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Abstract
Climate change can trigger climate tipping points, which are among the major
threats to human society. Tipping points are thresholds beyond which a system
undergoes abrupt, often irreversible, changes even if the external forcing is
brought to a halt. Several large-scale elements in the Earth system are con-
sidered tipping elements with global consequences once critical thresholds
are crossed and self-reinforcing changes are triggered. However, there is a
large uncertainty as to whether some Earth system components should be con-
sidered tipping elements. The precise values of the critical thresholds remain
uncertain, and it is unclear whether these can be temporarily exceeded without
triggering a tipping point. Moreover, incomplete historical records complicate
the inference of past dynamics of these components and current reconstruction
methods introduce biases into higher-order statistics that are used to assess
their stability. On the other hand, with the increasing availability of data and
advancements in computational power, deep learning (DL) offers new advances
in climate science, ranging from reconstructions to hybrid climate models.
This thesis presents an in-depth study of two distinct tipping elements: the
Greenland ice sheet (GrIS) and the coupled system of the South American
Monsoon and the Amazon rainforest (SAMS). Furthermore, we introduce a
novel deep learning-based method to reconstruct spatiotemporal climate fields.
By combining model- and observation-based analyses, we show that the SAMS
is approaching a critical transition in response to deforestation, potentially
leading to a large-scale reduction in precipitation rates in large parts of South
America. We associate the critical transition with a weakening of the oceanic
moisture inflow due to forest degradation.
Subsequently, we use two independent ice-sheet models and show for the
first time that the GrIS’s critical threshold can be temporarily exceeded with-
out prompting a transition to an alternative state. Timely reversal of surface
temperatures can prevent a complete retreat of the ice sheet due to the slow
timescale of the ice loss. Lastly, we present a new deep learning-based recon-
struction method. The model learns the underlying spatial relationships from
climate model output and can inpaint observation-based datasets. Our method
outperforms previous reconstruction methods and can realistically reconstruct
known historical events, highlighting the potential of DL.





Abstract (DK)
Klimaændringer kan udløse klimatippepunkter, som er blandt de største trusler
mod samfundet. Tippepunkter, eller tipping points, er tærskler, hvor et sys-
tem gennemgår pludselige, ofte irreversible ændringer, selv hvis den eksterne
påvirkning bringes til ophør. Flere stor-skala elementer i klimasystemet be-
tragtes som tippeelementer med globale konsekvenser, når kritiske tærskler
krydses, og selvforstærkende ændringer udløses. Der er dog stor usikkerhed
omkring, hvorvidt nogle komponenter i klimasystemet bør betragtes som tip-
pingelementer. De præcise værdier af de kritiske tærskler forbliver usikre, og
det er uklart, om disse kan overskrides midlertidigt uden at systemet tipper.
Desuden komplicerer ufuldstændigheden i historiske optegnelser den inferens
der kan drages om tidligere tiders dynamik i disse komponenter. Derudover
kan nuværende rekonstruktionsmetoder introducere bias i den højere ordens
statistik, der bruges til at vurdere klimaelementernes stabilitet. På den anden
side, med stigende tilgængelighed af data og fremskridt inden for beregn-
ingskraft, tilbyder dyb læring (deep learning, DL) nye fremskridt inden for
klimavidenskab, lige fra rekonstruktioner til hybrid klimamodeller.
Denne afhandling præsenterer en dybdegående undersøgelse af to distinkte
tippingelementer: Grønlands indlandsis (GrIS) og det koblede system af den
sydamerikanske monsun og Amazonas regnskov (SAMS). Desuden introduc-
erer vi en ny dyb læring-baseret metode til at rekonstruere klimaet i rum og
tid. Ved at kombinere model- og observationsbaserede analyser viser vi, at
SAMS nærmer sig en kritisk overgang som reaktion på afskovning, hvilket
potentielt kan føre til en storstilet reduktion i nedbørsmængder i store dele
af Sydamerika. Vi forbinder den kritiske overgang med en svækkelse af den
oceaniske fugtighedsindstrømning på grund af skovdegradering.
Derefter viser vi for første gang, med brug af to uafhængige iskappemodeller,
at GrIS’s kritiske tærskel kan overskrides midlertidigt uden at fremkalde en
overgang til en alternativ tilstand. Rettidig nedbringelse af overfladetempera-
turer kan forhindre en komplet tilbagetrækning af iskappen på grund af den
langsomme tidskala for istabet. Endelig præsenterer vi en ny DL-baseret rekon-
struktionsmetode. Modellen lærer de underliggende rumlige relationer fra
klimamodeloutput og kan inkorporere observationsbaserede datasæt. Vores
metode overgår tidligere rekonstruktionsmetoder og kan realistisk rekonstruere
kendte historiske begivenheder, hvilket fremhæver DL’s potentiale.
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1
Introduction
Climate change is one of the most serious threats to human society in the
near future, manifesting itself across various temporal and spatial scales. Most
prominently, there has been a steady increase in global mean temperatures
(GMT) since the industrial revolution1. There is unequivocal agreement that
anthropogenic activities,primarily greenhouse gas emissions, are causing global
warming, with current global mean temperatures having exceeded 1.1°C (2011-
2020) above pre-industrial levels (1850-1900) (ref.1). Besides the trend in the
GMT, the impacts of human-made climate change are already evident today,
manifesting as, for example, rising sea levels or an increased frequency of
extreme events, with vulnerable communities being disproportionately affected
by it1. Continued greenhouse gas emissions will further exacerbate climate
change with projected GMTs ranging from 1.4°C (very low emission scenario)
to 4.4°C (very high emission scenario) above pre-industrial by the end of this
century1. At the same time, changes on a regional and local scale are expected
to be even more severe with local precipitation changes of up to 40% or
temperature changes of more than 7°C (ref.1).

While international initiatives to mitigate climate change have made progress
over the last decade, current agreements make it likely that the GMT will
exceed 1.5°C and potentially 2°C by the end of the 21st century1. According
to the Intergovernmental Panel on Climate Change (IPCC), the window of
opportunity to ensure a sustainable and habitable planet is rapidly closing and
immediate action is needed to limit global warming2. Considering the current
efforts to reduce greenhouse gas emissions, the question arises regarding

1



2 chapter 1 introduction

the extent to which current warming levels may already lead to irreversible,
unavoidable, and abrupt changes, or if an overshoot is acceptable under certain
circumstances. In this context, the concept of tipping elements and tipping
points have received considerable scientific and public attention in recent years.
The IPCC defines a tipping point as a critical threshold beyond which a system
reorganises, potentially irreversibly2. Once the critical threshold is crossed,
feedback loops lead to self-perpetuating changes in the system even if external
forcing, i.e. global warming, would be brought to a halt.

Especially large-scale components of the Earth system are of interest due to
their potentially global impact. Indeed, paleoclimatic evidence suggests abrupt,
large-scale Earth system changes in the past3. According to the IPCC, there is
high confidence in a threshold behaviour of several Earth system components
such as the Greenland ice sheet2. While there is relatively low agreement on
the exact values of many tipping point thresholds, many estimated thresholds
lie within the temperature projections for the end of this century. In other
words, crossing estimated thresholds becomes likely under current warming
rates and hence every additional increment in the temperature increases the
risk of irreversible changes. While increasing computational power over the
past decades allowed for extensive computer simulations of the whole Earth
system and its components, there is still a considerable knowledge gap about
many tipping elements.

First, many processes on a small scale still cannot be explicitly resolved in
climate models and need parameterisation due to limited computing resources,
leading to uncertainty in projections, particularly on long time scales. Second,
it is difficult to detect characteristic changes associated with tipping points
in observational data, especially due to the sparsity of records. Observational
datasets are optimised to capture long-termmean trends rather than to preserve
higher-order statistics that are often used as indicators to assess the stability
of a system4. This can lead to biases in these early-warning indicators and
can give false impressions of the stability of tipping elements. However, recent
developments in artificial intelligence hold the potential for substantial progress
in the field of climate science. Artificial intelligence-based methods have been
shown to realistically reconstruct historical records5,6. They can potentially
overcome the shortcomings of conventional methods and yield new insights, for
example, into the past dynamics of tipping elements. This could reduce biases
in early-warning indicators, allowing for better assessments of the stability of
tipping elements. Additionally, several new Earth system models that leverage
the advantages of classical physics-based models and data-driven methods are
being developed. The first coupled neural climate model has recently been
proposed, potentially introducing a new era of climate modelling7.

The main contributions of this thesis are the three distinct yet related pa-
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pers. Each paper explores a different research question, all connected by the
overarching theme of climate modelling. First, we explore the potential of
the coupled South American monsoon-Amazon rainforest system to exhibit
tipping behaviour by combining results from both models and observations.
Second, we investigate the long-term consequences of overshooting the critical
threshold of the Greenland ice sheet using two state-of-the-art ice-sheet mod-
els. Lastly, we introduce a new deep learning-based method for reconstructing
spatiotemporal climate fields.

Outline

This thesis comprises two thematically distinct but interconnected parts. The
first and main part of the thesis focuses on tipping elements, while the second
part discusses different climate modelling approaches. First, we briefly lay out
the theoretical foundation of tipping points, including the different types of
bifurcations and early warning signals (Section 2.1), followed by a compre-
hensive, though not exhaustive, overview of important tipping elements in the
Earth system (Section 2.2). We then provide detailed overviews of the climatic
conditions and potential feedback mechanisms relevant for the Greenland ice
sheet (GrIS) (Section 2.3) and the South American Monsoon System (SAMS)
(Section 2.4). The remainder of Chapter 2 concludes with a succinct overview
of feedback mechanisms for other relevant tipping elements. The second part
discusses the hierarchy of models, ranging from the simplest energy balance
models to comprehensive climate models (Chapter 3). Special emphasis is
given to ice-sheet models, including the governing equations for ice flow and
other modelling choices (Section 3.4). Chapter 4 gives an overview of machine
learning (ML) applications in climate science and a description of the machine
learning-based model (LaMa) used in this thesis (Section 4.2). Summaries of
the three papers constituting this thesis are presented in Chapter 5. Finally,
Chapter 6 concludes the thesis, offering an outlook for future research. The
three papers written for this thesis are included in Chapters 7 to 9.





2
Tipping Points and
Elements

2.1 Underlying Theoretical Concepts

The concept of tipping points and their underlying theory have been steadily
developed in recent years. Three types of tipping can be differentiated: (1)
bifurcation-induced tipping, (2) noise-induced tipping, and (3) rate-induced
tipping. The idea behind the different types is illustrated in Fig. 2.1. Besides
the ongoing research into theoretical mechanisms behind tipping points, con-
siderable effort is being made to accurately predict and identify precursor
signals of tipping points. The following sections provide an overview of the
three different types of tipping and explain the concept behind the notion of
early-warning signals (EWS).

2.1.1 Bifurcations and Beyond

Bifurcation Induced Tipping

The most studied mechanism for a sudden change in a nonlinear system is
so-called bifurcation induced tipping. A (local) bifurcation occurs when a
change in a control parameter 𝑝 causes a stability change of the equilibrium
of the system. The system passes a bifurcation point 𝑝c that causes a sudden

5
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Figure 2.1: Visualisation of different tipping types. Three types of tipping are de-
picted; bifurcation-induced tipping (B-tipping), noise-induced (N-tipping)
and rate-induced tipping (R-tipping). The top row corresponds to the
stability landscape (potential 𝑈𝑝), where minima correspond to stable
equilibria (solid lines, bottom row) and the maximum corresponds to the
unstable equilibrium (dashed line). The red circle denotes the system state.
Black arrows indicate changes in the system state, while dark blue arrows
indicate changes in the potential. In realistic models, all three types of
tipping can occur simultaneously, making it challenging to separate them.
Adapted from Brunetti and Ragon (2022)8.

qualitative change of its behaviour9. In other words, a system has a bifurcation
point at a critical value 𝑝c if the value separates two regions of qualitatively
different behaviour10. When speaking about tipping points or critical thresholds
in climate science, it is often implied that the tipping point is a bifurcation
point.

More technically we can consider the open system

d𝑥
d𝑡

= −𝜕𝑥𝑈𝑝 (𝑥) = 𝑓 (𝑥, 𝑝 (𝑡)), (2.1)

with the time-varying input 𝑝 (𝑡) and the potential 𝑈𝑝 (𝑥). We refer to the
stable solution of the parameterised system, that is when 𝑝 is constant, as
quasi-static attractor11. If 𝑝 (𝑡) passes through a bifurcation point, the attractor
loses stability and the system tips.

To exemplify a bifurcation-induced transition, consider the simple system

d𝑥
d𝑡

= 𝑓 (𝑥, 𝑝) = 𝑝 − 𝑥2, 𝑡 > 0. (2.2)
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The equilibria of the system, that is where 𝑓 (𝑥, 𝑝) = 0, correspond to

𝑥1 =
√
𝑝, 𝑥2 = −√𝑝.

Both equilibria are hyperbolic; that is the Jacobian matrix of the linearised
system has no eigenvalues with zero real parts12. At the bifurcation point 𝑝c = 0,
the two equilibria collide, form a saddle-node equilibrium, and then disappear.
Since both equilibria are hyperbolic, their stability is determined by the sign of
the real part of the eigenvalues of the Jacobian matrix. Therefore, 𝑥1 is stable,
while 𝑥2 is unstable. This type of bifurcation is referred to as a saddle-node or
fold bifurcation.

In climate science, the double-fold bifurcation, that is a fold bifurcation with
two stable branches, is often used as a conceptual model for tipping elements
(Fig. 2.2). Consider the following system

𝑓 (𝑥) = 𝑎𝑥 (𝑡) − 𝑏𝑥3(𝑡) + 𝑝, 𝑎, 𝑏, 𝑝 ∈ R and 𝑎, 𝑏 > 0. (2.3)

𝑈𝑝 (𝑥) =
𝑎

2
𝑥 (𝑡)2 − 𝑏

4
𝑥4(𝑡) + 𝑝𝑥 (𝑡) (2.4)

The parameter 𝑎 determines the distance between the two stable branches,
while 𝑏 determines the nonlinearity in the system13. The system can have
one to three equilibria and the number of equilibria can be determined by
the discriminant of system 2.3 (ref.13). The discriminant is given by 𝐷 =

(𝑏𝑝/2)2 − 𝑏 (𝑎/3)3 (ref.13). For 𝐷 > 0 there is one stable branch, while there
are two stable branches for 𝐷 ≤ 0. The critical value 𝑝c for given 𝑎, 𝑏 and
𝐷 = 0, where the system transitions from two stable branches to one, is given
by13

𝑝c(𝑎, 𝑏) = ±2
√︂

1
𝑏

(𝑎
3

)3
. (2.5)

For −𝑝c < 𝑝 < 𝑝c the system has two stable and one unstable equilib-
rium.

The potential𝑈𝑝 is useful to visualise the stability of the system for given 𝑝 (top
row Fig. 2.2). For 𝑝 < −𝑝𝑐 there is one local minimum which corresponds to the
lower stable branch. When the control parameter 𝑝 exceeds −𝑝c but is still less
than 𝑝c, a new localminimum and a new localmaximum emerge, corresponding
to the alternative stable and the unstable branches, respectively. The parameter
range with more than one stable equilibrium is called the multistability range
or bistability range if there are exactly two stable equilibria. Assume the
state variable 𝑥 tracks the lower stable branch, then the system does not tip
towards the upper stable branch before 𝑝 > 𝑝c. Once the bifurcation point
𝑝c is exceeded, the system tips toward the only remaining stable equilibrium
(upper branch). The local maximum and the other minimum vanish. However,
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Figure 2.2: Schematic bifurcation diagram of a double-fold bifurcation. The system
has either one stable equilibrium or two stable equilibria (solid lines) and
one unstable equilibrium (dashed line). The top row corresponds to the
potential𝑈𝑝 for given 𝑝. Either the potential has one local minimum (filled
red circle) that corresponds to a stable equilibrium or two stable equilibria
and one unstable equilibrium (empty red circle).

if the control parameter were to be reversed again, the system would still track
the upper stable branch until 𝑝 < −𝑝c. This phenomenon is called hysteresis.
The state of the system depends on its history. In climate science, this is of
special interest since hysteresis can potentially give rise to a range of (quasi-
)irreversibility of a tipping element. Once the critical threshold is crossed, there
might be no practical way to reverse the change of the system’s state.

There are many other types of bifurcations such as the pitchfork, transcritical
or Hopf bifurcation14. While extensively studied in the mathematical literature,
these types of bifurcation have been less explored in the context of climate
tipping points and we do not consider them here15.

Noise Induced Tipping

A natural system usually experiences high-frequency forcing due to external
and internal fluctuations such as weather variability. These stochastic pertur-
bations potentially give rise to noise-induced tipping, where a transition can
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occur without crossing a bifurcation point. Aswhin et al.11 define noise-induced
tipping as an escape of a system from the neighbourhood of a quasistatic
attractor as the result of noisy fluctuations. In the picture of the potential
landscape, the ball can jiggle in the minimum, but a large enough perturba-
tion or sufficient consecutive perturbations (the noise) can push the system
across the basin boundary (the maximum) toward the alternative equilibrium
without ever crossing the bifurcation point (Fig. 2.1). Alternatively, one can
define a noise-induced transition as a qualitative change in the probability
distribution of the system’s state, with the noise intensity as the bifurcation
parameter15,16.

To exemplify the effect of noise on a system, consider the following pitchfork
bifurcation,

𝑓 (𝑥, 𝑝) = d𝑥𝑡
d𝑡

= 𝑝𝑥𝑡 − 𝑥3
𝑡 + 𝜎𝜉𝑡 . (2.6)

with the white noise term 𝜎𝜉𝑡 . The deterministic system has one stable solution
𝑥1 = 0 for 𝑝 < 0 that loses stability when 𝑝 > 0 and two new stable equilibria
bifurcate𝑥1,2 = ±√𝑝. This system corresponds to a Langevin equation 𝑓 (𝑥, 𝑡) =
ℎ(𝑥)+𝜂𝑡𝑔(𝑥)+Γ𝑡 which describes a diffusion process with additive noise Γ𝑡 and
multiplicative noise 𝜂𝑡𝑔(𝑥). For the system 2.6 only additive noise is considered,
that is, 𝑔(𝑥) = const. In other words, the influence of the environmental
fluctuations does not depend on the system state16. The first term in the
Langevin equation ℎ(𝑥) describes the deterministic dynamics of the system. In
the following, we assume ⟨Γ𝑡Γ𝑡+𝜏 ⟩ = 2𝑑1𝛿 (𝜏) and ⟨𝜂𝑡𝜂𝑡+𝜏 ⟩ = 2𝑑2𝛿 (𝜏).

An alternative, useful way to describe a diffusion process is the Fokker-Planck
equation16,17. Later on, the probability distribution 𝑃 (𝑥, 𝑡) governed by the
Fokker-Planck equation allows us to draw conclusions about noise-induced
transition. The equation is given by

𝜕𝑡𝑃 (𝑥, 𝑡) = −𝜕𝑥 [(𝑓 (𝑥) + 𝑑2𝑔(𝑥)𝑔′(𝑥)) 𝑃 (𝑥, 𝑡)] (2.7)
+ 2𝜕2𝑥

[ (
𝑑1 + 𝑑2𝑔(𝑥)2

)
𝑃 (𝑥, 𝑡)

]
.

This equation describes the time evolution of the probability distribution 𝑃 (𝑥, 𝑡)
of the state variable 𝑥 with additive and multiplicative noise. The solution is
given by17

𝑃 (𝑥) = 𝑁√︁
𝑑2𝑔(𝑥)2 + 𝑑1

exp
[∫ 𝑥 𝑓 (𝑢)d𝑢

𝑑2𝑔(𝑢)2 + 𝑑1

]
, (2.8)

with the normalisation constant 𝑁 . We can rewrite the solution as

𝑃 (𝑥) = 𝑁𝑒−𝒱 (𝑥 ) (2.9)
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where 𝒱(𝑥) is the probabilistic or stochastic potential of the dynamics, analo-
gously to the deterministic potential 𝑉 (𝑥). The potential 𝒱(𝑥) is then given
by

𝒱(𝑥) = 1
2
ln

[
𝑑2(𝑔(𝑥))2 + 𝑑1

]
−
∫ 𝑥 𝑓 (𝑢)d𝑢

𝑑2(𝑔(𝑢))2 + 𝑑1
. (2.10)

For the system 2.6 with only additive noise 𝑔(𝑥) = 0 and Γ𝑡 = 𝜎𝜉𝑡 , the solution
and the stochastic potential 𝒱(𝑥) simplify to16

𝑃 (𝑥) = 𝑁 exp
[
2
𝜎2

(
𝑝
𝑥2

2
− 𝑥4

4

)]
(2.11)

𝒱(𝑥) = 1
4
ln𝜎2 − 2

𝜎2

∫ 𝑥

𝑓 (𝑢)d𝑢 (2.12)

=
1
4
ln𝜎2 − 2

𝜎2

(
𝑝
𝑥2

2
− 𝑥4

4

)
.

The deterministic potential𝑉 (𝑥) = −
∫ 𝑥

𝑓 (𝑢)d𝑢 is known from earlier. It is now
obvious that in the case of purely additive noise, theminima (stable equilibrium)
and maxima (unstable) of the stochastic and deterministic potential coincide
modulo a constant. They correspond to the equilibria found earlier. Additive
noise does not qualitatively modify the stationary behaviour of the system. It
just “jiggles” the ball around in the potential but does not change the potential
itself16. Additive noise just smears out 𝑃 (𝑥) around the deterministic steady
states. However, this does not exclude the possibility of transitioning between
the alternative states when the noise intensity is large enough. The frequency
of jumps between the maxima of the probability distribution (corresponding to
the minima of potential) is proportional to the noise intensity 𝑑 and the height
of the potential Δ𝒱(𝑥) (ref.18). For the considered example the frequency
is proportional to exp

(
−𝑝2/2𝜎2) . It is obvious, that the transition frequency

increases with increasing noise intensity 𝜎 .

However, we also see that multiplicative noise changes this picture. If the
environmental fluctuations dependon the state of the system, the potential itself
changes. For small noise intensities 𝑑2 ≪ 1 the first term in equation 2.10 does
not change the position and number of maxima and minima16. The external
noise is not strong enough to qualitatively change the extrema of the potential.
However, the relative heights and depths of the extrema might change even for
small noise intensities16. For large noise the position and number of extrema
of 𝑃 (𝑥) might be substantially different from the deterministic equilibria. The
multiplicative noise can create new potential wells that correspond to new
system states. In other words, when the noise intensity 𝑑2 exceeds a certain
threshold, the shape of 𝑃 (𝑥) might change drastically, which corresponds to a
purely noise-induced transition.
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Sometimes, a special case of noise-induced tipping with a one-time large-
amplitude perturbation is called shock-induced tipping15. Here, we do not
consider shock-induced tipping separately.

Rate Induced Tipping

In the third type of tipping, the system’s state depends on the rate of change
of the environment. R-tipping differs from the previous two tipping types in
three substantial ways15: (1) the intrinsic timescale and the timescale of the
environmental change are important, (2) no existence of alternative stable
states is necessary, (3) the critical threshold is defined by the rate of change of
a parameter rather than a parameter itself. In contrast to bifurcation-induced
tipping, the potential landscape does not qualitatively change but its position
is shifted (Fig. 2.1). If the threshold (the maximum of the potential) moves past
the initial position of the system’s state for a new forcing level, the system’s
state is said to be threshold unstable19. The ball in the potential moves toward
an alternative state when the ball is on the other side of the maximum after a
sufficiently fast shift, i.e. when the rate threshold is exceeded. However, if the
rate of change is slow, the ball can track the initial potential minimum and no
tipping occurs.

We consider the simple non-autonomous system, following Ashwin et al. (2012)11

d𝑥
d𝑡

= (𝑥 + 𝜆)2 − 𝑝, 𝑡 > 0 (2.13)

d𝜆
d𝑡

= 𝑟 .

This corresponds to the previously introduced fold bifurcation with an addi-
tional parameter 𝜆(𝑡) ∈ R that drifts with the rate 𝑟 . The system has two
𝜆-dependent quasi-stationary equilibria (d𝑥/d𝑡 = 0):

𝑥𝑠 (𝑝) = {(𝑥, 𝜆) ∈ R2 : 𝜆 = −√𝑝 − 𝑥}
𝑥𝑢 (𝑝) = {(𝑥, 𝜆) ∈ R2 : 𝜆 =

√
𝑝 − 𝑥},

with the stable node 𝑥𝑠 and the unstable saddle 𝑥𝑢 . They correspond to straight
lines in the (𝜆, 𝑥) plane (Fig. 2.3). If 𝑝 > 𝑟 , there are two invariant lines

𝐴(𝑟, 𝑝) = {(𝑥, 𝜆) ∈ R2 : 𝜆 = −√𝑝 − 𝑟 − 𝑥}
𝐵(𝑟, 𝑝) = {(𝑥, 𝜆) ∈ R2 : 𝜆 =

√
𝑝 − 𝑟 − 𝑥},

with𝐴(𝑟, 𝑝) attracting and 𝐵(𝑟, 𝑝) repelling (Fig. 2.3). For constant 𝜆, i.e. 𝑟 = 0,
the quasi-stationary equilibria coincide with the invariant lines. If 0 < 𝑟 < 𝑝 the
invariant line 𝐵(𝑟, 𝑝) defines a tipping threshold above which initial conditions
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Figure 2.3: Phase diagram in the (𝜆, 𝑥)-plane of system 2.14. (a) For 0 < 𝑟 < 𝑝,
(b) for 𝑟 = 𝑝 and (c) for 𝑟 > 𝑝. The blue lines correspond to the invariant
lines 𝐴 and 𝐵, while the dashed lines denote the quasi-static equilibria 𝑥𝑠
and 𝑥𝑢 . Adapted from Ashwin et al. (2012)11 and reprinted with permission
from Bochow (2020)20.

diverge 𝑥 (𝑡) → ∞ as 𝑡 → ∞, while initial conditions below 𝐵(𝑟, 𝑝) converge
toward 𝐴(𝑟, 𝑝) (Fig. 2.3). When 𝑟 = 𝑝, both invariant lines coalesce into a
neutrally stable line𝐴𝐵 (Fig. 2.3b). For 𝑟 > 𝑝, the line𝐴𝐵 disappears and every
trajectory becomes unbounded 𝑥 (𝑡) → ∞ as 𝑡 → ∞ (Fig. 2.3c). The threshold
for rate-induced tipping is now the value of 𝑟 at which the trajectory becomes
unbounded, that is when 𝐵(𝑟, 𝑝) crosses the initial value. Assume an initial
condition (𝑥0, 𝜆0) at 𝑡 = 0 between 𝜆 = −𝑥 and𝑥𝑠 (𝑝), i.e. −𝑥0 < 𝜆0 < −𝑥0+

√
𝑝,

then 𝐵(𝑟, 𝑝) crosses the initial point (𝑥0, 𝜆0) when

𝜆0 =
√
𝑝 − 𝑟 − 𝑥0

𝑟 = 𝑝 − (𝜆0 + 𝑥0)2.

For any other initial values (𝑥0, 𝜆0) the critical rate 𝑟𝑐 is the rate at which
𝐵(𝑟, 𝑝) and 𝐴(𝑟, 𝑝) coalesce and disappear. Therefore

𝑟𝑐 =

{
𝑝 − (𝜆0 + 𝑥0)2 if − 𝑥0 < 𝜆0 < −𝑥0 +

√
𝑝

𝑝 if 𝜆0 ≤ −𝑥0.

Since the drift is steady in the system 2.14, the problem can be simplified to
a saddle-node bifurcation problem via an appropriate coordinate transforma-
tion11. However, this is generally not the case. In contrast to bifurcation-induced
tipping, it is rather the ability of the system to track the quasi-stable equilibrium
than the parameter itself that bifurcates11.

Earlier,we stated that the existence of an alternative stable state is not necessary
for rate-induced tipping. Even without an alternative stable state, the system’s
state can deviate substantially from the quasi-stationary equilibrium if the rate
of change is sufficiently fast. This is visualised in Fig. 2.4.

Closely related to rate-induced tipping is the phenomenon of overshooting the
critical threshold of a system. Generally, the critical threshold of a system can
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Figure 2.4: Rate-induced tipping in a potential landscape without multistability.
(a) Potential landscape with one stable state. The state of the system is
denoted by the black ball. (b) A slow rate of change leads to a small
excursion of the system state (green line) in the potential landscape.
Rather than the ball moving, it is the potential landscape itself that moves.
Eventually, the system returns to the initial state. (c) In contrast, a fast
rate of change leads to a substantial excursion of the system’s state in the
potential landscape (purple line). Adapted from Feudel (2023)15. Artwork
courtesy of Silas Vagts.

be overshot without prompting a transition to an alternative system state if the
system reacts slowly compared to the forcing and the forcing is subsequently
reversed below the critical value. The tipping behaviour of a system depends
on the effective timescale of the system 𝜏 , the time above the threshold 𝑡𝑒 and
the distance above the threshold 𝜒 (ref.21,22). The effective timescale is the time
needed to recover from a perturbation in the equilibrium state. For simple
dynamical systems, it has been shown that for symmetric overshoots, a system
does not tip if the stabilisation level 𝜒 < 16𝜏2𝜒/𝑡2𝑒 (ref.21). This means that
there is a time window in which a reversal of the forcing below the critical
threshold can prevent a tipping of the system.

2.1.2 Early-Warning Signals

The possibly disastrous consequences of an abrupt transition, especially in
the climate system, raise the question if a tipping point can be predicted. In
the last years, several methods have been proposed to predict a forthcoming
critical transition. A recentmetastudy identifies more than 30 different so-called
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early-warning signals (EWS)23. The majority of EWS assumes that the system
gradually approaches a bifurcation point which leads to a loss of stability of the
system (critical slowing down (CSD)). However, there have also been methods
proposed to predict rate-induced andnoise-induced tipping23,24. In the following
we will follow the classification by Dakos et al. (2023)23 and distinguish between
CSD-based and not-CSD based early-warning signals.

CSD-based EWS

When a dynamical system approaches a tipping point, the system generally
needs more time to recover from small perturbations. The restoring forces of
the system, that pull the system back to the equilibrium after a perturbation,
become weaker and make the system more sluggish23. In other words, as the
system approaches the bifurcation point, the potential 𝑉 widens and the ball
needs more time to return to the minimum. This critical slowing down of the
system leaves distinct signatures in the temporal or spatial dynamics of the
system that theoretically can be observed23. The concept of critical slowing
down is depicted in Fig. 2.5.

The rate of recovery back to the equilibrium after a perturbation can be
approximated by the leading real eigenvalue, i.e. maximum eigenvalue, of
the equilibrium solution25. To exemplify this, assume the following simple
system26

d𝑥
d𝑡

= 𝛾 (𝑥 − 𝑎) (𝑥 − 𝑏). (2.14)

with the parameters 𝑎 and 𝑏 and the scaling factor𝛾 . The system has one stable
and one unstable equilibrium at 𝑥1 = 𝑎 and 𝑥2 = 𝑏. We assume 𝑥1 is the stable
equilibrium in the following. A linearisation using a Taylor-expansion after
small perturbation 𝑓 (𝑥1 + 𝜀) around 𝑥1 gives

d(𝑥1 + 𝜀)
d𝑡

= 𝑓 (𝑥1) +
d𝜀
d𝑡

= 𝑓 (𝑥1 + 𝜀) ≈ 𝑓 (𝑥1) + 𝜕𝑥 𝑓 |𝑥1𝜀 (2.15)

and hence

𝑓 (𝑥1) +
d𝜀
d𝑡

= 𝑓 (𝑥1) + 𝜕𝑥 𝑓 |𝑥1𝜀 ⇒
d𝜀
d𝑡

= 𝜆1𝜀. (2.16)

The eigenvalues are then given by

𝜆1,2 = 𝜕𝑥 𝑓 |𝑎,𝑏 = ∓ − 𝛾 (𝑏 − 𝑎).

For 𝑏 > 𝑎, 𝜆1 is negative and hence 𝑥1 is stable. The eigenvalue 𝜆1 approaches
0 from below toward the bifurcation point, indicating the diminishing of the
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Figure 2.5: Exemplary potential and trajectories of a double-fold bifurcation with
varying forcing. (a) Potential well for a typical double-fold bifurcation
with different trajectories (black lines) with varying noise levels. More
transparent trajectories correspond to greater noise level. The red line
denotes the noise-free solution (quasi-static equilibrium) of the system.
When the critical point is approached the fluctuations around the equi-
librium increase. For high noise levels, the transition can occur earlier
since the potential well can be crossed sooner. The pink lines show the
widening of the potential well towards the critical point. (b) Same as a but
for a different perspective. The variance and autocorrelation at lag-one
(inset) increase when the critical point is approached. The trajectories and
potentials are offset and scaled for clarity.

restoring forces. The rate of recovery of the linearised system scales exponen-
tially with the eigenvalue exp(𝜆Δ𝑡) (ref.26,27). At the critical point 𝜆1,2 = 0,
and the system does not recover from a perturbation anymore. In many real-
world systems, the exact governing equations and hence the eigenvalues are
not known. However, the CSD is visible in the statistical properties of the
system.

Given a time series with a fixed small time step Δ𝑡 , the slowing down of the
recovery rate is visible as an increase of the variance and autocorrelation at
lag-one (AC(1) or AR(1)) of the time series25,26,28 (Fig. 2.5b). It can be shown
that the autocorrelation tends toward one and the variance toward infinity
when the bifurcation point is approached26,28. In simple terms,when the system
approaches the critical point, the state of the system 𝑥𝑡 resembles more and
more its past states 𝑥𝑡−1 since the restoring forces decrease, leading to an
increase of the autocorrelation at lag-one. At the same time, perturbations lead
to larger fluctuations around the equilibrium measurable as increase in the
variance. Since other factors, such as a change in the variability of the forcing,
can also lead to an increase in variance, detecting both an increase in AC(1)
and variance is necessary for a robust early-warning signal28.
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There exist spatial analogues of the temporal variance and autocorrelation. It
is expected that spatial autocorrelation and variance increase as the tipping
point is approached23,29. Other methods based on CSD similarly aim to detect
changes in statistical properties associated with CSD23.

Non-CSD-based EWS

Early-warning signals based on the notion of critical slowing down assume that
the noise-to-signal ratio is small and therefore they break down with strong
stochasticity23. Besides the previously discussed EWS, there have been several
other methods proposed that are not directly based on critical slowing down,
that we will discuss in the following.

In the presence of strong noise, a phenomenon called flickering can occur
(Fig. 2.5)30. The system gets pushed into the basin of attraction of the alter-
native state and subsequently returns to the original state long before the
bifurcation. The closer the bifurcation point, the more likely the flickering
becomes. While flickering is directly captured by an increase in the variance
and is also easily visually detectable, other more advanced methods exist to
detect flickering31.

A change in the skewness and kurtosis of the probability distribution of the
system states close to the bifurcation point is expected32,33. When the system
loses stability, a transition to an alternative state becomes more likely and the
temporal distribution is expected to become skewed. Depending on the position
of the alternative equilibria, the skewness either increases or decreases23.

Several ecosystems have a clear self-organised spatial structure34. These sys-
tems tend to show distinct spatial patterns prior to a critical transition, that are
thought to increase their resilience or even allow them to evade tipping35. For
example, in dryland ecosystems, the vegetation fragments into smaller patches
when the stress on the system is increased29. The forming of spatial patterns in
ecosystems as a potential early warning for a forthcoming transition has been
studied extensively35–38.

Recently, network-based methods have been proposed to detect critical tran-
sitions23,39. They avoid the problem that classical EWS have to detect changes
in multivariate systems23. Changes in the network structure (e.g. connectivity,
node centrality) can indicate an approaching tipping point. Alternatively, di-
mension reduction techniques, such as Principal Component Analysis, can be
used to detect changes in multivariate systems23.

In recent years, machine learning (ML) methods have been used to infer the
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proximity of a critical threshold40,41. For example, one can train the ML models
on synthetic data with different kinds of critical and non-critical transitions and
then apply it to observational data to predict the critical threshold and even the
type of transition. It has been shown that these methods outperform classical
CSD-based methods and can even be used for spatial systems40–42.

Straightforwardly, one can fit a threshold model, usually a simple dynamical
model with a bifurcation, to existing observational data to infer the proximity
to a tipping point23. Another notable method is potential analysis, where spatial
or temporal data samples can be used to reconstruct the potential landscape
and hence possible thresholds and alternative stable states23.

There are several othermethods thatwill not be discussedhere further. However,
it should be noted that all early-warning signals have limitations. First, to use
EWS appropriately, it is important to have prior knowledge about the stability
of the system in question and that it actually exhibits tipping behaviour43.
Furthermore,most EWS requires high-quality and a sufficiently long time series
of the system to capture the long-term dynamics of the system. Interpolation
or infilling techniques of incomplete time series as well as varying external
noise can lead to false-positive or false-negative EWS.

