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Abstract
Advanced analysis tools leveraging invasive tracking technologies such as gps
and manual event tagging has become a global staple in top-tier soccer clubs
for enhancing their strategical decision making and insight. These tools rely on
precise coordinate data, with their effectiveness significantly enhanced when
this data is produced in real-time. With the rapid advancement in computer
vision andgpu technology,machine learning models and trackers have become
efficient and accurate, enabling real-time production of precise coordinate data
using conventional hardware.

In this thesis we will present Sadji, a real-time soccer player localization and
tracking system utilizing conventional hardware. We employ state-of-the-art
yolov8 deep learning models coupled with multi-object trackers for player
detection and tracking. We utilize SuperPoint for keypoint detection and fea-
ture matching to produce homography matrices for accurate translation of
player coordinates between what the camera observes and a 2D soccer field
image.

Through a series of experiments and iterative design choices we gradually
improve fps throughput of the system while maintaining a high level of accu-
racy. Using a combination of interpolation and resolution reduction for input
images to SuperPoint, we achieve system throughput speed over 30 fps, while
maintaining a comparable position accuracy to that of state-of-the-art gps
tracking solutions.





Acknowledgements
I would like to give a heartfelt gratitude to my supervisors Professor Dag
Johansen and ProfessorMartin Rypdal for their invaluable guidance, knowledge
and interest. Your passion in the soccer domain is truly inspiring and has been
a tremendous inspiration and driving force for me. I would also like to thank
Tor-Arne Schmidt Nordmo for productive dialogue and valuable input.

I want to thank my office mates for great discussions, memories and well timed
lunch breaks. A recipe for success and happiness includes good friends. Thank
you all for being ones.

Finally, I want to thank my family for their endless love and support throughout
the writing of this thesis and my five years here in Tromsø.

Thank you.





Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Abstraction . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Scope and Limitation . . . . . . . . . . . . . . . . . . . . . 9
1.5 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Non-invasive Tracking Technologies . . . . . . . . . . . . . . 13

2.1.1 YOLO . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Ultralytics . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Multiple Object Tracking . . . . . . . . . . . . . . . 16

2.2 Invasive Tracking Technologies . . . . . . . . . . . . . . . . 17
2.2.1 Global Positioning System . . . . . . . . . . . . . . . 17
2.2.2 Ultra-Wideband . . . . . . . . . . . . . . . . . . . . 17
2.2.3 VICON . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 System Specific Technologies . . . . . . . . . . . . . . . . . 18
2.3.1 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Homography . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Random Sample Consensus . . . . . . . . . . . . . . 20

vii



viii contents

2.3.4 Keypoint Detection and Matching Algorithms . . . . 20
2.3.5 SuperPoint . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.6 SuperGlue . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.7 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.8 Web API . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.9 Hudl . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Mearka . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Muithu . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Quantified Soccer Using Positional Data: A Case Study 26
2.4.4 Pixel2Field . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.5 Bagadus . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 System Requirement 29
3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . 29
3.2 Non-functional Requirements . . . . . . . . . . . . . . . . . 30
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Design and Implementation 33
4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Video Source and Panoramic Image . . . . . . . . . . 34
4.1.2 Creating Panoramic Image from Video Source . . . . 36
4.1.3 Detection Model and Tracker . . . . . . . . . . . . . 38

4.2 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Detection and Tracker Component . . . . . . . . . . . . . . 42
4.4 Keypoint-Based Homography Matrix Generator Component . 44
4.5 Coordinate Translation Component . . . . . . . . . . . . . . 48
4.6 Metadata Aggregator Component . . . . . . . . . . . . . . . 50
4.7 Cleaning Tool . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7.1 Connecting Missing and New IDs . . . . . . . . . . . 54
4.7.2 Fixing Occluded IDs . . . . . . . . . . . . . . . . . . 54

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Evaluation 59
5.1 Experiment Hardware . . . . . . . . . . . . . . . . . . . . . 59
5.2 Choosing Player Detection Model . . . . . . . . . . . . . . . 60

5.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Choosing MOT . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 62



contents ix

5.4 Choosing Keypoint Detection and Feature Matching Algorithm 62
5.4.1 BRISK - Experiment . . . . . . . . . . . . . . . . . . 65
5.4.2 BRISK - Results . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 BRISK - Discussion . . . . . . . . . . . . . . . . . . . 68
5.4.4 ORB - Experiment . . . . . . . . . . . . . . . . . . . 68
5.4.5 ORB - Results . . . . . . . . . . . . . . . . . . . . . 68
5.4.6 ORB - Discussion . . . . . . . . . . . . . . . . . . . . 70
5.4.7 SIFT - Experiment . . . . . . . . . . . . . . . . . . . 70
5.4.8 SIFT - Results . . . . . . . . . . . . . . . . . . . . . 70
5.4.9 SIFT - Discussion . . . . . . . . . . . . . . . . . . . . 72
5.4.10 SuperPoint - Experiment . . . . . . . . . . . . . . . . 72
5.4.11 SuperPoint - Results . . . . . . . . . . . . . . . . . . 72
5.4.12 SuperPoint - Discussion . . . . . . . . . . . . . . . . 74
5.4.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Video Source Placement on Tracking Quality . . . . . . . . . 75
5.5.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Video Source Resolution for Inference Quality and Speed . . 78
5.6.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Detection and Tracker Component . . . . . . . . . . . . . . 80
5.7.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 80
5.7.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 KBHMG Component . . . . . . . . . . . . . . . . . . . . . . 81
5.8.1 GPU - Experiment . . . . . . . . . . . . . . . . . . . 82
5.8.2 GPU - Result . . . . . . . . . . . . . . . . . . . . . . 82
5.8.3 GPU - Discussion . . . . . . . . . . . . . . . . . . . . 82
5.8.4 Crop - Problem . . . . . . . . . . . . . . . . . . . . . 83
5.8.5 Crop - Experiment . . . . . . . . . . . . . . . . . . . 83
5.8.6 Crop - Result . . . . . . . . . . . . . . . . . . . . . . 83
5.8.7 Crop - Discussion . . . . . . . . . . . . . . . . . . . 84
5.8.8 Percentage - Problem . . . . . . . . . . . . . . . . . 84
5.8.9 Percentage - Experiment . . . . . . . . . . . . . . . . 85
5.8.10 Percentage - Result . . . . . . . . . . . . . . . . . . . 85
5.8.11 Percentage - Discussion . . . . . . . . . . . . . . . . 90
5.8.12 Cache - Problem . . . . . . . . . . . . . . . . . . . . 91
5.8.13 Cache - Experiment . . . . . . . . . . . . . . . . . . 91
5.8.14 Cache - Result . . . . . . . . . . . . . . . . . . . . . 91
5.8.15 Cache - Discussion . . . . . . . . . . . . . . . . . . . 92
5.8.16 Players/Commercials - Problem . . . . . . . . . . . . 92
5.8.17 Players/Commercials - Experiment . . . . . . . . . . 93



x contents

5.8.18 Players/Commercials - Result . . . . . . . . . . . . . 93
5.8.19 Players/Commercials - Discussion . . . . . . . . . . . 94

5.9 KBHMG Component Experiments Summary . . . . . . . . . 94
5.10 System Performance . . . . . . . . . . . . . . . . . . . . . . 95

5.10.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 95
5.10.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 Alternative Video Source . . . . . . . . . . . . . . . . . . . 98
5.11.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 98
5.11.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 100

5.12 Cleaning Tool - Connecting IDs . . . . . . . . . . . . . . . . 100
5.12.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . 101
5.12.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.12.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 101

5.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Discussion 103
6.1 Sadji: Functional Requirements . . . . . . . . . . . . . . . . 103
6.2 Sadji: Non-functional Requirements . . . . . . . . . . . . . 106
6.3 Cleaning Tool Discussion . . . . . . . . . . . . . . . . . . . 108
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusion 109
7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Image Clustering for Team Classification . . . . . . . 112
7.3.2 Ball Detection . . . . . . . . . . . . . . . . . . . . . 112
7.3.3 Multiple Cameras . . . . . . . . . . . . . . . . . . . 112

References 115

Appendix A 123



List of Figures
1.1 Simplified pipeline for tagging and producing footprint. . . . 3

2.1 YOLO detection pipeline[48]. . . . . . . . . . . . . . . . . . 15
2.2 Perspective project of frame in video clip to panorama image. 19

3.1 Sadji position in potential future pipeline. . . . . . . . . . . 32

4.1 TV broadcasting camera angle from Romsaa Arena (previ-
ously known as Alfheim) in Tromsø. . . . . . . . . . . . . . 35

4.2 Hudl panoramic view angle from Romsaa Arena in Tromsø. . 35
4.3 Panorama stitching process. . . . . . . . . . . . . . . . . . . 37
4.4 Panorama stitching process from SR-Bank Arena. . . . . . . 37
4.5 Soccer field keypoints between panorama and 2D image of

soccer field. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Confusion matrix for best weights. . . . . . . . . . . . . . . 40
4.7 Pipeline overview. . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Detection and tracker component. . . . . . . . . . . . . . . 43
4.9 KBHMG component. . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Coordinate translation component. . . . . . . . . . . . . . . 49
4.11 Aggregated metadata for segment an non-segment case. . . 51
4.12 Metadata aggregator illustration. . . . . . . . . . . . . . . . 53
4.13 Cleaning component - connecting IDs. . . . . . . . . . . . . 55
4.14 Cleaning component - fixing occluded IDs. . . . . . . . . . . 57
4.15 Timelines for players that could be involved in occlusion events. 57

5.1 Accurate vs inaccurate translation. . . . . . . . . . . . . . . 64
5.2 Coordinate trajectory deviation. . . . . . . . . . . . . . . . . 75
5.3 Total detected IDs with different camera placements. . . . . 77
5.4 Panorama image produced from camera angle at testing arenas. 77
5.5 Detected IDs per second with different video source resolutions. 79
5.6 Panorama with cropped bottom part. . . . . . . . . . . . . . 83
5.7 Panorama with players/commercials removed. . . . . . . . . 93
5.8 Coordinate trajectory for ID 7 in Eliteserie highlight clip. . . 99

xi



xii l ist of f igures

5.9 Pixel spread using Eliteserie highlight clip (decrease percent-
age is 45). . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10 Eliteserie highlight frame placed in panorama. . . . . . . . . 100
5.11 Connecting ID not found. . . . . . . . . . . . . . . . . . . . 102

6.1 Example of how user interface for panorama creation could
look like. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Multiple cameras. . . . . . . . . . . . . . . . . . . . . . . . 113



List of Tables
5.1 Model with and without team classification. . . . . . . . . . 61
5.2 ByteTrack and BotSort comparison. . . . . . . . . . . . . . . 62
5.3 GPS coordinate spread and visualization. . . . . . . . . . . . 65
5.4 Experiment results for BRISK. . . . . . . . . . . . . . . . . . 67
5.5 Experiment results for ORB. . . . . . . . . . . . . . . . . . . 69
5.6 Experiment results for SIFT. . . . . . . . . . . . . . . . . . . 71
5.7 Experiment results for SuperPoint. . . . . . . . . . . . . . . 73
5.8 Throughput and pixel spread. . . . . . . . . . . . . . . . . . 74
5.9 Inference speed per frame at different intervals. . . . . . . . 81
5.10 GPU vs CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 With and without cropped panorama. . . . . . . . . . . . . 84
5.13 Visualization of player coordinates at different frame and panorama

percentages. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.14 Without and with caching enabled. . . . . . . . . . . . . . . 92
5.15 With and without players/commercials enabled. . . . . . . . 93
5.16 Visualization with and without players/commercials enabled. 94
5.17 Iterations of SuperPoint implementation. . . . . . . . . . . . 95
5.18 Experiments with different interval and percentage on single

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.19 Visualization of player coordinates for different cases. . . . . 97
5.20 User testing for cleaning tool. . . . . . . . . . . . . . . . . . 101

xiii



xiv l ist of tables



List of Abbreviations
agnn Attention Graph Neural Network

ai Artificial Intelligence

api Application Programming Interface

bbox bounding box

brief Binary Robust Independent Elementary Features

brisk Binary Robust invariant scalable keypoints

cctv Closed-circuit television

cots common of the shelf

cpu Central Processing Unit

csg Cyber Security Group

dac Deep Adaptive Clustering

dai distributed artificial intelligence

ddc deep density-based image clustering

eu European Union

fast Features from accelerated segment test

fps Frames Per Second

gdpr General Data Protection Regulation

xv



xvi l ist of abbreviat ions

gnn Graph Neural Network

gps Global Positioning System

gpu Graphics Processing Unit

hls HTTP Live Streaming

http Hypertext Transfer Protocol

jpeg Joint Photographic Experts Group

json Javascript Object Notation

kbhmg keypoint-based homography matrix generator

lps Local Positioning System

mot Multi-object tracking

ms Milliseconds

oml Optimal Matching Layer

opencv Open Source Computer Vision Library

orb Oriented Fast and Rotated BRIEF

png Portable Network Graphics

poc proof of concept

r-cnn Region-based Convolutional Neural Network

ram Random Access Memory

ransac Random sample consensus

sift Scale-invariant feature transform

sp SuperPoint

surf Speeded-Up Robust Features



l ist of abbreviat ions xvii

tcp Transfer Control Protocol

til Tromsø Idrettslag

uit University of Tromsø

url Uniform Resource Locator

uwb Ultra-Wideband

vik Viking Fotballklubb

vr Virtual Reality

wsl Windows Subsystem for Linux

yolo You Only Look Once





1
Introduction
Rory Smith’s book, "Expected Goals"[56] explores the realm of soccer analytics
and advocates for the potential quantification of the game. Recent technological
advancements in computer vision and machine learning, exemplified by video
surveillance systems and wearable Global Positioning System (gps) tracking
devices like STATSports[58] used in top leagues such as the English Premier
League and German Bundesliga, amplify the significance of Smith’s argument.
These quantifications can now be computed more accurate, faster, and closer
to real-time, aligning with the pace of modern analysis in soccer.

These technological advancements, combined with tools like Hudl[24] for com-
prehensive video analysis, have fundamentally reshaped how teams evaluate
both collective and individual player performances. In this field of evolving tech-
nology, Smith’s arguments of quantifying soccer in his book emerges as a key
component, offering a sophisticated metric that transcends conventional statis-
tics and coaching approaches. "Expected Goals" provides an understanding of
goal-scoring opportunities based or backed by the wealth of data generated by
modern soccer technologies.

An example of a sport which has undergone this type of revolution, detailed in
the book "Moneyball: the art of winning an unfair game"[32] by Michael Lewis,
using quantified sports data is baseball. During the early 2000s, Oakland
Athletics shifted towards utilizing analytics during the scouting periods as
opposed to traditional methods, which mostly relied on subjective evaluations
regarding skill and ability. With this conscious decision to transition into
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2 chapter 1 introduction

utilizing more analytics, the team experienced great success securing playoffs
several times while being one of the teams in the league with the lowest overall
spending. While baseball, because of the games more structured nature, may
be simpler to use such quantified data to gain an advantage we believe that
the argument still stands as showcased by the great success of top soccer clubs
that incorporate such methods.

Smith’s argument for the quantification of soccer aligns seamlessly with the
current technological wave, creating a need of deeper analysis and strategic
improvement within the sport of soccer. The best teams in the Premier League1
do this by placing a paramount focus on quantification in their analysis and
strategic plans before, during, and after games. By harnessing cutting-edge
technologies, advanced analytics, and real-time data, they meticulously eval-
uate player performances, uncover opponent strategies or style of play, and
optimize tactical decisions on the field. This intersection of soccer, data, and
technology, serves as a guiding compass for top-tier teams navigating the intri-
cate landscape of modern soccer, where quantification is becoming more and
more essential to the recipe of success.

The economically strongest clubs, in contrast to some of the weaker clubs,
have abundant resources to spend on these advanced camera systems, video
analysers, and player health analysers to improve their respective player and
team performance as well as investigate in opposing team weaknesses. These
clubs have a clear advantage in terms of manpower spending on both tagging
the produced footprint data and install facilities that can produce footprint2
data of high quality fast. The pipeline for tagging and producing said footprint
data in videos can be illustrated as following:

1. If reliant on video,detect player and/or ball in video frame,either utilizing
machine learning model or manually tag each player and ball in frame
using trained personnel.

2. Convert said detection from frame coordinates to on-field coordinates.
Utilizing gps tracking devices such as vests would remove this step.
Instead, one would only need to know the corner gps coordinates of
soccer field played on.

3. Use on-field coordinates for analysis such as style of play, space visual-
ization, or passing network.

1. Premier League - top professional soccer league in England
2. Footprint data - positional player data
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1. 2.

3.

Figure 1.1: Simplified pipeline for tagging and producing footprint.

This thesis will focus on automating step 1 and 2 while preserving a high
level of accuracy and speed utilizing video as input source to generate player
coordinates/footprint data. The overall goal of the system is to get as close
as possible to real-time using affordable measures that are suitable for less
economically strong clubs to bridge the gap between them and the strong clubs.
With recent advancements in the field of computer vision we hypothesize that
it could be possible to accurately track objects in real-time using commodity
hardware more suitable to the less strong clubs.

This project is carried out in connection with the Sárgut[10] and Guorrat[39]
systems in the Cyber Security Group (csg)3 at UiT. The aim of the collaboration
is to each work on their individual part of the illustrated pipeline where this
thesis focuses on step 1 and 2, the two other theses focus on utilizing the
produced player coordinates/footprint data from the system presented in this
thesis for game analysis.

This introduction section will investigate further into motivation and existing
systems that are available for similar use cases.

3. https://uit.no/research/csg

https://uit.no/research/csg


4 chapter 1 introduction

1.1 Motivation

As previously mentioned, economically strong soccer clubs have a major advan-
tage in terms of resource spending on not only top tier players, but advanced
technology and analysis staff, further increasing their advantage over the less
economically strong clubs. Systems such as Hudl[24] or STATSport[58] are
expensive and typically subscription based services, which inherently means
teams themselves seldom "own" their footage exclusively. Some of these anal-
ysis services have long processing times, which works fine for a post game
analysis but does little to nothing when analysis is wanted during half-time or
during a game. Other drawbacks associated with these systems are often times
lacking quality in their tagging, requiring manual work which again can be a
cost problem for less economically strong clubs.

The precision of gps systems are also questionable, as pointed out by this
2019 study on gps precision in urban environments[37], when the use-case
of said coordinates would be to compute advanced analysis regarding player
formation, passing networks, and room detection where the accuracy level
should be as high as possible. While these gps tracking systems work well for
calculating overall covered distance or speeds of a player, they are questionably
sufficient for the needed footprint precision for a system which this project
aims to create. gps systems inherently also have the problem of not getting
insight into opposing team positions, as team generally do not share such data
between one another.

An alternative to STATSport gps systems to track on field position of players is
ZXY[45]. ZXY works by equipping each player with a belt capable of emitting
radio signals received by on stadium installed towers. Position is computed by
triangulating emitted signals.

Both these methods work well for detecting player coordinates on the field,
but are both invasive in that each player must wear either a vest or a belt with
a transmitter. ZXY is also reliant on pre-installed facilities that can capture the
emitted radio signals, which could for resource scarce clubs be a problem.

Ownership and the right to delete personal data is also an interesting issuewhen
it comes to the produced data from the gps systems and recording systems.
The General Data Protection Regulation (gdpr)[4] is a comprehensive data
protection regulation that came into effect in the European Union on May 25,
2018. gdpr is specific to the EU, however its influence extends globally across
the world, as it impacts organizations that handle the personal data of EU
residents, such as Hudl or STATSport, regardless of where the organizations
themselves are located. Now under the gdpr, individuals have explicitly the
right to request the deletion of their personal data held by organizations. This
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right, often referred to as the "right to be forgotten," empowers individuals
to have their data erased under certain circumstances. Organizations must
comply with such requests promptly, reinforcing individuals control over their
own personal information and promoting data privacy. If these systems can
guarantee such compliance is questionable at best. How the stored data is used
by these companies is also not public as limiting the availability of algorithms
helps maintain their competitive advantage as well as safeguard proprietary
methods used. Such external services create a situation for a potential customer
where their data is locked-in and the customers data is not fully manageable
or controlled.

A lack of transparency regarding data and Artificial Intelligence (ai) usage
poses significant problems. Regulations are being introduced to protect funda-
mental rights from high-risk ai. However a lack of transparency in organiza-
tional practices hinders accountability and undermines trust. Banned applica-
tions, such as those involving biometric categorization and emotion recognition,
highlight the need for clear guidelines. Exemptions for law enforcement high-
light the importance of strict oversight mechanisms and in detail description of
how such systems function. Transparency requirements for ai systems, includ-
ing publishing training data summaries and labeling manipulated content, aim
to mitigate risks and promote responsible innovation. However, ensuring com-
pliance and effective implementation remains crucial for upholding European
values and safeguarding societal interests in the era of advancing technology.
These new rules and regulations are apart of eu’s new ai Act[42].

