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Abstract—In recent years, the energy efficiency of buildings 
has received increasing attention due to climate change 
mitigation goals, and higher energy costs. This paper explores 
the integration of 3D models, IoT sensors, Digital Twins (DT), 
data-driven modeling, and Artificial Intelligence (AI), 
particularly Machine Learning (ML) algorithms, to enhance 
energy performance prediction and optimisation in existing 
buildings. By leveraging real-time data from IoT sensors, DTs 
provide a comprehensive digital representation of buildings, 
facilitating intelligent monitoring and control for enhanced 
energy efficiency and occupant comfort. This paper presents the 
development and application of a data-driven DT for an office 
building in Norway, focusing on energy performance prediction. 
Through a case study, specific outcomes and insights are 
gathered regarding the feasibility and benefits of this approach, 
together with its inherent limitations. The results highlight that 
significant advancements in energy efficiency could be achieved 
through predictive modeling and intelligent control strategies. 
In future, adaptation of these technologies requires addressing 
key challenges and advancing methodologies for broader 
implementation. By identifying and addressing these challenges, 
the integration of IoT sensors, DTs, and AI holds considerable 
scope for optimising building energy performance and 
advancing sustainability objectives. 

Keywords—AI, Artificial Neural Network, energy efficiency, 
case study 

I. INTRODUCTION 

The building sector consumes more than one-third of the 
total electricity produced globally[1] and contributes 
substantially to Greenhouse Gas (GHG) emissions, making 
them pivotal for advancing environmental sustainability. 
Consequently, sustainable buildings play an important role in 
achieving the 2030 UN sustainable development goals[2]. As 
a result, governments worldwide are increasingly prioritizing 
initiatives and policies aimed at enhancing building energy 
efficiencies and promoting energy savings. In this respect, 
advancements in the building intelligence presents a 
significant opportunity for improving the energy efficiency of 
buildings. The revised Energy Performance of Building 
Directive (EPBD)[3] is the main legislative instrument 
defining requirements for energy efficiency in buildings 
across Europe. By 2050, the EPBD aims to achieve a highly 
energy-efficient and decarbonised building stock by 
transforming it into nearly zero-energy buildings (nZEB)[4]. 

It specifically focuses on the worst-performing buildings, and 
digital technologies can support both efficient building 
operation and renovation planning by collecting data from 
various sources for simulations, automation, and decision 
support. This reinforces the prospects for advancing digital 
twin-based optimisation of building energy efficiency in the 
future. 

Digital Twins (DT) are virtual representations of physical 
objects or systems updated from real-time data, and use 
simulation, machine learning (ML), and reasoning to aid 
decision making [5]. The Digital Twin consortium defines 
DTs as “a virtual representation of real-world entities and 
processes, synchronized at a specified frequency and fidelity. 
DTs use real-time and historical data to represent the past and 
present and simulate predicted futures. DTs are motivated by 
outcomes, tailored to use cases, powered by integration, built 
on data, guided by domain knowledge, and implemented in 
IT/OT systems” [6] . In the context of buildings, DTs with the 
integration of IoT sensors offer several applications and 
advantages, particularly help facility managers to gain new 
operational insights such as real-time visibility into building 
energy consumption, demand, and energy usage patterns, as 
well as assist in monitoring energy performance of the 
building, optimising energy use and overall efficiency of the 
building. Being a virtual replica of the physical asset, DTs also 
offer the capability to model future behaviour of a building 
and anticipate how it will react to changes with predictions 
based on the present and historical data [7].  