2.2 Overview of Potential Tipping Elements

In recent years, tipping elements emerged as growing andhighly policy-relevant
research area. More than 25 tipping elements (TE) have been identified so
far that could be crossed as global temperatures increase further44–46. At least
five tipping elements have been identified in the cryosphere, including the two
major ice sheets in Greenland and Antarctica, the Arctic sea ice, local glacier
meltdown, and permafrost thaw. More than 10 tipping points in the biosphere,
such as large-scale dieback of tropical and boreal forests, die-off of corals, and
fishery collapse have been proposed. Furthermore, several large-scale tipping
points in oceanic and atmospheric circulations, such as the Atlantic Meridional
Overturning Circulation (AMOC), the North Atlantic Subpolar Gyre (SPG),
and several monsoon systems, are expected to exhibit tipping behaviour once
critical temperature thresholds are crossed. However, there is considerable
disagreement about the classification of tipping elements and different studies
come to different conclusions45.

While definitions of tipping elements vary across the literature, we follow the
definition of Lenton et al. (2008)44 and Armstrong McKay et al. (2022)45, closely
related to the notion of a bifurcation-induced transition.
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GrIS
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Arctic sea ice

AMOC

SAMS-AMZ

AIS

Figure 2.6: Map of selection of key tipping elements. A selection of major tip-
ping elements is depicted. This map does not aim to give a complete
picture. Acronyms are as follows; Greenland ice sheet (GrIS), (West)
Antarctic ice sheet ((W)AIS), Atlantic Meridonial Overturning Circulation
(AMOC), South-American Monsoon system-Amazon rainforest (SAMS-
AMZ). Adapted from PIK.

Definition. Tipping elements are components in the Earth system that are sus-
pected to undergo nonlinear, abrupt and self-perpetuating changes once the tipping
point is crossed. A tipping point is a critical point (𝑝c) in a control parameter 𝑝
(forcing) beyond which a small perturbation (𝛿𝑝) causes a qualitative change (𝐹 )
in the future state of a system after some system-specific observation time (𝑡 > 0):

|𝐹 (𝑝 ≤ 𝑝c + 𝛿𝑝 | 𝑡) − 𝐹 (𝑝c | 𝑡) | ≥ 𝐹 > 0.

Tipping elements are generally thought to have implications for the global
climate system, while some tipping elements mostly have a local or regional
impact45. For example, some tipping elements might induce additional radiative
forcing or greenhouse gas emissions, thereby potentially intensifying global
warming, once they transition to a new state46. Some studies propose that
dynamic interactions between tipping elements, so-called tipping cascades,
could potentially reinforce positive feedbacks and even commit the climate
system to several degrees of additional warming47–51. Some of the TEs, such as
the large ice sheets, are anticipated to respond on time scales of centuries or
millennia to temperature changes. This potentially delayed response of tipping
elements can lead to additional warming that is not captured by metrics, such
as climate sensitivity, that are widely used to assess the climate response52.
However, a slow response also implies that there is a window of opportunity
where a change in the control parameter could be reversed without triggering
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a transition of the system to a new state21,53.

In the following sections, we provide an overview of important potential tipping
elements in the Earth system with a focus on cryospheric and atmospheric-
oceanic tipping elements, particularly the South American monsoon system
and the Greenland ice sheet due to their relevance for this thesis. Due to
the complexity of the topic, we do not aim to give a comprehensive overview
of all tipping elements in this chapter. Other tipping elements that are not
discussed here include tipping elements in the biosphere, i.e. boreal forest
dieback, desertification, lake eutrophication, fishery collapse and coral reef
die-off as well as more specific tipping elements such as methane release from
destabilisation ofmarinemethane hydrate deposits or breakup of stratocumulus
cloud decks45,46.

2.3 Greenland Ice Sheet

The Greenland ice sheet (GrIS) is the Earth’s second largest ice body with a
total ice volume of around 3 million km3, corresponding to a potential global
sea level rise of 7.42m (ref.54). Only the Antarctic ice sheet is larger with a
sea level rise potential of 58m (ref.55). The GrIS has been hypothesised to
exhibit several stable states with a potential for abrupt transitions between
them if global temperatures exceed a critical threshold45,56–58. Recent studies
show that the GrIS is shrinking at an accelerated rate due to current warming
trends59–61 and early-warning signals consistent with an approaching critical
transition have been found62. In the following, we give an overview of the most
important processes and feedbacks that govern the stability of the Greenland
ice sheet.

2.3.1 Mass Balance

The health of an ice sheet is generally expressed as the mass balance (MB)63.
The ice sheet mass balance is the total difference between ablation (A) and
accumulation (C)

MB = C − A, (2.17)

where both terms are positive. Generally, the mass balance is given in units of
mass change (Gt per year). The accumulation term is the sum of the surface,
internal and basal accumulation. The ablation has an additional frontal ablation
(D) contribution due to calving and frontal melting. The sum of surface ablation
and accumulation is known as surface mass balance (SMB). The sum of internal
balance and SMB are often referred to as climatic balance63. Often the internal
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accumulation and ablation, that is the re-freezing and melting in the firn zone,
is implicitly included in the surface mass balance63. In the following, we will
follow this convention and include the internal balance in the SMB. Thus, the
total mass balance can be rewritten as

MB = SMB − BMB − D, (2.18)

with the basal mass balance BMB and the ice discharge or frontal ablation D
(sometimes also called marine mass balance).

In contrast to the Antarctic ice sheet, where an increased ice discharge due to
glacier acceleration is causing a decrease in the MB61,64–67, the changes in the
mass balance of the Greenland ice sheet are mostly determined by changes
in the SMB61,68. However, it is estimated that ice discharge in Greenland will
contribute an equal amount to the total mass loss until the end of this century69.
Since we are mostly interested in the Greenland ice sheet, we will concentrate
on the surface mass balance in the following.

The SMB is ultimately linked to the liquid water balance and energy balance
at the surface and in the firn layer and can be written as61

SMB = Precipitation − Runoff − Sublimation/Evaporation −Wind erosion.
(2.19)

The runoff is the sum of melt, rainfall, condensation and refreezing and re-
tention of water. The melt at the surface is determined by the surface energy
balance61,70

Melt Energy = SWnet + LWnet + SHF + LHF + GS, (2.20)

with the net shortwave radiation SWnet, net longwave radiation LWnet, the
turbulent sensible heat flux SHF, latent heat flux LHF and the subsurface
conductive heat flux GS (ref.61). The terms are defined as positive when directed
toward the surface.

2.3.2 Surface Mass Balance Components

The mass gain of the ice sheet is mostly determined by precipitation, that is,
rain and snow61,71,72. To a minor extent, the ice sheet can gain mass by water
vapour deposition71. Since the atmospheric temperatures over the ice sheet are
usually below the freezing point of water, most precipitation falls as snow61.
However, if temperatures in the atmospheric layers sufficiently exceed the
freezing point, precipitation can fall as rain on the surface. Over the last decades
the precipitation remained relatively constant with slight increases in parts of
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the interior of the ice sheet72–76. However, it is expected that precipitation rates
over the GrIS increase with continued warming, especially on the eastern side
of the ice sheet72,77.

In the coastal regions, the precipitation is mainly driven by orographic pre-
cipitation78. The topography of the interior GrIS is relatively flat, while the
margins show a complex and steep topography. This leads to high snowfall
amounts up to severalmeters where the topography is steepest, e.g. in southeast
Greenland61. The topography also determines the near-surface winds. Since
the net radiation is generally negative at the ice sheet surface61, the wind
regime is mostly katabatic leading to snow redistribution79.

The decrease of the SMB is mostly driven by an increasing surface melt due
to rising atmospheric temperatures. Melting occurs when excess energy is
available at the ice sheet surface and the surface temperatures exceed the
melting point61. Subsurface melt (<10 cm) is also possible if the solar radiation
penetrates below the surface61,70. The energy available for melt is determined
by the surface energy balance (equation 2.20). There are different pathways for
the meltwater at the surface: (1) it can form supraglacial lakes at the surface80;
(2) it runs off the ice sheet supraglacially81; (3) it perlocates into the snowpack
and runs off englacially or subglacially82; (4) it perlocates into the snowpack
and is stored in liquid form, e.g. as subsurface lakes or in the firn83 or (5) it
perlocates into the snowpack and is stored in frozen form83. The meltwater
retention and refreezing are estimated to be substantial, that is around 45%
of the total annual meltwater84. Hence, the runoff leaving the ice sheet is
generally less than the total surface meltwater.

Evaporation from standing water, e.g. supraglacial lakes on the ice sheet and
sublimation of snow particles and the surface contribute further to a mass loss
but play a minor role in the total surface mass balance61. Wind erosion can
lead to redeposition of snow from areas where the air flow diverges to areas
where the air flow converges61. This leads to net snow erosion in the former
regions and net snow deposition in the latter regions, contributing to changes
in the local SMB.

The SMB of the GrIS is strongly influenced by synoptic and large-scale atmo-
spheric circulations. Approximately 80% of the accumulation on the GrIS can
be explained by large-scale atmospheric dynamics and its interaction with the
topography of the GrIS85. Precipitation on the ice sheet is mostly caused by
advection of moist and mild air by low-pressure systems branching off the
North Atlantic storm track61. In the winter, cyclonic activity is concentrated
around Iceland, reaching regularly to the southern and southeastern parts of
the GrIS61. This induces high precipitation rates in these parts during the winter.
During the summer season, the atmospheric flow is mostly blocked by the ice
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sheet, causing a north-south atmospheric flow and resulting in precipitation
on the west coast of the GrIS. This leads to a pronounced seasonality in the
spatial distribution of precipitation over Greenland.

Surface melt on the GrIS is strongly linked to the North Atlantic Oscillation
(NAO), a large-scale atmospheric circulation in the North Atlantic86,87. The
strength of the NAO is usually characterised by the NAO index, that is the
normalised sea level pressure difference between the Azores and Iceland61.
A positive NAO index indicates a zonally directed North Atlantic large-scale
circulation while a negative NAO is characterised by a weak orwavy jet stream61.
While the precipitation in Greenland does not significantly correlate with the
NAO88, negative phases of the NAO favour warmer and drier summers on
the GrIS than normal86,87. This led to anomalously high surface melt rates in
Greenland in recent decades with a peak in the year 2012 (ref.86,87). The SMB
has subsequently returned to previous levels.

2.3.3 Feedback Mechanisms

For the GrIS to be classified as a tipping element, nonlinear positive feedbacks
are necessary that lead to an accelerated loss once a critical threshold is crossed.
The most important feedback mechanisms for the GrIS are the melt-elevation
feedback89, melt-albedo feedback90–93, the glacial isostatic adjustment (GIA)
feedback94, and the precipitation-temperature feedback95,96. In contrast, for
marine-terminating ice sheets like the Antarctic ice sheet, feedbacks such as the
marine ice cliff instability (MICI)97 and marine ice sheet instability (MISI)98

are also relevant, but they do not play a major role for the GrIS.

The melt-elevation feedback is thought to be the strongest feedback mechanism
for the GrIS. It is caused by the vertical temperature change in the atmosphere.
Generally, atmospheric temperature decreases with altitude, a phenomenon
measured by the atmospheric temperature lapse rate. When the local surface
temperatures increase in Greenland due to, for example, global warming, this
leads to increased surface melting. This causes a decrease of the ice sheet
surface height, assuming a static bedrock. The lowered elevation exposes
the ice to warmer temperatures due to the atmospheric lapse rate, thereby
accelerating surface melting and perpetuating a positive feedback loop.

Commonly, the temperature lapse rate is equated with the moist adiabatic lapse
rate and considered constant across the ice sheet. The moist adiabatic lapse
rate can be derived from thermodynamic relations and is usually assumed to
be 5-7◦C per km for the GrIS99–101. However, observational studies showed that
the lapse rate has a seasonal and spatial variability over the GrIS102,103.



2.3 greenland ice sheet 23

A previous idealised study has found that the melt-elevation feedback alone
might be sufficient to cause an irreversible tipping behaviour of the GrIS when
a critical temperature is exceeded89. Early-warning signals consistent with
an approaching critical transition have been found in time series of the melt
rates in the southwestern GrIS62. This suggests that these parts of the ice
sheet are already in the process of tipping, mainly driven by the melt-elevation
feedback62.

The second important positive feedback mechanism is the melt-albedo feed-
back92,93,104,105. Darker surfaces absorbmore solar radiation than bright surfaces.
This leads to more energy being available for melt, increasing the surface
melt. Already small changes in the surface albedo can double the amount of
absorbed solar radiation106,107. Fresh snow has a high albedo, reflecting most
of the incoming solar radiation. Melting decreases the albedo of the snowpack
even without removing the snow due to increasing snow grain size108. As the
albedo decreases, more energy is available for melt. Eventually, darker firn or
bare ice gets exposed once the fresh snow cover is completely melted, causing
even more melt and closing the feedback loop. It has been shown that the
albedo induced increase in absorbed solar radiation is the major driver for
surface ablation during the summer season of the GrIS106.

The albedo on the GrIS has a strong seasonal and spatial dependency, with up
to 65% difference between months106. Formation of deep melt ponds109, surface
roughening110, snowline fluctuation111, dust deposition107 or algae growth112–114

contribute to seasonal variations in the surface albedo110. In the winter and
sometimes during the summer, fresh snowfall interrupts the feedback reducing
the surface melt115. In recent years, changes in the albedo caused locally up to
51% of the surface melting when the bare ice is exposed93. A warming climate
will likely reduce the albedo in the ablation zone further due to changes in
the snow lines, increased meltwater, and algal growth110,111. However, most
present-day melt models do not directly represent these processes, potentially
underestimating future melt111,114.

In contrast to the previous two feedbacks, the glacial isostatic adjustment
feedback is a negative feedback. Changes in the ice load lead to responses of
the solid Earth beneath the ice sheet. If the ice load is reduced, the ground
beneath the ice sheet lifts up and increases the ice sheet height again. While
the ice thickness decreases when ice is lost, the ice surface height does not
necessarily decrease. In a first approximation, based on Archimedes’ principle,
the GIA would compensate approximately one third of the ice sheet thinning94.
Therefore, the GIA counteracts the positive melt-elevation feedback to some
extent94.

The response of the viscous bedrock is believed to occur on the timescale of
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millennia to decamillennia and therefore generally lags behind changes in the
ice load94,116. However, previous studies indicate that the response of the solid
Earthmight be faster than previously thought117. Currently, the bedrock beneath
the GrIS is depressed due to the massive load of the ice. However, the Earth
is still not in isostatic equilibrium after the deglaciation of the Pleistocene ice
sheets118. Modelling studies have shown that the GIA can even overcompensate
the ice loss due to increased temperatures in long-term scenarios94.

In addition to the GIA feedback, there is a negative precipitation-temperature
feedback95,96. According to the Clausius-Clapeyron relationship, the moisture
holding capacity of air increases with increasing temperatures which in turn
leads to increasing precipitation rates. This assumes that precipitation is solely
driven by the atmospheric temperature and the available atmospheric mois-
ture content. A simple estimate using the Clausius-Clapeyron relationship
gives a global scaling factor of 8% precipitation increase per K of warming96.
For Greenland, the precipitation sensitivity is often estimated to be around
7.3%/K (ref.119). However, the future precipitation sensitivity predicted by cli-
mate models varies significantly across models53. While this negative feedback
dampens the decreasing surface mass balance with increasing temperatures, it
most likely only minimally counteracts the increase in temperature driven sur-
face melt. Additionally, topographic changes of the ice sheet lead to increases
of precipitation at the margins of the retreating ice sheet120. In coupled ice
sheet-atmospheric circulation model simulations, an increase of the cloudiness
in the interior of the ice sheet has been observed120. This reduces incoming
solar radiation and hence surface melt, giving rise to a substantial negative
feedback120. Furthermore, circulation changes are expected with a retreating
GrIS, potentially dampening the ice loss120.

2.4 South American Monsoon System

The South American Monsoon System (SAMS) has, until present-day, not been
classified as tipping element45,46. However, the Amazon rainforest is generally
accepted as a global tipping element with the potential of an abrupt transition
to a savanna-like state44,121. The SAMS and rainforest experience pressure from
changing temperatures but also from human-made large-scale deforestation of
the rainforest that eventually could lead to a dieback of substantial parts of the
rainforest45. The Amazon rainforest is the world’s largest tropical rainforest
with rich biodiversity and importance for the local climate. Since the rainforest
is a critical component in the global carbon cycle as a major carbon sink122

and storage of carbon123, a dieback of substantial parts of the rainforest could
accelerate climate change. Our recent study (cf. chapter 7 and 5.1) shows that
the SAMS and rainforest are inherently coupled and puts the coupled system
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on the map of potential tipping elements for the first time124. In the following
we will give an overview of the climatic background in South America and
Amazonia and summarise possible feedback mechanisms that could lead to a
critical transition.

2.4.1 Climatic Background

The South American Monsoon determines the climate in most parts of South
America (SA)125. A monsoon is most commonly defined as a seasonal reversal
of the surface winds126. However, it was not until the late 20th century that the
SAMS was recognised as a monsoon system since easterly winds dominate the
wind regime in South America and the tropical Atlantic all year round127. The
reversal in the low-level circulation becomes apparent only when examining
the monthly wind anomalies. In South America, the monsoon manifests as a
pronounced seasonality in the precipitation patterns (wet and dry seasons),
trade winds, surface pressure and atmospheric moisture transport125. In the
southern hemisphere, the wet season in SA is marked by high precipitation
rates 2 to 3 months before the Intertropical Convergence Zone (ITCZ) migrates
southward128. The wet season coincides with the austral summer (boreal win-
ter) (December to February, DJF) and is preceded by a relatively rapid increase
in precipitation rates during the spring (September to November, SON) and
the dry season in winter (June to August, JJA). In fall (March to May, MMA)
the precipitation rates decrease again. North of the equator, the seasons are
reversed meaning that the wet season is in austral winter (JJA)129. The cli-
matic conditions in the Amazon Basin are therefore largely determined by the
SAMS.

The seasonal cycle is primarily driven by the differential heating between the
South American land mass and the Atlantic Ocean125. Several mechanisms have
been proposed that are associatedwith the wet season onset in SA130–133. During
the initiation phase (90 to 50 days before the wet season onset), the atmospheric
moisture content begins to increase. The main contributor of increasing water
vapour during this phase is an increase in the evapotranspiration130. This is
caused by an increasing surface latent heat flux due to an increase of the
downward solar radiation130. While the rainfall increases slightly towards the
end of the initiation phase, the cross-equatorial flow remains mostly the same
as in the dry season.

During the developing phase (50 to 0 days before wet season onset), dynamic
processes become more important. The net moisture flux changes from diver-
gence to convergence due to moist air transported from the Caribbean Sea to
Amazonia134. While the evapotranspiration rates remain at a similar level as
in the initiation phase, the moisture convergence becomes an important water
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vapour source130. Precipitation rates increase steadily during this phase with a
rapid increase towards the onset. At the same time cold air fronts periodically
enter the Amazon basin from the extratropics132. These cold intrusions can
cause sharp temperature drops in large parts of SA135. The cold fronts are
followed by intense rainfall events at the boundaries of these fronts east of the
Andes (northwest-southeastern orientation)132. When these fronts enter the
Amazon basin, northerly or northwesterly winds transport warm and moist
air from western Amazonia to southeastern Brazil, intensifying moisture con-
vergence and setting up wet season conditions132,136. Rainy events caused by
these cold fronts heat the atmosphere through diabatic heating and drive a
reversal of the cross equatorial flow, enhancing the moisture inflow from the
Atlantic ocean136. This can trigger the wet season onset if the atmospheric
and land surface conditions are sufficient, i.e. when the atmosphere is humid
and unstable enough132. Eventually, moisture convergence becomes a greater
source of water vapour than evapotranspiration and the enhanced response
of the moisture convergence to increased rainfall drives the wet season130. It
has been shown that the wet season onset is further accelerated or potentially
initiated by rainforest transpiration during the transition season128.

Other important features of the SAMS, besides the strong seasonal cycle, are
the South Atlantic Convergence Zone (SACZ), the Bolivian High, the Northeast
Trough, the low-level Gran-Chaco Low and the northerly low-level jet125. The
SACZ is characterised by northwest-southeast orientated precipitation and
persistent cloudiness and determines large parts of the climate in southeastern
South America.

The SAMS exhibits strong interaction with the land surface, ocean and bio-
sphere, leading to variability in the strength and extent of the SAMS. Intrasea-
sonal variations are modulated by the Madden-Julian oscillation137 and other
tropical-extratropical interactions138. Variations on the interannual timescale in
the precipitation rates in SA can mostly be explained by the El Niño Southern
Oscillation (ENSO)133, land surface processes139 and sea surface temperature
anomalies in the tropical Atlantic ocean140. Multi-annual and interdecadal vari-
ability has been linked to the Atlantic Multidecadal Oscillation (AMO) and the
Pacific Decadal Oscillation (PDO)125.

Modelling studies indicate a spatial expansion of the SAMS westward and
eastward over the oceans with continued global warming125. Furthermore, the
seasonal differences between wet and dry season are expected to intensify with
a strong spatial dependency. The average precipitation during the wet season
is expected to increase. At the same time, a lengthening of the consecutive dry
days is anticipated141. However, there is still high uncertainty about the effect
of climate change on the SAMS125.
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Besides the changing climate, the SAMS-rainforest system is threatened by
anthropogenic deforestation. Land-use change in Amazonia affects the lo-
cal and regional climate through changes in the surface energy and hydro-
logical balance142. Intensive deforestation and global warming threaten the
rainforest and have turned it into a net carbon source in the recent years143.
Around 20% of the Brazilian rainforest has already been cleared144 with ac-
celerated deforestation rates in the last years45. Deforested areas have higher
albedo than forest which leads to reduction in the absorbed solar radiation
and evapotranspiration145. Large-scale deforestation is expected to increase
local temperatures by several degrees and change precipitation patterns146,147.
A meta-analysis of modelling results showed that deforestation leads to an
average reduction of precipitation of more than 10% in the Amazon basin with
a more severe reduction during the dry season147,148. This projected drying
trend would increase the fire pressure on the rainforest and human-induced
fires could further increase the vulnerability of the rainforest149.

2.4.2 Feedback Mechanisms

Observational and modelling studies suggest that a large fraction of the vegeta-
tion in the Amazon basin exhibits several stable states with critical thresholds
in the deforestation, precipitation and warming rates45,147. Large-scale defor-
estation, changes in the precipitation patterns or substantial warming could
push large parts of the rainforest beyond these thresholds and initiate self-
reinforced drying, tipping it into a degraded or savanna-like state45. Several
feedback mechanisms have been hypothesised that could lead to this criti-
cal transition (Fig. 2.7). However, there is considerable uncertainty in their
extent.

The rainforest is inherently coupled to the SAMS via its interaction with the
moisture transport across SA. Generally, the Amazon rainforest receives sub-
stantial amounts of precipitation with an annual mean of 2,200mm (ref.46).
However, it has been shown that there is a limit of approximately 1,600mm of
yearly precipitation below which a closed-canopy rainforest in South America
could not be sustained, making the rainforest a potentially bistable system150,151.
A substantial fraction (between 25% and 35%) of the precipitation over large
parts of the rainforest is recycled by the rainforest itself through evapotran-
spiration with a strong east to west gradient152,153. During the dry season, the
recycled moisture is the main source of precipitation46. If forest is lost due
to deforestation, droughts and fires, the regional moisture recycling gets per-
turbed. Reduced forest cover means less water recycling via evapotranspiration,
leading to decreasing rainfall in remote parts of the rainforest during wet and
dry season. The increased water stress leads to an increase in the large tree
mortality154 and reduces forest cover. This contributes further to climate change
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due to the release of stored biomass carbon. The overall rainforest area shrinks
and is replaced by more fire prone vegetation, inhibiting rainforest regrowth
further46.

In addition to the changes in the regional moisture recycling, it is hypothe-
sised that large-scale deforestation of the rainforest changes the atmospheric
circulation of the SAMS itself, ultimately leading to a large-scale reduction in
precipitation rates in SA and eventually causing dieback of substantial parts
of the rainforest124,155. Increased forest loss reduces the atmospheric moisture
content and hence the average latent heat over Amazonia due to decreasing
evapotranspiration. The heating gradient between the ocean and continent, i.e.
the major driver of the seasonal cycle of the SAMS, weakens and impedes the
yearly transition into the wet season. The shortened wet season and longer dry
season increase the water stress on the trees via reduced precipitation rates
and depletion of the soil, which acts as a buffer during the dry season. This
increases the tree mortality and eventually causes dieback of large parts of
the remaining rainforest when the atmospheric moisture content and thus the
latent heating does not suffice anymore to switch the system back into the
yearly wet season. This would push the coupled system into a permanent dry
season state with reduced precipitation rates in large parts of SA.

However, there is still uncertainty if deforestation actually leads to a decreased
moisture inflow156. Some models simulate an increasing moisture inflow into
the continent from the Atlantic ocean with increasing deforestation157,158. This
is most likely due to a decreased surface roughness that increases the surface
wind acceleration and subsequently the precipitation rates in intact regions
of the rainforest124. It is unclear to what extent this effect outweighs the
aforementioned positive moisture feedbacks.

Furthermore, a positive deforestation-drought feedback has been proposed159.
More intense droughts are accompanied by increased human-induced defor-
estation. This occurs mostly because clear-cut deforestation is facilitated by
increased dry-season intensity and forest fires spread more easily with drier
conditions159. Additionally, reduced precipitation in deforested agricultural
areas might force agricultural activity further into deeper rainforest areas. Al-
though this feedback currently appears to be weak, it could become increasingly
important as water stress in the Amazon basin intensifies.

Besides a possible deforestation-induced transition, a critical local temperature
threshold of 3-4◦C has been proposed beyond which a rainforest dieback would
be likely45,147. While modelling results generally concur that the temperatures
in the Amazon basin will increase over the 21st century, there is considerable
variability in the projected precipitation trends46. The direct effects of rising
CO2 levels on the plant physiology remain uncertain as well. While increased
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Figure 2.7: Schematic diagram of important feedback mechanisms associated
with a critical transition of the coupled SAMS-Amazon rainforest sys-
tem. Red arrows depict positive feedbacks that destabilise the coupled
system. Green arrows depict effects that potentially stabilise the system,
while blue arrows have uncertain impact on the stability of the system.

CO2-levels are thought to increase the biomass production of plants due to
the so-called CO2-fertilisation effect, the Amazon rainforest biomass growth is
likely strongly limited by other factors such as the availability of phosphorus
in the soil160,161. Elevated CO2 levels might also reduce the rate of stomatal leaf
opening and hence reduce the evapotranspiration and precipitation recycling
rate46.

Statistically significant changes in the hydrological budget have been observed
over recent decades in SA, particularly in the Amazon basin, which are consis-
tent with an approaching critical transition124. The dry season has lengthened
in large parts of the Amazon rainforest162,163 and is associated with a delayed
onset of the wet season143,164,165. Southeastern Amazonia shows a declining
trend in precipitation rates166 and there has been an increase in the cumula-
tive water deficit over recent decades167. Additionally, extreme droughts have
become more frequent, driving increasing tree mortality154,166,167. Evidence sug-
gests that tropical forests are nearing the critical temperature beyond which
photosynthesis fails168 and seasonal temperatures have already increased by
1.6 to 2.5◦C in some parts of the Amazon basin143. Recently, statistical early-



30 chapter 2 tipping points and elements

warning signals consistent with an approaching transition have been detected
in the precipitation rates across South America (cf. Section 5.1)124. Moreover,
studies indicate a loss of resilience in large parts of the Amazon rainforest
since the 2000s169. This evidence collectively suggests that the coupled system
is undergoing change and may be nearing a critical transition in response to
anthropogenic forcing.

2.5 The Cryosphere

The cryosphere encompasses all elements in the Earth system that are in the
form of ice or snow, for example the two major ice sheets in Greenland and
Antarctica, glaciers, permafrost and the sea ice. This section provides a brief
overview of the major cryospheric tipping elements, besides the Greenland ice
sheet which has been discussed in Section 2.3.

2.5.1 Antarctic Ice Sheet

Ice sheets are generally considered to be major tipping elements. The Earth
system’s two major ice sheets, located in Greenland and Antarctica (AIS), have
a potential of more than 60 meters of global sea level rise when completely
melted54,55. In recent decades, the sea-level rise contribution from the GrIS and
AIS has accelerated by more than 700% compared to the period 1992-200146.
Currently, both ice sheets together contribute between 1.2 mm and 1.9 mm
to global sea-level rise each year170,171. Continued global warming is expected
to initiate a potentially irreversible large-scale loss of the GrIS and western
Antarctic ice sheet (WAIS) followed by a retreat of the eastern Antarctic ice
sheet with higher warming levels45,46.

Paleoclimatic evidence shows that the global sea level may have been several
meters higher during the Eemian (ca. 1◦C warmer than today) and Pliocene
(2-3◦C warmer than today) compared to present-day172,173. However, the mag-
nitude of sea level rise during the Eemian remains uncertain, ranging from 1
to 9m (ref.173–175). The sea level during the Pliocene epoch is estimated to have
been 22±10 m higher than present-day level, with a contribution of 3 to 10m
solely from the eastern Antarctic ice sheet172.

Feedback Mechanisms

The feedback mechanisms governing the stability of the ice sheets are remark-
ably different between the GrIS and the AIS. The ice loss in Greenland is mostly
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driven by increasing surface temperatures (cf. Section 2.3) while the AIS ice
loss is mostly driven by marine warming. Large parts of the AIS, especially the
WAIS, are marine-based, i.e. grounded below sea level and lie on retrograde
bedrock (reverse slope) forming ice shelves andmarine terminating ice streams
at the margins46,176. There are two dominant feedback mechanisms for marine-
terminating ice sheets, i.e. the Marine Ice Shelf Instability and the Marine Ice
Cliff Instability, that can lead to an abrupt and irreversible loss.

The first mechanism, known as the Marine Ice Shelf Instability (MISI), can lead
to a self-sustaining retreat of marine ice sheets98,177–179. When the grounding
lines, that are the boundaries between grounded and floating ice, in marine
ice sheet basins retreat as a result of warming, it can lead to a self-sustaining
retreat of the ice sheet. The ice flux across the grounding line is proportional
to the thickness of the glacier at the grounding line46. As the grounding line
retreats, the ice thickness of the ice at the grounding line increases due to the
reverse sloping of the bedrock46. Subsurface ocean warming leads to increasing
melt beneath the ice shelves, causing a retreating grounding line. This leads
to accelerated ice flow into the sea, pushing the grounding line even further
back and ultimately leads to a collapse of the ice sheet45,46. Several basins
in the WAIS are currently retreating in accordance with MISI dynamics180–182.
For example, the Thwaites glacier grounding line retreated more than 14 km
between the years 1996 and 2011182. The Thwaites Glacier is considered a critical
component for the stability of the entire WAIS, and its collapse could trigger a
wider disintegration of the WAIS183. Parts of the East Antarctic subglacial basin
are also suspected to be affected by the MISI184–186.

When the ice shelves themselves shrink and eventually disappear completely
due to warmer oceanic and atmospheric temperatures, a second positive feed-
back called Marine Ice Cliff Instability (MICI) can be triggered46,97. The but-
tressing effect of the ice shelf vanishes and can cause an abrupt loss of the ice
cliff when the glaciostatic stress exceeds the yield strength of ice187. In other
words, the shear strength of the ice cannot withstand the longitudinal stress
at the cliff face any longer and would cause abrupt loss via calving46. This
threshold is exceeded for cliff heights of approximately 100m (ref.187). How-
ever, the MICI hypothesis remains highly uncertain and there is no evidence
of present-day MICI on the Antarctic ice sheet46,185.

A recent study concludes that current warming rates suggest an unavoidable
increase in ocean temperatures during the 21st century, even under the most
ambitious mitigation scenarios188. This could ultimately lead to a collapse of
the WAIS188. While other studies support the notion of an inevitable collapse of
the WAIS181,189, a recent study finds no indication of marine ice sheet instability
in the WAIS that would imply an irreversible loss190,191. In contrast to the WAIS,
the East Antarctic ice sheet is expected to remain stable with high CO2 levels,
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even beyond 650 ppm (ref.45). However, CO2 levels exceeding 1,000 ppm might
ultimately trigger self-reinforcing large-scale ice loss45.

2.5.2 Arctic Sea Ice

The Arctic sea ice is sometimes considered a tipping element. However, there is
considerable disagreement about the extent to which the Arctic sea ice can be
considered as such45,46. While McKay et al. (2022)45 classify the Arctic winter
sea ice (AWSI) as a global core tipping element but not the loss of Arctic
summer sea ice (ASSI), Wang et al. (2023)46 classify ASSI as a regional tipping
element but not AWSI.

In the last decades the Arctic sea ice area has significantly decreased throughout
all regions and months192–195 and is statistically attributable to anthropogenic
emissions196. The fraction of multiyear sea ice (at least 5 years old) in the
Arctic has declined from 30% of the total ice coverage to 2% between 1984 and
2019 (ref.197). Furthermore, the multiyear sea ice thickness has almost halved
over the last three decades198. This observed rapid decline of the sea ice area
regularly outpaces climate model predictions192.

Feedback Mechanisms

Several positive feedbacks potentially lead to an accelerated loss of the Arctic sea
ice. The most prominent feedback is the ice-albedo feedback194. The bright sea
ice is highly reflective while the dark sea surface is highly absorptive. Increased
atmospheric and ocean temperatures lead to a decline of the reflective sea
ice, increasing the area with open water. The open water absorbs more solar
radiation, leading to further warming of the ocean and the lower atmospheric
layers. Subsequently, more sea ice melts, closing the feedback loop. The initial
thinning of multiyear ice also enhances the melt-albedo feedback, as seasonal
sea ice is more susceptible to melting199. Together with other feedbacks such
as the lapse-rate feedback200, the melt-albedo feedback contributes strongly
to Arctic amplification, i.e. temperatures in the Arctic increase faster than the
global average.

Some negative feedbacks might mitigate the rapid sea ice loss. Seasonal ice
regrows faster than multiyear ice while open water loses heat faster to the
atmosphere than ice, facilitating the regrowth of sea ice over large areas201. The
delay in sea ice regrowth further leads to reduced snow cover which usually
prevents sea ice regrowth to some extent202. However, these negative feedbacks
do not suffice to prevent a further decline of the Arctic sea ice46.
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An ASSI free Arctic is expected by the middle of the current century, even
if global temperatures are kept below 1.5◦C above pre-industrial level195,203.
Currently, evidence suggests a linear decline of the summer sea ice rather
than an abrupt transition to an ice free state with further warming, hinting
that the ASSI is already transitioning to a new state46. Due to the observed
linear response of the ASSI, McKay et al. (2022)45 classify the loss of ASSI
as a threshold-free feedback. The loss of winter sea ice is expected to be
more abrupt than the loss of the ASSI204. However, it is very likely that the
AWSI will not be lost before the end of this century even in the most extreme
scenarios204,205. Therefore, a year-round ice-free Arctic remains unlikely in the
near future. Furthermore, the loss of the AWSI is considered reversible under
certain conditions, such as if winter sea temperatures fall below the freezing
point again204,206,207.

2.5.3 Permafrost

Permafrost, which covers around 23 million km2 of Earth’s surface, stores
between 1,460 and 1,700 Gt of carbon just in the Northern Hemisphere —
twice the amount currently present in the atmosphere46. Permafrost is defined
as any material that is below freezing temperatures for several consecutive
years.

Rising global temperatures, largely attributed to anthropogenic emissions, are
leading to widespread warming of the permafrost worldwide208. Additionally,
changes in precipitation patterns, wildfires and albedo changes contribute
to thawing of permafrost46. Thawing permafrost and the subsequent release
of stored carbon could significantly accelerate warming rates. However, the
timescale on which such a thawing would happen is uncertain46. Generally,
thawing can be categorized as either gradual or abrupt. The majority of per-
mafrost degradation will likely happen via gradual thaw on timescales of
centuries46. On local scales, abrupt so-called thermokarst events can be self-
perpetuating and can happen on time scales of days to years209. Abrupt thawing
has the potential to increase emissions by 50 to 100% compared to gradual
thawing45. Estimates of carbon released by the end of the year 2300 under the
SSP585 scenario vary widely, ranging from a net absorption of 167 Gt C to a
release of 641 Gt C (ref.210) Currently, the thaw process is dominated by CO2
release, however the contribution of CH4 release is expected to increase in the
future211. A collapse of regional permafrost, driven by internal heat production
in carbon-rich permafrost, is hypothesised to occur with a GMT anomaly of
4°C over a timescale of 10 to 300 years, potentially contributing an additional
0.2 to 0.4°C to GMT warming45,212.
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2.5.4 Mountain Glaciers

Mountain glaciers generally show a similar response to warming as the glaciers
in Greenland and Antarctica, albeit on smaller scales. Mountain glaciers are
not considered global tipping elements due to their predominantly regional
impact. Individual glaciers generally have different mass balance thresholds,
i.e. temperature thresholds, for a potential loss. However, synchronous large-
scale losses of most glaciers are expected if global warming reaches levels
of 1.5-3°C, occurring over a timescale of centuries45,201,213–216. On average, the
response of glaciers to warming is expected to be relatively linear until the
end of this century216. However, on longer time scales, nonlinear effects might
become more dominant217. Glaciers can recover from mass loss but on a slower
timescale than the melt. Furthermore, the recovery of the biophysical and social
downstream effects may take a longer time.

