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Pre-Service teachers’ Knowledge of and Beliefs About Direct and 
Indirect Proofs
Per Haavolda, Jan Roksvolda, and Bharath Sriramanb

aDepartment of Education and Pedagogy, UiT Arctic University of Tromso, Tromsø, Norway; bDepartment of 
Mathematical Sciences, University of Montana, Missoula, USA

ABSTRACT
Teachers have difficulty integrating proof in their mathematics instruction 
due to both narrow beliefs about proofs and limited understanding of proofs. 
Indirect proofs seem to be a particular cause for concern. In this exploratory 
study, we contribute to the research area by reporting on an empirical study 
of Norwegian pre-service teachers’ knowledge of and beliefs about direct 
and indirect proofs. Inspired by situativity theory, we investigated pre-service 
teachers’ knowledge of and beliefs about proofs both professed generally 
and out-of-context and in situation-specific circumstances. Our initial find
ings are in line with much of the previous literature. First, for situation- 
specific beliefs and knowledge, we found that indirect proofs seem to be 
more challenging than direct proofs. Second, for general beliefs and knowl
edge, we found pre-service teachers’ views about proofs in general are 
narrow and rigid. However, we also investigated possible patterns between 
general and situation-specific beliefs and knowledge. We found that partici
pants who empirically validated proofs also professed views that a good 
mathematical argument is an argument that is simply convincing, and not 
necessarily rigorous. Second, participants who professed preferences for 
direct proofs, also struggled with the logical conditions of indirect proofs. 
Implications are discussed.

KEYWORDS 
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Recent reform efforts across the world have elevated the status and importance of proofs and 
deductive argumentation in school mathematics. According to Mariotti (2006), there is 
a consensus that proof is a key element of mathematics education and there seems to be 
a general trend of including proofs in national curricula. Implementing this in the classroom 
is often up to the teacher, and as the National Council of Teachers of Mathematics [NCTM] 
(2000) states, “students learn mathematics through the experiences that teachers provide” 
(p.16). It is therefore vital that teachers both understand mathematical proofs and value 
mathematical proofs as a key component of school mathematics – as teachers’ ability and 
willingness to teach specific mathematical ideas depend on their knowledge and beliefs 
(Philipp, 2007). A. J. Stylianides et al. (2016) describes a case from a third-grade class that 
illustrates this point. After working on ideas related to even and odd numbers for several days, 
the students had formulated the conjecture: “An odd number plus an odd number equals an 
even number.” Instead of simply telling the students the answer, or limit the argumentation to 
a few examples, the students investigated, tested, and attempted both to refute and justify the 
conjecture – with the teacher’s help. Building on the students’ work, the class were able to 
move from empirical to more general arguments. Not only were the students provided with an 
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opportunity to work on authentic mathematics (Lampert, 1992), but they also had an oppor
tunity to develop a better understanding of the definitions of even and odd numbers 
(A. J. Stylianides et al., 2016).

However, research has shown that teachers have in general difficulty integrating proof into their 
mathematics instruction. Several explanations for this have been proposed, ranging from teachers’ 
limited beliefs about the role of proofs and what constitutes proof, to acceptance of empirical or 
invalid arguments as proofs (Harel & Sowder, 2007; Knuth, 2002; Ko, 2010; Morris, 2007). It 
should be noted that this is not a problem limited to teachers. There has been a long-standing 
concern that students at all levels and both in general and in teacher education programs struggle 
with mathematical proofs (G. J. Stylianides et al., 2017). Students tend to accept logically invalid 
deductions, confuse empirical evidence for proof, focus too much on superficial properties, 
concentrate on algebraic manipulations, believe proofs are appropriate only for a minority of 
students, and hold a very limited view of the role of proof etc (e.g. Hodds et al., 2014; Inglis & 
Alcock, 2012; Ko, 2010). More generally, Raman (2003) explains that while proofs are essentially 
about key ideas, many students are not able to see a connection between a privately held idea and 
the corresponding formal, public proof. Raman (2003) explains that while mathematicians clearly 
link heuristic aspects of proofs and rigorous language of proofs, students may see proofs as 
creating something out of nothing.