The recent, massive developments around DTs, IoT and 
connected sensor applications generate an increasing amount 
of data. To maximise the benefits offered by these digital 
solutions, the data should be leveraged to generate new 
knowledge such as visualisations of trends, anomalies, etc.  AI 
plays a crucial role in processing the vast amount of data from 
the DTs by offering advanced algorithms and techniques for 
analyzing, interpreting, and extracting valuable insights from 
the large and complex datasets. By using AI as one of the 
building blocks when designing and building a DT, we can 
utilize the powerful capabilities within AI techniques to create 
a simulation and prediction of the energy consumption of the 
building. AI has the ability and power to interpret the complex 
correlations between the different sensors and metering 
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devices to predict the behaviour of the building when altering 
its energy usage. This predictive capability could empower 
facility managers to make informed decisions about energy 
optimisation strategies, thereby enhancing overall efficiency 
and sustainability in building operations. 

Another key constituent of a building energy DT is how 
the information is visualised. Visualisation enhances the 
utility and effectiveness of DTs by transforming raw data into 
actionable insights facilitating informed decision-making, 
communication, and collaboration.  There are numerous ways 
to visualise building DTs, their energy parameters, 
simulations, and predictions. Nevertheless, visualising it in 3D 
provide end-users with a more intuitive, immersive, and 
engaging experience that enhances their understanding and 
interpretation of complex datasets. By leveraging the spatial 
dimension to represent data in a more realistic and interactive 
manner, 3D visualisations enable users to explore, analyse, 
and communicate insights in ways that are not possible with 
traditional 2D visualisations.  

 
The combination of above pioneering digital solutions, 

analytical methods and visualisation tools can play a crucial 
role in energy management and promoting the energy 
efficiency in the buildings. Thus, in this paper we aim to 
address the research gap in optimising the energy performance 
in existing buildings by introducing and investigating the 
potential of DT and AI technologies. In addition, we propose 
a standardized and interoperable data architecture for wider 
adaptation of these technologies for building energy 
management. The rest of the paper is structured as follows: 
The “Methodology” section presents our DT Framework and 
discusses its constituent parts. The “Case study and findings” 
section explains how our DT concept has been applied to one 
of the office buildings in Halden, Norway. The “Discussion” 
section exchanges our views about the findings and what we 
need to achieve a scalable DT platform for building energy 
optimisation followed by the “Conclusion” section concluding 
on the findings of the paper and future directions for the 
research in this area. 

 Fig. 1.  Components of a building energy Digital Twin 

II. METHODOLOGY 

A. Digital twin framework design 

Fig. 1 illustrates an overview of the components of an 
energy DT in 3D for a building. To construct a digital 

representation of the building, both static information such as 
digital building information in the form of 3D models, 
blueprints and dynamic information such as the building's 
energy performance parameters through the sensors are 
required. Following the acquisition of these data components, 
mathematical models and algorithms are required to 
effectively model, simulate, and predict the energy 
performance of a building for optimisation. Subsequently, 
after the data integration and analysis, dashboards and 
visualisation tools should be implemented in a DT platform 
to display real-time data streams, performance metrics, and 
key performance indicators (KPIs) associated with energy 
usage and efficiency. At this stage, a DT of a building could 
serve as a powerful tool for optimizing energy usage, 
improving operational efficiency, and enhancing overall 
sustainability performance. By providing real-time insights, 
predictive analytics, and advanced control capabilities, DTs 
empower users to make informed, data-driven decisions.  

B. 3D model of the building 

To establish a building DT in 3D, the first step is to obtain 
the precise geometry of the building. Typically, this 
information is sourced from the Building Information 
Modeling (BIM) files associated with the building. BIM 
models serve as digital representations of physical and 
functional characteristics of buildings and infrastructure. 
These models are three-dimensional (3D) and contain 
detailed information about various components of a building, 
including geometry, materials, spatial relationships, and 
building systems [8]. Originally conceived as a control tool 
for the project implementation and management process, 
BIM has huge potential for advancing building intelligence. 
However, its utilization is hindered by a substantial 
"interactivity" gap in accessing data [9]. Moreover, another 
key barrier for leveraging BIM for DTs is the unavailability 
of BIM models for the majority of existing buildings. In the 
absence of BIM models, one solution is to create the 3D 
model of the building using 3D modelling tools. However, 
this is often a resource-intensive and time-consuming process 
especially for larger buildings with complex geometries. For 
this reason, 3D scanning has been utilised for creating the 3D 
replica of the building for this study. 