2.6 Atmospheric and Ocean Circulations

Several atmospheric and oceanic circulations are classified as potential tipping
elements. However, the existence and characteristics of these tipping elements
are subject to considerable uncertainty and debate. For instance, the El Niño-
Southern Oscillation (ENSO) was previously considered a potential tipping
element, but it is now deemed unlikely to undergo abrupt transitions due
to global warming218. This section briefly reviews three potential examples
of atmospheric and oceanic circulations that have been suggested as tipping
elements: the Atlantic Meridional Overturning Circulation, the Southern Ocean
Circulation and the monsoon systems.

2.6.1 Atlantic Meridional Overturning Circulation

The Atlantic Meridional Overturning Circulation (AMOC) is a self-sustained
ocean circulation across the Atlantic Ocean. Warm, saline waters flow north-
ward towards the northern North Atlantic in the upper ocean layer from the tip
of South Africa. These waters cool down, sink, and subsequently return south-
wards in the deeper ocean layers218. The AMOC significantly influences the cli-
mate and weather of the Northern Hemisphere due to the redistribution of heat
between the tropics and the high latitudes. Interannual variability of the AMOC
is mostly driven by large-scale wind patterns in the North Atlantic219, while
salinity and temperature anomalies are driving decadal variability220.

Increasing temperatures, freshwater runoff from the GrIS, and changes in sea
surface temperatures, and sea ice cover as well as enhanced poleward atmo-
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spheric moisture transport due to climate change have raised concerns of a
slowing down or complete shutdown of the AMOC45,46. Several numerical
simulations and paleoclimatic observations suggest the existence of alternative
stable states of the AMOC, driven by the salt-advection feedback221–223. The
transition between on- and off-states of the AMOC is hypothesised to be one of
the main mechanisms of Heinrich events and substantial changes in the AMOC
strength are thought to have happened during Dansgaard-Oeschger events46,224.
A weakening or collapse of the AMOC would lead to cooling over large parts
of the Northern hemisphere, impact monsoon systems, change Arctic sea ice
distribution, disrupt marine ecosystems and influence sea level rise218. Several
studies predict a future slowing or collapse of the AMOC under continued
anthropogenic forcing, with a best estimate of a 4°C increase in global tem-
peratures (ranging from 1.4 to 8°C)45,225–227. However, there is a large spread
in the model response and the best estimate might rather indicate the uncer-
tainty in the AMOC response218,228. Additionally, there is an ongoing debate
about a possibly overestimated stability of the AMOC in climate models229,230.
Several studies have shown indications of a slowing down of the AMOC and
early-warning signals linked to a critical transition62,227,231–233. However, it has
been argued that the currently available observational time series are too short
to detect trends in the AMOC stability234.

Feedback Mechanisms

Due to anthropogenic warming, the freshening of the upper ocean layers
from melt water and increased precipitation rates will cause surface waters
in the North Atlantic to become less dense218. The freshening is primarily
caused by accelerated melt from the GrIS (cf. Section 2.3), as well as increasing
Arctic river discharge and decreasing Arctic sea ice extent218. Subsequently, the
sinking process that drives the North Atlantic deep water (NADW) formation
is inhibited by the less saline water46. A positive advective-convective feedback
associated with the subpolar gyre might further inhibit the NADW formation235.
Sometimes, the North Atlantic subpolar gyre itself is classified as a tipping
element218. A weakening of the NADW formation results in a weaker baroclinic
gyre circulation which causes a salt divergence at the convective site, further
inhibiting the formation of the NADW46. These effects collectively weaken
the AMOC and less saline water is brought to the Northern Atlantic, closing
the salt-advection feedback loop221. However, the strength and timescale of
this feedback are relatively uncertain218. Furthermore, other feedbacks related
to evaporation and precipitation patterns might temporally mask or even
overcome the salt-advection feedback218.

Even without additional freshwater influx, the coupling between the AMOC and
the subpolar gyre could trigger events similar to Dansgaard-Oeschger events236.
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Climate model simulations have demonstrated that adding freshwater to the
AMOC can cause a collapse46. However, the freshwater fluxes used in these
simulations are often unrealistically large237. Additionally, studies suggest that
the AMOC’s response might depend on the rate of freshwater flux, not solely
on the magnitude of the influx238.

2.6.2 Southern Ocean Circulation

The Southern Ocean has potentially two tipping points with global impacts:
(1) the Antarctic Overturning Circulation and (2) an abrupt change in the
circulation around the Antarctic shelf leading to sudden warming of the ocean
temperatures near the ice shelves218. The Antarctic Overturning Circulation is
the second branch of the global ocean overturning circulation and has been
shown to be a key regulator of the global energy balance218. A change or
even collapse would have global implications, including changes of global
precipitation patterns and global ocean heat storage239,240.

Brine rejection is a key mechanism in the Antarctic Overturning Circulation218.
The salt of the saline water is rejected during the freezing process, creating
salty brine that drains into the surrounding sea water, making it heavier and
causing it to sink. Compared to the AMOC, projections and understanding
of the processes of the Antarctic Overturning Circulation are not very well
defined218,241. In recent years, observational and modelling studies have raised
concerns about an ongoing decline of the ocean circulation240,242,243. Climate
models consistently indicate a potential slowing or collapse of the Antarctic
Overturning Circulation, however there is a high uncertainty due to the afore-
mentioned gaps in the process understanding218. In West Antarctica, ice cavities
are exposed to relatively warm water, driving the ice shelf melt188. An abrupt
warming of these cavities, as simulated by some models, would substantially
increase basal melting and ultimately have consequences for the stability of
the whole WAIS218,244.

2.6.3 Monsoon Systems

In addition to the South American Monsoon system (cf. Section 2.4), there
are two other major seasonal monsoon systems: the West African monsoon
(WAM) and the Indian Summer monsoon (ISM)46. Monsoon systems play a
crucial role in the global hydrological cycle, contributing to around 30% of the
global precipitation218. Several idealised studies suggest the possibility of abrupt
changes in monsoon circulations, however most comprehensive climate models
predict more gradual changes with continued climate change46,124,245–247. The
possibility of abrupt changes in monsoon circulations is supported by several
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paleoclimatic records46. Notably, the WAM is thought to have experienced a
sudden emergence 6,000 to 15,000 years ago46. However, radiative forcing rates
during these periods were large compared to current forcing levels46.

The mechanisms underlying an abrupt change of the monsoon systems are sim-
ilar to the one discussed before (cf. Section 2.4). Differential heating between
the ocean and the land masses strengthens moisture inflow into the conti-
nent, leading to self-reinforcing dynamics. Anthropogenic forcing changes the
temperature gradient between ocean and land due to changes in albedo, precip-
itation, and vegetation, disrupting the moisture-advection feedback. Changes
in other Earth system components, e.g. a slowing of the AMOC could further
disrupt monsoon circulations46. The likelihood of a potential transition of
the ISM or WAM toward an alternative state due to ongoing climate change
remains uncertain45,218. These changes are generally projected to occur over
timescales spanning decades to centuries218.





3
Climate and Earth System
Models

Climate and Earth system modelling is inherently complex. The 1960s are
generally marked as the beginning of modern climate modelling with the in-
troduction of simple energy balance models248. Over recent decades, model
complexity has increased in proportion to available computing power, allowing
us to resolve more and more processes in the Earth system. However, this
increase in complexity often comes at the cost of reduced understanding. The
current near-continuous spectrum of climate models in terms of their com-
plexity (Fig. 3.1) allows us to investigate a wide range of different problems,
ranging from the paleoclimatic climate to near-past and far-future climate
scenarios. In the following chapter, we give a brief overview of different mod-
elling approaches ranging from simple climate models to comprehensive Earth
system models with a particular emphasis on the most relevant models, namely,
simple models and ice-sheet models.

39
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Figure 3.1: Schematic diagram of climate model hierarchy. (a) Pyramid of different
climate models with increasing complexity towards the top. The simplest
models are at the bottom of the pyramid, while comprehensive climate
models form the top. Some seminal climate models are denoted on the
respective levels of the pyramid. The models can be categorised based on
the complexity of four components: (i) surface processes, (ii) chemistry,
(iii) dynamics and resolution, and (iv) radiation. (b) Same as a but for the
model resolution. The respective papers that introduce the models in a are
denoted. Adapted with permission from McGuffie and Henderson-Sellers
(2014)248.
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3.1 Simple Models

Simple climate models are at the bottom of the model hierarchy (Fig. 3.1).
They include energy-balance models249,250, radiative-convective models and
box models. In the following section, we also categorise simple models of single
Earth system components or other conceptual models into this category. Simple
models are especially useful for initial studies and to inform more complex
models, while keeping an understanding of underlying mechanisms.

3.1.1 Energy Balance models

The principle behind energy balance models (EBM) is the planetary radia-
tion budget of incoming and outgoing radiation and the equator-pole energy
transport. EBMs allow, therefore, a first approximation of the Earth’s climate.
Budyko250 and Sellers249 formulated independently the first energy balance
models in 1969.

In the simplest form, the energy balance of the Earth is given as

𝐸in = 𝐸out.

In a zero-dimensional approach, the time averaged incoming energy over the
whole Earth is given by 𝑄 = 𝑆/4 with the solar constant 𝑆 = 1370 W/m2
(ref.248). If we approximate the Earth as a black body and take into account
the infrared transmissivity 𝜀𝜏𝑎 = 0.62, the outgoing radiation is governed by
the Stefan-Boltzmann law and hence we get

𝐶
d𝑇
d𝑡

= (1 − 𝛼)𝑄 − 𝜎𝜀𝜏𝑎𝑇
4,

with the albedo𝛼 , the heat capacity𝐶, the Stefan-Boltzmann constant𝜎 = 5.67·
10−8 Wm−2K−4, the atmospheric transmissivity 𝜏𝑎, the surface temperature
𝑇 and the emissivity 𝜀. The effective emissivity 𝜀𝜏𝑎 ≈ 0.62 describes the
effectiveness of the Earth in emitting energy as thermal radiation and is used
to mimic the effect of greenhouse gases on the energy balance. This equation
describes the time-dependent global temperature for a generic planet. In the
equilibrium case the equation reduces to

(1 − 𝛼)𝑄 = 𝜎𝜀𝜏𝑎𝑇
4

⇒ 𝑇 =

(
(1 − 𝛼)𝑄
𝜎𝜀𝜏𝑎

) 1
4

For Earth this gives an equilibrium surface temperature of 𝑇 = 287 K if we
assume an albedo of 𝛼 = 0.3 (ref.248). However, this simple EBM has a lot of
simplifications.
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A straightforward expansion of the EBM is by assuming a temperature depen-
dence of the albedo 𝛼 (𝑇 ). This effectively accounts for the freezing of water.
In the simplest form we can assume a step function for the albedo, a more
general and often used dependence of the albedo is as following251

𝛼 (𝑇 ) = 0.5 − 0.2 tanh
(
𝑇 − 265

10

)
.

However, the resulting EBM has no analytical solution anymore. Solving the
EBM numerical yields two stable equilibria at 𝑇1 = 288 K and 𝑇3 = 233 K
and one unstable equilibrium at 𝑇2 = 265 K (ref.251). This equation gives
rise to solution 𝑇3, which corresponds to the so-called snowball Earth, a fully
glaciated Earth. Indeed, there is geological evidence that the Earth might have
been in such state several hundred million years ago with subsequent rapid
warming events due to reduced CO2 uptake251. Interestingly, the temperature-
dependence of the albedo also gives rise to a bifurcation in the system with
respect to the parameter𝑄 (Fig. 3.2). This bifurcation indicates the presence of
hysteresis between the warm and cold equilibria. Once the system is tipped into
the snowball Earth, the temperature would need to increase past the critical
point of glaciation.

It is straightforward to extend the model to one dimension by considering each
latitude zone 𝑖 independently, giving rise to

𝑆𝑖 (1 − 𝛼 (𝑇𝑖)) = 𝐸out(𝑇𝑖) + 𝐹 (𝑇𝑖) (3.1)

where 𝐹 is the latitudinal energy transport. Budyko (1969)250 and Seller
(1969)249 proposed two different functions for the energy transport 𝐹 . Budyko
(1969) proposed Newtonian cooling, represented by 𝐹 (𝑇𝑖) = 𝑘 (𝑇𝑖 −𝑇 ), where 𝑘
is an empirical constant, whereas Sellers proposed a diffusion term div{𝑘 (𝜙) ·
∇𝑇 (𝜙)} that varies with latitude 𝜙 . Additionally, a correction term in the out-
going energy 𝐸out = 𝐴 + 𝐵𝑇 due to cloudiness is assumed with the empirical
constants 𝐴 and 𝐵 (ref.251). Ultimately, the 1D-EBM can be expressed as

𝐶
d𝑇𝑖
d𝑡

+ 𝐹 (𝑇𝑖) = (1 − 𝛼𝑖)𝑆𝑖 −𝐴 − 𝐵𝑇𝑖 (3.2)

In the simplest case 𝐶 and 𝛼 are time- and temperature-independent and one
assumes Newtonian cooling for 𝐹 (𝑇𝑖). A temperature-dependent albedo 𝛼 (𝑇 )
in the 1D-EBM corresponds to the simplest form of a glacier model, giving
rise to ice caps at the northern and southern poles. The previously mentioned
bifurcation persists in the one dimensional case and is known as the small ice-
cap instability in the time-dependent case, which has been extensively studied
in the literature252,253.

EBMs can be extended as desired, e.g. by expanding into more dimensions, by
adding seasonality or coupling with othermodels. In mathematical fields, EBMs
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Figure 3.2: Schematic bifurcation diagram in simple EBM. Bifurcation diagram of
an EBM showing two stable branches (solid blue lines) and one unstable
branch (dotted red line). The lower branch corresponds to the ice covered
snowball Earth,while the upper branch corresponds to present day climatic
conditions. For the present day solar constant 𝑆 , three states are possible,
two of which are stable (yellow and purple dots). The bifurcation gives
rise to hysteresis (A,B,C). Adapted with permission from McGuffie and
Henderson-Sellers (2014)248.

remain of interest because they permit the application of analytical methods.
Furthermore, modified EBMs are sometimes incorporated as submodel within
more complex models, for instance, to calculate the surface mass balance of
ice sheets254.

3.1.2 Box Models

Box models are reduced versions of complex systems, simplified to intercon-
nected boxes through fluxes. Their simplicity and easy extensibility make them
useful for a variety of problems. Exemplary applications include box models for
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ocean circulation, such as the AMOC221,226,255, for vegetation or ecosystems256,257

and for the entire climate system258.

To illustrate box models, consider the simple ocean-atmosphere model with
four boxes introduced by Wigley and Schlesinger (1985)258. The model consists
of two atmospheric boxes, one oceanic mixed layer and a deeper diffusive
ocean, given by the equations:

Δ𝑇aL =
𝑓 𝜆Δ𝑇𝑖 + 𝑘Δ𝑇aO

𝑓 𝜆 + 𝑘 (3.3)

Δ𝑇aO =
(𝑓 (1 − 𝑓 )𝜆 + 𝑘)𝜆Δ𝑇𝑖 + 𝑘as(1 − 𝑓 ) (𝑓 𝜆 + 𝑘)Δ𝑇

(𝑓 (1 − 𝑓 )𝜆 + 𝑘)𝜆 + 𝑘as(1 − 𝑓 ) (𝑓 𝜆 + 𝑘) (3.4)

𝐶𝑚

dΔ𝑇
d𝑡

= Δ𝑄 − 𝜆Δ𝑇 − Δ𝑀 (3.5)

𝜕Δ𝑇0
𝜕𝑡

= 𝜅
𝜕2Δ𝑇0
𝜕𝑧2

. (3.6)

The first two equations describe the air temperature change over land Δ𝑇aL
and ocean Δ𝑇aO. The third and fourth describe the temperature change in the
mixed ocean layer and deep ocean, respectively. The parameter 𝑓 is the fraction
of the globe covered by land (𝑓 ≈ 0.29), Δ𝑄 (𝑡) is a change of thermal forcing,
𝑘 and 𝑘as are land-ocean and land-air heat transfer coefficients,Δ𝑇𝑖 (𝑡) = Δ𝑄/𝜆
is the instantaneous equilibrium temperature change, 𝜆 is the climate feedback
parameter, 𝜅 is the turbulent diffusion coefficient,𝐶𝑚 is the total heat capacity,
𝑧 is the depth of the ocean and Δ𝑀 is the leakage of energy from the mixed
layer into deeper waters. With appropriate boundary conditions and assuming
an infinitely deep ocean, one can derive the following equation248

𝛾
dΔ𝑇
d𝑡

+ Δ𝑇

[
1
𝜏𝑓

+ 𝜇𝛾

(𝜏𝑑𝑡)
1
2

]
=

Δ𝑄

𝜌𝑤𝑐𝑤ℎ
(3.7)

with 𝜏𝑓 = 𝜌𝑤𝑐𝑤ℎ/𝜆, the density of water 𝜌𝑤 , the specific heat capacity of water
𝑐𝑤 , the mixed layer depth ℎ, a characteristic time for heat exchange between
the mixed and ocean layers 𝜏𝑑 and the parameters 𝛾 and 𝜇.

This ordinary differential equation can be analytically solved for a given Δ𝑄 .
This simple box model is also known under the acronym MAGICC248. The IPCC
extensively used it to provide homogenised projections of future GMT change
by tuning this model to match projections of comprehensive models. Despite
its simplicity, the MAGICC model effectively replicates global and annual mean
temperature variations248.
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3.2 Earth System Models of Intermediate
Complexity

Earth system models of intermediate complexity (EMICs) serve as a bridge
between conceptual simple models and complex GCMs or ESMs. They have
been extensively utilised for climate change assessment by the IPCC, espe-
cially for long-term projections2. The spectrum of EMICs is broad and many
different modelling approaches exist from statistical-dynamical atmosphere
models or energy balance moisture balance models to simplified versions of
GCMs248. Typically, EMICs feature lower spatial resolution, and compared to
comprehensive models, more processes are parameterised rather than explic-
itly resolved. Reflecting the heterogeneity of EMICs, the applications and use
cases of EMICs are extensive with individual models being more suitable for
specific problems2.

EMICs typically comprise several coupled submodels for the different subsys-
tems such as atmosphere, ocean, sea ice, land ice and vegetation. This coupling
involves the exchange of various fields including heat, moisture or vegetation
cover, between the submodels. Often, the atmospheric model is used to char-
acterise and distinguish EMICs since the atmosphere generally exhibits the
fastest timescale and is the computationally most demanding component259.
Therefore, we summarise some atmospheric modelling choices in EMICs in the
following section. While the implementation of the other subsystems also varies
considerably, often state-of-the-art models are used to model them.

One approach involves the use of radiative-convective models that simulate
the vertical temperature profile within a vertical atmospheric column on Earth,
consisting of different layers. The radiative scheme is typically detailed, con-
stituting the majority of computational time, whereas the convective scheme
is often a simple adjustment to allow for vertical motion and the formation
of clouds248. In the simplest case of an isolated column, this results in a one-
dimensional model. However, this concept can be extended to multicolumn
models with fluxes between the single columns260. These models include pa-
rameterisation of the radiation scattering and absorption due to, e.g. cloud
cover and are computationally very efficient. Single column models, which
represent a single column from a more complex model, are also used to sys-
tematically investigate the behaviour of GCMs or ESMs. In these cases, the
advective fluxes are prescribed by the complex models, allowing for the analy-
sis of mechanisms in GCMs that are otherwise difficult to quantify248. Simple
radiative-convective models are strictly speaking not necessarily climate mod-
els of intermediate complexity but are rather placed between the very simple
models and EMICs.
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A widely used approach is statistical dynamical modelling, which assumes that
the atmosphere is governed by large-scale, long-term dynamics261–263. These
models solve the two or three dimensional atmospheric equations, that is,
the equations of zonal momentum, meridional momentum, hydrostatic and
thermodynamic balance and continuity248. These equations are similar to
the ones solved in comprehensive models, however with lower resolution and
considerablymore parameterisation. The typical length scale of newer statistical
dynamical models is 500-1,000 km (ref.263). While older models were often
limited to two dimensions, accounting for vertical and latitudinal variations,
newer EMICs solve equations in three dimensions. However, these technically
three-dimensionalmodels often simplify the complexities of radiative processes,
leading to their designation as two-and-a-half-dimensional (2.5D) models248. To
solve these equations numerically, prescriptions of the eddy fluxes are necessary,
which is linked to considerable uncertainty248. Additionally, model parameters
and parameterisation are often tuned to fit present-day observations263. Some
employed approximations in EMICs such as the geostrophic approximation
used in CLIMBER-X lead to deficiencies close to the equator263.

Direct extensions of the simple energy balance models are EBMs that either in-
clude some dynamics or include a moisture balance248,264–266. The hydrological
cycle is parameterised by an eddy-diffusive approximation of the water vapour
balance equation in the atmosphere264. In contrast to other approaches, this
thermodynamical approach does not allow for internal variability265. Other ap-
proaches include truncation of spectral general circulation models, effectively
corresponding to a reduction of resolution, solving the three dimensional spec-
tral primitive equations267 or solving the quasi-geostrophic equations259.

3.3 Comprehensive Climate and Earth System
Models

Comprehensive climate models include General Circulation Models (GCM)I

and Earth System Models (ESM). Both model types simulate the global climate
system by solving the fundamental laws that govern the behaviour of the
atmosphere, ocean, land, sea ice, land ice, vegetation and other components
on a three-dimensional finite grid. ESMs can be considered as extensions of
GCMs, encompassing all the dynamics present in a GCM and additionally
incorporating the elements of biogeochemical cycling268. These models build,
to a large extent, the basis for the IPCC reports2.

I. Sometimes the abbreviation GCM is used as an acronym for Global Climate Model248.
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Present-day comprehensive climate models usually have spatial resolutions
on the order of 100 km and are run on simulation time scales of decades
to centuries269,270. Running these simulations requires weeks or months of
wall-clock time271. On these relatively coarse resolutions, many important
processes are not explicitly resolved but instead are parameterised. However,
there is an ongoing effort to increase model resolution, which substantially
increases computational demands271–273. A doubling of the horizontal resolution
increases the computational cost by a factor of approximately 16 and the benefit
of continuously increasing resolution in climate models is debated271.

The atmospheric dynamics on a rotating sphere are generally governed by the
Navier-Stokes equation274. However, closed-form solutions to these equations
are generally unavailable, necessitating numerical solutions. These equations
are solved in the spectral space or in the grid space with a time step of 10-30min
by the dynamical core (DyCore) of the climate model248. The unresolved pro-
cesses, i.e. processes on a subgrid scale that need to be parameterised, are
called model physics. They typically include radiation schemes, boundary layer
schemes, surface parameterisation, convection schemes (including cloud pa-
rameterisation) and large scale precipitation schemes248. Additionally, basic
atmospheric chemistry models that simulate the distribution of non-CO2 radia-
tively active gases and aerosols are included in ESMs275.

The ocean is, similarly to the atmosphere, governed by the fluid dynamical
equations. The horizontal resolutions in the most recent generation of ESMs
are on the scale of 50-100 km and therefore do no allow the explicit resolution
of mesoscale eddies276. However, increasing resolutions of ocean models in
recent years allow to partially resolve eddies and can be expected in the
next generation of ESMs276. Additionally, absorption of solar radiation, density
changes due to precipitation, river influx and melting sea ice as well as CO2
absorption are often taken into account248.

Sea ice is a critical, rapidly responding component of the Earth system, inter-
acting with both the ocean and atmosphere. While the earliest models were
restricted to purely thermodynamic formulation, current ESMs include also
dynamical processes, that is the movement of sea ice248. State-of-the-art sea
ice models also include parameterisation of, e.g. the anisotropy of sea ice, melt
ponds or ridging. Furthermore, they often consist of several vertical layers and
include explicit snow models277. The sea ice model naturally has the same grid
configuration and hence the same horizontal resolution as the ocean model.
However, current ESMs still struggle with accurately simulating the evolution
and distribution of sea ice. For example, the observed rapid decrease in the sea
ice in the last years was not predicted by the last generation of ESMs278.

The land component models all surface processes, which include, among oth-
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ers, vegetation, anthropogenic land use activities, soil hydrology, groundwater
schemes, and the snowpack. Most processes in the land models are parame-
terised and based on empirical relationships279. However, a detailed descriptions
of the land model schemes is beyond the scope of this thesis. For a description
of the land ice component, we refer to Section 3.4.

All the subcomponents are coupled through a coupler that periodically ex-
changes data among the individual, isolated components. However, that does
not imply that all submodules necessarily interact in a sophisticated way with
each other. The coupling is highly nontrivial due to the different time scales
of the single components. Usually, the ocean runs in parallel to the other
components with daily exchange between atmosphere and ocean248. Effective
coupling must consider the respective computer architecture to achieve opti-
mal parallelisation. The complexity of the models can be reduced by using
simplified modelling choices such as slab oceans or reducing the resolution
of single components or of the whole model. Additionally, many ESMs permit
the inclusion of non-interactive, temporally fixed components, known as data
components.

While these models are extensively used in climate science, there is a con-
siderable debate about the role of comprehensive climate models in climate
science274. Many ESMs share submodels or derive from the same model family;
therefore, they are not statistically independent, yet they yield considerably
different results. For example, the equilibrium climate sensitivity between the
NorESM2 and the CESM2 model varies by a factor of two even though both
models share the majority of code besides the ocean models280. Another major
criticism concerns the tuning or calibration of model parameters to match
historical or present day climate274. Relying on expert opinions for the current
tuning process can introduce subjectivity and bias into the model281. This also
raises the question of whether climate models are overly constrained or stable,
thereby limiting their ability to replicate certain phenomena281,282. However,
automated parameter optimisation algorithms could help mitigate this issue274.
Besides these concerns, comprehensive climate models remain an indispens-
able tool to investigate the climate of the past, present and future at the top of
the model hierarchy.

3.4 Ice-Sheet Models

Understanding the future and past behaviour of ice sheets is crucial, given
their significant impact on the global climate as previously discussed. In the
following section, we will discuss (1) the governing equations for ice flow and
(2) the primary processes integrated within ice-sheet models.
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3.4.1 Ice Flow

The ice flow is modelled using the equations of continuum dynamics, e.g.
conservation of mass, energy and momentum as well as some description of the
ice rheology. In the following section,we will follow Schoof andHewitt (2013)283.
We let 𝒖 = (𝑢1, 𝑢2, 𝑢3) = (𝑢, 𝑣,𝑤) be the velocity field in the ice relative to a
Cartesian coordinate system (𝑥1, 𝑥2, 𝑥3) = (𝑥,𝑦, 𝑧). We use the Einstein sum
convention, i.e. we imply summation over duplicate indices

∑
𝑖 𝑎𝑖 𝑗𝑏𝑖 = 𝑎𝑖 𝑗𝑏𝑖 . Ice

is usually considered as a nonlinear viscous incompressible material, i.e.

∇𝒖 = 0. (3.8)

Most ice flow models assume a simple rheology with a strain-rate dependent
viscosity 𝜂 of the following form283

𝜏𝑖 𝑗 = 2𝜂𝐷𝑖 𝑗

𝐷𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
,

where 𝐷𝑖 𝑗 (also ¤𝜀𝑖 𝑗) is the strain rate and 𝜏𝑖 𝑗 is the deviatoric stress tensor
linked through 𝜎𝑖 𝑗 = 𝜏𝑖 𝑗 − 𝑝𝛿𝑖 𝑗 to the stress tensor 𝜎𝑖 𝑗 with 𝑝 = −𝜎𝑘𝑘/3.

The most widely used rheology based on an empirical relationship derived by
Glen (1958)284 is a power law

𝜂 =
1
2
𝐵𝐷−1+1/𝑛,

with 𝐷 =
√︁
𝐷𝑖 𝑗𝐷𝑖 𝑗/2, the constant 𝑛 and the strain rate-independent factor 𝐵.

This equation is also often written in the form

𝐷𝑖 𝑗 = 𝐴𝜏𝑛−1𝜏𝑖 𝑗

with 𝜏 =
√︁
𝜏𝑖 𝑗𝜏𝑖 𝑗/2 and 𝐴 = 𝐵−1/𝑛. Glen’s work indicates an exponent 𝑛 ≈ 3.

Many other, more complex flow relations have been proposed, however Glen’s
law is still widely used due to its simplicity.

The viscosity is usually dependent on other factors such as temperature 𝑇 or
impurities. In Glen’s law these dependencies are usually absorbed into the
factor 𝐵 = 𝐵(𝑇 ) via an Arrhenius-type relationship

𝐵 = 𝐵0 exp(𝐸0/𝑅𝑇 ),

with the parameter 𝐵0, the activation energy 𝐸0, the gas constant 𝑅 and the
temperature 𝑇 .
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The motion of the ice sheet behaves like a Stokes flow under the action of
gravity

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
− 𝜕𝑝

𝜕𝑥𝑖
+ 𝜌𝑔𝑖 = 0, (3.9)

with the density of ice 𝜌 and the 𝑖-th component of gravity 𝑔𝑖 .

The ice surface 𝑧 = 𝑠 (𝑥,𝑦, 𝑡) is treated as a free boundary without stress

𝜎𝑖 𝑗𝑛 𝑗 = 0 and
𝜕𝑠

𝜕𝑡
+ 𝑢 𝜕𝑠

𝜕𝑥
+ 𝑣

𝜕𝑠

𝜕𝑦
= 𝑤 + 𝑎

with the accumulation or ablation rate 𝑎 and the normal vector 𝒏.

Basal sliding is often a dominant component of the ice flow in temperate glaciers
and it is necessary to use a friction law 𝑓 (𝑢𝑏) that relates the shear stress 𝜏𝑏
at the bed surface 𝑧 = 𝑏 (𝑥,𝑦) with the sliding velocity 𝑢𝑏 . Early glacier sliding
laws were mostly described by some power law of the form 𝑓 (𝑢𝑏) = 𝐶𝑢𝑚

𝑏

(ref.283). Today, there are more complicated friction laws dependent on, for
example, temperature and the effective pressure.

Shallow Ice Approximation

Solving the whole Stokes-flow equations is computationally expensive. There-
fore, several approximations have been developed. One of the most used lubri-
cation approximations is the shallow ice approximation (SIA), where only the
bed-parallel shear stress is considered.

The SIA requires that the prescribed friction law 𝜏𝑏 = 𝑓 (𝑢𝑏) is invertible, i.e.
𝑢𝑏 = 𝐹 (𝜏𝑏). Assuming Glen’s sliding law, the governing equations 3.9 reduce
to

𝜕𝝉

𝜕𝑧
= −∇𝑥𝑝,

𝜕𝑝

𝜕𝑧
= −𝜌𝑔, 𝜕𝑼

𝜕𝑧
= 2𝐴|𝝉 |𝑛−1𝝉 for 𝑏 < 𝑧 < 𝑠, (3.10)

𝝉 = 0, 𝑝 = 0 on 𝑧 = 𝑠, 𝑼 = 𝐹 ( |𝝉 |)𝝉/|𝝉 | on 𝑧 = 𝑏, (3.11)

with 𝝉 = (𝜏𝑥𝑧, 𝜏𝑦𝑧), 𝑼 = (𝑢, 𝑣) and ∇𝒙 = (𝜕𝑥 , 𝜕𝑦). Integrating Equation 3.8
from the bottom 𝑏 to the surface 𝑠 of the ice yields

𝜕𝑠

𝜕𝑡
+ ∇𝒙𝒒 = 𝑎, 𝒒 =

∫ 𝑠

𝑏

𝑼d𝑧.

Together with Equation 3.11 this ultimately gives the shallow ice velocity

𝑼 = − 2(𝜌𝑔)𝑛
[∫ d𝑧

𝑏

𝐴(d𝑧′) (𝑠 − d𝑧′)𝑛d𝑧′
]
|∇𝒙𝑠 |𝑛−1∇𝒙𝑠

− 𝐹 (𝜌𝑔(𝑠 − 𝑏) |∇𝒙𝑠 |)
∇𝒙𝑠

|∇𝒙𝑠 |
.

(3.12)
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For no slip, i.e. 𝐹 = 0, this equation simplifies to

𝜕𝑠

𝜕𝑡
− ∇𝒙 ·

[
2𝐴
𝑛 + 2

(𝑠 − 𝑏)𝑛+2 |∇𝒙𝑠 |𝑛−1∇𝒙𝑠

]
= 𝑎.

Equation 3.12 is a highly nonlinear diffusion problem but computationally
much easier to solve than the full Stokes equations. In ice-sheet models there
is often an additional enhancement factor 𝐸SIA in the first term in Equation
3.12 to account for the non-isotropic nature of the ice or other unresolved
processes285.

The SIA is used for grounded parts of the ice sheets where sliding is minimal or
nonexistant. However, SIA becomes inappropriate for regions with fast sliding
such as ice streams, and different approximation approaches are needed283.
Similar to SIA, the shallow shelf approximation (SSA) is widely used for ice
shelves or sliding ice streams, instead of solving the full Stokes equations. A hy-
brid approach superposes the SIA and the SSA as a sliding law (SIA+SSA). This
allows for modelling higher ice velocities than in a pure SIA approach.

3.4.2 Surface Melt

The surface melt is a boundary condition for the ice sheet model, which deter-
mines the surface mass balance. There are several approaches to model the sur-
face energy balance or surface melt, ranging from coupled ESM58 or regional cli-
mate model simulations76,286,287 to simpler parameterisation56,92,100,288,289.

A straightforward way is to integrate the ice sheet model into a coupled
ESM such that the surface mass balance is provided by the atmospheric model
component. Alternatively, the ESM can provide the surface mass balance for the
ice sheet model to operate in standalone or offline mode. In this case, feedback
between the evolving ice sheet geometry and the surface mass balance is
generally not considered. Hence, the offline approach is suitable only for short
time scales without large changes in the ice sheet geometry. However, these two
approaches are computationally expensive and only feasible for submillennial
time scales.

For longer time scales, parameterised approaches are necessary. One of the
most used simple melt parameterisation is the positive degree day (PDD)
model100,288,290. The PDD model calculates the number of days with tempera-
tures above freezing in a year, known as melt days, based on daily temperatures
according to the following equation100,

PDD =
1

𝜎PDD
√
2𝜋

∫ 𝐴

0
d𝑡

∫ ∞

0
d𝑇 𝑇 exp

[
− [𝑇 −𝑇𝑎 (𝑡)]2

2𝜎2
PDD

]
.
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Here, the equation is integrated over a time period of one year𝐴,with the annual
near-surface temperature𝑇𝑎 that varies sinusoidally over time and the standard
deviation of the mean monthly temperatures 𝜎PDD. Subsequently, the melt is
computed by multiplying the number of positive degree days PDD with some
latitude- and surface-cover-dependent PDD-factors 𝛽. Generally, the annual
precipitation cycle and the refreezing rate are assumed to be constant over time
in the PDD model. While the PDD model can produce results for present-day
ice sheets similar to those from regional climate models, its simplicity may
limit its reliability for simulating far future projections53,76,291,292.

Several extensions and alternatives to the PDD model have been proposed,
accounting for factors such as seasonal changes in solar radiation92,289,293,294. In
this thesis, we employ a simplified version of the diurnal Energy Balance Model
(dEBM-simple) incorporated into the Parallel Ice Sheet Model (PISM)92,254,294.
The governing equation of the melt 𝑀 is given by92

𝑀 =
Δ𝑡𝜙

Δ𝑡𝜌𝑤𝐿𝑚

(
𝜏𝐴 (1 − 𝛼𝑠)𝑆𝜙 + 𝑐1𝑇eff + 𝑐2

)
,

with the freshwater density 𝜌𝑤 , the latent heat of fusion 𝐿𝑚, the length of a day
Δ𝑡 , the surface albedo 𝛼𝑠 , the incoming radiation 𝑆𝜙 , the empirical parameters
𝑐1 and 𝑐2, the parameterised transmissivity 𝜏𝐴, the effective temperature 𝑇eff
and the time Δ𝑡𝜙 during which the sun’s elevation angle exceeds the threshold
for melting. The first term in the equation describes the insolation driven melt,
the second term describes the directly temperature driven melt, while the last
term describes a constant offset related to outgoing longwave radiation. Similar
to the PDD model, the effective temperature𝑇eff is a function of the cumulative
temperature exceeding the melting point in a given month92. In contrast to the
PDD model, this melt scheme directly includes radiation induced melting and
changing day length.

3.4.3 Alternative Modelling Choices

Besides the ice flow and surface melt, several other modelling choices must
be made such as the Earth deformation model, the ocean model or changes in
precipitation and temperature. We summarise some common parameterisation
used in ice sheet modelling in the following section. We do not consider ocean
modelling here, as it is not a major factor for the GrIS.