These tendencies highlight the importance of investigating preservice teachers’ knowledge of 
and beliefs about proofs and addressing the corresponding concerns in teacher preparation 
programs (A. J. Stylianides, 2007). However, despite the previously mentioned research findings, 
there is still much work to be done. Most extant studies have focused on secondary (in-service or 
preservice) teachers, not specific methods of proofs, or contextual mediators that affect under
standing of or beliefs about proofs (Knuth, 2002; Movshovitz-Hadar, 1993; Simon & Blume, 1996; 
A. J. Stylianides, 2007; G. J. Stylianides et al., 2017). In this exploratory study, we contribute to the 
research area by reporting on an empirical study on Norwegian preservice middle school teachers’ 
knowledge of and beliefs about direct and indirect proofs. The rationale behind the focus on direct 
and indirect proofs will be expanded on later. For now, we will simply clarify the meaning of the 
two types of proofs. Direct proof is a straightforward way of establishing the truth of a statements 
by known facts and logical principles. Indirect proofs, on the other hand, generally demonstrates 
the truth of a proposition by assuming the opposite is true and showing that this assumption leads 
to a contradiction (Courant & Robbins, 1996).

Although most authors generally distinguish between knowledge and beliefs, from a psychological 
perspective they are closely related constructs. Both determine, in close interaction, students’ under
standing of mathematical ideas, problems and situations (Op’t Eynde et al., 2002). For the purpose of 
this study, we do not draw a clear distinction between knowledge and beliefs. Instead, we approach the 
issue of pre-service teachers’ knowledge of and beliefs about direct and indirect proofs from the 
perspective of situativity theory, which points out that knowledge and beliefs are sensitive to circum
stances and context and often held in clusters (Op’t Eynde et al., 2002). The importance of contextual 
factors for learning has been well known ever since the end of the 1980’s, when the situated cognition 
and learning paradigm emerged in reaction to the mentalistic view of learning and thinking 
(J. S. Brown et al., 1989). Beliefs and knowledge are formed in the socio-cultural environment one 
lives and works in. What we hear, perceive and comprehend in one specific situation can be accepted 
as true in that particular context, but untrue, irrelevant or even meaningless in a different context 
(Bogdan, 1986). As such, research have often reported a discrepancy between knowledge and beliefs 
professed generally and out of context, and knowledge and beliefs conveyed in situation-specific and 
context-dependent circumstances (Philipp, 2007). To the outsider, this might suggest that individuals 
sometimes hold contradictory beliefs. However, clusters of beliefs and knowledge are organized in 
a subjective, quasi-logical manner that is rarely consciously known to the individual. To the individual, 
there is no discrepancy or contradiction – only different circumstances and context (Philipp, 2007). In 
this study, we investigate pre-service teachers’ knowledge of and beliefs about direct and indirect 
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proofs on the basis of this distinction. More specifically, we set out to answer the following research 
questions:

RQ1: What characterizes pre-service teachers’ situation-specific knowledge of and beliefs about 
direct and indirect proofs?

RQ2: What characterizes pre-service teachers’ general knowledge of and beliefs about direct and 
indirect proofs?

RQ3: How are pre-service teachers’ situation-specific knowledge of and beliefs about direct and 
indirect proofs related to their general knowledge of and beliefs about direct and indirect proofs?

As noted earlier, beliefs and knowledge affect teachers’ ability and willingness to teach specific 
mathematical ideas. However, little is known about how pre-service teachers’ knowledge of and beliefs 
about proofs can differ, or align, in different contexts. In this study, we therefore investigate pre- 
service teachers’ knowledge of and beliefs about proofs both tied to specific proof situations and 
professed more generally out of context. To distinguish between the two constructs, we will in this 
paper use the term proof views regarding knowledge and beliefs professed generally and out of context, 
and the term proof understanding regarding knowledge and beliefs in situation-specific contexts.

Furthermore, few studies on knowledge of and beliefs about proofs have focused on specific 
methods of proof (A. J. Stylianides, 2007). In this study we focus on indirect proofs, as researchers 
have argued that they are a particular cause for concern. In the research literature it is claimed that 
mathematics learners often dislike indirect proofs and generally find them unconvincing (e.g. Harel & 
Sowder, 1998; Leron, 1985). In this study, we therefore also investigate if and how the nature of the 
proofs themselves – i.e. direct vs. indirect – mediate middle school preservice teachers’ knowledge of 
and beliefs about proofs.