Recent advancement in object detection models such as yolov8[26] are able
to accurately detect players and classify them based on for example teams
affiliation in video in real-time. Such machine learning models combined with
systems for tracking said detections through multiple frames also exist, such
as ByteTrack[65] or DeepSORT[64]. These systems are called Multi-object
tracking (mot) and work by locating and following multiple objects detected
by a machine learning model in a sequence of video frames. These new sys-
tems combined open up many new possibilities for running advanced software
on common of the shelf (cots) hardware that is more accessible to lower
income clubs. Off the shelf graphics cards have significantly improved with
increased processing power, advanced architectures supporting features like
real-time ray tracing, significantly higher memory capacities, and more effi-
cient manufacturing processes, resulting in better performance capabilities and
pricing.
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1.2 Problem Definition

Quantification of soccer is becoming more and more important to complement
the type of analysis that top tier soccer clubs are conducting in major sporting
organizations. Thus it is decisive that teams can extract relevant data fast and
of high quality. Existing solutions for teams today, especially those of lower
economical strength, rely on third-party solutions to capture, analyze, and for
storage. This in turn, can lead to time delays, high costs, and uncertainties
on the overall quality of produced analysis. The most accurate solutions also
rely on invasive devices such as gps-vests for producing positional data, which
often is only shared on a per team basis meaning that the opposing team
will not have access to half the player coordinates. This thesis shall create a
system overcoming these problems by using video stream or clips as input
together with object detection models and Multi-object tracking (mot) to
accurately map player field position in the video. Then translate their video
frame coordinates utilizing keypoint detection and matching algorithms to a
user provided birds-eye view or top-down view of a soccer field (see figure 1.1)
in real time.

The thesis problem definition is the following:

This thesis aims to develop a system capable of automatically
and precisely detect and track soccer players in video footage.
Utilizing computer vision, the system will be capable of determin-
ing the team affiliation of each player. The goal is to promptly
and accurately map players to their respective on-field coordi-
nates, with the goal of real-time speeds. The research within
this thesis will explore the yolov8 deep learning models for the
precise detection of players and their teams in video content
using mots for tracking. Additionally, the investigation will
look into methods for accurate and efficient spatial coordinate
mapping of soccer players from video to a top-down view image
of a soccer field.

Investigation of given statements above will be done in the following or-
der:

• Examine what related work exists to become acquainted with the current
state of the domain.

• Define functional and non-functional requirements for the proposed
system.

• Design and implement system with provided defined requirements.
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• Evaluate system by conducting a series of experiments on different parts
of it. Experiments will also serve as a foundation for design choices that
were made throughout the design/implementation process.

1.3 Methodology

The framework detailed in "Computing as a Discipline"[13] serves as a funda-
mental building stone for understanding the many-sided field of computing,
highlighting important subjects and methodologies within the domain of com-
puter science. The report details three distinct paradigms with each paradigm
offering unique perspectives and methodologies for the advancement of com-
putational knowledge and practice.

1.3.1 Theory

Rooted in mathematical principles, the theoretical paradigm in computer sci-
ence revolves around the formulation and validation of mathematical rela-
tionships. At its core, theory serves as the bedrock which the structure of
computational science is built on, providing a systematical framework for the
conceptualization and analysis of computational phenomenas. The paradigm
is comprised of the following four steps:

• Definition - At the outset, theory involves the accurate characterization
objects that are under study. This step lays the groundwork for subsequent
theoretical inquiries by stating clear boundaries and definitions.

• Theorem - Building upon the defined objects, step two entails hypothesis,
showcasing potential relationships and properties among the defined
objects.

• Proof - Theory demands empirical validation through the process of proof
to find truth. Through reasoning and deduction, one can validate the
proposed relationships.

• Interpretation - interpretation and analysis of the achieved results. This
step is about exploring the theoretical findings in a larger picture.



8 chapter 1 introduction

1.3.2 Abstraction

Contrasting with the theoretical nature of the previous paradigm, abstraction
approaches with a more pragmatic and empirical way for computational ques-
tions. Abstraction uses experiments to simplify complicated computer questions
into easier models for which we can study. The abstraction paradigm contains
four stages:

• Hypothesis - Drawing inspiration from theoretical insights, first step of
abstraction begins with formulating a testable hypotheses aimed at de-
tailing computational phenomena. These hypotheses serve as guidelines
for empirical investigations.

• Prediction - This stage is about making models that can predict how
computer systems will behave. These models will help us analyze and
test things before they happen.

• Experimentation - Once we have our predictive models, this stage begins
by executing experiments to explore computer phenomenas. These ex-
periments check if our theories are right and make our models better,
helping connect theory with real-world use cases.

• Analysis - Using the data produced in the following stage, abstraction
carefully investigates the results. This step involves analysing what we
observe in the experiments with what we expected from our theories
from stage 2, helping us improve our computer models.

1.3.3 Design

Leading to the combination of theories and practical evidence, the design
paradigm exemplifies the practical creation of computational principles to ad-
dress real-world problems. It is rooted in engineering principles, where design
represents the culmination of theoretical abstraction into tangible systems and
solutions. The design paradigm has four stages:

• Requirement Specification - Design commences with ameticulous specifica-
tion of system requirements, detailing the functional and non-functional
specifications that dictate behavior and performance.

• System Specification - Building on the requirements, design proceeds to ar-
ticulate comprehensive system specifications, outlining the architectural
blueprints and design constraints for the system development.
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• Implementation - With specifications in hand, design transitions into the
system implementation, detailing the actual construction and realization
of computational systems.

• Testing/Experimenting - The final stage of design is about testing and
validation of the constructed systems against predefined specifications.
Through systematic testing methodologies, design choices to ensure the
reliability, robustness, and efficiency of computational systems in fulfilling
their intended purposes.

In summary, the design paradigm emphasizes the pragmatic application of
computational principles, bridging the theoretical and empirical paradigms to
generate tangible solutions to real-world challenges. The methodology used
in this thesis has its roots in the design paradigm, embracing the theoretical
insights and empirical findings to inform the development of a functioning
system.

1.4 Scope and Limitation

This section will cover the scope of the thesis, detailing what limitations are pre-
defined for the design and implementation of Sadji⁴. By listing what boundaries
and limitations the system operates in and identifying the constraints, we
aim to help give a comprehensive understanding of the thesis objective and
constraints.

• Video/stream source will be assumed as functional in the pipeline defined
in section 4.2. Sadji does not initiate any recording and operates as a
passive component that initiates once a user of the pipeline wishes to
start the coordinate production pipeline. Sadji will be capable of utilizing
any video/stream source which conforms to OpenCV’s video formats.

• Sadji assumes that it is a part of a functioning pipeline where, in the
future, it is part of a pipeline where recording and usage of the produced
coordinates is functional. See figure 3.1 for illustration. System position
is highlighted in red.

• Sadji assumes that the detection model capable of also classifying players
is pre-trained. System defaults to the detection model capable of player
detection only and not team classification.

4. Sadji - The word for "position" in North Sámi.
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1.5 Context

This thesis is integrated in a collaboration with the csg at University of
Tromsø (uit). csg is a research group focused on providing new knowledge
and innovative distributed system technologies in computer science. Their
multidisciplinary research spans various faculties, with an emphasis on creating
new knowledge, tools, and innovative technologies in different disciplines such
as for example sport surveillance systems and ai.

csg collaborated on a case study quantifying soccer using positional data
in 2018[44], comparing radio-based wearable positioning data systems with
gps systems. The findings revealed the ability to detect anomalies, identify
trends, and offer valuable insights for individual players and team performance
development. csg’s research in the computer science domain also focuses on
constructing scalable, efficient, fault-tolerant systems for real world applica-
tions such as sports analysis. They actively deploy these systems in real-world
settings, encouraging user involvement and following an open publishing and
distribution policy for their software. Mearka[59], published in 2023 by Alexan-
der Torkelsen is one example of such a system utilizing computer vision tech-
nologies to detect soccer players in video clips combined with manual input
for event captures.

Key personnel at csg have been part of research in the distributed systems
and ai domain for decades. StormCast[21][22] published in 1988 presents
a novel prototype for a distributed artificial intelligence (dai) application
focusing on presenting severe storm prediction. The paper recognized the
importance of accurate predictions for local fishing communities in northern
Norway, introducing a novel solution for gathering challenging aspects of local
weather forecasting such as cloudiness and local topography deviations effects.
The paper presents limitations of existing solutions at the time and proposes
dai for gathering local weather forecast information before sending those local
summaries to an expert user (experienced meteorologist).

csg’s involvement in sports science includes systems like Bagadus, Muithu,
Darkon and Mearka, Bagadus [20] as mentioned combines a sensor system,
soccer analytics annotations, and video processing. Muithu [27] integrates
real-time coach notations with video sequences. Darkon[28] is a video analysis
system designed to assist teams in meeting their video analysis requirements.
In tandem with a concurrently developed tagging system, Dárkon facilitates
filtering based on soccer field positions, event type, and event outcome, enabling
users to locate specific events or create playlists.

This thesis will contribute to the ongoing efforts by the csg atuit by exploring
and deploying a system that can produce accurate on field player coordinates
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in real-time. The coordinates produced will be essential for future systems
that can take advantage of produced coordinates in AI-based analysis for the
identification of high-level patterns and trends that emerge throughout a game
of soccer. Such a digital twin coach can empower coaches to make informed
decisions, optimize their strategies and enhance player performance.

A digital twin coach, equipped with this kind of capability, operates as an
impartial observer, unaffected by the intensity of the game. It could potentially
offer unparalleled insights into various game aspects, from player positioning
and movement patterns to team dynamics and tactical formations by looking
at for example space in between opponent formation lines. By solely relying
on observations, it provides a comprehensive and unbiased view of the match,
supplementing coaches with analysis about game-play dynamics in real-time
and tailor strategies without being influenced by the heat of the moment.

Post-match analysis facilitated by the digital twin coach offers detailed reports
and visualizations based purely on collected coordinates. This allows coaches
to objectively review key moments, assess player performances, and pinpoint
areas for improvement. By integrating advanced data analytics with real-time
player tracking, the digital twin coach emerges as an invaluable tool for en-
hancing coaching effectiveness and driving success on the soccer field, all while
maintaining an objective perspective uninfluenced by the emotional highs and
lows of a soccer game.

1.6 Outline

Brief description of the chapters of this thesis:

• Chapter 2 will detail about technologies used to build Sadji. The section
will also investigate existing systems and concepts in the current state of
the domain and some of the systems referenced in chapter 1.

• Chapter 3 will detail the requirements, both functional and non-functional
for the proposed system.

• Chapter 4 presents the overall design of Sadji showcasing the individual
parts of the coordinate production pipeline. Implementation details are
also included with references from evaluation section 5 on why specific
design/implementation decisions were chosen.

• Chapter 5 showcases achieved results from deploying Sadji with var-
ious different configurations. It also contains implementation testing
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throughout the development process of Sadji.

• Chapter 6 will use achieved results from chapter 5 on evaluation for
discussion and investigate Sadji using pre-defined requirements from
chapter 3.

• Chapter 7 will conclude the thesis and give a summarization of the Sadji
system and present future work and integration in new iterations.



2
Background
There are primarily two methods of implementing tracking systems in soccer.
The first method involves non-invasive technologies, like Closed-circuit televi-
sion (cctv). This process involves capturing the soccer game and then either
simultaneously or in post-processing use computer vision technologies to detect
players and other objects. These systems rely on visual data as input to track
and monitor players without equipping the players with any devices.

Another method entails invasive technologies, such as gps vests, which require
individuals to wear devices that continuously transmit their location data to
nearby antennas or via satellite. While non-invasive systems offer flexibility
and ease of implementation, invasive technologies provide precise and real-
time location information but may raise privacy concerns due to their direct
monitoring approach.

2.1 Non-invasive Tracking Technologies

In this section we will investigate some non-invasive tracking technologies
and techniques which are prevalent in various fields, including surveillance,
sports analytics, and object detection. These technologies offer sophisticated
solutions for monitoring and analyzing movements and activities without direct
physical contact. Non-invasive tracking technologies utilize camera sources to
monitor and analyze movements (without physical contact). The resolution

13
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and positioning of the camera are crucial factors determining the accuracy
and effectiveness of the tracking system. Low camera placement could poten-
tially result in multiple tracking elements being occluded. Similarly, a camera
source with low frame-rate and resolution could result in missing important
information.

2.1.1 YOLO

You Only Look Once (yolo)[48] is a well known object detection algorithm
known particular in the deep learning community for its speed and accu-
racy. Traditional object detection algorithms generally use region proposal
techniques for the generation of bounding boxes or regions that are likely to
contain objects in an image. These generated bounding boxes are then passed
on to a classifier which determines if an object is contained in the bounding box
or not, and if so, which class the contained object belongs to. Region proposal
techniques help with narrowing down the search space, while classification
algorithms accurately classify objects within the proposed regions. This ap-
proach is commonly used in object detection systems like Faster Region-based
Convolutional Neural Network (r-cnn) or Region-based Convolutional Neu-
ral Network (r-cnn). However, this process can be unsuitable for real-time
applications due to its inherently computational expensive operations.

yolo differs from such traditional methods in that yolo directly predicts
bounding boxes or regions and classes for multiple objects in an image simulta-
neously within a single neural network. An image fed to yolo is divided into
a grid and the system will then for each cell within the grid, predict bounding
boxes and class probability. This process is illustrated in figure 2.1 from the You
Only Look Once:Unified, Real-Time Object Detection[48] paper.
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Figure 2.1: yolo detection pipeline[48].

yolo achieves faster inference time while maintaining a high level of detection
accuracy by eliminating separate region proposal and classification steps mak-
ing it a good alternative to systems in need of real-time performances.

YOLOv8

At the time of writing this thesis, yolov8 [26] is the newest iteration of the
yolo object detection algorithm. yolov8 builds on previous iterations and
offers state-of-the-art performances in both speed and accuracy. One of its new
key features has been on optimizing accuracy-speed trade-offs making this
iteration more suitable for systems in need of incorporating object detection
tasks in real-time execution speeds.

2.1.2 Ultralytics

Ultralytics1 [25] is an organization specializing in computer vision and deep
learning technology developing state-of-the-art software tools and libraries
to seamlessly train and run different deep learning models. Its open-source
with their primary focuses being providing accessible and high-performing
solutions for image classification, object detection, instance segmentation, and

1. url to GitHub: https://github.com/ultralytics/ultralytics

https://github.com/ultralytics/ultralytics
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pose estimation. The Ultralytics framework allows for user-friendly deployment
and training of custom deep learning models. Training and testing datasets
follow a user-friendly labeling structure enabling an efficient manual labeling
process. Ultralytics also enables seamless integration with different multiple
object trackers such as ByteTrack[65] or BotSort[5].

2.1.3 Multiple Object Tracking

Multi-object tracking (mot) is a field within computer vision that deals with
the task of simultaneously detecting and tracking multiple objects in video
sequences. mots deal with problems such as identifying and maintaining
different trajectories of detected objects between sequences of frames and
associating disappearing and reappearing detections. mots can be deployed
in various applications such as sport surveillance systems, autonomous vehicles
[47], underwater monitoring [34], or social distance monitoring [7]. mots
deploy various techniques to overcome challenges with occlusion, blending
backgrounds, and varying appearances such as size change or rotation. Some
of these techniques include feature association, motion estimation, and other
data association algorithms such as nearest neighbor [18].

ByteTrack

ByteTrack[65] is a mot that introduces a new data association method by
including low scoring bounding boxes for detections. Typically in mots, detec-
tions are categorized into low and high scoring objects. High scoring detection
generally have little to no occlusion within them and are above a given thresh-
old set by the mot. Low scoring detections are usually occluded. ByteTrack
includes both high and low scoring detections and works by:

• Associate detection with high scoring tracklets. Tracklets that do not
match a high scoring detection box are unmatched.

• Associate the low scoring detection boxes and the unmatched tracklets
from step 1 to recover objects in low scoring boxes. The ByteTrack paper
[65] illustrates this sequence in Algorithm 1 pseudo-code.

As highlighted in the paper, ByteTrack shows great performance metrics on
conventional hardware when compared to other state-of-the-art mots at the
time.
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BotSort

BotSort[5] combines both appearance and motion information to better predict
corresponding bounding boxes. This combined with camera-motion compen-
sation which means that unlike common mots they are able to associate
bounding boxes that don’t necessarily overlap between frames. They have also
designed a new Kalman filter[29] that is able to more accurately encapsulate
the detected object.

2.2 Invasive Tracking Technologies

In this section we will investigate the domain of invasive tracking technologies.
These tracking devices typically operate by equipping players with signal emit-
ting devices such as gps, Local Positioning System (lps) or Ultra-Wideband
(uwb). The context of usage is what drives selection of the different systems.
gps works for outdoor tracking while is limited for indoors tracking. lps
works for indoor monitoring but cannot transmit data over large areas like gps
can.

2.2.1 Global Positioning System

gps provides a wide coverage for determining the location by triangulating
signals with satellites in orbit. It offers positioning capabilities on a global scale
making it versatile for outdoor usage. Its main drawback is that its functionality
is limited for indoor or urban areas as these areas create an obstruction for the
line-of-sight between the transmitter and satellites.

2.2.2 Ultra-Wideband

uwb is a positioning technology which utilizes short-duration pulses of radio
frequency energy to accurately determine the location of objects in three-
dimensional space. It works by measuring the time it takes for the pulses to
travel between a transmitter andmultiple receivers installedwithin the tracking
area. UWB is highly accurate achieving centimeter precision as showcased in a
experimental study of a uwb for industrial usage [55]. Some drawbacks with
UWB are initial setup costs which can be high as pre-installed receivers is a
condition for the system to function. Areas with dense obstructions or other
interference sources can also challenge accuracy of the system.
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2.2.3 VICON

VICON [61] is a system that provides optical motion capture technology widely
used in sports biomechanics, animation, and Virtual Reality (vr). Their system
consists of several high-resolution cameras placed in strategically positions
around a capturing area, using reflective markers placed on athletes or objects
to trackwith accuracy. VICON systems capture real-time data such as movement
which allows for detailed analysis of kinetics and kinematics. Some drawbacks
with the VICON system are occlusions problems associated with markers line
of sight being obscured by limbs and clothe-wear. They are also primarily
used indoors due to their reliance on lightning conditions needing to be
controlled.

2.3 System Specific Technologies

This section will cover some of the technologies used to create the Sadji system.
Some of the technologies have already been covered in section 2.1 and 2.2.

2.3.1 OpenCV

Open Source Computer Vision Library (opencv) [9] is a widely used opens-
source library for image and computer vision tasks. opencv was originally
developed by Intel in 1999 and has since become a standard tool in computer
vision. It offers a wide range of functionalities, from basic image manipulation
to more complex tasks such as object detection and recognition. opencv is
available as an import library in Python from bindings in the original C++
library offering all of the functionality seamlessly through Python scripts.

opencv in Python supports a wide range of different image formats and pro-
vides data structures for representing images and their associated metadata
(jpeg, png, etc). It offers functions for performing basic operations like resiz-
ing, cropping, and filtering, as well as more advanced techniques such as image
stitching or feature detection. opencv also has an extensive collection of pre-
trained models and algorithms, including homography estimation, machine
learning-based methods like Haar cascades for object detection, Speeded-Up
Robust Features (surf) and Scale-invariant feature transform (sift) for fea-
ture extraction. opencv also has an active community and comprehensive
documentation making it easy to understand and maintain for new develop-
ers. Cross-platform support and compatibility with other popular libraries and
frameworks such as NumPy, SciPy, and TensorFlow, makes opencv a good tool
for researchers and practitioners in various different domains including sport
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science, autonomous vehicles, or augmented reality.

2.3.2 Homography

Homography matrices are common in computer vision technologies for repre-
senting transformations between different perspectives or views of a common
area. They describe mapping between two cameras or images that record
or photograph a common plane. Typically, they are used in scenarios where
images are taken from different angles or perspectives for example in sport
broadcasting or surveillance systems. Some common areas where homography
matrices are used in image stitching, panoramic image creation, or augmented
reality.

How they work

Homography matrices represent the translation between coordinates in one
image to coordinates in a different image in what is called a perspective
projection. Perspective distortion happens when a three-dimensional scene is
projected onto a two dimensional image plane. Homography matrices encode
this transformation, allowing accurate manipulation and representation of the
distorted perspective. Figure 2.2 shows a use case of perspective projection of
a frame from a video clip to its destination in a panorama image.

Figure 2.2: Perspective project of frame in video clip to panorama image.

A homography matrix is represented by a 3x3 matrix and given n corresponding
coordinates:

p𝑖 = [𝑥𝑖, 𝑦𝑖, 1]𝑇 in the first image,
p′𝑖 = [𝑥 ′𝑖 , 𝑦′𝑖 , 1]𝑇 in the second image.
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between two different images can be compFuted by:

[
−𝑥𝑖 −𝑦𝑖 −1 0 0 0 𝑥 ′𝑖𝑥𝑖 𝑥 ′𝑖𝑦𝑖 𝑥 ′𝑖
0 0 0 −𝑥𝑖 −𝑦𝑖 −1 𝑦′𝑖𝑥𝑖 𝑦′𝑖𝑦𝑖 𝑦′𝑖

]


ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
ℎ33


= 0.

1. Solve the overdetermined linear system 𝐴ℎ = 0 using for example sin-
gular value decomposition. The solution vector ℎ corresponds to the
elements of the homography matrix 𝐻 .