Earth Deformation Model

Changes in the ice load lead to a response of the solid Earth. Usually, this re-
sponse is very slow, occurring over millennia. While fully process-based Earth
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deformation models exist, they are computationally demanding and are there-
fore typically not coupled with ice-sheet models117,295. Simpler models, often
incorporated into ice-sheet models, include the flat Earth Elastic Lithosphere
Relaxing Asthenosphere (ELRA) model296 or the Lingle-Clark model, which
generalises the ELRA model297,298. The Lingle-Clark model conceptualises the
solid Earth as consisting of two layers: a viscous mantle with viscosity 𝜂 and
density 𝜌, and an elastic layer with flexural rigidity 𝐷, which represents the
lithosphere94. The response of the lithosphere is instantaneous, while the
response of the mantle is on the timescale of decades to millennia. This ap-
proximation is valid when there is no spatial variability in viscosity or load,
specifically for regions of limited spatial extent. The governing differential
equation for the vertical displacement of the bedrock 𝑢 in the Lingle-Clark
model is given by

2𝜂 |∇| 𝜕𝑢
𝜕𝑡

+ 𝜌𝑔𝑢 + 𝐷∇4𝑢 = 𝜎𝑧𝑧

where 𝑔 is the gravitational acceleration and 𝜎𝑧𝑧 is the ice load force per
unit area94. This equation can be solved quickly using a computationally
efficient Fast Fourier transform-basedmethod298. Although parameterised Earth
deformation models give reasonable results, there is a considerable uncertainty
in the parameters and hence in the response of the bedrock94.

Temperature and Precipitation Scaling

The spatial annual surface temperature and precipitation fields are usually fixed
as boundary conditions in standalone ice sheet modelling. However, several pa-
rameterisations exist to account for factors such as changing ice sheet geometry.
The surface temperature is often directly scaled by a scalar or spatiotemporal
temperature anomaly. To account for changes in the surface elevation, a sim-
ple lapse rate is applied to the surface temperature relative to the initial ice
sheet geometry. The precipitation is subsequently scaled either directly via a
precipitation lapse rate or through an exponential relationship

𝑃 = 𝑃𝑖 exp (𝐶Δ𝑇 ),

where 𝐶 is a scaling factor, 𝑃𝑖 the initial precipitation and Δ𝑇 is the change of
temperature due to elevation and/or the background climate119. This increases
precipitation by 100(exp(𝐶) − 1)% for each degree of warming. Additionally,
orographic effects on precipitation are sometimes parameterised299.
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Deep Learning
Machine Learning (ML) and its applications in climate science have gained
tremendous traction in recent years. ML focuses on making predictions by
learning from data,which is highly relevant for climate science. In the following,
we will also refer to deep learning (DL), a subfield of ML that uses multi-layered
(deep) networks to extract higher-level features in the data. The notions of DL
and ML will be used interchangeably in the following. Applications of ML and
DL in climate science range from reconstructing climate fields and predicting
time series to developing neural Earth System Models (ESMs). While providing
a complete overview is beyond this thesis’s scope, we provide a brief overview
of potential applications of DL-based methods in climate science, particularly
in the context of climate modeling. Subsequently, we will outline the network
architecture of the model used in this thesis.

4.1 Overview

4.1.1 Parameterisations, Emulation & Neural GCM

As described earlier, climate models typically utilise parameterisations of many
processes, especially on a subgrid scale, such as convection and radiation.
These parameterisations often involve complex statistical methods and can
be computationally demanding300. Machine learning methods can replace or
emulate individual subcomponents of an existing parameterisation scheme, or

55



56 chapter 4 deep learning

even replace or emulate several parameterisation schemes within a single ML
model, potentially offering increased performance and reduced computational
costs300. In this context, emulation refers to replicating the behaviour of an
existing scheme using an ML method, which benefits from requiring no or
only minimal re-tuning300. Alternatively, ML-based models are used to correct
existing parameterisation schemes301.

The first ML-based (based on neural networks) subgrid parameterisations
and emulations of radiation schemes were developed in the end of the 1990s
and early 2000s, offering considerable speed up over classical methods302,303.
Later, ML-based parameterisation schemes were introduced in aquaplanet
GCM simulations using so-called coarse graining300,304–306. The ML model is
trained on high-resolution data that potentially resolves the desired process,
and subsequently applies this knowledge to data on a coarser grid300. The
models are either trained on model output or directly on observational data.
Recently, parameterisation schemes and emulations have been applied beyond
idealised aquaplanetGCMs to realistic land-ocean simulations307–310. It has been
demonstrated that these schemes can outperform classical parameterisations
in some aspects. However, they can introduce instabilities and thus require
careful implementation.

All the aforementioned studies do not run long-term simulations, which are
linked to an inherent problem in machine learning; generic ML models do
not conserve physical quantities300. However, it is possible to constrain neural
networks, for example, through the loss function or directly within the archi-
tecture, to ensure the conservation of physical quantities300. It has been shown
that even without constraining the networks, decade long simulations of hybrid
ML-GCM models are possible311. While most emulation and parameterisation
schemes are aimed at the atmospheric component of climate models due to the
computational cost of it, ML-based methods also exist for the other components
such as land, ocean, sea ice or ice sheets300,312,313. Recently, a fully differentiable,
fully coupled neural GCM has been introduced that is trained on reanalysis
data and produces multi-decadal long, physically consistent climate forecasts7.
The neural GCM consists of a classical dynamical core that solves the primitive
equations and a machine learning component that parameterises all physical
processes. Additionally, it can produce ensemble weather and climate projec-
tions using a stochastic loss function. Although ensemble simulations have
previously been generated314, creating them with ML-based methods remains
a challenge300.

The growing availability of training data and computational resources has
shifted the focus from single-component parameterisations towards replacing
entire GCMswithML-basedmethods. First proof-of-concept attempts employed
ML models to generate global weather forecasts with single variables on very
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coarse grids or convolutional neural networks to iteratively predict the next
model state of simple GCMs or EMICs315–317. These studies were limited to
short time scales, spanning only a few days. Subsequent studies extended these
forecasts by increasing the number of predicted variables, incorporating the
spherical nature of the Earth, and extending the lead-time to a few weeks318–320.
These models demonstrated similar performance to traditional models for
short-term forecasts.

Recently, graph neural networks have been used to predict realistic short-
term forecasts with a tremendous increase in the performance, predicted
variables and spatiotemporal resolution321,322. The GraphCastmodel consistently
outperforms state-of-the-art numerical weather models322. GraphCast is trained
on historical reanalysis data and can predict several hundred weather variables
with a 0.25° resolution for the next 10 days in less than one minute322.

Several other models and applications have been proposed and the field evolves
rapidly323–325. However, the use of ML-based methods for long-term climate
prediction remains limited, primarily due to a lack of training data, a challenge
that is likely to be overcome in the future300.

4.1.2 Physics-informed ML

Although machine learning (ML) methods can learn underlying physical rela-
tionships and principles, they typically do not preserve physical quantities like
momentum or energy. Moreover, the results are frequently difficult to interpret
and lack explainability, raising questions about their plausibility. A recently
introduced method to address these problems is physics-constrained or physics-
informed machine learning (PIML)326,327. PIML incorporates knowledge of the
underlying physical system that is to be modelled to build physically consistent
models with increased data efficiency, interpretability, and generalisability as
well as a faster training process326. PIMLs are not constrained to applications
in climate science but have been applied to many other areas328,329. There
are several approaches to design PIML ranging from custom loss functions to
custom network architectures326.

For example, constrained generative adversarial networks have been used to
emulate complex physical processes, similar to those mentioned in the previ-
ous section330,331. Regularisation or penalty terms are introduced into the loss
function that help to preserve desired properties of the underlying data. The
constrained networks have been shown to achieve greater accuracy compared
to unconstrained networks. Constrained GANs have been used to super-resolve
existing data332 or to post-process numerical climate model output333. Further-
more, PIML has been used to solve the shallow-water equations on a rotating
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sphere and hence can serve as alternative approach to solving differential
equations334. However, it is important to note that PIMLs always require some
knowledge of the underlying system and must be adapted to the individual
problem.

4.1.3 Other Applications

The applications of ML-based methods in climate science extend well beyond
the previously mentioned examples. We mention some other interesting appli-
cations in the following.

As briefly mentioned earlier, ML-based methods can be used to aid in solving or
even completely solve partial differential equations. Early methods were mostly
aimed at accelerating PDE solvers using ML-based preconditioning. Precondi-
tioning is the transformation of parts of the problem making it more suitable
for the numerical solver and leading to a reduced number of iterations300. Sub-
sequently, parts of the numerical solver were completely replaced335,336. Neural
networks have enabled solving nonlinear PDEs on coarser grids while maintain-
ing accuracy comparable to classical solvers, resulting in a speedup by several
orders of magnitude337. An alternative approach is to learn the evolution of the
operator of the underlying unknown PDE from data since neural networks can
approximate any nonlinear continuous operator338. These approaches promise
considerable speedup compared to classical numerical methods.

While most examples so far are concerned with forecasting, ML can improve
historical records, which are important to quantify changes in a system. ML-
based methods have been shown to outperform traditional reconstruction
approaches, such as principal component analysis or kriging (Gaussian process
regression), especially when data is very sparse5. The ML models learn the
underlying physical relationships to some extent and are able to realistically
fill in missing data. In this thesis, we introduce a novel ML method for the
reconstruction of climate fields (cf. Section 4.2 and 5.3) that outperforms
previous methods. Our reconstructions can lead to new insights into the climate
system due to the enhanced plausibility of the spatiotemporal fields.

In contrast to emulation and parameterisation approaches, ML-based methods
have also been employed to nudge climate models towards observations339.
However, research in this direction has been limited so far300. Other ap-
proaches include classical time series forecasting of different variables340–342,
early-warning signals (cf. Section 2.1.2), uncertainty quantification343 and ex-
treme event forecasting344.
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4.2 LaMa

The third paper of this thesis focuses on the reconstruction of spatiotemporal
climate fields using deep learning. Instrumental records of climate fields are
typically limited to several decades at best and are often incomplete, presenting
a serious challenge in assessing long-term system changes. In the context
of tipping points, long time series are particularly important as short time
series hinder the inference of long-term changes in system dynamics, which
could potentially indicate an approaching critical transition. To generate long,
spatiotemporally consistent time series, we employ the recently introduced
Resolution-robust Large Mask Inpainting with Fourier Convolutions model
(LaMa) that has been shown to outperform previous methods345. LaMa is a
deterministic model; that is, the same combination of mask and image always
yields the same reconstruction. In this thesis, deep learning is utilised as a
tool, and we refrain from providing an extensive theoretical background on
the network architecture and the various operators used in machine learning.
However, we will briefly summarise the key features of the network (Fig. 4.1)
following Suvorov et al. (2021)345.

4.2.1 Network architecture

The model’s goal is to inpaint an image 𝑥 masked by a binary mask𝑚. The
image is stacked with the mask 𝑥 ⊙𝑚, resulting in a 4-channel input tensor
𝑥 ′ = stack(𝑥 ⊙𝑚,𝑚). In our case of single-channel climate fields, we replicate
the single channel, such as temperature, across the other two colour channels,
creating a 3-channel grey scale image. The model is trained on image-mask
pairs, where the training images with known ground truth are derived from
sources such as reanalyses or climate model outputs. Training masks are
either derived from the dataset of interest or randomly generated during the
training, following the original mask generation algorithm345. The feed-forward
network 𝑓Θ(·) produces the inpainted image 𝑥 = 𝑓Θ(𝑥 ′). A feed-forward
network describes the simplest form of a neural network where information
only propagates forward through the network, from the input nodes through
the hidden layers to the output nodes.

The core component of the model is the fast Fourier convolution (FFC) block,
based on a channel-wise fast Fourier transform (FFT). The large advantage of
FFC is that it enables global context in the early layers of the network, in contrast
to conventional convolutions, which have a spatially limited receptive field346.
The FFC comprises two interconnected branches; (i) a local branch in the spatial
domain using conventional convolutions and (ii) a global branch in the spectral
domain using real FFT. The input tensor𝑥 is split along the feature channels into
the local branch 𝑥𝑙 and the global branch 𝑥𝑔. The local part 𝑥𝑙 ∈ R𝐻×𝑊 ×(1−𝛼 )𝐶
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with the spatial dimension 𝐻 ×𝑊 and the channels 𝐶 is designed to capture
small scale information, while the global part 𝑥𝑔 ∈ R𝐻×𝑊 ×𝛼𝐶 targets large-
scale context. The hyperparameter 𝛼 ∈ [0, 1] represents the split ratio of
the feature channels between the global and local branch. While the global
branch can be sufficient for realistic inpainting, the local branch adds stability
to the network347. Assume the output tensor of the FFC block is denoted by
𝑦 = {𝑦𝑙 , 𝑦𝑔} and has the same dimension and the same local and global split
ratio as the input tensor 𝑥 = {𝑥𝑙 , 𝑥𝑔}. Then the procedure in the FFC block can
be described as346

𝑦𝑙 = 𝑦𝑙→𝑙 + 𝑦𝑔→𝑙 = 𝑓𝑙 (𝑥𝑙 ) + 𝑓𝑔→𝑙 (𝑥𝑔),
𝑦𝑔 = 𝑦𝑔→𝑔 + 𝑦𝑙→𝑔 = 𝑓𝑔 (𝑥𝑔) + 𝑓𝑙→𝑔 (𝑥𝑙 ) .

Here, 𝑓𝑙 denotes the local operation via conventional convolutions, 𝑓𝑔 denotes
the global spectral transformer and 𝑓𝑔→𝑙 and 𝑓𝑙→𝑔 denote the inter-path tran-
sitions via conventional convolutions (Fig. 4.1). The spectral transform 𝑓𝑔 in
the global path is the component that ensures the global context in the early
layers.

For simplicity, assume our global branch input tensor has the following form
𝑥𝑔 ∈ R𝐻×𝑊 ×𝐶 , then the spectral transform 𝑓𝑔 in the FFC block applies the
following (Fig. 4.1):

(i) a real two-dimensional FFT and concatenates the real and imaginary
parts; R𝐻×𝑊 ×𝐶 → C𝐻×𝑊

2 ×𝐶 → R𝐻×𝑊
2 ×2𝐶 ,

(ii) a convolutional block in the frequency domain consisting of an activation
function (rectified linear unit, ReLU), batch normalisation (BN) and a
1 × 1 convolutional layer; R𝐻×𝑊

2 ×2𝐶 → R𝐻×𝑊
2 ×2𝐶 ,

(iii) an inverse transform into the spatial domain; R𝐻×𝑊
2 ×2𝐶 → C𝐻×𝑊

2 ×𝐶 →
R𝐻×𝑊 ×𝐶 .

Here, the activation function calculates the output of an individual node based
on its inputs and weights and is crucial for successful training of deep learn-
ing networks. The ReLU is easy to optimise and currently the most adopted
activation function in deep learning348. It is defined as the positive part of
its argument. Batch normalisation is used to make training more stable and
efficient through re-scaling and re-centring of the layers’ input349.

Eventually, the outputs of the local and global branch are fused together. In
contrast to conventional convolutions, the FFC has an image-wide receptive field
which allows for global context already in the early layers of the network. With
conventional convolutions, the number of layers would need to be substantially
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Figure 4.1: LaMa network architecture. The mask𝑚 and image 𝑥 are concatenated
into one input tensor 𝑥 ′ and fed into the network. Subsequently, 𝑥 ′ is
down-scaled, several FFC blocks are applied and the tensor is up-scaled
again to give the initial resolution. The concept behind the FFC block is
depicted. The input tensor gets split into two interconnected local and
global branches. Eventually, the multi-component loss L is optimised to
give a realistic inpainted image 𝑥 . Adapted from Suvorov et al. (2021)345.

greater to achieve a similar receptive field in later layers, leading to higher
computational demands.

4.2.2 Loss functions

The second crucial component of the network, enabling the realistic inpainting
of images, is a highly non-trivial multi-component loss function. The first
component of this loss is the high receptive field perceptual loss LHRFPL, which
evaluates the distance between the target and predicted image using a pre-
trained network 𝜙HRF(·) with a high receptive field. Unlike naive supervised
loss, a perceptual loss allows for a non-exact reconstruction, thereby avoiding
blurry results often caused by averaging multiple plausible reconstructions345.
The loss function is defined as follows:

LHRFPL(𝑥, 𝑥) = M([𝜙HRF(𝑥) − 𝜙HRF(𝑥)]2),

using the element-wise operation [·− ·]2 and the mean operatorM (interlayer
mean of intralayer means). In other words, the perceptual distance of the
inpainted image 𝑥 and the original image 𝑥 is evaluated at each layer of the pre-
trained network 𝜙HRF(·). Here, 𝜙HRF(·) is a segmentation model, specifically, a
pre-trained ResNet50 network with dilated convolutions. Dilated convolutions
in this model allow for global context, analogous to the FFC.

The second component of the loss function is an adversarial loss, ensuring
that the inpainting network 𝑓Θ(𝑥 ′) generates natural-looking local details. A
discriminator 𝐷𝜉 (·) is introduced, operating at a local level to differentiate
between real and fake patches. The generator, namely the inpainting network,
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quickly learns to replicate the unmasked parts of the ground truth, while only
the masked parts are classified as fake. The generator aims to deceive the
discriminator into classifying the masked generated patches (fakes) as real,
essentially engaging in a two-player min-max game350. For the general concept
and a derivation of adversarial losses we refer to Goodfellow et al. (2014)350.
The resulting non-saturating adversarial loss 𝐿adv that is to be optimised is
given by

L𝐷 = −E𝑥
[
log𝐷𝜉 (𝑥)

]
− E𝑥,𝑚

[
log𝐷𝜉 (𝑥) ⊙𝑚

]
− E𝑥,𝑚

[
log(1 − 𝐷𝜉 (𝑥)) ⊙ (1 −𝑚)

]
L𝐺 = −E𝑥,𝑚

[
log𝐷𝜉 (𝑥)

]
𝐿adv = min

Θ,𝜉
[sgΘ(L𝐷) + sg𝜉 (L𝐺 )],

with the expected value E𝑥 over all real data instances and the expected value
E𝑥,𝑚 over all artificially masked instances (fake). 𝐷𝜉 (𝑥) is the discriminator’s
estimate that the real image is real and 𝐷𝜉 (𝑥) is the discriminator’s estimate
of the probability that the generated image is real. Analogously, 𝐷𝜉 (𝑥) ⊙𝑚

is the discriminator’s estimate of the generated image only for the artificially
masked areas. Here, non-saturating loss means that the generator maximises
the probability of the images being real rather than minimising the probability
of the images being fake. The stop gradient operator sg(·) applied to the
respective variable ensures consistent training.

The final loss is the sum of the aforementioned losses plus a regularisation term
𝑅1 = E𝑥 [| |∇𝐷𝜉 (𝑥) | |2] and a discriminator-based perceptual loss or feature-
matching loss LDiscPL that increases stability and performance345. The regular-
isation loss prevents overfitting by penalising the discriminator, which ensures
better generalisation351. The full loss function is given by

L = 𝜅𝐿adv + 𝛼LHRFPL + 𝛽LDiscPL + 𝛾𝑅1

with the weights 𝜅 = 10, 𝛼 = 30, 𝛽 = 100 and 𝛾 = 0.001. Summarised, the
terms 𝐿adv and LDiscPL ensure naturally looking local details, while LHRFPL
ensures the global structure.



5
Summary of Publications
The three papers included in this thesis constitute its main scientific contribu-
tion. The first two papers are thematically closely related, whereas the third
paper explores a distinct topic and is independent. The following chapter
summarises each paper and attempts to establish a common framework.

5.1 Paper I

Bochow, N. & Boers, N., The South American monsoon approaches a critical
transition in response to deforestation. Sci. Adv. 9, eadd9973 (2023).
https://doi.org/10.1126/sciadv.add9973

This study aims to investigate and identify mechanisms behind the tipping
behaviour of the coupled South American Monsoon - Amazon rainforest system.
Our findings suggest that a critical transition in the coupled system could
result in a pronounced, large-scale reduction of precipitation rates across
South America, followed by a dieback of large parts of the Amazon rainforest.
Additionally, we have identified precursor signals of this critical transition in
response to deforestation.

The Amazon rainforest has long been hypothesised to exhibit tipping be-
haviour44,45,150,155,352–355, however previous studies often ignore the interplay
between the large-scale atmosphere and the vegetation system. This oversight
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may lead to an underestimation of potential positive feedback mechanisms.
Our approach combines observation- and model-based analyses to identify
precursor signals and mechanisms that can lead to a critical transition in
the coupled system. We use a nonlinear dynamical model of the moisture
transport and recycling across South America coupled to the vegetation system
and simulate deforestation scenarios. Upon crossing a specific deforestation
threshold, we find an abrupt decline in the precipitation rates in non-deforested
parts of the forest in our model. This results in an abrupt dieback of the
remaining rainforest. Several statistical and physical precursor signals precede
the critical transition, i.e. reduction of soil moisture, lengthening of the dry
season, delayed onset of the wet season and statistically significant increases
in variance and lag-one autocorrelation in the precipitation rates. Guided
by our modelling results, we analyse various observational and reanalysis
products.

Measuring observables in Amazonia is inherently difficult due to the dense tree
cover and year-round cloudiness356. To avoid biases in our analysis, we anal-
yse four different rainfall datasets ERA5357, GPCC358, GPCP359 and CHIRPS360.
Consistent with our modelling results, we find both significant statistical and
physical precursor signals in large parts of South America across the different
datasets. We find a year-round decrease of the soil moisture in the Amazon
basin, a lengthening of the dry season in southern Amazonia mostly due to a
delayed wet season onset and increases in variance and lag-one autocorrelation
of the precipitation rates in (southern) Amazonia. Interestingly, regions with
high lag-one autocorrelation and variance closely correspond with the main
atmospheric moisture transport routes in South America and particularly the
aerial river across the Amazon to the subtropics361,362.

We propose the following chain of mechanisms that leads to the deforestation-
induced transition of the coupled system. The time needed to initiate the wet
season is prolonged as the atmospheric moisture content decreases with on-
going deforestation. Indeed, over the past decades, large parts of the Amazon
rainforest have shown a reduced moisture content363. The decreasing heating
gradient between the Atlantic Ocean and Amazonia further impedes the wet
season, leading to a reduction of the soil moisture while evaporation rates
remain high. This results in a further reduction of soil moisture during the
dry season. At the critical point, the atmospheric moisture content, and conse-
quently the latent heating, is no longer sufficient anymore to switch the system
back into the annual wet season. This leads to a permanent dry season state
with reduced precipitation rates, ultimately leading to the dieback of large
portions of the Amazon rainforest. This large-scale reduction in precipitation
rates is not necessarily limited to the Amazon basin, given the importance of
the rainforest for the hydrological cycle in South America364–366.
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This study identifies the coupled system of the South American monsoon
and Amazon rainforest as potential tipping elements. We demonstrate that
forest loss could substantially contribute to climate change in South America,
particularly in Amazonia, eventually driving the coupled system beyond the
critical threshold.

5.2 Paper II

Bochow, N., Poltronieri, A., Robinson, A., Montoya, M., Rypdal, M. & Boers, N.
Overshooting the critical threshold for the Greenland ice sheet. Nature 622,
528–536 (2023). https://doi.org/10.1038/s41586-023-06503-9

This study investigates the reversibility of an overshoot of the critical thresh-
old for the Greenland ice sheet. It is known from dynamical systems theory
that a bifurcation point in a slow system can be exceeded without necessarily
transitioning to an alternative equilibrium, provided the change in the con-
trol parameter is reversed sufficiently fast21. Unlike the previous paper, which
investigated a relatively fast system, the GrIS reacts on much slower time
scales than other components of the Earth system. The Greenland ice sheet has
been hypothesised to exhibit several stable equilibria56 and precursor signals
for a critical transition have been found in observational data62. This study
demonstrates for the first time that the critical threshold of the GrIS can be
exceeded without necessarily committing to a full retreat of the ice sheet if the
temperature is reversed sufficiently fast.

We use the two state-of-the-art ice-sheet models; the Parallel Ice Sheet Model
(PISM)285 coupled to the recently introduced Simple Diurnal Energy Balance
Model (dEBM-simple)92 and the ice sheet model Yelmo367 coupled to the Re-
gional Energy-Moisture Balance Orographic model (REMBO)289. We initialise
each model to match the present-day ice sheet configuration and climate. Sub-
sequently, we conduct several hundred long-term overshoot scenarios with a
simulation time of at least 100,000 years. In our simulations, the maximum over-
shoot temperature is reached after 100 years, in the year 2100. The overshoot
temperature ranges from 0.5 to 6.5◦C in terms of global mean temperature
above pre-industrial levels. We then gradually reduce the temperatures over
varying time windows from 100 to 10,000 years (referred to as convergence
time) to different final temperatures (convergence temperature). To convert
regional temperature changes into changes in global mean temperature, we
use historical observational temperature records368 as well as results from the
latest coupled model intercomparison project (CMIP6)270.

We find a critical threshold between 1.7 (Yelmo-REMBO) and 2.3◦C (PISM-
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dEBM-simple) above pre-industrial GMT, beyond which we observe a full
retreat of the ice sheet in the long term. However, we also see that the critical
threshold can be exceeded for some time without necessarily committing to
irreversible ice loss or a full retreat of the ice sheet. For both models, this
timescale spans centuries to millennia. However, overshooting the critical
threshold is still linked to global sea-level rise on the magnitude of decimetres
to meters, depending on the overshoot temperature and convergence time. In
any case, the ice sheet is lost in the long term if the temperatures are not
reversed below the critical threshold after the initial exceedance.

In general, the longer the overshoot, the more important the overshoot tem-
perature and vice versa. This means that for short overshoots, the maximum
temperature, i.e. the overshoot temperature, has little influence on the ice loss,
whereas for long overshoots, it has a substantial influence on the ice loss. Given
the slow timescale of an ice sheet, it is not surprising to find that a reversal of
the temperature trend can prevent a large-scale loss of the ice sheet. Even with
a constant temperature anomaly of 6.5°C, the ice sheet is not completely lost
for several thousand years. Although the two ice-sheet models largely agree on
both long- and short-term evolution, there are some differences in the response
of the ice sheet. The GrIS simulated by PISM-dEBM-simple shows oscillatory
behaviour under constant temperature anomalies below the critical threshold
over decamillennial timescales. This is likely due to an interplay between the
glacial isostatic adjustment (GIA) and the melt-elevation feedback94 and has
also been observed in other studies58,94,369,370. While Yelmo-REMBO employs
the same Earth deformation model, we do not find such oscillations in these
simulations. We attribute these differences to a different balance between
positive feedbacks (mostly at the surface) and the glacial isostatic adjustment.
Furthermore, we find a temperature range of irreversibility below the critical
threshold for longer convergence times in Yelmo-REMBO, which we do not
observe in PISM-dEBM-simple, further emphasising the risk of irreversible ice
loss.

In our study, we are limited to the use of standalone ice-sheet models. Due to
computational constraints, it is not possible to run fully-coupled Earth system
models on these time scales. Additionally, many state-of-the-art Earth system
models do not yet natively support interactive ice-sheet models or are just in the
process of incorporating them371,372. However, almost all other sub-elements of
the Earth system, e.g. atmospheric and ocean circulation patterns, react more
quickly than ice sheets. This may affect the long-term stability of the GrIS.
Recent advances in Earth system modelling7 might make it possible to run fully
coupled long-term simulations of the whole Earth system, opening the door
for necessary follow-up studies.

To our knowledge, we show for the first time with two state-of-the-art models,
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that the critical threshold of the GrIS can be crossed for substantial time (on
human times scales) without committing to a transition to an alternative ice
sheet state. However, our findings also indicate that even without an irreversible
transition, the sea level rise contribution from the GrIS alone can exceed several
meters, depending on the overshoot temperature, convergence temperature
and convergence time. The applicability of these findings to other tipping
elements, such as the coupled SAMS-Amazon rainforest system, remains an
open question given the shorter timescale of nearly every tipping element and
similar studies are needed for other Earth system components.

5.3 Paper III

Bochow, N., Poltronieri, M., Rypdal, M., Boers, N. Reconstruction of Climate
Fields Using Deep Learning.

The aim of this study is to reconstruct historical climate fields and to improve
upon widely used reconstruction and infilling methods in geosciences. For
this purpose, we apply a state-of-the-art deep learning method to reconstruct
structurally different historical climate fields with highly irregular and large
missing areas. Historical observations are crucial to infer knowledge of past and
present changes in the Earth system. However, historical observations are often
sparse in time and space before systematic observations were introduced in the
20th century. Precipitation and temperature records have the most complete
spatiotemporal coverage of all climate fields and partially reach back until
the 19th century. However, these datasets rely heavily on interpolation373,374.
Measurements of many other climate variables such as sea ice thickness or
vegetation indices reach only back some decades or even years257,375,376. This
poses a problem since, generally, longer time series are needed to capture long-
term dynamics of a system257,377. This is particularly relevant for the concept
of tipping points. Often, statistical indicators are used to infer the stability
of a system or to estimate the approach of a critical point26,377,378. However,
short time series or interpolation can result in spurious signals378. In theory,
advanced deep learning methods can alleviate this problem by learning the
underlying dynamics of the system.

In this paper, we use the recently introduced image inpainting method Res-
olution-robust Large Mask Inpainting with Fourier Convolutions (LaMa) that
is based on a feed-forward ResNet-like inpainting network with a multi-
component loss345. First, we reconstruct the observation-based temperature
dataset HadCRUT4373. Secondly, we show that LaMa generalises to higher reso-
lutions than trained on and masks outside the training set. Lastly, we show that
our model is also able to reconstruct Arctic sea ice concentration, a structurally
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completely different climate field.

We train the deep learning model on monthly historical (1850-2012) surface tem-
perature data from the fifth coupled model intercomparison project (CMIP5).
During training,we usedmasks derived from themissing data in the HadCRUT4
dataset. The training and evaluation data were transformed into 72 × 72 pixel
grey-scale images. This corresponds to a 5◦×2.5◦ longitude-latitude grid. After
training, we first evaluate the model on held-out CMIP5 data and in a second
step on the HadCRUT4 temperatures. Since there is no ground truth available
for the historical temperatures, we compare our inpainted dataset with known
historical events as well as with reanalysis data. Furthermore, we compare our
method with kriging and a previously introduced machine learning inpainting
method based on partial convolutions (PConv)5.

The model successfully reproduces the spatiotemporal patterns of the CMIP5
data and outperforms kriging and the PConv method in terms of the spatial and
site-wise root-mean-square error on the CMIP5 evaluation dataset. The infilling
of the HadCRUT4 dataset yields reasonable results. We successfully reconstruct
spatial patterns of known historical events, including strong El Niño and La Niña
years. Our results generally agree with the 20CRv3.SI reanalysis379. However,
especially the polar regions show differences across the different datasets and
reconstructions, which is mostly due to the sparsity of measurements in these
regions.

In a second step, we demonstrate LaMa’s capability to reconstruct datasets
using masks it has not encountered during training and with higher resolutions
than trained on. The model, trained solely on masks derived from HadCRUT4,
produces artefacts when evaluated onmasks outside the training set. Therefore,
we modify the mask generation process and use randomly generated masks
during the training345. We reconstruct the Berkeley Earth Surface Temperatures
(BEST) dataset with a 90 × 90 pixel resolution and show that the model
realistically inpaints the missing areas.

Finally, we demonstrate the model’s applicability to a structurally different
climate field. We train our model on daily Arctic sea ice concentration data
from 1979 to the present day380,381 with a resolution of 180 × 1440 pixel.
Subsequently, we evaluate LaMa on artificially masked held-out days of the
training set. The model learns the distribution of continents and realistically
reconstructs the sea ice concentration. The Central Arctic exhibits the smallest
errors, while the edges of the sea ice have the largest deviations from the
ground truth.

In this paper, we present a novel and easy-to-use method to realistically re-
construct a variety of climate fields that outperforms current interpolation
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methods. Our method and possible further developments in this direction
provide a promising alternative to widely used reconstruction methods.





6
Conclusion and Outlook
6.1 Summary and Conclusion

The primary goal of this work is to enhance the understanding of the climate
system in the past, present, and future. This is achieved by employing various
modelling approaches ranging from a conceptual dynamical model, to state-of-
the-art ice-sheet models and deep learning-based methods. While all papers
are linked by the aforementioned overarching goal and the methods used, this
thesis is divided into two partially distinct parts. The first part of this thesis lays
out the theoretical basis and gives an overview of tipping elements, needed
to understand the first two papers. The second part summarises different
modelling approaches that were employed in this thesis.

The main scientific contribution of this thesis consists of three papers. The
first two papers specifically concern two distinct tipping elements, while the
third paper introduces a novel method for climate field reconstruction. In more
detail, the main findings of this thesis can be summarised as follows. In the
first paper, we show for the first time, evidence for a deforestation-induced
critical transition in the coupled SAMS-Amazon rainforest system. We show
that the vegetation is a crucial component for the stability of the SAMS that has
been neglected in previous studies. We combine model- and observation-based
analyses and find statistically significant and consistent early-warning signals
across model and observations. In addition to the well-established statistical
early-warning signals, we observe physical early-warning signals related to
changes in the hydrological cycle in response to the deforestation in Amazonia,
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which offer additional evidence for an approaching critical transition. While
the SAMS has been hypothesised to exhibit threshold behaviour155, no early
warning signals or similar signs in connection with a deforestation-induced
tipping point have been reported before.

In the second paper, we investigate an overshoot of the critical temperature
threshold of the GrIS using two independent state-of-the-art ice-sheet models.
A previous conceptual study showed that critical thresholds can be temporally
exceeded, under certain circumstances, without prompting a transition to an
alternative state21. We show for the first time, that this is true for the GrIS,
using two comprehensive ice-sheet models. The timescale of the ice melt is slow
enough such that a timely reversal of the surface temperature can prevent a
large-scale loss of the GrIS. Generally, the longer and the higher the exceedance,
the greater the ice loss and hence the sea-level rise. In any case, the sea-level
rise is generally greater for scenarios that overshoot the critical threshold than
for scenarios where the temperature does not exceed the critical temperature
at any point. However, we also show that long-term exceedance of the critical
threshold leads to a complete meltdown of the GrIS and long-term overshoot
can lead to partially irreversible ice loss. That means that even a reversal of
the temperature below the critical threshold does not necessarily lead to a full
regrowth of the GrIS.

In the third paper we introduce a new deep learning-based method to recon-
struct arbitrary spatiotemporal climate fields. We utilise a recently introduced
image inpainting method based on Fourier convolutions. We train our model
on numerical climate model output and reanalysis data to reconstruct historical
surface temperature and sea ice concentration data with large missing areas.
Our method is able to realistically reconstruct known historical events and
outperforms widely used methods in the geosciences such as kriging and pre-
viously introduced machine learning-based methods. This can potentially lead
to new insights in a variety of fields based on new and better reconstructions.
Particularly for tipping elements, long, spatiotemporally consistent time series
are essential to assess past dynamics and hence the stability.

Combining the results from the first two papers, we corroborate previous esti-
mates suggesting that current warming and deforestation rates likely lead to
crossing the critical thresholds for the SAMS and GrIS. However, it should be
noted that it is inherently difficult to quantify exact values for these thresholds.
In the second paper, we address this issue by employing two independent mod-
els, allowing us to provide two independent estimates of the critical threshold
for the GrIS. Additionally, we demonstrate that the inherent timescale of tipping
elements is a crucial factor in assessing the urgency to implement mitigation
measures. Tipping elements with slow responses, like the GrIS, may tolerate
temporary temperature overshoots, whereas other tipping elements may react
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more quickly than a potential reversal can take place. Our overshooting ap-
proach offers a new perspective on tipping elements by focusing on a more
realistic concept of reversibility compared to earlier studies that focused on
equilibrium responses. Applying similar approaches to other tipping elements
could help constrain their potential tipping probabilities.

This thesis shows how the urgency of climate change calls for an interdis-
ciplinary approach combining theoretical, modelling and observation-based
methods. By adopting this strategy, we have successfully enhanced our under-
standing of two distinct tipping elements and have proposed a new reconstruc-
tion method for climate fields.

6.2 Outlook and Future Research

Future research directions and possibilities are vast. Although our understand-
ing of tipping elements advanced considerably in the last years, a lot of un-
certainty and numerous open questions remain. The emergence of artificial
intelligence offers new opportunities for climate science and particularly for
tipping elements. This section outlines several promising general and specific
research directions.

To date, the representation of tipping elements in comprehensive climate mod-
els is strongly limited,mainly for two reasons. Firstly, it has been argued that the
tuning process in climate model development often leads to an overestimation
of the stability, rendering the observation of tipping behaviour in these models
virtually impossible3,282. Improved and standardised tuning and calibration
processes that include paleoclimatic records can improve the representation
of tipping phenomena in ESMs382. A traceable model hierarchy274 is crucial
to understand the mismatch in tipping phenomena between simpler models
and state-of-the-art comprehensive climate models. Secondly, computational
limitations currently prevent fully coupled simulation runs, let alone ensemble
simulations over millennial or even decamillennial time scales. However, due to
the slow timescale of many tipping elements, long runs are essential to assess
their stability. Advances in machine learning, such as the improved parameter-
isation or emulation schemes previously discussed, might lead to substantial
speed-ups, enabling coupled long-term simulations. At the same time, it is
crucial to ensure physical plausibility, which requires extensive validation of
these models. Furthermore, alternative computationally efficient approaches
have been proposed that reduce the number of simulation years needed to
assess tipping behaviour in comprehensive climate models383.

