural
Network
(MLPNN),
Radial
Basis Func-
tion Neural
Network
(RBFNN),
General
Regression
Neural
Network
(GRNN)

Root Mean
Square
Error
(RMSE),
𝑅2

Sarche-
shmeh
copper
mine,
Iran

Confirmed that Neural Net-
work architectures to predict
blast-induced ground vibrations
had good results. Mulitlayer
perception Neural Network
(MLPNN) was superior in pre-
dicting blast-induced ground
vibrations, with RMSE of 0.03,
𝑅2 of 0.954. Sensitivity anal-
ysis showed the influence of
distance from blast, number
of holes per delay, max charge
per delay was features that
impacted blast-induced ground
vibration [48].

Nguyen,
Bui, Tran,
Le, Do
and Hoa

2018 Predictive
Analysis

Artificial
Neural
Network
(ANN)

Root Mean
Square
Error
(RMSE), R-
squared/𝑅2

Coal
mine,
Vietnam

ANN with specific hidden layer
showed superior predictive ca-
pabilities, with RMSE of 0.738
and 𝑅2 of 0.964. Found single-
hidden-layer ANN models not
suitable due to inaccuracies
[52].

Hosseini,
Pour-
mirzaee,
Ar-
maghani,
and Sabri

2023 Predictive
Analysis

Artificial
Neural
Network
Ensemble,
EXGBoost

𝑅2 , Root
Mean
Square
Error
(RMSE),
Mean
Absolute
Error
(MAE),
Variance
Accounted
For (VAF),
Accuracy

Lead-
zinc
open-pit
mine,
Middle
East

EXGBoosts exhibited superior
performance in PPV prediction
compared to individual mod-
els. EXGBoosts is the implemen-
tation of gradient-boosting al-
gorithm to optimize ML mod-
els. The spacing parameter and
the number of blast-holes were
found to have the most and least
significant influences on PPV,
respectively [29].
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Samareh,
Khoshrou,
Shahriar,
Ebadzadeh
and Es-
lami

2017 Predictive
Analysis

Nonlinear
Regression
Analysis
(NLRA) ,
Artificial
Neural
Network
(ANN)

Correlation
Coefficient
(r)

Not
specified

Optimized nonlinear regression
analysis (NLRA) model outper-
formed ANN in terms of cor-
relation coefficient (0.854 for
NLRA vs 0.662 for ANN). The
optimized model demonstrated
a more favorable performance
in PPV prediction [57].

Nguyen,
Bui, and
Topal

2023 Predictive
Analysis

SONIA
with Meta-
heuristic
Algorithms

MAE,
RMSE,
MAPE, 𝑅2

Open-pit
coal
mine,
Vietnam

Manta Ray Foraging Optimiza-
tion (MRFO) - self-organizing
Neural Networks (SONIA)
model showed most accurate
predictions, lowest error rates
and highest reliability. SONIA
models with other algorithms
had lower performance [50].

Guo,
Zhao,
and Li

2023 Predictive
Analysis

PSO-
LSSVM,
GA-BP,
LSSVM, BP

Root Mean
Square
Error
(RMSE),
Mean
Absolute
Error
(MAE),
Corre-
lation
Coefficient
(r)

Not
specified

Introduces a novel hybrid
intelligent model for predicting
blast-induced ground vibrations
with particle swarm algorithm
(PSO) - least-squares sup-
port vector (LSSVM) model
excelled in predicting vibra-
tions with an RMSE of 1.954,
MAE of 1.717, and r value
of 0.965, demonstrated the
control of blast-induced vibra-
tions through two-objective
optimization [21].

Nguyen,
Bui, &
Topal

2023 Predictive
Analysis

SalSO-
ELM,
SpaSO-
ELM,
MFO-ELM

Accuracy Coc Sau
coal,
Vietnam

Sparrow Search Optimization
(SpaSO) - Extreme Learning
Machine (ELM) model achieved
the highest accuracy rate in
PPV prediction (91.4%). Other
hybrid models showed slightly
lower performance [51].

Nguyen,
Choi,
Bui, and
Nguyen-
Thoi

2019 Predictive
Analysis

PSO, GA,
ICA, ABC
optimized
SVR

R-squared,
Root Mean
Square
Error
(RMSE),
Mean
Absolute
Error
(MAE)

Limestone
quarry,
Vietnam

Genetic Algorithm-Support
Vector Regression-Radial Ba-
sis Function (GA-SVR-RBF)
model identified as the optimal
technique for PPV estimation,
showing superior performance
when combined with the SVR
model [53].
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3.4.1 Evaluation Metrics Used In Related Work

A variety of statistical evaluation metrics are used to evaluate the performance
of the models from related work, listed in the table 3.4. These evaluation met-
rics, including R-squared 3.19 and the evaluation metrics for loss functions,
Mean Square Error 3.16, Root Mean Square Error 3.4.3 and Mean Absolute
Error 3.18, each offer unique insights into different aspects of model perfor-
mance.

The evaluation metrics measures the error between predicted and actual values
and the correlation and determination strength of models. These evaluation
metrics is used for interpreting model results, guiding the selection of appro-
priate modeling techniques, and optimizing predictive accuracy. This section
provides a concise overview of some of the key evaluation metrics employed
in this modeling research.

Variance Accounted For (VAF): is an evaluation metric for assessing the per-
formance of a model, by measuring the proportion of variance in the dependent
variable that can be predicted from the independent variable(s). VAF is a mea-
sure of explanatory power, similar to R-squared.

VAF = 100 ×
(
1 − Var(𝑦𝑖 − 𝑦𝑖)

Var(𝑦𝑖)

)
(3.20)

VAF indicates the proportion of variance in the observed data that is explained
by the model. Higher values indicate better model performance, where a high
VAF indicates that the model explains a large portion of the variance in the
data. It is similar in interpretation to Coefficient of Determination (𝑅2 ).

VAF was used in the research by Hosseini et al. in 2023 on a Zinc open-pit
mine in the Middle East. The research description and results be found in
the Summary of Related Work 3.1, or in depth in the Related Work section
3.4.3.

Mean Absolute Percentage Error (MAPE): s not typically classified as a loss
function, but as an accuracy measure, often used in time series analysis. MAPE
represents the average of the absolute percentage errors between the predicted
and actual values.

MAPE =
100%
𝑛

𝑛∑︁
𝑖=1

����𝑦𝑖 − 𝑦𝑖𝑦𝑖

���� (3.21)
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MAPE measures the size of the error in percentage terms. It is calculated as
the average of the absolute errors divided by the actual values, expressed as
a percentage. MAPE is scale-independent and can be used to compare fore-
casts across different data scales. It has the disadvantage of being infinite or
undefined if there are any zero values in the actual data.

MAPE was used in the research by Nguyen, Bui and Topal in 2023, in an open-
pit coal mine in Vietnam. The research description and results be found in
the Summary of Related Work 3.1, or in depth in the Related Work section
3.4.3.

Accuracy: Accuracy is defined as the ratio of correctly predicted instances to
the total number of instances, and is a good measure when the classes are
well-balanced. It can be misleading in the presence of imbalanced classes. In a
case where 90% of the data belongs to one class, a model could achieve 90%
accuracy by simply predicting that class for all instances, and would not lead
to a informative model.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(3.22)

Accuracy is generally used to describe the closeness of a measurement to the
true value. It is a measure of how well a model correctly identifies or excludes
a condition. However, it can be misleading if the class distribution is imbal-
anced.

Research by Hosseini et al. in 2023, and Nguyen, Bui and Topal in 2023 used
this evaluation metric, and the description can be found in the summarized
table for Hosseini her 3.1 or in depth here 3.4.3, or summarized for Nguyen,
Bui and Topal here 3.1, or more in depth in 3.4.3.

Correlation Coefficient (r): In Deep Neural Networks, the correlation co-
efficient is useful in regression tasks or to measure the strength of a linear
relationship between predicted values and true values. It measures how well
the variation in one variable predicts the variation in another. This evaluation
metric is informative in cases where the model output is continuous.

𝑟 =
Cov(𝑋,𝑌 )
𝜎𝑋𝜎𝑌

(3.23)

Correlation Coefficient measures the strength and direction of a linear relation-
ship between two variables. Ranges from -1 to 1, where a value close to 1 implies
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a strong positive correlation, while a value close to -1 implies a strong negative
correlation. A value around 0 implies little or no linear correlation.

Research by Samareh et al. in 2017 used this evaluation metric, and the de-
scription of methods, algorithms and results can be found summarized in the
table here 3.1, or in depth here 3.4.3.

3.4.2 Algorithms Used In Related Work

Various algorithms and methods have been employed to analyze and predict
data in related work. These algorithms contribute significantly to the accuracy
and efficiency of the models. The summary below provides an overview of the
key algorithms from the research 3.4 that has been the basis of this thesis.

The explanations in the table aims to describe the concepts and highlight the
practical applications of each algorithm, in relation to related work.

Model Abbreviation Description
Bayesian
Neural
Network

BNN Combines Neural Networks with Bayesian statistics. In BNN, the
weights are assumed to be random variables with specific probabil-
ity distributions, rather than fixed values. This allows for estimating
uncertainty in predictions, providing a probabilistic interpretation
of model outputs which is crucial in applications where understand-
ing the confidence in predictions is as important as the predictions
themselves [19].

Random
Forest

RF An ensemble learning method using multiple decision trees during
training and outputs the mode of the mean prediction of the indi-
vidual trees. It improves predictive accuracy and controls overfitting
by averaging various trees [19].

Gradient
Boosting

GD Is a Machine Learning technique for regression and classification
tasks, which constructs a predictive model in a stage-wise fashion
as an ensemble of weak prediction models, typically decision trees.
It optimizes a loss function by iteratively adding new models that
adress the shortcomings of the existing model ensemble, effictively
reducing erros through gradient descent [19].

Decision
Tree

DT Constructs a tree-like model, where each internal node represents
a test on an attribute, each branch represents the outcome of the
test, and each leaf node represents a class label or value, depending
on tasks being classification or regression [19].

k-Nearest
Neighbors

k-NN Is a simple, yet effective, Machine Learning method used for both
classification and regression. It operates by identifying the 𝑘 nearest
data points to a given input point and makes predictions based on
the majority label (for classification) or the average of the labels
(for regression) of the neighboring points [19].
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Multi-Layer
Perception
Neural
Network

MLPNN Is a type of feedforward Artificial Neural Network that consists of
multiple layers, including input, hidden, and output layers. It works
by processing inputs through these layers using weighted connec-
tions and non-linear activation functions, enabling it to learn com-
plex patterns and relationships in data for tasks like classification
and regression [48].

Radial Basis
Function
Neural
Network

RBFNN Is a type of Artificial Neural Network that uses radial basis func-
tions as its activation functions, good for function approximation
and time-series prediction by mapping inputs to higher-dimensional
spaces, where it becomes easier to linearly separate data for analysis
[48].

General
Regression
Neural
Network

GRNN Is a type of Neural Network that specializes in regression tasks,
closely related to Radial Basis Function networks. GRNN can be
used for regression, prediction, and classification. It operates by
estimating continuous variables, making it highly effective for real-
time prediction and learning tasks [48].

Artificial
Neural
Network
Ensemble

ANN Ensem-
ble

An ensemble can be considered a learning technique where many
models are joined to solve a problem, because an ensemble tends
to perform better than singles improving the generalization ability.
ANN Ensemble combines multiple ANN models to enhance predic-
tive performance by combining the predictions frommultiple Neural
Network models to reduce the variance of predictions and reduce
generalization error [29].

Extreme
Gradient
Boosting

XGBoost An optimized gradient boosting technique, efficient in handling
large datasets. It works by sequentially adding predictors to an
ensemble, each one correcting its predecessor, and employs sophis-
ticated regularization techniques to control overfitting [29].

Nonlinear
Regression
Analysis

NLRA A form of regression analysis where data is fit to a model and ex-
pressed as a mathematical function that uses a generated line to fit
an equation to some data. The sum of squares is used to determine
the fitness of a regression model, which is computed by calculating
the difference between the mean and every point of data [57].

Self-
Organizing
Neural
Network
Intelligence
Algorithm -
Metaheuris-
tic

SONIA
with Meta-
heuristic
Algorithms

This hybrid approach combines the adaptability of SONIA with the
optimization power of metaheuristic algorithms. SONIA, as a Neural
Network, learns from data by adjusting its structure and weights
based on input patterns, enhancing its ability to recognize complex
patterns and relationships. The integration with metaheuristic al-
gorithms, aids in fine-tuning the Neural Network’s parameters and
structure for optimal performance. This combination is particularly
effective in solving complex prediction and optimization problems
where conventional methods might struggle, making it suitable for
predictive modeling in various fields [50].

Particle
Swarm
Optimiza-
tion - Least
Squares
Support Vec-
tor Machine

PSO-LSSVM PSO is a metaheuristic optimization algorithm inspired by the so-
cial behavior of birds, used to optimize a problem by iteratively
improving a solution based on a simple movement and velocity up-
date rules. LSSVM is a variant of the Support Vector Machine, a
ML method used for classification and regression tasks, which mini-
mizes an objective function composed of a regularized least squares
term. With PSO-LSSVM, the PSO optimizes the hyperparameters of
the LSSVM, such as the penalty parameter and the kernel param-
eters, ensuring the model achieves the best possible performance
[53].
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Genetic
Algorithm -
Backpropa-
gation

GA-BP Merges Genetic Algorithms with Backpropagation to optimize NN
training. Genetic Algorithms are optimization techniques inspired
by the process of natural selection. In GA-BP, the GA is used to
optimize the initial weights and structure of a NN, which is then
further refined through the Backpropagation algorithm, a standard
method for training NNs by adjusting weights in the network to
minimize error [53].

Sparrow
Search Op-
timization
- Extreme
Learning
Machine

SpaSO-ELM Integrates the SpaSO algorithm with an ELM framework, where
SpaSO is inspired by the foraging behavior of sparrows, used to op-
timize complex problems by simulating their social behavior and
communication strategies. It is employed to determine the opti-
mal parameters and weights of the ELM, a type of feedforward NN
known for its fast learning speed and simplicity, which does not
require iterative tuning of the weights. This hybrid effectively en-
hances performance and accuracy [51].

Moth-
Flame Op-
timization
- Extreme
Learning
Machine

MFO-ELM Uses Moth-Flame Optimization algorithm to fine-tune parameters
and weights of the Extreme Learning Machine framework, a fast
and efficient type of Neural Network. The MFO algorithm, inspired
by the navigation method of moths in nature. This integration en-
hances the ELM’s ability to rapidly train and make accurate predic-
tions, making MFO-ELM suitable for tasks like pattern recognition,
classification, and regression in various complex applications [51].

Particle
Swarm Opti-
mization

PSO Is a computational method inspired by the social behavior of birds
and fish, that optimizes problems by iteratively moving individual
particles (potential solutions) within the search space towards the
best found positions, combining personal bests with the group’s
overall best to find optimal solutions efficiently [53].

Genetic
Algorithm

GA Is an optimization technique based on the principles of natural se-
lection and genetics, that works by creating a population of poten-
tial solutions, then iteratively applying operations like selection to
evolve the solutions towards an optimum [53].

Imperialist
Competitive
Algorithm

ICA A socio-politically inspired algorithm, where each potential solution
is represented as an "empire", that compete for dominance, and over
time, the algorithm iteratively evolves and reorganizes the empires
to improve the quality of the solutions [53].

Artificial
Bee Colony
Optimized
- Support
Vector
Regression

ABC-SVR The ABC simulates the foraging behavior of honey bees. With a pop-
ulation of food positions, the artificial bees modify these positions
over time by using computational agents called honeybees to find
the optimal solution. The SVR works by finding a hyperplane that
best fits the data while minimizing the margin of error. ABC helps
fine-tune these hyperparameters to achieve the best regression re-
sults. The combination of ABC and SVR allows for the automatic
tuning of SVR’s hyperparameters [53].
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3.4.3 Related Work Detailed

This section provides a more detailed understanding of the methodologies,
statistical evaluations, and implications of the findings in the numerous studies
that have been conducted in the realm of artificial Artificial Neural Networks
and Machine Learning applied to mining operations.