2. Reshape the solution vector ℎ into a 3 × 3 matrix 𝐻 and ensure that the
last element of 𝐻 is normalized to 1.

Cv2.findHomography is an opencv function that computes the homography
matrix from a set of corresponding points in two images. It utilizes Random
sample consensus (ransac) or Least Median of Squares to estimate the ho-
mography, which is useful for tasks like image registration, object tracking, and
panorama stitching in computer vision systems.

2.3.3 Random Sample Consensus

ransac is an iterative algorithm that is used to estimate model parameters for
a data set that contains outliers. It randomly extracts subsets of the original
data to estimate model parameters and consequently quality checks each
model with new parameters by counting number of non-outliers. This process
is done several times until a model is chosen with the least amount of outliers.
The model which has the fewest amount of outliers will best fit the original
data.

2.3.4 Keypoint Detection and Matching Algorithms

This section writes in short detail about different algorithms explored and used
for keypoint detection and matching algorithms.



2.3 system specif ic technologies 21

ORB

Oriented Fast andRotated BRIEF (orb) [51] is an efficient feature detection and
description algorithm that couples the Features from accelerated segment test
(fast) keypoint detector with Binary Robust Independent Elementary Features
(brief) descriptor. orb is commonly used in real-time application such as
augmented reality or object tracking because of its speed and scale/rotation in-
variance. orb works by generating binary descriptors which in return reduce
computation time while still being able to function accurately.

SURF

Speeded-Up Robust Features (surf) [8] employs integral images for fast
computation and uses a combination of Gaussian and box filters to efficiently
detect keypoints. Similar to orb, surf is a good fit for systems in need
of speed and scale/rotation invariance such as image stitching and object
recognition.

SIFT

Scale-invariant feature transform (sift) [35] works by identifying keypoints
based on high-scale space and extracts descriptors by utilizing histograms of
rising orientations. It is very robust to variation in scale, rotation, illumination
as well as view-point changes making it a good match for many different
imaging conditions.

2.3.5 SuperPoint

SuperPoint: Self-Supervised Interest Point Detection and Description [14] presents
an alternative to traditional methods for point detection and description. It is
a fully convolutional neural network which is designed to handle operations
on fully scaled images having the ability to generate interest points together
with a fixed-length descriptor in one forward pass.

The architecture of SuperPoint starts with an encoder responsible for process-
ing and reducing the extent of dimensions of the input image. This encoder is
shared. Next step after the encoder is that the network splits into two parts
or two decoders where each one of them specializes in a specific task. One
of the decoders specializes in interest point detection while the other spe-
cializes in interest point description. This splitting allows for communication
which differs from traditional methods. The interest point detector produces
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a probability of "point-ness" for each pixel in the input image meaning each
pixel in the networks output represent some likelihood of being important
point in the original image. Unlike typical dense prediction networks with
encoder-decoder pairs and upsampling, SuperPoint’s explicit decoder reduces
computational overhead. The descriptor of the neural network creates a com-
pact representation, which is called a description, for each pixel in a smaller
version of the original image. To do this, the descriptor decoder generates a
grid of descriptions at specified points and then fills the gaps using bicubic
interpolation. Then, it normalizes the descriptors to ensure consistency. This
process helps with identifying features in images efficiently.

The loss function evaluates how accurately the neural network detects interest
points and creates corresponding descriptors. It combines two intermediate
losses:

• One for interest point detection.

• One for descriptor creation.

For interest point detection, the loss measures the difference between predicted
and actual interest points in the images using a cross-entropy loss function.
This penalizes the network more for incorrect predictions, ensuring it focuses
on accurate detection. The loss function evaluates descriptor creation by com-
paring predicted descriptors to the ground-truth descriptors using a hinge
loss function. This penalizes larger errors in descriptor creation, but within
certain margins, preventing excessive penalties for small deviations. By balanc-
ing these losses and minimizing the combined score, the network adjusts its
predictions to improve both interest point detection and descriptor creation
accuracy.

2.3.6 SuperGlue

SuperGlue: Learning Feature Matching with Graph Neural Networks [54] is
a method for enhancing feature matching. It provides improvement for both
accuracy and robustness between keypoints thatmatch in images by integrating
a Graph Neural Network (gnn) into the SuperPoint architecture (as detailed
in 2.3.5).

SuperGlue consists of two components: The Attention Graph Neural Network
(agnn) and the Optimal Matching Layer (oml).

The agnn component is responsible for learning and reasoning about cor-
respondences between different keypoints detected within different images.
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It uses a graph neural network architecture and works by treating keypoints
in images as nodes in a graph. It uses attention mechanisms to aggregate
information between keypoints that are neighbors in the graph. This enables
agnn to capture both semantic similarities and spatial relationships between
keypoints.

Theoml is the second component and is responsible for computing the best cor-
respondences between keypoints in pairs of images. Is uses learned embedding
of keypoints from said image pair and a learned similarity metrics to determine
the best matches. The component employs a differentiable mechanism to solve
an assignment problem. This mechanism is targeted at maximizing the overall
similarity between two keypoints in an image pair while ensuring each one
of the keypoints is paired with at most only one other keypoints in the other
image. This is what allows for robust and accurate matching between keypoints
even when there are occurrences of noise or occlusions.

SuperPoint and SuperGlue have a library extension for Python which simplifies
deployment of the system [60]. The library enables researchers or developers to
integrate the functionality of both into, for example, a computer vision pipeline
for keypoint extraction and matching between images.

2.3.7 HTTP

Hypertext Transfer Protocol (http)[17] is the foundational protocol for com-
munication over Internet. It enables transfer of information between a client
and a server, operating on a request/response basis. It functions over Transfer
Control Protocol (tcp) and IP and employs various methods for communica-
tions such as GET, POST, and PUT requests to perform different actions such
as deletion, updating, or retrieving data between a client and a server.

2.3.8 Web API

Web Application Programming Interface (api) serves as an intermediate in
software for communication and interaction between components or servers
typically adhering to protocols such as http. It works by abstracting away
complex implementation details, promoting modularity and interoperability
facilitating a powerful and flexible way for developers to efficiently setup
communication in software. Flask[19] is a common Python web framework
that facilitates web API development.
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2.3.9 Hudl

Hudl is a commonly used industry platform for sports and performance analysis.
Hudl offers a comprehensive set of tools for coaches, athletes and analysts
for facilitating and capturing sports play, health monitoring, and individual
performance data. Hudl is the main recording and analysis software used in the
Norwegian soccer league Eliteserien[57]. For this thesis, we have been granted
access to Hudl content through our collaboration with Norwegian Eliteserie
team Tromsø Idrettslag (til) who play in the top Norwegian soccer league for
Tromsø.

2.4 Related Work

Earlier work has been done by the csg research group at uit using machine
learning techniques to automate the process of tagging soccer players and
soccer balls in videos. Mearka[59] provides player detection using machine
learning models that rely on cpu usage and not gpu, which significantly
increases the overall time of inference. This thesis aims at producing ground
truth (player and ball position) faster by utilizing gpu power for running
machine learning models for inference. The thesis focuses more on tracking
a player over several frames using multi-object tracking[65] for said machine
learning models to track players over the course of a half-time or individual set
pieces. The main goal is to implement a system that is convenient to run on
mid-tier computer hardware using pre-installed cameras at the different soccer
stadiums. The hardware more specifically are 30-series NVIDIA graphic cards
and high amounts of memory (up to 128 GB), system hardware specifications
are listed in chapter 4 on evaluation.

2.4.1 Mearka

Mearka, which is a distributed soccer tagging system using conventional hard-
ware components, uses yolov4 models for inference on the video footage of
soccer games to detect players. This thesis also uses the yolo framework, but
uses newer versions for faster, more accurate and more with more function-
ality compared to previous versions. The speed of the inference is limited to
the speed of the cpu because Mearka does not utilize gpu power to run the
models. These earlier models also have no user friendly way of incorporating
multi-object tracking such as ByteTrack to keep track of objects. Newer yolo
version such as yolov8 have support for such trackers and is what this thesis
uses to achieve real time inference with accurate tracking over multiple frames.
The newer models also have easier support for using the gpu instead of cpu
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by tweaking inference parameters.

Through the Mearka app, coaches can manually tag events (save a timestamp)
live during a match using their mobile phones, to create a highlight or smaller
video of the uploaded match using the timestamp. In post-processing, machine
learning models are run to create player position metadata which can be
used for further analysis. This thesis aims at producing this said player and
ball metadata closer to real-time so that analysis may be performed during a
match.

2.4.2 Muithu

Muithu[27] provided a cost-effective alternative to resource-intensive tagging
systems that traditionally required a team of several individuals to tag events
over the course of a match or training session. This traditional approach can
be expensive and result in tagging irrelevant events, typically performed by
someone other than the head coach. In contrast, Muithu utilized affordable
consumer cameras and a mobile app, allowing the head coach to tag events
in real-time. This thesis also focuses on using cost-effective alternatives which
the smaller clubs are more likely to obtain than the big clubs.

Involving the head coach in the tagging process ensured that only relevant
events were recorded. With the ability to preview a situation before tagging,
precision and recall rates neared 100 percent. The user-friendly Muithu app en-
abled the coach to tag "who" and "what" within five seconds. After recording, a
timeline displayed all tagged events, and specific video segments for each event
could be extracted. Each tag included an offset within the recording, stream-
lining the workflow, which was significantly faster than manual retrospective
review.

This thesis builds on similar concepts as Muithu. The idea is that the system
is able to accurately extract all ground truth from the video stream or file
of a soccer match after or during a game and pass this metadata on. How
the metadata is used in analysis is outside the scope of this thesis, but it is
important to mention to provide context. This analysis based on the produced
metadata is then provided to the coaches through some user interface and can
be used as a supplement for game decisions such as substitution or formation
changes. On the premise that the ground truth is accurate a coach could also
be presented with analysis about a players total run distance, passes, sprints,
position in formation lines, etc. With such insight a coach can make game
changing decisions in real-time.
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2.4.3 Quantified Soccer Using Positional Data: A Case Study

This case study from 2018[44] highlights the impact a system capable of accu-
rately tracking and positioning of players over the course of a training session
or match has. This thesis aims at producing metadata which can be used to
create such object performance data on players or teams to quantify how a
player or team is performing and what measures need to be taken to improve
using only video as a source and not invasive tools such as tracking vests.

The motivation for not using invasive tools is that such tools only produces
position data for the team incorporating them and not the opposing team.
Most radio-based positional systems only works on a teams home stadium
where they have installed ground-stations that can pick up or register the radio
signals. Video is not reliant on such prerequisites on modern stadiums where
video systems such as Hudl (which is available to all with a Hudl subscription)
or Live Soccer Streams.

2.4.4 Pixel2Field

Pixel2Field[43] is a system designed to automatically convert distorted sports
video frames into precise scaled 2D field maps. Unlike existing methods at
the time that often rely on invasive player-worn sensors or manual calibration,
Pixel2Field exploits sports field characteristics and key-points detection for a
fully automated process.

In the undistorting phase, the system estimates radial distortion coefficients by
utilizing sports field properties, eliminating the need for camera parameters.
The homography recovery phase employs key-points detection for automatic
recovery of the homography transformation. Experimental results using a pro-
fessional soccer game dataset illustrate the system’s efficiency, demonstrating
straightened borderlines and accurate mapping of player positions.

Pixel2Field’s fully automatic nature opened up promising opportunities for
real-time sports analytics with a birds-eye-view 2D map. The paper suggests
potential applications on mobile platforms, hinting at the prospect of real-
time sports analytics coupled with different types of battery optimization
techniques. Pixel2Field represents a significant advancement in transforming
distorted video frames in sports into actionable 2D field maps for enhanced
analytics. This thesis uses proposed homographymethods for calculating player
coordinate coupled with newer and improved methods for finding key points
between a large panoramic image and the frame to be translated.
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2.4.5 Bagadus

Bagadus[20] from 2014 is a novel prototype system designed for soccer an-
alytics in real-time. It combines several advanced technologies, including a
sensor system, a soccer analytics annotations system, and a camera array video
processing system, to offer comprehensive insights into live soccer matches.
The system application is split into three parts:

• Video subsystem - made up of multiple small cameras that record a
soccer field which combined cover the entire soccer field with overlapping
segments as to detect common features for stitching.

• Tracking subsystem - which uses ZXY[45]. ZXY is a sensor-based solution
that works by equipping each player with a radio belt emitter where the
signals produced can be picked up by installed radio towers. The ZXY
Sport Tracking system captures player data such as position, heading,
and speed at 10 Hz, along with additional statistics like total distance
covered.

• Analytics subsystem - allows quick registration of predefined events or
textual annotations on tablets or mobile phones during a live match. The
recorded events are stored in a database, enabling automatic extraction
and presentation alongside relevant video footage. This modernizes and
simplifies the game analysis and could replace the traditional pen and
paper analysis methods used by coaches.

Bagadus was one of the first systems of its kind in the domain, laying the
foundations for later commercial solutions such as Hudl. This thesis draws a lot
of inspiration from this system, in particularly the first and second parts of the
split system, and aims to improve the overall efficiency using machine learning
approaches and the complete removal of invasive positioning equipment.

2.5 Summary

In this section we have showcased different non-invasive tracking technologies,
exploring yolo and the newest yolov8 version available combined withmots
such as ByteTrack. Section 2.2 details what invasive tracking technologies are
common in the domain, where gps is commonly used for its global scale and
versatility. In section 2.3 we detail what technologies are used to implement
Sadji, further detailing SuperPoint and SuperGlue as these are major com-
ponents in the implementation. We have also introduced opencv, which is
a Python extension tool for images and videos. Lastly, we have investigated
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related work in section 2.4, highlighting existing work done at the csg at UiT
The Arctic University of Norway.



3
System Requirement
This chapter will detail the requirement specifications in accordance with the
design paradigm stated in section 1.3.3. Section 3.1 will detail the specific func-
tionalities and features that Sadji will provide the user. Section 3.2 will describe
how Sadji should perform with regards to speed, accuracy, automation, perfor-
mance on common of the shelf (cots) hardware, and data ownership.

3.1 Functional Requirements

Functional requirements should specify what the system provides a user with.
It should clearly state that, with specific provided input from a user, how the
system behaves in accordance with provided input (see section 1.3.3). The
outline for the functional requirements are:

• Non-invasive tracking - Sadji shall support tracking of players on a
soccer field in video without using invasive technologies such as gps.

• Detection model - Sadji shall support different Yolov8 detections model
for detecting/classifying objects that the user wishes. This is to accom-
modate a users preference with regards to detecting players, their team
affiliation and/or the soccer ball.

• Video source - Sadji shall support different video sources, whether it is

29



30 chapter 3 system requirement

a stream source URL or a normal video file ( .mp4, .avi, etc.).

• Frame-panorama mapping - Sadji shall be able to accurately translate
frames from the video source into a panoramic image of the same area
that the video source is capturing.

• Coordinate translation to user provided soccer image - Sadji shall be
able to map player coordinates from video frames to their location on
a user provided image of a football field. This shall happen at real-time
speeds.

• Formatted metadata for user specification - Sadji shall be able to
aggregate metadata depending on how the end-user wishes them to
be. This shall change depending on the video source that the user has
submitted.

• Panoramic image creation - Sadji shall be able to create a panoramic
image from the video source that a user provides.

• Configurable - Sadji shall be designed so that it can be configured to
a user’s specified requirements. This is so that a user of the system can
alternate between different configurations to extract the most out of the
system in terms of accuracy and speed.

3.2 Non-functional Requirements

Non-functional requirements shall detail what characteristics or qualities the
proposed system provides.

• Real-time - Sadji shall be able to perform in real-time, translating player
coordinates from what the video source monitors to where that player
is on the soccer field at any given time. This is to adhere with user
requirements that coordinates shall be produced during, for example, a
soccer game or training, and there is therefore need of real-time speeds.

• Accuracy - Sadji shall produce accurate soccer-field coordinates regard-
less of optimal camera specifications such as resolution or camera place-
ment.

• Automatic coordinate production - Sadji shall be able to automatically
produce player coordinates from a video source provided that panorama
image, 2D soccer field image, and corresponding mapping keypoints
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between them are provided.

• Integration - Sadji shall be designed and implemented so that it can easily
be inserted into a pipeline where an existing video source stream/video is
present (such as Hudl, see section 2.3.9) and end-user using the produced
metadata. This means that parameters such as video resolution and
panorama image should be configurable and dynamic depending on
what the user wants.

• cots components compatibility - Sadji shall function efficiently using
common of the shelf (cots) components that are accessible for econom-
ically weaker teams. It should not be necessary to have to deploy the
system using state of the art technology for it to function optimally.

• Data ownership - Produced metadata from Sadji shall be sent back to
users without Sadji storing or using user provided stream or video any
longer that needed.

3.3 System Model

This section will cover the system model, showcasing how Sadji fits into a
larger, real-world system for translation and analysis of soccer players from a
video source. Figure 3.1 illustrates the system model.

1. Stationary video source installment monitors soccer field. Video source
is either streamed directly into Sadji or is recorded and saved, and at a
later stage uploaded to Sadji.

2. Sadji, highlighted in red in figure 3.1, takes stream or uploaded video as
input and translates soccer players coordinates in that footage to their
designated coordinates on a user-specified image of a soccer field.

3. Coordinates produced by Sadji are passed as input to third-party analysis
software (such as Sárgut and Guorrat).
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Player 1 selected
- Passing network
- Pack rate
- Line breaking passes: 1
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Figure 3.1: Sadji position in potential future pipeline.



4
Design and
Implementation

In this chapter we will detail design choices made for the Sadji’s architecture
and how the different parts of the system was implemented. Many of the design
choices were made after evaluating different iterations of the system, which
will be detailed in chapter 5 on evaluation. This chapter will reference parts
of evaluation chapter 5 to argue why certain choices were implemented. In
section 4.1 we will highlight what prerequisites need to be in order for the
system to operate as expected. In section 4.2 we will give a brief overview of
how the system is pipelined before looking into each component of the system
in section 4.3, 4.4, 4.5, and 4.6.

Sadji is structured as a pipeline consisting of 4 components. Each component
has its own designated task to execute. Splitting a system into components was a
conscious design choice because doing so offers several benefits for future work
as well as continuous integration during the developing process. Splitting a
system providesmodularity, dividing the system into separatemanageable parts
which ensures easier development and understanding because of inherent less
complexion. Components also promote re-usability, allowing them to be utilized
into different projects in the future or act differently within the existing system,
reducing redundancy and enhancing efficiency, improving testing and making
debugging more efficient. The listed advantages collectively lead to a more
flexible, robust, and adaptable systems which can be used in the future.
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4.1 Prerequisites

Before initializing the pipeline, some prerequisites need to be made. For the
system to function, the user will need to manually provide images to produce
a panoramic image of the recorded area, a video, or stream source as input to
the system, and select a detection model and tracker.

4.1.1 Video Source and Panoramic Image

A panoramic image of the recorded area is necessary to provide the system
for the key-point homography generator component detailed in section 4.4
to function. It is important that the video source is mounted in a stationary
position and can tilt and pan. A video source that moves side to side or
backwards and forwards will not work with the system. Example of stationary
video sources that would be suitable for the system:

• Hudl Focus cameras.

• TV broadcasting cameras that record field from the sides. See figure 4.1.

• Other video sources where the camera used is mounted in a stationary
position.

While it is not required, a video source that can tilt and pan far enough in each
direction to view the entire soccer field is beneficial for the inherent reason
that players may be positioned at any point on the soccer field.
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Figure 4.1: TV broadcasting camera angle from Romsaa Arena (previously known as
Alfheim) in Tromsø.

The Hudl Focus camera works by stitching multiple cameras together and
creating a virtual camera within the boundaries of the stitched camera sources.
Inherently, this means that a finished panorama image does exist and this
statement is also backed by the panoramic view angle available at Hudl’s video
viewing platform, see figure 4.2.

Figure 4.2: Hudl panoramic view angle from Romsaa Arena in Tromsø.

However, using for example a screenshot of this angle from the video viewing
platform would not work due to the resolution of the image being to low
relative to content contained (the soccer field). From the knowledge present
during the writing of this thesis, an approach to download a full resolution
panoramic image from the panoramic view angle does not exist. Same can be
said for the TV broadcasting camera angle provided by TV2.

The vertical and horizontal distances from which the recording device is lo-
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cated compared to the field plays an important role. In section 5.5 and 5.6
we demonstrate that the placement of the recording device affects both the
performance and accuracy of the system due to two reasons. These are:

• Horizontal - placing the camera further away from the field will create
a smaller panoramic image due to the principle of perspective. The
farther away a camera is, the narrower the field of view it captures is.
This condenses the scene, making objects appear smaller and reducing
the overall area captured for each frame. This inherently results in a
smaller panoramic image when stitching frames together. The size of the
panoramic image affects performance because a large image has more
pixels, resulting in more necessary computations.

• Vertical - placing a camera at a lower elevation when recording the
field will result in more occlusions. This is because a lower perspective
increases the risk of objects obstructing the view, obstructing the cameras
line of sight to the action and thus missing out on visual information.

