
Faculty of Science and Technology
Department of Computer Science

Bootstrapping the Integrity of Sensor Data Labels at the Microcontroller
Level Using Physically Unclonable Functions
Addressing Physical Vulnerabilities in the IoT Domain

Henrik Monsen
INF-3990 Master’s Thesis in Computer Science - May 2024

Supervisors

Main supervisor: Elisavet Kozyri UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

Co-supervisor: Tor-Arne Schmidt
Nordmo

UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Modern decision-making processes across industries today increasingly rely on
data-driven insights derived from various sources. As smart devices, sensor tech-
nology, and the IoT (Internet of Things) evolve, organizations are progressively
leveraging these technologies for data-driven decision-making. However, with
the introduction of regulations such as the General Data Protection Regulation
(GDPR) in recent years, organizations are compelled to adjust to new limita-
tions imposed on user data collection and processing. This thesis is dedicated
to one of the many technical difficulties associated with GDPR compliance
in the IoT domain, specifically, compliance with regulations requiring data
provenance at the IoT device level.

The thesis investigates the feasibility of leveraging Physically Unclonable Func-
tions (PUFs) to bootstrap the integrity guarantees of sensor data labels, acting
as provenance information, especially in environments prone to physical data
extraction threats. The work to address the feasibility of PUF technology in this
context is performed through the design and implementation of a prototype
system. By exploring the potential of PUFs in this context, the thesis aims to
contribute to the development of trusted data provenance solutions extending
to the IoT domain.

The work provided in the thesis includes an account of the design and imple-
mentation of the prototype, consisting of threemain components. An evaluation
of the security and efficiency of the prototype system is also included, exposing
some vulnerabilities and potential solutions to patch these. The efficiency eval-
uation included concludes that the performance is adequate given the context,
but also provides a possible strategy to improve sensor data throughput of the
system.

In conclusion, the prototype system and work included in the thesis lays a
foundation for the viability of PUF technology as a means to bootstrap the
integrity of sensor data labels at the IoT device level.

Acknowledgements
I would like to thankmy supervisor, Elisavet Kozyri, for the continuous guidance,
advice and positive energy throughout this year. She has been the best super-
visor I could ever hope for and I am truly immensely grateful for this.

I would also like to thank my co-supervisor Tor-Arne Schmidt Nordmo for
sharing his valuable knowledge and insight within the IoT domain. Thank you
for assisting me whenever I was struggling with hardware related issues, and
always providing me with immediate alternatives.

Another thank you to Marius Ingebrigtsen for being a great friend and office-
comrade throughout the year. The daily talks and moments I have had with
him throughout the year have been very valuable to me, both academically
and personally. I am thankful that he always (most of the time...) accepted my
offerings of morning coffee from my pitiful thermos, as it gave me a moment
of subtle joy every time.

Lastly, I would like to thank my mother, Hanna, for believing in me, showing un-
conditional love and support throughout this endeavor. She has been amazing,
as always.

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Problem Statement . 3
1.2 Methodology . 4
1.3 Limitations and Assumptions 5

1.3.1 Scope . 5
1.3.2 Resource Constrained Components 5
1.3.3 Network Model . 5
1.3.4 Threat Model . 6

1.4 Contribution . 7
1.5 Thesis Outline . 8

2 Background 9
2.1 Data Transfer . 9

2.1.1 Serial Communication and USART 9
2.1.2 JavaScript Object Notation (JSON) 11
2.1.3 Base 64 Encoding Scheme 12

2.2 Physically Unclonable Function 13
2.3 Internet of Things . 15

2.3.1 Sensors . 16
2.3.2 Microcontrollers . 16
2.3.3 Internet of Things Architecture 17

3 Design 19
3.1 Overview . 20

v

vi contents

3.2 Components . 22
3.2.1 PUF Module . 22
3.2.2 Device . 24
3.2.3 Server . 26

3.3 System Configuration . 26
3.3.1 Shared Secret Key Configuration 27
3.3.2 Device Registration 29

3.4 Protocols . 30
3.4.1 Device Secret Key Reloading 30
3.4.2 Mutual Authentication Protocol 31
3.4.3 Data Transfer Protocol 33

4 Hardware and Implementation 37
4.1 Hardware Overview . 37
4.2 PUF Module Implementation 39

4.2.1 Board Initialization 39
4.2.2 USART Initialization 42
4.2.3 API . 43

4.3 Device Implementation . 50
4.3.1 Configuration Phase 50
4.3.2 Main Program and API 54

4.4 Server Implementation . 58
4.4.1 API . 58
4.4.2 Storing Device Information 59
4.4.3 Managing Authenticated Devices 59

5 Evaluation 61
5.1 Experimental Setup . 61
5.2 Performance and Efficiency Evaluation 62

5.2.1 Methodology . 62
5.2.2 Results . 63

5.3 Security Evaluation . 63
5.3.1 Methodology . 63
5.3.2 Evaluation . 64

6 Discussion 71
6.1 Addressing Current Vulnerabilities 71

6.1.1 Addressing the JSON Issue 71
6.1.2 Addressing the AES256-ECB Issue 72
6.1.3 Addressing the Mutual Authentication Issue 73

6.2 Notes on Efficiency Measurements and Improving Throughput 74
6.2.1 Small Note on Efficiency Measurements Results . . . 74
6.2.2 Improving the Throughput of LDPAs 75

6.3 Future Implementations and Extending the Threat Model . . 75

contents vii

7 Related Work 79
7.1 Related Research on Data Provenance in IoT 79

7.1.1 Data Provenance and Secure Authentication Using Wire-
less Channel LQI Measurements and PUFs 79

7.1.2 Data Provenance and Trusted Authentication by Out-
sourcing Attribute-Based Signatures and Leveraging
Bloom Filters . 80

7.1.3 Data Provenance for IoT using Blockchain Technology 81
7.1.4 Zero-Watermarking for Data Integrity and Secure Prove-

nance in IoT . 81

8 Concluding Remarks 83
8.1 Conclusion . 83
8.2 Future work . 84

A Acknowledging the use of AI in the Thesis Work 89

List of Figures
1.1 The growing wearable technology market [3] 2
1.2 Prototype network model assumption 6
1.3 Fitting the thesis project into into a larger scope such as cloud

processing. 7

2.1 Serial and parallel transmission of a byte. 10
2.2 Standard USART (asynchronous)/UART data flow consisting

of a byte and the start/stop flag bits [10]. 11
2.3 Example JSON [12]. 13
2.4 Base64 encoding scheme alphabet [13]. 14
2.5 Main classifications of PUFs, where each category contains a

variety of different approaches [15]. 14
2.6 Forming a digital fingerprint using a large number of SRAM

bit cells. 15
2.7 The components of a microcontroller and their interconnec-

tions [19]. 17
2.8 IoT architecture layers. 18

3.1 Prototype components overview. Note that this overview in-
cludes two devices. Red line indicates the data path for sensor-
generated data and its label(s) from capture at the topmost
device to safe arrival at the server. 19

3.2 Safeguarding the SSK. Broken red key symbolizes the physical
attributes and activation code. Note that the unique digital
fingerprint is inaccessible during the "POWER OFF" state. . . 21

3.3 Figure showing how the PUF module generates its digital fin-
gerprint using SRAM and an internal function, outputting the
activation code [21]. 22

3.4 Figure showing how the PUF module reconstructs its unique
digital fingerprint using SRAM and the activation code, out-
putting the digital fingerprint [21]. 23

ix

x l ist of figures

3.5 Primitive message format for communication between the PUF
module and the device. The first byte of the header indicates
the type of message whilst the second byte indicates the size
of the message. The remaining 6 bytes of the header are re-
served, but are not used in the current design. 23

3.6 Figure depicting the program flow of configuration phase in
the device component. 25

3.7 Logic governing the perpetual main program loop. Essentially
a loop which handles requests and sends data or authenti-
cates depending on the authentication status. 26

3.8 System-wide key configuration. Communication between the
components during the three stages. 28

3.9 Communication during device registration nested within the
SetKey API call chain. 30

3.10 Communication during SSK reloading process. 31
3.11 Communication between a device and the server during mu-

tual authentication protocol. 33
3.12 Structure of the labeled data packet. 34
3.13 Structure of the labeled data packet array, consisting of 10

LDPs. 34
3.14 Communication between the device and the server during the

data transfer protocol. Note the usage of LDPAs to send LDPs
in batches. 35

4.1 Overview of the hardware making up the system. 38
4.2 Configured MCU to enable Flexcomm2 USART using the LPCX-

presso IDE Config Tools. 40
4.3 Flexcomm2 USART interface of the MCU mapped to connec-

tor pin D0 and D1 on the expansion header of the development
board. 40

4.4 Using the Flexcomm2-mapped connector pins of the LPCXpresso55S69-
EVK expansion header for USART communication. 41

4.5 Binary arrays encoded to base 64 strings before being sent. . 54

5.1 TCP payload (in blue) from wireshark packet sniffing. 65
5.2 Adversary modifying/DOS-ing last acknowledgement from de-

vice to server. Note that step 7 at the server will not proceed
as normal, and the server will not update its registered SID
for the device. 67

6.1 Raw binary message format. Delimiter can be be added to
support dynamically sized-payloads. Note that the SID and
authentication parameters are always 32 bytes. 72

l ist of figures xi

6.2 Raw binary message format including IV. Note that the for-
mat would still only require one delimiter as only the payload
might be dynamically sized. 73

6.3 PUF-enabled device to safeguard against an adversary capa-
ble of extracting sensitive RAM data. 76

List of Tables
3.1 Notation used in the system configuration illustrations. . . . 27
3.2 Extended protocol Notations. 30

5.1 Measurement results using millis() on the Arduino MKR 1010
WiFi. 63

xiii

List of Abbreviations
aes advanced encryption standard

api application programming interface

ascii american standard code for information interchange

cagr compound annual growth rate

cbc cipher block chaining

cpu central processing unit

dos denial of service

ecb electronic code book

gdpr General Data Protection Regulation

http hypertext transfer protocol

i/o input/output

id identity

iot Internet of Things

iv initialization vector

json JavaScript Object Notation

ldp labeled data packet

ldpa labeled data packet array

xv

xvi l ist of abbreviat ions

lqi Link Quality Indicator

mcu microcontroller unit

mitm Man-in-the-middle

mqtt message queuing telemetry transport

nfc near-field communication

ntp network time protocol

puf physically unclonable function

ram random-access memory

rgb red green blue

sdk software development kit

sid pseudonym identity

sram static random-access memory

ssid service set identifier

ssk shared secret key

tls transport layer security

tsk temporary session key

uart universal asynchronous receiver/transmitter

url uniform resource locator

usart universal synchronous/asynchronous receiver/transmitter

usb universal serial bus

usbc universal serial bus type C

1
Introduction
Decisions made today by corporations, government entities and businesses
rely increasingly on statistics and predictions derived from data. Decision-
support systems are ubiquitous and are utilized at a global scale, impacting
both the global economy and politics worldwide. As smart devices, sensor
technology, and iot advances, their practicality and use cases increase, and
these technologies are progressively being leveraged in both legacy and new
systems to provide novel services. Wearable devices equipped with sensors
are already employed in many sectors such as elderly care [1] and medical
monitoring [2], enabling real-timemonitoring of vital signs and physical activity.
Figure 1.1 illustrates the rapidly growing wearable technology market, expected
to reach USD 493.26 billion by 2029, growing at a compound annual growth
rate (cagr) of 17.60% in the period 2024 − 2029.

However, in recent years, new laws and regulations such as the General Data
Protection Regulation (gdpr) [4] have been introduced, imposing restrictions
on both the collection and usage of personal data. Organizations and businesses
are increasingly responsible for complying with these new regulations, which
demands significant changes to their internal technical and logistical structures.
Collecting and processing sensed user data from smart devices in a manner
compliant with gdpr introduces new challenges related to security and data
provenance. An automated assessment [5] of the compliance of mobile apps
with the cross-border transfer requirements of the gdpr, done on the Google
Play Store, notes that 48% of apps that sent personal data either completely or
partially failed to comply with the regulations. Reasons for failure to comply

1

2 chapter 1 introduction

Figure 1.1: The growing wearable technology market [3]

included ambiguous or inconsistent disclosures about cross-border transfers in
their privacy policies or omitting any disclosure on the topic.

Although there are numerous challenges organizations face with regards to
compliance with gdpr [6], the focus of this thesis is limited to the technical
side of the restrictions and stipulations where compliance is dependent on data
provenance mechanisms across conventional data sources as well as extending
to the diverse ecosystem of smart devices and the iot. As an example, in
the context of compliance with the right to be forgotten, a smart device user
has the right to have all data associated with them to be deleted, including
measurements, derived analyses and models trained with their data. In order
for systems incorporating smart devices in their user data collection to be
compliant with the right to be forgotten and other regulations that need data
provenance, some form of end-to-end tracking of data is required, starting
at the point where the data was sensed. In many cases, such capabilities in
existing/legacy systems are either severely limited, unnecessarily complex or
inefficient. If decision-support systems leveraging smart devices are to be viable
in modern contexts where user privacy concerns are becoming paramount,
streamlined data control must be incorporated into the designs of new systems
as part of their core functionality.

1.1 problem statement 3

1.1 Problem Statement

Using smart devices for user data collection processes compliant with the gdpr
implies the need to collect provenance information originating at the device
level. One way to address this, is to use data labeling performed at the device,
where labels must include information about the ownership and origin of the
data. In order to provide trusted data provenance, the integrity of these labels
and their semantic connection to the data they label must persist throughout
the entire life-cycle of the data, from the smart device where the sensor data
was captured to the cloud and third party applications.

This integrity requirement demands security mechanisms which safeguard
not only against attacks on the network level, but also against threats of
physical data extraction and manipulation at the microcontroller level in smart
devices.

The focus of this thesis is is related to the integrity requirement on data labels
described above. The thesis is dedicated to the initial process of bootstrapping
the integrity guarantees of sensor data labels generated at the device level,
employing a puf. The problem statement is formally defined below:

How can the integrity guarantees of sensor data labels be bootstrapped
securely at the microcontroller level within smart devices? Further-
more, how can the trustworthiness of these bootstrapped integrity
guarantees be ensured, especially in scenarios where devices face
threats like physical extraction of sensitive data, such as encryption
keys, due to deployment in vulnerable environments? Is it feasible to
utilize Physically Unclonable Functions to both bootstrap and sustain
the integrity guarantees of sensor data labels generated at the device,
considering the aforementioned threats?

4 chapter 1 introduction

1.2 Methodology

Using the intellectual framework for the discipline of computing [7] established
by the Task Force on the Core of Computer Science, the work presented in this
thesis leans towards the design paradigm. The framework defines the design
paradigm as a four-step process followed in the construction of a system (or
device) to solve a given problem, originally rooted in engineering:

1. State requirements;

2. State specifications;

3. Design and implement the system;

4. Test the system.

Starting out, the project work focused on familiarization with state-of-the-art
research within aciot, including the technologies used and micro-controllers
in general. A fair amount of time was spent reading existing literature on topics
relevant to the project, most notably papers related to data provenance and
security challenges in iot. The intent was to use existing research in the field
to solidify the requirements for the prototype, acquire inspiration for potential
implementation strategies, and to assess the potential challenges implied in the
different strategies. The iot data provenance domain and different techniques
employed were mapped out according to their data labeling schemes, integrity
guarantees, assumed threat models, mechanisms and hardware used.

After deciding on which data provenance technique was to be used in enabling
data labeling at the microcontroller, appropriate hardware was acquired. There
were several time-consuming problems and challenges in this process, as find-
ing appropriate hardware proved difficult due to the niche use-case of puf
technology in the chosen data provenance technique.

The design and implementation of the prototype was an iterative process. Both
the design and the threat model assumptions changed as the implementation
progressed due to encountering hardware restrictions and limitations.

1.3 limitations and assumptions 5

1.3 Limitations and Assumptions

1.3.1 Scope

The thesis project scope encompasses bootstrapping and maintaining the in-
tegrity guarantees of sensor data and data labels given the following context: A
device captures sensor data at the microcontroller level, generates data labels
for said data, encrypts a combined packet of the data along with the data labels
and transmits the packet to a server.

The thesis project does not aim to guarantee the persistence of of the afore-
mentioned integrity guarantees through any extended data pipelines which
might or might not exist beyond the initial server destination. Additionally, the
thesis project does not aim to guarantee or preserve any semantic connection
between sensor data and its associated data labels should they at some point
be separated.