 

3D scanning emerges as an efficient method for capturing 
as-built models of the buildings, offering accurate geometries 
and realistic visualisation when 3D models are not available. 
For this case study, various 3D scanning approaches have 
been devised for capturing and modelling both the exterior 
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and interior of the building. The outside of the building has 
been modeled using photogrammetry (Fig. 2), utilizing 
images captured by a drone. In total, 228 pictures were 
captured using DJI mini 2 drone from various angles and 
distances covering the whole outside area of the building. 
These images were then processed using the photogrammetry 
software tool 3DF Zephyr[10] for feature extraction, 
triangulation, point cloud generation, surface reconstruction 
and texture mapping. Meanwhile, laser scanning has been 
employed for capturing the interior of the building. Leica 
BLK360 precision imaging laser scanner and Leica cyclone 
FIELD 360 mobile application[11] were used for capturing 
and generating the 3D point cloud data of the building interior 
(Fig.4). The decision to leverage these technologies were 
made based on the assessment of required level of detail, 
limitations of the technologies and available resources.  

 

 

 

 

 

 

 

C. Live measurements of the energy parameters of the 
building 

Another crucial component of the energy DT involves 
acquiring live data from the building. Several IoT sensors 
were installed at various locations of the building for 
monitoring the Indoor Environment Quality properties such 
as temperature, humidity, CO2 and for counting the 
occupants. These sensor measurements can be retrieved in 
real-time through APIs. In addition, energy related 
measurements from smart meters, external weather 
conditions are also retrieved through dedicated APIs to 
measure the overall electricity consumption of the building in 
real time.  To be able to collect data from various sensors, 
ranging from old legacy sensors to modern sensors/IoT 
devices, there is a need to standardise and harmonise data 
according to a common data model and API. Two examples 
of the EU prioritizing standards are the Interoperable Europe 
Act[12] which aims to strengthen digital service 
infrastructures in the public sector across the EU, and the 
collection of standards in the Blueprint 1.0 [13] which 
supports the deployment of the European Data Spaces 
published by the Data Spaces Support Centre. The NGSI-LD 
standard[14] and the related technology stack from FIWARE 
[15] have been selected to achieve interoperability and 
comply with the Blueprint 1.0. At the core of the FIWARE 
technology stack, the context broker is the engine that 
receives standard API calls from a DT ecosystem and 
provides context information about building entities like 
hallways, meeting rooms, HVAC systems or the external 
environment. The context broker supports both queries and 
subscription to the context information. Based on these 
considerations, FIWARE compliant YGGIO Data 
infrastructure Management System (DiMS) middleware from 
Sensative[16] has been used for handling the data from the 
IoT devices.  

D. Data-driven models for simulation and prediction of 
energy consumption 

Based on the available sensor measurements described in 
the previous section and the data obtained from 
energimeter.no, which provides details on all the energy 
consumed by the building along with outdoor temperature 
data, our model focuses on estimating the energy required to 
maintain a comfortable temperature inside the building. 
Another aim of the model is to predict potential energy 
savings achieved by reducing the building's energy 
consumption. Given the number of temperature sensors 
across various floors and rooms, our aim was to devise a 
model capable of estimating the temperature at each sensor 
point. To achieve this, a model that predicts temperature 
increments based on energy consumption was developed. 
Consequently, the temperature difference between indoor and 
outdoor temperatures was chosen as the output of the 
network. The energy consumption, outdoor temperature, 
temperature of the air entering the ventilation system and the 
frequency of the ventilation fan were selected as inputs for 
the model. The reason for also selecting the frequency of the 
ventilation fan is because it is typically shutdown during the 
night, which could impact room temperatures. While 
radiators installed in every room serve as the primary source 
of heat in the building, the temperature within the ventilation 
system also influences room temperatures. 