Finally, there is a need for more research on proofs and proving in primary and middle school. 
There are several reasons, both empirical and pedagogical, for this. Here, we’ll mention two particu
larly salient reasons. First, although both researchers and national documents (e.g. KD, 2019; NCTM,  
2000) have called for proof and proving to be central aspects of mathematics for students of all ages, 
most of the research on the teaching and learning of proofs has focused on secondary and tertiary 
mathematics (Campbell et al., 2020; A. J. Stylianides et al., 2016). Second, the act of proving, as in 
removing doubts of an assertion and its related acts such as reasoning and justification (Harel, 2008), is 
essential to working with authentic mathematics and cultivate deeper understandings of ideas and 
relationships in mathematics (Walkington & Woods, 2022). Proving can allow students to engage in 
mathematics as a sense-making activity and explore why things “work” in mathematics rather than 
just memorize superficially – at all ages and levels (A. J. Stylianides et al., 2016).

Theoretical Background

Proofs in Mathematics and Mathematics Education

From the perspective of mathematical logic, a proof is a formal sequence of mathematical statements 
written in a formal language with specific characteristics (Gowers et al., 2008, p. 70). This view is 
somewhat of an idealization of what the real practice of mathematical proof looks like. A purely formal 
proof would be very long and very hard to read. Hersh (1993) therefore distinguishes between what 
mathematical proof means in principle and in practice. In principle, mathematical proof is a formal 
sequence of steps according to strict logical rules. In practice, however, a proof is what mathematicians 
do to make other mathematicians believe their theorems. It is an argument that convinces the qualified 
skeptical expert. In practice, proofs omit routine logical steps, an enormous amount of context is 
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assumed by the reader, and in many areas, proofs rely on intuitive arguments that could be translated 
into arguments that are more rigorous (Auslander, 2008). Mathematical proof is thus not just about 
the establishment of mathematical truth (Rav, 1999). Mathematical proofs also display fresh methods, 
tools, strategies and concepts that are of wider applicability in mathematics and open up new 
mathematical direction. Proofs themselves are indispensable to the broadening of mathematical 
knowledge and are in fact “‘the heart of mathematics, the royal road to creating analytic tools and 
catalysing growth’” (Rav, 1999, p. 6). Because proofs have the potential of conveying important 
elements such as concepts and methods, Hanna and Barbeau (2008) argue that proofs should also 
be a primary focus of interest in mathematics education. In other words, mathematical proofs can not 
only help students see why statements are true, but also enhance their understanding of mathematical 
concepts and promote mathematical proficiency and reasoning (Hanna, 2000).

Indirect Proofs

There are two types of indirect proofs: proof of the contrapositive and proof by contradiction. 
Although the two types of proof are somewhat different, they both start by assuming in some manner 
the denial of the conclusion. This can be illustrated with the following: to prove p => Q by proof of 
contradiction we can assume P and ¬Q and derive a contradiction. To prove p => Q by proof of the 
contrapositive we assume ¬Q and show ¬P. Historically, indirect proofs have been highly controver
sial and doubted by anti-realists as they depend on “logical tricks” and do not address causality (Elitzur 
et al., 2018). Although indirect proofs are nowadays accepted without qualms, mathematicians do 
recognize that indirect proofs may ask for additional mental effort (Antonini & Mariotti, 2008). This 
has also been observed in mathematics education settings, as mathematics learners often find indirect 
proofs more troublesome than direct proofs (e.g. Harel & Sowder, 1998; Leron, 1985; Quarfoot & 
Rabin, 2022). There is currently no agreed upon cause for learners’ difficulties with indirect proofs, 
and in the literature we find several proposed hypotheses. Leron (1985), for example, noted that 
indirect proofs were non-constructive and that when we work on them, we “enter a false, impossible 
world” (p. 323). This can create the sense that the proof is simply a trick and not a “real” proof. Others, 
such as Antonini and Mariotti (2008), have claimed that issues regarding indirect proofs are tied to 
what they refer to as meta-theorems and understanding logically equivalent relationships such as 
(¬q→¬p) ≡ (p→q).