While the project scope does not extend into data pipelines beyond the server
(e.g., cloud processing) or offer intricate binding mechanisms between sensor
data and labels, it holds research value. The work done in this thesis project
can serve as a valuable asset for future projects and endeavors with a broader
scope in mind.

1.3.2 Resource Constrained Components

It is assumed that the microcontrollers in the prototype system are resource
constrained, impacting design choices made and protocols used.

1.3.3 Network Model

Figure 1.2 illustrates the prototype network model assumption, where dashed
lines indicate wireless communication, and solid lines indicate wired communi-
cation. The prototype network consists of microcontrollers equipped with sen-
sors and a puf module, a wireless gateway and a server or base station.

Each puf module and sensor has a wired connection to their own micro-
controller, and the microcontrollers are wirelessly connected to the internet
gateway connecting them to the internet. The microcontrollers are considered
to be deployed in a physically vulnerable location and the server is assumed to
be located elsewhere in a physically safe location.

6 chapter 1 introduction

Figure 1.2: Prototype network model assumption

1.3.4 Threat Model

The threat model used for the project assumes an adversary with capabil-
ities slightly extended beyond those of the adversary in the Dolev-Yao [8]
model.

The adversary’s capabilities in the Dolev-Yao model:

• Eavesdropping: The adversary can intercept any communication be-
tween legitimate participants in the protocol. They can listen in on the
network and capture all messages exchanged

• Message Modification: The adversary can alter the content of inter-
cepted messages. They can edit, delete, or even replay messages to
manipulate the conversation.

• Message Fabrication: The adversary can create entirely new messages
and inject them into the communication flow. They can forge messages
pretending to be a legitimate participant.

In addition to these, the adversary is extended to also be able to:

• Persistent Data Storage Extraction: The adversary is able to gain phys-
ical access to iot devices in the system and extract data from persistent
(i.e., flash) storage, such as secret keys.

1.4 contribution 7

1.4 Contribution

The thesis project and work provided contributes a system that bootstraps the
integrity of sensor data and data labels being transmitted to a safe server or
trusted location. It protects secret keys and other sensitive data from physical
data extraction techniques performed on persistent storage. The work provided
also facilitates future work in proofing the system against physical data extrac-
tion in ram. The work provided can also serve an implementation base for
more sophisticated labeling schemes to be integrated into such systems.

The design principles and implementation of the system can be used as in-
spiration and/or as a component in systems outside the scope of the thesis
project. An example of this is the cloud processing system published by Henze
et al. [9]. The system proposed in this paper provides users with enforced
end-to-end access control on their data using data labeling, but assumes sensor
data reaches the trust point safely.

The system implemented in the thesis project could serve as the sub-system
bootstrapping the integrity of sensor data and data labels until reaching the
trust point. Figure 1.3 depicts the main idea of [9] as well as how the thesis
project scope fits into the larger context.

Figure 1.3: Fitting the thesis project into into a larger scope such as cloud processing.

8 chapter 1 introduction

1.5 Thesis Outline

The introduction has been focused on the what and why, the problem and the
intention. The rest of the thesis is dedicated to the work which addressed the
problem statement such as the design, implementation and other aspects of
the prototype system.

2. Background: The background chapter encompasses the concepts and
definitions necessary to understand the project prototype design and
implementation.

3. Design: In the design chapter, the different components making up the
prototype will be described in detail. These descriptions include the re-
sponsibilities of each component, their relationships to other components
and how they communicate.

4. Implementation: The implementation chapter includes detailed descrip-
tions of how the design of the prototype was implemented, including
code examples and control logic.

5. Evaluation: The performance, security and othermetrics of the prototype
is evaluated in this chapter.

6. Discussion: The discussion chapter includes discussions on potential
problems and possible improvements to the design and implementation
of the prototype. The results of the evaluation will also be discussed.

7. Future Work: The future work section is dedicated specifically to outlin-
ing potential avenues for future research or improvements to the current
prototype.

8. Related Work: Lastly, the related work chapter focuses on relevant and
similar research from other authors in the domain.

2
Background
This chapter will provide necessary introductions to concepts referenced in the
design and implementation of the project, facilitating the later chapters of the
thesis.

2.1 Data Transfer

The following section explains introduces concepts and technologies leveraged
in the communication between the different components in the system.

2.1.1 Serial Communication and USART

In the context of computer science, serial communication refers to the process
of sending/receiving data in a sequential order, one bit at a time [10]. Fig-
ure 2.1 illustrates the difference between serial and parallel communication
in terms of sending a byte. Serial communication is considered the simplest
way of transmitting data from a sender to a receiver, and is preferable when
transmitting long-distance due to the synchronization difficulties introduced
in parallel communication.

Serial communication protocols can be divided into several categories: syn-
chronous, asynchronous and bit-synchronous [10]. Synchronous transmission

9

10 chapter 2 background

Figure 2.1: Serial and parallel transmission of a byte.

involves combining groups of bits into frames which are sent continuously,
even if no data is present. In asynchronous transmission, bits are transmitted
independent of the data link layer and data frames, and contain start and stop
flags to allow for data gaps between frames.

USART Device

A universal synchronous/asynchronous receiver/transmitter (usart) is a se-
rial interface device which converts received serial data into parallel data,
and converts data to be transmitted from parallel data into serial data [10].
As indicated by its name, a usart device can be programmed to commu-
nicate synchronously or asynchronously (unlike uart which only supports
asynchronous serial protocols). For receiving, the serial data is fetched from
the serial port, converted to parallel data, and then forwarded to the central
processing unit (cpu). For transmitting, the parallel data is fetched from the
cpu to the usart device, converted to serial data, and then forwarded to the
serial port for transmission [10].

USART Protocol

A usart device communicates using the usart protocol, which is a two-
wire serial communication protocol [10]. It is a full-duplex protocol allowing
for simultaneous receiving and transmitting of data, where the signal lines
are labeled Rx (for receiving) and Tx (for transmitting). Note that a shared
grounding cable GND is usually present, as usart is commonly used between
devices requiring a common grounding to keep both at the same voltage. As

2.1 data transfer 11

the clock attached to the device pulses, data is sent and received, byte by
byte. As devices might not have a common clock frequency, a shared baud
rate configured between sender and receiver determines transmission speed.
A higher baud rate might result in higher data loss when transmitting through
longer length cables. Figure 2.2 depicts a standard usart asynchronous data
flow. The parity bit is used for error checking and is optional.

Figure 2.2: Standard usart (asynchronous)/uart data flow consisting of a byte and
the start/stop flag bits [10].

2.1.2 JavaScript Object Notation (JSON)

The ECMA-404 Standard [11] defines json formally as:

json is a text syntax that facilitates structured data interchange
between all programming languages. json is syntax of braces,
brackets, colons, and commas that is useful in many contexts, pro-
files, and applications.

In order to facilitate widespread interoperability, json is agnostic about the
underlying representation of numbers and only human-readable numbers.
It also offers a simple and intuitive notation for expressing collections of
name/value pairs, which most languages support [11].

The most common and important features used in the json syntax include
[11]:

• json values: A json value can be one of many things: an object, array,
number, string, true, false, or null.

• Objects: An object is denoted by a pair of curly brackets encapsulating
any number of name/value pairs.

12 chapter 2 background

• Arrays: An array is indicated by a pair of square brackets enclosing any
number of values.

• Numbers: A number consists of a sequence of decimal digits without any
unnecessary leading zeros.

• Strings: A string is a series of characters from the Unicode standard
enclosed within quotation marks.

Figure 2.3 shows an example of json syntax in use. The object in this figure
includes:

• Initial name/value pairs.

• A nested object called "batters", which consists of an array of objects
called "batter".

• An array of objects called "topping".

2.1.3 Base 64 Encoding Scheme

The base 64 encoding scheme design incorporates sequences of octets which
use both upper-case and lower-case letters [13]. The sequences of octets use
a 65-character subset of the US american standard code for information inter-
change (ascii) encoding standard, where each character is represented using
a maximum of 6 bits.

The Base 64 encoding processes includes the following steps [13]:

1. Inputs are 24-bit groups, formed by concatenating 3 bytes. Output per
input is a string of 4 encoded characters.

2. Encoding is done by treating the 24-bit input as 4 concatenated 6-bit
groups,where each of these 6-bit groups values are mapped to a character
in the 65-character US ascii alphabet.

If the data to be encoded is not 24-bit aligned (e.g., the input is 2 bytes instead
of 3), the resulting encoding will append zero padding to make up a 24-bit
group. Padding in the output takes the form of a "=" character. Figure 2.4
shows the base 64 encoding scheme alphabet. Note that there also exists an
alternative uniform resource locator (url)/filename safe alphabet, which also
can be found in [13].

2.2 physically unclonable function 13

{
"id": "0001",
"type": "donut",
"name": "Cake",
"ppu": 0.55,
"batters":

{
"batter":

[
{ "id": "1001", "type": "Regular" },
{ "id": "1002", "type": "Chocolate" },
{ "id": "1003", "type": "Blueberry" },
{ "id": "1004", "type": "Devil's Food" }

]
},

"topping":
[

{ "id": "5001", "type": "None" },
{ "id": "5002", "type": "Glazed" },
{ "id": "5005", "type": "Sugar" },
{ "id": "5007", "type": "Powdered Sugar" },
{ "id": "5006", "type": "Chocolate with Sprinkles" },
{ "id": "5003", "type": "Chocolate" },
{ "id": "5004", "type": "Maple" }

]
}

Figure 2.3: Example json [12].

2.2 Physically Unclonable Function

As puf technology lies at the core of the system design, a necessary introduction
to the technology is provided below.

A physically unclonable function is an entity or mechanism that capitalizes on
production variability in physical characteristics to produce a device-specific
output, typically represented as a binary number [14]. The device-specific out-
put of the puf can be seen as the digital fingerprint of a device. A puf involves
the use of several components characterized by local parameter variations in
a device. These discrepancies between components in a device are referred
to as local mismatches. In order to generate the device-specific output, the
components of the puf are either directly read, combined or compared. Since
the local parameter variations measured cannot be controlled in a predictable

14 chapter 2 background

Figure 2.4: Base64 encoding scheme alphabet [13].

fashion by outside sources, a puf is considered to be unclonable in practice. It
can, however, be cloned in theory.

There are multiple approaches to creating a puf, though most, if not all
approaches depend on some signal input (i.e., a challenge) in order to generate
the output. This fundamental characteristic classifies a puf as a function. The
input usually either manipulates the internal components or specifies which
components to be used, resulting in an output produced by different component
parameters. pufs are usually classified by the fabric and mechanism they use,
as depicted in Figure 2.5. Note that the figure does not encompass all puf
types.

Figure 2.5: Main classifications of PUFs, where each category contains a variety of
different approaches [15].

2.3 internet of things 15

SRAM PUF

The sram puf is characterized by its use of existing sram blocks and cells
to generate memory-chip-specific data [14]. srams use basic memory cells
equipped with inherent feedback mechanisms, ensuring retention of stored
values as long as the device is powered [16]. An example of such a mechanism
is the coupling of a pair of inverters, where the output of one inverter serves as
the input for the other. This is depicted in the left side of Figure 2.6, showing
an sram bit cell retaining an asserted or non-asserted value.

Upon circuit power-up, the sram bit cells stabilize at a state (i.e., 0 or 1)
determined by the local mismatches among the transistors involved, such as
differences in transistor length, width and thickness. Consequently, each sram
cell yields one bit of output data. Given enough sram cells in an sram array,
this creates a device-specific digital fingerprint. The entirety of Figure 2.6
illustrates the process of forming a digital fingerprint using a large number of
sram bit cells.

Figure 2.6: Forming a digital fingerprint using a large number of sram bit cells.

It is worth noting that not all sram implementations are suitable for puf
purposes due to insufficient mismatches between transistors.

2.3 Internet of Things

The problem statement and the work provided in this thesis lies within the
iot domain. This section defines concepts as well as technologies common
within the iot domain and provides a general understanding of the domain’s
architecture.

The Internet of Things is a network environment connecting a large number
of heterogeneous objects [17]. Sensors, microcontrollers, microprocessors and
communication technologies such as WiFi and near-field communication (nfc)

16 chapter 2 background

are integrated into the objects of the environment. Objects with integrated
technology are referred to as iot devices, and often include at least one
microcontroller and a sensor of some kind. The iot devices making up the
environment can be connected to people, other devices and external services,
providing useful data to external applications from the point of data sensing.
iot has facilitated the development of numerous applications and domains
such as smart homes, smart farms and wearable health technology [17].

2.3.1 Sensors

A sensor is a device that detects stimuli or input from physical qualities and
produces actionable outputs [18]. The input or physical qualities which the sen-
sor reacts to are often referred to as measurands. A sensor typically comprises
two components: the sensing unit, also known as the sensitive element, and
a transducer, which is a device capable of converting one form of energy into
another. The sensing unit interacts with the measurand and produced an out-
put correlated with the physical quality sensed. Subsequently, the transducer
converts this energy into an analog or digital signal which can be read by a
data gathering system [18].

2.3.2 Microcontrollers

A microcomputer is made up of three fundamental components: A cpu, a
memory unit and an input/output (i/o) system [19]. The components of the
microcomputer are interconnected by electric wires called buses, where address
buses transport memory or i/o addresses and data buses transport instructions
or data. Additionally, there are control buses which transport control signals
used by the different components.

Microcontrollers integrate the essential resources and components found in
a microcomputer, including the cpu, memory, and i/o capabilities, into a
single chip. [19]. The components of microcontrollers are resource constrained
in order to minimize power consumption and space occupation, but their
functionalities and responsibilities are similar to those found in a normal
computing system, with some exceptions.

Considering microcontrollers are often used to provide some kind of useful
data to the outside world, and this is commonly faciliated by external sensing
devices, their i/o resources are crucial [19]. Some even have integrated wire-
less communication technology. Most microcontrollers have serial, parallel and
analog ports, controlled by timers and interruption managers. In order to facil-
itate communication with a diverse range of external entities, microcontrollers

2.3 internet of things 17

typically feature a high number of i/o resources relative to the available pins
on the chip. Additionally, many of these pins can be configured or mapped to
support various communication interfaces.

Most microcontrollers also include some form of watchdog, a component which
monitors program execution in the microcontroller, and resets the program in
case of exceptions hindering normal program execution [19]. Figure 2.7 depicts
the connected components within a microcontroller.

Figure 2.7: The components of a microcontroller and their interconnections [19].

2.3.3 Internet of Things Architecture

The architecture of iot is characterized by a set of layers, where each layer
is differentiated by its functionalities, incorporated devices and techniques
[17]. The different layers encompassing the iot architecture include: the
perception layer, network/transport layer, processing/middleware layer and
application later. The naming and granularity of these layers might differ in
various literature, and some include an additional layer called the business
layer. Figure 2.8 illustrates the layers of the iot architecture.

The perception layer is the initial layer of the iot architecture [17]. The layer
consists of a diverse range of objects with integrated sensor and communica-
tion technology. The sensing and data gathering components of the layer are
referred to as perception nodes. The group of components in the layer which
enable data sharing, in addition to facilitating a connection to the network
layer, is referred to as the perception network.

18 chapter 2 background

Figure 2.8: iot architecture layers.

The network/transport layer facilitates the transfer of data from the percep-
tion layer to the next layer, the connection between all the iot devices and
data sharing [17]. Additionally, the components of this layer forwards data
to various iot network gateways, serving as intermediaries between multiple
iot devices to facilitate data aggregation and transfers to and from other iot
devices and networks of devices.

The processing/middleware layer’s responsibilities is performing the data
aggregation and processing facilitated by the previous layer. In addition, the
layer is responsible for composing services as well as providing these services
to the next layer [17].

The application layer, sometimes referred to as the business layer, resides at
the top of the iot architecture and is directly accessible to end users [17]. Its
main function is to oversee applications built upon data managed and services
provided by the middleware/processing layer [17]. Depending on how the data
is managed by the previous layer and which services are provided, this layer
can be structured in many different ways.

3
Design
This chapter will first give a brief introduction to the main idea of the design
and how the components and protocols are used in order to address the
problem statement. Subsequently, it will go into more detailed descriptions of
the components and their responsibilities, how the system is configured and
provide an in-depth look at the communication protocols used. It is worth
nothing that the design is inspired by Aman’s paper [20] on secure data
provenance in the iot using wireless fingerprints. Figure 3.1 shows an overview
of the components in the design and their connections.