Fissha, Ikeda, Toriya, Adachi, and Kawamura’s (2023) study conducted a com-
prehensive evaluation of predictive models, and found that using Neural Net-
work outperformed traditional methods [19]. Their research aimed to predict
blast-induced ground vibration of the Mikurahana quarry located in Japan,
by comparing Bayesian netural network (BNN) with four Machine Learning
techniques, namely gradient boosting, k-neighbors, decision tree, and random
forest. Their results revealed that the BNN model outperformed the traditional
Machine Learning regression analyses.

Their BNN model had eight input parameters, one output, used with one hun-
dred datasets from blasting, and assessing their performance using various
evaluation metrics such as Root (R) 3.4.3, Root Mean Suare Error (RMSE) ,
and Mean Square Error (MSE) 3.18. Their BNN model’s nonlinear structure
and adaptability found to enable more precise estimation of PPV parameters
compared to traditional methods [19].

Another research by Monjezi, Ahmadi, Sheikhan, Bahrami and Salimi (2010)
confirmed that using Neural Network architectures to predict blast-induced
ground vibrations had good results. Their research was carried out in Sarchesh-
meh copper mine located in Iran, with different input parameters named "dis-
tance from the blasting location", "maximum charge per delay", "burden to spac-
ing ratio", "number of holes per delay", for prediction PPV as output parameter.
The performance of each Neural Networkmodel was evaluated using coefficient
of determination (𝑅2 ) and root-mean-square of errors (RMSE) 3.4.3. Their ar-
chitecture consisted of multi layer perception Neural Network (MLPNN), radial
basis function Neural Network (RBFNN) and general regression Neural Net-
work (GRNN), and the MLPNN came out as the superior performer [48].

In support of this assertion, statistical evaluation metrics such as the root mean
square error (RMSE) 3.4.3 and the coefficient of correlation (𝑅2 ) were de-
termined to be 0.03 and 0.954, respectively. In general, an RMSE value closer
to 0 indicates a better fit. However, the context is essential; the acceptability
of this error margin heavily depends on the scale of data and the problem
domain. In relation to blast vibrations predictions in mining engineering, a
deviation of 0.03 is considered very precise, given that the measurements can
vary widely and are influenced by numerous factors. A coefficient of correlation
of 0.954 suggests that the model does an excellent job of predicting the real-
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world values. Additionally, through sensitivity analysis, it was established that
factors influencing blast-induced ground vibration during blasting operations
encompassed the distance from the blast, the number of holes per delay, and
the maximum charge per delay [48].

Another study using Artificial Neural Network by Nguyen, Bui, Tran, Le, Do
and Hoa (2018) looked into the predicament of PPV by employing a series of
ANN models to forecast blast-induced PPV in an open-pit coal mine located in
Vietnam [52]. The dataset comprised data from 68 blasting events, where the
operations were recordedwith three parameters known as "maximum explosive
charge per delay", "monitoring distance", and blast-induced ground vibration
(PPV), with five distinct ANN models were developed in this investigation. The
performance assessment relied on evaluation metrics such as the root-mean-
squared error (RMSE) 3.4.3 and determination coefficient (𝑅2 ). Remarkably,
the ANN characterized by 10 neurons in the first hidden layer, 8 neurons in
the second hidden layer, and 5 neurons in the third hidden layer, exhibited
superior predictive capabilities.

The RootMean Squared Error (RMSE) 3.4.3 is one of the twomain performance
indicators for a regression model, which measures the average difference be-
tween values predicted by a model and the actual values. RMSE provides an
estimation of how well the model is able to predict the target value (accuracy)
3.22. This study resulted in an RMSE of 0.738, and 𝑅2 had 0.964.

The conclusion research emphasizes that the number of parameters does not
reflect all characteristics of the data, and suggest that further research should
consider using Neural Network with many hidden layers. Nguyen et al. (2018)
found that single-hidden-layer ANN models are not suitable for PPV prediction
due to their failure to capture the data set’s underlying characteristics, leading
to forecasting inaccuracies [52].

Another research using artificial Neural Networks by Hosseini, Pourmirzaee, Ar-
maghani, and Sabri (2023) harnessed Machine Learning ensemble techniques
in their investigation conducted at one of the Middle East’s largest lead-zinc
open-pit mines to predict blast-induced ground vibration. [29] Their research
centered on Peak Particle Velocity (PPV) prediction in surface mining opera-
tions, employing two ensemble systems: an ensemble of artificial Neural Net-
works (ANN) and an ensemble of extreme gradient boosting (EXGBoosts) for
PPV prediction [29].

XGBoost, an artificial intelligence technique represents a method in the field of
Machine Learning, that works by combining the predictions of multiple weak
models, typically decision trees, into a single strong predictive model. It does
this through a process of iterative model building and optimization, where each
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decision tree added to the ensemble corrects the errors of the previous ones,
gradually improving the model’s accuracy. By using a dataset of 162 blasting
records and seven influential parameters, Hosseini et. al. (2023) enabled mul-
tiple ANNs and XGBoost base models to be developed, each characterized by
distinct architectural configurations. Subsequently, performance evaluation re-
lied on validation indices, including the coefficient of determination (𝑅2 ), root
mean square error (RMSE) 3.4.3, mean absolute error (MAE) 3.18, variance
accounted for (VAF) 3.20, and accuracy 3.22, applied to assess the base models’
effectiveness.

The top five performing base models were selected to construct ensemble mod-
els for both ANN and XGBoost methods. These ensemble models were then
integrated using the stacked generalization technique to generate a unified
prediction [29]. The outcomes of the study underscore the efficacy of ensem-
ble models in enhancing the accuracy of PPV prediction compared to indi-
vidual models. Among the various methods explored, EXGBoosts exhibited
superior performance in PPV prediction. Furthermore, a sensitivity analysis
elucidated that the spacing parameter and the number of blast-holes exerted
the most significant and least significant influences on PPV intensity, respec-
tively [29].

In another research using an Artificial Neural Network by Samareh, Khoshrou,
Shahriar, Ebadzadeh and Eslami (2017), an initial step involved the identifica-
tion of four out of eleven blasting and geo-mechanical parameters of rockmasses
that exerted the most substantial influence on vibrational wave velocities [57].
This selection was accomplished through rigorous regression analysis. Subse-
quently, models were devised for PPV prediction using both nonlinear regres-
sion analysis (NLRA) and Artificial Neural Network (ANN) techniques, yielding
correlation coefficients (r) 3.23 of 0.854 and 0.662, respectively [57].

The correlation coefficient (r) of 0.854 suggests a strong positive linear rela-
tionship between the predicted values and the actual values of PPV, and implies
that the model predicts PPV with high reliability. The ANN model has a cor-
relation coefficient (r) of 0.662, which indicates a moderate positive linear
relationship.

Furthermore, the coefficients associated with the parameters in the NLRA
model were fine-tuned through an optimization process employing the parti-
cle swarm-genetic algorithm. To assess the accuracy and performance of the
developed models, PPV values were estimated for an additional dataset con-
sisting of 18 test cases. The evaluation, based on statistical indices for the test
data, revealed that the optimized model outperformed the other two models,
offering more precise PPV predictions. Notably, the optimized nonlinear model
demonstrated a more favorable performance, as evidenced by a correlation
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coefficient (r) of 0.75, in comparison to the other two models [57].

Another study done by Nguyen, Bui, and Topal (2023) aimed at presenting a
method for predicting blast-induced ground vibration in open-pit mines, fo-
cusing on the application of self-organizing Neural Networks (SONIA) in con-
junction with metaheuristic algorithms [50] To enhance the accuracy of the
SONIA model, various metaheuristic algorithms, including Manta Ray Forag-
ing Optimization (MRFO), Hunger Games Search (HGS), Aquila Optimization
(AO), and Naked Mole-Rat Algorithm (NMRA), were employed. Additionally,
the k-fold cross-validation technique was leveraged to identify optimal algo-
rithm parameters, subsequently facilitating model retraining for the prediction
of blast-induced ground vibration [50].

The study’s effectiveness was assessed through a case study involving an open-
pit coal mine in Vietnam, encompassing 288 blasting events. Results indicated
that SONIA, owing to its self-organizing structure, was well-suited for predict-
ing blast-induced ground vibration, even when dealing with a limited dataset
featuring intricate relationships. However, the SONIA model’s accuracy could
be further improved through optimization with the selected metaheuristic al-
gorithms. Among these, the MRFO-SONIA model emerged as the most reliable
and accurate, exhibiting the lowest error rates (MAE = 0.379, RMSE = 0.453,
MAPE = 0.08) and the highest reliability (𝑅2 = 0.896). These results indicates
a high level of accuracy, and good predictions with a low value of MAE. MAPE
3.21 represents the average absolute percent error for each prediction, and with
a value of 0.08 suggests that the model’s predictions are off by 8 percent on
average, indicating a reasonable result in a complex domain. The model seems
to have a high 𝑅2 , indicating strong predictive power.

In contrast, the HGS-SONIA, AO-SONIA, and NMRA-SONIA models demon-
strated comparatively lower performance, with MAE values of 0.455, 0.500, and
0.492, RMSE values of 0.552, 0.603, and 0.580, MAPE values of 0.100, 0.112,
and 0.111, and 𝑅2 values of 0.845, 0.815, and 0.829, respectively. These findings
underscore the potential of metaheuristic-based SONIA models in enhancing
the prediction of blast-induced ground vibration in open-pit mines, with poten-
tial applications extending to various mining operations where the prediction
of vibrations or other adverse effects resulting from specific mining activities
is essential [50].

Research by Guo, Zhao, and Li (2023) underscore the significance of predic-
tion and parameter optimization as effective tools for mine personnel to man-
age blast-induced ground vibrations. [21] However, the inherent complexity of
open-pit blasting, characterized by numerous influencing factors and effects,
poses a challenge to achieving accurate prediction and optimization. To ad-
dress this challenge, the study by Guo, Zhao and Li introduces a novel hybrid
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intelligent model for predicting blast-induced ground vibrations. This model
combines a least-squares support vector machine (LSSVM), optimized by us-
ing a particle swarm algorithm (PSO). Meanwhile, a multi-objective particle
swarm optimization (MOPSO) approach is employed to optimize blast design
parameters, taking into account specific site conditions and the desired bulk
fragmentation rate [21].

To evaluate the predictive performance of the PSO-LSSVM model, a compar-
ative analysis is conducted against alternative methods, including a genetic-
algorithm-optimized BP Neural Network (GA-BP), an unoptimized LSSVM, and
a conventional BP model, all utilizing the same dataset. Performance assess-
ment relies on key evaluation metrics such as the root-mean-squared error
(RMSE) 3.4.3, mean absolute error (MAE) 3.18, and correlation coefficient (r)
3.23. Moreover, the study verifies the optimization results for blast parameters
through practical field tests [21].

The findings reveal that the PSO-LSSVM model excels in efficiently predicting
vibrations, exhibiting an RMSE of 1.954, MAE of 1.717, and an r value of 0.965.
Additionally, this study demonstrates the potential for controlling blast-induced
vibrations by employing a two-objective optimization model to determine op-
timal blast parameters [21].

Nguyen, Bui, and Topal (2023) conducted a study with the objective of pre-
dicting blast-induced ground vibration intensity resulting from mine blasting,
specifically focusing on Peak Particle Velocity (PPV). . To achieve this goal, they
developed three innovative intelligent models utilizing a combination of meta-
heuristic algorithms and the Extreme Learning Machine (ELM) model, namely
Salp Swarm Optimization-ELM (SalSO-ELM), Sparrow Search Optimization-
ELM (SpaSO-ELM), and Moth-Flame Optimization-ELM (MFO-ELM). These
models leveraged the distinct optimization mechanisms of SpaSO, SalSO, and
MFO algorithms to refine the weights of the ELM for PPV prediction [51].

The study’s performance assessment involved the utilization of 216 blasting
records, with corresponding PPV measurements obtained from the Coc Sau
open-pit coal mine located in North Vietnam. Differing activation functions
for the ELM model were employed in configuring the algorithms’ parameters.
Additionally, to gauge the improvements introduced by SpaSO-ELM, SalSO-
ELM, and MFO-ELM models, the researchers also examined and evaluated
the standalone ELM alongside two empirical models (linear and nonlinear)
[51].

The study’s outcomes underscored the potential of nonlinear models for PPV
prediction, with the ELM-based models demonstrating robust capabilities in
modeling the dataset’s nonlinear relationships. Practical engineering valida-
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tion further reinforced these findings, revealing that the SpaSO-ELM model
emerged as the most accurate intelligent model for PPV prediction, achieving
an accuracy rate of 91.4%. The remaining hybrid models exhibited slightly
lower performances, falling within the range of 89.8% to 90.5%. Despite the
improved predictive performance of nonlinear empirical models compared to
linear models, their accuracy still lagged significantly behind the proposed hy-
brid intelligent models [51] Consequently, the metaheuristic-based ELMmodels
optimized in this study are considered highly reliable tools for predicting blast-
induced ground vibration intensity in open-pit mines, thereby enhancing the
safety of the surrounding environment [51].

In a study conducted by Nguyen, Choi, Bui, and Nguyen-Thoi (2019), blast-
induced ground vibration(PPV), was quantified through the utilization of vi-
bration sensors with the use of an empirical dataset of 125 blasting records
collected and analyzed at a limestone quarry located in Vietnam [53]. Various
evolutionary algorithms were systematically evaluated to predict PPV, encom-
passing the Particle Swarm Optimization (PSO) algorithm, Genetic Algorithm
(GA), Imperialist Competitive Algorithm (ICA), and Artificial Bee Colony (ABC).
These evolutionary algorithms were employed to optimize the Support Vector
Regression (SVR) model, leading to the development of four hybrid models
[53]. To assess and compare the performance of the developed models, various
statistical evaluation metrics including R-squared, Root Mean Square Error
(RMSE)3.4.3, and Mean Absolute Error (MAE) 3.18 were employed. The find-
ings underscored the superior performance of the GA algorithmwhen combined
with the SVR model for addressing the specific problem at hand. Furthermore,
the Radial Basis Function (RBF) kernel function emerged as the most effec-
tive choice for the GA-SVR model. Consequently, the GA-SVR-RBF model was
identified as the optimal technique for accurate PPV estimation [53].





4
Methods And
Methodologies

The aim of this chapter is to offer an understanding of the chosen methods and
methodologies chosen for this thesis. The methodology section will adhere to
the framework described in Anne Håkansson’s work, "The Portal of Research
Methods and Methodologies" [22], which serves as a guiding framework for
structuring and presenting the research methods utilized in this study.

The methodological framework presents the use of inductive reasoning to de-
velop neural network models from data patterns, and deductive reasoning to
test hypotheses on blast features and PPV. The chapter underscores the rigor-
ous data collection from blasting events, ensuring data quality and privacy. The
platforms and libraries used in creating the deep neural network is described,
detailing the workflow from data handling to model training.

The chapter wraps up by emphasizing the iterative development process of the
research, which includes problem definition, model design, empirical testing,
and continuous refinement. This process culminates in a predictive model
aimed at enhancing efficiency and safety in mining operations.

55
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4.1 Methodological Framework

The methodological framework of this thesis is based on Anne Håkansson’ work,
"The Portal of Research Methods and Methodologies." [22] This work offers
a complete guide to the selection of research methods, providing a structural
navigation in methodological choices available.

The selection process of method involves exploring each layer of the portal,
from philosophical assumptions to presentationmethods, ensuring a theoretical
understanding and practical application of at least one method from each layer
before progressing to the next. The portal categorizesmethods into quantitative
and qualitative research, and offers a visual representation to assist the selection
process, shown in Figure 4.1. This categorization has been significant in the
current thesis’s mixed-methods approach, allowing for a balanced integration
of both quantitative data analysis and qualitative insights.

The portal acknowledges the dynamic nature of research by recognizing a spec-
trum of methods that lie between qualitative and quantitative approaches. The
portal’s framework supports the use of triangulation in the research of this
thesis, by employing both qualitative and quantitative methods in a comple-
mentary way.

Figure 4.1: Portal of research methods and methodologies [22].

4.2 Research Methods

Research methods encompass the systematic approaches and techniques used
to gather, analyze, and interpret data for the purpose of conducting research and
answering research questions. This thesis uses a mixed method research which
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is a combination of qualitative and quantitative research methods. This combi-
nations of methods is a comprehensive approach that integrates the strengths
of both qualitative and quantitative methodologies to provide a more complete
understanding of a research problem.