Knowledge and Beliefs

From an epistemological perspective, beliefs and knowledge are different. While beliefs generally refer 
to what an individual considers to be true, knowledge must satisfy some truth condition (Op’t Eynde 
et al., 2002). Richardson (1996, p.103), after reviewing definitions in the fields of psychology, anthro
pology and philosophy, concluded that beliefs are: “ . . . psychologically held understandings, premises, 
or propositions about the world that are felt to be true.” In other words, beliefs can be described as 
subjective knowledge, rather than objective knowledge, even though there are varying definitions 
found in the literature (Furinghetti & Pehkonen, 2002). Knowledge, on the other hand, is “beliefs held 
with certainty or justified true belief” (Philipp, 2007, p. 259). Knowledge refers to things that we “more 
than believe.” We have a sense of certainty of their truth value.

Nevertheless, from a psychological perspective, beliefs and knowledge are closely related concepts. 
Problem-solving behavior, for example, is always guided by what the solver believes to be true, 
referring to both knowledge and beliefs (Op’t Eynde et al., 2002). It is therefore not easy to identify 
and separate an individual’s beliefs and knowledge from observed behavior. Furthermore, an impor
tant finding in the literature is that beliefs and knowledge are context-dependent (Philipp, 2007). Since 
the late 1980s, researchers have pointed out that knowledge and beliefs are structured in clusters 
around specific contexts. What we believe to be true – referring to both knowledge and beliefs – 
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depend on the specific circumstances in particular situations (Green, 1971). Professed beliefs do not 
therefore always resonate with actions (Thompson, 1992; Diego-Mantecón et al., 2019).

Teachers’ Knowledge and Beliefs About Proofs

In recent years, several literature reviews on teachers’ knowledge and beliefs about proofs have 
been published (e.g. Cabassut et al., 2011; Ko, 2010; Lin et al., 2012; G. J. Stylianides et al.,  
2017, 2024). A key observation is that although the research has been broadly conceptualized 
as either teachers’ beliefs about proofs or teachers’ knowledge of proof, most of the literature 
do not clearly delineate beliefs and knowledge about proof. It is beyond the scope of this 
paper to provide an exhaustive re-conceptualization of the relevant literature. Instead, we will 
here provide a short summary on the relevant literature, and separate findings according to 
two common approaches to research on teachers’ beliefs and knowledge: 1) professed knowl
edge and beliefs stated explicitly in response to interview questions and 2) knowledge and 
beliefs attributed to and inferred via observations in task-specific situations (Putnam & Borko,  
2000).

Regarding the first approach, much of the research have focused on the role and nature of proofs. 
A common theme in the literature is that many teachers and pre-service teachers profess limited 
knowledge of and beliefs about the role and nature of proofs (e.g. Cabassut et al., 2011; Ko, 2010; 
A. J. Stylianides et al., 2016; G. J. Stylianides et al., 2024). Knuth (2002), for example, found that 
teachers view proof as appropriate for the mathematics education of a minority of students. 
Furthermore, teachers tended to view proof in a pedagogically limited way, namely, as a topic of 
study rather than as a tool for communicating and studying mathematics. Harel and Sowder (2007) 
later concluded from a review of the literature that teachers do not seem to value other important roles 
of proof, most noticeably its explanatory role. In another more recent study, Aaron and Herbst (2019 
found that teachers preferred to separate conjecturing and proving in their teaching, as they perceived 
them as having different purposes.

However, the research is not unambiguous. A few studies have noticed some variation. For 
example, in a survey with 30 pre-service elementary school teachers and 21 secondary mathematics 
teachers, Mingus and Grassl (1999) found that the secondary teachers emphasized the explanatory 
power of proofs, while the elementary pre-service teachers focused on verification. Ko (2010), in 
a review of the literature, similarly concluded that although the verification role of proofs is wide
spread, a minority of teachers also seem to value other roles of proof, in particular the explanatory role 
of proofs.

As for teachers’ and pre-service teachers’ knowledge of and beliefs about proofs inferred from task- 
specific contexts, most of the research have focused on asking respondents to construct proofs or 
assess the validity of proofs (G. J. Stylianides et al., 2017). Findings from this research suggest that 
teachers and pre-service teachers emphasize algebraic manipulations and surface properties, while 
ignoring structural properties (Hodds et al., 2014; Knuth, 2002; Selden & Selden, 2017; Weber, 2010). 
Several explanations for this have been proposed. Selden and Selden (2003) speculated that this is 
caused by a focus on local calculations within a proof, rather than its global structure. Other possible 
explanations might be that teachers seem to be most convinced by arguments that include concrete 
features such as examples or visual references (Knuth, 2002), or a lack of knowledge of the limitations 
of empirical evidence (Inglis & Alcock, 2012).