4.1.2 Creating Panoramic Image from Video Source

Because of these short-comings, the system provides functionality to create a
panoramic image from any camera that follows the requirements mentioned
earlier. The process of stitching images together to make a panorama image is
shown in figure 4.3. A user needs to provide 5 images that roughly encapsulates
the entire soccer field or area of interest. When 5 suitable images (suitable
meaning keypoint detection method can match enough keypoints between
neighbouring images) have been provided, the stitching process begins and
works as following:

• Detect and match the features of the image. A feature can be explained
as a unique property of some image such as textures, colors or shapes.
Some examples of features that are found in the images encapsulating the
soccer field are commercials, seating areas, stadium pillars and stadium
equipment.

• Estimate homography matrix using the features that were found in pre-
vious step.

• Warp first image to align with second image.

• Blend the warped image together with second image.
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Figure 4.3: Panorama stitching process.

Following this process, a finished panoramic image will look like figure 4.4.
Some post-processing of the panoramic image can also be made to improve
system performance. Such changes are removing the bottom part of the image
mostlymade up of black empty area, down scaling the resolution, removing non-
static features such as players, and animated commercials on digital screens.
There are currently no way for the system to automatically blend players
into the background and remove commercials. Different configurations of the
panoramic image have been explored and tested,whichwill be shown in section
5.8.

Figure 4.4: Panorama stitching process from SR-Bank Arena.
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When a panoramic image has been created, the user will need to mark 12
keypoints in the panorama by clicking on the image. These 12 keypoints on
the soccer field are chosen based on their strategic positioning at intersections
along the field lines and corners, rendering them visually identifiable by a
user. Furthermore, the spatial distribution of the keypoints ensure optimal
coverage giving the homography matrix computation sufficient diversity of
reference points. The location and order of the keypoints is shown in figure 4.5.
These 12 keypoints are needed to compute the homography matrix between
the panoramic image and the 2D image of a soccer field.

Figure 4.5: Soccer field keypoints between panorama and 2D image of soccer field.

4.1.3 Detection Model and Tracker

In order to generate inference data from the stream or video source, an object
detection model is required which can identify players and/or classify what
team/player type they are. For this purpose, we have trained a custom yolov8
model specifically to detect both (Tromsø Idrettslag (til) and Viking Fotballk-
lubb (vik)) players and goalkeepers from each team. While a general player
detection model1 has been utilized for a significant portion of the project’s
timeline, we opted to switch to a new custom-trained model to address clas-
sification and occlusion challenges. Additionally, the detection model needs
to be complemented with a mot model. Both ByteTrack[65] and BotSort[5]

1. URL to GitHub page: https://github.com/noorkhokhar99/YOLOv8-football

https://github.com/noorkhokhar99/YOLOv8-football
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are recommended alternatives that seamlessly integrate with the Ultralytics
yolov8 framework. Themot component is necessary for calculating interpola-
tion coordinates for players between frames, particularly in real-time scenario
requirements.

Our player detection and classification model dataset is composed of 2,720
annotated frames separated into train and validation sets. The bounding box
(bbox) of all the players in each frame is retrieved by using an existing player
detection model. Individual classification for every bbox contained in the 2,720
frames is done manually by observing the produced bboxs and assigning a
classification for it. For our testing and evaluation of the system we have trained
the model to recognize 4 different classes:

• TIL_P - a til player.

• TIL_K - til keeper.

• opponent_P - an opponent player.

• opponent_P - an opponent keeper.

The best weights for themodel resulted in the following confusionmatrix:
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Figure 4.6: Confusion matrix for best weights.

In the first iteration of the systems design, the classification of players was not
integrated into the detection model but operated as an isolated component
using a custom trained yolov8 classification model. This however proved
in-efficient and did not meet our requirement of real-time execution as player
classification had to be carried out after player detection had been performed on
a video. As it turned out, training a new detection model also proved beneficial
in terms of occlusions happening with the trackers. A proposed system of
using color concentration to find out what team a player was on also proved
inaccurate and was discarded as a viable alternative early on in the design
process.

The idea is that a model can be trained to recognise its own team players (in
our case til) and all other variations of teams. We realize that such a process
is tedious and faced with challenges due to teams often altering their soccer
kits in between seasons. Work related to this issue has already been started
at the csg and will be discussed in section 7.3.1. For this thesis, training a
model for the specific match (til-vik) obtained via our collaboration with
professional soccer team til worked well and proved that such an alternative
is viable.
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4.2 Pipeline Overview

Translating player coordinates from the video source to their respective po-
sitions on a 2D soccer field is a 4 step process. The pipeline consists of 4
components:

• The Detection and Tracking Component.

• The keypoint-based homography matrix generator (kbhmg) Component.

• The Coordinate Translation Component.

• The Metadata Aggregator Component.

Step 2: Keypoint-Based Homography Generator

Input frame Frame location in panorama

Frame to
panorama

homography
matrix

Player coordinates in frame Player coordinates in panorama

Translate player
coordinates in panorama
to field coordinates with

panorama to field
homography matrix

Player coordinates on field

Step 4: Metadata Aggregator

Interpolate player
coordinates

between frames

Create metadata for
frames with field
coordinates from
interpolation and

classifcation/id from
inference

Step 1: Detection and Tracker

Produce player
coordinates in

frame

Classify
player

Track player

End-user

Video/Stream
source

SP

Step 3: Coordinate Translation

Figure 4.7: Pipeline overview.

Figure 4.7 illustrates the flow of the component pipeline. The detection and
tracking component is run on its node, while the kbhmg, coordinate trans-
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lation, and metadata aggregator components are run on another node. This
is to isolate the components that are closely coupled and, in the future, be
able to run the tracking component and the other components on their own
machines. This is to increase performance which will be detailed in section
5 and 6. Communication between the nodes is facilitated through Javascript
Object Notation (json). json is easy to read while maintaining a lightweight
data size making it a good fit for the system. Performance is important in our
system so json is a natural fit because of its fast data interchange [66]. It also
provides great compatibility with different technologies promoting interoper-
ability between our components by providing a common format. Section 4.3,
4.4, 4.5, and 4.6 will give a detailed description of design, implementation, and
functionality of each of the components.

4.3 Detection and Tracker Component

Step 1 of the process begins in the detection and tracker component. A video
source, either a stream or a default video is passed as an argument to the
component. If video source is a stream, the manifest file of the stream is read
to retrieve the Frames Per Second (fps) and stream segment size. This is to
correctly segment produced metadata correctly in the metadata aggregator
component (section 4.6). Coordinate translation interval and what resolution
the panoramic image and frame in step 2 should be decreased to are also
configured in the first component. This design choice was made so that the
initial component of the pipeline is responsible for configuring the global
variables used throughout the pipeline. Designing the first component this way
also allows the system to be configured by an external user to fit the users
requirements in terms of speed and precision from the system. In evaluation
chapter 5, we showcase different efficiencies and accuracy when tweaking with
said global variables.

Produced panorama from the camera source, for example, panorama showed
in figure 4.4 is also configured at this component. The corresponding keypoints
showed in figure 4.5 in the panorama also need to be passed to this component.
Again, the design choice to have one component send all necessary prerequisites
to other components is done because alternating the system so that an external
user provides all necessary prerequisites is easier to integrate.

The detection and tracker component operates within a Flask[19] server, acces-
sible for setup and inference through designated endpoints that the user can
communicate with. The component also has an endpoint capable of receiving
a yolov8 detection model. If no detection model is uploaded, it defaults to
a player detection model (no player team classification). The detection and
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tracker component also communicates with the next component through des-
ignated endpoints. Running the components within their own isolated Flask
servers is done so that in the future, workload can be split over multiple com-
puters/nodes to increase performance. This will be discussed further in chapter
6.

Figure 4.8 shows in detail how the detection and tracker componentworks.

Inference: Detect and classify players
in frame

Video/Stream
source

Player: 
- BBox
- Classifcation
- ID

Track

Buffer data produced
from inference

Send package at end of specified interval

30 frame
metadata

&

Last frame

Next 
component

1.

3.

2.
4.

5.

6.

Figure 4.8: Detection and tracker component.

1. Video source is passed to cv2.VideoCapture object.

2. Frames from cv2.VideoCapture object are passed to object detection model
for inference.

3. Integrated mot (ByteTrack) keeps track of object ids between frames.

4. Data produced by inference (bboxs, classification and id) is buffered for
each frame (see listing 4.1 for example).
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5. For every interval (30 frame interval as example), buffered frames meta-
data are packed into a message together with the last inference frame
of the interval. Last inference frame is base64 encoded and then UTF-8
encoded before being appended to the buffer. This is so that the frame
can be json serialized in next step.

6. Message (see listing 4.1) is then json serialized before being sent to
kbhmg component. Buffer is cleared.

Listing 4.1: Message structure from component 1 to component 2.

[
{

" frame " : 0 ,
" data " : l i s t ( z ip ( detect ion_boxes ,

de tec t i on_ id s ,
d e t e c t i o n _ c l a s s ))

} ,
{
. . .
} ,
{

" frame " : 29 ,
" data " : l i s t ( z ip ( detect ion_boxes ,

de tec t i on_ id s ,
d e t e c t i o n _ c l a s s ))

} ,
encoded_frame ,

]

Inference and package sending are continuous until the video or stream ends.
Upon inference completion, the detection and tracking component sends a
notification to the kbhmg component.

4.4 Keypoint-Based Homography Matrix
Generator Component

Step 2 of the pipeline happens at the kbhmg component. The homography
between the panoramic image and the 2D field (H1), as well as the homog-
raphy between the last frame of an interval and the panoramic image are
computed.
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The component initializes when incoming configuration is received from the
first step of the pipeline as mentioned in section 4.3. Figure 4.9 illustrates how
the component functions. The initializing works as follows:

Previous
component

7.

H2

H1s

1.

2.

3.

Last inference frame

4.

H1o

5.

Next
component

8.

6.

Superpoint detect and match

Figure 4.9: kbhmg component.

1. Receives configuration parameters from first component:

• Panoramic image and corresponding keypoint coordinates (high-
lighted in red in figure 4.9).

• Field keypoints from 2D field image (highlighted in red in figure
4.9).

• Percentage decrease, which is defined as what percentage the frame
and panorama should be decreased to.

• Model names (what classifications the model is using).
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• Segment variable, true or false depending on how the finished json
files should be formatted (see section 4.6).

• Segment_duration, depending on how long each segment is if the
video source is a stream (for example m3u8)

• Frames Per Second (fps) of the video source or stream source.

2. Uses panoramic image keypoints and field keypoints from 2D field image
to compute homography between them. Two homography matrices are
computed:

• Homography matrix between decreased version of panorama image
corresponding to received percentage decrease configuration from
step 1 and keypoints in 2D field image (H1s).

• Homography matrix between normal version of panorama image
and keypoints in 2D field image (H1o).

Computing two homography matrices is done in case of the event that
no matching keypoints between a frame and a panorama are found.
If this does happen, the second homography matrix is instead utilised
because not enough keypoints were detected in the decreased panorama
and frame and original panorama and frame had to be utilized. This
seldom happens but is implemented to ensure reliability. Computing the
homographies is done by sending corresponding keypoints as arguments
to the cv2.findHomographymethod. Both the decreased panoramic image
and the original panoramic image are grayscaled and split into 3 equal
parts (left, center and right). Splitting the image is done for two reasons;
superpoint has a maximum image size and splitting the panoramic image
enables caching. Converting panoramic image to grayscale is to reduce
computational complexity and is a standard pre-procedure for keypoint
detection algorithms.

After initialization, the component is ready to receive incoming frames from
the detection and tracker component. Each frame is used to compute a ho-
mography between the frame and the panoramic image. The process is the
following:

3. Last frame from an inference interval performed by the detection and
tracker component is received and de-serialized from json and decoded
from UTF-8 and base64.

4. Frame is decreased to configured percentage.
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5. Decreased frame converted to grayscale and cached part of the split
panoramic image are passed as arguments to superpoint module. The
cached part is always the center when system initializes. Common key-
points between the frame and panoramic image. Listing 4.2 shows pseudo
code for how matches are used to compute the homography matrix. List-
ing 4.2 also shows how the part of the panorama with most matches is
cached for the next frame comparison. Figure 4.9 shows some of the
matches highlighted in green between the frame and center part of the
panorama.

6. Which part of the panorama had the most matches is then cached for
next superpoint comparison.

7. Common points are then passed to cv2.findHomography method com-
puting H2. Picture 7. in 4.9 shows how the homography can be used to
warp the frame to fit into the panorama image. For our system however,
the homography matrix is used to translate individual player coordinates
and not warping images.

8. H2 is passed to next component in the pipeline.
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Listing 4.2: Pseudo code for keypoint detection from multiple parts of panorama.
while True :

par t = par t s [ cached_part ]
query_kpts_p , re f_kpts_p , matches = match ( frame_gray , par t )

# Append matches with c o r r e c t o f f s e t
for match in matches :

match . queryIdx = o f f s e t _que ry + match . queryIdx
match . t r a i n I d x = o f f s e t _ t r a i n + match . t r a i n I d x
matches . append(match )

for query_kpt in query_kpts_p :
query_kpts . append( query_kpt )

for r e f _kp t in r e f _kp t s_p :
r e f _ kp t s . append( re f _kp t )

o f f s e t _que ry += len ( query_kpts )
o f f s e t _ t r a i n += len ( r e f _ kp t s )

# Cache the number o f matches f o r the cu r r en t par t
cache [ cached_part ] = len (matches )

rounds += 1

# I f enough matches e x i t loop
i f len (matches ) > min_matches and rounds >= 1 :

break

# In c r e a s e g r anu l a r i t y i f not enough matches , t r y again
e l i f rounds >= 2 and len (matches ) < min_matches :

i n c r e a s e _g r anu l a r i t y = True
return i n c r e a s e _g r anu l a r i t y

# Check nex t par t o f panorama
else :

cached_part = increment_w_wraparound ( cached_part , ( len ( pa r t s )−1))

cached_part = most_matches ( cache )

pts_frame = [ query_kpts [m. queryIdx ] . pt for m in matches ]
pts_panorama = [ r e f _kp t s [m. t r a i n I d x ] . pt for m in matches ]

4.5 Coordinate Translation Component

The coordinate translation component is responsible for translating player
coordinates in a frame to their position on a 2D field image. The homographies
necessary to translate player coordinates are received from the kbhmg com-
ponent (4.4). The player coordinates are from the same frame that was used to
compute homography H2 (the last frame of an inference interval). Figure 4.10
illustrates the components functionality. The steps are the following:
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Figure 4.10: Coordinate translation component.

1. Component receives homography matrix H2. The coordinate translation
component also receives homography matrix H1s and H1o, however only
once since these homographies remain unchanged.

2. The metadata from the last frame entry in the message sent from detec-
tion and tracker component (4.3) is extracted.

3. A single coordinate is computed from a players bounding box (bbox)
highlighted in red in figure 4.10. This coordinate was chosen as the most
suitable because the center bottom coordinate corresponds to the point
of contact between the player and the soccer field, best representing the
position of a player.

4. The center bottom coordinate of a player is then scaled according to what
percentage decrease is specified in detection and tracker component (4.3)
before being translated to coordinate in panorama using homography
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matrix H2. Highlighted player in figure 4.10 shows player coordinate
translation.

5. Once a player coordinate is translated to the panorama, the player coor-
dinate in the panorama is again translated to the 2D soccer field using
homography matrix H1s (or H1o).

6. This process continues for every player that is part of the metadata of the
last frame entry in the message. Once all player coordinates have been
translated, they are passed on to the metadata aggregator component
together with previous translated player coordinates.

To compute interpolation coordinates for a player in the interval, two coordi-
nates are needed. Once a player coordinate has been translated, that coordinate
is saved for next player coordinate translation for that particular player. An
edge case occurs for first interval as no previous translated player coordinates
exist. To deal with this, the first interval consists of only one frame, which is
the first frame of the inference. Every continuous frame after the first follows
the pipeline as illustrated in figure 4.10.

4.6 Metadata Aggregator Component

The metadata aggregator is the last component of the pipeline and is responsi-
ble for, as the name suggests, aggregating produced metadata. The component
has two configurations for aggregating metadata depending on user require-
ments:

• Stream segments - if the user wants to use the produced metadata for
a stream, which is generally the case for when a user wants to run
the system in real-time during for example a match or training session.
Each segment (json file) will contain frame metadata for an interval of
seconds (2 seconds is common segment size for streams).

• Packed segments - if the user does not need the produced metadata for
a real-time use case, which could be post-game analysis or half-time
analysis. The produced metadata will be aggregated to one large json
file containing frame metadata for all frames.

This structure is illustrated in figure 4.11.

Figure 4.12 shows in detail how the metadata aggregator component func-
tions:
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Produced
Metadata

False TrueIF segment

segments

packed_segments.json

"frames": [
   {
      "frame": 1,
      "detections": [

  { 
     "field_pos": [ 

                 492,
                 382 
              ],
              "camera_pos": [
                 291,
                 506,
                 334,
                 571 
              ], 
              "id":
                 1,
              "team":
                 2

  },
        ...
      ]
  },
      "frame": 2, 

...
}

segments

segment_0.json

segment_1.json

segment_2.json

...

"frames": [
   {
      "frame": 1,
      "detections": [

  ...
      ]
  },
      "frame": 2, 

...
}

"frames": [
   {
      "frame": 60,
      "detections": [

  ...
      ]
  },
      "frame": 61, 

...
}

Figure 4.11: Aggregated metadata for segment an non-segment case.
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1. Component receives player coordinates on field from previous round of
coordinate translation and current round. If there are no previous trans-
lated player coordinates, meaning that the pipeline has only processed
the one frame from the stream or video input, this component is ignored.

2. Component also receives the message containing the buffered data from
the inference.

3. Interpolation coordinates for each player is computed in the interval be-
tween Point 1 and Point n + 1 highlighted in red and blue. If a player does
not have both a previous translated coordinate (Point 1) and a current
translated coordinate (Point n + 1) then interpolation computation does
not occur for that player.

4. Each interpolation coordinate is then correctly put into the corresponding
frame together with the original bbox of the player in the video frame,
its classification and ID.

5. Depending on if the original video source was a normal video or a stream,
the produced metadata from previous step (4.) is either segmented (case
for stream) or put into one large json package (case for normal video).
Figure 4.11 illustrates the structure between segmented produced meta-
data and one large package. One large package or segmented packages
are then sent using a POST request back to the user who initialized Sadji.
The POST request is made to metadata Uniform Resource Locator (url)
handle at the analysis software Sárgut.

4.7 Cleaning Tool

The cleaning tool is a semi-automatic component that positioned outside of
the pipeline showcased in figure 4.7. Designed as a proof of concept (poc),
its purpose is to assist a person in cleaning the produced metadata from
the metadata aggregator component. Cleaning produced metadata can be
summarized into the following:

• Connect IDs that belong to the same player. mots assign new IDs to
objects that it cannot recognize from previous frames, making the same
object have multiple IDs throughout the duration of the video.

• Resolve occlusions between players.mots sometime assign an existing ID
to another object, because it finds the objects similar. This can particularly
occur at players far away from the camera where the amount of pixel
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Figure 4.12: Metadata aggregator illustration.
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detail is lacking. Occlusions also occur when players run in front of each
other.

The cleaning tool works by using spatial locality, classification, and time since
created for IDs to connect them.

4.7.1 Connecting Missing and New IDs

Figure 4.13 shows how the occlusion tool works and the following is a step by
step:

1. Produced metadata is loaded into a dictionary that keeps track of all IDs
that exist for each frame and begins iteration from first frame. For each
frame, player detections is checked to see if any new IDs have appeared.

2. If an ID is not presented in a frame, but was present in the last, then a
counter is incremented to count number of frames it has been missing. If
the ID re-appears then the counter is reset. If an new ID is present, then
that ID is marked as present.

3. If an ID is marked as missing and has been for more than 30 frames, then
the cleaning tool initializes the connecting interface. The last coordinate
the ID was located at is used to find nearby new IDs.

4. The connecting interface works by locating all nearby IDs to the ID that
disappeared that have the same classification. In the example connecting
interface in figure 4.13 ID 15 has disappeared while ID 54 has appeared,
with the same classification. User is then showed all other potential
matches in the area and selects which new ID belongs to the player that
had the disappeared ID.

5. When a user connects the two IDs by (by pressing 1 in example case)
every ID 54 is replaced with ID 15 in the dictionary containing the
produced metadata in step 1. This process continues until the last frame.
On completion, the dictionary is saved with the same JSON format as
described in section 4.6.

4.7.2 Fixing Occluded IDs

Occluded IDs occur when players run in front of each other, obstructing the
line of sight between camera and player. The mots is confused and moves
bounding boxes between players. There are roughly three types of occlusions
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"frames": [
   {
      "frame": 1,
      "detections": [

  { 
     "field_pos": [ 

                 492,
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              ], 
              "id":
                 1,
              "team":
                 2

  },
        ...
      ]
  },
      "frame": 2, 

...
}

Players: 
- BBox
- Classifcation
- ID
- Field Posistion

New ID MissingFalse

True1.

2.

False

3.

True

4.

5.

Cleaned metadata ID
Connected ID

ID

ID
New ID

ID

Figure 4.13: Cleaning component - connecting IDs.
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that can happen between two players:

• Clean swap between IDs - two player bounding boxes swap clean between
them, no new IDs are created.

• One new ID - 1 player receives the bounding box and ID from another,
while the other player gets a new ID.