The model was constructed as a fully connected neural 
network model (dense neural network). In the input layer, 4 
nodes were incorporated to represent energy consumption, 
outside temperature, ventilation fan frequency, and 
ventilation system temperature. The model featured 3 hidden 
layers of the Dense type using the RELU activation function, 
comprising 20,10 and 20 nodes and the output of the model 
was 15 nodes with temperature rise. The loss function was set 
to mean squared error and the model used the stochastic 
gradient descent method called Adam as the optimizer. In 
total, the model encompassed 825 parameters for the neural 
network. The building DT utilizes this model to forecast the 
consequences of altering various building energy parameters. 
For instance, one scenario involves assessing the temperature 
effects if energy consumption of the building is reduced by 
20%. Another use case is predicting energy consumption 
fluctuations in response to changes in outdoor temperature. 
Leveraging this model and weather forecasts, the DT can 
offer accurate estimates of the energy required to maintain 
specific thermal comfort within the building. 

E. Platform for visualisation of the DT 

An interactive 3D application was created to visualize the 
DT, allowing users to get an overview of the sensor data and 
assess if they are within operating limits. Users can navigate 
freely through the virtual environment, observing sensors 
within the building and exploring their respective values. By 
utilizing the Unity game engine [17], the application presents 
a view of the building’s surroundings, incorporating a low-
fidelity model based on data from OpenStreetMap [18] and a 
photogrammetry model for the building’s exterior (Fig. 3). 
As users approach the building in the application, it fades out 
to reveal interior floors and sensor data (Fig. 4). The floors 
are either visualised using detailed 3D models created from 
laser scans (Fig.4), or simple 2D floor plans (Fig. 5). The 
sensor values are depicted by circular icons that are color 
coded red, yellow or green depending on preset limits. To 
avoid visual clutter, a level of detail approach based on 

Fig. 2.  3D model of the building generated using photogrammetry 
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distance is used for the sensor data visualisation. At a 
distance, multiple sensor values at the same location are 
combined into one. They are split as the user approach and 
textual representation is added as the user gets even closer. 

Fig. 3.  The building seen from the outside in the DT platform. 

Fig. 4.  Interior of the building floors and sensors visualised. 

Fig. 5.  Interior of building visualised using floor plan 

III. CASE STUDY AND FINDINGS 

A.  Pilot building 

The developed DT and ML model framework were 
employed to study the energy performance of one of the 
office buildings of Institute for Energy Technology (IFE), 
located in the city of Halden, Norway. The building was 
constructed in 1947 with 4 floors occupied by offices, 
meeting rooms, a workshop, laboratories, and an auditorium. 
The building features a concrete and brick structure with 
insulated walls and windows comprising a modern 
centralised heating and ventilation system. As part of the 
smart buildings’ initiative, the building is fitted with 62 IoT 
sensors measuring and providing real time information about 
the number of occupants in the building, indoor temperature, 
humidity, CO2 levels at various parts of the building. 

B. Energy performance study of the pilot building 

Through these installed IoT sensors data were obtained 
and analysed to acquire detailed insights into the building's 
energy behaviour across different seasons throughout a 10-
month monitoring period from 1/1 2023 to 31/10 2023. The 
energy consumption of the building for the same period was 
retrieved through the smart meters and energy supplier´s 
database. Outdoor climate information was retrieved through 
the nearby weather station in the surrounding area. 

A relevant set of operational indicators such as indoor 
temperature, humidity and CO2 levels were employed with 
the purpose to provide information on the actual energy 
performance of the building to different stakeholders 
including the facility managers, service providers, 
researchers, and occupants.   