In summary, the existing research literature indicates that teachers’ and pre-service teachers are 
often unable to distinguish valid proofs from invalid proofs. However, this conclusion is based on an 
assumption that that the types of arguments teachers produce or evaluate are indicative of their 
standards of mathematical conviction. According to G. J. Stylianides et al. (2017), there is evidence 
challenging this assumption. For example, solvers may be well aware of the limitations of their 
constructed proofs, but unable to produce better ones (e.g. Weber & Mejia-Ramos, 2015). Teachers 
may also evaluate arguments differently based on the context of the argument (Morris, 2007).
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These findings raise several methodological issues that need to be taken into account in future 
research on knowledge of and beliefs about proofs. First, participants in these types of studies should 
be allowed to explain and qualify their responses. By allowing this, researchers can see if participants 
are absolutely convinced by empirical arguments or if they simply believe a claim is probably true 
(G. J. Stylianides et al., 2017). Second, according to Mejia-Ramos et al. (2012), proofs should be 
assessed both at a local technical level and at a holistic intuitive level. This allows researchers to 
investigate how participants both view proofs as a chain of logical assertions, and as a big idea behind 
the structure of a proof.

Conceptual Framework: Knowledge and Beliefs About Proofs

As mentioned, there are two main approaches to research on teachers’ beliefs and knowledge: 1) beliefs 
and knowledge professed and stated explicitly and out of context, and 2) beliefs and knowledge 
inferred through observations of behavior in specific situations (Philipp, 2007; Putnam & Borko,  
2000). To clearly separate the two facets of knowledge and beliefs, we use the term proof views about 
professed general and out of context, and the term proof understanding about situation-specific 
knowledge.

Within the context of mathematical proofs, the former approach has usually focused on the nature 
and role of proofs in both mathematics and school, while the latter approach has usually focused on 
which type of arguments one finds convincing. In this study, we conceptualize general knowledge of 
and beliefs about proofs, or proof views, as pre-service teachers professed and explicit knowledge and 
beliefs regarding the nature and role of proofs. As for situation-specific knowledge of and beliefs about 
proofs inferred from behavior, we take into account the previously mentioned methodological issues, 
and rely on the theoretical perspectives of proof validation and proof comprehension – which together 
form the basis of proof understanding (Weber & Mejia-Ramos, 2011).

Proof Validation
According to Weber and Mejia-Ramos (2011), understanding proofs consists of two related processes: 
proof validation and proof comprehension. Proof validation is about evaluating and judging mathe
matical arguments, and the purpose is to determine whether a proof is correct (Selden & Selden, 2017). 
For the purpose of this study, we limit our conceptualization of proof validation to what we can infer 
from direct observations. We also draw on the concept proof scheme, which refers to “what constitutes 
ascertaining and persuading” for a particular person (Harel & Sowder, 1998, p. 244). Meaning, in this 
study proof validation is the evaluation of the correctness of a proof or argument, and the justification 
and explanation for said evaluation.

Proof Comprehension
Unlike proof validation, the purpose of proof comprehension is not to evaluate the correctness of 
a proof. Instead, proof comprehension is about understanding and learning from the content of the 
proof (Weber & Mejia-Ramos, 2011). In this study, we use a model proposed by Mejia-Ramos et al. 
(2012) for conceptualizing proof comprehension. The main reason for this choice is that a) the model 
builds on previous models of proof comprehension (e.g. Yang & Lin, 2008), b) the model isn’t limited 
to particular mathematical topics, and c) it takes into account both what the authors refer to as local 
and holistic dimensions of proofs (Mejia-Ramos et al., 2012). Local dimensions of proof comprehen
sion refer to aspects of proofs limited to one or a small numbers of statements in the proof. Holistic 
dimensions, on the other hand, deal with aspects of proof related to big ideas and the proof as a whole. 
There are three local dimensions of proof comprehension (Mejia-Ramos et al., 2012):