Detecting occlusions works by checking for classification change for a detection.
If a bounding box moves from one player to another, the classification changes
if the player is on the opposite team. Occlusion between players in different
teams is most cases of occlusion events, however occlusion does occur within
a team. This will be discussed in 6. The fixing of occluded IDs is illustrated in
4.14 and works as follows:

1. Produced metadata is loaded into dictionary that keeps track of all IDs
that exist for each frame and begins iteration from first frame (same as
in section 4.7.1).

2. If a detection does not have the same detection as in the previous frame,
then a counter starts incrementing number of frames that the detection
classification does not match the original classification. If it does match
at a later frame, the counter is reset.

3. If the counter reaches 60 consecutive frames where classification is
miss-matched, an occlusion event is triggered. 60 consecutive frames is
chosen as it gives sufficient information of a players trajectory without
compromising efficiency.

4. User is then presented with an interface showing the crops of all players
that are nearby the ID that is occluded. The crops, referred to as the
timeline is illustrated in figure 4.15. It display all crops of nearby players
and the occluded ID forward and backward in time to help the user
identify what IDs are involved in the occlusion events. In figure 4.15 we
can see that ID 12 looses its bounding box at around frame 655. At frame
657, new ID 81 is created on the player that was originally ID 12. A user
would then enter ID 12 as occluded ID and that the occlusion happened
on frame 655. The involved ID, being 81, is then entered and the frame
on which the new ID 81 was created. All metadata associated with ID 81
is moved to ID 12 from frame 655, and all metadata associated with ID 12
after 655 is moved to new ID 81 after frame 657.
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"frames": [
   {
      "frame": 1,
      "detections": [

  { 
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                 334,
                 571 
              ], 
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Figure 4.14: Cleaning component - fixing occluded IDs.

Figure 4.15: Timelines for players that could be involved in occlusion events.
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4.8 Summary

In this section we have covered the design and implementation of Sadji. We
have detailed how the coordinate translation pipeline operates and what
prerequisites need to be handled on initialize. First, the detection and tracker
components finds all players for each frame in the video source. In frame
coordinates are then sent from the detection and tracker component and
received at the kbhmg component. The kbhmg component then calculates the
necessary homography matrices needed to translate player coordinates in each
frame, to their respective coordinate on a user provided image of a soccer field.
The homographies produced in the kbhmg component are then passed to the
translation component,which in turn handles the player coordinates translation.
Lastly, the metadata aggregator component receives translated coordinates
from the translation component and interpolates player coordinates for the
specified interval (user specified, 30 frames interval in example). Metadata
aggregator component finishes by posting produced metadata back to the
original requesting user. In section 4.7 we highlighted the cleaning tool and
how it functions as a isolated component outside of the Sadji pipeline.

In the next section (5) we will evaluate Sadji and its components.
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Evaluation
This chapter will give an in depth evaluation of the system and investigate the
test-cases referenced in chapter 4 on design and implementation. The design
paradigm 1.3.3 from section 1.3 states that it is expected that an engineer
continuously re-iterates the steps presented in the paradigm. This fosters
adaptability and improvements in the implementation process. By revisiting
and refining the steps outlined in the paradigm, one can uncover and address
potential unexpected flaws, optimize performance and ultimately enhance the
quality of the work that has been done.

5.1 Experiment Hardware

All experiments have been performed with the following hardware:

• Central Processing Unit (cpu): 13th Gen Intel(R) Core(TM) i7-13700
2.10 GHz.

• Graphics Processing Unit (gpu): NVIDIA GeForce RTX 3070 8GB.

• Random Access Memory (ram) 64 GB.

• Storage: NVMe 3400 NVMe SED Micron 1024GB SSD (Solid State Drive).

59
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• Operating System: Windows 11.

• Linux Subsystem: Windows Subsystem for Linux (wsl) with Ubuntu.

The used gpu is consumer-graded with high performance capabilities mak-
ing it a good fit for graphically demanding task such as machine learning
applications.

5.2 Choosing Player Detection Model

Choosing a player detection model for the system is based on three factors
as specified in requirements chapter; accuracy, efficiency and deployment
on conventional hardware. The model should be able to at any given time
detect all/as many as possible players within a frame from a video source and
determine what team that player belongs too. At the time of writing this thesis
yolov8 object detection models were some of the faster and more accurate
alternatives. Maintaining a low level of total IDs over the duration of a video
is also important for interpolation to function optimally as detailed in section
4.6.

5.2.1 Experiment

For this experiment we have run a general yolov8 soccer player detection
model and compared it to our custom trained yolov8 soccer player detection
model which can also classify team of detected player. 3 different video seg-
ments running in 1080p with 30 fps have been tested accumulating to ≈ 5
minutes worth of footage. The videos are all of active soccer play (meaning no
corner, penalty, or similar) and are retrieved through our collaboration with
professional Norwegian soccer team til. The experiment is conducted using
the hardware specifications listed in section 5.1.

5.2.2 Results

Table 5.1 shows the difference in total produced IDs when comparing a model
that is trained to detect players on soccer field versus our detection model
which is trained to detect the player and their team affiliation. Video 3 has
significantly more produced IDs because of its duration. Video 1 improved
by ≈44.9%, slightly better than video 2 and 3 due to more false detection of
sideline players (players not participating in the game).
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Video Model: no-team Model: team Improvement

1 118 65 44.9%
2 137 83 39.4%
3 1109 683 38.4%

Table 5.1: Model with and without team classification.

5.2.3 Discussion

Our custom trained yolov8 detection model is well within the threshold for
real-time inference, achieving an average inference time per frame ≈26.07ms.
Using a detection model trained to not only detect the player, but what team
they are on reduces numbers of IDs produced by ≈40.9%. This decrease is
a result of mainly two factors. Training the model to recognize exclusively
players on the soccer field can result in false detection such as side-line players
(players that are not participating in the game), referees or trainers. These
false detection happen much less when the model is trained to recognize team
affiliation. Secondly, occlusions between players (see section 4.7.2) is reduced
because the mot can more easily distinguish between bounding boxes.

5.3 Choosing MOT

As mentioned in section 4.1.3, the system needs an mot that can consistently
track player over several frames. It’s crucial that the mot also functions in
real-time and can be integrated with chosen player detection model. The
Ultralytics framework offers support for twomots that can easily be integrated
with yolov8 models. These are BotSort and ByteTrack (see section 2.1.3,
2.1.3).

5.3.1 Experiment

For this experiment case, we have run a yolov8 model with ByteTrack and
BotSort using the specified hardware in section 5.1. We are testing for execution
time per frame for both of the trackers. The video utilized is 1080p and 30 fps
with a duration of 30 seconds of active soccer play.
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5.3.2 Results

Table 5.2 compares ByteTrack and BotSort execution time per frame. Real-time
requirements for a 30 fps video is ≈33.33ms. ByteTrack achieves average
execution time per frame with 21.51ms with BotSort achieving 34.31ms.
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Table 5.2: ByteTrack and BotSort comparison.

5.3.3 Discussion

Both mot’s achieve similar results in terms of accuracy and persistence in
regards to maintaining the same id for a player over several frames. This is
observed by viewing total number of IDs over the course of the video which
for ByteTrack is 64 and 57 for BotSort. However, inference speed differs with
ByteTrack edging out with an inference time of 21.51ms over BotSort’s 34.31ms.
Both mot’s have been tested while running the entire coordinate production
pipeline detailed in chapter 4. ByteTrack has been, based on these findings,
chosen as our mot of choice for this system.

5.4 Choosing Keypoint Detection and Feature
Matching Algorithm

Several keypoint detection and feature matching algorithms have been tested
and are listed in section 2.3.4. The SuperPoint algorithm showcased in section
5.4.10, 5.4.11, and 5.4.12 on accuracy and throughput is the first iteration of our
implementation where no optimizations have been made. Optimizations made
is further detailed in section 5.8. For our system we need an algorithm that
works efficiently and accurately. The next section will go into detail on the
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different keypoint detection and feature matching algorithms that have been
tested, and their achieved accuracy and throughput.

Three methods have been used to determine the accuracy. These are:

• Pixel spread - If correct keypoints are found then resulting homography
matrix will correctly translate coordinates to their respective areas in
the panorama and then consequently to the 2D soccer field image. Over
the course of a video sequence, each produced coordinate should be in
relative close proximity to the previous translated coordinate. Our experi-
ment parameter pixel spread measures the distance between coordinates
in frames to measure accuracy. Pixel spread gives fast and accurate re-
sults from testing and is our main accuracy comparison measurement
between different keypoint detection and feature matching algorithms.

• Visually compare produced 2D soccer field coordinates with the gps
coordinates for player 11 at til.

• Visually examine translated frames over the course of the video. If key-
points are accurate then the resulting warped frame from the video se-
quence should perfectly align inside the panoramic image. This is shown
in figure 5.1a. Figure 5.1b illustrates how a frame could inaccurately be
translated because of incorrect keypoints.

It needs to be stated that pixel spread as a measure of accuracy does have
some implications. Spread in between coordinates from one frame to the next
can also naturally be higher due to players running at high speeds. However, a
large deviation in pixel spread does indicate that a lack of accuracy is present
which can be observed by plotting coordinates on the 2D soccer field over
a given duration. From eliterserie team til we have obtained STATSports
gps coordinates for player 1 (number 4) which we have used to compare our
coordinates from Sadji with. The coordinates pixel spread and visualization
for gps is shown in table 5.3.

1. First player we are tracking at til
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(a) Correct translated frame

(b) Incorrect translated frame

Figure 5.1: Accurate vs inaccurate translation.
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(a) gps pixel spread

(b) gps coordinate visualization

Table 5.3: gps coordinate spread and visualization.

To measure throughput we have observed at execution time per frame for each
of the different keypoint algorithms.

5.4.1 BRISK - Experiment

Experiment hardware is listed in section 5.1. Video segment 42 has been used
and we are testing for pixel spread and throughput. Definition for pixel spread

2. Video clip from soccer match played between vik-til the 22nd October 2023 at time
interval 51:20-51:30 is referenced as video segment 4. Video is recorded using Hudl.
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and throughput are stated in section 5.4. Player 1 is being tracked.

5.4.2 BRISK - Results

Entry a) in table 5.4 presents achieved pixel spread averaging 1,492.39 pixels.
brisk is achieves relatively high precision between frame 300 and 700. This
statement can be visualized in entry b) in table 5.4 where we can see that succes-
sive player coordinates are in close proximity to one another. brisk throughput
averages 459.66ms per frame as shown in entry c) in table 5.4.
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(a) brisk pixel spread.

(b) brisk coordinate visualization.

(c) brisk throughput.

Table 5.4: Experiment results for brisk.
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5.4.3 BRISK - Discussion

Pixel spread for brisk, when compared with gps, is substantially lower result-
ing in a less accurate representation of where a player is located. When camera
moves to the right side of the field, brisk pixel spread improves and averages
a pixel spread more comparable to that of gps. However, because of its lack
of consistency especially when the player is located towards the middle of the
field, brisk is not a viable option. brisk throughput averages to 459.66ms
per frame, meaning that for a 30 fps video, we could translate every 15th frame
from the video in real-time.

5.4.4 ORB - Experiment

For this test case we are investigating orb, measuring throughput and pixel
spread (see section 5.4) using video segment 4 (see footnote 2). Player 1 is
being tracked.

5.4.5 ORB - Results

Table 5.5 shows experiment results. Entry a) displays orb pixel spread aver-
aging 28,852.98 pixels. Pixel spread fluctuates throughout the video duration,
achieving no consist result. Entry b) shows visualises the pixel spread on the
soccer field image where no trajectory of player 1 is visible, only scattered
coordinates. orb throughput is fast, averaging 40.62ms per frame as seen in
entry c) in table 5.5.
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(a) orb pixel spread.

(b) orb coordinate visualization.

(c) orb throughput.

Table 5.5: Experiment results for orb.
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5.4.6 ORB - Discussion

orb achieves best throughput of the keypoint detection and matching algo-
rithms tested, achieving throughput close to real-time (≈33.33ms per frame).
However, orb achieves an average pixel spread higher than the others with
coordinates scattered across the soccer field image. Unlike brisk, no improve-
ment in pixel spread is obtained when the camera records the right part of the
soccer field (where brisk improved). Because of this pixel spread, orb is not
a viable alternative for our use-case.

5.4.7 SIFT - Experiment

For this experiment we are investigating keypoint detection and feature match-
ing algorithm sift. Video segment 4 (see footnote 2) is utilized, and we are
tracking player 1. We are testing for pixel spread and throughput (see section
5.4 for definition). Experiment hardware is listed in section 5.1.

5.4.8 SIFT - Results

sift achieves average pixel spread of 149.12 pixels as shown in entry a) in
table 5.6. Pixel spread after approximately 350 frames remains low. This can
also be observed in entry b) in table 5.6 where trajectory of player 1 remains
consistent. Throughput averages at 677.04ms as seen in entry c).
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(a) sift pixel spread.

(b) sift coordinate visualization.

(c) sift throughput.

Table 5.6: Experiment results for sift.
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5.4.9 SIFT - Discussion

sift pixel spreads works well once the camera records the right part of the
soccer field, similar to brisk. This seems to be a common trait, possibly being
a result of more unique features in each frame being detected once the camera
moves to the right side. Pixel spread towards the center part of the soccer field
remains high, resulting in an inconsistent trajectory for player 1. Throughput
is relatively low, averaging at 677.04ms which means approximately 1 frame
can be translated every 20th frame. sift is not a viable option because of its
inconsistencies in pixel spread towards the center area of the soccer field and
because of its high execution time per frame.

5.4.10 SuperPoint - Experiment

For this experiment, we are investigating SuperPoint (detailed in section 2.3.5),
using the specified hardware in section 5.1. gpu computation has not been
enabled, and all computation is performed using the cpu. Video segment 4 (see
footnote 2) has been utilized and we are tracking player 1. We are investigating
pixel spread and throughput (see section 5.4 for definition).

5.4.11 SuperPoint - Results

SuperPoint achieves average pixel spread of 1.77 pixels. Pixel spread increases
around frame 750 to a maximum of approximately 14 pixels as shown in entry
a) in table 5.7. Entry b) displays the visualization of player 1 trajectory of the
course of the video. Proximity of all drawn coordinates are high, resulting in a
clear player trajectory. Throughput, as seen in entry c) in table 5.7, averages
to 2,223.66ms per frame, where execution time per frame between approxi-
mately frame 100 to 350 is higher reaching close to 35,000ms for some of the
frames.
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(a) SuperPoint pixel spread.

(b) SuperPoint coordinate visualization.

(c) SuperPoint throughput.

Table 5.7: Experiment results for SuperPoint.
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5.4.12 SuperPoint - Discussion

SuperPoint achieves highest accuracy of investigated keypoint detection and
matching algorithms, achieving a pixel spread comparable to that of the gps
pixel spread shown in table 5.3. Because of this result, SuperPoint is a viable
alternative, providing an accurate representation of where a player is located
on the soccer field. Throughput remains high averaging 2,223.66ms. The first
≈ 350 frames have greater execution time. This is a result due to not enough
keypoints being detected for each part of the panorama. Asmentioned in section
4.4, because of a limitation of image size input for SuperPoint, the panorama
is split into three parts. For our first iteration of the kbhmg (section 4.4), no
information is cached and the comparison between frame and panorama part
is in order center part, left part and right part. Optimization results of the
SuperPoint implementation will be further explored in section 5.8.

5.4.13 Summary

In this section we have investigated different keypoint detection and feature
matching algorithms using pixel spread and throughput as main determinants
for viable options. The coordinate visualization and pixel spread produced by
thegps coordinates serve as our benchmark because of the low pixel spread and
clear trajectory of the player. However,gps also showed some inaccuracy which
is highlighted with red arrows in figure 5.2 where the player trajectory deviates
from what we observe in the footage. Table 5.8 summarize the findings from
the choosing keypoint detection and feature matching algorithm section.

Method Throughput (𝑚𝑠) Spread (𝑝𝑥)

brisk 459.66 1492.39
orb 40.62 28852.98
sift 677.94 149.12
gps N/A 2.18
sp 2223.66 1.77

Table 5.8: Throughput and pixel spread.
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Figure 5.2: Coordinate trajectory deviation.

5.5 Video Source Placement on Tracking Quality

As detailed in section 4.1.1, video source placement is vital for producing fewer
occlusions between players and minimizing the panoramic image size. This
is because a low camera installment results in players more often running in
front of each other, obscuring the line of sight between detected player and
camera. Placing a camera to close to the soccer field inherently means that
the camera needs to pan further left and right to capture the entirety of the
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soccer field, resulting in a larger panoramic image. A larger panoramic image
(larger resolution) will result in higher computation times for the kbhmg
component, because there are more pixels that need to be checked when
detecting keypoints between frame and panorama.

5.5.1 Experiment

For this experiment, we want to investigate how camera placement affects
number of produces IDs over the duration of 5 minutes of soccer play. We will
be investigating the Hudl camera placement at SR-Bank Arena (vik home
arena), Brann Stadion (Norwegian eliteserie team Brann home arena), and
Romsaa Arena (til home stadium). A high number of produced IDs means
that the tracker is having problems associating bounding boxes for players
(see section 2.1.3 on ByteTrack). The experiment hardware is listed in section
5.1 and we are investigating 5 minutes of 1080p 30 fps worth of footage for
each of the arenas. The same yolov8 player detection model is used for all
arenas.

5.5.2 Result

Figure 5.3 shows experiment results. SR-Bank Arena and Bran Stadion achieve
similar results, achieving respectively 1,089 and 1,176 unique IDs. Camera
installment at Romsaa Arena results in 3,806 unique IDs. The sudden increase
of IDs at approximately 120 seconds for Romsaa Arena is caused by an abrupt
camera movement and consequently several newly produced IDs that are
unable to be associated by the tracker. Figure 5.4 shows produced panorama
and resolution from the different camera placements at the arenas.
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Figure 5.3: Total detected IDs with different camera placements.

(a) Romsaa Arena Panorama (9238x1372).

(b) SR-Bank Arena (4957x915).

(c) Bran Stadion (5254x1044).

Figure 5.4: Panorama image produced from camera angle at testing arenas.
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5.5.3 Discussion

Both SR-Bank Arena and Brann Stadion achieve similar results, producing ap-
proximately 2,700 fewer IDs than Romsaa Arena. Camera placement is similar
for both of these arenas, which is illustrated by showcasing panoramic images
produced from the arenas. The soccer field appears larger, with the furthermost
part of the field appearing closer to the camera. Both of these arenas have cam-
eras placed further back and higher up. Panorama image produced by camera
at Romsaa Arena is significantly larger at 9,238x1,372. Because of this lower
and closer to the soccer field camera placement, the tracker is experiencing dif-
ficulties associating bounding boxes and keeping IDs persistent. Furthermore,
the large panorama will increase overall Sadji performance because there are
more pixels that need to be part of the computation done by the kbhmg
component (see section 4.4). This deficiency in performance, due to larger
produced panorama as a result of poor camera placement, is not covered in
this experiment. However it serves as a visual illustration for total detected IDs
with different camera placements.

5.6 Video Source Resolution for Inference
Quality and Speed

It is important that the system can detect as many players on field as possible at
any given time. Preferably, as long as all players are in the camera frame, a total
of 22 players should at any time be detected. For the player detection model,
resolution plays an important role for distinguishing all players. Resolution
determines the level of detail that is captured, and a higher resolution enables
finer details allowing the model to recognize important features.

5.6.1 Experiment

For this experiment, we will investigate how video source resolution affects
the number of players the yolov8 model can detect for each second over the
course of 5 minutes. We are experimenting with three different resolutions:
480p, 720p, and 1080p. We will also test for inference time per frame at the
different resolutions. These resolutions are chosen because they were the once
available through the Hudl video source. Experiment hardware is listed in
section 5.1. Video is 30 fps for all resolutions and the same yolov8 player
detection model is utilized.



5.6 video source resolution for inference quality and speed 79

5.6.2 Result

Figure 5.5 details the results from the experiment. 1080p and 720p maintain
a similar number of detected IDs, with 1080p slightly detecting more. 480p
detects consistently less, with a least number 6 IDs detected at approximately
100 seconds. 720p and 1080p maintained a significantly higher number of IDs
during the same timestamp.
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Figure 5.5: Detected IDs per second with different video source resolutions.

These are the inference times per frame for the different resolutions:

• 480p ≈ 5.86 milliseconds per frame.

• 720p ≈ 9.00 milliseconds per frame.

• 1080p ≈ 16.82 milliseconds per frame.
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5.6.3 Discussion

Figure 5.5 illustrates that video source resolution plays an important part for
the yolov8 detection models ability to maintain a high number of detected
players. Both the 720p and 1080p resolutions are capable of detecting close
to 22 IDs, with 1080p slightly outperforming. This difference in performance
can be attributed to the higher resolution of 1080p, which provides more
detailed frames for the model to analyze, resulting in improved ID detection
accuracy.

Opting for a lower resolution video source does not yield performance benefits
to offset the disadvantage of reduced player detection due to the lower resolu-
tion. yolov8 maintains real-time inference performance for 1080p resolution
and lower with the experiment hardware we are utilizing. Inference time is
important to minimize for real-time system performance, and higher resolution
does inherently affect this.