Figure 3.1: Prototype components overview. Note that this overview includes two
devices. Red line indicates the data path for sensor-generated data and its
label(s) from capture at the topmost device to safe arrival at the server.

19

20 chapter 3 design

3.1 Overview

The prototype system design encompasses three main components: the device,
the puf module, and the server. Although sensors and wireless gateways are
technically also part of the system, they are considered arbitrary in the design
and will not be discussed in detail.

The core of the system is the device, which is connected to all other components
in the system. It is equipped with its own puf module and sensor, and has
wired connections to these. It is also connected wirelessly to the server through
the internet. The main program flow consists of capturing and labeling sensor
data on the device, encrypting it using symmetric encryption and transmitting
to the server. In order to use symmetric encryption, secret keys need to be
protected. The design incorporates the use of the puf technology described
in Section 2.2 in order to protect a shared secret key (ssk) assuming the
threat model described in Subsection 1.3.4, where the attacker is able to extract
sensitive information such as secret keys from ram.

Safeguarding the Shared Secret Key

Considering the threat model, the primary approach to safeguarding the ssk
involves avoiding its persistent storage in plain-text within the device. Instead,
the ssk is encrypted by external means, and only its encrypted version is stored
persistently by the device. This encryption depends on the puf module’s root
key, which is a device-unique digital fingerprint generated by combining an
sram puf and an internal function within the puf module.

In order to reconstruct the same root key for use in later power cycles, the puf
module uses the puf combined with a series of bytes known as an activation
code which remains stored persistently. The properties are exclusively available
when the pufmodule is powered on,meaning the root key cannot be extracted
while the module is powered off. This approach ensures that the ssk remains
secure and the root key is inaccessible unless the puf module is activated and
the system is operating.

The device component does not store the ssk in persistent memory, but relies
of the puf module to provide it when necessary. Figure 3.2 showcases the
device reloading the ssk after a power cycle or similar disruption. It assumes
the device is deployed and a ssk (green) has been distributed during system
configuration. It also assumes the device has sent its ssk to the puf module
in order to receive an encrypted ssk.

3.1 overview 21

Figure 3.2: Safeguarding the ssk. Broken red key symbolizes the physical attributes
and activation code. Note that the unique digital fingerprint is inaccessible
during the "POWER OFF" state.

In order for the device to reload its ssk upon startup and send sensor data
along with labels to the server, the following steps are executed (numbered as
in the figure):

1. puf module is powered on, and reconstructs its root key (red key) using
its puf combined with the activation code (these are symbolized as the
two incomplete pieces of the red key).

2. Device sends its encrypted ssk to the puf module.

3. puf module decrypts the ssk.

4. puf module sends the decrypted ssk back to the device in response to
the request.

5. Device captures and labels sensor data, then encrypts the data and labels
using the ssk.

6. Device transmits encrypted packet to server, which is assumed to always
have access to the ssk.

The device and the server engage in a mutual authentication protocol before
the transmission of sensor data starts. Data is sent using a data transfer protocol
to ensure the integrity of the data packets being received at the server. These
protocols will be detailed in Section 3.4.

22 chapter 3 design

In the context of the system design, a ssk is considered to be shared between a
specific device component and the server. The server might store several ssks,
each belonging to a different device-server relationship.

3.2 Components

3.2.1 PUF Module

The puf module serves two primary purposes: encrypting the ssk on behalf
of the device and serving as a key backup mechanism should the device lose
its ssk from ram due to disruptions. As mentioned in the brief introduction,
the module provides these encryption and decryption services using its own
device-unique digital fingerprint, generated using puf technology.

Digital Fingerprint Generation

The digital fingerprint (root key) is generated using the puf module’s physical
properties and an internal function, and is never stored in a persistent manner
in the puf module. The generation process also yields a series of bytes known
as the activation code, which, when combined with the physical properties,
facilitates the reconstruction of the fingerprint. Note that the fingerprint gen-
eration should only be performed once as each generation will result in a new
fingerprint and activation code. For simplicity, the fingerprint generation pro-
cess will be referred to as the 𝐸𝑛𝑟𝑜𝑙𝑙 process. Figure 3.3 outlines the enrollment
process of the puf module in the design, wherein sram startup data and an
internal function are utilized.

Figure 3.3: Figure showing how the pufmodule generates its digital fingerprint using
sram and an internal function, outputting the activation code [21].

3.2 components 23

Digital Fingerprint Reconstruction

In order to reconstruct the digital fingerprint, the activation code and the
startup sram is combined as depicted in Figure 3.4.

Figure 3.4: Figure showing how the pufmodule reconstructs its unique digital finger-
print using sram and the activation code, outputting the digital fingerprint
[21].

Module Operation

The puf module offers an api to handle various requests from the device,
including Enroll, SetKey, and Challenge. The Enroll service triggers the module
to generate the root key and store the activation code in persistent storage
for subsequent reconstruction. The SetKey service encrypts secret keys from
incoming requests and returns the encrypted result, while the Challenge service
decrypts keys from incoming requests and returns them in their original,
unencrypted state. These services are part of a system-wide ssk configuration
process, detailed in Subsection 3.3.1.

Upon startup, the pufmodule will perform necessary initialization procedures
and enter a perpetual server state, waiting for requests from the device com-
ponent. Figure 3.5 shows the message format of communication between the
puf module and the device.

Figure 3.5: Primitive message format for communication between the puf module
and the device. The first byte of the header indicates the type of message
whilst the second byte indicates the size of the message. The remaining 6
bytes of the header are reserved, but are not used in the current design.

24 chapter 3 design

3.2.2 Device

The device is the core of the prototype system and is either the initiator of or
an active participant in all the protocols of the prototype system. The main
responsibilities of the device component are receiving sensor data from the
sensor, generate data labels, encrypting the data with its associated data labels
and transmitting it to the server.

Devices are identified by their identity (id) or sid depending on whether or
not they have been registered, both represented as a series of bytes. sid and
device registration will be detailed in Subsection 3.3.2.

API

During offline system configuration, the device is an active participant in the
system-wide ssk configuration process and offers an api for managing a range
of server requests. The api provides the following services: Enroll, SetKey and
VerifyKeys. System configuration will be detailed in Section 3.3.

While the service names of Enroll and SetKey match those of the puf module
api, and both apis serve overarching objectives, it’s important to recognize
that the operations performed by the device services differ from those of the
puf module. The Enroll service simply relays the request to the puf module
and returns the subsequent response to the server.

The SetKey service acquires the ssk from a server request, caches the key in
RAM, and initiates device registration. Following a successful registration, it
proceeds to relay the prior request to the pufmodule for encryption of the key.
Upon receipt of the encrypted key, the device stores it persistently and finally
relays the encrypted key response to the server.

On the other hand, the VerifyKeys service accepts an encryptedssk from a server
request. It verifies its equivalence to the encrypted key stored in persistent
flash within the device and forwards it to the puf module for decryption.
Subsequently, it verifies the received decrypted key’s correspondence with the
one stored in the device’s ram, and then returns the decrypted key to the
server.

Device Configuration Phase

In the configuration phase the device initializes the necessary functionalities,
loads data from flash (if any) storage and starts up the api server. At this

3.2 components 25

point, depending on whether or not the device is registered, it will do one
of two things: if registered, the device loads its key from the puf module
and moves on to the on-line main program phase. This procedure will be
described in Subsection 3.4.1. If the device is not registered, it will wait for a ssk
configuration request from the server in order to begin the ssk configuration,
detailed in Subsection 3.3.1. Figure 3.6 depicts the program flow of device
during the configuration phase.

Figure 3.6: Figure depicting the program flow of configuration phase in the device
component.

Main Program Loop

The main program loop is responsible for transmitting sensor data and its
associated labels to the server, assuming successful completion of the ssk
setup and device registration. The integrity and trustworthiness of both data
and labels are ensured through two main processes.

Initially, a mutual authentication protocol is executed with the server to estab-
lish a temporary session key, distinct from the ssk. Subsequently, transmission
is done using a data transfer protocol along with the established session key.
Detailed descriptions of the authentication and data transfer protocols will be
detailed in Subsection 3.4.2 and Subsection 3.4.3, respectively.

Note that the shared secret session key is temporary, and depending on the
configuration of the system, the device will need to re-authenticate with the
server frequently in order to guarantee its freshness. The logic governing the

26 chapter 3 design

main program loop is outlined in Figure 3.7.

Figure 3.7: Logic governing the perpetual main program loop. Essentially a loop
which handles requests and sends data or authenticates depending on the
authentication status.

3.2.3 Server

The server component functions primarily as an api, with its responsibilities
varying based on whether or not the system is in the configuration stage or
devices have been deployed. Prior to device deployment, the server oversees
external requests to commence the system-wide ssk configuration process.
During this stage it also handles registration requests from devices. At this
point, the server maintains a record of the devices’ ids.

After the system has been configured and devices have been deployed, the
server is responsible for receiving data and labels by engaging in the authenti-
cation and data transfer protocols initiated by the devices. At this stage, the
server additionally tracks each device’s ssk, encrypted ssk and pseudonym
identity.

3.3 System Configuration

This section will detail the system-wide ssk setup and the device registration.
The wireless communication between components during these processes have
the potential to reveal sensitive information such as secret keys and device
identities, and must be performed offline in a safe environment. Table 3.1

3.3 system configuration 27

contains the notations utilized in the system configuration illustrations for this
section.

Notation Description
𝐼𝐷𝑖 Identity of the device
𝑀𝑖 The 𝑖-th message
𝑁𝑖 The 𝑖-th nonce
𝑆𝐼𝐷𝑖

𝐴
Pseudonym identity of device 𝐼𝐷𝐴 for the 𝑖-th iteration

𝑆𝑆𝐾𝐴 Shared secret key established by the server and device 𝐼𝐷𝐴
𝐶𝐴 Challenge (encrypted SSK) from PUF module owned by device 𝐼𝐷𝐴

Table 3.1: Notation used in the system configuration illustrations.

3.3.1 Shared Secret Key Configuration

The system-wide ssk configuration involves communication among all main
components within the system, facilitated through the apis mentioned in
the preceding sections. The entire process consists of a series of api calls
between the system components divided into three stages, each serving a
specific purpose: The Enroll stage, the SetKey stage and the VerifyKey stage.
Each stage is initiated by an external request received at the server. Figure 3.8
illustrates the communication between the components in the system during
the different stages.

Enroll

The first stage, Enroll, serves the sole purpose of signaling an enrollment
request to the puf within the puf module, without involving any additional
procedures. The server dispatches an Enroll request to the device, which then
relays the request to the puf module. Upon receiving the Enroll signal, the
puf module proceeds to enroll its puf and stores the resulting activation
code in its flash memory for future root key reconstruction. Note that requests
during this stage contain no payload.

SetKey

The purpose of the SetKey stage is to configure the ssk across the components.
This entails having the secret key cached in ram at the device, storing an en-
crypted version of the key in persistent flash within the device, and maintaining
both versions in persistent storage at the server.

28 chapter 3 design

Figure 3.8: System-wide key configuration. Communication between the components
during the three stages.

Initially, the server is tasked with distributing the ssk. It generates the key,
preserves it in persistent storage, and dispatches a SetKey request containing
the ssk to the device component.

Upon receiving the request, the device fetches the key and caches it in ram be-
fore commencing the device registration protocol, pausing the SetKey process
until registration with the server has been completed. More on this in Subsec-
tion 3.3.2. After successfully registering, the device resumes its prior operations
and forwards the ongoing SetKey request to the pufmodule component.

After receiving the request, the puf module activates its puf, reconstructs its
root key and encrypts the received ssk. The encrypted key is then transmitted
back to the device, where it is stored in persistent flash. Subsequently, the
device relays the encrypted key to the server for permanent storage.

Note that the shared key is never stored persistently in plain-text in the
puf module nor the device, as part of compliance with the threat model
in 1.3.4.

VerifyKeys

The VerifyKeys stage is executed to ensure the consistency of ssks and their
encrypted counterparts across the system components. Additionally, it validates
that the puf module returns the expected secret key when challenged with
the provided encrypted key.

3.3 system configuration 29

The verification process begins with the server initiating a VerifyKeys request
to the device, containing the encrypted key. Upon receiving the request, the
device performs an equality check between the received encrypted key and
the one stored in persistent flash. Subsequently, the device relays a challenge
with the encrypted key to the puf module.

The puf module decrypts the encrypted ssk using its root key and returns
the resulting decrypted key back to the device. Upon receiving the decrypted
result, the device performs another equality check, this time comparing its key
stored in ram with the one received from the puf module. Finally, the device
relays the response back to the server, which conducts a final equality check
on the received key with the one it has stored.

If all equality checks are successful, the system confirms the consistency of
both ssks and their corresponding encrypted versions across the relevant
components.

3.3.2 Device Registration

To maintain anonymity for devices across the network, the authentication
and data transfer protocols leverages a constructed sid to identify the device
without revealing the actual identity. Device registration in the system involves
establishing an initial common sid between a device and the server. The sid of
device 𝐼𝐷𝐴 for the 𝑖-th iteration is constructed as 𝑆𝐼𝐷𝑖𝐴 = 𝐻 (𝐼𝐷𝐴 | | 𝑁𝑎 | | 𝑆𝑆𝐾),
where 𝑁𝑎 is a random nonce and 𝐻 is a hash function.

Given that the sid for a specific device depends on its ssk in order to be
constructed, the device registration takes place during the SetKey api calls,
immediately after the device receives its ssk. Figure 3.9 shows the nested
communication of the registration process. Upon retrieving the ssk from the
server’s SetKey request, the device triggers the registration process. It generates
a random nonce, constructs its sid, stores it, then forwards a registration
request containing the device identity and nonce to the server.

After receiving the information from the device, the server searches for the
device id in its stored list of devices, and fetches its stored ssk for that device.
The server then constructs the same sid as the device using the combined
information received and its ssk, and stores it before returning the sid back
to the device for verification.

Upon receiving the sid from the server response, the device verifies that both
its own and the server’s constructed sids are identical, ensuring correctness
during the authentication and data transfer protocols. Once the device has

30 chapter 3 design

been successfully registered and the ssk setup has completed, the device is
considered ready for deployment.

Figure 3.9: Communication during device registration nested within the SetKey api
call chain.

3.4 Protocols

The following section details how the device reloads its ssk after disruption,
the authentication protocol and the data transfer protocol. Expanding upon
Table 3.1, Table 3.2 contains additional notations utilized in the illustrations of
the protocols detailed in this section.

Notation Description
𝐻 (𝑋) Hash of 𝑋
| | Concatenation operator

{𝑀}𝑘 Message 𝑀 is encrypted using key 𝑘
𝐼𝑖 The 𝑖-th authentication parameter

𝑇𝑆𝐾𝑖
𝐴

Temporary session key established during 𝑖-th authentication iteration
𝐿𝐷𝑃𝐴 Labeled data packet array

Table 3.2: Extended protocol Notations.

3.4.1 Device Secret Key Reloading

As mentioned before, to comply with the threat model outlined in Subsec-
tion 1.3.4, the device cannot store the ssk in persistent storage. However,
relying solely on storing the key in ram without a means of recovery proves
inadequate. Any restart or unexpected power loss would lead to permanent
loss of the secret key on the device.

3.4 protocols 31

In response to this challenge, the system provides a mechanism to address
power-related disruptions at the device. As previously mentioned, the device
stores the encrypted ssk in persistent flash storage. In the event of power loss
or cycling, the device loads the encrypted ssk from flash and dispatches a
challenge request to the puf module. Upon receipt, the puf module decrypts
the challenge bytes using its reconstructed root key and returns the resulting
ssk to the device. Figure 3.10 depicts the communication between the device
and the puf module during this operation.

Figure 3.10: Communication during ssk reloading process.

3.4.2 Mutual Authentication Protocol

The mutual authentication protocol utilized in this design is derived from
the protocol outlined in [20]. It involves two main components: the device
and the server. The main end-goal of the protocol is to establish a common
temporary session key (tsk) between the participating parties. The protocol is
designed to be lightweight and ensure device anonymity while also enforcing
authentication freshness.

As explained in Subsection 3.3.2, sids are utilized to maintain the anonymity
of the device. Within the authentication protocol framework, each sid is valid
for only one iteration. Upon successful authentication, both parties update
the device’s registered sid using the same computational process. The initial
sid established during device registration is used in the first iteration of the
authentication protocol. The protocol leverages encryption and decryption of
nonces in order to prove knowledge of the ssk and utilizes authentication
parameters in order to guarantee the integrity and correct receipt of messages
between the two parties.