This integrative approach, known as triangulation, enhances the credibility and
validity of the research findings. Typically, each research method is applied
sequentially within the triangulation framework. Additionally, it recognizes
a range of intermediate methods between these, allowing for flexibility in
research selection [22].

4.2.1 Quantitative and Qualitative Research Methods

The left side of the portal includes quantitative research methodologies, which
is objective and designed to facilitate empirical investigations through the
systematic quantification of variables. Typically beginning with a theoretical
framework, this approach investigates data to affirm or challenge the initial the-
ory. Quantitative research involves collecting data through structured means,
such as surveys and tests or leveraging existing data sets, where the analysis
phase employs statistical, mathematical, or computational techniques. Find-
ings from this approach are often presented as statistical models, graphical
representations, and tables, providing a visual and numerical synthesis of the
research outcomes [22].

The right side is dedicated to qualitative research methods. These are inher-
ently subjective, exploratory, and descriptive, favoring an investigative stance
that often deals with smaller, more focused data sets. These methods are de-
signed for generating new theories or the crafting of artifacts. The essence
of qualitative research is to explore underlying meanings, concepts, and de-
tailed descriptions of the subject matter. Data is gathered via less structured
means, including interviews, direct participation, or observation, allowing for
a rich, in-depth perspective. Analysis within this realm is centered on selec-
tive emergent patterns and constructing narratives. Consequently, the results
of qualitative research are viewed as conceptual frameworks, comprehensive
theories, or detailed descriptive accounts [22].

This thesis involves testing a system with a larger data set, and to create an
artifact, with the goal to impact the surrounding environment, which includes
both qualitative and quantitative research methods. This requires a literature
study and a planning of project to reach the desired outcome, and to achieve
expected results.

In relation to this thesis, the essence of the quantitative approach is the pre-
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dictive model itself. Since quantitative research is a systematic approach used
to investigate and analyze phenomena through the collection and analysis of
numerical data, the predictive model can be considered as a numerical tool that
uses quantitative data to generate quantifiable predictions. The quantitative
and qualitative research methods in relation to this thesis will be explained in
detail in Research Approach.

4.3 Research Approach

Research methodologies are often defined as "the search of knowledge" or "sys-
tematic investigation to establish facts", and often employ various approaches
to draw valid conclusions. In the realm of research and scientific inquiry, two
fundamental methods of reasoning are often employed: inductive and deduc-
tive approaches. These methods represent different pathways of understanding
and interpreting data and phenomena, with inductive and deductive reasoning
being among the most frequent [22].

This thesis involve both inductive and deductive reasoning at different stages.
The analyzing of data and identification of patterns relies on inductive rea-
soning, while the application of the model to make predictions and validate it
against a test test, employed deductive reasoning.

4.3.1 Inductive Approach

Inductive reasoning is an approach that begins with specific observations or
real instances and progresses towards broader generalizations and theories,
with the aim to construct general theories based on specific observations. Typ-
ically employed with qualitative methods, an inductive approach collects and
analyzes data to understand a phenomenon from multiple perspectives. Out-
comes are rooted in behaviors, opinions, and experiences, and the data must
be robust enough to elucidate the underlying patterns or requirements for a
given artifact [22].

In the context of data analysis and machine learning in this thesis, inductive
reasoning is central to the model development. Neural networks are consid-
ered inductive, as they learn from specific instances, known as data points,
to generalize, identify patterns and make predictions about unseen data. The
development of the deep learning model can be seen as inductive reasoning.
Starting with specific observations with data collected from various blasting
operations, and feeding this data into a neural network, the model is allowed
to distinguish patterns and relationships between the variables. The model’s
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ability to predict PPV for new sets of inputs is based on the generalizations it
has formed during training, which is the essence of inductive reasoning.

4.3.2 Deductive Approach

The deductive approach is a top down approach that seeks to validate or inval-
idate predefined hypotheses. This is achieved through rigorous testing, usually
relying on quantitative methods and extensive data sets. Deductive approach
starts with a general statement or hypothesis, which must be operationally de-
fined andmeasurable, specifying expected outcomes and the variables under re-
search. The end result should offer generalizations grounded in collected data,
and provide explanations for causal relationships between variables [22].

In the context of this thesis, deductive reasoning was employed to test a hy-
pothesis using a general model that describes the relationship between various
features and Peak Particle Velocity (PPV). Before training the neural network,
it was hypothesized that a machine learning model would outperform the cur-
rent industry-standard model in predicting blast-induced ground vibration.
This hypothesis was examined by training the model with the dataset to see if
the predictions corresponded with the anticipated outcomes. Specific feature
data inputs to the neural network facilitated the generation of PPV predic-
tions. Additionally, the implementation of regularization techniques, guided by
general principles of machine learning, was incorporated as part of the deduc-
tive reasoning process. The deductive nature of the research was highlighted
when using the model’s predictions to either confirm or disprove the initial
theory.

4.3.3 Quantitative Methods

In relation to this thesis, quantitative research is evident and utilized through
the use of numerical data and statistical methods, to analyze and comprehend
the functional and interface-related aspects of mining engineering’s drill and
blast operations. The core of the analysis is a comprehensive dataset, spanning
thousands of entries and multiple columns, each encoding specific variables
integral to these operations.

The quantitative approach here is methodical, employing a suite of machine
learning algorithms and data analysis techniques to construct a predictive
model. These model is calibrated to forecast critical outcomes, with a primary
focus on predicting the Peak Particle Velocity (PPV). The integrity and relia-
bility of the quantitative methods are underscored by their ability to not only
present an exposure of current conditions but also to offer robust predictions
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that can inform future operational decisions [22].

4.3.4 Qualitative Methods

Qualitative research, in relation to this thesis, aims at understanding and in-
terpreting complex phenomena of the drill and blast environment, through
non-numerical data collection and analysis. This method offers a narrative that
encapsulates the experiential and observational angle of blast operations. This
approach is essential in shaping an understanding of the contextual elements
that applies influence over the numerical data. Through the use of qualitative
methods, this thesis constructs a detailed understanding that incorporates the
prevailing conditions at blast sites, including environmental and operational
variables that could alter the data.

Using a qualitative research method seeks the underlying patterns and relation-
ships, thereby facilitating the creation of an artifact in the form of a computer
system that is not only informed by empirical data but also by qualitative in-
sights. This ensures that the development of technological solutions is both
data-driven and contextually grounded, enabling advancements that are tech-
nically sound and practically relevant [22].

4.4 Research Strategies

Research strategies within methods and methodologies refer to the approaches
and plans of action designed to achieve the specific aims of a research project
within the broader framework of the chosen research method and methodol-
ogy.

4.4.1 Design Science Framework

Design science is an approach that focuses on creating innovative solutions
to practical problems [14]. It typically involves iterative cycles of design, de-
velopment, and evaluation. In the realm of data-driven problem-solving, the
Design Science methodology emerges as a structured framework for the devel-
opment and evaluation of machine learning models. Through predictive and
data-driven approaches, this methodology serves as an an iterative process
where artifacts are designed, implemented, evaluated, and refined in cycles
until a satisfactory solution is achieved.

In the Design Science framework, the model’s performance has been contin-
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uously evaluated against a set of predetermined criteria, which included ac-
curacy, precision, recall, and score for classification tasks, or metrics used to
evaluate regression tasks. These criteria were selected to tell the achieved ac-
curacy and precision, and the amount of deviation from the actual values. The
criteria also ensure that the model meets the practical requirements of predict-
ing PPV in blasting operations effectively. A feedback loop was essential to the
iterative process, where results from each model iteration were reviewed. Ad-
justments were made based on this feedback, such as tuning hyperparameters,
altering model architecture, or revising the data preprocessing pipeline.

The steps of the Design Science framework are listed here:

• Problem Identification and Definition: The foundation of any Design
Science inquiry lies in the identification and definition of the problem
at hand. It mandates the establishment of a clear problem statement,
where the research objective of this thesis is defined as the creation of a
machine learning model to effectively address this identified problem.

• Designing the Learning Model: The development of the machine learn-
ing model is the primary artifact creation phase and includes selecting
appropriate algorithms, data preproecssing techniques, and model archi-
tecture.

• Iterative Development: Includes using an iterative approach to design,
implement, and refine the learning model by starting with a basic version
and gradually improve it based on evaluation results and feedback.

• Implementation: The realization of the designed model occurs through
conscientious implementation. Programming languages and frameworks,
such as Python, TensorFlow, or scikit-learn, serve as the medium for the
construction of the model. The model is trained using the training dataset,
that undergoes iterative epochs to optimize its performance.

• Empirical Testing: Conduct conscientious testing and experimentation
to evaluate the effectiveness and efficiency of the model by testing with
different data sets, and benchmarking against existing methods.

4.4.2 Task Force

The process of developing a machine learning model requires the composi-
tion of a well-coordinated task force comprising interdisciplinary roles and
responsibilities. This collaboration is integral to the systematic creation and
evaluation of machine learning models, ensuring the successful and reliability
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of the research methodology.

• Problem Identification and Definition: Defining the problem statement
is essential. In relation to this thesis, it involves improving the accuracy of
predictions for blast-induced ground vibrations by considering multiple
variables. This involves understanding the operational context of drill
and blast engineering and the variables that might influence PPV.

• Model Architecture: Involves designing the machine learning model, by
making critical decisions regarding the selection of algorithms, deciding
on the number and types of layers in the neural network, and determining
the best activation functions and optimizers, based on the characteristics
of the drilling and blasting data.

• Iterative Development: Involves data preparation. This encompasses
data cleaning, normalization, and partitioning the dataset into training,
validation and testing sets. The iterative development process includes
training the model on the dataset, adjusting hyperparameters, and refin-
ing the model architecture based on performance metrics.

• Implementation: The realization of the designed model occurs through
implementation with programming languages and frameworks, such as
Python, TensorFlow, or scikit-learn, serve as the medium for the model’s
construction. The model is trained using the training dataset, undergoing
iterative epochs to optimize its performance.

• Empirical Testing: The model is subjected to continuously empirical test-
ing to evaluate its predictive performance. This includes cross-validation,
performance on unseen test data, and comparison against baseline mod-
els or industry standards. The task force analyzes the results, checking
for accuracy, precision, recall, and other relevant metrics to assess the
model’s effectiveness in predicting PPV.

• Model Evaluation: Once the model has been refined through iterative
development and feedback integration, it undergoes a final evaluation.
This phase checks for generalizability, robustness, and howwell the model
performs in simulating real-world scenarios. The task force might also
evaluate the model’s interpretability, understanding how the input fea-
tures affect the predicted PPV.

• Documentation and Reporting: The final step involves documenting the
entire process, model specifications, performance metrics, and the con-
clusions drawn from the empirical tests. This documentation is essential
for transparency, reproducibility, and for informing future work.



4.5 data collection methods 63

4.4.3 Prototyping

Prototyping is a valuable technique often employed within design science
methodology. Prototyping is the process of creating preliminary versions or
models of a proposed solutions, as prototypes are not final products but rather
representations of ideas. They serve as a means to test and refine design con-
cepts to gather feedback from task force and make iterative improvements to
the prototypes. Prototyping is an integral part of the design science method-
ology, that allows to bridge the gap between theory and practice by creating
tangible representations of solutions [12].

The iterative nature of prototyping allows for the gradual incorporation of
insights gained from each prototype iteration, ensuring that the final solution
is well-aligned with the specific requirements of mining operations and PPV
prediction. Each iteration of the prototype offers an opportunity to identify
and address potential issues, refine the system’s architecture, and enhance
its performance. By rapidly iterating on the prototype, it can adapt to new
information, change requirements, or unforeseen challenges, ensuring that the
final model is both innovative and practical.

Involvement of a task force or stakeholder group in the prototyping process is
invaluable. Their feedback provides real-world perspectives and insights, en-
suring that the prototype remains relevant and effective in practical scenarios.
This collaborative approach improves the quality of the prototype, emphasizes
flexibility, adaptability, and user feedback.

In relation to this thesis, prototyping is an approach that integrates theory with
practice, enabling the creation of a deep neural network that is both technically
and tailored to the specific needs of mining operations. Through iterative im-
provements and stakeholder collaboration, prototyping enhances the likelihood
of developing a successful, well-validated solution for PPV prediction.

4.5 Data Collection Methods

The foundation of an empirical research relies on the quality and integrity
of its data. In the domain of mining engineering, the collection of accurate
and comprehensive data is crucial for developing predictive models that can
enhance operational efficiency and safety. The dataset provided for this study
was compiled by the external stakeholder, and serves as the base of this analy-
sis.

The dataset was compiled frommultiple blasting sites to capture a wide array of
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variables that are noted as being significant to blasting operations, and is stored
in a comma-separated values (CSV). Each data point is said to be recorded
with accuracy, ensuring that the dataset reflects the complexities of real-world
blasting scenarios. The following is an overview of the variables collected,
providing a snapshot of the multifaceted nature of the data that forms the
basis for the subsequent analysis.

• Site: Refers to the specific location where the blasting has occurred. This
variable is significant as it indirectly captures the unique geological and
environmental characteristics that may influence the blast results.

• BlastID: This is a unique numerical identifier assigned to each blasting
event to differentiate it from others. This ID can be used to track and
reference specific blasts for analysis or follow-up studies.

• Scaled Distance (SD): Scaled Distance is a calculated value that normal-
izes the actual distance from the blast based on the amount of explosives
used. It is used to compare the effects of blasts of different sizes and at
varying distances. It’s a crucial variable for standardizing measurements
and making comparisons more meaningful.

• Distance: The actual physical distance from the point of the blast to the
measurement or observation point. This could influence the intensity of
the blast’s effects, such as vibrations.

• Maximum Instantaneous Charge (MIC): MIC is a term in blasting op-
erations that refers to the largest mass of explosive detonated within
a specific, brief timeframe, usually to minimize environmental impacts
like vibrations and airblast. The MIC is a controlled parameter to en-
sure compliance with regulatory limits and to protect nearby structures
and sensitive areas. It is considered a critical factor in blast design, in-
fluencing the sequencing and timing of explosions to achieve optimal
fragmentation while mitigating adverse effects.

• Blast Direction: The orientation or angle at which the blast is directed,
in this thesis it has been categorised as integers for ease of analysis. This
can affect the directional distribution of energy and potential vibrational
waveform superpositioning at locations around the blast.

• Timeframe: A parameter used to quantify MIC, or the timing of the blast
within a sequence of multiple blasts. This can help in understanding the
temporal context of the blast events and any potential cumulative effects.

• Ground Water: Indicates whether groundwater was present (1) or not
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(0) at the blast site. Groundwater can significantly affect the transmission
and the stability of the blast area.

• PPV: PPV is the measure of the maximum svelocity at which particles
move at a point as vibrational shock waves pass through the ground after
a blast. It is a critical measure for assessing the potential for damage to
structures and the environment and is the primary outcome variable that
the study aims to predict through machine learning models.

4.5.1 Data Privacy and Confidentiality

Data privacy and data confidentiality are crucial for maintaining ethical stan-
dards, legal compliance, and the integrity and trustworthiness of research. Data
privacy ensures the respectful and lawful use of sensitive data that might be
part of the dataset or research process. Data confidentiality, on the other hand,
safeguards the sensitive information related to mining operations, including
blasting practices, geological data, and operational strategies, from unautho-
rized access.

Data confidentiality complements privacy by emphasizing the protection of
sensitive operational data from unauthorized disclosure. This includes geo-
logical data, blasting practices, and strategic information crucial to a mining
company’s competitive edge. Maintaining confidentiality is not only a matter of
protecting intellectual property but also a safeguard against potential security
risks and legal repercussions that could arise from data breaches.

The ethical handling of data in this thesis involves careful measures to uphold
both privacy and confidentiality. Data privacy relates to handling, processing,
storage, and usage of sensitive data to ensure that sensitive details are not
compromised. Data anonymization techniques were employed to uncertain
site-specific identifiers, thereby maintaining the anonymity of the data sources.
Additionally, strict data handling routines were followed to limit data access
and prevent unauthorized data transfer or storage.

By prioritizing these principles, the project ensures the integrity of the research
and fosters trust among stakeholders. It demonstrates a commitment to ethical
research practices, aligning with legal standards and protecting the interests
of the mining company. The careful consideration given to data privacy and
confidentiality emphasizes the research’s credibility.
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4.5.2 Data Reliability

Data reliability refers to the degree to which data is considered accurate and
trustworthy for use in analysis and decision-making. It is a critical aspect of
data quality that affects the validity of research conclusions, the robustness of
models, and the effectiveness of any insights derived from the data [15].