Data were collected with a sampling interval of 1 hour, 

leading up to 6440 differing datasets for the study period. All 

data were normalised (range: 0-1) using the MinMaxScaler 

in the scikit-learn package. Then the data were shuffled and 

divided into a training set and a test set by using the 

train_test_split function in scikit-learn, the fraction for 

training where 2/3 and the last 1/3 were used for testing 

purposes. For training, noise with 0.05 stddev was added to 

prevent overfitting. In addition, the learning rate during 

training was adjusted, starting at 1e-3 down to the selected 

minimum value at 1e-6. The training was performed with 300 

epocs and a batch size of 32. As seen from the trend in Fig. 

6, the model quickly converged to a solution that fitted the 

validation set (10% of training data) well. 

Fig. 6. Loss function development during the training process 

After training, the last 1/3 of the data were used to test the 
model. For the different test sets we obtained a RMSE value 
of around 0.0028, indicating that this model behaves well for 
this problem. Main purpose of the model was to act as an 
analytical and predictive tool for the DT, where it accepts the 
inputs as described earlier, normalises the data (using the 
same fitted scaler), predicts the temperature raises and returns 
this back to the visualisation layer of the DT. This provides 
us the ability to predict the temperatures when we the energy 
consumption is manipulated. With this model, the facility 
managers can adjust the energy supplied to the building´s 
heating system while continuously monitoring the changes in 
the thermal comfort of the building.  For example, the heating 
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can be turned off/reduced in the weekends and evenings when 
there is no occupancy in the building. To test this, the energy 
consumption of the building was reduced by 20% to see what 
effect this would have on the indoor temperature. In Fig.7, the 
plot illustrates the indoor temperature predictions generated 
by the model following a 20% reduction in energy 
consumption. Presently, the building operates without any 
energy reduction during nighttime or weekends, resulting in 
excessive energy consumption. According to our model, 
implementing a 20% reduction in energy would yield only a 
slight decrease in temperature, averaging just over 2 degrees. 
By incorporating these predictive insights into the DT, 
important information could be effectively communicated 
with different stakeholders. For example, in the case of this 
building where heating and ventilation systems are managed 
by separate entities, facility managers could leverage the DT 
to convey optimal control settings for the HVAC system. 

Fig. 7.  Comparison of Results from the model: Baseline Energy 
Consumption vs. 20% Reduction Scenario 

The 3D DT application enables users to analyse historical 
data by selecting specific dates and times, providing insights 
into past performance of the building. Additionally, users can 
leverage the ML model to assess the effects of adjusting 
energy levels on temperature. Fig. 8 shows an example 
visualisation of the depicted temperature and humidity at 
100% energy level alongside a reduction of 4 degrees in 
temperature when energy consumption is decreased by 30%. 
This highlights clear opportunities for energy conservation 
without compromising the thermal comfort of the building.  

IV. DISCUSSION 

The 3D visualisation of the DT offers the advantage of 
providing a quick overview of the building's thermal 
condition and determining whether it operates within 
established limits. It facilitates the identification of any 
deviations, existing problems, and their specific locations. 
However, one main challenge for the 3D visualisation is 
obtaining a clear view inside the building, as floors, walls, 
and other geometrical elements may obstruct each other and 

the sensor values. It is also challenging if there are areas with 
a high concentration of sensor values as they will occlude 
each other. We have tried to address this issue by dynamically 
adjusting transparencies and employing level of detail 
techniques, yet finding an optimal view could remain 
challenging for non-expert users of 3D navigation. To further 
enhance the user experience, predefined viewpoints could be 
offered, alleviating the need for users to navigate the 
visualisation manually. 

Processing of data from IoT sensors presents significant 
challenges due to the diverse types and quantities of sensors, 
as well as the frequency of data collection. Since DTs rely on 
historical and real-time data from the sensors for reflecting 
the historic and current state and predict future state of the 
building, standardization of the IoT platform is essential for 
ensuring interoperability, scalability, ease of integration, and 
data consistency. By applying the NGSI-LD standard 
instantiated by FIWARE IoT agents and the FIWARE 
Context Broker (Fig. 9), the data stream from the various data 
sources will be normalised according to the selected data 
model and stored as JSON documents in MongoDB [19]. 
FIWARE make use of Smart Data Models [20] to safeguard 
a standarised API to access the data, even if the data in their 
IoT vertical have been represented according to various 
standards. 