(1) Meaning of terms and statements: Understand the meaning of key terms and individual 
statements of the proof. (L1)
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(2) Justification of claims: Understand how and why an assertion made in the proof follows from 
previous statements and other proven or assumed statements. (L2)

(3) Logical status of statements and proof framework: Understand the logical status of statements 
in the proof and the logical relationship between this statement and other statements in the 
proof. (L3)

The four holistic dimensions are (Mejia-Ramos et al., 2012):

(1) Identifying the modular structure: Understand how a proof can be broken into different 
modules or sub-proofs, and the logical relationship between them. (H1)

(2) Illustrating with examples: Understand how the proof relates to specific examples and follow 
a sequence of inferences for specific examples. (H2)

(3) Summarizing via high-level ideas: Understand the main idea of the proof and its principal 
approach. (H3)

(4) Transferring the general ideas or methods to another context: ability to adopt the ideas and 
approaches of the proof to other proofs. (H4)

Materials and Methods

Sample and Procedure

There were 18 Norwegian pre-service teachers who participated in the study. The participants were all 
enrolled in a five-year teacher education program directed at middle and lower secondary school. All 
participants were in their final and fifth year of training, and would graduate with a Masters degree in 
mathematics education. All 18 participants, ten female and eight male, were aged 23–27, and had 
a similar educational background from the Norwegian education system − 13 years of primary and 
secondary education. None of the participants can be considered experts in mathematics, as none of 
them had any mathematical training beyond basic mathematics courses the five-year teacher educa
tion program. More specifically, all participants had completed: 1) one course on fundamental 
concepts and procedures in mathematics central to middle and lower secondary school mathematics 
such as numbers, fractions, equations, functions etc, 2) one course on the teaching and learning of 
mathematics, and 3) one course on systematic and scientific development of mathematics teaching in 
school. The first course, offered in the pre-service teachers’ first and second year, consists of 120 hours 
of instruction. The second and third course, offered in the pre-service teachers’ third and fifth year 
respectively, consists of 60 hours of instruction each. In total, the three courses make up one full year 
of the five-year teacher education program. Although the participants are not mathematical experts, 
these courses provide some opportunities to learn about proofs. In the first course, both direct and 
indirect proofs are studied explicitly in relation to algebra, geometry and elementary number theory. 
In the second course, proofs are implicitly studied in relation to students’ mathematical reasoning and 
argumentation. More specifically, the act of proving is situated in a broader context of students’ 
mathematical reasoning and argumentation within proof and argumentation frameworks (e.g. 
Balacheff, 1988). In the third course, the pre-service teachers are exposed to several examples of 
research where proof has been implemented in classrooms (e.g. Stylianou et al., 2009).

The data were collected within a larger study that focused on integrating mathematical 
proofs in mathematics teacher education programs (Haavold, 2021). Here, we report on 
analyses of data collected in two separate interview sessions. The first session consisted of 
individual semi-structured interviews designed to explore participants proof views. Each inter
view lasted about 25–30 minutes. The interview guide (Appendix 1) consisted of 20 questions 
on: 1) the general nature of mathematics, and 2) the role and nature of proofs and argu
mentation in mathematics. The second session, designed to explore participants proof under
standing, consisted of pairwise task-based interviews that lasted about 60–70 minutes. We 
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decided to make use of group-based protocols as they are particularly appropriate for obser
ving decision-making and participants’ real problem solving behavior in social environments 
(Schoenfeld, 1985). At the beginning of each interview, the pair of participants was presented 
with two mathematical theorems and three proofs corresponding with each of the theorems 
(see Table 1). The participants were then told that the purpose of the session was to determine 
whether the proofs were correct or incorrect, and also present a justification for their 
conclusion. After answering questions from the participants regarding more practical issues, 
such as length of the interview, we asked the participants to work on the proofs as they 
normally would on their own. After the participants’ work on the proof tasks came to an end, 
we also asked them a series of supplemental questions based on our conceptualization of proof 
comprehension and proof validation. The purpose was to further investigate the pre-service 
teachers’ explicit thoughts on issues related to proof validation and proof comprehension, 
which might not have come up during the participants’ uninterrupted work. This meant that 
we first asked whether the proofs were correct and if the pre-service teachers could provide 
a justification for their answer. We then asked the participants questions formed straight- 
forward on the basis of the proof comprehension categories described in the framework that 
could reveal the pre-service teachers’ local and holistic comprehension of proofs (Mejía-Ramos 
et al., 2017). For example, the first category in the proof comprehension framework is mean
ing of terms and statements. According to Mejía-Ramos et al. (2017), assessing learners 
understanding of specific terms in the proof can involve asking for examples and definitions. 