• Repeatability: Refers to if the same data collection processes are re-
peated under the same conditions, they should produce the same results.

• Reproducibility:Differentmine sites ormining engineers using the same
data collection methods and processes should obtain similar results, in-
dicating that the data is reliable regardless of who collects it.

• Accuracy and Precision: Reliable data should not only reflect true values
(accuracy) but also yield consistent results across repeatedmeasurements
(precision).

• Robustness: Reliable data should be resilient against small changes in
the environment or methodology, meaning that the reliability is not sig-
nificantly affected by changes in the process.

• Validity: Data is valid if it accurately represents the concept it is intended
to measure, which is essential for its reliability.

In the development of a ML Model for predicting peak particle velocity (PPV)
in mining operations, data reliability is critical. The accuracy of data to real-
world conditions is important for training the neural network, as it directly
impacts the model’s learning and generalization capabilities. Consequently,
this influences the predictive accuracy essential for diverse blasting situations
under varying conditions.

The significance of data reliability lies in its influence on the trustworthiness of
research outcomes and the efficacy of decisions derived from the model’s predic-
tions. Utilizing unreliable data can lead to insignificant decisions. Conversely,
reliable data ensures that the model’s predictions are stable and transferable
across different scenarios and datasets, to strengthen stakeholder trust and
facilitating decision-making.

As the dataset was compiled and cleaned by the external stakeholder, there
was no significant data-cleaning required.

4.5.3 Data Quality

Data quality is data based on factors like accuracy, completeness, reliability,
and relevance. It is considered an aspect of data management that ensures
the data is suitable for its intended use in operations, decision-making, and



4.5 data collection methods 67

planning [66].

• Accuracy: Refers to the degree to which the data accurately reflects the
real-world conditions or objects they represent. Accurate data should be
free from errors and depict the true values.

• Completeness: Is about the extent to which all the required data is avail-
able. Incomplete data can lead to biased analyses and decisions based on
partial information.

• Consistency: Consistent data aligns with other data across the system or
dataset. Inconsistencies can occur when there are discrepancies in how
data is collected or when it’s updated in some places but not others.

• Reliability: Reliable data can be used with confidence; it’s dependable
and reflects stable and consistent data collection processes over time.

• Relevance: Data is relevant if it’s applicable and helpful for the purpose
for which it’s used. Irrelevant data can lead to wasted resources and
misinformed decisions.

• Timeliness: This relates to data being up-to-date and available when
needed. Outdated data can be as problematic as inaccurate or incomplete
data.

• Validity: Valid data is in the correct format and within the range of
allowable values for the respective data model and domain context.

• Uniqueness: Each data element should be unique and not duplicated.
Redundant data can lead to confusion and impair data quality.

• Integrity: Refers to themaintenance of, and the assurance of the accuracy
and consistency of data over its entire lifecycle. It implies that data across
the ecosystem is linked and coherent.

In the context of developing a ML model for predicting peak particle velocity
(PPV) from blasting operations, data quality is crucial for employing advanced
statistical and machine learning techniques. The importance of data quality
also reflects the predictive model’s output,which depends heavily on the quality
of the input data. High-quality data must be accurate, complete, and consistent,
which ensures that the underlying patterns learned by the neural network are
representative of real-world phenomena.

In mining operations, outliers in the data may represent significant deviations
due to rare but possible events, like unusual geological conditions or blasting
practices that deviate from the norm. High data quality involves correctly
identifying and understanding these outliers to ensure that the model is trained
on accurate and comprehensive data, including these edge cases.

For the ML model to be effective, it must be trained on data that is both con-
sistent and complete. Inconsistencies in data can lead to a model that does not
perform well or that learns incorrect relationships. High data quality means
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that the data used for training and validation is free from such issues, leading
to a more accurate and generalizable model.

4.5.4 TensorFlow

TensorFlow is an open-source framework for machine learning, known for
its utility in constructing and training complex models capable of conducting
evaluations on extensive data sets [1]. The core computational framework of
TensorFlow revolves around tensors, which constitute multidimensional data
arrays central to the computational operations performed by neural networks.
Tensors capture a broad array of data representations, from simple scalars to
complex vectors and multi-dimensional matrices, effectively facilitating the
handling of various data types and intricacies inherent in machine learning
tasks [1].

In TensorFlow’s tensor hierarchy, a scalar is represent the fundamental unit,
signaling a singular numerical value characterized by its magnitude. Vectors,
comprising both row and column vectors, constitute 1D arrays of numerical
elements of magnitude and direction. Each element within a vector can be
uniquely addressed through a single index. Matrices, on the other hand, are
2D arrays consisting of numerical values requiring dual indices for precise refer-
encing. Tensors, while surpassing the two-dimensional constraints of matrices,
extend their utility to encompass scalars, vectors, and matrices, constituting
arrays with more than two axes [1].

Every element within a tensor adheres to a single data type, ensuring consis-
tency across the structure. Three core attributes characterize a tensor: a unique
identifier, the dimensions or shape of the data it represents, and the kind of
data it holds. Together, these attributes support a tensor’s flexibility and utility
in TensorFlow, establishing it as a critical component for a broad spectrum of
machine learning operations and analyses [1].

Figure 4.2: Representation of a tensor [1].

A TensorFlow project workflow typically follows these steps:

• Collecting data.
• Creating a model.
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• Adding Layers to the model.
• Compiling the model.
• Training the model.
• Using the model.

TensorFlow operates on a graph-based model where mathematical operations
form the nodes and tensors, being multi-dimensional arrays of data, act as the
connecting edges. This structure enables machine learning algorithms to be
mapped as a series of connected operations. A standard workflow in Tensor-
Flow includes preparing the data, building the model, and then training it for
prediction purposes. There are two main ways to feed data into the system: one
is by defining a computational graph that outlines the entire data flow for the
model’s training, and the other is through eager execution, which processes
operations immediately as they’re called, following a more straightforward,
line-by-line approach to programming [1].

In relation to this thesis, TensorFlow uses a computational graph to define
and organize a series of operations that are executed together. This graph
consists of a network of nodes, where each node is an operation and the edges
represent the tensors that flow between these operations. The graph facilitates
the management of dependencies and the optimization of computations, which
is particularly beneficial for training complex models like neural networks. It
allows TensorFlow to automatically compute gradients, which are essential for
the backpropagation algorithm used in training.

Eager execution has been utilized for immediate evaluation of operations, al-
lowing direct interaction with the execution of the program, without having to
compute TensorFlow graphs. Eager execution is an imperative programming
environment that evaluates operations immediately without building graphs.
An approach that is more intuitive and easier for debugging since it executes
operations, in regards to this thesis, standard Python code.

4.5.5 Keras

Keras, an open-source library, operates on top of TensorFlow, providing a high-
level API that streamlines the development and testing of Deep Neural Net-
works. Its design emphasizes user-friendliness, modularity, and extensibility,
making it highly suitable for Deep Learning applications.

Using Keras for Deep Neural Network construction allows for swift prototyping
and experimentation with various model architectures, hyperparameters, and
data preprocessing techniques. This flexibility helps in exploring numerous
potential solutions efficiently. Keras’ modular design simplifies the integration
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of neural layers, optimizers, and activation functions, and accelerates the de-
velopment and fine-tuning of complex models, significantly reducing the time
and effort required to go from conceptual design to functional implementa-
tion.

As a high-level interface for TensorFlow, Keras inherits TensorFlow’s advanced
capabilities, including scalability and support for distributed training, while
offering a more intuitive and accessible user experience. This combination
of TensorFlow’s powerful backend and Keras’ user-friendly frontend makes it
an good alternative to work with Machine Learning for both beginners and
experienced practitioners in the field of machine learning.

Keras also features comprehensive support for convolutional and recurrent neu-
ral networks, essential for tasks like image and sequence processing, respec-
tively. Its compatibility with both CPUs and GPUs allows for versatile deploy-
ment and accelerates computational processes. Furthermore, Keras’ extensive
community support and continual updates ensure access to the latest advance-
ments in deep learning, alongside a wealth of resources and documentation
to aid developers in their projects. Keras, an open-source library, built on top
of TensorFlow and offer a high-level API that simplifies the construction and
experimentation of deep neural networks. Its design revolves around user-
friendliness, modularity, and extensibility, making it an ideal choice in the field
of deep neural network [37].





5
Requirements And Design
This chapter introduces the development of a Deep Neural Network (DNN)
model designed to advance the accuracy of Peak Particle Velocity (PPV) predic-
tions in drill and blast operations. By combining observational data provided
with a DNN model, the primary objective is to improve the ability to predict
blast-induced ground vibration, therefore prioritising safety and operational
efficiency in the mining sector.

The design details the systematic progression from initial design to functional
code, encompassing the iterative processes of model development, evaluation,
and enhancement. The end product is a DNN prototype designed to predict a
more accurate Peak Particle Velocity.

The chapter mentions the Machine Learning algorithm used, the type of opti-
mization and regularization techniques used to ensure the correct results from
training and validation of the Machine Learning model, and to preserve the
model’s ability of generalization.

73
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5.1 Requirements

The formulation of a Deep Neural Network (DNN) for a mining application
requires a extensive understanding of stakeholder needs. This emphasizes the
research and development approach, as previously outlined in the thesis intro-
duction 9.2. The requirements articulation statement contrains:

• Data Quality and Quantity: The model relies on a robust and high-
quality dataset that contains blasting parameters relevant for predicting
Peak Particle Velocity. The dataset should be large enough to train a
Machine Learningmodel,with enough diversity among the data to enable
an accurate and generalizable model. The data must be in a format ready
for analysis or easily preprocessed, since these steps are necessary when
feeding the data into a Deep Neural Network.

• Model Performance: The model should provide accuracy, by enable pre-
diction of PPV within an acceptable error margin. The model should be
reliable with consistent performance under varying operational condi-
tions.

• Security and Privacy: The research should ensure confidentiality and
integrity of sensitive data, with a clear understanding and agreement of
the ownership and use of the development model and associated data.

• Evaluation and Reporting: Establishing clear evaluation metrics for
evaluating the model’s performance is essential for informed decision-
making, and model comparison.

5.2 Architecture

The core of the system is a Deep Neural Network architecture, capable of captur-
ing complex, nonlinear relationships within the data. The design is facilitated
by the use of TensorFlow and Keras, offering a balance between ease-of-use and
flexibility. This allows for the design of neural network layers and a seamless
integration of activation functions, optimizers, and regularization methods to
enhance model performance and generalization.
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The Deep Neural Network (DNN) architecture consists of an input dataset, a
trained output model, and multiple hidden Deep Neural Network layers of in-
terconnected nodes. Each layer is designed to perform specific transformations
on the input data. The architecture of the DNN can viewed in the figure below
5.1.

The number of neurons in the input layer of a neural network typically cor-
responds to the number of features in a dataset that are used to predict the
output. The figure below 5.1 represents the Machine Learning model consist-
ing of 4 layers and number of neurons. The first hidden layer consists of 256
neurons, the second hidden layer of 512 neurons, the fourth hidden layer of
128 neurons. The output layer has 1 neuron since the target is the Peak Particle
Velocity (PPV).

Figure 5.1: Example of a Deep Neural Network architecture.
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5.2.1 Deep Neural Network Layers

In a Deep Neural Network (DNN), each layer performs a specific function in
the process of transforming input data into meaningful output. As data is fed
into the network, the first layer processes the raw input, and begins to recog-
nize patterns within the extracted features, identifying relationships between
features and passes the transformed information to the next layer.

Each subsequent layer builds upon the previous one, gradually abstracting and
refining the data. This hierarchical process enables the DNN model to handle
complex tasks like distinguishing between different features. The final layers
integrates these insights to make accurate PPV predictions for each blast of a
specific site.

The steps of this process is described here:

• Input Layer: This is the first layer that receives the raw input data. Its
neurons pass the input data directly to the next layer, often without
performing any calculations. The number of neurons in this layer corre-
sponds to the number of input features.

• Hidden Layers These layers come between the input and output layers
and are responsible for learning and extracting features from the input
data. Each neuron in a hidden layer takes a weighted sum of the inputs
from the previous layer and applies an activation function to produce an
output.

• Activation Functions: Activation functions introduce non-linearity into
the model, and are applied to the output of each neuron in the hidden
layers. It enables neural networks to develop complex representations
and functions based on the inputs. This thesis uses the activation function
named ReLU (rectified linear activation unit).

• Output Layer: The final layer produces the network’s output, which in
this thesis is the prediction of Peak Particle Velocity (PPV).

• Loss Function: The loss function measures the error or the difference
between the predicted PPV values and the actual PPV values in their
training data. The loss

• Optimization Function Optimization algorithms are used to update the
weights and biases of the network during training to minimize the loss
function, and this thesis uses the optimization function named Adam.
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• Regularization Technique: Regularization techniques involves dropout
and regularization refereed to as L1 or L2 regularization to be applied to
the hidden layers.

• Hyperparameters: The architecture includes hyperparameters such as
the learning rate, batch size, and the number of epochs, which are the
training iterations. Tuning these hyperparameters, which involves chang-
ing and testing these parameters for optimal results, is essential for achiev-
ing the best model performance.

• Data Flow The data flows through the network in a forward pass dur-
ing training and inference. During training, backpropagation is used to
calculate gradients and update the network’s weights and biases.

• Evaluation: After training, the model is evaluated on a separate vali-
dation or test dataset to assess its performance using metrics like mean
squared error or R-squared.

5.2.2 Machine Learning model

The Deep Neural Network (DNN) is given real world historical data, and in
relation to the type of data and the size of the dataset, the creation of a Machine
Learning model follows the approach described below:

• Target Function: The target function is conceptualized to estimate PPV
from blast events, using historical data from controlled blasts. The func-
tion encapsulates the relationship between input features and the result-
ing PPV.

• Specify Function: The model is designed to learn complex functions that
maps blast parameters to PPV. This involves selecting the most predictive
features and defining the output variable structure to accurately reflect
the PPV as a continuous value.

• Deciding Representation: The data is represented in a format valuable
to neural network processing. This includes structuring input data as
tensors within TensorFlow, handling various data types, and ensuring
that the network architecture is appropriate for capturing the nuances
of the problem.

• Choice of Algorithm: The algorithm selected is a deep learning approach
with an ability to model complex, nonlinear relationships inherent in the
prediction of PPV from blasting parameters., specifically a neural network
algorithm facilitated by TensorFlow and Keras.
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5.2.3 Data Collection

The dataset comes in a Comma-separated values (CSV) format, and consists of
multiple blast operations from a mine site as mentioned in chapter 4, section
4.5. The dataset is tabular with 9724 rows of data points and the following 9
columns of blasting operation features:

• Site: A value representing the specific geographical location where the
blasting event occurred. represented as a categorical and discrete numer-
ical variable.

• BlastID: A unique numerical identifier assigned to each blasting event
to differentiate it from others, represented as a categorical and discrete
numerical variable.

• Scaled Distance (SD): A calculated value that normalizes the actual dis-
tance from the blast based on the amount of explosives used, represented
by a numerical value.

• Distance: Physical distance from the point of the blast to the measure-
ment or observation point, represented as a numerical value.

• Maximum Instantaneous Charge (MIC): A term in blasting operations
that refers to the largest mass of explosive detonated within a specific,
brief time of window.

• Blast Direction: The orientation category which the blast is directed,
represented as a numerical variable.

• Timeframe: A parameter used to quantify MIC, or the timing of the blast
within a sequence of multiple blasts, represented as a numerical variable.

• Ground Water: Represents a binary variable, indicating whether ground-
water was present, (1) for, or not (0) at the blast site.

• PPV: PPV is the measure of the maximum speed at which particles move at
a point as shock waves pass through after a blast. This column represents
the target value aimed for prediction. It is a numerical value typically
measured in mm/s.
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5.3 Data Preprocessing

Data preprocessing in the development of a Machine Learning model affects
model performance and effectiveness by improving the data quality. Prepro-
cessing involves various techniques to transform raw data into clean data in a
format , suitable for modeling.

Data preprocessing identifies numerical and categorical features, ensures that
the dataset is free from missing values and normalizes numerical data by ap-
plying normalization.