Fig. 9.  Data architecture framework for the DT 

Other crucial aspects to consider in the implementation of 
DT are the data security and privacy. IoT sensors capture 
highly valuable and often sensitive data, making it vital to 
protect the data from security breaches. Particularly when 
sensors inadvertently or intentionally track individuals, 
privacy concerns become foremost important. This warrants 
further research and exploration in the data security and 
privacy topics.  

A. Limitations of the model 

As the temperature control in the case study building 
maintained at a stable state within limits, there have been very 
limited fluctuations in the indoor temperature. On the other 
hand, outdoor temperature has exhibited many transients 
during the observed period. To improve the quality of the 
model, it would be beneficial to incorporate transient 
temperature variations indoors as well. Typically, such 
models would be solved as timeseries issues, considering the 
time it takes for indoor temperature adjustments, known as 
the time constant. However, as indoor temperature transients 
have not been observed, the model does not account for time 
constants. To enhance the model further, Long Short-Term 
Memory (LSTM) layers should be implemented in the model, 
for treating the data more as timeseries. Without time 
considerations, the model assumes a steady-state situation for 
indoor temperature. 

Fig. 8.  (i) Temperature at 100%.    (ii)Temperature after reducing energy 
consumption by 30%. 
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Occupant behaviour is another critical variable in the 
energy performance optimisation of buildings. Thus, 
understanding how occupants use the building is highly 
valuable. The current model only considered the building 
occupancy and not the perceived thermal comfort of 
individual users. So, factors such as building occupancy, user 
behavior patterns, and individual preferences for thermal 
comfort should be included in the model in future for further 
enhancing the energy DT of the building.  

V. CONCLUSION AND FUTURE WORK 

The case study has demonstrated the application of 3D DT 
framework, smart sensors (IoT), real-time measurements and 
data-driven models for the purpose of optimising energy 
performance of existing, legacy buildings. The developed 
prototype, based on real-time monitoring, introduced a novel 
way to monitor the building´s energy performance and 
predicting future energy consumptions while providing 
insights into the usage patterns of the building. The case study 
also highlights the benefits of integrating Industry 4.0 
practices with existing buildings for energy performance 
optimisation, while emphasizing the need for a standard 
architecture for collecting and sharing the data from the smart 
sensors. By enabling intelligent energy optimisation 
strategies in older buildings, the study also contributes 
directly and indirectly for achieving the UN sustainable 
development goals, especially to the goals related to 
responsible consumption, sustainable cities & communities 
and climate action[21]. Overall, the findings of this study are 
expected to contribute to the ongoing and future research on 
energy performance optimisation of buildings, by 
highlighting the significance of DTs and AI for this purpose. 

A. Future research 

As part of the case study, certain areas have been 
identified for potential further research. As discussed earlier 
in the limitations section, the model could be further 
improved by adding more layers and variables such as the 
occupant behaviour in the building. To deal with the privacy 
issues related to the behaviour of residents or tenants, the use 
of Multi-Party Computation for Federated Learning[22] 
could be introduced in a future case study. To bridge the gap 
between BIM models and the deployment of smart devices in 
the building, further research on the automation of extracting 
and creating NGSI-LD entities from e.g. an IFC file is 
needed. This research could be supplemented by applying the 
SAREF ontology extension[23] for buildings to establish the 
semantic relationships between NGSI-LD entities and to 
improve interoperability between building portfolios. The 
impact of enriching the data using semantics for the selected 
ML models could be further investigated in the future case 
research. Generative AI has already entered the construction 
industry, and a future research area could be the use of 
concepts like Prompt Engineering in combination with 3D 
visualisation techniques to gain new insights into energy 
efficiency and indoor climate phenomena.  
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