These advancements are especially relevant for the two major ice sheets as
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the slowest tipping elements in the Earth system. Currently, the long timescale
of the GrIS’s response does not permit running long-term experiments with
fully coupled ESMs. Furthermore, the ice sheet geometry is typically static
in many state-of-the-art ESMs, meaning it does not evolve with a changing
climate. Marine ice sheet processes are even less well-represented. However,
there is increasing effort to bidirectionally couple ice sheets with other climate
system components and to include marine processes384. The impact of potential
changes in atmospheric and oceanic circulation on the evolution of the ice
sheets is currently not well understood. Coupled simulations could help to
reduce uncertainties related to the ice sheets’ sensitivity to global warming,
while simultaneously providing better constraints on past changes. Additionally,
improved projections of ice sheet melt, and consequently the freshwater influx
into the ocean, can help constrain the likelihood of a potential AMOC tipping
point.

In contrast to other tipping elements, the literature on the SAMS-rainforest
system is relatively sparse and its classification as a tipping element remains
uncertain. The critical thresholds in terms of global warming and deforestation
are not very well constrained121. Most studies on the Amazon rainforest do (i)
only investigate either the impact of global warming or deforestation but not
their combined effects and (ii) do not include bidirectional coupling between
the monsoon and the vegetation or (iii) rely only on conceptual models. Given
the relatively short timescale of the SAMS, coupled ESM simulations offer a
feasible tool to investigate the combined effect of deforestation and global
warming on the coupled system. Consequently, the SAMS is relatively unique,
as many other tipping elements require substantially longer integration times.
For example, spatiotemporally different deforestation scenarios could constrain
the tipping point threshold and provide insights into particularly critical regions.
Additionally, land and vegetation models depend heavily on parameterisation
schemes, introducing considerable uncertainty. Especially in densely vegetated
areas such as Amazonia, observations are sparse, leading to even greater
parameter uncertainties. This calls for large-scale observational missions to
constrain parameters better.

While there are numerous studies on the general concept of tipping elements,
fewer studies address their potential for overshoot, or are limited to conceptual
models21,385. In light of current climate change mitigation efforts, more focus
must be placed on overshoot scenarios using comprehensive climate models.
Particularly, slower tipping elements such as the ice sheets53 or potentially the
AMOC may have the potential for a temporary temperature overshoot without
triggering a critical transition. However, rapidly reacting elements such as
coral reefs, monsoon circulations, or forests likely lack this overshoot potential.
Concurrently, it has been demonstrated that even the most ambitious mitigation
scenarios may not prevent changes in, for example, oceanic circulations by the
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end of this century188. In other words, the current greenhouse gas emissions
lock in unavoidable changes that could trigger tipping points, even under the
most extreme mitigation scenarios. In the same vein, reversing the GMT, for
instance through carbon capture, does not guarantee a reversal of regional
or local temperatures386. One would expect a spatial-dependent temperature
decrease, similarly to the observed temperature increase, introducing another
layer of uncertainty into future projections. Furthermore, even small, temporary
overshoots can lead to irreversible changes, even without a transition to an
alternative state53. It should also be noted that each overshoot scenario implies
the necessity of drastic measures to reverse the warming trend.

Studies investigating tipping elements often ignore structural, algorithmic and
parameter uncertainties. Typically, a single set of best-estimate parameters is
chosen and single runs are performed. Subsequently, rudimentary uncertainty
estimations are performed by varying key parameters. Additionally, most stud-
ies are restricted to only one model ignoring any model-dependent structural
uncertainties. We propose several approaches towards a more probabilistic
treatment of tipping elements. First, a coordinated model intercomparison for
tipping elements, utilising a standardised experimental protocol similar to that
of other intercomparison projects, is required. This would enable the resolution
of model dependency in tipping elements and potentially even provide insights
into tipping mechanisms. Indeed, first initiatives for a tipping point modelling
intercomparison project are underway I. Secondly, methodologies allowing for
efficient parameter uncertainty estimation are needed. Often, model parame-
ters are not well constrained, leading to a huge number of plausible parameter
combinations. Running simulations for each combination is computationally
infeasible or even impossible. For example, Bayesian approaches that incorpo-
rate parameter uncertainty can help constrain the positions of tipping points387.
Additionally, rare event algorithms, which have been successfully applied for
other high impact, low likelihood climate events such as heat waves, could also
help constrain tipping probabilities388.

The study of the impact of tipping elements often only focuses on the global
scale. However, efficient mitigation strategies require to investigate regional
and local impacts of tipping events. For example, dynamical downscaling of
coarser models that exhibit tipping phenomena can be used to inform regional
climate models via, for example, boundary conditions. This allows for the
assessment of the impact of tipping events on smaller spatial scales.

In recent years, research on tipping points has shifted considerably from relying
solely on simple conceptual models to incorporating more comprehensive
models. Additionally,more andmore observational data become freely available.

I. See for example TIPMIP at https://tipmip.pik-potsdam.de/. Accessed 16.01.2024.

https://tipmip.pik-potsdam.de/
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While these developments offer new possibilities and insights, there is a risk
that this increased complexity may come at the expense of understanding.
Particularly with the growing application ofmachine learning in climate science,
conceptual models and models of intermediate complexity will remain crucial
for ensuring understanding throughout the entire model hierarchy, enabling
an integrated assessment of tipping points in the Earth system.
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CL IMATOLOGY

The South American monsoon approaches a critical
transition in response to deforestation
Nils Bochow1,2,3* and Niklas Boers3,4,5

The Amazon rainforest is threatened by land-use change and increasing drought and fire frequency. Studies
suggest an abrupt dieback of large parts of the rainforest after partial forest loss, but the critical threshold, un-
derlying mechanisms, and possible impacts of forest degradation on themonsoon circulation remain uncertain.
Here, we use a nonlinear dynamical model of themoisture transport and recycling across the Amazon to identify
several precursor signals for a critical transition in the coupled atmosphere-vegetation dynamics. Guided by our
simulations, we reveal both statistical and physical precursor signals of an approaching critical transition in re-
analysis and observational data. In accordance with our model results, we attribute these characteristic precur-
sor signals to the nearing of a critical transition of the coupled Amazon atmosphere-vegetation system induced
by forest loss due to deforestation, droughts, and fires. The transition would lead to substantially drier condi-
tions, under which the rainforest could likely not be maintained.
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INTRODUCTION
In combination with the impacts of anthropogenic climate change,
regional land-use changes during the past decades have posed an
unprecedented threat to the Amazon rainforest. Several studies
suggest the existence of critical thresholds for an Amazon dieback
and transition to savanna state, at global warming of 3° to 4°C on the
one hand and deforestation of around 40% of the original rainforest
area (1–8) on the other hand. Global warming has recently crossed
1°C above preindustrial levels, and more than 20% of the Brazilian
Amazon rainforest area has already been cleared (9). Crossing the
critical thresholds might induce an abrupt dieback of large parts of
the rainforest, with severe ecological and climate impacts from re-
gional to global scales.

The Amazon naturally provides many ecosystem and climate
services (10) and is an essential component of the Earth’s hydrocli-
mate (11, 12). It constitutes the Earth’s largest terrestrial carbon sink
(13–15) and is essential for local and regional climate stability (16),
with predicted decreases in precipitation and increases in air tem-
peratures in South America in response to an Amazon dieback (5,
17–22). Besides the critical threshold in the vegetation system (3), a
potential tipping point in the coupled atmosphere-vegetation dy-
namics of the South American monsoon system and the Amazon
rainforest has been proposed, with serious implications for the
monsoon circulation system when deforestation rates exceed 30 to
50% (5, 23).

Considering the potential consequences of an Amazon dieback,
there is still a substantial lack of studies investigating potential pre-
cursor signals for critical transitions of the coupled vegetation-at-
mosphere system of tropical South America. There is growing
empirical evidence of climatological and hydrological changes in
Amazonia, such as rising air temperatures, extended dry seasons,

more frequent hydrological extreme events, particularly droughts,
and increasing soil moisture stress. While previous droughts in
the Amazon basin have partially been associated with changes in
the regional circulation due to changes in the Hadley cell (24–27),
the precise connection of all these changes with deforestation
remains a largely open problem (22, 28–31).

On the basis of a space-for-time replacement, it has been shown
that temporal autocorrelation of vegetation data [normalized differ-
ence vegetation index (NDVI)] scales negatively with mean annual
precipitation in tropical forests, which suggests that rainforest veg-
etation is less resilient in more arid regions (32, 33). Furthermore, a
loss of resilience of large parts of the rainforest over the past decades
has been observed using remotely sensed vegetation optical depth
data (34). Changes in the temporal autocorrelation can, under
certain conditions, be interpreted as indicative of a loss of stability;
however, such an analysis has not yet been performed for the
coupled Amazon vegetation-atmosphere system.

Here, we show that observed changes in the hydrological cycle,
as well as characteristic changes in well-established statistical indi-
cators, might be first warning signals of a forthcoming regime shift.

For this purpose, we investigate several indicators that are asso-
ciated with critical slowing down (CSD) when a system approaches
a bifurcation-induced transition (35–38). When approaching the
critical threshold, the restoring forces of the system diminish
because the basin of attraction widens and thus the recovery rate
after perturbations decreases and eventually approaches zero. Fluc-
tuations increase and the state of the system resembles more and
more its past states, and the resulting CSD can be traced, e.g., in
terms of increasing variance and lag-one autocorrelation, which
constitute the classical statistical precursor signals of critical transi-
tions (36).

To understand where not only such statistical but also physical
process-related precursor signals should be searched for, we first
propose a nonlinear model of the moisture transport across South
America, based on the fundamental moisture balance equations and
coupled to the Amazon vegetation system. Guided by the results of
our model simulations, we then conduct a thorough search for stat-
istical and physical precursor signals in the ERA5 reanalysis data.
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We emphasize that the occurrence of characteristic changes in CSD
indicators, such as rising lag-one autocorrelation or variance, on
their own by no means implies the possibility or presence of a crit-
ical transition or of multistability in the system. After all, there may
be many reasons why variance or lag-one autocorrelation might in-
crease, also in systems that are monostable and thus cannot exhibit
transitions between alternative states. The theory of CSD should
only be applied for anticipating potential critical transitions if
there are—a priori and independently from the CSD analysis—
good reasons to assume that a given system under investigation
has the potential for multistability. On the other hand, however, it
should also be noted that, even if a system should not be assumed to
exhibit multistability, CSD indicators may still be useful to quantify
the resilience of the system (39).

In the case considered here, we will show that our model of the
moisture transport and recycling over the Amazon suggests, in line
with previous studies, that the coupled Amazon atmosphere-vege-
tation system exhibits the potential for bistability. In turn, themodel
results imply the potential for critical transitions between alterna-
tive states, due to positive feedbacks associated with the latent
heating over the Amazon basin and the low-level circulation from
the Atlantic Ocean to tropical South America (5). In particular, this
is suggested independently from any CSD analysis or search for
physical precursor signals. Under the a priori assumption of the
possibility of alternative stable states as motivated by the modeling
results, we then search for statistical CSD-based and physical pre-
cursor signals for transitions between the states.

Large parts of the Amazon rainforest experience strong season-
ality in the rainfall rates. South of the Equator, the wet season retreat
is marked by an abrupt precipitation decline during austral fall
(March to May), while the wet season onset is characterized by a
rapid increase in rainfall during austral spring (September to No-
vember). The wet season initiation has been associated with in-
creased evapotranspiration and large-scale dynamic lifting due to
cold-front incursions (40–42) and monsoon dynamics (43) a few
months before the Intertropical Convergence Zone (ITCZ)migrates
southward, and large amounts of moisture are transported from the
tropical Atlantic Ocean to tropical South America. A delay of the
wet season onset and increasing fire counts have been linked to
changes in atmospheric circulation patterns toward conditions
more characteristic for austral winter during the transition season
(July to October) in the past decades (44). These changes are char-
acterized by a strengthening South American low level jet, increased
atmospheric subsidence over southern tropical South America, and
fewer southerly cold-air incursions and anomalous convective ac-
tivity over southern tropical South America (44).

Furthermore, it has been shown that the wet season onset is ac-
celerated by atmospheric processes initiated by increased transpira-
tion in the late dry season (45). The beginning of the wet season and
the dry season length (DSL) are thus directly linked to the vegeta-
tion system. Moreover, convective latent heating over the Amazon
basin strengthens the heating gradient between the Atlantic Ocean
and the continent (Fig. 1). It has been shown that this enhances the
easterly moisture inflow into South America by a factor of 2 to 3
during the wet season (46–48), establishing a positive feedback in
the monsoonal circulation system.

To investigate the effects of deforestation and forest loss due to
droughts and fires on the coupled vegetation-atmosphere system
and particularly to provide guidance in the search for precursor

signals for a critical transition, we extend a recently introduced non-
linear model (5) that is based on the fundamental moisture balance
equations for the moisture content in the soil and the atmosphere in
dependence of precipitation, evapotranspiration, atmospheric ad-
vection, and the radiation budget. The model includes a nonlinear
contribution representing the acceleration of low-level moisture
flow caused by latent heating over the Amazon. Widespread defor-
estation and drought- or fire-induced forest dieback, via their effects
on transpiration rates and radiation, have been shown to potentially
trigger a collapse of the positive feedback related to convective latent
heating, resulting in abrupt reductions in rainfall amounts after a
critical deforestation threshold around 40% is crossed (5, 21, 23).
This effect can already be observed in regions with high forest
cover changes of 40 to 50%, with a growing tendency to become
water limited due to decreased rainfall, increased potential evapo-
transpiration, and decreased actual evapotranspiration (49).

We extend the model by incorporating a mechanism for the veg-
etation response to changing precipitation, accounting for increased
plant water stress with decreasing precipitation rates. Reduced rain-
fall rates over longer periods lead to a soil moisture deficit (SMD)
and, ultimately, to increased tree mortality with threshold behavior
(50–52). The seasonal cycle of the monsoon system is modeled as a
periodically forced bistable system that annually oscillates between
an on-state (wet season) and off-state (dry season) with a fold bifur-
cation–induced transition between on- and off-state (53).

Previous studies that investigated moisture recycling across the
Amazon basin have not taken into account that changes of the
forest functioning alter large-scale wind patterns although these
are highly relevant for moisture recycling (54–58). In the used stat-
istical models, the atmosphere in terms of low-level winds is cons-
tant by construction, and, therefore, the aforementioned feedbacks
associated with circulation changes are suppressed. The novelty of
our approach is to model thewinds dynamically to account for these
feedbacks between forest loss and alteration of atmospheric circula-
tion patterns. We note that, while changes in the atmospheric cir-
culation in tropical South America in the past decades have been
identified, there remain many open questions regarding the links
to anthropogenic forest loss (44).

Our model is mainly intended to provide guidance in the search
for statistical and physical precursor signals in observation-based
data, to find out whether the coupled Amazon vegetation-atmo-
sphere system has been approaching a critical threshold. The
model is not intended to obtain quantitatively realistic estimates
of the consequences of deforestation, for example, in terms of the
precise reductions of precipitation. Moreover, our model shall
reveal mechanistic reasons for changes in observation-based data
rather than to investigate the moisture recycling in Amazonia in
detail. By construction, the abruptness of the transition might be
overestimated by ourmodel. For example, changes in surface rough-
ness length in response to deforestation, which are ignored in our
model, may have attenuating effects regarding the magnitude and
the abruptness of the transition.

Previously proposed models (54, 56–58) are arithmetic models
that compute the overall sum of ingoing and outgoing moisture,
in contrast to our proposed model of dynamical differential equa-
tions that allow us to study the dynamical behavior of the system.
The effects of changing temperature and atmospheric CO2 level
on the hydrological cycle in Amazonia remain still uncertain, and
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we do not consider them in our model. A detailed description of the
extended model can be found in Materials and Methods.

RESULTS
To validate our model, we first compare the simulated spatiotempo-
ral evolution of the model variables with corresponding time series
from the ERA5 reanalysis (59). Across the 100 spatial boxes, we use
for our model simulations, spanning the Amazon basin from east to
west (Fig. 1), we find a very good agreement of the modeled observ-
ables with the corresponding reanalysis data in the wet season. We
are also able to reproduce the seasonality, although there are expect-
able discrepancies between modeled variables and the reanalysis in
the dry season (fig. S1).

To investigate the impacts of deforestation on the coupled veg-
etation-atmosphere system, we integrate our model with a gradually
increasing number of deforested boxes. Note that deforestation here
refers to either direct forest clearance or forest loss due to droughts
or fires. Deforestation starts in the easternmost box and ends in the
westernmost box. Deforestation is quantitatively implemented as a
40% decrease in the evapotranspiration and 40% increase in the sen-
sible heat of the respective box, following results from field experi-
ments and regional climate modeling experiments (60, 61). The
precipitation recycling rate has been shown to gradually increase
from the eastern to the western parts of Amazonia; it is largest in
southwestern Amazonia, with more than 50% during the dry
season and up to 40% during the wet season (61). We therefore
use 40% as an annual mean along the trajectory.

We allow the system to adapt to the changing number of defor-
ested boxes and reach its equilibrium for each number of deforested
boxes, by integrating the model in hourly time steps over time spans
of multiple decades. We find a steady but moderate decrease in the
rainfall rates at the western boundaries of the Amazon as soon as
deforestation in the eastern Amazon sets in. After exceeding a spe-
cific threshold in terms of deforested boxes, an abrupt rainfall

decline is apparent, which is associated with a bifurcation-
induced critical transition in the underlying dynamics, resulting
from the collapse of the latent-heat feedback. The system switches
into a permanent dry season state and is not able to switch back into
the annual wet season. This permanent dry season state is charac-
terized by precipitation rates throughout the year similar to what is
presently observed during the dry season. By including the vegeta-
tion’s response to increasing water stress, the threshold is crossed
considerably earlier, and the subsequent rainfall decline is more
abrupt, compared to the original model without vegetation feed-
back (Fig. 2). This can be explained by the cascading effect intro-
duced by the two-way coupling between the vegetation and the
atmosphere (54, 56, 62). Although the critical forest loss threshold
in our model (Fig. 2B) agrees with previous studies, we emphasize
that our model is not intended to give quantitatively correct predic-
tions of the critical deforestation level but rather to be used to infer
what kind of precursor signals should be searched for in observa-
tion-based data to anticipate a critical transition of the couple
Amazon atmosphere-vegetation system.

Before crossing the critical threshold, we observe prominent
changes in several hydrological variables and statistical CSD indica-
tors that may serve as precursor signals. Besides a decline in the pre-
cipitation P, we observe a nonlinear decline in the soil moisture S
long before the critical transition (Fig. 3A). Furthermore, we find
an increase in the DSL that is associated with a later onset of the
wet season (Fig. 3B). The wet season initiation is hindered by
reduced differential heating between the Atlantic Ocean and the
South American continent due to the deforestation-induced de-
crease in the latent heating over Amazonia. The shortening of the
wet season and the concomitant reduction of rainfall rates lead to
increased plant water stress, which, in our simplified model, ulti-
mately, triggers the dieback of the remaining rainforest further
west. We refer to all the abovementioned pretransition changes in
the hydrological cycle and atmospheric circulation as physical pre-
cursor signals because they are mechanistically associated with the

Fig. 1. Map of South America with wind fields and vertically integrated heating.Mean wind fields at the 750-hPa level and mean vertically integrated atmospheric
heating, i.e., the sum of latent, sensitive, and radiative heating, for the wet season (December to January) from 1979 to 2019. The tropical Atlantic Ocean box and the
southern Amazonian box used for our analysis are delineated in white, while the trajectory used for simulations is delineated in blue.
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dynamics leading to the subsequent critical transition, as shown by
ourmodeling results.We choose this term in contrast to the generic,
statistical precursor signals associated with CSD preceding critical
transitions. We further investigate these well-established indicators,
given by the variance and the lag-one autocorrelation of the 5-day
averagedmodeled precipitation time series, with a deforestation rate
of 0.5% per year within a rolling window of 150 years (Fig. 4). We
calculate the Kendall rank correlation coefficient τ to measure the
strength of the trends and generate surrogate data of the CSD indi-
cators to test the significance of the inferred values of τ. The vari-
ance and lag-one autocorrelation show a clear positive trend (τ =
0.98, P < 10−4, and τ = 0.91, P < 10−4, respectively; see Fig. 4, C
and D, and and fig. S2) and begin to increase long before the
transition.

These results give guidance in where to search for precursor
signals in the reanalysis and observational data. We analyze all
abovementioned, physical and statistical, precursor signals in the
evolution of hydrological variables from the ERA5 reanalysis data.
We first analyze the soil moisture content and reveal a substantial
decline not only in the Amazon basin but also further downstream
of the low-level flow in the South American subtropics (Fig. 5A).

We proceed with analyzing the DSL from 1979 to 2019 in south-
ern Amazonia (5°S to 15°S, 50°W to 70°W), using the daily averaged
ERA5 reanalysis data using three different methods (see Materials
and Methods). We find an extension of the dry season with all three
methods, ranging from 1.25 to 2.7 pentads over the past 40 years
(Fig. 5B). The main contribution to the lengthening of the dry
season is a delayed onset of the wet season, while the wet season
demise is relatively constant and only shows a slight tendency
toward earlier days of the year (fig. S3). A spatial analysis reveals a

significant extension of the dry season primarily in southeastern
Amazonia (fig. S4), where deforestation and drought- and fire-
induced forest loss are most pronounced (63). The increasing
DSL and delayed wet season onset in southern Amazonia revealed
here corroborate the results of several earlier studies (25, 29, 44, 64–
68). However, it should be noted the different studies do not neces-
sarily agree on the exact spatial distribution of the observed changes.

As for our simulations, we also analyze the precipitation rates
from 1979 to 2019 in the ERA5 data. We find an increase of both
statistical indicators, variance and lag-one autocorrelation, in large
parts of tropical South America (Fig. 6). The variance increases in
most parts of Amazonia south of the Amazon River, while the lag-
one autocorrelation shows the most pronounced increase in south-
western Amazonia and further to the south. We identify southwest-
ern Amazonia as a region that shows a clear, simultaneous increase
in both variance and lag-one autocorrelation, with P < 0.1 (figs. S5
and S6). Consequently, the variance and autocorrelation of the av-
eraged precipitation time series in southwestern Amazonia show a
clear increase (Fig. 6, C and D). The changes in lag-one autocorre-
lation and variance inferred here from the ERA5 reanalysis are con-
sistent with corresponding results inferred from independent
satellite- and gauge-based rainfall products (figs. S7, B to D, and
S8, B to D). In particular, the trends in the autocorrelation show
very similar spatial distributions across datasets. We note that in-
creasing variance and particularly increasing lag-one autocorrela-
tion can be observed along the aerial river that provides the main
atmospheric moisture transport from the Amazon southward to
the South American subtropics (69, 70), suggesting that the conti-
nental-scale circulation system is losing stability. According to our
results, this loss of stability can be at least partly attributed to the

Fig. 2. Simulated precipitation rates without andwith vegetation feedback after successive deforestation at the end of the trajectory. (A) Simulated annual mean
precipitation rates, as functions of advancing deforestation at the end of the trajectory (box 90) for all possible choices of the different simulation parameters AF (am-
plification factor) and ⟨H⟩AO (see Materials and Methods) without vegetation feedback. The mean is calculated using a rolling window with size w = 1 year for every
parameter configuration. Deforestation starts at year 10 in box 0 and subsequently proceeds westward, where it is completed at year 30 in box 100. The ranges of the
different simulation parameters are AF = 1.5 to AF = 3, ⟨H⟩AO(t) = (80 ± 40) W/m2 to ⟨H⟩AO(t) = (140 ± 40) W/m2, with a step width of 0.25 for AF and 20 W/m2 for ⟨H⟩AO(t).
(B) Same as (A) but with vegetation feedback included, leading to early and more abrupt decline of P. Although the critical transition is in quantitative accordance with
previous studies, we want to emphasize that our model is rather built to give guidance where to search for CSD to anticipate a forthcoming transition.
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impacts of changes in the Amazon vegetation system, including de-
forestation, drought-induced degradation, and forest fires.

DISCUSSION
The revealed changes in the ERA5 data show a substantial similarity
to our model simulations for times before crossing the critical de-
forestation threshold. Alongside the statistical precursor signals, the
observed decadal-scale decrease in soil moisture (Fig. 5A) together
with the observed dry season prolongation (Fig. 5B), and especially
the later wet season onset are consistent with the corresponding

transition precursor signals found in our simulations and thus
suggest that the coupled atmosphere-vegetation system of the
Amazon approaches the theoretically suggested tipping point. The
increases in DSL and the later wet season onset in the ERA5 data are
in good agreement with the results of previous studies (25, 29,
64–67).

While, in the ERA5 data, the extension of the dry season is
mostly observable in the southeastern regions, where deforestation
rates are strongest, a recent study (58) reports an intensification of
the dry season mainly in central and southwestern Amazonia.
However, it is concluded there that global climate change and

Fig. 3. Physical early-warning signals in simulated evolution of soil moisture and DSL in southern Amazonia. (A) Time-evolving yearly average of the simulated soil
moisture (rolling windowwith widthw = 1 year) for different AFs of the low-level moisture flow to South America, integrated SMD threshold = 450,000 kg h/m2 and fixed
ocean heating ⟨H⟩AO(t) = (120 ± 20) (see Materials and Methods). Deforestation is initiated at year 10 (first solid black line) and completed at year 30 (second solid black
line). Note that the soil moisture is the same long before and after the bifurcation-induced transition but declines strongly before the transition when the coupled system
loses its prior equilibrium. The shortened wet season and the decreasing rainfall rates result in lower soil moisture levels, while the evapotranspiration rates stay at a high
level and further deplete the soil during the dry season. This leads to an all-year-round decrease of the soil moisture and an increasing SMD before the dieback of the
rainforest. It therefore serves as an efficient physical precursor for the transition. (B) Simulated DSL (P < 180/month) with advancing deforestation for same simulation
parameters as (A), at the end of the trajectory (box 90). Note the gradual increase of the DSL with an increasing fraction of deforested rainforest before the abrupt
transition (dashed black line). For small AF, the switch into the wet season is still possible. However, the wet season length is strongly shortened and wet season pre-
cipitation is reduced. The DSL together with the wet season onset (see fig. S3) can, hence, serve as physical precursor signals.
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local deforestation effects are the main contributors, while, based on
our model results, we additionally suspect circulation changes in re-
sponse to deforestation in eastern Amazonia as cause for the ob-
served increases of the DSL. In accordance with our results,
trends in the atmospheric circulation in tropical South America
over the past decades show a higher occurrence of wintertime cir-
culation patterns and decrease of the frequency of circulation pat-
terns characteristics for the transition season, as well as a weakening
of the trade winds during and preceding droughts (27, 44). These

changes are characterized by increased southerly wind anomalies
from the Amazon Basin toward Southeastern South America and
intensified southerly cross-equatorial winds; both have been associ-
ated with a delayed onset of the monsoon (44). These changes in
circulation patterns during the transition season have recently
been associated with deforestation linked to the absence of deep
convection over deforested regions before the wet season onset
(42). Synoptic scale circulation changes, driven by continued exten-
sive deforestation, could even lead to a delay in the onset of the wet

Fig. 4. Statistical precursor signals for simulated precipitation rates. (A) Five-day averaged simulated precipitation rates, as functions of advancing deforestation at
the end of the trajectory (box 90). The nonlinear trend (orange) is obtained using a standard decomposition method (STL) (95) with a trend smoother length of 11 years
and seasonal smoother length of 13 months. Deforestation starts at year 100 in box 0 and subsequently proceeds westward where it is completed at year 300 in box 100.
Before crossing the tipping point, the wet season (P ≈ 0.4) and dry season (P ≈ 0.15) are apparent. The wet season rainfall rates show a steady decline with advancing
deforestation. Flickering and increased variability in the wet season rainfall near the critical threshold can be observed. After exceeding the critical deforestation thresh-
old, only the dry season state remains, with a small seasonal amplitude in the rainfall rates. The chosen simulation parameters are AF = 3, integrated SMD threshold = 20 ×
106 kg hour/m2, and ocean heating ⟨H⟩AO(t) = (120 ± 20) W/m2. (B) Residual precipitation time series, obtained by subtracting the seasonal and nonlinear trend com-
ponents from the original series. (C) Time-evolving endpoint variance computed in rolling window of width w = 150 years from year 0 (not shown) to year 200 of the
detrended time series. Red line denotes the linear trend, and Kendall τ indicates the strength of the increase. (D) Same as (C) but for the lag-one autocorrelation [AC(1)].

Fig. 5. Physical early-warning signals in ERA5 data: evolution of soil moisture and DSL in southern Amazonia. (A) Calculated linear trend in yearly averaged soil
moisture from 1979 to 2019 in South America, determined from the ERA5 reanalysis for all available soil moisture layers. Most parts of tropical South America show a
negative trend (red) in the soil moisture. (B) Observed DSL in southern Amazonia (5°S to 15°S, 50°W to 70°W) from 1979 to 2019, determined in three different ways (see
Materials and Methods). Dashed lines denote the corresponding linear trends. We find a DSL increase of 4.4 (blue), 6.6 (orange), and 3.0 (green) pentad/century for the
three differentmethods to determine the DSL, respectively. The data are taken from the ERA5 reanalysis (59). For a spatial analysis of the DSL, see fig. S4. AD, Anno Domini.
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season by more than a month (71). Wet season onset estimations
based on outgoing longwave radiation support our findings of in-
creasing DSL mainly in southeastern Amazonia and some parts of
southwestern Amazonia (25, 44).

Previous modeling studies showed that extensive deforestation
of the Amazon rainforest leads to changes in the energy balance
of the whole Amazon basin and in the atmospheric circulation
over tropical South America, which, in turn, leads to weakened
moisture flux and precipitation in these regions (72). Deforestation
leads to a local reduction of precipitation and evapotranspiration, as
well as a decrease in average latent heat release that, in turn, weakens
moisture convergence over western Amazonia (72). This leads, most

likely, to a prolongation of the dry season in these parts of
South America.

In accordance with our model results, we propose the following
chain of mechanisms in the coupled atmosphere-vegetation dy-
namics on the way to the deforestation-induced transition. The
time needed to initiate the wet season prolongs as the atmospheric
moisture and, hence, the average latent heat over the Amazon de-
creases with proceeding forest loss in the east. Large parts of Ama-
zonia show a negative trend in atmospheric moisture content over
the past decades (25). The heating gradient between the Atlantic
Ocean and the continent weakens and impedes the annual transi-
tion into the wet season (44). Consistently, we observe increasing
DSL and later wet season onset in the ERA5 data (Fig. 5B). The

Fig. 6. Statistical early-warning signals in ERA5 data. Spatial patterns of Kendall τ for the (A) lag-one autocorrelation, and (B) variance of observed monthly averaged
precipitation time series. CSD indicators are calculated for rolling windows of width w = 20 years. The trend is determined by Kendall τ of the respective indicator of the
detrended and deseasoned precipitation time series at every site. Stippling marks regions with significantly increasing trends (P < 0.05; see Materials and Methods for
details on the statistical test and fig. S6). Large parts of southwestern Amazonia show a simultaneous increase in variance and autocorrelation. Mean wet season wind
fields (1979 to 2019) at 750 hPa are delineated in grey. The nonlinear trend of the underlying precipitation time series is removed via STL (95) with a trend smoother length
of 5 years and seasonal smoother length of 13 months. The data are taken from the ERA5 reanalysis (59). In particular, the regions with high lag-one autocorrelation
correspond well with the main atmospheric moisture transport routes in South America and particularly the aerial river across the Amazon to the subtropics. (C) Variance
of the spatially averaged precipitation time series (black, left y axis) and variance of the spatially averaged, detrended, and deseasoned precipitation time series (blue, right
y axis) for southwestern Amazonia from 1979 to 2019, calculated in a windoww = 25 years [4°S to 12.5°S, 62.5°W to 72.5°W, white box in (A) and (B)]. Dashed lines denote
linear regressions of the respective time series. For the detrending method, see Materials and Methods. (D) Same as (C) for autocorrelation at lag one [AC(1)]. See figs. S7
and S8 for corresponding results using alternative gauge- and satellite-based rainfall datasets.
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shortened wet season and the decreasing rainfall rates result in lower
soil moisture levels. Evapotranspiration rates, however, stay at a high
level and further deplete the soil during the dry season. This leads to
an all-year-round decrease of the soil moisture and an increasing
SMD before the dieback of the rainforest. This increasing SMD
can be clearly observed in the ERA5 data (Fig. 5A). After the
dieback of the rainforest, the soil moisture approaches an alternative
equilibrium consistent with the reduced precipitation and evapo-
transpiration of the savanna vegetation. At the critical point, the at-
mospheric moisture content does not suffice anymore to maintain
precipitation and, thus, latent heating rates that could switch the
system back into the annual wet season, resulting in a permanent
dry season state. Consequently, this would result in a dieback of sub-
stantial parts of the rainforest.

We emphasize that the decreasing soil moisture that we observe
in the ERA5 data is not simply a linear response to decreasing rain-
fall rates in Amazonia but rather a consequence of the changing hy-
drological budget of the coupled atmosphere-vegetation system. In
general, the soil moisture shows a delayed response to reduced pre-
cipitable water and has been shown to be correlated to tropical At-
lantic sea surface temperatures and reduced moisture inflow from
the Atlantic and northern Amazonia (27). The precipitation rates
in large parts of Amazonia do not consistently decrease with the
negative trend in the soil moisture (fig. S9), and the links between
soil moisture, precipitation, and other factors remain uncertain, es-
pecially in deforested areas (27).

It should also be noted that it is inherently hard to measure the
soil moisture in the Amazon rainforest due to the high vegetation
coverage that hinders satellite measurements. However, previous
studies showed an agreement between satellite-based soil measure-
ments and the ERA5 reanalysis in large parts of Brazil (27, 73). A
recent soil moisture reconstruction study that combines satellite
and tree ring measurements also supports the strong decline of
the soil moisture in the Andes region in the past decades that is
visible in the ERA5 data (74), increasing the general confidence in
the ERA5 soil moisture product.

Similarly, quantifying rainfall in the Amazon region presents dif-
ficulties due to the scarcity of rain gauges (75). Rainfall products can
differ substantially in South America on both spatial and temporal
scales (76, 77). While the spatially averaged ERA5 precipitation rates
in South America are in good agreement with the gauge-based rain-
fall product provided by the Global Precipitation Climatology
Centre (GPCC) (78) after the year 1980, the ERA5 precipitation
in tropical South America shows some deviation from GPCC (79,
80). To account for this uncertainty in the ERA5 precipitation, we
repeat the statistical analysis for the three different satellite- and
gauge-based rainfall products: Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) (81) and GPCC and
Global Precipitation Climatology Project (GPCP) (82). While the
four datasets not necessarily agree on the trend of rainfall over
the past four decades (fig. S9), we find a strong agreement in the
trends of the statistical CSD indicators (figs. S7 and S8).

The impacts of a weakened atmospheric circulation are expected
to be greatest in the southwestern parts of the rainforest, due to the
cascading effect of reduced moisture recycling over the basin. This
implies that increasing deforestation rates in eastern Amazonia
could lead to an extensive reduction of rainfall in remote parts of
the rainforest (72). Large parts of the rainforest in southwestern
Amazonia are still intact, which suggests that our findings of

changes in the large-scale precipitation patterns cannot be ascribed
to local deforestation effects.

While the characteristic changes in our model simulations can
by design be exclusively attributed to forest loss, this is not possible
in observational or reanalysis data. Besides forest loss, several com-
peting processes influence the climate in South America, such as El
Niño events, sea surface temperature anomalies in the tropical At-
lantic, and the consequences of global warming. For example, a
poleward shift of the subtropical jets and equatorial contraction of
the ITCZ is expected in a warmer climate, possibly leading to a
delayed wet season onset and savanna expansion in the southern
Amazon (83, 84). It has been shown that deforestation can
enhance surface wind acceleration and increase the moisture
inflow from the Atlantic and increase precipitation in intact
regions of the rainforest due to decreased roughness length (85).
While we do not account for this effect in our model, it could sub-
stantially increase the precipitation throughout the intact regions of
the rainforest with further deforestation. Including this effect would
potentially reduce the amplitude and abruptness of the transition
shown in Fig. 2. Furthermore, an intensification of the Hadley
and Walker cells, associated with anomalous sea surface tempera-
tures in the tropical Pacific and north tropical Atlantic, as well as
reduced moisture transport from the tropical Atlantic Ocean, has
partially been linked to an increase of the frequency of dry days
during the transition season in southern Amazonia over the past
decades (24–26, 86).