5.3.1 Normalization

Normalization adjusts the scale of features so that the model is not influenced
by the scale of measurement. Normalization does this by scaling individual
samples to have unit norm, by adjusting the scale of features in the dataset to
a uniform range. This ensures that all inputs are treated equally by the model
and prevents features with larger scales from disproportionately influencing
the training process.

5.3.2 Converts categorical variables

Neural network requires input to be numeric, and data preprocessing achieves
this by converting categorical data into a numerical format. Categorical vari-
ables are transformed into a format that can be provided to Machine Learning
algorithms to better predict the Peak Particle Velocity.

5.3.3 Feature scaling

Feature scaling is employed to standardize the independent variables of a
dataset within a specific range, ensuring that all features contribute equally
to the result. This standardization helps the machine learning algorithm con-
verge more quickly, as it prevents features with larger numerical ranges from
disproportionately influencing the learning process.

5.3.4 Data augmentation

Data augmentation increases the diversity of data available for training models
without actually collecting new data. By adding noise to the data, so it learns
the underlying patterns in the data, data augmentation ensures that the model
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become robust to slight variations. This also results in the model generalizing
better to new, unseen data.

5.3.5 Supervised Learning

The goal of the Machine Learning model is to learn the mapping from the
input data to the output data. The model is not using the labels, known as the
PPV values during the actual prediction phase, but still requires them during
the training phase to learn the relationship between the input features and
the output. The model uses the original PPV values to adjust its weights and
biases through a process called backpropagation to minimize the difference
between its predictions and the actual values. Once trained, the model attempts
to predict the PPV for new, unseen data based on the features provided.

5.3.6 Backpropagation

As the network makes its predictions, it receives feedback, often in the form of
a loss function that measures the accuracy of its output against known data.
This feedback helps the network adjust its weights and biases, the parame-
ters that determine the strength of connections between neurons, and enables
the network to continuously refine its internal parameters for better perfor-
mance. Adjusting these parameters is a process known as backpropagation,
where the network learns from its errors, tweaking itself to improve future
predictions.

This is achieved by specifying initial values and conditions for the learning of
the Deep Neural Network. By selecting particular initializers and regularizers,
rules and constraints guides the DNN’s learning process. Initializers, determine
how the network’s weights start out before learning begins. Regularizers, on
the other hand, help prevent overfitting by penalizing the network for overly
complex solutions that might not generalize well to new data.

5.3.7 Generalization

Generalization refers to the model’s ability to adapt properly to new, previously
unseen data. This ability is the difference between the training and test error,
named generalization error. This is achieved through partitioning the data into
three subsets, a training set, a validation set and a test set. The training set
consists of the values the network is trained on. The validation set is used to
tune hyperparameters, and the test set is used to measure the generalization
performance. A separate training and test set ensures correctly generalizing
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by knowing that the model is not simply memorizing the training examples. If
the algorithm works well on the traning set but fails to generalize, we say it is
overfitting.

5.3.8 Overfitting

When the model’s performance on the validation data begins to degrade, it
is called overfitting. To prevent overfitting in Deep Neural Networks, weight
regularization and dropout is added. With the use of TensorFlow and Keras,
weight regularization is added by passing weight regularizer instances to layers
as keyword arguments. Dropout is applied to a layer, and consists of randomly
dropping out a number of output features of the layer during training, which
involves setting numbers to zero.

The layer’s output values are scaled down by a factor equal to the dropout
rate, to balance that several units are active than at training time. Noise is
introduced in the output values of a layer to break up the coincidence pattern
that insignificant, as the network will memorize the patterns if no noise is
present.

5.3.9 Machine Learning Algorithm

The architecture of the Deep Neural Network is constructed with fully con-
nected layers, each employing the ReLU activation function explained in chap-
ter 3 section 3.8 to introduce non-linearity, enabling the learning of complex
patterns within the data.

Optimization during the training process is handled by the Adam optimizer
explained in 3.11, a sophisticated algorithm that leverages first-order gradient-
based optimization explained in 3.10, and adapts the learning rate for each
weight of the model, which helps in navigating the stochastic nature of the
learning process.

5.3.10 Model Training And Validation

During model training and validation, the preprocessed data is fed into the
model in an iterative process known as training. During each iteration, also
known as epoch, the model makes predictions based on the input data and
then adjusts its internal parameters, named weights and biases, based on the
difference between its predictions and the actual outcomes. The goal is for the
model to learn the underlying patterns in the data so it can make accurate
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predictions on new, unseen data.

The validation step enables tuning the model’s hyperparameters and for check-
ing how well the model generalizes to new data. A separate validation dataset,
unseen by the model during its training, is used to evaluate model performance.
This helps in detecting issues like overfitting, where the model performs well
on the training data but poorly on new data. The feedback from validation
is used to adjust the model architecture or training process before the final
evaluation.

5.3.11 Hyperparameter Tuning

Hyperparameter tuning in Deep Neural Networks (DNN) involves systemati-
cally experimenting with various combinations of hyperparameters to optimize
the model’s performance. Key hyperparameters in the context of the developed
DNN model for Peak Particle Velocity (PPV) prediction include learning rate,
batch size, number of epochs, and the architecture specifics like the number of
layers and neurons in each layer.

The tuning process considers the balance between model complexity and com-
putational efficiency, ensuring the model is sufficiently detailed without being
computationally prohibitive.

In this thesis, hyperparameter tuning is focused on achieving the best possible
predictive accuracy while maintaining a balance between underfitting and
overfitting. The process includes fine-tuning regularization techniques, such
as dropout rates and L1/L2 regularization strengths, to enhance the model’s
generalization capabilities.

5.3.12 Model Visualization And Evaluation

Model visualization and evaluation are taking use of analytical tools to inter-
pret the model’s predictions in relation to Peak Particle Velocity measurements.
These tools are helping in understanding the model’s decision-making pro-
cess and ensuring technical validation by providing insights into the model’s
strengths and limitations, aiding in further refinement.

The evaluation phase involves testing of the model using a separate test dataset.
This stage is for understanding how the model performs on data it has never
encountered, which is a key indicator of its practical applicability. Various per-
formance metrics, such as Mean Squared Error (MSE), Mean Absolute Error
(MAE), and R-squared value, are computed to quantify the model’s prediction
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accuracy. Vsualization tools like correlation heatmap, plot graphs, and feature
importance plots are employed to offer a more intuitive understanding of the
model’s performance. These tools facilitate the identification of areas where
the model excels or needs improvement, particularly in terms of its predictive
capabilities concerning different aspects of PPV in mining operations.





6
Implementation
This chapter provides an in-depth look at the development of a Deep Neaural
Network (DNN) model, specifically designed for enhancing the predictive ca-
pabilities of blast-induced ground vibration. We present a prototype model that
serves as a test case to explore the feasibility and advantages of integrating Ma-
chine Learning into mining practices. Key components of this chapter include
a discussion on the choice of development tools, highlighting their suitability
and effectiveness for the project.

The chapter also details the dataset employed, emphasizing the steps under-
taken for effective data preprocessing, which is crucial for the accuracy and
reliability of any ML model. The objective of this chapter is to offer a detailed
narrative of the entire implementation process, spanning from the initial se-
lection of tools to the concluding phases of model training and performance
assessment.

6.1 Requirements

• Data Quality and Quantity: Have access to a high-quality dataset that
contains blasting parameters relevant for predicting Peak Particle Ve-
locity. The dataset should be large enough to train a Machine Learning
model, with enough diversity among the data to enable a more ccurate
and generalizable model.

85
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The data should be in a format ready for analysis or easily preprocessed,
since these steps are necessary when feeding the data into a Deep Neural
Network.

• Model Performance: The model should provide accuracy, by enable pre-
diction of PPV within an acceptable error margin. The model should be
reliable with consistent performance under varying operational condi-
tions, and provide fast computation to enable near real-time predictions
if required.

• Security and Privacy: The research should ensure confidentiality and
integrity of sensitive data, with a clear understanding and agreement of
the ownership and use of the development model and associated data.

• Evaluation and Reporting: There should be clear evaluation metrics for
evaluating the model’s performance, with tools for generating reports
that can assist in decision-making. This could include accuracy, precision
and computational efficiency.

6.2 Tools For Development

The project was carried out using a combination of software and hardware that
were vital at different stages such as preparing the data, building the model,
training, and evaluating it. The software provided the necessary libraries to
develop a Deep Learning Model, while the hardware offered the computing
power needed for complex calculations throughout the thesis.

6.2.1 Software

The thesis involved using several tools to build and train the Deep Learning
Model. The tools were important for different stages of the development pro-
cess, including data preprocessing, model architecture design, training and
evaluation. A Python virtual environment offered an isolated workspace for
the Python project [47]. The isolation maintained project independence as
well as protecting the integrity of the system. Other benefits of using a virtual
environment were:

• Dependency Isolation Each project can have its own dependencies, ir-
respective of what dependencies of another project, and avoid interfering
with the system-wide Python installation.
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• Version Control Virtual environments facilitate the management of pack-
age versions. This is crucial for maintaining long-term projects that may
not support newer package versions.

• Reduced Risk Isolating project environments helps to mitigate the risk of
system-wide package conflicts. This is especially beneficial when different
projects require different versions of the same package.

• Reproducibility Dependencies can be saved and easily shared, allowing
other developers or systems to replicate the exact environment.

6.2.2 Hardware

The deep learning models in this project were trained using the following hard-
ware specifications: Intel Core i7-4550U CPU, with a base frequency of 1.50GHz,
with 2 cores and 4 threads, allowing for parallel processing, beneficial for train-
ing the Machine Learning model efficiently. The memory of the computer has
a 4 MiB L3 cache, along with 512 KiB L2 and 64 KiB L1 caches per core, aids
in fast data retrieval during intensive computational tasks like model training.
With VT-x virtualization technology, the CPU supports virtual environments,
useful for creating a isolated environment for the Machine Learning project.
The 64-bit architecture of the CPU is ideal for handling large datasets, and the
presence of advanced vector extensions (AVX) can enhance the performance
of certain machine learning operations

6.2.3 TensorFlow And Keras

TensorFlow [1] and Keras [37] were employed as the core deep learning frame-
works. TensorFlow, an open-source library, offered a comprehensive set of tools
and functionalities for building and training Deep Learning Models. Keras, built
on top of TensorFlow, provided an easy way of constructing neural networks,
simplifying the implementation process and allowing for faster prototyping.
TensorFlow and Keras allows for focusing on the architecture of the model
rather than specialization in deep learning.

TenorFlow enables the balance between providing high-level ease of use through
Keras and the low-level control necessary for customizing and optimizing mod-
els to meet specific research requirements. For training large neural networks,
TensorFlow’s ability to efficiently scale across multiple CPUs and GPUs is cru-
cial. This scalability was benefitial for handling the development of a complex
model and testing datasets with in variable size. Additionally, TensorFlow in-
cludes TensorBoard, a tool for visualization the steps of model development,
from training to analysis.
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6.2.4 Visualisation Tool

TensorBoard provided a dynamic interface to visualize various training met-
rics, including losses and accuracy’s, as well as the evolution of the weights
and biases for the Machine Learning model [68]. It helped understanding the
complex Machine Learning architecture as Tensorflow allows for the visual
representation of computational graphs with its underlying dataflow graphs.
A key feature of TensorBoard is its ability to track training metrics like loss
and accuracy in real-time, aiding in early detection of training issues such as
overfitting or underfitting. TensorBoard enabled to compare metrics across
different training runs, it helps identify the most effective hyperparameters,
optimizing model performance.

6.3 Deep Learning Model Architecture

The architecture of the thesis is designed to form an end-to-end Machine Learn-
ing pipeline, utilizing the Python programming language and leveraging li-
braries like TensorFlow,Keras, scikit-learn,NumPy,pandas andMatplotlib.

Since our dataset has a uniform data type, it was possible to use pandas
DataFrame anywhere it was possible to use a NumPY array. This works because
the pandas DataFrame supports the array protocol, and TensorFlow accepts
objects that support the protocol.

The data frame can be converted to a NumPy array, and then to a tensor.
Converting an object to a tensor enables the object to be passed anywhere it
is possible to pass a tensor. A Data Frame interpret as a single tensor, can be
used directly as an argument to the model fit method.

The models objective is to predict an accurate PPV value with high accuracy
by learning from the features provided from the given dataset.

6.3.1 Data Preprocessing And Data Handling

The DataHandler class is a critical component, designed to streamline the pro-
cess of preparing raw data for input into the Deep Neural Network. The class is
composed of several integral methods that facilitate data loading, preprocess-
ing, splitting of data, and encapsulating the logic for loading the data required
for training a Deep Neural Network.
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The key functionalities of this class included:

• Data Loading: Data is loaded from a specified file path, containing var-
ious features such as ’Site’, ’Scaled Distance’, with the primary target
variable being ’Peak Particle Velocity (PPV)’. During the preprocessing
the data, The dataset is collected in a CSV file format, and the target vari-
able "PPV." The data undergoes preprocessing, during which the ’PPV’
value is separated from the other features. This step essentially removes
’PPV’ from the list of features and retrieves the last feature in the list by
default.

• Data Splitting: The dataset is split into 70% training, 15% testing and
15% validation to evaluate the model’s performance on unseen data.

• Feature Engineering: It involves creating new features or modifying
existing ones to make themmore useful for predictive modeling. The goal
is to transform raw data into features that better represent the underlying
problem to the predictive models, thereby improving model accuracy and
performance.

– Polynomial Features: Creates new feature variables out of the ex-
isting ones, representing their various combinations and interac-
tions. This technique involves raising existing features to various
powers (squares, cubes, etc.) and creating interaction terms (like
the product of two features). This process is beneficial in modeling
non-linear relationships within the data, which might not be cap-
tured by the original features. When using polynomial features in
a Deep Neural Network, it adds complexity to the model, allowing
it to learn more intricate patterns, but it also increases the risk of
overfitting.

– One-hot encoding: Converts categorical variables into a form that
can be provided to algorithms. One-hot encoding is applied to cate-
gorical variables, by creating a new binary column for each category
in the original data. The method does this by converting categorical
variables into a binary (0 or 1) format. For each unique category in
a feature, one-hot encoding creates a new binary feature.

• Convert Numerical Columns: Processes numerical data to be suitable for
model training. This includes normalization or standardization, where
data is scaled to a specific range or distribution. This process is cru-
cial because it helps in dealing with variables that have different scales
and distributions, ensuring that each feature contributes equally to the
model’s learning process.
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• Data Integrity Checks: Ensures that the data is accurate and consistent
throughout the dataset, which is crucial for making reliable predictions.
The data preprocessing steps includes validation to ensure all numerical
columns are converted to float32 for consistency.

– Error Identification: These checks help identify and correct er-
rors or anomalies in the data, such as missing values, duplicates, or
incorrect entries, which could otherwise lead to inaccurate model
predictions.

– Data Loading Validation: During the loading of the data a data
integrity checks if the loaded data is empty, ensuring the dataset is
valid before proceeding.

– Type Checking Before Preprocessing: Before one-hot encoding
and other preprocessing steps, the script checks the data type of
training data, ensuring that the data types are consistent and suit-
able for the intended transformations.

Shuffling Data

After preprocessing and one-hot encoding the data, the data is shuffled to
reduce variance and to ensure that the training of the model is not biased
towards any particular order or pattern that might be present in the dataset.
The shuffling of data presents the data in random order, which makes it more
likely for the model to learn general patterns instead of memorizing specific
sequences of data, which enhances the ability to generalize from training data
to unseen data.

Overfitting occurs when a model learns noise and fluctuations in the training
data. Shuffling reduces the risk of overfitting by making sure that patterns
related to the order of data don’t influence the learning process.

6.3.2 Dividing The Dataset

The dataset is divided into three sets, a training set, a testing set and a validation
set. The training data set serves as the primary component during the models
training phase, and it consists of 70 percent of the dataset. The testing data set
plays a crucial role in the iterative refinement of the model.

The more diverse the training data is, the better the Deep Neural Network
(DNN) model will perform. A diverse training dataset ensures that the model
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receives more discriminative information during training. Data augmentation
is used to increase the diversity of the training dataset by expanding the size
of the training dataset. Each time a training sample is exposed to the model,
random noise is added to the input variables which makes them different every
time they are exposed to the model.