Threshold for real time execution for a video recorded at 30 fps is ≈ 33.33
milliseconds per frame. The inference time for 1080p is comfortably within the
requirements for real-time performances, making it a suitable choice for our
system because it also aids the model in detecting more players. 1440p might
serve as a viable alternative to 1080p opting for even more detailed images.
However, 1440p was not an available option for us at the time of writing this
thesis.

5.7 Detection and Tracker Component

Decreasing the interval at which the detection and tracker component (see sec-
tion 4.3 for component details) dispatches packages to the kbhmg component
(section 4.4) means that a more accurate representation of a players coordi-
nates on the soccer field is produced. This is because fewer coordinates have to
be interpolated in metadata aggregator component (see section 4.6). However,
decreasing the interval means that the detection and tracker component has
to halt execution every time a package is dispatched.

5.7.1 Experiment

In this section we will investigate the overall throughput of the detection and
tracker component. We will use a 1080p video with 30 𝑓 𝑝𝑠, meaning that for
the component to achieve real-time, it must have a throughput higher than
30 fps. The experiment hardware is listed in section 5.1. A general yolov8
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player detection model is utilized. No other components are run during this
experiment.

5.7.2 Result

Table 5.9. Only interval 2 and 1 achieve throughput lower than minimum
threshold for real-time averaging 28.64 and 22.79 𝑓 𝑝𝑠.

Interval Throughput (𝑓 𝑝𝑠) Real-time

30 37.17 YES
25 37.14 YES
20 36.92 YES
15 36.65 YES
10 36.06 YES
5 33.36 YES
2 28.64 NO
1 22.79 NO

Table 5.9: Inference speed per frame at different intervals.

5.7.3 Discussion

Increasing the interval atwhich the detection and tracker component dispatches
packages to the kbhmg component results in higher throughput as shown
in table 5.9. By lowering the interval at which packages are dispatched, more
frames are sent to the kbhmg component, resulting in a lower total throughput.
This is because more frames have to be encoded and dispatched resulting in
the player detection model having to halt inference for a short duration. For
a video recorded at 1080p with 30 𝑓 𝑝𝑠 we achieved real-time throughput for
intervals 30-5 highlighted in green in table 5.9. In section 5.10 we will evaluate
how Sadji performs when all components are running.

5.8 KBHMG Component

The kbhmg component has undergone the most number of iterations in design
to gradually increase the throughput while maintaining a high level of accuracy,
measured in pixel spread (see section 5.4 for pixel spread definition). The next
subsections will cover the experiment, result and discussion for each of the
added features to increase kbhmg throughput. All kbhmg component exper-
iments have been conducted while running the kbhmg component isolated,
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meaning no other components have been running at the same time.

5.8.1 GPU - Experiment

For this test we have moved the SuperPoint keypoint detection and feature
matching algorithm from the cpu to thegpu. A 30 seconds video has been used
with a resolution of 1080p and 30 fps (see footnote 2). The testing hardware is
specified in section 5.1.

5.8.2 GPU - Result

Experiment results are listed in table 5.10. Moving execution from cpu to gpu
improves execution time for all frames, from an average execution time per
frame of 26,510.80ms to 4,697.56ms on the gpu. Execution time per frame
decreases after approximately 350 frames. This is because the camera moves
towards the right part of the soccer field, allowing SuperPoint to detect and
match more keypoints thus reducing execution time.

(a) SuperPoint w/o gpu (b) SuperPoint w/ gpu

Table 5.10: gpu vs cpu.

5.8.3 GPU - Discussion

Significant improvement is made when SuperPoint is run on the gpu. This is
because the gpu enables enhanced parallel processing capabilities compared
to the cpu, allowing for faster computation time of convolutions and matrix
multiplications which are common operations for deep learning algorithms
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Figure 5.6: Panorama with cropped bottom part.

such as SuperPoint.

5.8.4 Crop - Problem

A significant portion of the created panorama (see section 4.1.2) is non-essential
for SuperPoint to function correctly. When warping and stitching pictures to
create the panorama image, the bottom part of the panorama is dark and
stretched, containing no relevant information for the frame panorama compar-
ison in the kbhmg component to function correctly. Figure 4.4 illustrates this.
However, for other keypoint detection and feature matching algorithms (brisk,
orb and sift) doing this did reduce number of keypoints found.

5.8.5 Crop - Experiment

For this experiment, we are cropping a large part of the bottom half of the
panorama image (see figure 5.6). Sadji supports no automatic cropping of the
produced panoramic image. However, a proposed method is detailed in section
6.1 in figure 6.1. Experiment hardware is specified in section 5.1, and we are
utilizing a 30 seconds, 1080p 30 fps video (see footnote 2).

5.8.6 Crop - Result

Table 5.11 shows produced results after running the experiment. Using cropped
panorama image reduced average execution time per frame to 2,2215.22ms
from 4,697.56ms without cropped.
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(a) SuperPoint w/o cropped panorama (b) SuperPoint w/ cropped panorama

Table 5.11: With and without cropped panorama.

5.8.7 Crop - Discussion

Cropping the panoramic image improves average execution time per frame by
approximately half. This is to be expected as number of pixels that need to be
accounted for in the frame panorama comparison performed at the kbhmg
component is significantly reduced. Using SuperPoint, cropping the panorama
image had no effect for finding matches between the frame and the panorama
(see section 4.4 for detailed description of this process).

5.8.8 Percentage - Problem

Decreasing the frame and panorama image by a percentage reduces number of
pixels utilized by SuperPoint, which should improve the overall execution time
per frame. However, decreasing frame and panorama by a percentage will result
in images with less visual information, possibility interfering with the number of
keypoints and features SuperPoint is able to detect and match. This essentially
means that fewer pixels are used to represent the same scene, which can cause
a loss of detail and granularity. This can lead to a less precise or accurate
match between the frame and panorama, and the panorama and the user
uploaded image of a soccer field (see figure 4.5 in section 4.1.2). The resulting
homographies from these matches may be less granular in mapping coordinates
meaning it may not accurately represent the geometric transformation between
the two different images.
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5.8.9 Percentage - Experiment

For this Experiment, we are decreasing the size of the frame and the panorama
image used by SuperPoint (see section 4.4). We are testing with different
percentages of original size, observing kbhmg component throughput and
pixel spread (see section 5.4 for pixel spread definition). Experiment hardware
is listed in section 5.1. The video utilized is 30 seconds long, with 1080p
resolution and 30 fps (see footnote 2).

5.8.10 Percentage - Result

Table 5.8.10 shows the execution time per frame and pixel spread at different
percentage reductions of original frame and panorama size. Both panorama
and frame are decreased by same percentage. The first column shows how
many percentage the frame and panorama are decreased by. Table 5.13 shows
visualisation of how decreasing resolution of frame and panorama affects the
accuracy and granularity of the produced on soccer field player coordinates.
For percentage 80, average execution time per frame is 79.02ms with a pixel
spread of 14.90. At 70 percent, pixel spread improves to an average of 4.79
with an average execution time per frame of 87.16ms. Observation of entry a)
and b) in table 5.13 shows a lack of accuracy in the resulting coordinates on
the 2D soccer field image. At 60 percent, some improvement can be observed
in entry c) in table 5.13. From percentage 50 to 0 we can observe a clear path of
the players trajectory in entry d), e), f), g) and h). These percentages yield a
clear enough frame and panorama giving SuperPoint a low enough granularity
to produce accurate matches between keypoints. Pixel spread from percentage
50 to 0 remain relatively unchanged.
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(a) 80 % (b) 70 %

(c) 60 % (d) 50 %

(e) 40 % (f) 30 %

(g) 20 % (h) 0 %

Table 5.13: Visualization of player coordinates at different frame and panorama per-
centages.
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5.8.11 Percentage - Discussion

As mentioned in 5.8.8, opting for a high percentage decrease, increases the
overall throughput because there are less pixels that need to be accounted for
when SuperPoint detects and matches features between frame and panorama.
However, as we can observe in table 5.13, a higher percentage decrease will
result in a loss of positional information on the 2D soccer field image. When
all components in Sadji are running, the interval at which frames are being
compared with the panorama image increases, otherwise Sadji would not
function in real-time. Because of this, decreasing the frame and panorama by
50 percent or 40 percent is suitable alternatives. What combinations of interval
and percentage decrease result in the optimal combination of throughput and
pixel spread (accuracy) will be further investigated in section 5.10.
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5.8.12 Cache - Problem

Because of a size limitation of input images to SuperPoint, as mentioned in
section 4.4, the panorama needs to be split into smaller parts. For this, the
panorama is split in three parts: left, center, and right. Each part is then sent
into SuperPoint for comparison with the frame, and once enough matching key-
points are located, the homographies can be computed. Splitting the panorama
allows for caching, as caching allows for storing results from previous rounds of
keypoints computations in SuperPoint. For example, if the input frame captures
the right most part of the soccer field and SuperPoint finds the most matches
in the right part of the panorama, then we can cache that location for the next
round. This is because the video camera recording will most likely capture
the same area of the soccer field the next time around, because of the short
interval duration for frame and panorama comparison.

5.8.13 Cache - Experiment

For this experiment we are investigating how caching can improve the through-
put for the kbhmg component. We are using the experiment hardware speci-
fied in section 5.1. The video is 30 seconds long, recorded at 1080p and 30 fps
(see footnote 2). The video captures soccer play moving from the center of the
field to the right part. Both frame and panorama are reduced to 50 percent of
original size (see section 5.8.8).

5.8.14 Cache - Result

Table 5.14 displays the result from the experiment. Entry a) in table 5.14 has
caching disable. Between frame 0 and approximately frame 350, execution time
per frame stays slightly above average for entry a). Execution time per frame
remains under average in interval 350 to approximately 650 frames for entry
a). After 650 frames, execution time increases to above average, maintaining
approximately same execution time per frame for the remaining duration of
the video. For entry b), the graph remains unchanged when compared to entry
a). However, after approximately 650 frames, execution time remains at the
same level as observed in interval 350 to 650. Some spikes in execution time
are observed after 650 frames for entry b). Average execution time per frame
with caching enabled is 181.25ms compared to entry a) caching disabled at
216.97ms.
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(a) Caching disabled. (b) Caching enabled.

Table 5.14: Without and with caching enabled.

5.8.15 Cache - Discussion

From approximately frame 650 the camera records the right part of the soccer
field, and caches that the most amount of keypoint matches was located in that
part of the panorama. This means that the kbhmg component does one less
comparison, which in return improves performance. From approximately 0 to
350 frames the camera records play that is happening around the center area.
The kbhmg component is not finding enough matches between the frame
and the center part of the panorama and needs to check the left part of the
panorama also. Execution time for both entry a) and b) between frame 0 and
350 is because of this higher. The efficiency of caching specific parts of the
panorama is directly proportional to the duration of the video, as a longer
video increases opportunities for iterative usage of the cached part.

5.8.16 Players/Commercials - Problem

We hypothesise that the live-commercials will decrease accuracy because they
move and change on the digital display throughout the duration of a video.
Most of the commercials also have the exact same graphics in multiple loca-
tion, potentially confusing the SuperPoint algorithm. Player within the frames
composing the panorama (see section 4.1.2) may also potentially influence the
accuracy of SuperPoint, because they may introduce variables impacting the
fidelity of feature extraction between frame and panorama.
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Figure 5.7: Panorama with players/commercials removed.

5.8.17 Players/Commercials - Experiment

For this experiment, we have removed the players and commercials/live screens
from the panorama image (see figure 5.7 for example). Players/commercials
are removed using a third party software. Hardware specifications are listed in
section 5.1 and we are utilizing a 30 seconds video with 1080p and 30 fps (see
footnote 2). Frame and panorama are decreased by 45 percent (see section
5.8.8 for details on percentage decrease).

5.8.18 Players/Commercials - Result

Table 5.15 shows experiment results. Without players/commercials averages
220.89ms per frame. With players/commercials averages 216.95ms. Table 5.16
shows produced trajectory of player 1. No noticeable visual deviation is observed
between the two cases.

(a) With players/commercials. (b) Without players/commercials.

Table 5.15: With and without players/commercials enabled.
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(a) With players/commercials. (b) Without players/commercials.

Table 5.16: Visualization with and without players/commercials enabled.

5.8.19 Players/Commercials - Discussion

Removing players/commercials made no noticeable accuracy or performance
gains as observed in table 5.16 and 5.15. Because of this, we did not make any
design/implementation altercations such as incorporating automatic player
and/or commercials removal from the panorama image. SuperPoint, regardless
of players/commercials being present, functioned as expected.

5.9 KBHMG Component Experiments Summary

Table 5.17 summarises the findings from section 5.8. The sweet spots for combi-
nations of metrics is highlighted in green in table 5.17. We found that at these
metrics, throughput was relatively high without sacrificing the pixel spread.
These metrics are configurable by a user of Sadji, meaning if a user wishes
they can alternate metrics to for example lower throughput and decrease pixel
spread (improve accuracy). Table 5.17 measures throughput in fps, detailing
how many frames SuperPoint, in the kbhmg component, can process per
second.
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GPU Crop Percentage Cache Players /
Commer-
cials

Throughput
(𝑓 𝑝𝑠)

Spread
(𝑝𝑥)

X ✓ 0 X ✓ 0.037 N/A
✓ X 0 X ✓ 0.21 N/A
✓ ✓ 0 X ✓ 0.45 N/A

✓ ✓ 0 ✓ X 0.47 1.88
✓ ✓ 0 ✓ ✓ 0.45 1.77
✓ ✓ 20 ✓ ✓ 1.55 2.11
✓ ✓ 30 ✓ ✓ 2.45 2.36
✓ ✓ 40 ✓ ✓ 3.71 2.16
✓ ✓ 45 ✓ ✓ 4.62 2.14
✓ ✓ 45 ✓ X 4.53 2.38

✓ ✓ 50 ✓ ✓ 5.52 2.52
✓ ✓ 60 ✓ ✓ 8.98 3.04
✓ ✓ 70 ✓ ✓ 11.47 4.78
✓ ✓ 80 ✓ ✓ 12.65 14.90

Table 5.17: Iterations of SuperPoint implementation.

5.10 System Performance

This section will cover the systems performance when running the entire
pipeline on a single node. Running the components simultaneously reduces
overall system performance in terms of throughput. This is because there is
a resource contention and scheduling conflict between the components. This
is particularly the case for the detection and tracker component (section 4.3)
and the kbhmg component (section 4.4). Both of these use gpu intensive
algorithms that can lead to context switching overhead because the gpu has a
finite number of processing units and memory bandwith.

5.10.1 Experiment

For this experiment, we will run the entire Sadji pipeline on a single computer.
Hardware specifications used is listed in section 5.1. We are using a 30 seconds
long video,with a resolution of 1080p and 30 fps (see footnote 2). We are testing
for the overall throughput of Sadji, using fps as measurement unit. We are
also investigating execution time per frame for the kbhmg and detection and
tracker component. We will experiment with different intervals (see section 4.3
on interval details) and different percentages of original frame and panorama
resolution. Both frame and panorama are reduced to the same percentage (see
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section 5.8.8 for details on percentage parameter).

5.10.2 Result

Table 5.18 shows system throughput for different values of interval and percent-
age size of original frame and panorama. Cases highlighted in green achieve
real-time throughput where threshold for real-time with the video utilized for
the experiment is over 30 fps. Some cases are above this threshold, however
they are so close to the threshold that they are not reliable cases. Table 5.19
displays visual representation of trajectory for player 1 (number 4 in the video)
for cases that are highlighted in green in table 5.18. Case 9 has the lowest
interval at 20, meaning it has the fewest number of interpolated coordinates,
producing a more frequent representation of player position. It however, has the
highest percentage decrease with 65 percent reduction in frame and panorama
resolution.

Case Interval Percentage kbhmg
(𝑚𝑠)

Detection
and
Tracker
(𝑚𝑠)

Throughput
(𝑓 𝑝𝑠)

1 30 45 518.57 35.70 30.10
2 30 55 315.05 29.41 32.48
3 30 60 269.76 30.41 33.77
4 25 50 410.81 35.14 28.70
5 25 55 307.50 32.72 30.71
6 25 60 260.84 31.14 32.88
7 20 55 296.99 33.91 29.85
8 20 60 246.65 32.42 31.55
9 20 65 223.66 31.94 31.85
10 15 60 240.65 34.55 29.50
11 15 65 213.31 33.46 30.49
12 15 70 204.60 32.86 30.63

Table 5.18: Experiments with different interval and percentage on single node.
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(a) Case 2 (b) Case 3

(c) Case 6 (d) Case 8

(e) Case 9 (f) GPS

Table 5.19: Visualization of player coordinates for different cases.

5.10.3 Discussion

As previously mentioned, some entries in the table may meet the required
throughput for real-time applications, but are close to the threshold meaning
they are not viable alternatives. This closeness to the threshold means that
even small fluctuations in system load or data input could push them over the
limit, causing them to miss real-time deadlines. Because of this, these cases
are considered a risk for real-time applications due to their lack of reliability
in maintaining the needed performance levels consistently. Coordinates in
between the intervals are interpolated, as is covered in section 4.6.
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5.11 Alternative Video Source

Panorama utilized as example in the Sadji pipeline is captured from a Hudl
camera. Locating frames from the Hudl video works well because of this.
However, Eliteserie broadcast footage records the soccer games from a similar
position as the Hudl installments on the different arenas. Because of this we
hypothesize that frames from an Eliteserie video source will also function with
Sadji.

5.11.1 Experiment

For this experiment we are using an Eliteserie highlight3 clip recorded at SR-
Bank arena. The yolov8 model utilized can also classify which team the player
belongs to (samemodel utilized as in section 5.2). Experiment hardware is listed
in section 5.1 and we are using a 10 second long clip, recorded at 1080p with
30 fps. We are investigating the pixel spread and trajectory visualization (see
section 5.4 for description). We are tracking player 2⁴. Frame and panorama
are decreased by 45 percent.

5.11.2 Result

Figure 5.8 displays produced coordinates, with figure 5.9 details the achieved
pixel spread. Pixel spread averages to 3.11. Approximately around frame 170 we
observe three spikes in pixel spread values. This can also be observed in figure
5.8, as there are visuals gaps in player 2 path towards the penalty area.

3. url: https://highlights.eliteserien.no/playlist/apqoh3i03rncz
4. Second test player for til

https://highlights.eliteserien.no/playlist/apqoh3i03rncz
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Figure 5.8: Coordinate trajectory for ID 7 in Eliteserie highlight clip.

Figure 5.9: Pixel spread using Eliteserie highlight clip (decrease percentage is 45).
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5.11.3 Discussion

The camera pans rapidly in interval 150 to 200 frames in the eliteserie highlight
video, possibly being the result of the spikes we observe in figure 5.8. Before
and after frame interval 150 and 200 we observe a steady pixel spread, which
aligns with the cameras more slowly pan movement. The pixel spread using
Eliteserie highlights clip is ≈ 3.11px, which is similar to achieved pixel spread
using Hudl as video source as seen in table 5.17. The slightly higher deviation
in pixel spread can be a result of player 2 running at high speeds from the
midfield area to the penalty box and the eliteserie highlight camera moving
rapidly. Figure 5.10 shows visually how one of the frames from the clip was
placed into the panorama.

The results from the experiment performed in this section is an interesting
discovery, as Eliteserie broadcasting records closer up to the soccer play, possibly
enablingmore accurate tracking at the detection and tracker component. Closer
up footage also lays the foundation for the possibility of accurately being able
to detect and track the soccer ball.

Figure 5.10: Eliteserie highlight frame placed in panorama.

5.12 Cleaning Tool - Connecting IDs

The connecting IDs feature of the cleaning tool (see section 4.7.1) aims to
decrease number of total IDs in produced metadata from the metadata ag-
gregator component (see section 4.6). For it function, it needs to be able to
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detect what IDs are missing and which newly created IDs are good matches
for connecting.

5.12.1 Experiment

To test the effectiveness of the connecting functionality of the cleaning tool, 3
clips have been run through the coordinate translation pipeline producing 3
metadata files. The clips are chosen based on interesting events taking place
during the video (play leading to goal attempts for all 3 clips). A test-user has
then been instructed on how to operate the cleaning tool (see section 4.13)
before cleaning produced metadata from the 3 clips. Experiment hardware is
listed in section 5.1 and the videos are all 1080p with 30 fps. Clip length is
listed in table 5.20.

5.12.2 Result

Achieved results are listed in table 5.20. Optimal number of IDs column in table
5.20 indicates how many unique players are part of the video clip. For clip 1 and
2, this is 21 because home goalkeeper is out of the cameras view. For clip 3 all
players and goalkeepers appear throughout the video. Improvement was made
at all clips with clip 3 reducing number of unique IDs with 50 percent.

Clip Length (sec-
onds

IDs before IDs after IDs optimal

1 30 42 30 21
2 49 43 31 21
3 30 50 25 22

Table 5.20: User testing for cleaning tool.

5.12.3 Discussion

IDs that were not connected were a result of them disappearing and no newly
created ID was assigned to the player within the 2 second window. This 2
second window is a configurable option. However, any longer duration than
this will result in the spatial locality being inaccurate because the camera
may have moved to much resulting in faulty closest IDs. Figure 5.11 shows one
connecting interface that did not include the player whom the disappeared ID
belonged too.
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Figure 5.11: Connecting ID not found.