An authentication parameter is defined in [20] as:

An authentication parameter is a cryptographically secure hash of
a message concatenated with freshness identifiers and a secret key.

Figure 3.11 depicts the communication during the mutual authentication pro-
tocol, following the steps described below. Definitions of the messages 𝑀 and

32 chapter 3 design

authentication parameters 𝐼 are included in the figure:

1. The device generates a random nonce 𝑁0, encrypts it using its ssk and
sends the initial message 𝑀0 along with the message authentication
parameter 𝐼0 to the server.

2. Upon receipt, the server searches for 𝑆𝐼𝐷𝑖
𝐴
in its list of registered devices

and fetches the appropriate ssk registered for the device. The server then
uses the ssk to verify 𝐼0 and decrypt the random nonce 𝑁0 contained
within 𝑀0.

3. Subsequently, the server generates a second random nonce 𝑁1, encrypts
the concatenation of the two nonces {𝑁0 | | 𝑁1} using the ssk and
sends 𝑀1 along with 𝐼1 back to the device. At this point, the server also
generates the tsk where 𝑇𝑆𝐾𝑖

𝐴
= 𝐻 (𝑁0 ⊕ 𝑁1) ⊕ 𝐻 (𝐼𝐷𝐴 ⊕ 𝑆𝑆𝐾). Note

that ⊕ refers to the bit-wise XOR operator.

4. When receiving 𝑀1 and 𝐼1 from the server, the device decrypts the
encrypted concatenation of the nonces {𝑁0 | | 𝑁1}𝑆𝑆𝐾 using its ssk. It
extracts the second nonce 𝑁1, verifies 𝐼1 and generates 𝑇𝑆𝐾𝑖 using the
same computational process the server used previously.

5. At this point, both of the participants generated the 𝑇𝑆𝐾𝑖
𝐴
. They have

authenticated themselves and proven their knowledge of the ssk by
sending authentication parameters successfully verified by the other
participant. Next, they ensure correctness of both the generated 𝑇𝑆𝐾𝑖

𝐴

to be used in this session and the sid update from 𝑆𝐼𝐷𝑖
𝐴
→ 𝑆𝐼𝐷𝑖+1

𝐴
to

be used in the next authentication protocol.

6. The device updates its pseudonym identity𝑆𝐼𝐷𝑖+1
𝐴

= 𝐻 (𝐼𝐷𝐴 | | 𝑁1 | | 𝑆𝑆𝐾𝐴)
and sends 𝐼2 as acknowledgement to the server.

3.4 protocols 33

7. Upon receiving 𝐼2, the server generates 𝑆𝐼𝐷𝑖+1𝐴 , stores it for future au-
thentication requests from the device and verifies 𝐼2. The verification of
𝐼2 ensured correctness of both the sid updates and the newly established
tsk. Authentication is now considered complete, and the device can send
data utilizing the tsk and the data transfer protocol.

Figure 3.11: Communication between a device and the server during mutual authenti-
cation protocol.

Authentication expiration

In order to set an expiration time for the authenticated device, the server
temporarily stores the sid used in the authentication (i.e., before the update)
in a list of currently authenticated devices. After a certain time frame depend-
ing on the freshness requirement set at the server, the sid representing the
authenticated device will be dropped from the list. The list is checked upon
every data transfer request, and a device who has had its sid dropped will be
forced to re-authenticate with the server.

3.4.3 Data Transfer Protocol

The data transfer protocol utilized in this design is also derived from the
protocol outlined in [20], specifically the data transfer phase. The main goal of
utilizing the protocol is to ensure the integrity and correctness of both sensor
data and data labels being sent from the device to the server. Similarly to
the authentication protocol, the data transfer protocol involves the device and
server components, and also utilize a sid as the device identifier. Figure 3.12
illustrates the concept of a ldp, which is the structure used to package sensor
data and its associated labels.

34 chapter 3 design

Note that the labeled data packets are not transmitted separately, but in batches
of 10. The packets are sent in batches to reduce the communication overhead
introduced by the data transfer protocol, as depicted in Figure 3.13.

Figure 3.12: Structure of the labeled data packet.

Figure 3.13: Structure of the labeled data packet array, consisting of 10 ldps.

Figure 3.14 depicts the communication during the data transfer protocol, fol-
lowing the steps described below. Note that definitions of the messages𝑀 and
authentication parameters 𝐼 are found in the depiction as well:

1. The device captures sensor data, fetches the id and generates a times-
tamp for the data. It then wraps these three components into an ldp. The
device continues this process until it has 10 ldps, constructing a ldpa for
batch sending. This is done to reduce the communication overhead intro-
duced by the data transfer protocol. Subsequently, the device generates
a random nonce 𝑁0 and encrypts the concatenation {𝐿𝐷𝑃𝐴 | | 𝑁0} using
its tsk. The device then sends 𝑀0 and the authentication parameter 𝐼0
to the server.

2. Upon receipt, the server uses the appropriate tsk to decrypt the payload
{𝐿𝐷𝑃𝐴 | | 𝑁0} of 𝑀0, and verifies 𝐼0 using the decrypted ldpa and 𝑁0.

3. The server sends the authentication parameter 𝐼1 back to the device as
an acknowledgement of the received data.

4. The device verifies the acknowledgement authentication parameter 𝐼1
sent by the server. If the device succeeds in verifying the acknowledge-
ment, the current iteration of the protocol is completed and the device
will continue sending new data in the same manner. If the verification
fails, it will attempt to re-send the data it failed to verify from the server
acknowledgement.

3.4 protocols 35

Figure 3.14: Communication between the device and the server during the data trans-
fer protocol. Note the usage of ldpas to send ldps in batches.

Handling Authentication Expiration

If the device’s authenticated session expires while transferring data, it will
receive a 401 𝑁𝑜𝑡 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 response from the server. It will then initiate
a new mutual authentication protocol in order to create a new authenticated
session.

4
Hardware and
Implementation

This chapter provides details on the programming specifics and hardware used
in implementing the system’s design. The chapter will first provide an overview
of the development boards and other miscellaneous hardware, including how
they are connected to each to form the system.

Following the introductory overview, the chapter will detail the implementation
specifics and hardware details concerning the puf module, device, and server
components.

4.1 Hardware Overview

Figure 4.1 shows a picture of the hardware components in the system and the
physical connections between them. The server and internet gateway hardware
are not depicted because they are considered arbitrary. Any computer equipped
with a wireless network card and any internet gateway supporting wireless
communication would be suitable.

37

38 chapter 4 hardware and implementation

Following the numeration in the figure, the system includes:

1. LPCXpresso55S69-EVK Development Board [22] used in the implemen-
tation of the puf module component.

2. Arduino MKR 1010 WiFi Development Board [23] used in the imple-
mentation of the device component.

3. Adafruit APDS9960 sensor (set to red green blue (rgb) sensing mode)
[24] implementing the sensor component.

4. 5-pin JST ESLOV to 4-pin JST SH STEMMA QT / Qwiic Cable [25]
connecting the Adafruit APDS9960 sensor to the Arduino MKR 1010 WiFi
board.

5. Male/Male Jumper Wires (75mm) [26] used for the communication be-
tween the LPCXpresso55S69-EVK and Arduino MKR WiFi 1010 boards.

6. universal serial bus (usb) 2.0 - universal serial bus type C (usbc) cable
used to power and upload code to the Arduino MKR 1010 WiFi (using
the server as power source).

7. usb 2.0 -usbc cable used to power andupload code to the LPCXpresso55-
S69-EVK (using the server as power source).

Figure 4.1: Overview of the hardware making up the system.

4.2 puf module implementation 39

4.2 PUF Module Implementation

The PUF module is implemented using the LPCXpresso55S69-EVK Develop-
ment Board. The 55S69-EVK was chosen due to the sram puf provided with
the board, as development boards providing a relatively accessible built-in
puf proved to be a scarcity. The software is written and configured using
the C programming language, the MCUXpresso IDE [27] and the associated
MCUXpresso software development kit (sdk) [28]. To implement the Enroll,
SetKey and Challenge services provided by the puf module api in the design,
multiple peripherals are utilized. The api services leverage the sram puf and
the flash storage in their implementation, while the underlying communica-
tion providing the device component’s access to the services is implemented
using the usart serial protocol described in Subsection 2.1.1. The MCUXpresso
sdk provides drivers and utility functions to manage the board peripherals
leveraged in the programming of the implementation.

4.2.1 Board Initialization

To set the Brown-Out Detection Voltage Battery Level, which monitors the
supply voltage and resets the device if it falls below a certain threshold, the
following function is invoked:

static inline void
POWER_SetBodVbatLevel(power_bod_vbat_level_t level,
power_bod_hyst_t hyst, bool enBodVbatReset)

↩→

↩→

This is done to prevent unpredictable behaviour by the device.

Initializing Pins, Clocks and Configuring USART Pin Mapping

In order to leverage the usart peripheral for serial for communication with
the device, several settings in the mcu are configured with the MCUXpresso
IDE Config Tools [29]. Initially, the Flexcomm2 interface is enabled, which
is a software-defined multi-purpose serial (e.g, SPI, I2C...) communication
interface found in various NXP microcontrollers. Subsequently, the Flexcomm2
is configured to usartmode for sending and receiving data. Figure 4.2 depicts
the configured mcu and Flexcomm2 pins (in green) for receiving and sending
data.

In addition, the Flexcomm2 interface of the mcu is mapped to connector pins
D0 (digital pin 0) and D1 on the pin expansion header of the development board,
depicted in Figure 4.3. Figure 4.4 shows the usage of the mapped pins.

40 chapter 4 hardware and implementation

Figure 4.2: Configured MCU to enable Flexcomm2 usart using the LPCXpresso IDE
Config Tools.

Figure 4.3: Flexcomm2 usart interface of the mcu mapped to connector pin D0 and
D1 on the expansion header of the development board.

4.2 puf module implementation 41

Figure 4.4: Using the Flexcomm2-mapped connector pins of the LPCXpresso55S69-EVK
expansion header for usart communication.

To boot the pins and clocks necessary and apply the aforementioned mapping
configurations, the following functions are invoked:

void CLOCK_AttachClk(clock_attach_id_t connection)
void BOARD_InitBootPins(void)
void BOARD_InitBootClocks(void)

CLOCK_AttachClk attaches the 12MHz internal clock of the board to the Flex-
comm2 interface by passing the clock attach enumerator kFRO12M_to_FLEX-
COMM2 to the function. The BOARD_InitBootPins and BOARD_InitClocks
functions initialize the pins and clocks of the board, including the mapping
configuration applied.

Flash Initialization

To initialize the flash peripheral and load the default flash configuration the
following functions are utilized:

status_t FLASH_Init(flash_config_t *config)
status_t FLASH_GetProperty(flash_config_t *config,

flash_property_tag_t whichProperty, uint32_t *value)↩→

42 chapter 4 hardware and implementation

The FLASH_Init function initializes the flash driver and loads the default flash
configuration, whilst the FLASH_GetProperties is invoked multiple times to
load the different properties of the flash storage into the configuration used
(e.g., flash block size, flash sector size).

4.2.2 USART Initialization

The following snippet shows how theusart communication is configured:

void USART_GetDefaultConfig(usart_config_t *config)

config.baudRate_Bps = BOARD_DEBUG_UART_BAUDRATE;
config.enableTx = true;
config.enableRx = true;

status_t USART_Init(USART_Type *base, const usart_config_t
*config, uint32_t srcClock_Hz)↩→

status_t USART_TransferCreateHandle(USART_Type *base,
usart_handle_t *handle, usart_transfer_callback_t
callback, void *userData)

↩→

↩→

First USART_GetDefaultConfig function fetches the default configuration,
followed by setting the appropriate baud rate (matching the communication
target’s baud rate). Subsequently, transmitting and receiving is enabled. The
USART_Init function initializes the usart peripheral, and USART_Transfer-
CreateHandle creates a handle for the initialized peripheral which is used in
the usart communication programming.

Finally, the location and size of the transfer structures leveraged by the usart
handle is set:

usart_transfer_t sendXfer;
usart_transfer_t receiveXfer;

sendXfer.data = g_txBuffer;
sendXfer.dataSize = sizeof(g_txBuffer);
receiveXfer.data = g_rxBuffer;
receiveXfer.dataSize = sizeof(g_rxBuffer);

4.2 puf module implementation 43

4.2.3 API

The main program implementing the api is built upon the usart_inter-
rupt_transfer example program included in the MCUXpresso sdk, a single-
threaded program which runs an infinite while loop. The loop revolves around
a receive buffer g_rxBuffer, a send buffer txBuffer and four variables whose
state control the usart communication: rxOngoing, txOngoing, rxBuffer-
Empty and txBufferFull. The following code snippet shows the four variables
in use and how serial data is sent and received using the usart peripheral
sdk functions:

while (1)
{

if ((!rxOnGoing) && rxBufferEmpty)
{

rxOnGoing = true;
USART_TransferReceiveNonBlocking(DEMO_USART,

&g_uartHandle, &receiveXfer, NULL);↩→

}

if ((!txOnGoing) && txBufferFull)
{

txOnGoing = true;
USART_TransferSendNonBlocking(DEMO_USART,

&g_uartHandle, &sendXfer);↩→

}

.

.

.
}

Note that the USART_TransferReceiveNonBlocking and USART_Transfer-
SendNonBlocking functions also invoke a callback function once their respec-
tive buffers have been either filled (send) or emptied (receive). This callback
function sets the rxOngoing/txOngoing to false when the transmission or
receiving of a message completes.

Determining Service Type

To determine which service is requested, both the message type and size of
the received message is checked. Message types are indicated by the first
byte in the receive buffer, while the size of the message types are static:

44 chapter 4 hardware and implementation

𝐸𝑛𝑟𝑜𝑙𝑙 requests are 8 bytes (header only), 𝑆𝑒𝑡𝐾𝑒𝑦 40 bytes (header + 32
byte key) and 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 60 bytes (header + 52 byte encrypted ssk). The
USART_TransferGetReceiveCount peripheral function is invoked in every
iteration of the loop, along with several conditional statements. The USART_-
TransferGetReceiveCount fetches the amount of bytes received from the
usart handle, and saves the amount in the receivedCount variable. The
following code snippet shows the logic of determining the type of service
requested:

USART_TransferGetReceiveCount(DEMO_USART, &g_uartHandle,
&receivedCount);↩→

if ((receivedCount >= 8) && (header->messageType == ENROLL))
{

DO ENROLL
}
else if (((receivedCount >= 40) && (header->messageType ==

SETKEY)))↩→

{
DO SETKEY

}
else if (((receivedCount >= 60) && (header->messageType ==

CHALLENGE)))↩→

{
DO CHALLENGE

}

Note that the header referred to in the code snippet is a typed MessageHeader
pointer, pointing to the receive buffer. The messageType member accesses the
initial byte of the message header.

Enroll

The 𝐸𝑛𝑟𝑜𝑙𝑙 service which enrolls the puf (generates the initial device-unique
fingerprint) upon a request from the device component, is implemented fol-
lowing the steps below:

1. The message type has been detected and necessary data has been re-
ceived, so the receiving is aborted by calling the following sdk function:

void USART_TransferAbortReceive(USART_Type
*base, usart_handle_t *handle)↩→

4.2 puf module implementation 45

2. The default sram puf configuration is extracted into a configuration
variable by invoking the sdk function:

void PUF_GetDefaultConfig(puf_config_t *config)

3. The sram puf peripheral is initialized by invoking the following sdk
function using the address of the puf peripheral and the extracted
default puf configuration.

status_t PUF_Init(PUF_Type *base,
puf_config_t *config)↩→

4. The sram puf is enrolled and generates the device-unique digital fin-
gerprint by invoking the following sdk function:

status_t PUF_Enroll(PUF_Type *base, uint8_t
*activationCode, size_t
activationCodeSize)

↩→

↩→

The function outputs the activation code in the actionvationCode
pointer location, used for reconstruction of the fingerprint. This location
should be a buffer with 1192 bytes reserved, to hold the activation code.