Table 1. Proof validation tasks-.

Proof Task 1 Proof Task 2

Theorem: Suppose n is an integer. If n2 is even, then n is 
even.

Theorem: 
ffiffiffi
2
p

is an irrational number.

Proof 1A: If n is even, then we can write n ¼ 2k. We then see 
that n2 ¼ 2kð Þ2 ¼ 4k2 ¼ 2 � 2k2. Therefore, n2 is even.

Proof 2A: Suppose that 
ffiffiffi
2
p

is a rational number. Then we can write 
it as an irreducible fraction a

b ¼
ffiffiffi
2
p

. 

We square both sides and see that a2

b2 ¼ 2a2 ¼ 2b2:

2b2 is even, and therefore a2 must also be even. It follows that a 
is even, and we can write a as a ¼ 2k. 
We substitute a ¼ 2k into a2 ¼ 2b2, and see that 2kð Þ2 ¼ 2b2. 
We then see that 4k2 ¼ 2b22a2 ¼ b2. 
Therefore, b2 must be even, and it follows that b must be even as 
well. 
We now have that both a and b are even. But that means a

b is not 
irreducible, which contradicts our assumption. We therefore have 
to conclude that 

ffiffiffi
2
p

is irrational.
Proof 1B: Suppose n is not even. Then it is odd, and we can 

write n ¼ 2k þ 1. 
We then see that 
n2 ¼ 2k þ 1ð Þ

2
¼ 4k2 þ 4k þ 1 ¼ 2 2k2 þ kð Þ þ 1:

That means n2 is also odd. We therefore have to conclude 
the statement in task 1 is correct.

Proof 2B: We can write 
ffiffiffi
2
p
¼ 1þ

ffiffiffi
2
p
� 1

� �
¼ 1þ 1

1þ
ffiffi
2
p . 

Because 
ffiffi
2
p
� 1ð Þ

ffiffi
2
p
þ1ð Þ

1
ffiffi
2
p
þ1ð Þ

¼ 1
1þ
ffiffi
2
p

ð Þ
. 

It follows then that 
ffiffiffi
2
p
¼ 1þ 1

1þ
ffiffi
2
p ¼ 1þ 1

1þ 1þ 1
1þ
ffiffi
2
p

� � ¼ 1þ 1
2þ 1

1þ
ffiffi
2
p

, 

However, we can again make the same substitution, and this 
expression is an infinite continued fraction: 
1þ 1

2þ 1
1þ
ffiffi
2
p
¼ 1þ 1

2þ 1
2þ 1

1þ
ffiffi
2
p

= 1þ 1
2þ 1

2þ 1
2þ 1

1þ
ffiffi
2
p

= 

So 
ffiffiffi
2
p

is therefore irrational.
Proof 1C: n2 þ n ¼ n nþ 1ð Þ. The right hand side is even. 

Since n2 is even, then n must also be even.
Proof 2C: Suppose that 

ffiffiffi
2
p

is a rational number. Then we can write 
it as an irreducible fraction a

b ¼
ffiffiffi
2
p

. 

We square both sides and see that a2

b2 ¼ 2a2 ¼ 2b2:

Every integer can be factored into primes, and we suppose this 
has been done for a and b. Thus in a2 there are certain number of 
primes doubled up. And in b2 there are a certain number of 
doubled-up primes. But, in 2b2 there is a 2 that has no partner. 
We have a contradiction and must conclude that 

ffiffiffi
2
p

is irrational.

8 P. HAAVOLD ET AL.



We therefore asked the participants if they could exemplify and/or define terms like integer, 
even and odd, irrational numbers etc.