5.13 Summary

In this chapter we have investigated and evaluated different components and
performance of Sadji. Evaluations shows that the pipeline presented in chap-
ter 4 on design and implementation functions with a high level of precision
and speed, as detailed in section 5.10. Section 5.8 and 5.7 shows evaluation
performed during the implementation stage of Sadji, serving as a foundation
for why certain choices were made. Each iteration of the kbhmg component
has gradually aimed at increasing overall frame throughput measured in fps
to approach real-time while maintaining a low pixel spread (see section 5.4
for pixel spread definition). Table 5.18 in section 5.10.2 highlights in green
what combinations Sadji can be configured with to achieve real-time perfor-
mance.

In section 5.11 we evaluated how Sadji performs utilizing an alternative video
source, meaning a video source from which the panorama image in section
4.1.2 is not created from. This experiment gave confirmation that using an
alternative video source, such as Eliteserie highlight clips, is viable. In section
7.3.2 we discuss a use-case of this discovery.

Finally, in section 5.12 we investigated the cleaning tool performance for
reducing the total number of IDs from produced metadata from the Sadji
pipeline.



6
Discussion
In this chapter we will discuss the findings from evaluation chapter 5 and
design/implementation in chapter 4 on how the systems results match with
the original system requirements specified in chapter 3. In section 6.1 and 6.2
we will discuss the design and implementation process and how the results
from the evaluation of each incremental choice shaped the final version of
the system. In section 6.3 we will present the cleaning-tool poc performance
and how it can be integrated into a future system for cleaning, clipping, and
analysing video segments.

6.1 Sadji: Functional Requirements

Sadji has the following listed as functional requirements:

• Non-invasive tracking on soccer field.

• Detection model.

• Video source.

• Frame-panorama mapping.

• Coordinate translation to user provided soccer image.
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• Formatted metadata for user specification.

• Panoramic image creation.

• Configurable.

Sadji can accurately track players on a soccer fieldwithout using any invasive
technologies, as showcased in table 5.17 in section 5.9. The most common
invasive method for tracking soccer players is gps. When comparing produced
STATSports gps coordinates for player 1 (see table 5.3) we can observe that
produced coordinates from Sadji are near identical. Producing the coordinates
shown in table 5.13 (h) in section 5.8.8 is however not achievable in real-time
as every frame from the video segment is translated. Interpolation is therefor
introduced to reduce the overall execution time as detailed in section 5.10. With
interpolation Sadji achieves similar trajectory compared to gps coordinates,
as shown in table 5.19.

On initialize of the detection and tracker component, any yolov8 detection
modelwill work, regardless of what type of classes the model is trained on. The
detection and tracker component contains an API route for upload of models
called /upload_model which stores the model at the component. If no model
has been uploaded to the detection and tracker component, it defaults to a
detection model that only detects players (not their team affiliations).

Any video source that conforms with the OpenCV framework works with Sadji.
Common video formats such as .mp4 and .avi works as expected. Sadji can
also handle URL for stream sources such a HTTP Live Streaming (hls) (.m3u8
format).

Sadji supports the building of large high resolution panoramic images by
using the illustrated method in figure 4.3 from section 4.1.2. As of now, the func-
tionality for building the panoramic image is not integrated into the pipeline
detailed in section 4.2. This is because the panoramic image functionality is
intended to be integrated with an interface that a potential user interacts with.
The process of creating a panoramic image has many similarities to how the
kbhmg component works (section 4.4) which is why Sadji also supports this.
Figure 6.1 illustrates how a user interface for creating panorama could look
like:
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Capture
1.

2.

Img5
Img4Img3

Img
1 Img2 Img3 Img5

Img4Img3

Img
1 Img2 Img3 3.

4.

Figure 6.1: Example of how user interface for panorama creation could look like.

1. User interacts with stream or video, making screenshots by pressing
capture.

2. Once 5 images that roughly capture the playing field have been captured,
send to Sadji panoramic image creator for stitching.

3. Panoramic image is created, see section 4.1.2 for in-depth details.

4. User receives created panorama image and can use this to initialize the
Sadji coordinate production pipeline.

Cropping the panorama to reduce the overall size is also something that could
be incorporated into such a user interface.

Hudl is the main recording and analysis software used in the Norwegian
soccer league Eliteserien[57]. During the writing of this thesis, no method for
extracting a panoramic image from the Hudl framework is available, and is
partially why we have made a tool for this process. A panoramic image created
by Sadji will work in the coordinate translation pipeline for each stadium
fitted with Hudl cameras as long as the stadiums appearance remains relatively
unchanged. If a panoramic image does not work, then a user could again use
for example the process illustrated in figure 6.1.
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Frame-panorama mapping works for multiple video source that record the
same soccer field. This is shown in section 5.11 where we use an Eliteserie
highlight clip. This is an interesting discovery as the panorama image is
composed of several images from the Hudl video source and the camera
placement between Hudl and the device capturing the Eliteserie highlight clip
from the match differs. Even with these conditions, Sadji is able to translate
coordinates between video and user provided soccer image accurately.

Sadji supports coordinate translation to user specified soccer image as
long as the keypoints conform to the keypoints displayed in figure 4.5. These
keypoints can be taken as arguments to the detection and tracker component.
Sadji has functionality for manually creating these keypoints in the user pro-
vided soccer image as well as the panorama image created from the video
source. There is currently no user interface other than an OpenCV window for
clicking and generating these keypoints. Such a user interface for clicking on
the image to generate the needed keypoints can be integrated into for example
the illustration in figure 6.1.

Sadji supports the production of coordinate metadata for both stream and video
sources. Depending on what the user wants, the produced metadata can either
be segmented into smaller packages or be one large package as illustrated in
figure 4.11. If the source is a stream, the manifest file is read to retrieve the
segment size and fps to correctly pack produced metadata into correctly sized
segments. When the metadata aggregator component is finished aggregating
data, either into individual segments or one large package, it sends the data
back to the user.

The Sadji pipeline is highly configurable accommodating different user defined
requirements. As mentioned, a user can provide different types of stream inputs,
with different sized segments (normal is 2 seconds). Sadji can handle alternate
pipeline parameters such as percentage decrease and coordinate translation
interval (see section 4.3) to best suit a users system performance needs, for
example real-time.

6.2 Sadji: Non-functional Requirements

In this section wewill present how Sadji performs in terms of the non-functional
properties listed in chapter 3:

• Real-time.

• Accuracy.
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• Automatic coordinate production.

• Integration.

• cots components compatibility.

• Data ownership.

Generating soccer field coordinates fast is crucial in modern soccer analysis.
Increasing reliance on data-driven insight for precise spatial information is
of the upmost importance for success. Real-time analysis is only achievable
with an equally fast production of these field coordinates. Sadji, on common
of the shelf (cots) produces such coordinates at real-time performance.
Table 5.18 demonstrates Sadji throughput at different configurations based on
user requirements. As mentioned in section 5.10 all performance evaluation is
performed on a single computer with the provided hardware listed in section
5.1.

Sadji components (see section 4.2) are split into designated Flask servers
designed to communicate through apis enabling seamless cross computer com-
munication. We believe that introducing a second computer will increase the
overall throughput of Sadji. A higher throughput will in turn lead to a reduc-
tion in interpolated coordinates, producing a more accurate representation of
player coordinates on the soccer field.

Sadji, when compared to gps produced coordinates, produce an equally ac-
curate representation of player positions. This is illustrated in table 5.19. As
previously stated, introducing a second computer as host for one of the Flask
servers can increase the overall performance, increasing the rate of which
player coordinates can be translated further improving the accuracy.

Sadji is meticulously designed with integration in mind. Output adheres to
a standardized format that has been collectively agreed upon by the creators
of Sárgut and Guorrat from csg working on analysis tools utilizing produced
data from Sadji. Inputs to Sadji listed in section 4.1 on prerequisites has also
been considered during the design phase of the system. Figure 6.1 illustrates a
user interface that could be utilized to produce necessary input for Sadji. Sadji
facilitates integration with such a proposed system using well-defined apis,
streamlining the assimilation process.

Input to Sadji is only temporarily stored in memory solely for the purpose of
processing and producing soccer field coordinates. Once the requested data
is generated, Sadji discards all input, maintaining the requirement that the
ownership of the data is solely the user.
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6.3 Cleaning Tool Discussion

The cleaning tool is designed as a proof of concept, investigating whether
or not it is possible to create a system for cleaning the produced metadata
from the Sadji pipeline. As of now, the cleaning tool user interface is created
using OpenCV windows and the terminal as input form for registering user
input. Section 5.12 shows that the cleaning tool works well for a lot of cases,
reducing the number of redundant IDs. It is good at detecting when a new
ID appears and what other IDs nearby are good candidates for connecting.
The small crops showcasing the player the ID belonged to will for someone
who is acquainted with the team be particularly useful, as they have more
experience and knowledge about player jersey numbers and other unique
features associated with the player. This is a common approach used in a lot
of industry products such as Forzify[2] by Forzasys[1].

However it is not perfect, the cleaning tool uses exclusively position data that
comes from the yolov8 detection models inference, and does not use the soccer
field coordinates produced from the Sadji pipeline. This is a shortcoming, as
the soccer field coordinates for players have the potential to accommodate
the ID connecting by using a second coordinate system for finding nearby
IDs.

6.4 Summary

For this chapter, we have re-stated the requirements specifications listed in
chapter 3, evaluating Sadji’s adherence to the functional and non-functional
requirements outlined. Functional properties such as non-invasive tracking on
the soccer field, diversity of video sources, configurability, and coordinate trans-
lation to user-provided soccer field image have been examined and evaluated.
Additionally, the systems compliance to the non-functional properties of real-
time execution speeds, accurate tracking and detection, and architecturally
engineered to fit proposed system model (see section 3.3) has been thoroughly
investigated. By integrating these evaluations, this chapter provides a com-
prehensive understanding of Sadji’s capabilities, limitations and position in
proposed system model.



7
Conclusion
This chapter presents concluding remarks, restating the original problem defi-
nition from section 1.2 and a summary of the thesis. We will also present some
future work and how Sadji into a potential digital twin coach (see section
1.5).

7.1 Concluding Remarks

In section 1.2, the following thesis problem definition was made:

This thesis aims to develop a system capable of automatically
and precisely detect and track soccer players in video footage.
Utilizing computer vision, the system will be capable of determin-
ing the team affiliation of each player. The goal is to promptly
and accurately map players to their respective on-field coordi-
nates, with the goal of real-time speeds. The research within
this thesis will explore the yolov8 deep learning models for the
precise detection of players and their teams in video content
using mots for tracking. Additionally, the investigation will
look into methods for accurate and efficient spatial coordinate
mapping of soccer players from video to a top-down view image
of a soccer field.
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Adhering to the design paradigm presented in section 1.3.3, this thesis has been
meticulously written by first specifying what system requirements are present.
Chapter 3 details what non-functional and functional properties are required
with section 3.3 highlighting Sadji’s adherence or placement in a practical
real-world system.

Chapter 4 presents the design and implementation of Sadji, detailing the
construction of each component Sadji is composed of. Each section details
functionality, overall architecture of each component, inter-component connec-
tions and technologies utilized. Furthermore, each section advocates for certain
design decisions by referencing experiments performed in chapter 5, fostering
adaptability and improvements throughout the implementation. This process
of refinement adheres to the testing stage of the design paradigm, providing
an approach of continuous optimization, revelation of unexpected flaws, and
ultimately providing a higher quality of work.

Key findings are presented in chapter 5, with section 5.10 providing a com-
prehensive evaluation of how the Sadji system performs utilizing cots on a
single computer or node. Section 5.8.8 investigates how size reduction of frame
and panorama resolution affects throughput and accuracy when detecting and
matching keypoints between them using SuperPoint. This investigation reveals
that a high level of accuracy is maintainable with a decrease in resolution of over
50 percent while improving overall execution time per frame from 2095.57ms
to 216.97ms (without caching enabled). The introduction of caching part of
panorama with most matches, presented in section 4.4 and evaluated in sec-
tion 5.8.14, reveals improvement in execution time per frame from 216.97ms to
181.25ms. Camera placement is identified as vital to the inference accuracy and
mot tracking (see section 5.5 and 5.6) with elevation and distance from the
soccer-field highlighted as key properties for accurate results. Alternative video
sources, from which the panorama image was not created out (see section 5.11),
is revealed as a viable and functional option, laying the foundation for future
work where such footage is utilized to complement ball detection, tracking,
and analysis.

Interpolation of player coordinates was introduced because of insufficient
execution time per frame (approximately 33.33ms is needed for real-time speed
with 30 fps video) when detecting and matching keypoints between frame
and panorama. However, as displayed in table 5.19, interpolation of player
coordinates at low intervals produces a similar trajectory to that of gps (gps
position is updated every 100 ms).

IDs disappearing randomly and occlusion as a result of faulty mot tracking
remains a challenging problem. Because of the nature of soccer, players run
close to one another, obscuring the line of sight between player and camera.
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Elevated, and further back camera placement proved beneficial, however a tool
for cleaning produced metadata from Sadji could help with this problem. The
cleaning tool introduced in section 4.7 is implemented as a pocwith evaluation
in section 5.12 showcasing the effectiveness of the connection mechanism for
reducing total number of IDs. Occlusions (player swapping IDs) remains a
challenge but, as we will detail in section 7.3.3, solutions such as multiple
cameras may be possible.

7.2 Thesis Summary

This master thesis introduces Sadji, a system designed for automatic translation
of player coordinates from video frames to corresponding locations on a 2D soc-
cer field image. Leveraging state-of-the-art technologies, Sadji utilizes yolov8
object detection models for precise player detection and team affiliation supple-
mented with accurate tracking using mots through the Ultralytics framework.
Incorporating SuperPoint for keypoint detection and feature matching, Sadji
seamlessly locates video frames in a panoramic image composed from the
video source to produce homography matrices that can translate player coor-
dinates from video frames to their respective location on the 2D soccer field
image. This happens in real-time utilizing cots hardware and existing camera
systems installed on soccer arenas, like Hudl or Eliteserie broadcasting footage,
enabling widespread adoption and accessibility. By delivering accurate player
positions on a 2D soccer field, Sadji supplies third party software systems (such
as Guorrat and Sárgut) the data needed to perform advanced analysis of player
tactics, strategic insight, and formations. Additionally, Sadji offers a unique
advantage over invasive tracking technologies such as gps by providing the
team utilizing it valuable insight both their own players positions and those of
their opponents. This insight can potentially allow for invaluable insight into
opposing team tactics, formations, and strategy in real-time during a soccer
game.

7.3 Future Work

As highlighted through the design chapter and described in requirements
chapter, Sadji is created as a component of a potential larger future pipeline.
There are several interesting new work that can be applied to Sadji.
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7.3.1 Image Clustering for Team Classification

As of now, the detection model defaults to a normal player detection model if
no other model is provided by the initiator of Sadji. Soccer jerseys between
opposing teams need to be distinguishable according to law 4.3[3] presented
by the International Football Association Board. This is a handy law when we
consider the possibility for utilizing image clustering techniques such as Deep
Adaptive Clustering (dac)[12], deep density-based image clustering (ddc)[49]
or DeepCluster[11] for the determination of player team affiliation. Such tech-
nologies have the potential to analyze crops of team jersey design produced
by a general player detection model like the one Sadji defaults to. In return,
team classification can be automated and dynamically applied depending on
what teams are playing against one another eliminating the need to train a
new model for opposing team combinations.

7.3.2 Ball Detection

As stated in section 5.11, video sources recorded from other cameras than
the panoramic image was created from works very well with Sadji. This is
an interesting discovery because now more close up footage such as the one
produced by broadcasting cameras can be used to gain more detail from the
soccer play. One drawback of using the Hudl camera systems as input is that
the ball becomes tiny because the priority for this system is to frame as many
players as possible at any given time. Because of this, detecting the ball poses
a challenge. However, the broadcasting cameras follow the soccer play more
closely, giving a more zoomed in video source of the game. The SoccerSum
dataset[53] introduces a large dataset consisting of 750 annotated frames with
10 different classes including the ball. The dataset is comprised of frames from
the Norwegian Eliteserie, making it a great match. Ability to track the ball, lays
the foundation for analysis of player movement in relation to the ball which can
provide interesting insight into strategy and other gameplay dynamics.

7.3.3 Multiple Cameras

Introducing multiple cameras around the target soccer field can potentially
help with occlusion issues in player detection. Comprehensive coverage and
overlapping viewpoints minimize blind spots and the possibility of players
obstructing line of sight between one another, ensuring players are captured
from various angles. Redundancy allows the system to rely on other cameras if
one’s view is obstructed. Different perspectives help distinguish occlusion from
genuine player interactions, aiding accurate tracking and more persistence
in the produced IDs by the trackers. Dynamic switching between feeds can
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ensure continuous tracking even amidst occlusion. Figure 7.1 illustrates how
using multiple cameras for tracking could look like. If more than 3 cameras
are utilized than a consensus algorithm could be utilized such as Raft[40] or
Paxos[30] to achieve quorum once an occlusion event happens. Such an event
could be automatically detected in that the different cameras no longer agree
on a position of an ID, because it has been occluded.

Figure 7.1: Multiple cameras.
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Abstract

By harnessing real-time soccer analytics through ad-
vanced computer vision, coaches gain immediate access to
strategic insights and player dynamics, dramatically en-
hancing decision-making capabilities beyond what tradi-
tional analytical methods offer. This paper presents a com-
prehensive exploration of the development and implemen-
tation of a computer vision system, designed for real-time
player tracking and analytics in soccer. Throughout the it-
erative design process, requirements evolved, notably sim-
plifying the problem to focus solely on detecting players and
their teams after consultations with elite coaches. We uti-
lize existing state-of-the-art detection and tracking models,
along with keypoint detection and matching models to local-
ize soccer players on the field and translate their positions
to a 2D representation for analytical purposes. We com-
pare different keypoint detection and feature matching algo-
rithms, GPS suits vs. video-based detection, and we discuss
the several trade-offs that allow us to achieve real-time lo-
calization of the players for assisting coaches on consumer-
grade hardware, such as utilization of CPU vs GPU, crop-
ping the frames, and caching previous results. The work
in this paper lays the foundation for a digital twin coach,
enabling coaches to make data-driven decisions with un-
precedented precision and timeliness.

1. Introduction
More than a decade ago, we built a series of novel multi-
camera array systems to cover an entire soccer field. Cou-
pled with coach tagging apps and on-player wearable IoT
devices connected with radio-positional technologies, we
were able to gain training and game insights in real-time [3,

*Identify applicable funding agency here. If none, delete this.

BLINDED]. Select video snippets tagged in real-time by
coaches on their phones were seconds later automatically
fetched from within the video streams and ready for analy-
sis and feedback purposes. Replay could happen, e.g., in
the locker rooms during half-time match breaks or even
during practice with videos displayed on the digital bill-
board screen next to the field. We were among the very
first movers, if not the first, into what has become a multi-
million dollar athlete player tracking and analytics indus-
try. Our multimedia systems were in use by both a Norwe-
gian premier elite soccer club and the national Norwegian
A-team during practice and play.

Much has happened since. Numerous tracking and ana-
lytics companies are now providing similar or related solu-
tions that are in daily operational use throughout the world
of soccer. In-house analytics departments relying on these
external data-driven providers are common in premier divi-
sion clubs, and even lower level division clubs have their
own analytics coaches deriving insights from training and
match data captured during a week (micro cycle in coaching
terms). This is not without problems. First, current tracking
devices and videos captured amount to massive data vol-
umes. Hence, finding relevant insights requires tedious and
manual operations to identify actionable, soccer-relevant in-
sights. Second, data to be analyzed is normally collected,
stored, and managed by external companies that are less
transparent. Their algorithms used are not public, so de-
termining, e.g., accuracy in their analysis is difficult. Some
of the tagging might be semi-automated with humans in-
volved, which adds latency. A fourth problem is that an ex-
ternal enterprise creates a data lock-in situation where the
clubs do not control and fully manage their own data, and
the business model for the enterprises might potentially in-
clude sharing with other parties. Yet a potential problem is
compliance and regulatory issues, like the EU General Data
Protection Regulation (GDPR) and EU’s recent AI Act. The
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list is longer.
Our early foray into the soccer domain was motivated by

the need for insights based on quantitative data from train-
ing and match play. Our current focus is way more am-
bitious than obtaining such general objective insights like,
e,g, a corner, offside, goal, and free kick. These are events
that most general soccer veterans can identify, but probably
not the most relevant for a head coach trying to manage and
control his or her team while the match is unfolding. We
are interested in context-sensitive, higher level insights that
resemble specific actions and events relative to the team’s
game plan and opponent’s style-of-play. Hence, we are at-
tempting to derive coach-specific actionable insights in real-
time for interventions by coaches while a game (or training
practice) is unfolding. Our approach is to create a digital
twin coach using artificial intelligence (AI). This is a chal-
lenging problem, and at the core of such a solution is ob-
taining accurate quantification data in real-time. Related to
this is what specific type of data is necessary, not just neat
to obtain.

The main contributions of this paper are as follows:
• Development of a real-time computer vision system for

soccer player tracking and registration, emphasizing low-
latency data processing on consumer-grade hardware.
This is one component of the digital twin coach described
below.

• Analysis of algorithmic trade-offs in real-time execution,
including computational optimizations and data manage-
ment strategies to enhance system performance.