A manual split of the data is performed, allocating 15 percent for testing set
and 15 percent for validation set. The partitioning facilitates practical model
training, testing and evaluation, and is described below:

• Training Dataset Features: This is a set of features representing the
training data set, and is named ’training dataset’. It contains the input
data that the Machine Learning model will use to learn patterns and
make predictions. It is loaded with the features of the training dataset
after preprocessing, such as one-hot encoding and shuffling.

• Training Data Label: This variable represent the training data, named
’training data label PPV’. It contains the actual measured PPV value from
the original data set that the model will try to predict during training.
This variable is loaded after preprocessing and aligning with the training
features.

• Testing Data Set: This set represents the unseen testing data features
after the model is trained on the original data set and the target variable,
and is named ’testing dataset’. This is a new set of features that the model
has not seen before. Similar to ’training dataset’, it contains the input
data, but is used to evaluate the model’s performance after training, and
therefore loaded with the features of the testing dataset after preprocess-
ing. The testing set assess the performance of the model after training
and provides an unbiased evaluation of the final model fit.

• Testing Data Label: This variable represents the true data, and is named
’testingdata label PPV’. It contains the corresponding target values for
the testing dataset, which the model tries to predict during evaluation.

• Validation Data Set: This set represents the validation data, and is called
’validation dataset’. The validation set provides an unbiased evaluation
of the model on the training data set while tuning the model’s hyperpa-
rameters.

• Validation Data Label: This variable represents the validation data la-
bels, and contains the corresponding target value (PPV), and is named
’validationdata label PPV’.
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6.3.3 Internal Parameters

To enhance the model’s learning capability, its internal parameters commonly
known as weights and biases is adjusted:

Weights
Initially, the weights in the Deep Neural Network is set to small random values,
to break symmetry and ensure that the learning process proceeds. During
training of the data, the network adjusts the weights based on the errors in its
predictions. When an input data is passed through a neuron, it is multiplied
by the weight of the connection.

During training, input data is passed through the network with forward prop-
agation. Each neuron computes a weighted sum of its inputs, adds a bias,
and applies the ReLU activation function. The final output of the network is
compared to the desired output, and the difference is measured using a loss
function.

The goal of learning is to minimize this loss. Backpropagation is used to cal-
culate the gradient of the loss function with respect to each weight in the
network. This involves applying the chain rule from calculus 3.3 to compute
the contribution of each weight to the error. Once the gradients are computed,
an optimization algorithm named Adam is used to adjust the weight to modify
each weight in the direction that reduces the loss.

This process of forward propagation, backpropagation, and weight adjustment
is repeated over many iterations (or epochs) across the entire training dataset.
The goal is for the loss function to converge to a minimum value, indicating
that the network’s predictions closely match the actual outputs. The weights
at this point are considered to have been ’learned’.

Biases
Biases are added to the weighted sum before passing it through the activation
function. They enable the network to represent patterns that do not necessarily
pass through the origin if plotted on a graph. In essence, biases allow the
network to shift the activation function to the left or right, which is crucial
for fitting the data correctly. This allows the neurons to activate even when
the weighted sum of inputs is not sufficient. Biases represent unique values for
each neuron that is added to the product of inputs and weights before the ReLu
activation function 3.3.11 is applied.
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6.3.4 Layers

The layers are of the Deep Neural Network model is distributed with dropout
layers, which randomly deactivates a proportion of neurons during training to
avoid overfitting. Dense layers are fully connected,meaning each neuron in one
layer is connected to all neurons in the next layer, facilitating a comprehensive
flow of information. The number of neurons per layer is calibrated to balance
the model’s capacity to learn complex relationships without overfitting to the
training data.

The activation function called ReLU for intermediate layers was chosen to
introduce non-linearities into the model, enabling the model to learn complex
functions.

ReLU, which stands for Rectified Linear Unit is defined as:

𝑓 (𝑥) = max(0, 𝑥)

ReLU handles input and outputs by if the input is positive, ReLU will make the
output the same as the input, but if the input is negative, the output will be zero.
This linear function introduces non-linearity into the Machine Learning model,
allowing it to learn complex patterns, as well as contributing to the model’s
ability to capture the nonlinear relationship between the input features and
the output PPV.

6.3.5 Data Augmentation

Data augmentation is used to increase the diversity of the training dataset,
by applying noise. Random Gaussian noise is added to expand the size of the
training dataset, also known as the input layer of the Deep Neural Network.
Each time a training sample is exposed to the model, random noise is added
to the input variables which makes them different every time they are exposed
to the model.

A Gaussian distribution of the same size as the data, the first value of the
distribution is added to the first value in the data, then the second value in the
distribution is added to the second value in the data, and this keeps on until
the end of the training dataset.
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6.3.6 Data Normalization

Data Normalization transforms the set of data to be on a similar scale. For
Machine Learning models, the goal is usually to recenter and rescale the data,
which is accomplished by calculating the mean and the standard deviation
on the set of data and transform each sample by subtracting the mean and
dividing by the standard deviation. This method standardizes the data and
achieves a standard normal distribution.

A layer called batch normalization layer, placed after the dense layers, stan-
dardizes the activations from the previous layer, to accelerate training and im-
prove performance. Normalization ensures that each input feature contributes
equally to the ability of the model to learn, preventing features with initially
large ranges from outweighing those with smaller ranges. This is particularly
important when input parameters like charge weight or distance to the moni-
toring point vary widely. The set of features is normalized before being passed
through the layers.

The Machine Learning model is manually build before adapting the normal-
ization layer to make the data preprocessing steps explicit, which enables ef-
ficiency, instead of using a callback to adapt it during the first epoch. This
solution enables compatibility since building the model manually will make it
less likely to cause compatibility issues with other callbacks or model config-
urations added in the future. It also provodes less Overhead with not using a
custom callback for something as fundamental as normalization, since that can
add unnecessary complexity and overhead to the training process.

6.3.7 Optimizer and Loss Function

The model employs the Adam optimizer and uses a combination of the loss
functions, Mean Absolute Error (MAE) and Mean Squared Error (MSE).

Mean Absolute Error 3.18measures the averagemagnitude of errors in the set of
predictions, without considering their direction, and is less sensitive to outliers
than MSE as it does not square the error values. MAE contributes robustness
to the model, particularly important in geophysical applications where data
can be noisy or have outliers due to measurement errors or environmental
factors.

Mean Square Error 3.16 calculates the average squared difference between the
estimated values and the actual value, which is useful when large errors are
undesirable. Squaring the errors leads to a loss surface that is generally convex
which simplifies finding the global minimum during the training process.
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The combination of MAE and MSE ensures a comprehensive error represen-
tation for PPV predictions that require high accuracy due to their implications
in safety and environmental impact, and may lead to better generalization of
unseen data. The combination of MSE and MAE captures the average error
magnitude (MAE) and giving more weight to larger errors that could have
significant impacts (MSE).

Computing the loss gets the gradients to model weights and updates those
weights accordingly through backpropagation. The loss is calculated and the
Deep Neural Network is updated after every iteration until model updates do
not reach higher improvements in the desired evaluation metric.

The model propagates the total loss back into the Deep Neural Network to know
how much of the loss every neuron is responsible for, and subsequently updates
the weights to minimizes the loss by giving the neurons with higher error rates
lower weights, and the nodes with lower error rates higher weights.

Backropagation fine-tunes mathematical weight functions and improves the
accuracy of an the Deep Neural Networks output. After each forward propaga-
tion passes through a network, the backward propagation adjusts the models
parameters based on weights and biases.

6.3.8 Forward Propagation

The forward propagation computes the output from the input data, by starting
at the input layer and move through each hidden layer sequentially, ending at
the output layer. In each layer, the input data is transformed using a combina-
tion of weights, biases, and activation functions. This involves multiplying the
input data by the weights, adding the biases, and then applying the activation
function. This process is repeated for each layer until the final output is pro-
duced. The forward propagation is essential for both making predictions and
initiating the backpropagation process during training.

6.3.9 Backpropagation

The backpropagation algorithm works by computing the gradient of the loss
function with respect to each weight of the neurons, computing the gradient
layer by layer, iterating backward from the last layer to the input layer to avoid
redundant computation of intermediate terms.
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Backpropagation calculates the gradient of the loss function relative to each
neuron’s weights and biases. This is achieved by multiplying the derivatives
across each layer and modifying the partial products to update the weights.
Backpropagation works by propagating errors backward, starting from the
output nodes towards the input nodes. This process identifies where the model
is making errors and adjusts accordingly to improve accuracy.

6.4 Regularization

Regularization parameters and learning rates are configurable, making the
Machine Learning model flexible for optimization challenges. Regularization
Techniques are employed on all dense layers to penalize large weights, thus
discouraging overcomplex models that could overfit the training data. The
degree of regularization is controlled by the regularization factor parameter,
allowing for fine-tuning based on the specific dataset and training dynamics.
The initialization of each layer is dynamically adapted to accept a different
index from the regularization factor list, enabling different values for each
layer in the Deep Neural model.

To prevent overfitting, where the model learns the training data too well and
fails to generalize to new data, the training process is augmented with an
early stopping mechanism, which involves applying regularization techniques.
Layers introduce dropout, which randomly ’drops out’ a proportion of layer
outputs during training, forcing the network to learn redundant representations
and therefore be more robust. The final layer of the neural network is a single
neuron, designed to output the predicted PPV value.

6.4.1 Training Process

During training, the model uses the Adam optimizer to iteratively adjust the
weights of the network to minimize the Mean Squared Error. This involves
feeding the normalized features through the network, applying the ReLU ac-
tivation, and then using the optimizer to update the weights based on the
calculated loss. This process is repeated for a number of epochs until the loss
on the validation set no longer improves, indicating that the model has learned
to predict PPV as accurately as possible, given the architecture and data.

In parallel, the model checkpoint strategy is deployed. This involves saving the
state of the model at its peak performance on the validation data. By doing so,
it ensures that the most effective version of the model is preserved, regardless
of subsequent fluctuations in performance as training progresses.
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6.4.2 Hyperparameter Tuning

Hyperparameter tuning is managed through a separate script that allows for the
tuning of various parameters listed below. The table 6.1 provides an overview
of the hyperparameters of the model, and the description of them.

Hyperparameter Value
Custom Input Shape 13
Learning Rate 0.001
Dropout Rate 0.1
Regularization Factor 0.001
Kernel Initializer glorot uniform
Bias Initializer zeros
Activity Regularizer l1, l2
Kernel Constraint MaxNorm
Bias Constraint NonNeg
Noise Level 0.01
Epochs 50

Table 6.1: Hyperparameters and their values.

• Custom Input Shape: Number of features in the dataset.
• Learning Rate: Typical starting value. If the model learns too slowly,

this should be increased, or decreased in case of the opposite.
• Dropout Rate: This helps prevent overfitting and is adjusted based on

the complexity of the model and the amount of training data.
• Regularization Factor: Originated with small values for every layer. Reg-

ularization applies penalties on layer parameters or layer activity, effec-
tively simplifying the model.

• Kernel Initializer: ’glorot uniform’ is a default choice for ReLU activa-
tions. Initializes the weights of a layer uniformly at random, but within
a range that depends on the number of input and output neurons of the
layer.

• Bias Initializer: Currently set to be ’zeros’. Can be changed to ’non-zeros’
to break symmetry in learning.

• Activity Regularizer: The model uses ’l1’ or ’l2’ regularizers as it can
help make the model’s output more infrequent.

• Kernel Constraint: In case of a reason to restrict the range of weights or
biases, currently set to ’MaxNorm’.

• Bias Constraint: In case of a reason to restrict the range of weights or
biases, currently set to ’NonNeg’.

• Noise Level: Helps in making the model robust to variations in the input
data.

• Epochs: An epoch is simply one stream of the entire dataset.





7
Experiment
This chapter presents the experimental process used to develop and evaluate
the effectiveness of Machine Learning (ML) algorithms in improving Peak Par-
ticle Velocity (PPV) predictions for blasting events in the mining industry. The
primary focus is on the implementation of ML models and comparing their
predictive capabilities against the industry standard practices.

The key sections in this chapter includes the ML model training process, and
evaluation metrics, which are essential for understanding model optimization
and performance measurement. The Machine Learning model’s performance
is compared against the industry-standard model, establishing a baseline for
innovation. Two prototype models named Simple Neural Networkmodel, and a
Linear Regression Random Forest model were created to enable an comparison
to the Machine Learning model.

7.1 Dataset Partitioning: Training, Validation,
and Testing

The original dataset is split into training (70%), validation (15%), and testing
(15%) sets to ensure robustmodel training and evaluation. The rationale behind
these splits is to ensure that the model not only learns well but also generalizes
well to new data and is not biased or overfitted to the training data.
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The percentages are not strict rules but common practices. Depending on the
size and nature of the dataset, these ratios can be adjusted. The key is to
provide the model with enough data to learn effectively while also keeping a
substantial amount of unseen data for validation and testing.

• Training set (70%): This is the largest portion of the data and is used to
train the model. The high percentage ensures that the model has access
to a diverse and extensive range of data points to learn from. Training
on a substantial dataset helps the model capture the underlying patterns
and relationships effectively. However, training exclusively on this set can
lead to overfitting, where the model performs well on the training data
but poorly on unseen data.

• Validation Set (15%): The validation set serves as a check during train-
ing. It is not used to train the model but to evaluate its performance after
each training epoch. This allows for monitoring the model’s generaliza-
tion capabilities and tuning hyperparameters without biasing the model
towards the test data. The validation set helps in deciding when to stop
training with early stopping and to avoid overfitting.

• Testing Set (15%): After the model is trained and hyperparameters are
tuned using the training and validation sets, the testing set is used to
evaluate the model’s performance. This set is never seen by the model
during training and serves as new, unseen data. It provides an unbiased
evaluation of the final model’s performance and generalization ability.
The performance on the testing set is a good indicator of how the model
will perform in real-world scenarios or on unseen data.

7.1.1 The Impact Of Feature Correlations

Understanding the dataset and the relationship between its features is cru-
cial for creating a Machine Learning model to accurately predict Peak Particle
Velocity.

In figure 7.1 the dataset shows negative correlation between Scaled Distance
(SD) and Peak Particle Velocity (PPV). As the SD increases, the PPV gener-
ally decreases, which is expected as the energy from the blast dissipates with
increased distance or lower explosive mass.
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Figure 7.1: The relationship of Scaled Distance and PPV.

• Clustering of Data Points: The data points are clustered more densely
at lower PPV values. As the Scaled Distance increases beyond a certain
point (approximately SD > 30), the PPV values cluster closer to the lower
end of the PPV scale, which indicates a rapid decrease in PPV as distance
increases.

• Data Distribution: The PPV values have greater variance at lower Scaled
Distances, showing high variability in PPV at lower Scaled Distance val-
ues. This variability decreases as scaled distance increases, suggesting
more consistent (and lower) PPV measurements at greater distances.

• Minimum and Maximum Values: The plot reveals a noticeable lower
boundary for Scaled Distance at approximately 10 kg/m0.5. According
to information provided by the data source, this boundary likely results
from an enforced design limit.

In the figure below 7.2 there does not appear to be a clear trend or strong
correlation between Maximum Instantaneous Charge (MIC) and PPV, The data
points are widely spread across the range of MIC values. There’s significant
variability in PPV at all levels of MIC. This suggests that MIC is not the sole
factor influencing PPV, or that other variables at play may affect the PPV.
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Figure 7.2: The relationship of Maximum Instantaneous Charge (MIC) and PPV.

Interpretation of the relationship of ’Scaled Distance’ and PPV:

• Implications for Blasting Practices: Given the spread of data, it’s possi-
ble that other factors, such as blast design, timing, or geology, may have a
more significant impact on PPV than ’MIC’ alone. This indicates the com-
plexity of predicting PPV and the need for more sophisticated models
that can account for multiple variables.

• Potential for Model Improvement: The wide dispersion of PPV values
at various MIC levels could indicate that a simple linear model may not
be the best predictor of PPV. This might suggest the exploration of more
complex models or the inclusion of additional explanatory variables to
better understand the determinants of PPV.

7.2 Iterative Model Development and
Prototyping

The development of the Deep Neural Network (DNN) was an iterative process,
involving the incremental creation and comparison of various simpler models,
before the final DNN model was established.
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Initially, a Simple Neural Network model was developed, featuring one input
layer and three hidden layers. This model, while basic in terms of depth and
complexity, effectively balanced expressiveness and simplicity, reducing the
risk of overfitting. However, its predictive performance was not sufficiently
compelling to warrant further development, and time allocation.