5. After enrollment, the sram puf peripheral is de-initialized by invoking
the following sdk function, passing its address and configuration to the
function:

void PUF_Deinit(PUF_Type *base, puf_config_t
*conf)↩→

6. The destination address for the activation code in flash storage is cal-
culated, using the flash properties in the loaded flash configuration. An
example can be seen below, which calculates 3rd last page from the end
of the flash storage:

destAdrss = flash_properties.pflashBlockBase +
(flash_properties.pflashTotalSize - (3 *
flash_properties.PflashPageSize));

↩→

↩→

46 chapter 4 hardware and implementation

7. The data at the calculated flash address location is erased using the
following sdk function, to prepare for writing to the location:

status_t FLASH_Erase(flash_config_t *config,
uint32_t start, uint32_t lengthInBytes,
uint32_t key)

↩→

↩→

tatus_t FLASH_VerifyErase(flash_config_t
*config, uint32_t start, uint32_t
lengthInBytes)

↩→

↩→

8. The activation code is copied into another page-aligned (512 bytes)
buffer to prepare for writing to flash, as the flash writing only supports
page-aligned writes. The size of the temporary write buffer is 1536 bytes,
as this is the closest page-aligned size relative to the size of the activation
code. This is why the 3rd last page from the end was chosen, since 3
pages is 1536 bytes.

9. The page-aligned buffer is written to the calculated activation code
destination address in flash using the following sdk functions:

status_t FLASH_Program(flash_config_t *config,
uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

↩→

↩→

status_t FLASH_VerifyProgram(flash_config_t
*config, uint32_t start, uint32_t
lengthInBytes, const uint8_t
*expectedData, uint32_t *failedAddress,
uint32_t *failedData)

↩→

↩→

↩→

↩→

10. A response header with a length of 8 bytes is created and the initial byte
is set to 1, indicating a successful enroll execution. The header is then
copied into the transmission buffer g_txBuffer:

uint8_t
response_header[MESSAGE_HEADER_LENGTH] =
{0};

↩→

↩→

response_header[0] = 1;
memcpy(g_txBuffer, response_header,

sizeof(response_header));↩→

11. The program is prepared to receive another request by resetting the count
of received data, zeroing the receive buffer and setting the rxOngoing
to false.

4.2 puf module implementation 47

12. The program is prepared to start transmission of the response by set-
ting the data size of the usart_transfer_t send object according to
the size about to be transmitted. Subsequently, rxBufferEmpty and
txBufferFull are both set to true to indicate that the transmission
of the response can be initiated. Transmission of the response will be
initiated in the next iteration of the loop.

Setkey

The 𝑆𝑒𝑡𝐾𝑒𝑦 service which encrypts the ssk received from the device compo-
nent and returns the encrypted version, is implemented following the steps
below:

1. Similarly to 𝐸𝑛𝑟𝑜𝑙𝑙 , receiving is aborted by calling the following sdk
function:

void USART_TransferAbortReceive(USART_Type
*base, usart_handle_t *handle)↩→

2. In order to start the sram puf peripheral and reconstruct the same
digital fingerprint which was generated during 𝐸𝑛𝑟𝑜𝑙𝑙 , the activation
code must be loaded from flash. The activation code is read from flash by
invoking the following sdk function, using the same address calculated
in the 𝐸𝑛𝑟𝑜𝑙𝑙 implementation:

status_t FLASH_Read(flash_config_t *config,
uint32_t start, uint8_t *dest, uint32_t
lengthInBytes)

↩→

↩→

Note that only 1192 bytes are read into the activation code buffer, even
though 1536 bytes were written. Reading from flash is not restricted by
page-alignment.

3. The default sram puf configuration is extracted into a configuration
variable and the puf peripheral is initialized invoking the following sdk
functions, similarly to steps 2 and 3 in the 𝐸𝑛𝑟𝑜𝑙𝑙 steps:

void PUF_GetDefaultConfig(puf_config_t
*config)↩→

status_t PUF_Init(PUF_Type *base,
puf_config_t *config)↩→

48 chapter 4 hardware and implementation

4. The sram puf is started by calling the following sdk function, supplying
the activation code read from flash. This will reconstruct the initial device-
unique digital fingerprint generated in the 𝐸𝑛𝑟𝑜𝑙𝑙 service:

status_t PUF_Start(PUF_Type *base, const
uint8_t *activationCode, size_t
activationCodeSize)

↩→

↩→

5. The 32-byte key received through usart is encrypted using the recon-
structed fingerprint by calling the following sdk function. The output
location of the key is passed as the *userKey pointer. It’s worth noting
that while a key index is required to specify the puf register for storing
the key, this feature isn’t utilized here. The sole objective is to return the
encrypted key to the device.

status_t PUF_SetUserKey(PUF_TYPE *base,
puf_key_index_register_t keyIndex, const
uint8_t *userKey, size_t userKeySize,
uint8_t *keyCode, size_t keyCodeSize)

↩→

↩→

↩→

6. A response is constructed. The header is created and the initial byte is
set to 2, indicating a successful 𝑆𝑒𝑡𝐾𝑒𝑦 execution. Subsequently, both
the header and the 52-byte key code received from PUF_SetUserKey
is copied into the transmission buffer txBuffer to be sent back to the
device component:

uint8_t
response_header[MESSAGE_HEADER_LENGTH] =
{0};

↩→

↩→

response_header[0] = 2;
memcpy(g_txBuffer, response_header,

sizeof(response_header));↩→

memcpy(&g_txBuffer[MESSAGE_HEADER_LENGTH],
keyCode0, sizeof(keyCode0));↩→

7. The program is prepared to receive another request and start transmission
of the response by following the same procedure as the last two steps
detailed in the 𝐸𝑛𝑟𝑜𝑙𝑙 implementation. Transmission of the response will
be initiated in the next iteration of the loop.

4.2 puf module implementation 49

Challenge

The 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 service which decrypts the encrypted ssk received from the
device component and returns the decrypted version, is implemented following
the steps below:

1. Similarly to both 𝐸𝑛𝑟𝑜𝑙𝑙 and 𝑆𝑒𝑡𝐾𝑒𝑦, receiving is aborted by calling the
following sdk function:

void USART_TransferAbortReceive(USART_Type
*base, usart_handle_t *handle)↩→

2. As in 𝑆𝑒𝑡𝐾𝑒𝑦, the activation code is read from flash and the sram puf
is started by invoking the following sdk function using the same flash
address:

status_t FLASH_Read(flash_config_t *config,
uint32_t start, uint8_t *dest, uint32_t
lengthInBytes)

↩→

↩→

void PUF_Setup_Start(PUF_Type *base, const
uint8_t *activationCode, size_t
activationCodeSize)

↩→

↩→

3. The 52-byte key code (encrypted key) received is decrypted using the
digital fingerprint by calling the following sdk function, using the sram
puf peripheral address and the encrypted key code as input:

status_t PUF_GetKey(PUF_Type *base, const
uint8_t *keyCode, size_t keyCodeSize,
uint8_t *key, size_t keySize)

↩→

↩→

4. As in 𝑆𝑒𝑡𝐾𝑒𝑦, a response is constructed. The header is created, this time
setting the initial byte to 3, indicating a successful 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 execu-
tion. Subsequently, both the header and the 32-byte key received from
PUF_GetKey is copied into the transmission buffer txBuffer to be sent
back to the device component:

uint8_t
response_header[MESSAGE_HEADER_LENGTH] =
{0};

↩→

↩→

response_header[0] = 3;

memcpy(g_txBuffer, response_header,
sizeof(response_header));↩→

50 chapter 4 hardware and implementation

memcpy(&g_txBuffer[MESSAGE_HEADER_LENGTH],
response, sizeof(response));↩→

5. The program is prepared to receive another request and start transmission
of the response by following the same procedure as the last two steps
detailed in the 𝐸𝑛𝑟𝑜𝑙𝑙 implementation. Transmission of the response will
be initiated in the next iteration of the loop.

4.3 Device Implementation

The device component is implemented using the Arduino MKR 1010 WiFi
Development board. The MKR 1010 WiFi Board was chosen due to its WiFi
capabilities, easy connectivity to sensors and providing pins supporting serial
communication through usart. The implementation is written in the Arduino
programming language using the Arduino IDE [30]. The Arduino programming
language is derived from C++ and shares its syntax.

As noted in the design section of the device component, the entire program
revolves around a loop executing various tasks depending on the state of the
system. The usart communication facilitating the device’s access to the puf
module board’s api services is implemented using the Arduino MKR 1010’s
native Serial interface. The WiFiNINA [31] library is employed for WiFi con-
nectivity. Furthermore, to facilitate the device api used by the server, the
WiFiNINA library also provides a server implementation (not the component)
for handling requests on the device board. The messaging during the protocols
of the design, as well as the device api services, are both implemented on
top of the hypertext transfer protocol (http). More on this in subsubsec-
tion 4.3.2.

Subsection 4.3.1 will detail the necessary initialization for the device imple-
mentation, while the main program and how the api is implemented will be
explained in Subsection 4.3.2.

4.3.1 Configuration Phase

The device implementation requires a fair amount of initialization, both in the
form of global variables and functions to be executed. This subsection describes
initialization processes that are executed within the standard setup() function
preceding the main() function, according to Arduino conventions.

4.3 device implementation 51

WiFi Initialization

In order to connect to the WiFi, the network service set identifier (ssid) and
password must be stored in the Arduino. This is a potential security concern
which is not addressed in this project. Using the stored ssid and password,
the Arduino connects to the WiFi using the WiFi.begin(ssid, password)
function provided in the WiFiNINA library.

Initializing and Starting the HTTP Server

As noted, the http server implementation is provided by the WiFiNINA library.
The server is instantiated as a WiFiServer object, passing the port number as a
parameter to the instantiation. Subsequently, the server is started by invoking
the begin() method provided by the server class:

WiFiServer server(80);
server.begin();

Initializing the ADPS9960 Sensor, Real Time and the USART
Interface

To initialize and configure the ADPS9960 sensor which captures the actual
data, an Adafruit_APDS9960 object is created using the Adafruit_APDS9960
library [32]. The begin() function of the object is invoked, which initializes
I2C and configures the sensor. The SensorID label used in the design is fetched
from the ID register of the sensor.

In order to facilitate timestamp labels with correct time, the implementation
leverages a network time protocol (ntp) server (pool.ntp.org) to fetch the
current time. This is done since the Arduino has no concept of real time, and
only calculates the time since the board started running the program.

Theusart serial interface andport is initialized by invoking Serial1.begin().
Serial1 refers to pins 13 (Rx) and 14 (Tx) on the Arduino MKR 1010 WiFi.

Identity and State Initialization

In order for the device implementation to communicate correctly with the
server and participate in the various protocols detailed in the design, it must
initialize information related to its identity and its state upon startup.

52 chapter 4 hardware and implementation

Upon startup, the device initializes its device id, which is a 32-byte uint_8
array, where each byte is predetermined. The device also initializes both the
registered and authenticated booleans to false, indicating the default state
of the device. The programwill try to restore state of the sid and encrypted ssk
upon startup, a process detailed subsubsection 4.3.1. In case of a fresh program
upload to the board, these values are defaulted to empty values.

Recovering From Disruptions Using Flash Storage

Upon disruptions such as power loss or a power cycle, the device implementation
loads the necessary recovery data from flash storage. The flash storage of
the Arduino is not intended to be used for storage of information by the
programming running on the board. Since the device implementation requires
persistent flash storage in order to load identity-related information upon
startup, a work-around is used. The implementation utilizes the FlashStorage
Arduino library, which allows the programmer to reserve flash sections for
storage of specific structures by the program.

Entering the setup function upon startup, the device will load data from the
reserved locations in flash, checking if there is a saved sid. If there is a sid
stored in flash, the device assumes its been previously registered and proceeds
to set its registered state to true. Subsequently, it checks for an encrypted ssk
in its flash storage. Should the program find an encrypted ssk, it invokes the
loading of the decrypted key by sending a usart request to the puf module
board, along with the encrypted key. Once the key is received from the puf
module board, the device enters its main loop and attempts to authenticate
using the sid loaded from flash storage.

Specific structures are also defined in order to hold the sid and encrypted ssk,
so they can be stored in flash along with their states using the FlashStorage
library:

typedef struct {
uint8_t challenge[CHALLENGE_SIZE]; // Encrypted SSK
bool initialized;

} challenge_t;

typedef struct {
uint8_t pseudonymId[ID_SIZE]; // SID
bool initialized;

} pseudonymId_t;

4.3 device implementation 53

The flash regions are reserved using the FlashStorage() function in the
following way, provided by the FlashStorage library:

FlashStorage(flashChallengeReserved, challenge_t); //
Reserved region for encrypted SSK.↩→

FlashStorage(flashPseudonymIdReserved, pseudonymId_t); //
Reserved region for current SID.↩→

Awaiting Configuration Request

Following the necessary initialization procedures, the program enters a loop
checking whether or not the device is registered, in practice stalling until its
been registered. If the device is registered, the program bypasses this loop and
starts executing the main program immediately. If the device is not registered,
the loop will continue to iterate until its been registered by means of a 𝑆𝑒𝑡𝐾𝑒𝑦
call chain which invokes the device registration. The following code snippet
shows how the program handles the registration stalling in setup, as well as
the main loop detailed in Subsection 4.3.2.

void setup() {
.
... // Initialization procedures
.
while(!registered) {

HTTPRequestHandler(); // Wait for configuration request.
}

}

void loop() {
HTTPRequestHandler();

if (authenticated) {
sendSensorData(); // Data Transfer Protocol.

}
else {

performAuthenticationProtocol(); // Mutual authentication
}

}

54 chapter 4 hardware and implementation

4.3.2 Main Program and API

The main program loop consists of the functions HTTPRequestHandler, send-
SensorData and performAuthenticationProtocol. Note that this loop is
single-threaded since the Arduino does not support multi-threading. Every
iteration, the HTTPRequestHandler polls for received requests from the server
component, facilitating the underlying communication for the api services. The
performAuthentication function invokes the mutual authentication protocol,
while the sendSensorData function invokes the data transfer protocol.

Protocol Messages Using HTTP

In order to facilitate the protocols in the design over http, the base64 and
ArduinoJson libraries are leveraged to first encode the binary protocol mes-
sages to base 64 strings and then embed the encoded strings as json strings
in the bodies of the requests. This is done both to ensure the correctness of
the binary data being sent and to simplify the separation of the messages and
authentication parameters. Using the data transfer protocol as an example,
Figure 4.5 shows how 𝑀0 and 𝐼0 go through this process. Receiving messages
go through the reverse process: unpacking the body and decoding from base
64 strings back to binary arrays. The messages are encrypted using the AES256
implementation from the Arduino Cryptography Library [33].

Figure 4.5: Binary arrays encoded to base 64 strings before being sent.

Accessing the API Services

The HTTPRequestHandler function implements the communication required
to access the API services and invokes the specific service requested. Initially, a
check is made to determine whether or not a new client (the server component)
has attempted to connect. If a connection is detected the request received is
read, and based on the request data, the appropriate API service is invoked. The
following code shows the implementation details of the HTTPRequestHandler
function. Note that once the 𝑆𝑒𝑡𝐾𝑒𝑦 service has completed, the device changes
its registered state from false to true, as the registration process will have
completed within that service:

4.3 device implementation 55

void HTTPRequestHandler() {
// listen for incoming clients
WiFiClient client = server.available();
if (client) {

if (client.connected()) {
String request = client.readStringUntil('\r');

if (request.indexOf("GET /enroll") != -1) {
handleEnrollRequest(&client);

}
else if (request.indexOf("POST /setkey") != -1) {

handleSetKeyRequest(&client);
registered = true;

}
else if (request.indexOf("POST /verifykeys") != -1)

{↩→

handleChallengeRequest(&client);
}
client.stop(); // Close connection

}
}

}

Enroll

The handleEnroll function implements the 𝐸𝑛𝑟𝑜𝑙𝑙 service. Initially upon a
request from the server, it creates an 8-byte header and sets the first byte to 1
(Enroll). This 8-byte header constitutes the entire request in the 𝐸𝑛𝑟𝑜𝑙𝑙 service.
Subsequently, it leverages the Serial1 interface of the Arduino to send the
request to the puf module board.