Our model simulations imply that all four indicators will occur
consistently before the critical transition, and, correspondingly, we
reveal that all four of them occur consistently in the ERA5 data and
in other observation datasets. It is unlikely that low-frequency
natural variability such as the atlantic multidecadal oscillation
(AMO) and El Niño–Southern Oscillation (ENSO), possibly in con-
junction with anthropogenic climate change, would lead to a simi-
larly consistent occurrence of all four—in principle, independent—
indicators. Moreover, we test the trends in the CSD indicators based
on a phase surrogate test that preserves the variance and the auto-
correlation structure of the original time series (fig. S6). In this
sense, the detected trends are statistically significantly positive
given the “natural variability” (in terms of variance and autocorre-
lation) and can thus not be explained by natural variability.

We showed that forest loss, caused by direct deforestation,
droughts, and fires, might vastly contribute to a changing climate
in Amazonia and could drive the coupled rainforest-monsoon cir-
culation system past a tipping point. Recent changes in precipitation
patterns, increasing DSL, reduced soil moisture, and more frequent
extreme events might be much stronger linked to deforestation than
previously assumed. The results presented here suggest an upcom-
ing regime shift of the Amazon ecosystem if deforestation is not
brought to a halt. We outline a detailed analysis of the observed
changes in the hydrological variables that we identify with physical
and statistical precursor signals, using high-resolution coupled veg-
etation-atmosphere models, as an urgent subject of future research.

MATERIALS AND METHODS
Model design
The main focus of the model is the relationship between a defores-
tation-induced decrease in the total surface heat flux and a positive
feedback mechanism associated with the release of latent heat. To
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investigate the consequences of deforestation, a nonlinear moisture
transport model along a one-dimensional trajectory from the
mouth of the Amazon River to the western boundary of the
Amazon basin, following the low-level winds in the monsoon
season, is constructed (see Fig. 1). The underlying equations are
given by the moisture balance equations

∂tA ¼ E � P � r �M ð1Þ

∂tS ¼ P � E � R ð2Þ

whereA denotes the atmospheric moisture content, E is evapotrans-
piration, P is precipitation, S is the total soil moisture content, and R
is the runoff. The term ∇ · M denotes the divergence of vertically
integrated moisture flow and is defined at each atmospheric layer
λ as ∇ · M λ ≔ AλW λ, where W λ is the respective wind speed.
The runoff R and the precipitation P are modeled as effective func-
tions of S andA, respectively, with functional dependencies estimat-
ed from the ERA5 reanalysis. The evapotranspiration is obtained by
sampling from a three-dimensional estimated probability density,
dependent on the soil moisture S and the surface net solar radiation.
The winds W = WT + WH are modeled in terms of a trade wind
component WT and a convective latent-heating component WH.
WH represents the amplification of wind speeds due to condensa-
tional heating in the wet season. Because this heating is dependent
on precipitation and, hence, atmospheric moisture itself, the
heating component introduces the nonlinearity to the model. The
wind is modeled as

WiðtÞ ¼WT
i ðtÞ þWH

i ðtÞ ð3Þ

WT
i ðtÞ ¼ ðw0 � wcÞ 1þ

1
1þ ew1ðtÞ�i� w2

� �

þWdry
i.70ðtÞ ð4Þ

WH
i ðtÞ ¼ wcLπðtÞ 1þ

1
1þ ew1ðtÞ�i� w2

� �

ð5Þ

Here, π(t) denotes the heating gradient between the Atlantic
Ocean and the trajectory

πðtÞ ¼ hHitrajectoryðtÞ � hHiAOðtÞ ð6Þ

with H = Hsensible + H latent + Hrad and ⟨·⟩R denoting the spatial
average over the region R. The coefficients w0, w1(t), and w2 are ad-
justed such that the modeled winds in the wet season match the ob-
served wind speeds. Here, the parameters are chosen to be

w0 ¼ 16:5 km=hour ð7Þ

w1 ¼ 0:6 � ½0:03 � cos
2π
8760

t � π
� �

� 0:03� ð8Þ

w2 ¼ 3:4 ð9Þ

The parameter wc and w0 determine the strengthening of the
wind speeds and moisture inflow due to the latent heat release
over the Amazon during the wet season. The amplification factor

(AF) of the winds is then given by

AF ¼
w0

w0 � wc
ð10Þ

Varying wc thus corresponds to controlling the strength of the
heating-related feedback. The dimensionality factor L is defined as

L ¼ max
1

πðtÞ

� �

ð11Þ

and calculated for the undisturbed case, with no deforestation. In
other words, L ensures that the amplification due to the heating
winds is limited by AF. Only wind speeds at the 750-hPA level
are considered because they are very similar to the mean wind
speeds on the 700- to 900-hPa levels.

We integrate the discretized equations

Aiðt þ 1Þ ¼ AiðtÞ þ EiðtÞ � PiðtÞ

�
WiðtÞAiðtÞ � Wi� 1ðtÞAi� 1ðtÞ

l
ð12Þ

Siðt þ 1Þ ¼ SiðtÞ þ PiðtÞ � EiðtÞ � RiðtÞ ð13Þ

along the 100 boxes of the trajectory, in hourly steps. The subscript i
denotes the respective spatial box, and l = 30 km is the length of a
single box. The moisture divergence ∇ · M is realized as forward
difference quotient. Initial conditions are derived from the ERA5
reanalysis (59). We validate the model results against the ERA5
data (see fig. S1). For the investigation of precursor signals, we
add white noise (σ = 0.1) to each Ai(t) in Eq. 12.

Deforestation is simulated as a 40% reduction of the evapotrans-
piration E and a 40% increase in the sensible heat. However, the
latent heat flux is two to four times higher than the sensible heat
flux. This means that the reduction of E is the determining
change. In addition to this ad hoc deforestation, a feedback mech-
anism between higher plant water stress and the vegetation is imple-
mented. Less precipitation and longer dry seasons due to the
weakening of the latent heat feedback lead to less soil moisture,
which will eventually lead to increased tree mortality. Here, a
simple threshold model is proposed. An integrated SMD is dynam-
ically calculated, and, when the SMD exceeds a set threshold, this
leads to deforestation of the box. For every box, the lowest soil mois-
ture value before deforestation is set as a baseline. The integrated
SMD is the sum of the soil values below the baseline. If the deficit
exceeds the threshold, then the same consequences as in the case of
manual deforestation occur.

Dry season length
There exist several methods to determine the onset and demise of
the wet season in tropical regions. Here, we use three different
methods to determine the DSL in the ERA5 data.

First, we calculate the climatological mean rainfall rate P and the
running 30-day mean precipitation rate P30d for all years. We iden-
tify all days where P30d is below the climatological mean and deter-
mine the longest sequence of consecutive dry days, ignoring wet
spells (days with P30d� . P) shorter than 10 days. The longest se-
quence of dry days is the DSL of the respective year. The wet
season retreat is the first day of the consecutive dry days and the
onset date is the last day.
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The second method is based on Liebmann et al. (87, 88). We cal-
culate the 5-day mean precipitation for all years and determine the
annual cumulative pentad rainfall anomaly A(d) for every pentad d

AðdÞ ¼
Xd

j¼0
ðPj � PÞ

with Pj as rainfall on pentad j and P as climatological mean rainfall
rate. The anomaly A(d ) increases when the pentad rainfall is above
the climatological mean and decreases otherwise. The onset date of
the wet season is then the maximum of A(d), and the minimum of
A(d ) denotes the end of the wet season. The difference between
demise and onset yields the DSL.

The third method is a modification of Marengo et al. (29, 89).
We calculate the 5-day mean precipitation for every year, P5d. The
wet season demise is determined by the first date when P5d changes
from above to below the climatological annual mean rain rate
during six of the eight pentads. Vice versa, the wet season onset is
the first pentad when P5d changes from below to above the clima-
tological annual mean rain rate. If this criterion fails for a specific
year, then the condition is relaxed to five of the eight pentads and,
ultimately, to four of the eight pentads.

CSD and associated precursor signals
Several large-scale components of the Earth system are suspected to
show abrupt shifts between different states when important control
parameters, such as temperature or CO2, approach critical thresh-
olds, so-called tipping points (1). Key examples of such potential
tipping elements are given by the Atlantic Meridional Overturning
Circulation, the polar ice sheets, and the Amazon rainforest. While
it is, in principle, hard to predict these abrupt shifts, various precur-
sor signals that precede bifurcation-induced transitions in low-
order random dynamical systems have been proposed (36, 90, 91).
When the system approaches the critical threshold, the state of the
system resembles more and more its past states, which is known as
CSD. The restoring forces of the system diminish, and the rate of
return to equilibrium after a perturbation approaches zero. This
loss of resilience can be seen as a rise in the lag-one autocorrelation
and variance of the fluctuations before crossing the tipping point
(36, 92). Under the assumption that leading dynamical models of
Earth system tipping elements can, to a first approximation, be rep-
resented by low-order random dynamical systems, the above moti-
vates to search for precursor signals in the dynamics of tipping
elements. Precursor signals related to CSD have been identified,
for example, before collapses of the Atlantic Meridional Overturn-
ing Circulation in comprehensive model simulations (93, 94).

We calculate the variance and lag-one autocorrelation of the de-
trended time series within endpoint rolling windows half the size of
the reanalysis time series (w = 20 years). For our model time series,
we calculate the CSD indicators in a rolling window of size w = 150
years from year 0 to year 200 (Fig. 4).

We detrend the time series via seasonal trend decomposition
(STL) based on locally estimated scatterplot smoothing (LOESS)
(95) with the statsmodels Python package (96). The particular de-
trending parameters are given in the figure captions. The lag-one
autocorrelation is computed directly as Pearson correlation coeffi-
cient between the time series and itself shifted by one time step. It
should be noted that both variance and lag-one autocorrelation

have to increase (significantly) to conclude the proximity to a crit-
ical transition (90, 97).

Significance testing
To test the significance of our results, we test against the hypothesis
that the trends in the CSD indicator time series are due to chance.
By randomly shifting the phases in Fourier space, we generate n =
10,000 surrogates of the time series of the same length, which have
no trend and preserve the variance and spectrum, and, hence, the
autocorrelation function of the original time series (98–100). We
calculate Kendall’s τ for each generated surrogate time series and
compare it with the Kendall τ of the original data. The fraction of
cases where τ of the surrogates was equal or greater than the original
τ gives the P value of our significance test, for a given τ value.

Sensitivity analysis
The following simulation parameters are varied to investigate the
sensitivity of our results to these choices: the AF, the heating over
the tropical Atlantic Ocean ⟨H⟩AO(t), the reduction of the evapo-
transpiration after deforestation ΔE, and the integrated SMD
threshold. We find that our results are robust against reasonable
variations in these parameters.

The consequences of deforestation depend on the values chosen
for AF and ⟨H⟩AO(t). The AF determines the strength of the
heating-related feedback; the higher the AF, the more severe the
consequences. Nevertheless, for all AF within the bounds set by pre-
vious studies (46–48), we find an abrupt dieback of the rainforest
(fig. S10).

A higher average heating over the Atlantic Ocean leads to a lower
heating gradient between ocean and continent and, therefore, to an
earlier breakdown of the heating-related feedback. We vary the
spatial box used for averaging the atmospheric heating over the At-
lantic by 1° to 2° in every direction and find 〈H〉AO = 80 W/m2 to
〈H〉AO = 140 W/m2 during the wet season (December to February)
and 〈H〉AO = 30 W/m2 to 〈H〉AO = 80 W/m2 during the dry season
(June to August), with an annual amplitude of 20 W/m2 to 50 W/
m2. We use 〈H〉AO = 80 W/m2, 〈H〉AO = 100 W/m2, 〈H〉AO = 120 W/
m2, and 〈H〉AO = 140W/m2 for our simulations, each with an annual
amplitude of 20 and 40 W/m2. We show the precipitation rates for
different AF and HAO after successive deforestation in fig. S10. Al-
though the position of the critical deforestation threshold and the
abruptness of the transition depend on these choices, the results
remain qualitatively unaltered.

The integrated SMD threshold is an artificial parameter that is
chosen such that prolonged drought conditions over multiple
years lead to degradation of the rainforest, which we quantitatively
implement in the same way as deforestation. The specific choice for
the SMD determines the timing of the rainforest dieback, but it has
no influence on the severity of the rainfall decline (see fig. S11A). To
investigate the statistical precursor signals and trends in the CSD
indicators, we choose the SMD such that the dieback of the rainfor-
est happens after 50% deforestation rate.

The reduction of the evapotranspiration ΔE is an essential pa-
rameter that determines the strength at which deforestation and
vegetation degradation due to a persistent SMD affect the coupled
hydrological cycle. The specific choice of the reduction, hence, in-
fluences the timing of the dieback. The higher ΔE, the lower the pre-
cipitation rates after deforestation and the earlier the dieback.
Results from a field study suggest reductions of around 40% for
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deforestation/degradation from closed rainforest to savanna, crop,
or pasture (60). We show the influence of ΔE on the wet season pre-
cipitation for ΔE = 30 to 50% for exemplary AF and ⟨H⟩AO(t) in fig.
S11B. Qualitatively, the results are similar, however, with a rainfor-
est dieback eventually occurring for all ΔE.

Supplementary Materials
This PDF file includes:
Figs. S1 to S11
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Figure S1: Comparison between model results and reanalysis. Comparison between
ERA5 reanalysis (box plots dashed with whiskers at 5th an 95th percentile) and
model results (solid lines, filled area) for all atmospheric variables of the model,
along the trajectory of 100 boxes. Results are shown for the wet season (DJF, a-e)
and for the dry season (JJA, f -j). Filled areas indicate the range of values for all
choices of the different simulation parameters AF and ⟨H⟩AO. Solid line denotes
mean value. Note that we use all available soil moisture layers in ERA5 with a
total depth of 2.89m.



Figure S2: Histogram of Kendall τ derived from 100,000 surrogate time series of
lag-one autocorrelation and variance of the modelled precipitation rates.
(a) Histogram of lag-one autocorrelation from surrogate time series generated by
phase randomisation (see Methods). The dashed orange line denotes the threshold
corresponding to a p-value of p = 0.1, and the black line denotes Kendall τ derived
from the original modelled time series series (see Fig. 4 a). (b) Same as (a) but
for variance.



Figure S3: Wet season onset and retreat date in southern Amazonia. (a) Wet sea-
son onset date in southern Amazonia (5 − 15◦S, 50◦ − 70◦W) from 1979-2019 for
the three different methods used (see methods). Dashed lines denote the cor-
responding linear trends. We find an increase of 3.5 (blue), 5.6 (orange) and
1.4 pentad/century (green) for the three methods, respectively. (b) Same as (a)
but for the wet season retreat date. We find a decrease of −0.9 (blue), −1.0 (or-
ange), and −1.6 pentad/century (green) of the retreat date. Data is taken from
the ERA5 reanalysis (58 ). The wet season hence tends to initiate later and end
earlier, consistently with an increase in DSL.



Figure S4: Map of trends in dry season length for the southern Amazon in ERA5.
Calculated linear trend in the dry season length from 1979-2019 in southern Ama-
zonia, based on the ERA5 reanalysis, using the three different methods used (see
methods). Areas with p-value < 0.05 are hatched. (a) Dry season length calcu-
lated with method 1, (b) Calculated with method 2, (c) calculated with Method
3. All three methods show the same spatial pattern.



Figure S5: Regions with simultaneous increase in variance and autocorrelation in
ERA5. The red areas denote regions where variance and autocorrelation in ERA5
precipitation rates increase. See Fig. 6 and method section for methods.
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Figure S6: Map of p-values estimated from distribution of Kendall τ derived from
10000 surrogate data sets of autocorrelation and variance in southwest-
ern Amazonia in ERA5. (a) Map of the p- values for our phase-surrogate test
to determine the significance of the trend in the lag-one autocorrelation in the
precipitation rates in northern South America. The p-values are only shown for
regions with positive trend in the autocorrelation. White areas denote regions with
negative trends. (b) Same as (a) but for the variance. It can be inferred that the
increases in both variance and lag-one autocorrelation in southwestern Amazonia
are mostly significant.



Figure S7: Temporal lag-one autocorrelation in different precipitation data sets.
Spatial patterns of Kendall τ for the lag-one autocorrelation of observed monthly
averaged precipitation time series for different precipitation data sets. The au-
tocorrelation is calculated for rolling windows of width w = 20 years. The trend
is determined by Kendall τ of the respective indicator of the detrended and de-
seasoned precipitation time series at every site. Stippling marks regions with sig-
nificantly increasing trends (p < 0.05, see Methods for details on the statistical
test. Mean wet season wind fields (1979-2019) at 750 hPa are delineated in white.
The non-linear trend of the underlying precipitation time series is removed via STL
(85 ) with a trend smoother length of 5 years and seasonal smoother length of 13
months. (a) For ERA5 precipitation (1979-2019). This subpanel is identical with
Fig. 6a. (b) CHIRPS (1981-2022) (79 ) (c) GPCC (1982-2020) (76 ) (d) GPCP
(1979-2022) (80 ).



Figure S8: Temporal variance in different precipitation data sets. Spatial patterns
of Kendall τ for the variance of observed monthly averaged precipitation time
series for different precipitation data sets. The variance is calculated for rolling
windows of width w = 20 years. The trend is determined by Kendall τ of the
respective indicator of the detrended and de-seasoned precipitation time series at
every site. Stippling marks regions with significantly increasing trends (p < 0.05,
see Methods for details on the statistical test. Mean wet season wind fields (1979-
2019) at 750 hPa are delineated in white. The non-linear trend of the underlying
precipitation time series is removed via STL (85 ) with a trend smoother length of
5 years and seasonal smoother length of 13 months. (a) For ERA5 precipitation
(1979-2019). This subpanel is identical with Fig. 6b. (b) CHIRPS (1981-2022)
(79 ) (c) GPCC (1982-2020) (76 ) (d) GPCP (1979-2022) (80 ).
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Figure S9: Trends in precipitation rates in South America obtained from differ-
ent precipitation data sets. (a) Calculated linear trend in yearly averaged
precipitation rates from 1979-2019 in South America, determined from the ERA5
reanalysis. Large parts of the Amazon rainforest show a positive trend (blue) in
the precipitation rates. This suggests that the observed decreasing soil moisture
is not a linear response to the precipitation rates but rather a response to changes
of the hydrological budget of the coupled atmosphere-vegetation system in ERA5.
(b) Same as (a) but for the CHIRPS dataset from (1981-2022). (c) GPCC (1982-
2020) (d) GPCP (1979-2022).
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Figure S10: Simulated wet season precipitation for different amplification factors
and atmospheric heating over the Atlantic, after successive deforesta-
tion. We show the wet season precipitation PDJF in box 90 for all amplification
factors AF and a selection of investigated atmospheric heating values over the
Atlantic ocean ⟨H⟩AO, with successive deforestation. Deforestation is initiated
at year 10 and is completed at year 30. All simulations show a dieback of the
rainforest prior to 50% deforestation. For lower values of AF and ⟨H⟩AO there is
still an annual transition into the wet season (a, b, d) after complete rainforest
loss. For high AF and ⟨H⟩AO we find a permanent dry season state after rain-
forest dieback (c,e,f). It should be noted that the amplification factor is most
realistically between 2-3 (45–47 ).



Figure S11: Simulated wet season precipitation for different soil moisture deficit
thresholds and reductions of the evapotranspiration after successive
deforestation. (a) Wet season precipitation PDJF in box 90 for different values
of the soil moisture deficit threshold SMD after successive deforestation. The
atmospheric heating over the Atlantic ocean ⟨H⟩AO = (120± 20)W/m2 and the
amplification factor AF = 2.5 are fixed. Deforestation is initiated at year 10 and
is completed at year 30. All simulations show dieback of the rainforest prior to
50% deforestation. (b) Same as (a) but for different values of the reduction of
the evapotranspiration after deforestation ∆E.
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Overshooting the critical threshold for the 
Greenland ice sheet

Nils Bochow1,2,3 ✉, Anna Poltronieri1, Alexander Robinson3,4,5, Marisa Montoya5,6, 

Martin Rypdal1 & Niklas Boers3,7,8

Melting of the Greenland ice sheet (GrIS) in response to anthropogenic global 

warming poses a severe threat in terms of global sea-level rise (SLR)1. Modelling and 

palaeoclimate evidence suggest that rapidly increasing temperatures in the Arctic 

can trigger positive feedback mechanisms for the GrIS, leading to self-sustained 

melting2–4, and the GrIS has been shown to permit several stable states5. Critical 

transitions are expected when the global mean temperature (GMT) crosses speci�c 

thresholds, with substantial hysteresis between the stable states6. Here we use two 

independent ice-sheet models to investigate the impact of di�erent overshoot 

scenarios with varying peak and convergence temperatures for a broad range of 

warming and subsequent cooling rates. Our results show that the maximum GMT 

and the time span of overshooting given GMT targets are critical in determining GrIS 

stability. We �nd a threshold GMT between 1.7 °C and 2.3 °C above preindustrial 

levels for an abrupt ice-sheet loss. GrIS loss can be substantially mitigated, even for 

maximum GMTs of 6 °C or more above preindustrial levels, if the GMT is subsequently 

reduced to less than 1.5 °C above preindustrial levels within a few centuries. However, 

our results also show that even temporarily overshooting the temperature threshold, 

without a transition to a new ice-sheet state, still leads to a peak in SLR of up to several 

metres.

Melting of the GrIS has contributed more than 20% to the observed SLR 

since AD 2002 (ref. 7). Modelling results indicate that the GrIS exhibits 

several stable states, with critical transitions between them when the 

GMT exceeds a critical threshold4,6,8. With further global warming, a par-

tial to complete loss of the ice sheet is expected, implying an increase 

of the global sea level by up to 7 m (refs. 3,9). The land-ice contribution 

to SLR until the year AD 2100 is expected to be in the range of several 

decimetres, with the GrIS being one of the main contributors10–12. As well 

as the direct impacts on coastal ecosystems and populations, the North 

Atlantic freshening resulting from a melting GrIS might contribute to 

a weakening or even destabilization of the Atlantic Meridional Over-

turning Circulation (AMOC), which would have global-scale impacts, 

including disruptions of the African and Asian monsoon systems13–16.

In recent decades, meltwater runoff from the GrIS has accelerated 

relative to global surface temperatures17 and there are precursor sig-

nals of an impending critical transition detectable in ice cores from 

the central-western GrIS18. There is, therefore, a need to explore the 

future trajectories of the GrIS under different emission scenarios. 

Furthermore, it is important to understand what is required to pre-

vent a runaway effect. The so-far insufficient efforts to reduce global 

emissions make it necessary to investigate scenarios in which we do 

not achieve current warming targets, such as those defined in the 

Paris Agreement, by the end of the twenty-first century19–21. Differ-

ent options to remove CO2 from the atmosphere, including carbon 

capture and storage technologies and large-scale reforestation, could 

make it possible to maintain such temperature goals in the long term, 

even if a temporary overshoot occurs22. These subsequent efforts to  

reduce GMTs after AD 2100 could have a substantial mitigating effect 

because many of the large-scale components of the climate system 

change slowly compared with the current rate of global warming. In the 

following, we refer to temporary exceedances of temperature targets 

or critical temperature thresholds as overshoots and to the equilibrium 

temperatures that will be reached in the long term as convergence 

temperatures.

Owing to the effect of inertia, crossing a critical threshold in a dynami-

cal system with several stable states does not necessarily imply that a 

transition to an alternative state is realized. It is possible to temporar-

ily overshoot the tipping threshold of a system without triggering a 

transition to a new system state23. Thus, the temperature threshold of 

the GrIS could be surpassed without committing to total mass loss, if 

later on, yet within a specific time frame, actions are taken that reduce 

the temperature back under the critical threshold.

The overshoot phenomenon is particularly relevant for the GrIS 

because the timescales for mass loss are long compared with changes 

in anthropogenic greenhouse emissions. The separation of timescales 

could make it possible to reverse ice loss if global surface tempera-

tures decrease sufficiently quickly after an initial overshoot. However, 

because of the complexity of the ice sheet and the various physical 
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processes that play a role, including ice flow and surface processes, it is 

intrinsically challenging to determine the temperature thresholds and 

required cooling rates that will prevent a substantial loss of the GrIS.

In this modelling study, we identify safe operating spaces by analys-

ing the behaviour of the GrIS under different warming projections that 

exceed the presumed critical threshold, but in which the temperature is 

subsequently reduced. We explore the influence of realistic greenhouse 

gas emission and corresponding warming scenarios for the twenty-first 

century in accordance with the most recent Intergovernmental Panel 

on Climate Change report1. Subsequently, we apply different idealized 

carbon-removal scenarios that lead to a temperature decrease on time-

scales varying from one hundred to tens of thousands of years (Fig. 1a).

We investigate the behaviour of the GrIS using two independent, 

state-of-the-art ice-sheet models: a new version of the Parallel Ice 

Sheet Model (PISM) with a modified version of the diurnal Energy 

Balance Model (dEBM-simple) for the surface mass balance24,25 and 

the ice-sheet model Yelmo26 coupled to the Regional Energy-Moisture 

Balance Orographic (REMBO) model27. Both approaches have been 

extensively tested and validated and have been used to simulate the 

past, present-day and future evolution of ice sheets10,11,25,28–32.

We force the two models, PISM-dEBM-simple (hereafter PISM-dEBM) 

and Yelmo-REMBO, by a prescribed change in regional summer tem-

perature relative to present day and apply a scaling factor of 1.61 

between regional winter and summer surface temperature to obtain 

the temperature forcing over the seasonal cycle. This forcing can then 

be translated into GMT above preindustrial through a linear scaling 

that accounts for higher warming rates in the Arctic region relative to 

the global mean (see Methods section ‘Climate forcing’).

In a first set of experiments, we force the models with a prescribed 

linear summer ( June, July, August ( JJA)) temperature increase from year 

AD 2000 (present day) to AD 2100 to a maximum summer temperature 

anomaly of ∆Tmax,JJA (Fig. 1a). Thereafter, we linearly decrease the tem-

perature between AD 2100 and AD 2200 back to different convergence 

temperature anomalies between ∆Tconv,JJA = 0 °C and 4.0 °C above pre-

sent day (that is, ∆Tconv,GMT = 0.5 °C and 3.9 °C convergence GMT above 

preindustrial (see Methods section ‘Climate forcing’). We keep the 

prescribed temperature anomaly constant after AD 2200 and run the 

models for another 100 kyr to study the long-term evolution of the ice 

sheet for each peak warming scenario. In a second set of experiments, 

we investigate the timescale dependence of the GrIS response follow-

ing the cooling. After the initial temperature increase until AD 2100, 

we vary the convergence time (∆tconv), that is, the time needed to reach 

the convergence temperature, with ∆tconv spanning from 100 years to 

several millennia for various convergence temperatures. We then inves-

tigate the behaviour of the GrIS for these different cooling scenarios.

Evolution without long-term temperature reductions

When kept constant after year AD 2100, the temperature increase  

during the twenty-first century leads to at least some further melting of 
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Fig. 1 | Time series of ice volume and spatial extents of the GrIS for warming 

scenarios without mitigation. a, Sketch of applied warming and cooling 

scenarios in this study. The warming period lasts for 100 years, followed by 

varying cooling phases. The black line corresponds to scenarios without 

mitigation as shown in this figure. b, Evolution of total GrIS ice volume simulated 

by PISM-dEBM, without reversal of the temperature anomalies (black line in 

panel a), for different temperature anomalies between ∆TJJA = 0 °C and 7.0 °C 

above present. The warming period lasts for 100 years until year AD 2100 and 

temperatures are kept constant afterwards. Three qualitatively different 

regimes are noticeable: (1) present-day configuration with fully extended ice 

sheet or only slightly reduced volume; (2) intermediate state with around 75% 

of present-day ice volume; and (3) basically ice-free states. The vertical black 

line at 5 kyr denotes a change of the x-axis scaling for visual clarity. We normalize 

the ice volumes to the observed present-day values (see Methods sections 

‘PISM-dEBM’ and ‘Yelmo-REMBO’). c, Ice thickness of present-day ice-sheet 

configuration in PISM-dEBM. The ice sheet is fully extended. d, Same as c but 

the intermediate state for ∆Tconv,JJA = 2.0 °C, after 100,000 years with PISM-

dEBM. The southwestern part of the ice sheet is fully retracted. e, Same as c  

but for the ice-free state with PISM-dEBM. f,g,h, Same as b,c,e, respectively,  

but for Yelmo-REMBO. Only two regimes can be identified: (1) present-day 

configuration; and (2) near-ice-free states. The maps were made with the 

Python package cartopy52 and Natural Earth.
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the GrIS for every prescribed positive temperature anomaly (Fig. 1b,f). 

However, the melt is moderate for temperature anomalies smaller than 

1.0 °C for both models. In the long term, the runs with PISM-dEBM 

show that there is a substantial ice-volume loss of more than 20% for 

∆TJJA > 1.0 °C and more than 80% loss for ∆TJJA > 2.2 °C (Fig. 1b). In runs 

with Yelmo-REMBO, a temperature anomaly ∆TJJA > 1.4 °C leads to a 

complete melting of the ice sheet (Fig. 1f). Yelmo-REMBO only has two 

stable ice-sheet states: a close to present-day state and a near-ice-free 

state (Fig. 1g,h). For PISM-dEBM, there is an extra regime; several inter-

mediate states with around 50–90% of current GrIS ice volume are 

accessible (Fig. 1c–e). The spatial extent of the different ice-sheet states 

is in accordance with earlier work3,5,33.

The intermediate states in the runs with PISM-dEBM show a gradual 

and eventual complete retreat of the southwestern part of the ice sheet 

(Extended Data Fig. 1). Simultaneously, there is a retreat of the ice sheet 

in the northern part of the GrIS, yet the southwestern part is the most 

sensitive to warming. For a warming ∆TJJA > 2.2 °C the remaining GrIS 

is lost abruptly. The ice sheet fluctuates on a decamillennial timescale 

for some configurations and does not reach a steady state. For a warm-

ing of ∆TJJA = 2.0 °C, the ice sheet recovers back to approximately 75% 

of the present-day ice-sheet volume after an initial loss of 40% of the 

ice-sheet volume (Fig. 1d). The recovery is a result of the glacial isostatic 

adjustment34. The uplift of the bedrock counteracts the melt-elevation 

feedback and leads to colder temperatures, which allow the ice sheet to 

partially regrow34. Although the same simulations with Yelmo-REMBO 

do not show any stable intermediate states, the ice sheet does show 

the same spatial sensitivity to warming, with an initial retreat of the 

southwestern GrIS followed by a retreat of the northern part of the ice 

sheet (Extended Data Fig. 2). For the most extreme warming scenario of 

∆TJJA = 7.0 °C, the ice sheet is lost in less than 5,000 years in both models.

Short-term overshoots

A reduction in temperature from AD 2100 to AD 2200 leads to a mitiga-

tion of the ice loss, depending on the convergence temperature reached 

(Fig. 2). Regardless of the peak temperature in AD 2100, a convergence 

temperature increase of 1.5 °C GMT above preindustrial (∆TJJA = 1.3 °C) 

by AD 2200 or lower leads to a stable ice sheet, with the equivalent 

of less than 1 m long-term SLR contribution in simulations with both 

models (Fig. 2a,b). However, the maximum interim SLR contribution 

with PISM-dEBM slightly exceeds 1 m for 1.5 °C GMT above preindustrial 

(Extended Data Fig. 3). For convergence temperatures ∆TJJA > 2.2 °C 

for PISM-dEBM and ∆TJJA > 1.4 °C for Yelmo-REMBO, the ice sheet is 

completely lost, regardless of the overshoot temperature in the year  

AD 2100. The safe zone is sharply separated from the transition area, 

which is visible as an abrupt transition in the cross-sections of the stability  

diagram (Fig. 2c,d). Although the ice sheet shows a more gradual loss 

before the critical threshold with PISM-dEBM (Fig. 2c), the ice loss is  

more abrupt with Yelmo-REMBO and the SLR contribution is less than 

1 m before the critical threshold is crossed (Fig. 2d). Regardless of the 

model, the ice-sheet equilibrium only depends on the absolute tem-

perature increase by AD 2200, that is, the convergence temperature 

anomaly, and not the peak value at AD 2100. This can be explained by 

the slow response timescale of the ice sheet to the temperature change.

For low convergence temperature anomalies, the ice-sheet volume 

barely changes in simulations with either model. For high warming, the 

equilibration time is very slow, on the timescale of decamillennia. For 

intermediate warming levels, the ice sheet does not reach a classical 

equilibrium in simulations with PISM-dEBM but fluctuates on decamil-

lennial timescales. This is particularly true for the intermediate states 

close to the threshold of ∆TJJA = 2.2 °C, which are not in equilibrium 

after even 100 kyr (triangle symbols in Fig. 2a). Likewise, the simula-

tions with Yelmo-REMBO forced with ∆Tconv,JJA = 1.5 °C are not yet in 

equilibrium after 100 kyr and eventually evolve further towards the 

ice-free state (Fig. 2b,d).

Long-term overshoots

To investigate the timescale dependence of the overshoot of the tem-

perature threshold, we decrease the temperature after AD 2100 to  

different convergence temperatures ranging from ∆TJJA = 0 °C to 4.0 °C 

and vary the convergence time to reach the respective convergence 

temperature from 100 years to several millennia (Fig. 1a). All scenarios 

considered show a loss of ice volume. As expected, the longer the con-

vergence time and the higher the overshoot temperature, the larger the 

ice loss. However, there are important dependencies of the ice-sheet 

evolution (and thus maximum SLR contributions) on the exact con-

vergence times and temperatures (Fig. 3). For a convergence time of 

1,000 years, the maximum SLR contribution is similar to the equilib-

rium and maximum SLR contributions for a 100-year convergence time 

(Fig. 2 and Extended Data Figs. 3 and 4a,b), implying that the maximum 

ice loss is reached after the warming and cooling phase. However, an 

overshoot temperature of ∆Tmax,JJA > 6.0 °C leads to a greater maximum 

SLR contribution than at equilibrium (Extended Data Figs. 3 and 4a,b). 

Even for a convergence temperature of ∆Tconv,JJA = 0 °C, the maximum 

SLR contribution exceeds 1 m for the highest overshoot temperature 

in both models (Fig. 3a,b). For a convergence time of 10,000 years, 

there is a strong dependence of the maximum SLR contribution on 

the overshoot temperature (Fig. 3c,d). Both models exceed 1 m SLR 

contribution for an overshoot temperature ∆Tmax,JJA > 2.5 °C in the year 

AD 2100, given a convergence temperature of ∆Tconv,JJA = 0 °C. For an 

overshoot temperature of ∆Tmax,JJA > 6.0 °C with a subsequent return 

to present-day conditions, the simulated SLR contribution is at least 

5 m with PISM-dEBM and 7 m with Yelmo-REMBO.

For a convergence temperature of ∆Tconv,JJA = 0 °C, we find that, for 

all scenarios, the ice sheet eventually returns to values close to the 

present-day ice volume in both models (Fig. 4). For the short-term 

overshoots (∆tconv < 500 years), the models show very similar SLR con-

tributions and the maximum ice-volume loss before ice-sheet regrowth 

is in the range of 50 cm SLR equivalent (Fig. 4a,b). For a convergence 

time of 1,000 years, the SLR contribution is less than 1.25 m with either 

model, followed by a recovery to the present-day ice sheet. For conver-

gence times of more than 5,000 years, a complete loss of the ice sheet 

can occur before recovery, with a SLR contribution of 7 m (Fig. 4c,d). 

Although Yelmo-REMBO shows a complete loss of the ice sheet, before 

regrowth, for the highest overshoot temperatures and a convergence 

time of 5,000 years, PISM-dEBM only shows a complete loss, before 

recovery, for a convergence time of 10,000 years, regardless of the 

convergence temperature (Fig. 5a,b).

For higher convergence temperatures, the GrIS does not neces-

sarily return to its present-day ice volume, highlighting the poten-

tial practical irreversibility caused by the hysteresis of the ice sheet 

(Fig. 5c,d). With PISM-dEBM, the ice sheet approaches the intermedi-

ate states noted above. The ice-volume loss at equilibrium gradually 

increases with increasing convergence temperature, reaching up to 

25% of the present-day ice volume for a convergence temperature of 

∆Tconv,JJA = 2.2 °C. However, with PISM-dEBM, the ice sheet always recov-

ers to the equivalent equilibrium, as for a simple ramp-up simulation 

(which we will refer to as the reference simulation hereafter; black 

lines in Fig. 5) for a given temperature anomaly. In simulations with 

Yelmo-REMBO, the ice sheet does not always regrow to the same ice 

volume corresponding to the reference simulation (Fig. 5d). Close to 

the threshold, the ice sheet shows a dependence on the convergence 

time. A convergence time greater than 5,000 years, combined with a 

high overshoot temperature, prevents regrowth of the ice sheet even 

below the critical threshold (Extended Data Fig. 4d). For a convergence 

temperature of ∆Tconv,JJA = 0.5 °C and long convergence times, the ice 

sheet regrows to an intermediate state with around 2 m SLR contribu-

tion after a complete loss (Fig. 5d).

For all scenarios, the maximum SLR contribution strongly depends 

on the maximum temperature, the convergence temperature and the 
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Fig. 2 | Stability diagram of the GrIS after warming and subsequent  

cooling. a, Stability diagram of the GrIS for PISM-dEBM. Different warming 

rates are applied for 100 years, followed by various cooling rates for another 

100 years. The temperature is kept constant afterwards for another 100 kyr. 