Subsequently, a more complex model was created, employing a two-stage ap-
proach that combined a RandomForestRegressor and a LinearRegression model.
This model offered a moderate complexity level and was designed to capture
more intricate data patterns through the RandomForest’s ability to model com-
plex interactions. Despite its advancement over the simplermodel, its predictive
capabilities still fell short of expectations, leading to a decision against further
refinement, and time allocation.

The final phase of the experimental process focused on the Deep Neural Net-
work (DNN) model. This model marked a significant advancement in complex-
ity compared to its predecessors, with extensive customization options and
an advanced architecture. It was characterized by its adaptability, incorpo-
rating adjustable regularizers, constraints, and initializers to accurately model
complex data intricacies. The iterative refinement of this DNN, including hyper-
parameter tuning and performance assessment, resulted in noticeably superior
predictive outcomes compared to the earlier models, making it the chosen
prototype for the study.

The experimental process is illustrated in 7.3 below.



104 chapter 7 experiment

Start: Model Development

Simple Neural Network
Testing - MSE:
7.72, MAE:

2.049, R2: 0.49

Two-Stage Model (RandomForest + LinearRegression) MSE: 2.85, MAE:
1.26, R2: 0.79

Deep Neural Network (DNN) MAE: 0.60, MSE:
0.94, R2: 0.94

End: Final Model Prototype

Limited performance

Not sufficiently compelling

Superior outcomes

Figure 7.3: Iterative Model Development and Prototyping Flowchart

7.2.1 Model Parameters and Architecture

The architectures and parameters of the developed models are summarized
in Table 7.1 below. Each model’s architecture is unique in attempting to best
predict Peak Particle Velocity (PPV). Understanding the structure and param-
eters of these models provides a simple insights into their functioning and
adaptability to predict PPV. Additionally, the selection and tuning of hyperpa-
rameters play a significant role in optimizing model performance and ensuring
generalization beyond the training dataset.
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Model Simple Neural
Network

Two-Stage
Model

DNN

Architecture 1 Input, 3 Hidden RandomForest +
Linear Reg.

Multiple Dense
Layers

Layer Types Dense RandomForest,
Linear

Dense, Dropout

Activation
Func.

ReLU, Linear
(output)

N/A ReLU, Linear
(output)

Hyperparameters Learning Rate:
0.01, Neurons:
64, Epochs: 100

Trees: 100, Max
Depth: 10

Learning Rate:
0.001, Dropout:
0.1, Epochs: 50

Hyperparam.
Relevance

Learning speed,
convergence,
training dura-
tion

Complexity,
accuracy, model
depth

Overfitting,
learning op-
timization,
training dura-
tion

Table 7.1: Summary of Model Parameters and Architectures





8
Evaluation
This chapter focuses on evaluating the predictive performance of the developed
Machine Learning models for Peak Particle Velocity (PPV), with a primary
emphasis on evaluating the advanced DNN model and comparing its results
with those of the industry-standard model.
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8.1 Evaluation of Key Variables in Mining Blast
Operations

The correlation heatmap below 8.1 provides a visual representation of the
relationships between various variables from the raw dataset.

Strength of Correlation:
Intensity of the color indicates a stronger correlation between features. Stronger
correlations are represented by more intense colors, and weaker correlations
are shown with less intense, more muted colors.

Strength of Correlation:
One color spectrum represents positive correlation, while another spectrum
represents negative correlation. No correlation or zero correlation is usually
shown with a neutral color.

Figure 8.1: Displays the correlation between the variables as a color-coded matrix.

The key features included in this heatmap are:

• Scaled Distance (SD)
• Groundwater Presence
• Blast Direction
• Site Location
• Maximum Instantaneous Charge (MIC)
• Distance to Monitoring Point
• Timeframe
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Correlation Heatmap Analysis

The scale on the right of the figure indicates that red colors represent positive
correlation and blue colors represent negative correlation. The light grey color
represent no correlation.

• Scaled Distance (SD) and PPV (Peak Particle Velocity): There is a
strong negative correlation (-0.67), indicated by the dark blue color. This
suggests that as the ’Scaled Distance’ increases, the Peak Particle Velocity
tends to decrease, or vice versa.

• Groundwater and Blast Direction: There is a moderate negative corre-
lation (-0.38), indicated by the medium blue color. This suggests some
level of inverse relationship between groundwater levels and the direc-
tion of the blast.

• MIC (Maximum Instantaneous Charge) andDistance: There is a strong
positive correlation (0.71), indicated by the dark red color. This indicates
that as the ’MIC’ increases, the distance also tends to increase, or vice
versa.

• Site: The correlations with the ’Site’ variable are very weak, as indicated
by the very light colors. This suggests that ’Site’ has little linear relation-
ship with other variables in this dataset.

• Timeframe: Like ’Site’, ’Timeframe’ also shows very weak correlations
with other variables, suggesting it does not have a strong linear relation-
ship with the measures considered in this heatmap.

Heatmap correlation does not necessarily imply causation, further analysis is
required to determine the underlying causes of these relationships.

8.2 Evaluation of the Industry-standard Model

Chapter 2 introduced the industry-standard model used for predicting Peak
Particle Velocity (PPV) along with its underlying mathematical representa-
tion. PPV measures the maximum velocity attained by particles in a blast,
across transverse (T), vertical (V), and longitudinal (L) axes, as referenced in
[19].

The industry-standard model computes PPV using the Duvall and Fogleson for-
mula from the United States Bureau of Mines (USBM), articulated in Equation
8.1, reproduced below for clarity:
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Duvall and Fogleson (USBM) 𝑃𝑃𝑉 = 𝐾 ( 𝐷

𝑄1/2 )
−𝑏 (8.1)

In this equation,𝑄 denotes theMaximum Instantaneous Charge, and𝐷 refers to
the separation between the blast site and the monitoring point. The constants
𝐾 and 𝑏 are derived through the regression analysis of the dataset, which
encapsulates the relationship between ’MIC’, ’Distance’, and the observed PPV.
It is important to note that ’Scaled Distance (SD)’ is defined as:

Scaled Distance Equation 𝑆𝐷 = ( 𝐷

𝑄1/2 ) (8.2)

The industry-standard predictive model relies on accurately defining constants
𝐾 and 𝑏, in Equation 8.1. To determine these constants, a regression fitting
technique is applied to the training dataset, where Scaled Distance (SD) is
the independent variable and PPV is the dependent variable. This technique is
depicted in Figures 8.2 and 8.3.

The least squares regression method was used to minimize the sum of squared
residuals, leading to the determination of 𝐾 and 𝑏. Specifically, on the loga-
rithmic scale, the slope of the regression line corresponds to constant 𝑏 (-1.67),
reflecting the rate of PPV decrease with increasing SD. The y-intercept of this
line provides constant 𝐾 (487), indicative of the initial PPV at a unit Scaled
Distance. These constants, critical for the model’s accuracy, allow for PPV pre-
dictions to be made when ’MIC’ and ’Distance’ are known.
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Figure 8.2: Industry Standard method, displaying the fitted regression line amongst
the training dataset.

Figure 8.3: Industry Standard method displayed on a log scale, indicating the regres-
sion line which is used to determine the 𝐾 and 𝑏 constant values.
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After defining the industry-standard model, by determining the 𝐾 and 𝑏 values
using the regression method, the model was applied to the testing dataset,
these results are shown below in Figure 8.4.

Figure 8.4: Predicted vs. Measured PPV Comparison Using the Industry Standard
Model.

This visual representation is valuable for evaluating the performance of the
industry-standard model. It also serves as a comparative baseline when com-
pared against the advanced capabilities of the Deep Neural Network developed
in this research. The evaluation metrics for the industry-model’s performance
are summarized in the table below.

Evaluation Metric Industry Standard Model
Mean Absolute Error (MAE) 2.04
Mean Squared Error (MSE) 7.41
R-squared 0.51

Table 8.1: Evaluation results of the industry-standard model.
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8.3 Evaluation of the Machine Learning Models

8.3.1 Deep Neural Network Model

In the development of a Deep Neural Network (DNN) model for predicting
Peak Particle Velocity (PPV) in mining operations, understanding the features
importance is crucial for interpretability and the optimization of the model.
Figure 8.5 presented below is a visual representation of feature importance
derived from the model after training, showing the relative contribution of each
feature to the predictive ability of the network.

Figure 8.5: Feature importance identified in the DNN model.

Error bars in feature importance plots are a way to visualize the stability or
consistency of the feature importance. The x-axis shows the scale of impor-
tance, with values close to zero indicating lower importance and higher values
indicating greater importance.

’Scaled Distance’ is identified as having the greatest importance in the DNN.
This is not surprising as it this specific parameter is the sole parameter of sig-
nificance in the current industry-standard model, and therefore validating it’s
significance. ’Distance’, similar to ’MIC’ shows great importance to the DNN
model, but to a lesser extend than ’Scaled Distance (SD)’variable. The mul-
tiple ’Site’ variables have lesser importance in the model, as they are likely
encompassing the geological ground conditions.



114 chapter 8 evaluation

The categorical variables, such as ’Blast Direction’, ’Groundwater’, ’Timeframe’
and ’Site’, have been one-hot encoded, as evidenced by the multiple entries for
each in the chart.

The predictive performance of the DNN model is depicted in Figure 8.6. The
scatter plot demonstrates a strong correlation between the predicted and mea-
sured PPV values, as evidenced by the high R-squared value of 0.94. The prox-
imity of data points to the dashed line of perfect prediction indicates themodel’s
accuracy, with a Mean Squared Error (MSE) of 0.94 and a Mean Absolute Error
(MAE) of 0.60 mm/s. Such metrics underscore the DNN model’s effectiveness
in generalizing from the training data to make reliable predictions on unseen
data.

Figure 8.6: DNN model PPV predictions on testing data.

8.3.2 DNN Evaluation Metrics

Evaluating the model’s performance was quantified using several statistical
metrics. These are considered essential in validating the effectiveness of the
Machine Learning model, and its results is presented in the table, together with
the Industry Standard Model results which serves as a comparison.
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Evaluation Metric DNN Model Industry Standard Model
Mean Absolute Error (MAE) 0.60 2.04
Mean Squared Error (MSE) 0.94 7.41
R-squared 0.94 0.51

Table 8.2: Evaluation results of the Machine Learning model compared to the industry
standard model.

• Mean Absolute Error (MAE): The MAE, which represents the average
absolute discrepancy between the predicted values and the actual data
points was calculated to be approximately 0.60. This indicates that, on
average, the model’s predictions deviate from the true PPV values by less
than one unit. This level of accuracy is promising for practical applications
where estimations within a margin of less than one are often acceptable.

• Mean Squared Error (MSE): The MSE, providing a squared average
of prediction errors, was determined to be 0.94. The squaring of errors
penalizes larger discrepancies more severely. A lower MSE is desirable.
An MSE value close to one suggests that the model’s predictions are, in
general, close to the observed values, with fewer large errors.

• R-Squared (R2): The R2 metric is a statistical measure that represents
the proportion of variance for the dependent variable that’s explained
by the independent variables in the model. In this context, an R2 value
of approximately 0.94 indicates that the model explains over 94% of the
variance in PPV from the features provided. This high R2 value demon-
strates a strong relationship between themodel’s inputs and the predicted
PPV, suggesting that the model is highly predictive of the expected PPV
outcomes.

8.3.3 DNN Model Training And Validation Loss Evaluation

Training Loss represents the model’s performance on the training set. It’s
the error between the predicted values and the actual values for the training
dataset. The steady decline and stabilization indicate that the DNN model has
learned effectively from the training data.

The primary goal during training is to minimize this loss. A lower training loss
indicates that the model is learning the patterns in the training data effectively,
and is calculated using the loss functions Mean Square Error Equation 3.16, the
Root Mean Square Error Equation 3.4.3, and R-squared Equation 3.19.
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Validation Loss is the error on a separate set of data not used for training,
typically used to evaluate the model’s ability to generalize. The fact that it
follows the training loss closely and doesn’t increase suggests that the model
is not overfitting and has good generalizability.

The purpose of training validation is to identify issues like overfitting,where the
model performs well on training data but poorly on unseen data. A model that
generalizes well will have a validation loss comparable to its training loss. The
validation loss is calculated using the same loss functions but on the validation
dataset.

Figure 8.7 shows the training and validation loss for the DNN model.

Figure 8.7: Training and validation loss results of the DNN model.

Key results from the training and validation loss shown in Figure 8.7 are sum-
marized below:

• Epochs: 50 epochs are used based on the results from the training and
validation loss Figure 8.7, where the losses are fairly flat in the final
epochs, towards the end of the training. The losses flattens between
30-50 epochs, suggesting that running more epochs may not result in
significant improvements in the model performance.
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• Learning Dynamics: Initially, both training and validation loss values
are high as the model starts learning. There is a sharp decline in both
training and validation loss as the model begins to learn from the data.
This is most pronounced in the first 10 epochs. As training progresses, the
training loss typically decreases. However, the behavior of the validation
loss is crucial to monitor for overfitting.

• Convergence: After the initial steep descent, the loss for both training
and validation begins to plateau, showing that the model is starting to
converge to its optimal parameters.

• Stable Loss: As the epochs increase, the loss for both training and vali-
dation stabilizes, indicating that the model is not learning significantly
from additional training. This stabilization is happening at a relatively
low loss value, which is a good sign of model performance.

• Closeness of Curves: The training and validation loss curves are close
to each other throughout the training process, suggesting that the model
is generalizing well to unseen data. There is no significant divergence,
which implies that overfitting is likely not a problem for this model.

• Overfitting and Generalization: When the validation loss starts increas-
ing while training loss continues to decrease, it indicates overfitting. A
good model should have both low training loss and low validation loss,
showing that it has learned well and can generalize to new data. The
figure shows no significant divergence between the training and valida-
tion loss, which is a common sign of overfitting. Overfitting would be
indicated by a decrease in training loss but an increase in validation loss,
which is not observed here.
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This table provides a description of the model’s learning behavior for each
specified range of epochs.

Epoch Range Observations
0-10 Rapid decrease in loss indicating significant learn-

ing from the data. The model quickly adjusts
weights from their initial random state, captur-
ing large gains in performance.

10-30 Slower rate of decrease in loss. The model begins
to fine-tune its parameters, with the initial and
easiest learning improvements already realized.

30-50 Loss stabilizes and shows minimal decrease. This
suggests the model has largely converged, with
additional training providing diminishing returns.
The model’s performance is optimized and stable.

Table 8.3: Behavior of the model across different epoch ranges

8.4 Model Performance and Comparative
Evaluation

This study developed a Deep Neural Network (DNN) model that proved to be
the most advanced machine learning tool for predicting Peak Particle Velocity
(PPV). To benchmark its predictive improvement, a baseline was established
using the conventional industry-standard model, with linear regression serving
as the primary point of comparison. The Simple Neural Network, representing
the initial model in the experimental process, surpassed the capabilities of
the linear model, while linear regression provided a basic, yet interpretable,
reference point.

The DNN model’s performance was compared against these benchmarks to
validate its effectiveness and contextualize its superior predictive ability. The
two-stage model, which blends RandomForestRegressor and LinearRegression,
provided an intermediate complexity level for comparison. The most critical
aspect of this comparative analysis was to demonstrate the DNN model’s ad-
vanced capabilities over the industry-standard model, as well as the other ma-
chine learning prototypes developed during this research.
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Evaluation Metric
Simple
Neural
Network

Two-Stage
Model

DNN
Model

Industry
Standard
Model

Mean Absolute
Error (MAE) 2.049 1.26 0.60 2.04

Mean Squared
Error (MSE) 7.72 2.85 0.94 7.41

R-squared 0.49 0.79 0.94 0.51

Table 8.4: Evaluation results of the Machine Learning models compared to the indus-
try standard model.

The evaluation metrics, as summarized in Table 8.4, illustrate the DNN model’s
superior accuracy and reliability in PPV prediction. With the lowest Mean Ab-
solute Error (MAE), the lowest Mean Squared Error (MSE), and the highest
R-squared value, the DNN model outperformed not just the industry-standard
model but also the other developed prototypes. This clearly indicates the po-
tential of DNNs to revolutionize predictive accuracy in mining operations, sig-
nificantly contributing to safer and more efficient blasting practices.