Following the request sent, the service will wait for a response from the puf
module board. It does this by continuously polling for serial data from the
usart data using the USARTReceiveHandler in a while loop, checking for
the USART_ENROLL_SUCCESS return value from the function. The code snippet
below shows how the USARTReceiveHandler function is utilized in the 𝐸𝑛𝑟𝑜𝑙𝑙
implementation:

56 chapter 4 hardware and implementation

/* Receive USART response with a timeout mechanism. */
unsigned long timeout = millis() + 10000; // 10-second

timeout↩→

while (USARTReceiveHandler(usartReceiveBuffer, receivedChunk,
&usartTotalReceived) != USART_ENROLL_SUCCESS) {↩→

if (millis() > timeout) {
// Handle timeout error
Serial.println("Timeout error while waiting for

USART_ENROLL_SUCCESS");↩→

exit(1);
}

}

Initially the function checks whether or not serial data has been received by
invoking Serial1.available(). If bytes are available, the function reads the
data into the receivedChunk temporary buffer, before copying the read data
into the usartReceiveBuffer which stores the entire message. Subsequently,
it will increment usartTotalReceived according to the data read. The func-
tion will continue to iterate, read data and copy to the message buffer until the
following condition has been met: a total of 8 bytes have been read, and the
initial byte of the message (header) is 1, signaling an 𝐸𝑛𝑟𝑜𝑙𝑙 response. Finally,
the a success-response is send back to the server component who initiated the
request.

Note that the USARTReceiveHandler function and its usage is common for
between the service functions, with slight differences. The code below shows
the conditional statements used within the function, determining the return
value. Note that a return value of USART_READING will cause the iteration of
the outer while-loop to continue, invoking the function again.

// Received ENROLL response
if (*totalReceived >= 8 && usartReceiveBuffer[0] ==

ENROLL) {↩→

*totalReceived = 0;
return USART_ENROLL_SUCCESS;

}
// Received SETKEY response
else if (*totalReceived >= 60 && usartReceiveBuffer[0] ==

SETKEY) {↩→

*totalReceived = 0;
return USART_SETKEY_SUCCESS;

}
// Received CHALLENGE response

4.3 device implementation 57

else if (*totalReceived >= 40 && usartReceiveBuffer[0] ==
CHALLENGE) {↩→

*totalReceived = 0;
return USART_CHALLENGE_SUCCESS;

}
else {

return USART_READING;
}

SetKey

The handleSetKey function implements the 𝑆𝑒𝑡𝐾𝑒𝑦 service. Starting out, the
device extracts the ssk from the server request using the base 64 strategy
explained in subsubsection 4.3.2.

Following the storage of the ssk in ram, the device registration process is
initiated by invoking the registerDevice function. To send the device reg-
istration request from the device and handle the response from the server,
the ArduinoHttpClient [34] library is leveraged. This library builds upon
the WiFiNINA library, and creates an HttpClient type by wrapping the
WiFiClient type from WiFiNINA in the following way:

WiFiClient wifi; // WiFiNINA client type
HttpClient mkrHttpClient = HttpClient(wifi, serverAddress,

port); // Wrapping the WiFiNINA type.↩→

Following the completion of the device registration, the device forwards the
ssk to the puf module board using the same usart communication strategy
explained in the 𝐸𝑛𝑟𝑜𝑙𝑙 implementation.

Upon receiving the 52-byte encrypted ssk from the pufmodule board through
theusart, it is stored inram and then in flash storage using the FlashStorage
library:

flashChallengeReserved.write(challenge); // Writing
encrypted SKK to flash.↩→

Finally, the encrypted ssk is embedded in the body of the 𝑆𝑒𝑡𝐾𝑒𝑦 request
response which is returned to the server using the same base 64 strategy from
subsubsection 4.3.2.

58 chapter 4 hardware and implementation

VerifyKeys

The handleSetKey function implements the 𝑉𝑒𝑟𝑖 𝑓 𝑦𝐾𝑒𝑦𝑠 service. Device ex-
tracts the encrypted ssk from the server request, again using the strategy
detailed in subsubsection 4.3.2.

If the encrypted ssk is not present in the device, it will load it using the key
loading strategy detailed in subsubsection 4.3.1. Subsequently, the received
encrypted ssk from the server is compared with the one present in the device
using the standard memcmp function. Following this procedure, it forwards
the encrypted ssk to the puf module board by means of a usart request
leveraging the strategy as the 𝐸𝑛𝑟𝑜𝑙𝑙 implementation.

Upon receiving the 32-byte decrypted ssk from the puf module board, it is
compared with the key in ram using the same memcmp function. Finally, it
returns the success response to the server.

4.4 Server Implementation

The server component is implemented as a .NET Controller api running on
a desktop machine, using the C# programming language. The language
and framework of the server component is arbitrary as long as it supports
http. To implement the hashing and cryptography needed for the pro-
tocols in the design, the System.Security.Cryptography.SHA3_256 and
System.Security.Cryptography.Aes classes from the .NET Core ecosystem
are employed. The advanced encryption standard (aes) encryption is set to
electronic code book (ecb) mode using a key size of 256 bits.

4.4.1 API

To implement the necessary design elements of the server component, the .NET
api employs three controllers: the CommandController, the Authentication-
Controller and the DataController.

The CommandController contains endpoints related to system configura-
tion and accepts requests from the programmer to start configuration. The
AuthenticationController is composed of reactive endpoints which respond
to device requests part of the mutual authentication protocol. Finally, the
DataController is also reactive and responds to device requests part of the
data transfer protocol.

4.4 server implementation 59

The endpoints encompassed within the AuthenticationController and
DataController exchange messages with the device in the same manner
described in subsubsection 4.3.2.

4.4.2 Storing Device Information

The server implementation stores the information about devices in a json file.
The file is made up of an array of json objects, each representing a specific
device. The json approach is used due to the low demand of persistent data
storage at the server.

The following snippet shows the representation of a specific device in the json
file. Note that ssks and sids are encoded from binary to base 64 before being
stored in the file, since json only supports text format:

[
{

"id": "s3Uzx3LiE3p3WJcKcJ7MFjFDyH3LqmdUlfS/QJHog\u002Bs=",
"pufChallengeBase64":

"AAEABBcUfW6QvmtOpGmhCyVXJirUtrX5sfG//g/mh4fxMMK0wOYmk↩→

8YVrN0yWGN0aGMsNA==",
"pufKeyBase64":

"AQIDBAUGBwgJCgsMDQ4PEBESExQVFhcYGRobHB0eHyA=",↩→

"pseudonymId":
"rsvxPME4sWxtir\u002BDlV3\u002BPX19hFn2OgSsjs/B2KSMnaQ=",↩→

}
]

4.4.3 Managing Authenticated Devices

The Microsoft.Extensions.Caching.Memory.IMemoryCache interface from
.NET Core is leveraged to keep track of authenticated devices at the server.
This interface provides the programmer with a memory cache in which data
can stored. Following a successful authentication, a device’s sid along with
the constructed tsk for the session are stored temporarily as key-value pairs.
Using this cache, the server can consult the cache with the received sid to
check if the device is authenticated.

In order to store the key-value pairs in thememory cache, the MemoryCache.Set
method is used along with a sliding timer argument. The timer argument spec-
ifies when a key-value pair is to be removed from the cache, invalidating the
authentication and forcing the device in question to re-authenticate.

5
Evaluation
This chapter provides an evaluation of the design and implementation of the
system. Initially, the performance and efficiency of the system will be evaluated.
Subsequently, an evaluation of the system’s security will be presented.

5.1 Experimental Setup

The experimental setup consisted of the components with the exact connections
described in Section 4.1 and a server implementation being run on a machine
with the following relevant specs:

• CPU: Intel® Core™ i7-10700 CPU @ 2.90GHz × 16

• Network controller: Intel Corporation Comet Lake PCH CNVi WiFi

• Network controller sub-system: Intel Corporation Wi-Fi 6 AX201 160MHz

During the evaluation, the systemwas operating at the University of Tromsø, ap-
proximately 4meters from awireless router connecting the Arduino MKR 1010 WiFi
and the server machine.

61

62 chapter 5 evaluation

5.2 Performance and Efficiency Evaluation

5.2.1 Methodology

Considering that the device component is resource-constrained, single-threaded
and performs the procedures sending ldpas, the system’s performance largely
depends on the Arduino MKR 1010 WiFi program performance. The perfor-
mance and efficiency evaluation is therefore focused on the Arduino MKR
1010 WiFi program.

In order to evaluate the efficiency, various sections of the program were mea-
sured using the millis Arduino function, as well as the HTTP communication
overhead in the relevant sections. The sections of the program deemed most
relevant for efficiency testing were the performAuthenticationProtocol
and sendSensorData functions, as these are continuously being invoked to
re-authenticate with and send ldpas to the server. The program time elapsed
of the sections were measured 1000 times and then averaged to account for
variability.

In order to measure the throughput, the average amount of sendSensorData
requests the program completes over a 1minute interval were measured. These
measurements included an initial iteration of the authentication protocol, as
the authentication was set not to expire during this test.

As an interesting addition, the handleEnrollRequest,handleSetKeyRequest
and handleVerifyKeysRequest functions were also measured. These func-
tions were only measured 10 times, providing the average elapsed time in
the results table. Note that the handleSetKeyRequest function also involves
the nested registerDevice function, where the measured http overhead
included in the results table is from the protocol in registerDevice.

Finally, the recovery mechanism detailed in subsubsection 4.3.1 was tested. This
testwas performedby removing the power source of the Arduino MKR 1010 WiFi,
and then plugging it back in after a short delay.

5.3 security evaluation 63

5.2.2 Results

The following table shows the resulting averages of the relevant operations in
the system:

Operation Average Time (ms) HTTP Overhead (ms)
performAuthenticationProtocol 18 291

sendSensorData 120 130
handleEnrollRequest 87 𝑁 /𝐴
handleSetKeyRequest 2113 295 (registerDevice)
handleVerifyKeysRequest 1091 𝑁 /𝐴

Throughput (Labeled Data Packets per min)
2300

Recovery Mechanism Test
Success ✓

Table 5.1: Measurement results using millis() on the Arduino MKR 1010 WiFi.

A brief discussion on these measurement results and a strategy for improving
throughput of ldpas will be provided in Section 6.2.

5.3 Security Evaluation

This section presents a security evaluation of the system. Note that the eval-
uation is performed under the assumption that an adversary will have the
capabilities defined in Subsection 1.3.4. Section 6.1 includes further discussions
on addressing vulnerabilities exposed in the security evaluation.

5.3.1 Methodology

The system’s security was assessed by systematically examining its defenses
against each individual capability possessed the adversary, performing the
following steps for each capability:

1. Specifying the adversary capability against which the system is evaluated
along with the system’s defenses.

2. Simulating the attack or hypothesize an attack-scenario.

3. Evaluating the system’s defense effectiveness in response to the attack.

64 chapter 5 evaluation

5.3.2 Evaluation

Eavesdropping Security Evaluation

The following adversary capabilities are noted in the eavesdropping part of the
threat model:

• The adversary can intercept any communication between legitimate
participants in the protocol.

• They can listen in on the network and capture all messages exchanged.

Measures/Defense Mechanisms

• All messages and authentication parameters are encrypted using the aes
algorithm with a key size of 256 bits.

Simulation:

To simulate this attack, the Wireshark [35] network packet analyzer was lever-
aged to sniff packets being sent between the device and the server in the local
uit-conference wireless network. The intention of the packet-sniffing was
to determine if an attacker could capture and make sense of the data being
sent.

Result:

Using Wireshark to sniff a sensor data transfer message from the device to the
server yielded the information in Figure 5.1. Note that since the data is encoded
in base 64, a proper visualization of the decipherability of the raw data is not
present. As seen in the figure, an adversary is able to see json names, but the
values included are indecipherable.

Vulnerabilities Noted:

Using json to wrap the messages and authentication parameters exposes a
vulnerability. It gives an attacker information about the intention of messages,
even if the messages themselves are indecipherable. The fact that the ecb
mode of aes is utilized for the encryption also creates another attack vector,
since any equal plain-text will be encrypted to an equal cipher-text. These
issues will be addressed in Section 6.1.

5.3 security evaluation 65

Figure 5.1: TCP payload (in blue) from wireshark packet sniffing.

Message Modification Security Evaluation

The following adversary capabilities are noted in the message modification
part of the threat model:

• The adversary can alter the content of intercepted messages. They can
edit, delete, or even replay messages to manipulate the conversation.

Measures/Defense Mechanisms:

• In order to protect against message modification attacks, all data sent
between the device and server are verified using the message’s associated
authentication parameter.

• Messages not received by the server will cause the device to re-send
the message until acknowledgement is received from the server, and
the device is able to verify the acknowledgement using the associated
authentication parameter.

Simulation:

To simulate this attack, messages were intentionally edited and deleted at the
device before being sent to the server. Messages were also replayed without
being altered.

66 chapter 5 evaluation

Result:

Editing the first byte of the message payload being sent from the device resulted
in the following verification failure when receiving at the server:

Received ReceiveSensorDatarequest from Arduino.
fail: server.Services.IdentityService[0]
SensorDataService.HandleReceiveSensorData():

Authentication parameter generated for verification
did not match v1 received from Arduino, cannot verify
that message integrity is intact.

↩→

↩→

↩→

For an attacker to successfully perform this attack given the defenses in place,
the attacker would first need to manipulate the message and then generate a
new authentication parameter which matches the new content of the altered
message. Doing this in a reasonable amount of time would require knowledge of
the tsk (or ssk depending on communication type),which is never transmitted
through the communication channel after device deployment.

The system is considered to be safe against most message modification, with
the exception of the scenario described below.

Vulnerabilities Noted:

The acknowledgement from the device to the server in the mutual authenti-
cation protocol signals the server to authenticate the device in question. The
acknowledgement also prompts the server to update its registered sid for the
device, as a necessary step for the next authentication. Should this message be
modified and cause verification at the server to fail, the device will update its
sid, while the server will never receive its cue to authenticate the device and
update the device sid in its list of devices.

This scenario cause two major problems: the authentication of the device will
fail, but most importantly, the device will no longer be able to authenticate,
given that the sids of the device and server are no longer synced. Note
that this vulnerability also applies to denial of service (dos) attacks. Figure 5.2
illustrates the scenario.

5.3 security evaluation 67

Figure 5.2: Adversary modifying/dos-ing last acknowledgement from device to server.
Note that step 7 at the server will not proceed as normal, and the server
will not update its registered sid for the device.

Message Fabrication Security Evaluation

The following adversary capabilities are noted in themessage fabrication part
of the threat model:

• The adversary can create entirely new messages and inject them into
the communication flow. They can forge messages pretending to be a
legitimate participant.

Measures/Defense Mechanisms:

• In order to protect against message fabrication attacks, all data sent
between the device and server are verified using the message’s associated
authentication parameter.

• Messages not received by the server will cause the device to re-send
the message until acknowledgement is received from the server, and
the device is able to verify the acknowledgement using the associated
authentication parameter.

Simulation:

This attack was not simulated. However, a theoretical scenario can be dis-
cussed.

68 chapter 5 evaluation

Result:

In order for an adversary to fabricate a legitimate message that also passes the
verification check using the authentication parameter, the legitimate message
would have to be fabricated using the ssk/tsk. These keys are never transmit-
ted through the communication channel after device deployment. Considering
this, any messages posing as legitimate by following the message format is
detected at the receiving end by verifying the message contents using the
authentication parameter.

Persistent Data Storage Extraction Security Evaluation

The following adversary capabilities are noted in the persistent data storage
extraction part of the threat model:

• The adversary is able to gain physical access to the iot devices of the
system and extract sensitive data from persistent (i.e., flash) storage,
such as secret keys.

Measures/Defense Mechanisms:

• The system implements a puf module providing an encryption service
which leverages a device-unique digital fingerprint as the encryption key.
This encryption service is leveraged by the device in order to store an
encrypted version of its ssk in persistent storage. To gain access to the
decrypted key, the device must request it from the pufmodule, providing
its own encrypted ssk as input.

• The design and implementation revolves around leveraging the pufmod-
ule to never store sensitive information such as the ssk/tsk in persistent
storage of the device using plain-text. Sensitive information is always
encrypted using the device-unique digital fingerprint reconstructed by
the puf module upon startup.

Simulation:

This attack was not simulated as equipment to simulate such an attack was not
readily available. A theoretical scenario can be discussed.

Result:

Considering the mechanisms described, any attempt at extracting sensitive
keys from persistent storage in the device would result in the extraction of an

5.3 security evaluation 69

encrypted key, which the adversary does not have any means to decrypt since
the device itself does not have access to the digital fingerprint generated by
the puf module.