White regions indicate a present-day-like ice sheet, green–blue regions mark 

intermediate states and purple corresponds to the ice-free state. The grey  

line corresponds to the warming rates at which the overshoot temperature 

equals the convergence temperature (that is, no mitigation; the time series  

of simulations along the grey line is depicted in Fig. 1). Below the grey line,  

the overshoot temperature in year AD 2100 is smaller than the convergence 

temperature in AD 2200. Corresponding time series of every simulation are 

shown in Extended Data Fig. 5. b, Same as a but for Yelmo-REMBO. c, Cross- 

sections of the stability diagram for all applied overshoot temperatures 

indicated on the y axis of a. A sharp decrease of the ice volume can be inferred 

for ∆Tconv,JJA above 2.2 °C in all cross-sections, resulting in several intermediate 

and ice-free GrIS states. d, Same as c but for Yelmo-REMBO, for which the critical 

temperature is around ∆Tconv,JJA = 1.4 °C. The triangles mark simulations that 

have still not converged during the time span from 90 kyr to 100 kyr (see legend).
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convergence time (Fig. 5). Generally, the larger the maximum tem-

perature, the convergence time and the convergence temperature, 

the larger the maximum SLR contribution. The longer the convergence 

times, the stronger the dependence of the maximum SLR contribu-

tion on the overshoot temperature (Fig. 6). Our key result is that, 

regardless of the model used, it is possible to define safe and unsafe 

scenarios dependent on a chosen target maximum SLR contribution. 

For example, we find that a convergence time shorter than 1,000 years 

with a convergence temperature around ∆Tconv,JJA = 0 °C keeps the GrIS 

SLR contribution below 2 m for all overshoot temperatures (Fig. 6) 

with both models. For overshoot temperatures below the critical 

threshold, the maximum SLR contribution is weakly dependent on 

the convergence time, which is not surprising given that the maxi-

mum SLR contribution for a given maximum temperature anomaly 
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Fig. 3 | Maximum SLR contribution of the GrIS after warming and 

subsequent cooling for two different convergence times. a, Maximum SLR 

contribution of the GrIS for PISM-dEBM, for 1,000 years convergence time. 

Different warming rates are applied for 100 years, followed by various cooling 

rates for a convergence time of 1,000 years. The temperature is kept constant 

afterwards for another 100 kyr. b, Same as a but for Yelmo-REMBO. c,d, Same as 

a,b, respectively, but for a convergence time of 10,000 years. The maximum 

SLR contribution shows a clear dependence on the overshoot temperature. 

White regions indicate a present-day-like ice sheet, green–blue regions mark 

intermediate states and purple corresponds to the near-ice-free state. The grey 

lines correspond to the scenarios for which the overshoot temperature equals 

the convergence temperature.
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is generally equal to or lower than the equilibrium SLR contribution 

of that forcing value (Fig. 3).

Discussion

We use two different state-of-the-art ice-sheet-modelling approaches, 

with varying complexity, and show that the results obtained from both 

approaches are consistent, despite the fact that the feedbacks captured 

by the models differ to some extent. We use a recently published version 

of PISM that is driven at the surface by the dEBM (PISM-dEBM) to cap-

ture surface albedo feedbacks. This improves on the more conventional 

positive degree-day parameterization, which might fail for past and 

future climate conditions35–39. Increased surface melt reduces reflectiv-

ity of the ice-sheet surface and hence leads to an increase in the melt 

rates, which is captured by the dEBM. Although the extra atmospheric 

warming that can result from reducing albedo is not captured by this 

model setup, Yelmo-REMBO includes this feedback as the atmosphere is 

dynamically coupled to the snowpack energy balance. Possible negative 

atmospheric feedbacks that have been shown to potentially decelerate 

the ice loss are also not included in PISM-dEBM. It has been shown that 

changes in cloud cover, circulation patterns and precipitation lead to 

increased accumulation in the high-altitude, cold interior of the ice 

sheet and can increase the critical temperature threshold5. However, 

Yelmo-REMBO includes a dynamic albeit simple atmosphere that pro-

duces increased precipitation following the retreating ice-sheet margin 

and therefore captures the negative feedbacks at least to some degree. 

Nevertheless, we propose to extend the work presented here to a setup 

with a fully coupled, comprehensive atmosphere general circulation 

model as an interesting follow-up study.

It has recently been shown that, to some extent, glacial isostatic 

adjustment can counteract the positive feedbacks that are believed 

to cause a hysteresis of the GrIS with global warming, such as the 

melt-elevation feedback and albedo feedback34. However, the time-

scale of this feedback is still debated40,41 and is often neglected on 

sub-millennial timescales3. The fluctuations of the ice sheet on a 

decamillennial timescale simulated by PISM-dEBM are believed to 

be the consequence of an interplay between bedrock uplift and 

melt-elevation feedback34,42. We find that the intermediate GrIS states 

found with PISM-dEBM are at least partially caused by the interplay 

between the glacial isostatic adjustment and melt-elevation feed-

back and we find fewer intermediate states without bedrock uplifting 

(Extended Data Fig. 6e). Palaeoclimatic simulations of the Pliocene GrIS 

show similar intermediate states as seen with PISM-dEBM42. By strong 

contrast, however, Yelmo-REMBO uses the same Earth deformation 

model and we do not observe similar oscillations with this model. This 

may point to a different balance between positive feedbacks (largely 
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Fig. 4 | Trajectories of overshoot scenarios converging to a regional summer 

temperature of 0 °C above present (0.5 °C GMT above preindustrial level) 

for various peak warmings and convergence times. a, Trajectories of 

ice-sheet volume for PISM-dEBM for convergence times of 100, 500 and 

1,000 years. All three scenarios show an ice loss that reaches its maximum 

during the cooling phase. The apparent jump of the end states (dots) at 

∆TJJA = 0 °C corresponds to a recovery of the ice sheet after the cooling phase. 

The end states are defined as the mean ice volume after 90–100 kyr. The thick 

dark grey line corresponds to the equilibrium states for the applied temperature 

anomaly, showing that the actual, realistic trajectories are strongly out of 

equilibrium. b, Same as a but for the ice-sheet model Yelmo-REMBO. c,d, Same 

as a,b, respectively, but for convergence times of 5,000 and 10,000 years. For 

all scenarios, both models show a recovery to close to the present-day ice  

sheet. The maximum SLR contribution is reached during the cooling phase, 

highlighting the importance of considering long-term committed SLR in 

climate negotiations.
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at the surface) and the glacial isostatic rebound and should certainly 

be studied with more models in future work.

Our temperature thresholds are in accordance with previous 

work4,6,8,43–45 and agree with the general consensus that limiting global 

warming below the range of 1.5–2.5 °C above preindustrial levels can 

prevent the most severe consequences6,8. However, we do not aim to 

give a precise threshold value for the safe zone but rather to show that 

it is possible to mitigate a critical loss of the GrIS and the associated 

SLR contribution if efforts are made to (1) prevent extreme warming 

by AD 2100 and (2) reduce the temperature after a reasonable time, 

that is, centuries. Failing in either of these efforts can result in large 

SLR contributions from the GrIS even for convergence temperatures 

of between 0 and 1.5 °C above preindustrial.

Notably, in the warming-only experiments, we find that several 

intermediate stable states of the GrIS are accessible with PISM-dEBM 

as temperatures increase before the remaining ice sheet is lost 

abruptly, but not with Yelmo-REMBO. This seems, therefore, to be a 

model-dependent behaviour that is a result of applying different ice 

dynamics, climatic forcing and interactions within the system. It is clear 

that the existence of the intermediate states facilitates reversibility of 

the ice loss before the final threshold is crossed with PISM-dEBM. In 

previous studies that investigate the short-term response of the GrIS 

to global warming, it has been shown that future projections can differ 

substantially across models10,11. Yet, we find qualitatively remarkably 

similar behaviour with both models used here. A coordinated model 

intercomparison following an experimental setup such as the one used 

here would help to constrain the uncertainty in potential critical thresh-

olds and the long-term future ice-sheet evolution.

Our simulations are restricted to horizontal resolutions of 16–20 km, 

which means that small-scale processes are not well represented. The 

choice of this resolution was because of computational constraints and 

the large number of simulations. However, we are mostly interested 

in the large-scale evolution of the GrIS on decamillennial timescales. 

Previous work has shown that the chosen resolutions give similar results 

to higher-spatial-resolution simulations3, so we expect that our conclu-

sions are robust. Nonetheless, this should be a target for future work.

Long-term climate projections for Greenland remain uncertain, 

as most Earth-system-model simulations typically end by the year  

AD 2100 (ref. 46). Although we based our estimate of Arctic amplifica-

tion on Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) 
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Fig. 5 | Minimum and equilibrium ice volume for different overshoot 

scenarios. a, Minimum ice volume and maximum SLR contribution for 

different convergence temperatures (∆Tconv,JJA) between 0 °C and 4.0 °C above 

present, overshoot temperatures between ∆Tmax,JJA = 3.0 °C and 7.0 °C and 

convergence times between 100 and 10,000 years for PISM-dEBM. For higher 

overshoot temperatures and longer convergence times, the minimum ice 

volume is lower. A convergence time of 10,000 years leads to a complete, 

temporary loss of the GrIS for all overshoot temperatures. The black  

line corresponds to the equilibrium reference simulation without any  

temperature decrease. b, Same as a but for Yelmo-REMBO. The behaviour is 

similar to PISM-dEBM except for the fact that a complete temporary GrIS loss  

is already possible for shorter convergence times of 5,000 years. c,d, Same as 

a,b, respectively, but for the ice volume after 90–100 kyr. The triangles denote 

simulations that still show a trend after 100 kyr. The ice sheet regrows to the 

reference simulation in all cases with PISM-dEBM but not with Yelmo-REMBO. 

The latter shows a temperature range of roughly 0.5 °C below the critical 

threshold, which shows irreversibility after a complete loss of the GrIS.
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models, there is considerable uncertainty about the extent of future 

warming in the Arctic. Recently, it has been shown that the Arctic warms 

four times faster than the global average and thus substantially exceeds 

previous estimates and projections from climate models47. Arctic ampli-

fication of this magnitude would reduce the safe space for the GrIS 

substantially. However, surface temperatures around Greenland might 

not increase that severely in the future47,48. On multimillennial time-

scales, there may be substantial changes in global climate, atmosphere 

and ocean circulation that are hard to quantify today. For example, a 

weakening AMOC leads to decreasing Greenland temperatures13,49, 

which could help to restabilize the ice sheet. However, at the same time, 

a weakening of the AMOC is expected to decrease precipitation over 

Greenland13,49, which could lead to the opposite effect and destabilize 

the GrIS even more. These further interactions should be tackled in the 

future by Earth system models with interactive ice-sheet components.

The potential irreversibility of a loss of the GrIS is an important con-

cern8,50. Our results show that mitigation of an ice-sheet loss is possible 

if temperatures are reduced relatively quickly after a temporary over-

shoot. We find several stable intermediate ice-sheet configurations with 

PISM-dEBM that return to the present-day state if the climate returns 

to present-day conditions. However, if longer time spans are needed 

to cool down to a relatively safe convergence GMT of, for example, 

1.0 °C, the SLR contribution from the GrIS can still exceed several metres 

for thousands of years. With Yelmo-REMBO, there is a temperature 

range of 0.5 °C below the threshold that shows irreversibility; even if 

the convergence temperature is below the critical threshold after an 

initial overshoot, the GrIS does not regrow. This emphasizes the risk 

of an irreversible ice-sheet loss for long-term overshoot scenarios. 

Moreover, total runoff amounts would still be substantial even for a 

reversible ice-sheet loss, with possibly severe consequences for the 

AMOC51. Remarkably, the timescale of ice loss relative to their respective 

thresholds agrees very well across the two models used here. It should 

be emphasized nevertheless that quantitative differences between 

the two ice-sheet models are present and should be investigated in 

the future.

We find a threshold for an abrupt, complete loss of the GrIS around 

2.3 °C GMT above preindustrial level with PISM-dEBM and 1.7 °C GMT 

above preindustrial level with Yelmo-REMBO, which is in agreement 

with previously reported critical temperatures for the GrIS4,6,43–45. 

We show that a transition to an ice-free GrIS state can be avoided in 

scenarios that overshoot this critical temperature threshold, as long 

as the temperature anomaly is subsequently reduced sufficiently 

quickly. Our results highlight the critical role of warming and cooling 

rates as well as the maximum and convergence temperatures. In our 

simulations, southwestern Greenland is most sensitive to temperature 

changes and primarily determines the spatial extent of the potential 

intermediate states. However, even without an irreversible transition 

to a new stable ice-sheet state, the intermediate SLR contribution from 

the GrIS can exceed several metres, depending on the warming and 

cooling rate, as well on as the convergence temperature.

Online content

Any methods, additional references, Nature Portfolio reporting summa-

ries, source data, extended data, supplementary information, acknowl-

edgements, peer review information; details of author contributions 

and competing interests; and statements of data and code availability 

are available at https://doi.org/10.1038/s41586-023-06503-9.

1. IPCC: Summary for Policymakers. In Climate Change 2021: Mitigation of Climate Change 

(eds Allan, R. P. et al.) (Cambridge Univ. Press, 2021).

2. Levermann, A. & Winkelmann, R. A simple equation for the melt elevation feedback of ice 

sheets. Cryosphere 10, 1799–1807 (2016).

3. Aschwanden, A. et al. Contribution of the Greenland Ice Sheet to sea level over the next 

millennium. Sci. Adv. 5, eaav9396 (2019).

4. Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. 

Clim. Change 8, 1053–1061 (2018).

5. Gregory, J. M., George, S. E. & Smith, R. S. Large and irreversible future decline of the 

Greenland ice sheet. Cryosphere 14, 4299–4322 (2020).

6. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the 

Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).

7. Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J. & Dahle, C. Revisiting the 

contemporary sea-level budget on global and regional scales. Proc. Natl Acad. Sci. USA 

113, 1504–1509 (2016).

8. Armstrong McKay, D. I. et al. Exceeding 1.5°C global warming could trigger multiple 

climate tipping points. Science 377, eabn7950 (2022).

9. Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice-sheet. 

Nature 428, 616–616 (2004).

10. Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model 

ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).

11. Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet 

evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

12. Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. 

Nature 593, 74–82 (2021).

13. Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a 

high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).

102 103 104

Duration of ΔTJJA > 0 °C above present (years)Duration of ΔTJJA > 0 °C above present (years)

0

2

4

6

8

102 103 104

0

2

4

6

8

M
a
x
im

u
m

 S
L
R

 (
m

)

ΔT
max, JJA

 (°C) 7.0 5.0 3.0 1.0

a bPISM-dEBM Yelmo-REMBO

Fig. 6 | Maximum SLR contribution for different overshoot scenarios  

with a convergence GMT of 0.5 °C above preindustrial (corresponding to 

ΔTJJA = 0 °C above present). a, Maximum SLR contribution for four different 

overshoot temperatures and convergence times, up to 10,000 years.  

b, Same as a but for Yelmo-REMBO. On timescales of less than 1,000 years,  

the models show a maximum SLR contribution of less than 2 m for all overshoot 

temperatures. An overshoot temperature of less than 3 °C prevents a SLR 

contribution of more than 2 m. On long timescales, Yelmo-REMBO shows a 

slightly higher SLR contribution for high overshoot temperatures than 

PISM-dEBM.



536 | Nature | Vol 622 | 19 October 2023

Article

14. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a 

weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

15. Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional 

Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).

16. Boers, N., Ghil, M. & Stocker, T. F. Theoretical and paleoclimatic evidence for abrupt 

transitions in the Earth system. Environ. Res. Lett. 17, 093006 (2022).

17. Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic 

warming. Nature 564, 104–108 (2018).

18. Boers, N. & Rypdal, M. Critical slowing down suggests that the western Greenland Ice 

Sheet is close to a tipping point. Proc. Natl Acad. Sci. USA 118, e2024192118 (2021).

19. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to 

below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

20. Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2 °C warming by 

2100 unlikely. Nat. Clim. Change 7, 637–641 (2017).

21. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C 

climate target. Nature 572, 373–377 (2019).

22. Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role 

of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

23. Ritchie, P. D. L., Clarke, J. J., Cox, P. M. & Huntingford, C. Overshooting tipping point 

thresholds in a changing climate. Nature 592, 517–523 (2021).

24. Winkelmann, R. et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK) – part 1: model 

description. Cryosphere 5, 715–726 (2011).

25. Zeitz, M., Reese, R., Beckmann, J., Krebs-Kanzow, U. & Winkelmann, R. Impact of the  

melt–albedo feedback on the future evolution of the Greenland Ice Sheet with 

PISM-dEBM-simple. Cryosphere 15, 5739–5764 (2021).

26. Robinson, A. et al. Description and validation of the ice-sheet model Yelmo (version 1.0). 

Geosci. Model Dev. 13, 2805–2823 (2020).

27. Robinson, A., Calov, R. & Ganopolski, A. An efficient regional energy-moisture balance 

model for simulation of the Greenland Ice Sheet response to climate change. Cryosphere 

4, 129–144 (2010).

28. Tabone, I., Blasco, J., Robinson, A., Alvarez-Solas, J. & Montoya, M. The sensitivity of 

the Greenland Ice Sheet to glacial–interglacial oceanic forcing. Clim. Past 14, 455–472 

(2018).

29. Blasco, J., Tabone, I., Alvarez-Solas, J., Robinson, A. & Montoya, M. The Antarctic Ice Sheet 

response to glacial millennial-scale variability. Clim. Past 15, 121–133 (2019).

30. Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the 

Antarctic Ice Sheet. Nature 585, 538–544 (2020).

31. Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic 

Ice Sheet with the Parallel Ice Sheet Model (PISM) – part 2: parameter ensemble analysis. 

Cryosphere 14, 633–656 (2020).

32. Garbe, J., Zeitz, M., Krebs-Kanzow, U. & Winkelmann, R. The evolution of future Antarctic 

surface melt using PISM-dEBM-simple. Cryosphere Discuss. https://doi.org/10.5194/tc-

2022-249 (2023).

33. Solgaard, A. M. & Langen, P. L. Multistability of the Greenland ice sheet and the effects of 

an adaptive mass balance formulation. Clim. Dyn. 39, 1599–1612 (2012).

34. Zeitz, M., Haacker, J. M., Donges, J. F., Albrecht, T. & Winkelmann, R. Dynamic regimes of 

the Greenland Ice Sheet emerging from interacting melt-elevation and glacial isostatic 

adjustment feedbacks. Earth Syst. Dyn. 13, 1077–1096 (2022).

35. Bougamont, M. et al. Impact of model physics on estimating the surface mass balance of 

the Greenland ice sheet. Geophys. Res. Lett. 34, L17501 (2007).

36. Bauer, E. & Ganopolski, A. Comparison of surface mass balance of ice sheets 

simulated by positive-degree-day method and energy balance approach. Clim. Past 

13, 819–832 (2017).

37. Krebs-Kanzow, U., Gierz, P. & Lohmann, G. Brief communication: an ice surface melt 

scheme including the diurnal cycle of solar radiation. Cryosphere 12, 3923–3930 (2018).

38. Rückamp, M., Falk, U., Frieler, K., Lange, S. & Humbert, A. The effect of overshooting 1.5 °C 

global warming on the mass loss of the Greenland ice sheet. Earth Syst. Dyn. 9, 1169–1189 

(2018).

39. Krebs-Kanzow, U. et al. The diurnal Energy Balance Model (dEBM): a convenient surface 

mass balance solution for ice sheets in Earth system modeling. Cryosphere 15, 2295–2313 

(2021).

40. Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes 

ice-sheet stability. Science 360, 1335–1339 (2018).

41. Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution 

of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).

42. Koenig, S. J. et al. Ice sheet model dependency of the simulated Greenland Ice Sheet in 

the mid-Pliocene. Clim. Past 11, 369–381 (2015).

43. Van Breedam, J., Goelzer, H. & Huybrechts, P. Semi-equilibrated global sea-level change 

projections for the next 10 000 years. Earth Syst. Dyn. 11, 953–976 (2020).

44. Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J. & van den Broeke, M. R. 

A 21st century warming threshold for sustained Greenland ice sheet mass loss. Geophys. 

Res. Lett. 48, e2020GL090471 (2021).

45. Höning, D. et al. Multistability and transient response of the Greenland ice sheet to 

anthropogenic CO2 emissions. Geophys. Res. Lett. 50, e2022GL101827 (2023).

46. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 

experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

47. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 

1979. Commun. Earth Environ. 3, 168 (2022).

48. Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone 

ice sheet models. Cryosphere 14, 2331–2368 (2020).

49. Liu, W., Fedorov, A. V., Xie, S.-P. & Hu, S. Climate impacts of a weakened Atlantic Meridional 

Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).

50. Sommers, A. N. et al. Retreat and regrowth of the Greenland Ice Sheet during the Last 

Interglacial as simulated by the CESM2-CISM2 coupled climate–ice sheet model. 

Paleoceanogr. Paleoclimatol. 36, e2021PA004272 (2021).

51. Jackson, L. C. et al. Understanding AMOC stability: the North Atlantic Hosing Model 

Intercomparison Project. Geosci. Model Dev. 16, 1975–1995 (2023).

52. Cartopy: A Cartographic Python Library with a Matplotlib Interface (Met Office, Cartopy, 

2010); https://scitools.org.uk/cartopy

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 

4.0 International License, which permits use, sharing, adaptation, distribution 

and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 

and indicate if changes were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 

to the material. If material is not included in the article’s Creative Commons licence and your 

intended use is not permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a copy of this licence, 

visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023



Methods

PISM-dEBM-simple

We use the open-source, state-of-the-art PISM version v1.2-41-g53a9818 

with the dEBM-simple surface mass balance module and parameter-

ized climate forcing. PISM is a three-dimensional, thermomechani-

cally coupled ice-sheet/ice-shelf model that combines the shallow-ice 

approximation (SIA) and shallow-shelf approximation (SSA) of the 

non-Newtonian Stokes model. This hybrid SSA + SIA approach per-

mits modelling of the whole domain from the ice-sheet flow zone with 

grounded ice to the ice-shelf flow zones in an appropriate manner24. 

The ice rheology is based on the Glen–Paterson–Budd–Lliboutry–Duval 

flow law53 with an exponent of n = 3 with the enhancement factors ESSA = 1 

and ESIA = 3 for the SSA and SIA flow, respectively.

We use a pseudo-plastic sliding law54 of the form

τ
u

u

τ
u

= − ,
q qb c

0
1−

with the basal shear stress τb, basal sliding velocity u, yield stress τc 

and a threshold velocity u0. We chose q = 0.5 and a threshold velocity 

of u0 = 100 m year−1 for our simulations.

The yield stress is determined by the Mohr–Coulomb criterion55

τ c φ N= + (tan )c 0 till

that connects the effective pressure Ntill, a material property field ϕ 

(till friction angle) and the till cohesion c0. The effective pressure Ntill 

is determined by the subglacial hydrology model, the till friction angle 

ϕ is a piecewise linear function of bed elevation56 and the till cohesion 

c0 is set to 0.

We model the deformation of the Earth owing to the changes in the 

ice load using the Lingle–Clark model57,58. The model is described by a 

purely elastic lithosphere with a flexural rigidity of 5 × 1024 N m−1 and the 

upper mantle is represented as a three-dimensional viscous half-space 

with a viscosity of 1021 Pa s−1. The model uses a time-dependent partial 

differential equation that generalizes and improves on the standard 

elastic plate lithosphere model (ELRA)58.

To calculate the surface mass balance, we use a recently developed 

dEBM-simple25. The dEBM-simple is a modified version of the earlier 

introduced full dEBM37,39. We use the standard parameters used by 

Zeitz et al.25, except for the coefficients c1 and c2, which calibrate the 

energy balance of the snowpack in the melt equation. These we set 

to c1 = 20 W m−2 K and c2 = −50 W m−2, based on an optimization of the 

product of temporal and spatial root-mean-square error of the surface 

mass balance with regards to the MARv3.12 regional climate model 

surface mass balance from 1980 to 2000 (ref. 59). We keep the orbital 

parameters fixed to the present-day values25. The transmissivity of the 

atmosphere is given by a linear function and assumed not to change 

in future climate. For an extensive description of the dEBM and the 

implementation in PISM, see refs. 25,37,39.

The present-day near-surface temperature and precipitation rates are 

given by climatological means (monthly 1980–2000) from the regional 

climate model MARv3.12 (ref. 59). We apply an elevation-dependent 

correction of the surface temperature and precipitation, imposing a 

lapse rate of Γ = 6 K km−1. The precipitation P changes 3.6% per degree 

of temperature change. The change of precipitation with increasing 

temperature is derived from a linear fit of the mean annual precipitation 

against surface air temperature from 37 CMIP6 SSP585 runs (Extended 

Data Table 2). We use the default spatiotemporal constant ocean bound-

ary conditions with a constant sub-shelf melt rate of 0.05 m year−1.

Our simulations are initialized from a reference equilibrium state 

of the GrIS that resembles the present-day configuration. We show 

the ice-surface elevation and ice-surface velocity deviation from 

observational data in Extended Data Fig. 7. To obtain our reference 

state, we bootstrap the ice-sheet model from present-day conditions, 

including ice thickness and bedrock elevation, taken from BedMachine 

v5 (refs. 56,60), and basal heat flux61, as well as climatological mean 

(monthly 1980–2000) surface temperature and precipitation taken 

from the regional climate model MARv3.12 (ref. 59). We run the model 

until an equilibrium state is reached, but for at least 50,000 years.  

All simulations were performed on a regular rectangular grid with a 

horizontal resolution of 20 km and an equally spaced grid in the vertical 

direction with a resolution of 40 m.

We normalize the ice volume such that the initial volume corresponds 

to the observed ice volume of 7.42 m sea-level equivalent in all plots56.

Yelmo-REMBO

The ice-sheet model Yelmo26 resolves ice dynamics by means of the 

higher-order DIVA solver62. Thermodynamics are linked to dynam-

ics by means of effective viscosity, which is determined with a Glen’s 

flow law formulation (n = 3) and enhancement factors in the shearing, 

streaming and floating regimes of 3, 1 and 0.7, respectively. The basal 

friction is determined with a regularized Coulomb law63 of the form

∣ ∣
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with u0 = 100 m year−1 and q = 0.2. c c φ N= + (tan )b 0 till is the basal yield 

stress (Pa), in which Ntill is the effective pressure at the base and ϕ rep-

resents the material strength of the bed as a till friction angle. As in 

PISM, c0 = 0 and ϕ is set as a piecewise linear function of bedrock eleva-

tion with ϕmin = 0.5° at bedrock elevations at or below −700 m and 

ϕmax = 40° at or above 700 m. Effective pressure at the base of the ice 

sheet is modelled following ref. 64. When ice is frozen at the base, then 

the effective pressure equals the overburden pressure (Ntill = ρgH), and 

when a saturated water layer is present for temperate ice, the effective 

pressure reduces to 2% of the overburden pressure value. To determine 

the basal water layer thickness, basal hydrology is resolved locally (no 

horizontal transport), depending on water production from melting/

freezing the base of the ice sheet and a constant till drainage rate of 

1 mm year−1. The water layer is limited to 2 m, at which point the till 

below the ice sheet is considered saturated. Geothermal heat flux is 

imposed using the reconstruction in ref. 61. Glacial isostatic adjustment 

of the bedrock is determined using the Lingle–Clark model, as with 

PISM, and the same parameter values are used. Yelmo is run at 16-km 

horizontal resolution, with ten terrain-following coordinates in the 

vertical dimension. The ice-sheet model is coupled bidirectionally to 

the regional climate model REMBO27. REMBO is a two-dimensional 

energy–moisture balance model in the atmosphere. At the ice-sheet 

surface, the snowpack is modelled as a single layer. The surface energy 

balance is approximated through the insolation–temperature melt 

equation, which accounts for changes in insolation and temperature, 

as well as surface albedo, but ignores other components. The snowpack 

and atmosphere evolves with a daily time step over the year and pro-

vides the mean annual surface temperature and surface mass balance 

to the ice-sheet model. At the domain boundaries, the climatological 

near-surface temperature is imposed, along with desired temperature 

anomalies. REMBO resolves the snowpack and surface energy balance 

on the ice-sheet-model grid and resolves the atmospheric dynamics 

at 120-km resolution. To reduce biases in the simulated present-day 

ice sheet, an extra 4 m year−1 of melt is included in the surface mass 

balance for areas in which there is no ice present in Greenland today. 

A simple oceanic anomaly method is used to determine the basal mass 

balance for marine ice at the grounding line: ̇ ̇b b κ T= + ∆ref ocn, in which 

κ = 10 m year−1 K−1 and b = − 1 m yearref
−1̇  and ∆Tocn = 0.25T2m,ann.

Yelmo-REMBO is initialized with the present-day topography 

and ice-sheet thickness and a semi-analytical solution for the 

ice-temperature profile at each grid point. The model is then run for 

25 kyr to equilibrate the ice sheet with the climatic forcing from REMBO. 
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This is not long enough to reach full thermodynamic equilibrium, but 

the ice sheet becomes stable by this point with a well-defined thermo-

dynamic distribution. As with PISM-dEBM, we normalize the ice volume 

such that the initial volume corresponds to the observed ice volume 

of 7.42 m sea-level equivalent in all plots55.

Climate forcing

The Arctic region is experiencing the most rapid regional warming 

around the globe65–67. To translate the increase in GMT to the warming 

rate of Greenland and vice versa, we fit the historical (1850–2014) and 

SSP585 (2015–2100) global mean surface temperature to the mean 

surface temperature anomaly around Greenland for summer ( JJA) from 

the first available run of the 37 different CMIP6 models to get a scaling 

factor between regional temperature and GMT increase46 (Extended 

Data Table 1). We derive the relationship

f T∆GMT = ×∆ +0.5 °C (1)PI JJA

between GMT above preindustrial ∆GMTPI and regional summer tem-

perature increase ∆TJJA above present. The factor 0.5 °C is the increase 

of GMT in the reference period for our initial ice sheet states (1980–

2000) compared with preindustrial levels (1850–1900) and is derived 

from HadCRUT5 observational data68. The factor f = °C
1

1.19
−1  is the 

best estimate of the scaling factor between regional Greenland summer 

temperature and GMT derived from the CMIP6 SSP585 scenarios 

(Extended Data Table 1)

For the future scenarios, we a apply a spatially constant temperature 

anomaly with a temperature-dependent seasonal amplitude. We use  

the scaling factor of 1.61 between regional winter and summer tempera-

ture (Extended Data Table 1). We model the difference in the scaling 

factor between the seasons as a cosine function with a period of 1 year. 

We fit observational surface temperature in southwestern Greenland 

for winter and summer from 1850 to 2019 against summer and winter 

GMT and find consistent scaling factors68,69 (Extended Data Fig. 8).

Structural and parametric uncertainties

We address both possible structural and parametric uncertainties of 

our results. Here structural uncertainties are those associated with the 

model mechanisms and the structure of the model, whereas parametric 

uncertainties refer to those that are because of incomplete knowledge 

of the optimal values for the parameters of a given model.

We account for structural uncertainties by carrying out our experi-

ments with two independent ice-sheet models, PISM-dEBM and 

Yelmo-REMBO. We show all our results obtained with both models 

side by side in the figures and conclude that our results are remark-

ably robust for both models; they are thus unlikely to be affected by 

structural uncertainties in general, although important differences 

do arise in the details.

Also, we investigate the parametric uncertainties potentially associ-

ated with our results by performing further sensitivity analyses with 

PISM-dEBM, varying critical parameters that influence the ice dynam-

ics, surface mass balance and further climatic factors (Extended Data 

Fig. 6). Specifically, we vary the pseudo-plastic sliding exponent, the 

SSA enhancement factor, the parameter for the bed viscosity, the SIA 

enhancement factor, the grid resolution, the melt equation param-

eterization and the precipitation–temperature scaling. Furthermore, 

we show results without the Earth deformation model.

Although the exact ice-volume loss differs slightly for each com-

bination of the parameters, the qualitative behaviour remains the 

same. Only the simulation without an Earth deformation model 

shows a qualitatively different behaviour without a recovery of the 

ice sheet after an initial loss for some temperature anomalies. This 

is because of the missing glacial isostatic adjustment. The critical 

threshold of the ice sheet is not greatly influenced by the ice dynam-

ics parameterization. The melt equation parameterization and 

precipitation scaling influence the critical temperature threshold to 

some extent, yet within the range set by the two independent models. 

However, the qualitative behaviour does not change and a recovery 

after an initial loss is seen for all combinations for small temperature  

anomalies.

It should be noted that, in both models, the ice-sheet response is 

very sensitive when temperatures are close to the critical thresholds. 

For example, two simulations with PISM-dEBM show an ice-free state at 

the temperature of ∆TJJA = 2.2 °C, although the other simulations show 

a recovery to a mostly glaciated Greenland (Fig. 2a). Similar behaviour 

can be observed for Yelmo-REMBO, for which one of the simulations 

shows delayed ice loss when forced with the threshold temperature 

∆TJJA = 1.5 °C, but it eventually transitions to the ice-free state. We attrib-

ute this to computational errors that can influence the simulations for 

temperatures very close to the threshold temperature.

Data availability

The CMIP6 data are freely distributed and available at https://esgf-node.

llnl.gov/search/cmip6/ (ref. 46). The BedMachine v5 data are available 

at https://nsidc.org/data/IDBMG4/versions/5 (refs. 56,60). The output 

of the regional climate model MARv3.12 is available at ftp://ftp.climato.

be/fettweis/MARv3.12/Greenland/ (ref. 59). The observational tempera-

ture HadCRUT5 is available at https://www.metoffice.gov.uk/hadobs/

hadcrut5/ (ref. 68). The observational ice-sheet velocity MEaSUREs is 

available at https://nsidc.org/data/NSIDC-0670/versions/1 (refs. 70,71). 

The datasets generated and analysed during the current study are avail-

able on Zenodo at https://doi.org/10.5281/zenodo.8155423.

Code availability

PISM is open source and freely distributed on GitHub https://github.

com/pism/pism. The ice-sheet model Yelmo is open source and freely 

distributed on GitHub https://github.com/palma-ice/yelmo. The code 

for analysis and plotting of the model output, as well as an example 

script of how to run PISM-dEBM, is available in the same Zenodo reposi-

tory as the model output at https://doi.org/10.5281/zenodo.8155423.
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Extended Data Fig. 1 | Spatial maps of the GrIS after 100 kyr for warming 

scenarios without mitigation for PISM-dEBM. Equilibrium states of the GrIS 

for regional summer warming convergence temperatures between 0 °C and 

6.5 °C. The warming period lasts for 100 years and the temperature remains 

constant afterwards. Several different states can be distinguished: present-day 

configuration with fully extended ice sheet, several intermediate states with 

around 50–90% of the present-day ice volume for warming levels between  

0 °C and 2.0 °C and an ice-free state. The ice-sheet extent is denoted by a red 

outline. The spatial configurations correspond to the end states in Fig. 1 and 

Extended Data Fig. 5. The maps were made with the Python package cartopy52 

and Natural Earth.



Extended Data Fig. 2 | Spatial evolution of the GrIS for ΔTconv,JJA = 3.0 °C  

in Yelmo-REMBO. Exemplary transient snapshots of the GrIS for a regional 

summer warming convergence temperature of 3.0 °C. The warming period 

lasts for 100 years and the temperature remains constant afterwards.  

The ice-sheet extent is denoted by a red outline. Southwestern Greenland 

shows the highest sensitivity to warming, followed by the northern part of 

Greenland. After 10,000 years, most of the ice sheet has melted. The maps  

were made with the Python package cartopy53 and Natural Earth.
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Extended Data Fig. 3 | Maximum SLR contribution of the GrIS after warming 

and subsequent cooling for 100 years convergence time. a, Evolution of ice 

volume of the whole GrIS for regional summer temperature changes between 

0 °C and 7.0 °C above present for PISM-dEBM. The warming period lasts for 

100 years, with subsequent cooling for another 100 years to the convergence 

temperature. Three different states can be distinguished: present-day 

configuration with fully extended ice sheet, intermediate state with around 

60% of the present-day ice volume and an ice-free state. The semi-stable state 

recovers close to present-day ice-sheet volume after 100 kyr owing to glacial 

isostatic adjustment. Some runs show oscillatory behaviour on the timescale 

of several 10 kyr. The corresponding spatial maps are shown in Fig. 1 and 

Extended Data Fig. 1 and the resulting stability diagram is shown in Fig. 2.  

b, Same as a but for Yelmo-REMBO. Only two states are found; present-day and  

a near-ice-free state.



Extended Data Fig. 4 | Equilibrium SLR contribution of the GrIS after 

warming and subsequent cooling for convergence times of 1,000 and 

10,000 years. a, Stability diagram of the GrIS with PISM-dEBM. Different 

warming rates are applied for 100 years, followed by various cooling rates for 

another 1,000 years. The temperature is kept constant afterwards for another 

100 kyr. White regions indicate a present-day-like ice sheet, green–blue regions 

mark intermediate states and purple corresponds to the ice-free state.  