8.4.1 Analysis of Benchmark Models

The Deep Neural Network (DNN) model’s performance is compared against a
simpler neural network model and a linear regression and random forest model
to identify areas for improvement. The results are evaluated in table 8.4. The
reason for comparing the DNN model with two different models are:

• Point of Reference: Benchmark models provide a point of reference to
evaluate the DNN model. By comparing against well-understood models,
the DNN’s strengths and areas for improvement become evident.

• Model Validation: The performance of the DNN model, when contrasted
with benchmark models, can validate the complexity and sophistication
of the DNN approach.





9
Discussion
This chapter critically examines the process and implications of developing a
Deep Neural Network (DNN) model for predicting blast-induced ground vibra-
tions in collaboration with an external Mining Consultant Company. It high-
lights the inherent limitations encountered in this collaborative effort and the
strategies deployed to address these challenges.

This chapter interprets the analysis of the model’s findings and explores po-
tential enhancements to the model, by examining the application of Machine
Learning (ML) within the mining sector. The chapter aims to contextualize
the significance of the research findings within the scope of mining, by un-
derscoring the practical utility and theoretical contributions of the study. This
discussion seeks to bridge the gap between academic research and industry
practice, offering insights into the future trajectory of ML integration in mining
operations.
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9.1 Evaluating Machine Learning Model
Complexity

In Chapter 8, Figure 8.5 demonstrates the feature importance as presented
by the Deep Neural Network (DNN) model. This visualization is crucial as it
reveals a better understanding of the factors influencing PPV. The DNN model
identifies ’Scaled Distance’ as the most significant feature, aligning with indus-
try standards, but it also highlights the substantial roles of ’MIC’ (Maximum
Instantaneous Charge) and ’Distance’. Interestingly, the model assigns con-
siderable weight to multiple ’Site’ variables, suggesting that environmental or
location-specific factors have a noticable impact on PPV predictions. This is
representative of the DNN’s capability to capture complex, multi-dimensional
relationships in the data, which traditional models might overlook.

Meanwhile, the industry standard model, which is based on simpler regression
approaches, shows a heavy reliance on ’Scaled Distance’ and ’MIC’. While these
are undoubtedly key factors, the industry model’s focus is narrower, primar-
ily concentrating on these variables. This limited focus can be a significant
drawback.

As Figure 8.5 demonstrates, other features, though less pronounced, contribute
to the predictive accuracy and overall model robustness. The industry model’s
tendency to overlook these could lead to a less comprehensive understanding of
PPV dynamics, potentially resulting in predictions that do not fully encapsulate
all influencing factors.

The industry’s emphasis on ’Scaled Distance’ is understandable given its his-
torical significance in regression models for PPV prediction. However, this ap-
proach, while simplified, might not capture the full complexity of the influenc-
ing factors. The DNN model’s ability to integrate a broader range of features
illustrates the potential for a more holistic approach to PPV prediction.

By incorporating the importance of more of the features from the dataset, the
DNN model is not only aligning with traditional knowledge but also extending
it, providing amore detailed and potentiallymore accurate picture of the factors
influencing PPV. This approach is particularly valuable in complex geophysical
contexts where multiple variables interact in non-linear ways to affect PPV
outcomes
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9.2 Requirements Approach

The thesis has been developed based on these requirements in agreement with
the Mining Consultant Company:

• Data Quality and Quantity: Access to high-quality dataset that covers
relevant blasting parameters.

• Model Performance: The model should provide greater predictive capa-
bilities for Peak Particle Velocity (PPV) when compared with the current
industry standard model (USBM equation).

• Security and Privacy: It should ensure confidentiality and integrity of
shared data.

• Evaluation and Reporting: Clear metrics for evaluating the model’s per-
formance.

The Mining Consultant Company provided a real world dataset of historical
features of multiple blasting operations, large enough to train a Machine Learn-
ing model. The development of the project was conducted entirely on a local
machine, without being designed as an application or deployed externally. This
approach greatly simplified data security and privacy concerns.

The security and privacy of the data was achieved by password security and
limiting access. The data has been consistently backed up, safeguarding against
potential data loss. Additionally, GitHub has been utilized to track changes
and modifications made throughout the project. To maintain the integrity of
the results, data validation has been a continuous process. This has involved
regularly checking the data for accuracy and consistency, ensuring reliable
outcomes from the modeling process.

9.3 Addressing Limitations and Findings

Understanding and acknowledging the limitations of a study is crucial for a
grounded interpretation of its findings. As stated in Chapter 1 and further
presented in Section 1.7, this thesis recognizes a set of limitations, established in
the early stages in collaboration with the external Mining Consultant Company.
These limitations have been integral to shaping the research approach and
interpreting the outcomes.

One of the primary limitations involves the dataset used in this study. While it is
comprehensive and well-suited for the objectives of this research, it inherently
limits the model’s broader applicability. The dataset, being a reflection of spe-
cific operational conditions and environmental characteristics of a particular
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mining site, might not be fully representative or applicable to other mining
scenarios. This particularity raises concerns about the model’s generalizability.
The effectiveness of a Deep Neural Network (DNN) in predicting Peak Parti-
cle Velocity (PPV) heavily relies on the diversity and representativeness of its
training data. A model trained on data from a specific geological or operational
context may not perform as well when applied to a different setting, poten-
tially limiting its practical utility beyond the context similar to the training
dataset.

Regarding technological aspects, the constraints were found to be minimal. The
computational resources at disposal were sufficient for the planned complexity
of the DNN architecture and the depth of training it underwent. Although the
model’s performance and capabilities are inherently linked to the hardware
and software resources available, this research did not encounter significant
limitations in these areas. The hardware and software used were sufficiently
capable, facilitating the development of a robust and effective model.

In light of these limitations and the technological context, the findings of this
research should be interpreted with an understanding of their context-specific
nature. The model’s applicability and predictive accuracy are closely tied to the
characteristics of the dataset it was trained on and the technological environ-
ment in which it was developed. Future research could focus on broadening
the dataset to include a more varied range of mining conditions, thereby en-
hancing the model’s applicability and generalizability. Further exploration into
the scalability of the model and the potential use of advanced computational
resources, such as cloud computing, could also be valuable avenues to extend
the capabilities and reach of the predictive model in mining operations.

9.3.1 Challenges of Machine Learning Models in Mining

Utilizing Machine Learning models in the mining sector can offer promising
advancements but also posing significant challenges, especially when it comes
to safety and operational decisions.

Machine Learning models, including Deep Learning Networks can perform
remarkably well but understanding how they reach their conclusions can be
confusing. In mining, where decisions can impact worker safety and environ-
mental preservation, being able to trust and understand model predictions is
essential. If a model says a particular blast will not breach safety thresholds, it
is vital to understand why and to be confident in that assertion.

The core of anyMachine Learningmodel lies in lots of high-quality data. Mining
operations generate vast amounts of data, but it can be inconsistent. If a model
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is trained on poor-quality data, its predictions could be off, potentially leading
to unsafe conditions. The range of data, from numbers to categories and even
sequences over time, adds complexity to this task.

Another issue is that a model trained in one mining environment might not
work well in another. Each mine is as unique, with its own geological and
operational characteristics. A model that shows great evaluation results in
predicting vibrations for one mine might be completely inaccurate for another
mine. This raises questions about the scalability and transferability of Machine
Learning models across different mining settings.

It exists a gap between theory and practice. Models might show excellent
performance in simulations or controlled test environments but fail to replicate
those results in the real-world chaos of a mining operation, where unexpected
variables and complex interactions are the norms.

Another limiting factor is the technological infrastructure in mining. Machine
Learning models often demand substantial computational power, data storage,
and processing capabilities, which might not be available in remote or resource-
limited mining sites. This can restrict the use of sophisticated models that
require significant computational resources to operate effectively.

Recognizing and addressing these limitations is crucial in ensuring that the
benefits of machine learning can be fully realized without compromising the
safety and integrity of mining operations.

9.4 Deep Neural Network Predictive Efficacy

The Deep Neural Network (DNN) model developed as part of this research
has demonstrated outstanding performance in the prediction of blast-induced
vibrations, achieving an R-squared (R2) value of 0.94. This is a significant
improvement compared to the current industry standard, which has an R2 of
0.51. Such an increase in the R2 value indicates that the DNNmodel can explain
94% of the variability in the blast vibration data, offering a highly accurate
model for predicting the effects of blasting operations.

A high R2may not always mean a model is the best or most appropriate. It does
not account for overfitting, nor does it indicate if the model assumptions are
met. Therefore, R2 should be considered alongside other performance metrics
and model validation techniques.

The Deep Neural Network (DNN) model’s ability to consider multiple variables
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simultaneously is a key factor in its superior performance. Unlike traditional
models that may rely heavily on a few features such as ’Scaled Distance’ and
’MIC’, the DNN model integrates various features, creating a more comprehen-
sive understanding of the blast dynamics. This multifaceted approach allows for
the consideration of complex interactions between different variables, which
is crucial in capturing the intricacies of blast-induced vibrations.

The evaluation metrics further demonstrate the model’s enhanced predictive
capabilities. With a Mean Absolute Error (MAE) of 0.60, the DNN model shows
a closer average prediction to the actual vibration values than the industry stan-
dard model, which has a MAE of 2.04. This lower MAE indicates that the DNN
model’s predictions are, on average, much closer to the true data points.

Similarly, the Mean Squared Error (MSE) of 0.94 for the DNNmodel, compared
to 7.41 for the industry standard, suggests that the DNN model’s predictions
deviate less from the true values, especially when considering the square of
those deviations, which emphasizes larger errors.

These metrics not only exhibit the model’s accuracy but also its reliability
and robustness in various situations. By accurately predicting the outcomes of
blasting, the DNN model can significantly contribute to environmental safety,
ensuring that vibration levels remain within safe limits to protect nearby struc-
tures and habitats. Additionally, this level of predictive accuracy can enhance
operational efficiency by aiding in the planning and execution of blasting op-
erations, ultimately leading to a reduction in unexpected downtime and costs
associated with over- or under-blasting.

9.5 Theoretical And Practical Implications

This study shows important implications for both the understanding and ap-
plication of Machine Learning in environmental care and risk management
within the mining industry. From a theoretical perspective, using a Deep Neu-
ral Network (DNN) to predict Peak Particle Velocity (PPV) shows that advanced
Machine Learning methods can make sense of complex data. This supports the
idea that using Machine Learning to analyze environmental data can lead to
better predictions and a clearer picture of the patterns and forces at play.

On a practical level, the successful creation of a Machine Learning model has
the potential to change the mining sector’s approach to environmental risk
management. By accurately predicting PPV, mining companies can proactively
implement control measures to limit the impact of blasting effects on nearby
communities and environments. This contributes to the broader goals of sus-
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tainable mining practices and corporate social responsibility. Furthermore, the
model’s capacity to consider a range of variables beyond the traditionally used
’Scaled Distance’ indicates a more nuanced understanding of blast impacts,
enabling a more comprehensive risk assessment.

The findings emphasizes the practicality of local development and application
of ML models. Given the often resource-constrained environment of on-site
mining operations, the ability to develop, train, and refine predictive models
locally without the need for extensive computational infrastructure is a sig-
nificant advantage. This democratization of Machine Learning can empower
smaller mining entities to leverage cutting-edge technology for environmental
monitoring.

In conclusion, the theoretical implications of this study reaffirm the value of
Machine Learning in environmental science, while the practical implications
point to Machine Learning’s transformative potential in enhancing environ-
mental risk management in mining. Future work could focus on integrating
such models into real-time monitoring systems, providing immediate feedback
and action points for mining operations to address environmental concerns
promptly.





10
Conclusion And Future
Work

This study focused on the application of Machine Learning techniques, par-
ticularly the implementation of a Deep Neural Network (DNN) model, for the
prediction of blast-induced ground vibrations utilizing a provided data source.
The performance of the DNN model was evaluated and benchmarked against
the prevailing industry-standard model used for similar vibration predictions.
The findings of this research were noteworthy, showcasing a marked enhance-
ment in predictive accuracy. By achieving this, the study successfully met its
primary objective, which was to simply surpass the predictive capabilities of
the current industry benchmark. This advancement not only highlights the
effectiveness of DNN models in this specific domain but also provides signif-
icant confidence for future research and practical applications in the field of
blast-induced ground vibration prediction.

10.1 Achievements

The primary objective of this thesis was to develop a Machine Learning (ML)
model that surpasses the predictive accuracy of conventional industry standard
methods for predicting blast-induced ground vibrations. This objective was
successfully met through the implementation of a Deep Neural Network (DNN)
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model, which demonstrated a substantial enhancement in performance metrics.
Specifically, the DNN model achieved a remarkable 84% increase in the R-
squared value, coupled with a significant reduction in error margins – a 70%
decrease in Mean Absolute Error (MAE) and an 87% decrease in Mean Squared
Error (MSE) – compared to the traditional industrymodel. These improvements
in key evaluation metrics not only underscore the effectiveness of the DNN
model but also reinforce the potential of employing DNN models for similar-
scale datasets in future projects, showcasing their practical viability in the
field.

10.2 Impact On Mining Operations

Enhancing the accuracy of predicting blast-induced ground vibrations through
the use of ML models has a substantial impact on mining operations. It equips
blast designers, management, and personnel with an improved tool to make
more informative decisions regarding environmental, safety, and regulatory
compliance risks associated with blasting activities. The adoption of a Deep
Neural Network (DNN) model, as a replacement for the existing industry stan-
dard models, would mark a considerable advancement in prediction accuracy.
This improvement would contribute to a significant reduction in the inherent
risks associated with blasting.

10.3 Future Work

The outcomes of this research offer a promising foundation for further work
in the field of blast-induced PPV prediction using Machine Learning (ML) al-
gorithms. Future studies could focus on datasets characterized by ’higher risk’
scenarios. These scenarios typically involve lower scale distance values coupled
with higher potential PPV levels. Notably, this study identified that the greatest
variability in predictive accuracy occurred in these ’high-risk’ scenarios. There-
fore, targeting improvements in predictive models for such scenarios could
be extremely valuable for mitigating the risks associated with blast vibration
exceedance.

Another key insight from this research is the value of incorporating a broader
range of variables into predictive models. Future works should seek to expand
the dataset by including even more variables. While challenges in data collec-
tion and record-keeping have been acknowledged by the data source provider,
it would be extremely valuable to the mining industry to enhance their data
collection and record-keeping systems. Prioritizing the accumulation of de-
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tailed, multi-faceted data will significantly contribute to the refinement and
accuracy of ML-based PPV prediction models.

Furthermore, there is considerable scope for exploring a diverse array of ML
algorithms or even hybrid approaches that combine multiple algorithms. The
rapidly evolving landscape of ML offers continuously emerging techniques and
methodologies. Future research should leverage these advancements to not
only keep pace with the technological progress but also to explore innovative
ways in which these evolving tools can be applied to blast-induced PPV predic-
tions. The ongoing development and integration of advanced ML algorithms
hold the potential to substantially elevate the precision and reliability of PPV
predictions.

10.4 Final Thoughts

This research highlights the enhanced capability of Machine Learning (ML)
models in accurately predicting blast-induced ground vibrations. To facilitate
wider adoption in the mining industry’s daily operations, it’s essential that these
MLmodels are user-friendly for engineers and blast designers, particularly those
who may not have a background in programming. Future developments could
focus on making these models more accessible in an operational setting. This
could be achieved by developing a straightforward web application, featuring a
non-intimidating user interface, tailored for operational staff who seek reliable
predictive results. Such an approach would promote broader industry adoption,
streamlining the process for daily users who rely on these predictions for their
operational decisions.





11
Deep Neural Network
Model Architecture

Figure 11.1 represents a complex Deep Neural network (DNN) model archi-
tecture used for supervised learning tasks. Starting with an input layer that
matches the feature count of the data, it progresses through several densely
connected layers where computations occur, interspersed with non-linear acti-
vation functions like ReLU to capture complex patterns.

Batch normalization layers aid in stabilizing the training by normalizing neu-
ron inputs, while dropout layers mitigate overfitting by randomly disabling
neurons. The final dense layer outputs predictions, with an Adam optimizer
fine-tuning the weights via backpropagation. The network’s design, including
layer depth and neuron count, is typically tailored through trials to best address
the specific dataset and learning task at hand.

The visualization is provided with the use of TensorBoard.
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Figure 11.1: Graphical representation of the Deep Neural Network model developed in this study.
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