6
Discussion
This chapter will include discussions on relevant findings from the evaluation
chapter and present possible strategies to improve the security and efficiency
of the current implementation. The chapter will first discuss possible strate-
gies to address the current vulnerabilities exposed in the security evaluation.
Subsequently, possible improvements to the throughput of ldpas using the
data transfer protocol are discussed. Lastly, possible design and implementa-
tion changes/additions to protect against a threat model defining a stronger
adversary is presented.

6.1 Addressing Current Vulnerabilities

As noted in Subsection 5.3.2, there currently exists vulnerabilities in the imple-
mentation. This subsection addresses the existing vulnerabilities in the current
implementation and suggests possible solutions to patching them.

6.1.1 Addressing the JSON Issue

As described in subsubsection 4.3.2, message parts sent between the device
and the server are wrapped in json and sent in the body of the http requests.
This design intended to solve a technical issue with sending raw binary data
using the ArduinoHttpClient library, which proved to be a non-issue after

71

72 chapter 6 discussion

further investigation.

The problem with this approach is that the wrapping of the message parts
require labels, and only the message parts themselves are encrypted. Con-
sidering the implementation utilizes http without transport layer security
(tls), these labels are exposed and imply the intention of the encrypted data
being transmitted. This provides an adversary with enough information to
strategically intercept messages, and more importantly, launch pin-pointed
message-modification and dos attacks to exploit the mutual authentication
vulnerability noted in subsubsection 5.3.2.

Possible Solution

Patching this vulnerability would require moving away from the json approach
entirely, considering the communication should optimally be independent from
http. Using tls would not solve the underlying problem and defeats the
purpose of the implementation.

A possible way to send information is to embed the message, its encrypted
payload and authentication parameter as raw binary data in the body of the
http requests, using the message format illustrated in Figure 6.1. This ensures
that the server gets the necessary information with the initial sid,whilst the rest
of the message does not expose any intention by labeling specific parts.

Figure 6.1: Raw binary message format. Delimiter can be be added to support dynam-
ically sized-payloads. Note that the sid and authentication parameters
are always 32 bytes.

A small refactoring implementing this was made in the sendSensorData
function and the appropriate end-point at the server, in order to test the
viability of this approach. Due to time constraints, a full revamp of the system
was not performed and the temporarily refactored sections still use the json
approach, but its worth nothing that the strategy is valid.

6.1.2 Addressing the AES256-ECB Issue

As noted in subsubsection 4.3.2, the payload of messages sent between the
device and server is encrypted using the AES256 implementation from the

6.1 addressing current vulnerabil it ies 73

Arduino Cryptography Library. The problem with this implementation is
that it uses the ecb mode of encryption by default, which does not include
an iv in its encryption process. This results in patterns in the encrypted data,
creating a relationship from the plain-text to the cipher-text, susceptible to
exploitation by an adversary eavesdropping over a longer period of time.

Possible Solution

Patching this vulnerability could be done by implementing the cipher block
chaining (cbc) mode of operation on top of the base ecb block cipher from
the Arduino Cryptography Library. Note that this would require a slight
modification of the raw message format described in Subsection 6.1.1. The new
format including the iv is depicted in Figure 6.2.

Figure 6.2: Raw binary message format including iv. Note that the format would still
only require one delimiter as only the payload might be dynamically sized.

6.1.3 Addressing the Mutual Authentication Issue

As noted in subsubsection 5.3.2 the mutual authentication protocol is vulnerable
to message-modification, where the last acknowledgement from the device to
the server is either corrupted by modification or lost due to a dos attack. In
the paper by Aman et al. [20] which inspired the design, they are aware of this
vulnerability in the mutual authentication protocol.

Possible Solution

A possible way to patch this vulnerability is to use the same approach as in
[20], where each device and the server stores a list of emergency sids. If this
were to be implemented using the design incorporated in the thesis project, the
challenge in the paper would the the equivalent to an encrypted ssk. Note
implementing this would also require generating all the different sids using
the device registration process detailed in Subsection 3.3.2, where each sid

74 chapter 6 discussion

would be generated using a different ssk. To understand how this works, lets
play out a scenario where the adversary modifies the last acknowledgement in
the protocol:

1. Adversary modifies last acknowledgement.

2. Server verification of the acknowledgement fails, and the server does
authenticate the device, nor does it update its registered sid for the
device.

3. Device attempts to send data after what it viewed as a successful authen-
tication, but gets a 401 𝑁𝑜𝑡 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 response from the server.

4. Device recognizes that the acknowledgement must have been faulty,
causing a failed authentication at the server side, and the sids are no
longer synced.

5. Device uses one of its emergency sid/ssk pairs in its next authentication,
which is synced with the server.

6. If the authentication fails again due to the last acknowledgement, another
emergency pair can be used.

Note that this solution would require multiple encrypted ssks as well as sids
to be stored in the device flash.

6.2 Notes on Efficiency Measurements and
Improving Throughput

6.2.1 Small Note on Efficiency Measurements Results

As seen in Table 5.1, the measured section with the largest elapsed time is
the handleSetKeyRequest function. Although this could be improved, the
elapsed time of this function along with the other two key-related functions is
considered to be beside the point. The most important measurements is the
time elapsed of the performAuthenticationProtocol and sendSensorData
functions, especially the latter considering it is invoked the most by a large
margin.

6.3 future implementations and extending the threat model 75

6.2.2 Improving the Throughput of LDPAs

In order to improve the throughput of ldpas in the system, some small changes
could bemade in the sendSendorData function. Noted in Table 5.1, the function
spends 250 milliseconds to complete its procedures, where 130 milliseconds is
http communication overhead. The http overhead itself is hard to minimize,
although one could use alternative application layer protocol such as message
queuing telemetry transport (mqtt) which would perform better in a resource-
constrained scenario.

Considering the http overhead accounts for over half the total time elapsed,
increasing the batch size of ldps in the ldpas could be a viable strategy. This
would entail sending more data per request in order to minimize the relative
http overhead to the amount of sensor data being sent.

Increasing the batch size of ldps is a viable strategy. However, at some point,
the bottleneck will become the rate of data captures and transfer to the device
from the sensor.

6.3 Future Implementations and Extending the
Threat Model

While the initial goal of the design and implementation was to safeguard
sensitive keys against physical data extraction from persistent storage, the
thesis project’s work has provided some insights on extending this protection
to ram as well. This section will briefly provides ideas for a new design based
on the lessons learned and insight gained from the work in the thesis project.
The main idea in the new design is rooted in the knowledge gained throughout
the work with the thesis project.

The LPCXpresso55S69-EVK development board which implements the current
puf module, allows secure storage of keys within the puf peripheral of the
board [36], specifically in the puf registers. Keys stored within the peripheral
are encrypted using the device-unique digital fingerprint of the board. The
board also provides a hardware aes engine and a secure bus from the puf
peripheral to this engine. Essentially this means the development board is
capable of decrypting keys stored securely within in its puf peripheral, before
sending them to the aes engine using the secure bus. The aes engine can
then encrypt/decrypt data using a secret key received through the bus.

In addition to the above functionalities, the J7 and J8 LPCXpresso55S69-EVK

76 chapter 6 discussion

expansion connectors (of the expansion header) provide a Mikroe Click module
site for MikroElektronika add-on modules [37]. By utilizing this additional
interface, the board could be WiFi-enabled by connecting a click board such
as the WiFi 7 Click [38].

By combining these new insights gained from the thesis work, a suggestion for
a future implementation can be presented.

A Future Design:

By WiFi-enabling the LPCXpresso55S69-EVK using the Wifi 7 Click board,
one can eliminate the Arduino MKR 1010 WiFi from the design. Originally,
the Arduino was only incorporated into the design as the LPCXpresso board
lacked WiFi capabilities. Figure 6.3 depicts the new design, where the LPCX-
presso55S69-EVK now acts as a puf-enabled device with WiFi capabilities.
This change in the design includes the following benefits:

• Wires and communication from the device to the pufmodule is no longer
needed, patching a potential vulnerability and eliminating the overhead
it introduced to the system.

• The puf-enabled device is able to encrypt its own ssks using its digital
fingerprint, and store these in persistent storage.

• The puf-enabled device provides secure storage of keys in its puf pe-
ripheral and a secure bus to a hardware aes engine. It can now decrypt
the required ssk in the puf peripheral using its digital fingerprint and
send them directly to the aes engine utilizing the secure bus. Upon
receipt of an ssk, the aes engine can use the ssk for encrypting and de-
crypting of data. This means that sensitive keys are never susceptible
to physical data extraction methods, as they are never technically
stored in regular ram locations.

Figure 6.3: puf-enabled device to safeguard against an adversary capable of extract-
ing sensitive ram data.

6.3 future implementations and extending the threat model 77

By incorporating the design described above, the new puf-enabled device
can protect its sensitive keys against an extended threat model including an
adversary with the capability of extracting sensitive keys present in ram.

7
Related Work
This chapter discusses related work in the research domain of the thesis project.
The chapter explores relevant research employing sophisticated strategies to
provide secure data provenance in smart devices or similar devices within the
iot domain. The chapter will describe relatively modern approaches, including
labeling schemes, hardware requirements and other relevant information. Note
that some of this work exceeds the scope of this thesis and discusses data
provenance in the context of geographical location. It is the intent that this
information, in combination with the thesis project, could inspire ideas for
integrating these sophisticated labeling schemes into the work provided by the
thesis project or other systems.

7.1 Related Research on Data Provenance in IoT

7.1.1 Data Provenance and Secure Authentication Using
Wireless Channel LQI Measurements and PUFs

Aman et al. [20] presents a lightweight protocol for secure data provenance in
the iot using wireless fingerprints. This paper inspired the core thesis project
design principle of using a puf to secure secret keys in devices deployed in
compromising environments. Additionally, the authentication and data trans-
fer protocols in the project are adaptions of the protocol presented in this
paper.

79

80 chapter 7 related work

The main idea presented in this paper is using wireless channel Link Quality
Indicator (lqi) measurements for secure data provenance and device authen-
tication using a puf-based challenge-response authentication protocol. lqi
measurements refer to different properties of the wireless signal from an entity.
Using these properties which also factors in geographical location, a receiving
entity can verify that the sender is legitimate. Data provenance in the context
of this paper refers to the tracing of data back to its source, although data
labeling is not part of this.

The threat model includes an adversary whose capabilities include that of the
Man-in-the-middle (mitm), but is also has physical access to devices and is
able to extract data by physical means. The protocol in the paper ensures the
integrity of data and authenticity of devices and channels used.

Note that the strategy proposed in this paper requires a verifier imple-
mentation and puf-enabled devices with direct access to the puf within the
device.

7.1.2 Data Provenance and Trusted Authentication by
Outsourcing Attribute-Based Signatures and
Leveraging Bloom Filters

In a paper by Siddiqui et al. [39], a secure mechanism to sign and authenticate
provenance messages using Ciphertext-Policy Attribute Based Encryption (CP-
ABE) based signatures is proposed. Paraphrasing [39], the technique proposed
in the paper leverages bloom filters for storage compression and an outsourced
Attribute-Based Encryption mechanism to reduce computational demand at the
iot device level. The proposed system uses bloom filters to store provenance
information at each node, and uses multiple hash functions operating on the
data packets being forwarded in order to set the indexes in each device’s bloom
filter. The provenance log of a data packet is gathered by querying the bloom
filters of the iot devices in the system, providing the data packet as input to
the hash functions determining an index for the packet. If the value in the
index is asserted, the device will count this as a bloom filter membership, which
indicates that the data packet passed through the queried node.

Note that this mechanism does not support labeling of data, but guarantee the
trusted provenance and integrity of authentications and data. The mechanism
proposed does not impose any hardware-specific requirements on sensors or
microcontrollers.

The threat model in the context of the proposed mechanism includes the
following assumptions:

7.1 related research on data provenance in iot 81

• iot devices are physically vulnerable.

• An adversary can can snoop, alter, reiterate, and infuse invalid data and
messages.

• An adversary can impersonate iot nodes of the system.

• An attacker can modify data sent from an iot node to the sink and
compromise the provenance mechanism.

7.1.3 Data Provenance for IoT using Blockchain Technology

Another strategy is employing blockchain technology to provide secure data
provenance, as presented in the paper by Sun et al. [40]. The system proposed
by the author(s) guarantees integrity and trustworthiness of provenance
data stored in a blockchain (assumed to be a permissioned blockchain).

Devices register their identities with the blockchain, and data items stored in
the blockchain are identified with a UID. Each data item also has an associated
provenance log, where provenance information about the data item is stored,
such as the identity of the device who stored the item et cetera. Unfortunately
there is nomention of a threat model or a specific definition of an adversary
in this text.

7.1.4 Zero-Watermarking for Data Integrity and Secure
Provenance in IoT

The Zero-Watermarking approach by Faraj et al. [41] generates zero-watermarks
at the iot device level and embeds data packets being sent with these zero-
watermarks, while the actual data remains intact.

Quoting [41], zero-watermarking schemes are defined in the followingway:

In zero-watermarking schemes,watermarks are generated by source
node from the extraction important data features of original data
without amendment to the data of these features. Different genera-
tion functions can be applied in zero-watermarking. The generated
watermarks are not embedded in the data payload, but it is invisibly
integrated in the data packet and the data remain unmodified.

Sub-watermarks stored in a tamper proof network database are used for re-
generation of the zero-watermarks at intermediate locations as well as the

82 chapter 7 related work

final destination. The re-generation of the zero-watermarks using the sub-
watermarks allow the intermediate and the final locations to verify the integrity
of the data and query the database for provenance logs of the item(s) in
question.

The zero-watermarking approach guarantees integrity of data and prove-
nance information. The provenance strategy proposed does not require cus-
tomized iot devices, although it does require an implementation of the tamper-
resistant database for sub-watermarking storage.

The zero-watermarking provenance strategy is proposed with a slight extension
of the mitm threat model in mind. In addition to the capabilities of the
mitm adversary, the attacker can launch a database authentication attack. This
refers to an attack where the attacker aims to extract or identity provenance
information stored in the network database of the system [41].

8
Concluding Remarks
8.1 Conclusion

In concluding the thesis, revisiting the central questions that have guided the
thesis project provides not only a reminder of the core challenges the thesis
work aimed to address, but also aids in underscoring the findings and insight
gained which could assist future research within the domain. As stated in the
introduction, the problem statement that served as the foundation for the thesis
work is revisited below:

How can the integrity guarantees of sensor data labels be bootstrapped
securely at the microcontroller level within smart devices? Further-
more, how can the trustworthiness of these bootstrapped integrity
guarantees be ensured, especially in scenarios where devices face
threats like physical extraction of sensitive data, such as encryption
keys, due to deployment in vulnerable environments? Is it feasible to
utilize Physically Unclonable Functions to both bootstrap and sustain
the integrity guarantees of sensor data labels generated at the device,
considering the aforementioned threats?

As noted in Section 1.2, the methodology of the work addressing problem
statement resembles the design paradigm defined in the intellectual framework
for the discipline of computing [7]. The problem statement was addressed
through the design and implementation of a prototype system. In accordance
with the problem statement, the system implemented leverages puf technology

83

84 chapter 8 concluding remarks

at its core to bootstrap integrity guarantees of sensor data and labels at the
iot device level. The design and the implementation of the system is detailed
in the thesis, also providing an evaluation of both the security and efficiency of
the system. The thesis also provides possible solutions for patching the current
vulnerabilities and ideas for future designs.

In conclusion, although vulnerabilities and imperfections exists in the design
and implementation, the thesis lays a foundation and verifies the viability of
leveraging puf technology in the problem domain.

8.2 Future work

There are several directions for future work in the context of the thesis, one
of which were mentioned in Section 1.4. As the scope of this thesis has been
limited using a server as an final destination for sensor data labels, future work
in the domain could include integrating the work into a larger scope such as
the cloud.

Another direction is to focus on improving the labeling scheme used in the work
with this thesis. The current labeling scheme is relatively primitive, and does
not enforce any semantic binding between the sensor data and its associated
labels. An interesting labeling scheme would be one that allows for separation
of sensor data and labels along with manipulating of said data while still
enabling enforcement of user access policies.

Bibliography
[1] Thanos G. Stavropoulos et al. “IoT Wearable Sensors and Devices in

Elderly Care: A Literature Review.” In: Sensors 20.10 (2020). issn: 1424-
8220. doi: 10.3390/s20102826. url: https://www.mdpi.com/1424-
8220/20/10/2826.

[2] Duarte Dias and João Paulo Silva Cunha. “Wearable HealthDevices—Vital
Sign Monitoring, Systems and Technologies.” In: Sensors 18.8 (2018).
issn: 1424-8220. doi: 10.3390/s18082414. url: https://www.mdpi.
com/1424-8220/18/8/2414.