2. Digital Twin Coach
The main functionality of an AI-based digital twin coach
is to identify high-level patterns and context-specific trends
that emerge during a match. This applies for both teams,
and the idea is to identify their strengths and weaknesses
similar to how an experienced coach works. One exam-
ple of a context-relevant insight can be that there are open
spaces between players in an opponent’s defensive line, an-
other is that an individual opponent is wrongly positioned
relative to the other players of the team. One can consider
this as anomalies relative to an expected behavior of a single
individual or a group of players.

Our system architecture consists of a (1) data federation
layer, which collects one or several video streams from re-
mote cameras. Next, (2) we have a three-stage coordinate
production pipeline. The net result of this pipeline is a (3)
longitudinal on-field player location dataset and visualiza-
tion user interface (soccer field).

Initially, we set out to identify each individual player on
a soccer pitch, which had its challenges. This process is
compute intensive and is not accurate enough during, e.g.
occlusions. Our digital twin coach system is being devel-
oped with elite coaches closely involved, and when expos-

ing such constraints to them, we got surprising feedback.
During an intense match play, they primarily wanted posi-
tional data of players on both teams. As such, open spaces,
available rooms for the ball to be passed into, players not ac-
curately positioned with regard to the game plan, and sim-
ilar were the actionable insight needed. If they wanted to
identify individuals, video footage available would be more
proper to use.

The sweet spot of design considerations, accuracy, and
real-time requirements for this vital task will be further de-
tailed in the following.

3. Coordinate production pipeline

Converting player frame coordinates to on-field coordinates
is a four-stage process, starting with the source of the frame.
Each frame is read from either a continuous stream source
or a video source. Player detection, tracking, and classifica-
tion are done using a custom YOLOv8 [9] model trained to
recognise players on our team, [BLINDED], and their op-
ponents. The tracking is handled by ByteTrack [19] which
is a multi-object tracking model. The metadata produced
from the YOLOv8 inference is piped to the frame trans-
lation component. Each frame received is located within
a panorama built up of frames from the video or stream
source. For our system we have relied on Hudl [8] for
our videos. Once a frame has been correctly placed in
the panorama using state-of-the-art key point detection, we
compute the homography matrix to translate all player co-
ordinates to where they are situated on the panorama im-
age. Panorama-translated coordinates are then again trans-
lated to a 2D image of a soccer field using a pre-calculated
homography matrix between keypoints in the panorama
and the 2D image. For real-time coordinate computation,
tweaking the interval of frames that are localized in the
panorama is necessary. The sweet spot for both interval
and image quality is detailed in section 4. The on-field
player coordinates in between these intervals are computed
using interpolation between previous and current coordi-
nates. The on-field coordinates are then packed into seg-
ments from which a user can retrieve via requests.

From the system we want as accurate and rich (classi-
fication, bounding box, on-field coordinate and identifica-
tion) metadata as possible while keeping real-time execu-
tion. Accurate metadata is needed so that the end-users
of the system can feed their systems with correct metadata
to compute playing space, possession, passing networks,
packing rate and other soccer-relevant metrics. Real-time
execution is critical for fast feedback for sideline analysis
and coaches if the system is to be deployed in a real-world
setting.
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3.1. System prerequisites

The system will need some pre-requisites to function in-
cluding a pre-made panoramic image of the recorded area
and a detection model that can find the players and track
them.

3.1.1 Panoramic image

A panoramic image composed of several images making up
the total view of the camera source is required to be made
or retrieved before the system can function. Hudl video
sources used in our example are made up of 4 cameras that
each record their own sections of the soccer field as shown
in Fig. 1. At the time of writing, the panoramic camera
mode was unavailable to us for usage in a high enough res-
olution to work with the system.

Figure 1. Panorama image [BLINDED] Arena (Hudl).

Panoramic image creation is supported by the system if
the user can provide 3 or 5 images that roughly encapsulate
the entire soccer field. This process is visualised in Fig. 2.
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Img
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Img4Img3
Img

1 Img2 Img3 Img5
Img4Img3

Img3

Figure 2. Panoramic image creation process.

The stitching process consists of 4 steps:
• Detect and match the features of the image. A feature can

be explained as a unique property of some image such as
textures, colors or shapes. Some examples of features that
are found in the images encapsulating the soccer field are
commercials, seating areas, stadium pillars, and stadium
equipment.

• Estimate homography matrix using the features that were
found in previous step.

• Warp first image to align with second image.
• Blend the warped image together with second image.

Figure 3 shows a panoramic image created from 5 im-
ages of SR-Bank Arena (Norwegian soccer team Viking’s
home arena) using the systems functionality. The frames
are all taken from a video recorded by Hudl.

Figure 3. Result from panoramic stitching process.

Computing the homography matrix between the
panoramic image and the 2D soccer field is achieved by
mapping areas of the soccer field in the panorama with the
corresponding areas in the 2D soccer field. The areas used
are highlighted in red in both Figs. 3 and 4.

x

y

Figure 4. 2D soccer field image used for coordinate illustrations.

3.1.2 Detection model and tracker

An object detection model to detect players and, optionally,
the ball is needed to produce the inference data from the
video or stream source. For this system, we have trained
a custom YOLOv8 model which can detect the players on
each of the teams. A general player detection model would
also be suitable and has been used for a large part of the
project duration. The decision to switch to a new custom
trained model was made to deal with a classification and oc-
clusion problem which is discussed in Sec. 5. The detection
model should also be coupled with a MOT (multiple object
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tracker) model. ByteTrack and BotSort [1] are good alterna-
tives and are easy to integrate with the Ultralytics YOLOv8
framework [9]. A MOT is necessary to calculate interpo-
lation coordinates for players in between frames when the
system runs in real-time.

3.2. Step 1: Run inference

The initial step of the system is to load in the trained model
coupled with a MOT and pass in the video or stream source
to the model. A client socket is created to pass produced
data from the video/stream source and frames from the
video to the translation component using the Python multi-
processing module. Player bounding boxes, classifications,
and tracking ID produced by the model is sent to the trans-
formation component every 30th frame. The information
sent is a package consisting of information for all of the 30
frames in that interval. The last frame in the interval is also
sent as a NumPy array. A decrease in frame intervals leads
to lower throughput, but an increase in accuracy. Sending a
message is an expensive operation in terms of time because
the inference comes to a stop during this process. An in-
crease in frame intervals would result in higher speeds, but
would lead to lower interpolation accuracy between trans-
lated coordinates in step 2.

3.3. Step 2: Generate homography matrix for coor-
dinate translation

The keypoint-based homography generator initialises with
a metadata message received from the detection component
containing setting parameters. The setting parameters con-
tain what frame interval should be used for packing pro-
duced metadata into segments in step 3 and what classes
are detected by the model. Finally, thesuperglue/super-
point [4, 16] module is set up and loaded, ready for receiv-
ing images for comparison from the detection and tracker
component. The panorama image is decreased to speci-
fied resolution depending on configuration and is split into
three equal, smaller parts (left, center, and right). This split
is performed because of a constraint regarding image size
at the superglue/superpoint module; this however proved
beneficial in terms of performance which will be shown
in Sec. 4. The transformation component receives meta-
data from the inference component once at an interval of 30
frames or whichever frame interval is specified and receives
an image to calculate a homography matrix between it and
the panoramic image. The process for computing the ho-
mography matrix between a frame and its placement in the
panorama works as follows:

• Frame is resized to a configured percentage of original
image (same percentage as the panorama is decreased).

• Frame and panorama part are fed to the superglue/super-
point module.

• Frame and cached panorama part used in previous ho-
mography calculation are compared.

• Continue if enough common keypoints are found with
cached part, otherwise check next part. When enough
keypoints are found between the frame and a part, that
part (either left, center or right) is cached.

• Common keypoints are used to calculate homography
matrix.

3.3.1 Step 3: Translate coordinates

The coordinate translation component uses the produced
homography matrix from the keypoint-based homography
matrix generator component to translate player coordinates
from the video source to their respective 2D soccer field po-
sitions. The translation works as follows:

• Player coordinate is translated from frame coordinate in
video to panoramic image coordinate.

• Player coordinate is translated from panoramic image co-
ordinate to coordinate in the 2D soccer field.

Producing interpolation coordinates for the frames in be-
tween the intervals is done in the metadata aggregator com-
ponent.

3.4. Step 4: Produce metadata segments

The metadata aggregator is the last component of the sys-
tem and is responsible for packing all the necessary meta-
data. Because coordinates are only translated once every 30
frames, we use interpolation to estimate coordinates in be-
tween the intervals. To compute interpolation coordinates
we need a previous and a current player coordinate. We
therefore need a method to identify which coordinate be-
longs to which player, and this is where the tracker produc-
ing player IDs comes into play. As long as an ID is present
in the current and previous translated frame, interpolation
coordinates can be computed for that interval. If an ID was
present in the previous frame but is absent in the current,
interpolation for that ID does not occur. Interpolation be-
tween given coordinates (x1, y1) and (x2, y2), and the de-
sired number of interpolated points n, is expressed as:

Point (x, y)
1 (x1, y1)

2
(
x1 +

1
n+1 (x2 − x1), y1 +

1
n+1 (y2 − y1)

)

3
(
x1 +

2
n+1 (x2 − x1), y1 +

2
n+1 (y2 − y1)

)

...
...

k
(
x1 +

k−1
n+1 (x2 − x1), y1 +

k−1
n+1 (y2 − y1)

)

...
...

n+ 1 (x2, y2)
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Step 2: Keypoint-Based Homography Generator

Input frame Frame location in panorama

Frame to
panorama

homography
matrix

Player coordinates in frame Player coordinates in panorama

Translate player
coordinates in panorama to

field coordinates with
panorama to field

homography matrix

Player coordinates on field

Step 4: Metadata Aggregator

Interpolate player
coordinates

between frames

Create metadata for
frames with field
coordinates from
interpolation and

classifcation/id from
inference

End-user

Video/Stream
source

SP

Step 3: Coordinate Translation

Step 1: Detection and Tracker

Produce player
coordinates in

frame

Classify
player

Track player

Figure 5. Metadata production pipeline.

Player on-field coordinates, in-frame bounding box,
ID, and classification are packed into their corresponding
frames using the given format shown in listing 1. The clas-
sification or ”team” option is configurable and depends on
the classifications present in the model. The system is de-
signed for both videos and stream as input. Depending on
the use case of the system, metadata for multiple frames
can be packed into segments so that they can be synced to-
gether with a stream source. For example, if we have a HLS
(HTTP Live Streaming) stream that manifests a 2 second
duration for each segment then the metadata can be packed
so that there are frame metadata for 60 frames. Each json
file would then contain frame metadata for a given interval
such as frame 61-120 or 121-180. Such a use-case of the
system could be real-time analysis of what is happening on
the field during a soccer match. Post-game analysis using a
finished, recorded match could be a second use case of the
system. Instead of using a stream source as input, a video
could be used. For that case, instead of the metadata being
segmented, it would then be one json file containing the
metadata.

4. Experiments and Results

A series of design choices have been made with the require-
ment of real-time execution without sacrificing precision
when translating between player coordinates on camera and
their actual field coordinates.

{
” f r am e s ” : [

{
” f rame ” : 32 ,
” d e t e c t i o n s ” : [

{
” f i e l d c o o r d i n a t e ” : {

” x ” : 360 ,
” y ” : 168

} ,
” c a m e r a c o o r d i n a t e ” : {

” x1 ” : 522 ,
” y1 ” : 201 ,
” x2 ” : 541 ,
” y2 ” : 260

} ,
” i d ” : 6 ,
” team ” : ”0”

} ,
. . .

]
} ,
. . .

]
}

Figure 6. Metadata structure.

4.1. Dataset

The dataset is composed of 2,720 annotated frames sepa-
rated into train and test sets. The bounding box of all the
players in each frame is retrieved by using an existing player
detection model [12]. Individual classification for every
bounding box contained in the 2,720 frames is done manu-
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ally. For our testing and evaluation of the system we have
trained the model to recognise 4 different classes which are
home team keeper and player, and away team keeper and
player.

4.2. Hardware

The following hardware components are used for conduct-
ing the experiments:
• Graphics Processing Unit (GPU): NVIDIA GeForce

RTX 3070 8GB. This GPU is a high-performance
consumer-grade GPU suitable for demanding graphics-
intensive tasks like machine learning applications.

• Random Access Memory (RAM): 128 GB RAM.
• Processor (CPU): 13th Gen Intel(R) Core(TM) i7-13700

2.10 GHz.

4.3. Model and tracker

At the time of implementing the system, YOLOv8 [9] ob-
ject detection models were among the fastest and most ac-
curate while being easy to implement, customise and run
on conventional hardware. Quick integration with MOTs
using the Ultralytics framework [9] made it a solid choice,
meeting our requirements. Choosing what tracker to use
came down to what tracker would be able to function in
real-time while keeping tracking consistent over the course
of the video. ByteTrack and BotSort are both available
through the Ultralytics framework. For our 1080p 30fps
video source, ByteTrack achieved an average inference time
of 27.14ms per frame while BotSort achieved an average
time of 39.81ms. Thus we chose the first as our tracker.

4.4. Keypoint detection and feature matching

Deciding on the algorithm to use for finding keypoints be-
tween the video frames and the panoramic image was based
on the following requirements:
• Accuracy - Matching keypoints between frame and

panorama should result in a homography matrix that
translates coordinates with high accuracy. A homogra-
phy matrix of low accuracy would result, if used to warp
an image, in something similar as Fig. 7.

• Speed - Detecting, matching and computing homography
matrix based on matching keypoints should be as fast as
possible to meet real-time goals.
Pixel spread between computed coordinates in sequen-

tial frames gives a good indication on the level of accuracy
the algorithms possess for our usage. A player coordinate
in frame 2 being far away from that same players coordi-
nate in frame 1 indicates that computed homography ma-
trix based on the matching keypoints found was inaccurate.
Fig. 8 demonstrates this statement. Table 6 shows our re-
sults from testing different algorithms. SuperPoint (SP) had
the lowest spread compared to the other algorithms.

Figure 7. Warped image using homography with low accuracy.

Figure 8. Visualisation of GPS (left) and SIFT (right) player coor-
dinates.

Moving the SuperPoint execution from CPU to GPU im-
proved performance close to a factor of 5. Further, the
SuperPoint implementation was through multiple iterations
improved by adjusting the original panoramic image by de-
creasing resolution of both it and the frame from the video,
and cropping out around 50 percent of the bottom half of
the original image. As detailed in Sec. 3.3 due to an im-
age size constraint for SuperPoint, the panoramic image
was split into three parts. This however proved beneficial
as we could now take advantage of caching principles, fur-
ther improving the speed. A hypothesis that players and
live-commercials from the panoramic image could interfere
with the accuracy of the computed homography was investi-
gated. However, at 55 percentage of original resolution and
at 100 percent with both players and commercials removed

Method GPU Crop Cache Through
-put
(fps)

Spread
(px)

BRISK [10]✓ ✓ ✓ 2.18 1492.39
ORB [5] ✓ ✓ ✓ 24.62 28852.98
SIFT [11] ✓ ✓ ✓ 1.48 149.12
GPS N/A N/A N/A N/A 2.18
SP ✓ ✓ ✓ 0.45 1.77

Table 1. Keypoint detection and feature matching algorithms.
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(see Fig. 9), no benefit was observed in both fps and spread
(see Tab. 3).

Figure 9. Panorama with players and commercials removed.

Testing showed spread or accuracy after a decrease to 55-
50 percent of original resolution started to get inaccurate.
Any lower than this percentage resulted in missing out on
some relevant positional information on a player. Fig. 10
shows the plotting of produced coordinates at 20 and 40
percent of original resolution.

Figure 10. Visualisation of player coordinates at 20 and 40 percent
of original resolution.

Interval Throughput
(fps)

Real-time

30 37.17 YES
25 37.14 YES
20 36.92 YES
15 36.65 YES
10 36.06 YES
5 33.36 YES
2 28.64 NO
1 22.79 NO

Table 2. Inference speed per frame at different intervals.

4.5. Coordinate translation interval

Decreasing the interval for which the inference component
sends packages to the coordinate translation component, in-
creases the overall time of inference. By increasing the
interval, more frames can be located in the panorama, de-
creasing the interval for which the system has to compute
interpolation coordinates. This increases the accuracy of

a players position, however it increases the time it takes.
Tab. 2 shows the different processing times per frame at dif-
ferent intervals.

4.6. Real-time performance on single node

Running both the Yolov8 detection model and SuperPoint
on the same computer results in a lower throughput in both
components of the pipeline because of higher workload.
Using the hardware specified in Sec. 4.2 and a video with 30
fps we achieved real-time performance for case 2, 4, and 6
in Tab. 3. Fig. 11 shows the coordinates produced for these
cases.

Figure 11. From the left: Case 2, 4 and 6.

5. Related Work
Computing homography matrices using keypoints detection
on specific keypoints or features known to exist in the frame
has been done for several sports [6, 7, 17, 18]. Similar to
these articles, we compute a homography matrix from key-
points that match between a frame and a corresponding ref-
erence area (panorama for us). We however use SuperPoint
for image comparison between two images, a frame and a
panorama made up of several frames to detect features and
common keypoints.

Akan and Varlı [2] highlight some of the challenges re-
lated to occlusions using deep learning models and trackers
to find players. Due to to the nature of the game and the an-
gle of the camera, players often run parallel to one another
making the MOT lose players for several frames before re-
tracking them with a new ID. When a player has multiple
IDs over the course of a video or stream, calculating inter-
polation coordinates for that player in frames between such
ID switches is challenging. Currently, we are working on
a semi-automatic tool that can assist a user with connecting
such IDs to a player by comparing crops of the player before
an ID was lost and compare those crops with new IDs in the
area. As is also pointed out by Akan and Varlı [2], ball de-
tection is difficult because of the size of the ball in a frame.
Hudl cameras, which has been the main source of footage
for our experiments are located far away from the field with
a limited zoom because its main purpose is to capture all of
the players. SmartCrop [15] has had great results with ball
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GPU Crop Cache Percentage Players /
Commer-
cials

Throughput
(fps)

Spread (px)

X ✓ X 100 ✓ 0.037 N/A
✓ X X 100 ✓ 0.21 N/A
✓ ✓ X 100 ✓ 0.45 N/A

✓ ✓ ✓ 100 X 0.47 1.88
✓ ✓ ✓ 100 ✓ 0.45 1.77
✓ ✓ ✓ 80 ✓ 1.55 2.11
✓ ✓ ✓ 70 ✓ 2.45 2.36
✓ ✓ ✓ 60 ✓ 3.71 2.16
✓ ✓ ✓ 55 ✓ 4.62 2.14
✓ ✓ ✓ 55 X 4.53 2.38

✓ ✓ ✓ 50 ✓ 5.52 2.52
✓ ✓ ✓ 40 ✓ 8.98 3.04
✓ ✓ ✓ 30 ✓ 11.47 4.78
✓ ✓ ✓ 20 ✓ 12.65 14.90

Table 3. Iterations of SuperPoint implementation.

Case Interval Percentage Throughput
(fps)

Real
Time

1 30 55 27.85 NO
2 30 40 31.97 YES
3 25 50 28.34 NO
4 25 40 31.58 YES
5 20 45 28.83 NO
6 20 35 31.46 YES
7 15 40 28.64 NO
8 10 35 26.48 NO

Table 4. Fps at different interval and percentages on single node.

detection using a combination of object detection and inter-
polation in broadcasting footage. A combination of Hudl
footage to detect the players and broadcasting footage to
detect the ball combined with the technology introduced by
SmartCrop [15] could be an interesting system to explore
further.

GPS vests are commonly used for gathering both health
related data and player position during a match using real-
time location systems (RLTS) [14]. In a complementary
approach, Pandya et al. [13] leverage RFID sensor data for
player identification, enhancing field registration accuracy
and reducing latency. These positional technologies have
the advantage of not having to deal with occlusions because
positional data is collected by receivers that are not affected
by players running in front of one another. However, the
positions received are only for own team players and not any
from the opposing teams. Positional data of these opponent

players would be very advantageous in an analytics context.
With a camera based system such as ours this problem is
overcome as video stream alternatives such as broadcasting,
Hudl, or a personal camera is often available.

6. Conclusion

In conclusion, this paper introduces a computer vision sys-
tem that marks a significant step forward in soccer analytics,
and a foundation for a digital twin coach. By integrating ad-
vanced detection and tracking models with keypoint detec-
tion and matching, it enables real-time player tracking and
analysis. The system’s ability to localize players and trans-
late their movements into actionable insights offers coaches
new strategies based on immediate data. Throughout the
development process, requirements evolved, notably sim-
plifying the problem to focus solely on detecting players
and their teams after consultations with elite coaches. The
exploration of trade-offs such as CPU versus GPU utiliza-
tion, frame cropping, result caching, and resolution scaling
has been crucial in achieving real-time performance.

Future work will focus on extending the system to in-
clude soccer ball detection, which presents distinct chal-
lenges due to the ball’s small size and fast movement. Ad-
ditionally, applying this technology to television broadcast
videos, which vary in camera angles and movements, intro-
duces complexities in maintaining consistent tracking accu-
racy. Addressing these areas will enhance the system’s util-
ity and provide a more detailed analysis of game dynamics.
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