The grey line corresponds to the scenarios for which the overshoot temperature 

equals the convergence temperature. Below the grey line, the overshoot 

temperature in the year 2100 AD is smaller than the convergence temperature 

in 2200 AD. b, Same as a but for Yelmo-REMBO. c,d, Same as a,b, respectively, 

but for a convergence time of 10,000 years. The equilibrium states show a 

dependence on the overshoot temperature close to the threshold temperature.
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Extended Data Fig. 5 | Extended time series of ice volume for warming 

scenarios with mitigation. a, Evolution of ice volume of the whole GrIS for 

regional summer temperature changes between 0 °C and 7.5 °C above present 

for PISM-dEBM. The warming period lasts for 100 years, followed by cooling  

for another 100 years to the convergence temperature. Three different states 

are distinguishable: present-day configuration with fully extended ice sheet, 

intermediate state with around 60% of the present-day ice volume and an 

ice-free state. The semi-stable state recovers close to the present-day ice-sheet 

volume after 100 kyr owing to glacial isostatic adjustment. Some runs show 

oscillatory behaviour on the timescale of several 10 kyr. The corresponding 

spatial maps are shown in Fig. 1 and Extended Data Fig. 1 and the resulting 

stability diagram is shown in Fig. 2. b, Same as a but for Yelmo-REMBO. Only  

two states are distinguishable; present-day and a near-ice-free state.



Extended Data Fig. 6 | Sensitivity of long-term evolution under warming  

to model parameter variation. Evolution of total GrIS ice volume simulated  

by PISM-dEBM, for which the temperature anomalies are not reversed for 

different temperature anomalies between ∆TJJA = 0 °C and 6.5 °C above present 

with variations of important model parameters. The dashed lines correspond 

to simulations with changes in the parameters compared with the reference 

parameters. There is no further spin-up of the initial state to account for the 

parameter changes except for b. a, Evolution of total GrIS ice volume for 

regional summer temperature changes between 0 °C and 6.5 °C above present 

with and without an Earth deformation model. The solid line corresponds to 

the reference simulation, as we use it in the main text. b–f, Same as a but for  

the tested model parameter variation (dashed lines) in comparison with the 

reference simulation. b, Grid resolution. c, Pseudo-plastic sliding exponent.  

d, Enhancement factor for the SSA velocities. e, Half-space (mantle) viscosity.  

f, Flow enhancement factor for SIA. g, Melt equation parameter c1 (see Methods 

section ‘PISM-dEBM’). h, Melt equation parameter c2. i, Precipitation scaling. 

Although the exact ice-volume loss differs for the different parameter choices, 

the qualitative behaviour is the same. Only the simulations without bed 

deformation model show a qualitatively different behaviour without a recovery 

after an initial ice loss for temperature anomalies between 1.0 and 2.0 °C.
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Extended Data Fig. 7 | Difference between observed and simulated initial- 

state ice thickness and velocity in PISM-dEBM and Yelmo-REMBO.  

a, Difference between simulated initial state and observed ice thickness 

(BedMachine v5 (refs. 56,60)) with PISM-dEBM. Blue and red areas denote 

regions in which the simulation overestimates and underestimates the 

thickness, respectively. The root-mean-square error is 260 m. Observational 

data were regridded to a 20-km grid to ensure comparability. b, Same as a but 

for the ice sheet velocity (MEaSUREs v1 (refs. 70,71)). The root-mean-square 

error is 60 m year−1. c,d, Same as a,b, respectively, but for Yelmo-REMBO. The 

root-mean-square error of the ice thickness is 399 m. The root-mean-square 

error of the velocity is 83 m year−1. The maps were made with the Python 

package cartopy52 and Natural Earth.



Extended Data Fig. 8 | Fit of historical air surface temperature in 

southwestern Greenland against GMT. a, Linear fit of summer surface air 

temperature TJJA in southwestern Greenland (SWG)69 against global mean 

surface air temperature anomalies for 1850–2019. The GMTs are taken from 

HadCRUT5 (ref. 68). The scaling factors agree in their uncertainty with  

the CMIP6-derived scaling factors. b, Same as a but for winter surface air 

temperature TDJF in SWG against GMT.



Article

Extended Data Table 1 | Scaling factors between regional winter surface temperature in Greenland and regional summer 
temperatures and between regional summer surface temperature and global mean surface temperature

List of the 37 CMIP6 models46 used for the scaling-factor comparison. The second and fourth columns show the scaling factor between the mean winter surface temperature in Greenland 

and the mean summer surface temperature in Greenland, respectively, for historical and SSP585 runs. The third and fifth columns show the scaling factor between regional summer surface 

temperature in Greenland and global mean surface temperature.



Extended Data Table 2 | Scaling factor of annual mean precipitation in Greenland against mean summer surface temperature 
in Greenland for SSP585 runs

List of the 37 CMIP6 models46 used for the comparison. The second column shows the percentage change of the mean annual precipitation in Greenland for changing mean summer surface 

temperature in Greenland for SSP585.
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Abstract

Historical records of climate fields are often sparse due to missing measurements,
especially before the introduction of large-scale satellite missions. Several statis-
tical and model-based methods have been introduced to fill gaps and reconstruct
historical records. Here, we employ a recently introduced deep-learning approach
based on Fourier convolutions, trained on numerical climate model output, to
reconstruct historical climate fields. Using this approach we are able to realisti-
cally reconstruct large and irregular areas of missing data, as well as reconstruct
known historical events such as strong El Niño and La Niña with very little given
information. Our method outperforms the widely used statistical kriging method
as well as other recent machine learning approaches. The model generalizes to
higher resolutions than the ones it was trained on and can be used on a variety
of climate fields. Moreover, it allows inpainting of masks never seen before during
the model training.
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Introduction

Observational climate data is typically sparse before systematic observations such as

buoys, ship measurements, or satellite measurements were introduced. Generally, the

further back in time we go, the fewer observations are available [1]. Temperature and

precipitation records are the best-observed climate fields in the recent past and reach

back until the 19th century, but measurements are still sparse and rely heavily on

interpolation especially for earlier parts of the records [2, 3]. Even more severely, for

many important climate variables, such as sea-ice thickness or vegetation indices, no

measurements exist at all before the introduction of large-scale satellite missions. The

corresponding time series often span a few decades or even only years [e.g., 4, 5].

The low spatial and temporal resolution introduces large uncertainties and limits our

understanding of important climatic processes [1, 2, 6].

Several approaches and methods to produce historical climate fields based on the

available observations have been developed in the past. One approach is to run state-

of-the-art weather models with observations and past weather forecasts to produce

reanalysis products that provide a complete picture of the past weather and climate for

the last decades [7, 8]. While reanalyses are successful in providing spatiotemporally

continuous and consistent data, they often struggle with specific regions and variables

and inherit biases the employed numerical models suffer from [8, 9].

An alternative approach is to use statistical methods to reconstruct missing infor-

mation. In this regard, kriging or Gaussian process regression is widely used in the

geosciences [10–12]. However, statistical methods typically do not include knowledge

of the temporal and spatial patterns of the underlying climatic fields and therefore

fail to reconstruct these patterns, especially for large missing areas.

In recent years, machine learning (ML) has become widely used in geoscience and

climate science, with the promise of better performance than statistical methods while

still providing easy usability and, to some extent, knowledge of the underlying physical

processes [13, 14]. The applications of machine learning in climate science are vast and

range from classical time series forecasting [15–17], down-scaling and post-processing of

numerical models [18, 19], to time series reconstruction [13, 20]. Furthermore, there is a

substantial ongoing effort to combine traditional numerical Earth system models with

machine learning methods to leverage the advantages of both approaches [14, 21–28].
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In this study, we consider the reconstruction of spatial climate fields as an image

inpainting problem. Inpainting images based on given information is a classical prob-

lem in computer vision and many approaches have been proposed in recent years

[29–31]. We apply the recently introduced state-of-the-art deep learning approach

Resolution-robust Large Mask Inpainting with Fourier Convolutions (LaMa) [32] to

reconstruct different climate fields with a focus on surface temperature records. We

train our model on numerical climate model output from the Coupled Model Inter-

comparison Project to reconstruct the missing measurements in observational data.

Our method is able to reconstruct climate fields with very sparse information and

highly irregular missing data. We show that our approach outperforms kriging and

other machine learning methods. Moreover, it is able to inpaint different data sets

than the ones it was trained on, and can be used on a variety of structurally different

climatic fields at varying resolutions.

The surface temperature is one of the most important climate variables, as a direct

measure of climate change. Global instrumental temperature records reach back to

the mid-19th century [2] with local observations reaching back as far as the mid-17th

century [33]. However, on average, less than 30% of Earth’s surface before the year

1900 AD have measurements in the state-of-the-art observational data set HadCRUT4

(Fig. 1a). This is similar for other widely used long-term temperature data. Therefore,

surface temperature records serve as perfect proof-of-concept application for the image

inpainting task in climate science.

Results

To inpaint the temperature records, we train our model on the historical surface

temperatures from the Coupled Model Intercomparison Project 5 (CMIP5) ensemble

(1850–2012 AD); see Methods. We follow a previously introduced mask generation

approach [13] and mask the training data with the missing masks derived from the

observational gaps in the temperature data set HadCRUT4 [2] during training.

First, we evaluate the model on the same held-out CMIP5 member as in [13] to

directly compare with their inpainting approach, which is based on partial convolutions

(PConv). In a second step, we evaluate the trained model on each HadCRUT4 mask

for 2251 randomly held-out months of the CMIP5 ensemble. This gives a total of

4,641,750 combinations of images and masks. As a baseline comparison, we compare
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our results with statistical kriging. Subsequently, we reconstruct the HadCRUT4 data

and show examples of other applications.

Comparison with related work

In order for our method to be directly comparable to the previously introduced PConv

method [13], we evaluate LaMa on the same held-out CMIP5 ensemble member. We

mask the held-out 145th CMIP5 member with the corresponding HadCRUT4 masks

for each month over the time span 1870-2005 AD to have the same temporal range as

Kadow et al. [13] (Fig. 2a,b). We reconstruct the held-out CMIP5 member over the

whole time span with LaMa and kriging and compare it with the PConv approach,

as well as an additional reanalysis product (Fig. 2). In the following, we refer to the

square root of the spatially weighted average of the squared differences between the

ground truth and the inpainted image as the spatial RMSE. Additionally, we define

the site-wise RMSE as the RMSE at each site, averaged over the time dimension. The

mean site-wise RMSE is the spatially weighted average of the site-wise RMSE in all

grid cells. Hence, the main difference between the two main evaluation metrics that

we focus on is the order of averaging in time and space. In each time step, we exclude

the grid cells that have known values for the calculations of the RMSE.

Our model is able to realistically reconstruct the spatial patterns and amplitude

of the surface temperature. An exemplary spatial reconstruction for February 1870

for all methods, i.e. LaMa, kriging, and PConv [13], is shown in Fig. 2. There is high

agreement between the reconstructed temperature fields and the ground truth. While

the tropical and sub-tropical regions show strong similarities between ground truth

and reconstruction, the polar regions show the strongest deviation from the ground

truth for all methods (Fig. 3, Tab. 1).

All machine learning methods show an improvement compared to kriging in terms

of the mean site-wise and mean spatial RMSE (Fig. 3, Tab. 1). LaMa outperforms

all other methods with a 15% lower mean site-wise RMSE than the reference PConv

method (Fig. 3e, Tab. 1). LaMa shows the largest improvement in the northern hemi-

sphere, especially in North America and Asia, but also in the subtropical southern

hemisphere and in west Antarctica compared to kriging (green regions in Fig. 3d).

LaMa and the PConv method show a lower site-wise RMSE in 79% and 71% of the

grid cells compared to kriging, respectively. For all methods, the temporally aver-

aged site-wise RMSE is largest in the Arctic and Antarctic region. Interestingly, the

PConv approach shows a slightly worse performance in the northern and southern
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Pacific than kriging in terms of the site-wise RMSE (Fig. 3e), while LaMa shows

better performance in this region. Both ML methods show considerably worse perfor-

mance in East Antarctica and slightly worse performance in the Indian Ocean than

kriging. Note that East Antarctica is in the west in the projection shown in the maps

here. The weaker performance in the aforementioned regions is likely a result of the

high-temperature variation in these regions. Kriging, by definition, produces a smooth

temperature field that might be closer to the ground truth for highly temporally vari-

able regions. Especially for Antarctica the reconstructed temperature fields via kriging

are very homogeneous due to the distance of known measurements, while the machine

learning approaches inpaint a highly variable Antarctica as learned from the CMIP5

data (Fig. 2). This suggests that the available temperature information fed into the

networks is not sufficient to successfully infer the temperature patterns in Antarctica.

In 78% of the grid cells, LaMa shows a lower site-wise RMSE than the reconstruc-

tion based on PConv (Fig. 3f). LaMa is also able to reconstruct the GMT time series

reasonably and closely follows the ground truth (Fig. S1). LaMa shows comparable

performance to the PConv method [13] with slightly worse RMSE of the yearly GMT,

but lower spatial RMSE and higher correlation between the yearly GMT time series

than PConv and kriging (Fig. S1).

Evaluation on CMIP5

In addition to the evaluation on the single held-out CMIP5 ensemble member, we

evaluate the model on 2251 held-out months of the entire CMIP5 ensemble against

all 2064 HadCRUT4 masks. We calculate the spatial and site-wise ensemble RMSE of

the infilled evaluation temperature data and compare it with kriging (Fig. 4). Here,

ensemble mean refers to the mean over all months of the 2251 CMIP5 ensemble mem-

bers, and temporal mean refers to a mean over the masks, which corresponds to the

temporal dimension of the HadCRUT4 records.

LaMa has a temporal ensemble mean of the spatial RMSE of 1.02 K and the

reconstructed images via kriging have a mean spatial RMSE of 1.23 K (Fig. 4d). The

ensemble mean of the site-wise RMSE shows a similar behavior (Fig. 4a,b,c). LaMa

shows a more than 20% smaller mean site-wise RMSE than kriging (Fig. 4a,b,c) but

shows a higher spatial RMSE than kriging for very large masks (> 80%). Otherwise,

LaMa consistently outperforms kriging for all masks.

The spatial RMSE of the infilled images via kriging and LaMa depends on the

ratio of missing values and shows a decrease around mask number 1200-1300, which
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corresponds to the year 1950-1960 AD (Fig. 4d). This is due to the introduction of

large-scale observational instruments and therefore greater coverage of temperature

observations. Both methods show a seasonal dependency of the spatial RMSE (Fig. 4d)

due to a difference in the seasonal global temperature coverage, mostly in the polar

regions. The summer months in the polar regions have a greater coverage than the

winter months. This leads to a higher spatial RMSE for the austral winter than in

the boreal winter when observations in Antarctica are sparse, since Antarctica is the

region with the largest uncertainty.

The spatial patterns of the site-wise RMSE are similar to the site-wise RMSE

of the single member test set, with the maximum RMSE close to the poles and a

minimum in the tropical and subtropical regions (Fig. 4a,b). Especially, the RMSE in

the northern hemisphere is notably smaller for LaMa than for kriging.

HadCRUT4

After demonstrating that LaMa is able to reconstruct spatial and temporal patterns

of the CMIP5 temperatures, we apply the trained network to the HadCRUT4 observa-

tional data. We show that our method is able to accurately reconstruct the spatial and

temporal patterns of the HadCRUT4 data set. As there is no control data for the recon-

structed temperature observations, we first compare with reconstructed HadCRUT4

temperatures via kriging [6] and also analyze spatial patterns in the reconstruction,

focusing on known historical events.

We take a spatially weighted mean to obtain the temporal time series of the global

mean temperatures for all methods. The reconstructed yearly GMTs show a strong

correlation (Pearson correlation coefficient r > 0.99) and the same trend as the masked

HadCRUT4 temperature time series for all methods (Fig. 5). LaMa shows a lower

GMT for the mid-19th century relative to the masked mean and the temperature

reconstructed via kriging or PConv. The main contributor is a slightly colder Antarc-

tica in LaMa’s temperature reconstruction compared to the other methods (Fig. 5e,f).

There is no a priori reason to believe that the global mean time series reconstructed

by LaMa is unreasonable.

Due to the nature of the data, there is no ground truth that we can compare our

reconstructions to. Hence, we compare the reconstructed temperature fields to well-

known historical events such as strong El Niño episodes. The El Niño in the year

1877/1878 AD is known to have been extraordinarily strong and is linked to famines

around the globe [34, 35]. However, historical temperature records for these years
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are sparse. LaMa is able to reproduce the warm Pacific Ocean based on the sparse

records, whereas kriging is not able to reconstruct the spatial patterns of the tem-

perature anomaly (Fig. S2). The reconstruction based on partial convolutions, PConv

(Fig. S2e), also shows a warm Pacific but with a smaller spatial extent. We also show

an opposite example of a strong La Niña year with a cold Pacific for February 1917 AD

[36, 37] (Fig. S3). Kriging does not reconstruct the same spatial extent of the cold

Pacific compared to LaMa, which shows a strongly anomalous cold Pacific (Fig. S3).

Statistical interpolation tends to inpaint large missing areas with values close to zero

(e.g., Fig. S2). However, even for these anomalous historical events, it is still hard to

verify the validity of the reconstructed temperature anomalies. We compare our exem-

plary reconstructions visually with the 20CRv3.SI reanalysis [38] (Fig. S2f & S3f). The

machine learning reconstructions for the two exemplary months show a strong simi-

larity with the reanalysis, while the kriging reanalysis does not show the same spatial

patterns. This suggests that LaMa is indeed able to capture the dynamics underly-

ing the global temperature fields. However, the temperature anomalies in Antarctica,

in particular, show different spatial patterns across the different reconstructions and

temperature products.

Beyond HadCRUT4

LaMa is able to generalize to higher resolutions than the ones it is trained on and is not

restricted to temperature fields. We inpaint the 90x90 pixel Berkeley Earth Surface

Temperatures (BEST) [39] using the LaMa model trained on the 72x72 pixel CMIP5

images (Fig. S4). We also show an exemplary reconstruction of sea ice concentration

to show the application to a structurally different climatic field (Fig. S5).

We do not modify the trained model before evaluating on the BEST temperature

records. We transform the BEST temperature records to 90x90 pixel images with the

same procedure as before, which corresponds to a 156.25% higher resolution than the

images we trained the model on. LaMa, trained solely on the HadCRUT4 masks, shows

visible artifacts in the inpainted spatial fields, especially at the edges of the gaps (not

shown here), and is therefore not suitable for reconstructions on unseen masks. This

problem can easily be facilitated by employing a different mask generation algorithm

during training. By generating random masks during training on the fly, using a pre-

viously proposed mask generation algorithm [32], LaMa generalizes to different masks

than the ones seen during training. In the following, we call LaMa with randomly gen-

erated masks during the training LaMa random. We show that LaMa random is able
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to inpaint the missing areas in the BEST record without any strong artifacts (Fig. S4).

LaMa random is therefore better suited for generalization tasks when the final mask

shapes for inference are not known during the training.

It should be noted that the very low resolution we use for the training images

limits the application to higher resolutions. However, it has been shown that LaMa

can generalize to resolutions up to four times higher than those it is trained on [32].

Hence, a significantly stronger upsampling than from CMIP5 (72x72 pixels) to BEST

(90x90 pixels) should be possible.

To show the applicability to a different climate field, we train LaMa on the daily sea

ice concentration from 1979-2022, taken from the ERA5 reanalysis [8, 40] with a resolu-

tion of 180x1440 px (northern hemisphere). This gives a total of 15,450 monthly fields,

where we hold out 1,054 random months for evaluation and 1,043 random months for

validation. Even for this relatively small training sample, LaMa is able to reconstruct

the spatial extent and concentration of the sea ice reasonably well (Fig. S5). LaMa

learns the continent distribution during training and correctly predicts the extent of

the sea ice ,given very little information of the unmasked areas (Fig. S5a,d). LaMa

correctly reconstructs the seasonality of the sea ice concentration with a maximum in

winter (Fig. S5a) and a minimum in summer (Fig. S5d). The largest deviations from

the ground truth are generally at the edges of the sea ice, while the central Arctic

shows the lowest error (Fig. S5c). This exemplary case of the sea ice concentration

shows that LaMa can be applied to a variety of structurally different climate fields.

Conclusions

Reconstruction of historical observations is an active and important research field in

climate science with vast implications for the present climate, short- and long-term

future projections, and climate change attribution. Previously used methods often

struggle with large irregular gaps in climate fields or with resolving spatial patterns.

We show that LaMa is able to realistically reconstruct global temperature records

across different data sets and resolutions. LaMa clearly outperforms the widely used

kriging with a 21.0% smaller spatially averaged site-wise RMSE (Tab. 1). Further-

more, our method outperforms a previously proposed deep learning method based on

partial convolutions [13]. In terms of the spatially averaged site-wise RMSE, LaMa

outperforms PConv by 13.5% (Tab. 1), and 78% of the grid cells show a lower site-wise

RMSE on the test set (Fig. 3f).
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We train the model on very low-resolution images (72x72 pixel), which makes it

difficult to resolve global teleconnections. Nonetheless, our model is able to realistically

reconstruct spatial temperature patterns on a global level. Training on high-resolution

images is limited by the available GPU infrastructure. However, due to the ability

of LaMa to train on lower-resolution images than the ones it is evaluated on, this

problem can be mitigated. While the training of the model can take several wall time

days, depending on the training size, the evaluation is done in the order of minutes.

It is hence much faster than gap-filling with dynamical models and still faster than

statistical methods.

While LaMa can generalize to data different from its training set, the masks derived

from BEST appear to be too dissimilar from the HadCRUT4 masks, which LaMa was

trained on, to yield sensible reconstructions. We find that randomly generated masks

during training ensure applicability on masks never seen during training, but on the

HadCRUT4-derived masks LaMa almost consistently outperforms LaMa random in

terms of the error metrics (Fig. S6). We note, however, that an improved random

mask generation during training could potentially further improve LaMa random.

Furthermore, we show that LaMa can be applied to a variety of structurally very

different climate fields (Fig. S5).

The global time series reconstructed by LaMa shows slightly lower GMT until

the year 1880 AD. With LaMa we find a GMT of 1.09◦C above pre-industrial level

(1850-1900) for the period 2010-2020, while the best estimate based on the masked

HadCRUT4 data set gives a warming level of 1.00◦C for the same period. This is

mostly due to a colder southern hemisphere, especially in the Antarctic region, recon-

structed by LaMa. Due to the sparse observations at the poles, it is difficult to validate

the plausibility of the reconstructed temperatures in these areas. While the colder

Antarctica reconstructed by LaMa is a priori not implausible, we attribute a possible

underestimation of Antarctic temperatures to two reasons. Firstly, the variability of

the surface temperature in Antarctica across the CMIP5 ensemble is large [41]. For a

similar global surface temperature distribution, the temperatures in Antarctica might

differ vastly between the single ensemble members. This makes it hard for the machine

learning model to learn useful spatial connections that lead to reasonable Antarctic

temperature predictions. Secondly, the inpainting problem turns into an outpainting

problem for the polar regions, which is inherently harder. There are almost no known

measurements for any time step in close proximity to Antarctica. While LaMa is able

to extrapolate the polar regions reasonably well, the performance is worse than in
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the non-polar regions (Fig. 3). However, the left and right edges of the images, corre-

sponding to the prime meridian, do not necessarily show a higher RMSE than other

regions (Fig. 3), which suggests that this is not the main reason.

For a masking ratio of more than 80%, LaMa shows a higher mean site-wise RMSE

on the testing set than the other methods (Fig. 4d). This is due to artifacts with

unusually high temperatures in western Antarctica (bottom right corner of the image)

for some of the CMIP5 ensemble members. Similarly to Kadow et al. [13], we attribute

this to effects at the edges of the images, as mentioned above. LaMa random does

not exhibit these artifacts, which suggests that a more sophisticated mask generation

during training could resolve these issues. We do not observe any artifacts in the other

reconstructed data sets.

Convolutional neural networks (CNN) are generally not able to capture the spher-

ical geometry of the Earth well, which can lead to the aforementioned artifacts at

the edges. Graph neural networks or spherical convolutions could facilitate this prob-

lem [13, 42, 43]. The rising popularity of generative models makes it a promising

alternative to CNN-based models for the reconstruction of climate fields. Especially,

recently introduced diffusion models [e.g., 44, 45] show promising performance on

image inpainting tasks. Furthermore, by using video-inpainting techniques [46] rather

than image-inpainting, the temporal dimension of the data could directly be taken into

account. However, little work has been done so far in that direction and the physical

plausibility of such models remains uncertain.

Reconstructions via deep learning can aid in understanding past and present

changes in the Earth system. By learning the spatiotemporal patterns of the underly-

ing climate fields, LaMa is able to realistically reconstruct a variety of observables with

varying resolutions. Our easy-to-use deep learning model clearly outperforms previous

methods and therefore serves as an alternative to conventional methods used in the

geosciences.
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Methods

Resolution-robust Large Mask Inpainting with Fourier

Convolutions (LaMa)

We utilize the recently introduced LaMa model [32] that builds on Fourier convolu-

tions for reconstructing missing image regions. LaMa is a feed-forward ResNet-like

inpainting network with a multi-component loss. LaMa has been shown to outper-

form other machine learning methods such as AOT GAN [47], GCPR [48], or latent

diffusion models [32, 49, 50], and is able to inpaint large missing areas with a high

receptive field. LaMa is able to inpaint high-resolution images even if trained on lower-

resolution images. We extend and modify the model to allow drawing of pre-generated

masks from HDF5 files during training and evaluation, as well as to enable training

and evaluation on rectangular images. LaMa outperforms the method based on par-

tial convolutions [13] in terms of spatial metrics and shows comparable performance

on a temporal mean global scale. For the full description of the network architecture

we refer to the original paper [32].

Training procedure and preprocessing

We train the model on the monthly surface temperature (tas) of 239,616 CMIP5

ensemble members following [13]. For the training and evaluation, we transform the

temperature records into 72x72 px greyscale png-images with three identical RGB

channels. We normalize the images with respect to the maximum and minimum val-

ues in the full CMIP5 set such that the maximum temperature corresponds to 255

and the minimum value to 0. Therefore, the maximum resolution of the reconstruc-

tion is given by |umax|+|umin|
256 with u as the climatic field of interest. For our monthly

mean temperature reconstruction, this leads to an effective maximum resolution of

approximately 0.19 ◦C. We convert the floats to integers during the transformation

of the temperature records to images by truncation. In the following, we take the

transformed temperature records as ground truth when we refer to the metrics of our

machine learning model. For simplicity, we only plot the non-transformed HadCRUT4

temperature time series and add the difference between the HadCRUT4 masked tem-

perature records and the transformed HadCRUT4 temperature records when we plot

the reconstructed LaMa temperature time series.

We hold out 27,702 images for validation and 2,250 images for evaluation. Fur-

thermore, we hold out one CMIP5 ensemble member from training for comparison
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with the approach by [13]. We use two different mask-generation methods during the

training. For the first approach, we train the model on randomly drawn masks derived

from the HadCRUT4 [2] missing masks. In the following, we name this model LaMa.

Our second approach generates random masks following the approach of [32] during

training, hereafter LaMa random. We train both models on two NVidia Tesla V100

GPUs with a maximum of 60 epochs with a batch size of 100. We choose the training

checkpoint with the lowest error metrics on the evaluation data set for each model.

Therefore, we use the 57th checkpoint for LaMa random and the 60th checkpoint for

LaMa fixed. For the full training parameters, we refer to the configuration files in the

GitHub repository.

We use the software package PyKrige [51] for reconstructing the temperature

records via kriging.
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Fig. 1 Spatial map and temporal time series of missing observations in HadCRUT4. (a)

Time series of the missing value ratio on the grid cell level in HadCRUT4 for the whole Earth. There

is a steady increase in the observational temperature coverage with some exceptions such as the two

world wars. (b) Spatial missing ratio in HadCRUT4 over the whole time span from 1850-2022. The

polar regions show the lowest coverage of temperature records.
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Fig. 2 Exemplary reconstructed CMIP5 temperatures for all methods. (a) Masked ground

truth for February 1870 derived from a held-out CMIP5 member, masked with the corresponding

HadCRUT4 mask for this date. White areas denote masked regions. (b) Ground truth without

masking. (c) Infilled temperatures via LaMa. The spatial patterns are very similar to the ground

truth. (d,e) Same as (c) but for PConv [13] and kriging, respectively. While the spatial patterns

reconstructed by the deep learning methods are very similar to the ground truth, some regions show

the opposite trend in the temperature e.g., northern South America.
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Fig. 3 Average site-wise root-mean-square error and comparison between methods for

single held-out CMIP5 member. (a) Temporally averaged RMSE at each site for inpainted

CMIP5 held-out member using LaMa fixed. The white areas denote the regions with available temper-

ature records for the whole time span 1870-2005 AD. The spatially weighted average of the site-wise

RMSE is 0.64◦C. The polar regions, especially Antarctica, show the greatest RMSE, while the trop-

ical and subtropical regions show the smallest RMSE. (b, c) Same as (a) but for PConv [13] and

kriging. Both machine learning methods show a smaller mean RMSE than kriging. Especially in the

northern hemisphere the RMSE is smaller. (c) Difference between temporally averaged RMSE at

each site for LaMa and kriging. Green areas denote regions where the RMSE of LaMa is smaller

than that of the baseline kriging method. Purple areas denote greater RMSE than for kriging. LaMa

fixed shows a lower RMSE than kriging in 79% of the grid cells. (d) Same as (c) but for PConv [13].

PConv shows in 71% of the grid cells a smaller RMSE than kriging. (e) Comparison between LaMa

and PConv. Green areas denote regions where the RMSE of LaMa is smaller than of the PConv

method. LaMa shows a lower RMSE than PConv in 78% of all grid cells.
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Table 1 Comparison between all methods in terms of the RMSE. Spatially weighted

average of the site-wise RMSE and average spatial RMSE for both LaMa methods, PConv, and

kriging for the single CMIP5 ensemble member. The improvement compared to kriging is denoted

in the parentheses. LaMa shows considerable improvement in comparison with the other methods.

LaMa random outperforms kriging and has a similar performance as PConv.

Model spatially averaged site-
wise RMSE [◦C]

temporally averaged spa-
tial RMSE [◦C]

LaMa 0.64 (21.0%) 0.99 (16.8%)
LaMa random 0.74 (8.6%) 1.10 (7.6%)
PConv 0.74 (8.6%) 1.08 (9.2%)
Kriging 0.81 1.19
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Fig. 4 Error statistics on the held-out CMIP5 members for each HadCRUT4 mask.(a)

Average site-wise RMSE for kriging on the randomly held-out 2251 months from the CMIP5 ensemble.

We calculate the site-wise RMSE for every combination of HadCRUT4 masks from 1850 to 2021 AD

and month. The spatially weighted average of the site-wise RMSE is 0.85◦C. The polar regions show

the largest RMSE, while the tropics and subtropical oceans show the lowest RMSE. White grid cells

denote regions where temperature observations are available for the whole time span. (b) Same as

a but for LaMa. The site-wise RMSE is lower in most grid cells than for kriging. Especially, in the

northern hemisphere there is a strong improvement compared to kriging. LaMa outperforms kriging

in terms of the spatially averaged site-wise RMSE. (c) Difference between temporally averaged RMSE

at each site for LaMa and kriging. Green areas denote regions where the RMSE of LaMa is smaller

than that of the baseline kriging method. Purple areas denote greater RMSE than for kriging. (d)

Spatial RMSE for both methods and all HadCRUT4 masks, which are ordered in time; note that

generally the size of the masks in terms of the number of missing data declines over time. LaMa

outperforms kriging almost consistently for all masks. LaMa shows a higher RMSE than kriging for

very large masked areas (≥ 80%) but outperforms kriging otherwise. Especially for small masks, the

average spatial RMSE is substantially lower for LaMa than for kriging.
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Fig. 5 Reconstructed HadCRUT4 global mean temperature time series. (a) Monthly

HadCRUT4 timeseries from 1850 to 2022. The reconstructions from LaMa and kriging as well as

the mean of the masked HadCRUT4 records are shown. The dashed black curve is the spatially

averaged GMT derived from the incomplete HadCRUT4 observations. (b) Same as a but for the

yearly averaged GMT. Additionally, we show the reconstruction based on the PConv method. The

Pearson correlation between the masked time series, i.e., yearly GMT and LaMa is rLaMa = 0.99,

for kriging rkriging = 0.99 and rPConv = 0.99. (c,d) Same as a but for the Northern and Southern

hemisphere, respectively. (e,f) Same as c,d but for the yearly time series.

27



Supplementary Information

28



1880 1905 1930 1955 1980 2005
Year AD

0.025

0.050

0.075

R
M

S
E

 [
K

]

LaMa RMSE = 0.0379

Kriging RMSE = 0.0276

PConv RMSE = 0.0157

1880 1905 1930 1955 1980 2005
Year AD

0.85

0.90

0.95

1.00

C
o

rr
e

la
ti

o
n

LaMa r = 0.9877

Kriging r = 0.9734

PConv r = 0.9873

1880 1905 1930 1955 1980 2005
Year AD

0.8

1.0

1.2

S
p

a
ti

a
l 

R
M

S
E

 [
K

]

LaMa RMSE = 0.9925

Kriging RMSE = 1.5757

PConv RMSE = 1.0771

a

b

c

Fig. S1 Comparison with reconstruction method via PConv and kriging for held-out

CMIP5 member. (a) Root-mean-squared error between infilled yearly time series for LaMa, kriging

and PConv [13] and the held out CMIP5 member (ground truth) in a rolling window with size

w = 10 years (1870-2005 AD). The mean RMSEs over the whole time period are denoted in the

legend. (b) Same as (a) but for correlation between yearly temperature time series. (c) Weighted

spatial root-mean-squared error of monthly temperature fields in a rolling window with window size

w = 10 years.
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Fig. S2 Reconstructed HadCRUT4 temperature field for November 1877. (a) Original

HadCRUT4 temperature anomaly records. This also corresponds to the input into the trained model.

(b) Reconstructed temperature anomalies with LaMa. The strong El Niño is clearly visible in the

Pacific. (c) Same but for LaMa random. The spatial extent of the El Niño is clearly visible. (d)

Reconstructed temperatures via PConv [13]. (e) Reconstructed temperatures via kriging [6]. The

method fails to reconstruct the spatial extent of the El Niño. (f) Temperature anomalies taken from

20CRv3.SI reanalysis.
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Fig. S3 Reconstructed HadCRUT4 temperature fields for February 1917. (a) Original

HadCRUT4 temperature anomaly records. This also corresponds to the input into the trained model.

(b) Reconstructed temperature anomalies with LaMa. The strong La Niña is clearly visible in the

Pacific. (c) Same but for LaMa random. The spatial extent of the La Niña is clearly visible. (d)

Reconstructed temperatures via PConv [13]. (e) Reconstructed temperatures via kriging [6]. The

method fails to reconstruct the spatial extent of the La Niña. (f) Temperature anomalies taken from

20CRv3.SI reanalysis.

31



3

2

1

0

1

2

3

Te
m

p
e

ra
tu

re
 a

n
o

m
a

ly
 [

°C
]

a b

c d

April 1850 August 1851

Fig. S4 Reconstruction of two exemplary months for higher resolution BEST data set.

(a) Reconstruction of BEST [39] (90x90 px resolution) for April 1850 using LaMa random trained

on CMIP5 (72x72 px resolution). (b) Same as (a) but for August 1851. (c,d) Same as (a,b) but for

not inpainted temperature records, respectively.
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Fig. S5 Exemplary reconstruction of sea ice concentration for two different months in

ERA5. (a) Ground truth of sea ice concentration for held-out December 14, 1979 taken from ERA5

reanalysis [40]. Hatched area denote regions that are masked for reconstruction. We use LaMa fixed

trained on daily sea ice concentration from 1979 to 2022 taken from ERA5 for the reconstruction.

(b) Reconstructed sea ice concentration via LaMa fixed. The model is able to reconstruct the spatial

extent and concentration of the sea ice reasonably well. (c) Absolute difference between the ground

truth and the reconstructed sea ice concentration. Red areas denote overestimated sea ice concentra-

tion by the reconstruction, while blue regions denote underestimated sea ice concentration. (d,e,f)

Same as a, b, c but for September 16, 1979, respectively.
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Fig. S6 Difference in site-wise RMSE between LaMa random and LaMa/Kriging. (a)

Difference between temporally averaged RMSE at each site between LaMa random and LaMa for

held-out CMIP5 member. The white areas denote the regions with available temperature records for

the whole time span 1870-2005 AD. Purple areas denote regions where the RMSE of LaMa random

is greater than of LaMa. Green areas denote where the RMSE of LaMa random is smaller than for

LaMa. LaMa shows a lower RMSE than LaMa random in 82% of the grid cells. (b) Same as a but

for the difference between LaMa random and kriging. LaMa random shows a lower site-wise RMSE

than kriging in 65% of the grid cells (green areas).
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