[3] Mordor Intelligence. Wearable Technology Market. url: https://www.
mordorintelligence.com/industry- reports/wearable- technology-
market (visited on 03/19/2024).

[4] European Parliament and Council of the European Union. Regulation
(EU) 2016/679 of the European Parliament and of the Council. of 27 April
2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). May 4, 2016.
url: https://data.europa.eu/eli/reg/2016/679/oj (visited on
04/13/2023).

[5] Danny S. Guamán et al. “Automated GDPR compliance assessment for
cross-border personal data transfers in android applications.” In: Com-
puters Security 130 (2023), p. 103262. issn: 0167-4048. doi: https:
/ / doi . org / 10 . 1016 / j . cose . 2023 . 103262. url: https : / / www .
sciencedirect.com/science/article/pii/S0167404823001724.

[6] Pedro Machado et al. “A systematic study on the impact of GDPR com-
pliance on Organizations.” In: Proceedings of the XIX Brazilian Sympo-
sium on Information Systems. SBSI ’23. , Maceió, Brazil, Association for
Computing Machinery, 2023, pp. 435–442. isbn: 9798400707599. doi:
10.1145/3592813.3592935. url: https://doi.org/10.1145/3592813.
3592935.

[7] D. E. Comer et al. “Computing as a discipline.” In: Commun. ACM 32.1
(Jan. 1989), pp. 9–23. issn: 0001-0782. doi: 10.1145/63238.63239.
url: https://doi.org/10.1145/63238.63239.

[8] D. Dolev and A. Yao. “On the security of public key protocols.” In: IEEE
Trans. Inf. Theor. 29.2 (Sept. 2006), pp. 198–208. issn: 0018-9448. doi:

85

https://doi.org/10.3390/s20102826
https://www.mdpi.com/1424-8220/20/10/2826
https://www.mdpi.com/1424-8220/20/10/2826
https://doi.org/10.3390/s18082414
https://www.mdpi.com/1424-8220/18/8/2414
https://www.mdpi.com/1424-8220/18/8/2414
https://www.mordorintelligence.com/industry-reports/wearable-technology-market
https://www.mordorintelligence.com/industry-reports/wearable-technology-market
https://www.mordorintelligence.com/industry-reports/wearable-technology-market
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/https://doi.org/10.1016/j.cose.2023.103262
https://doi.org/https://doi.org/10.1016/j.cose.2023.103262
https://www.sciencedirect.com/science/article/pii/S0167404823001724
https://www.sciencedirect.com/science/article/pii/S0167404823001724
https://doi.org/10.1145/3592813.3592935
https://doi.org/10.1145/3592813.3592935
https://doi.org/10.1145/3592813.3592935
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239

86 BIBLIOGRAPHY

10.1109/TIT.1983.1056650. url: https://doi.org/10.1109/TIT.1983.
1056650.

[9] René Hummen et al. “A Cloud design for user-controlled storage and
processing of sensor data.” In: 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings. 2012, pp. 232–240. doi:
10.1109/CloudCom.2012.6427523.

[10] Shenouda. Dawood. Serial communication protocols and standards :
rs232/485, uart/usart, spi, usb, insteon, wi-fi and wimax. eng. Aalborg:
River Publishers, 2020. isbn: 8770221537.

[11] Douglas Crockford and ChipMorningstar. Standard ECMA-404 The JSON
Data Interchange Syntax. Dec. 2017. doi: 10.13140/RG.2.2.28181.
14560.

[12] Adobe Systems Incorporated. JSONData Set Sample. https://opensource.
adobe.com/Spry/samples/data_region/JSONDataSetSample.html. Ac-
cessed: May 6, 2024.

[13] Internet Engineering Task Force. RFC 4648: The Base16, Base32, and
Base64 Data Encodings. https://datatracker.ietf.org/doc/html/
rfc4648. Accessed: May 10 2024.

[14] Christoph Böhm and Maximilian Hofer. “Physical Unclonable Functions
in Theory and Practice.” In: Jan. 2013, pp. 173–200. isbn: 978-1-4614-
5039-9. doi: 10.1007/978-1-4614-5040-5_10.

[15] Huansheng Ning et al. “Physical unclonable function: architectures,
applications and challenges for dependable security.” In: IET Circuits,
Devices & Systems 14.4 (2020), pp. 407–424. doi: https://doi.org/10.
1049/iet-cds.2019.0175. eprint: https://ietresearch.onlinelibrary.
wiley.com/doi/pdf/10.1049/iet- cds.2019.0175. url: https://
ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet- cds.
2019.0175.

[16] Static Random-Access Memory. Accessed: April 22, 2024.
[17] Maroua Ahmid, Okba Kazar, and Ezedin Barka. “Internet of Things

Overview: Architecture, Technologies, Application, and Challenges.” In:
Decision Making and Security Risk Management for IoT Environments. Ed.
by Wadii Boulila et al. Cham: Springer International Publishing, 2024,
pp. 1–19. isbn: 978-3-031-47590-0. doi: 10.1007/978-3-031-47590-0_1.
url: https://doi.org/10.1007/978-3-031-47590-0_1.

[18] Kourosh Kalantar-zadeh. “Introduction.” In: Sensors: An Introductory
Course. Boston, MA: Springer US, 2013, pp. 1–9. isbn: 978-1-4614-5052-8.
doi: 10.1007/978-1-4614-5052-8_1. url: https://doi.org/10.1007/
978-1-4614-5052-8_1.

[19] Fernando E. Valdes-Perez and Ramon Pallas-Areny. Microcontrollers:
Fundamentals and Applications with PIC. 1st. USA: CRC Press, Inc., 2009.
isbn: 1420077678.

[20] Muhammad Naveed Aman, Mohamed Haroon Basheer, and Biplab Sik-
dar. “A Lightweight Protocol for Secure Data Provenance in the Internet

https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/CloudCom.2012.6427523
https://doi.org/10.13140/RG.2.2.28181.14560
https://doi.org/10.13140/RG.2.2.28181.14560
https://opensource.adobe.com/Spry/samples/data_region/JSONDataSetSample.html
https://opensource.adobe.com/Spry/samples/data_region/JSONDataSetSample.html
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://doi.org/10.1007/978-1-4614-5040-5_10
https://doi.org/https://doi.org/10.1049/iet-cds.2019.0175
https://doi.org/https://doi.org/10.1049/iet-cds.2019.0175
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cds.2019.0175
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cds.2019.0175
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cds.2019.0175
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cds.2019.0175
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cds.2019.0175
https://doi.org/10.1007/978-3-031-47590-0_1
https://doi.org/10.1007/978-3-031-47590-0_1
https://doi.org/10.1007/978-1-4614-5052-8_1
https://doi.org/10.1007/978-1-4614-5052-8_1
https://doi.org/10.1007/978-1-4614-5052-8_1

BIBLIOGRAPHY 87

of Things Using Wireless Fingerprints.” In: IEEE Systems Journal 15.2
(2021), pp. 2948–2958. doi: 10.1109/JSYST.2020.3000269.

[21] LPC55Sxx Usage of the Physically Unclonable Function and Hash. https:
//www.nxp.com/docs/en/application-note/AN12324.pdf. Accessed:
April 22, 2024.

[22] LPCXpresso55S69-EVK Development Board. https : / / www . nxp . com /
design/design-center/software/development-software/mcuxpresso-
software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-
board:LPC55S69-EVK. Accessed: April 22, 2024.

[23] Arduino MKR WiFi 1010 Development Board. https://docs.arduino.cc/
hardware/mkr-wifi-1010/. Accessed: April 22, 2024.

[24] Adafruit APDS9960 Proximity, Light, RGB, and Gesture Sensor. https:
//www.adafruit.com/product/3595. Accessed: April 22, 2024.

[25] 5-pin JST ESLOV to 4-pin JST SH STEMMA QT / Qwiic Cable - 100mm
long. https://www.adafruit.com/product/4483. Accessed: April 22,
2024.

[26] PremiumMale/Male JumperWires (75mm). https://www.adafruit.com/
product/759. Accessed: April 22, 2024.

[27] MCUXpresso Integrated Development Environment. https://www.nxp.
com/design/design-center/software/development-software/mcuxpresso-
software-and-tools-/mcuxpresso-integrated-development-environment-
ide:MCUXpresso-IDE. Accessed: April 24, 2024.

[28] MCUXpresso Software Development Kit. https : / / github . com / nxp -
mcuxpresso/mcux-sdk. Accessed: April 24, 2024.

[29] MCUXpresso Config Tools. https : / / www . nxp . com / design / design -
center/software/development-software/mcuxpresso-software-and-
tools- /mcuxpresso- config- tools- pins- clocks- and- peripherals:
MCUXpresso-Config-Tools. Accessed: April 24, 2024.

[30] Arduino IDE. https://docs.arduino.cc/software/ide/. Accessed: May
2, 2024.

[31] WiFiNINA Arduino Library. https://www.arduino.cc/reference/en/
libraries/wifinina/. Accessed: May 2, 2024.

[32] APDS9960𝐴𝑟𝑑𝑢𝑖𝑛𝑜𝐿𝑖𝑏𝑟𝑎𝑟𝑦. https://www.arduino.cc/reference/en/
libraries/arduino_apds9960/. Accessed: May 2, 2024.

[33] Arduino Cryptography Library. https://rweather.github.io/arduinolibs/
crypto.html. Accessed: May 2, 2024.

[34] ArduinoHttpClient Arduino Library. https://www.arduino.cc/reference/
en/libraries/arduinohttpclient/. Accessed: May 2, 2024.

[35] Wireshark. Wireshark Documentation. https://www.wireshark.org/
docs/. Accessed: May 11 2024.

[36] LPCXpresso55S69-EVK Data Sheet. https://www.nxp.com/docs/en/data-
sheet/LPC55S6x.pdf. Accessed: May 11 2024.

[37] LPCXpresso55S69-EVK User Manual. https://www.nxp.com/docs/en/
user-guide/LPCXpresso55S06UM.pdf. Accessed: May 11 2024.

https://doi.org/10.1109/JSYST.2020.3000269
https://www.nxp.com/docs/en/application-note/AN12324.pdf
https://www.nxp.com/docs/en/application-note/AN12324.pdf
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://docs.arduino.cc/hardware/mkr-wifi-1010/
https://docs.arduino.cc/hardware/mkr-wifi-1010/
https://www.adafruit.com/product/3595
https://www.adafruit.com/product/3595
https://www.adafruit.com/product/4483
https://www.adafruit.com/product/759
https://www.adafruit.com/product/759
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-and-peripherals:MCUXpresso-Config-Tools
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-and-peripherals:MCUXpresso-Config-Tools
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-and-peripherals:MCUXpresso-Config-Tools
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-and-peripherals:MCUXpresso-Config-Tools
https://docs.arduino.cc/software/ide/
https://www.arduino.cc/reference/en/libraries/wifinina/
https://www.arduino.cc/reference/en/libraries/wifinina/
https://www.arduino.cc/reference/en/libraries/arduino_apds9960/
https://www.arduino.cc/reference/en/libraries/arduino_apds9960/
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html
https://www.arduino.cc/reference/en/libraries/arduinohttpclient/
https://www.arduino.cc/reference/en/libraries/arduinohttpclient/
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/
https://www.nxp.com/docs/en/data-sheet/LPC55S6x.pdf
https://www.nxp.com/docs/en/data-sheet/LPC55S6x.pdf
https://www.nxp.com/docs/en/user-guide/LPCXpresso55S06UM.pdf
https://www.nxp.com/docs/en/user-guide/LPCXpresso55S06UM.pdf

88 BIBLIOGRAPHY

[38] MikroElektronika. WiFi 7 Click. Accessed: May 11 2024.
[39] Muhammad Shoaib Siddiqui, Atiqur Rahman, and Adnan Nadeem. “Se-

cure Data Provenance in IoT Network using Bloom Filters.” In: Procedia
Computer Science 163 (2019). 16th Learning and Technology Conference
2019Artificial Intelligence and Machine Learning: Embedding the Intelli-
gence, pp. 190–197. issn: 1877-0509. doi: https://doi.org/10.1016/j.
procs.2019.12.100. url: https://www.sciencedirect.com/science/
article/pii/S1877050919321398.

[40] Shuang Sun, Huayun Tang, and Rong Du. “A Novel Blockchain-Based
IoT Data Provenance Model.” In: 2022 2nd International Conference on
Computer Science and Blockchain (CCSB). 2022, pp. 46–52. doi: 10.1109/
CCSB58128.2022.00015.

[41] Omair Faraj, David Megías, and Joaquin Garcia-Alfaro. ZIRCON: Zero-
watermarking-based approach for data integrity and secure provenance in
IoT networks. 2023. arXiv: 2305.00266 [cs.CR].

[42] OpenAI. ChatGPT: Conversational AI model. https : / / openai . com /
chatgpt. 2021.

https://doi.org/https://doi.org/10.1016/j.procs.2019.12.100
https://doi.org/https://doi.org/10.1016/j.procs.2019.12.100
https://www.sciencedirect.com/science/article/pii/S1877050919321398
https://www.sciencedirect.com/science/article/pii/S1877050919321398
https://doi.org/10.1109/CCSB58128.2022.00015
https://doi.org/10.1109/CCSB58128.2022.00015
https://arxiv.org/abs/2305.00266
https://openai.com/chatgpt
https://openai.com/chatgpt

A
Acknowledging the use of
AI in the Thesis Work

In the work presented with this thesis, ChatGPT [42] has been leveraged as
a tool to provide inspiration for restructuring of specific sentences that were
deemed to long by the author. It has also been used as a verification tool to
ensure specific sentences relayed the meaning intended by the author.

89

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Methodology
	1.3 Limitations and Assumptions
	1.3.1 Scope
	1.3.2 Resource Constrained Components
	1.3.3 Network Model
	1.3.4 Threat Model

	1.4 Contribution
	1.5 Thesis Outline

	2 Background
	2.1 Data Transfer
	2.1.1 Serial Communication and USART
	2.1.2 JavaScript Object Notation (JSON)
	2.1.3 Base 64 Encoding Scheme

	2.2 Physically Unclonable Function
	2.3 Internet of Things
	2.3.1 Sensors
	2.3.2 Microcontrollers
	2.3.3 Internet of Things Architecture

	3 Design
	3.1 Overview
	3.2 Components
	3.2.1 PUF Module
	3.2.2 Device
	3.2.3 Server

	3.3 System Configuration
	3.3.1 Shared Secret Key Configuration
	3.3.2 Device Registration

	3.4 Protocols
	3.4.1 Device Secret Key Reloading
	3.4.2 Mutual Authentication Protocol
	3.4.3 Data Transfer Protocol

	4 Hardware and Implementation
	4.1 Hardware Overview
	4.2 PUF Module Implementation
	4.2.1 Board Initialization
	4.2.2 USART Initialization
	4.2.3 API

	4.3 Device Implementation
	4.3.1 Configuration Phase
	4.3.2 Main Program and API

	4.4 Server Implementation
	4.4.1 API
	4.4.2 Storing Device Information
	4.4.3 Managing Authenticated Devices

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance and Efficiency Evaluation
	5.2.1 Methodology
	5.2.2 Results

	5.3 Security Evaluation
	5.3.1 Methodology
	5.3.2 Evaluation

	6 Discussion
	6.1 Addressing Current Vulnerabilities
	6.1.1 Addressing the JSON Issue
	6.1.2 Addressing the AES256-ECB Issue
	6.1.3 Addressing the Mutual Authentication Issue

	6.2 Notes on Efficiency Measurements and Improving Throughput
	6.2.1 Small Note on Efficiency Measurements Results
	6.2.2 Improving the Throughput of LDPAs

	6.3 Future Implementations and Extending the Threat Model

	7 Related Work
	7.1 Related Research on Data Provenance in IoT
	7.1.1 Data Provenance and Secure Authentication Using Wireless Channel LQI Measurements and PUFs
	7.1.2 Data Provenance and Trusted Authentication by Outsourcing Attribute-Based Signatures and Leveraging Bloom Filters
	7.1.3 Data Provenance for IoT using Blockchain Technology
	7.1.4 Zero-Watermarking for Data Integrity and Secure Provenance in IoT

	8 Concluding Remarks
	8.1 Conclusion
	8.2 Future work

	A Acknowledging the use of AI in the Thesis Work