Proof Tasks

The proof tasks used in this study are also part of a larger study, and their use have been explained and 
justified earlier (Haavold, 2021). Nevertheless, we will here describe and explain the proofs used for the 
task-based interviews. We used both direct and indirect proofs for each of the two theorems, as we 
wanted to explicitly investigate how the logical structure of proofs themselves mediated proof 
comprehension and validation. Furthermore, learners’ understanding of proofs can be influenced by 
numerous factors. We therefore employed multiple proofs, both direct and indirect, that were 
comparable in terms of length, content and complexity.

The proof tasks included here were proofs that pre-service teachers with little exposure to advanced 
mathematics could understand (see also Haavold, 2021). This meant that we chose mathematical 
theorems within elementary number theory that were appropriate for the pre-service teachers’ 
academic level, and could be worked on and comprehended within the limits of a task-based interview. 
Each of the six proofs also present the participants with challenges related to local and/or holistic 
aspects.

Proof 1A is a direct proof. However, it confirms the converse relationship of theorem 1. The next 
proof, 1B, is an indirect and contrapositive proof. This proof is logically correct, but contain a small 
algebraic error. Both proof 1A and 1B are flawed, however the errors are in the former case related to 
local aspects of the proof while in the latter case related to holistic aspects of the proof (Mejia-Ramos 
et al., 2012). The last proof in task 1 (1C) is a compact and abstract proof that is both correct and 
direct. We chose this proof because we wanted to see how the participants comprehended both the 
holistic overarching idea of the proof, and how each part of the proof is related locally and 
algebraically.

Proof 2A is a well-known indirect proof of the irrationality of √2. However, there is a small mistake 
in line eleven. As proof 1B, the purpose was to see if the participants’ focus was on the holistic or local 
aspects of the proof. The next proof 2B is a direct proof of theorem 1 that uses what is known as 
infinite continued fractions. The last proof, 2C, is similar to proof 2A. However, unlike proof 2A it is 
correct, and it uses a slightly different method of establishing a contradiction. Again the purpose was 
to see if the participants focused on the local or holistic aspects of the proof.

Data Analysis

To answer our three research questions, we drew on qualitative content analysis (Mayring, 2015). For 
RQ1, and participants’ proof understanding, we first took a deductive approach. After transcribing 
each of the task-based interviews, we ran through the material line by line, and identified, extracted 
and coded each text component that corresponded with one of the categories in our proof compre
hension framework (Mejia-Ramos et al., 2012). This was done according to the recommendations of 
Mayring (2015) related to structuring procedures: 1) A trial-run was first carried out in which we 
attempted to mark all text-extracts according to the proof comprehension categories defined by Mejia- 
Ramos et al. (2012), p. 2) based on the trial-run we discussed and resolved unclear text-components, 
and created anchor examples and specific coding rules for ambiguous text components; 3) we ran 
through the entire material once more, coding and grouping text components according to the 
category definitions, anchor examples, and coding rules. As an example of coding rules, both category 
L1 and H2 can refer to the use of specific numerical examples. However, the main difference is that 
while L1 can refer to the use of specific examples to illustrate individual terms and statements of the 
proof, H2 refer to the use of specific examples which are used throughout the entire proof. Applying 
this framework to material allowed us to identify which proof comprehension dimension each 
participants employed for each proof task. We then took a more inductive approach, with a focus 
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on reducing procedures (Mayring, 2015), and went through the material once more to identify how 
the participants validated the proofs. This was done in the following manner. First, we established that 
the primary themes of the analysis were to determine whether or not each participant considered 
a proof correct or incorrect, and what the explicit corresponding justification was. We then went 
through ca. 30% of the data material, and coded the participants’ utterances related to the correctness 
of the proofs and the corresponding justification. The former theme was simply labeled as correct or 
incorrect, while the latter theme was coded as short labels close to the data material. The codes related 
to the corresponding justifications were then grouped together and more general categories were 
formed. Finally, we went through all the data material, coding utterances according to the newly 
constructed categories.

To answer our second research question, regarding participants proof views, we analyzed the 
individual interviews through an inductive and constant comparison approach, similar to the induc
tive approach described previously. During this process, we extracted and coded statements related to 
three questions: 1) what is a proof; 2) what is the purpose and role of proofs; and 3) what is a good 
argument in mathematics. We then summarized the text excerpts into specific categories that captured 
each pre-service teacher’s views related to the three questions.

Finally, to answer our third research question, we investigated possible patterns between the 
participants’ proof views and proof understanding. Here, we applied the principles of frequency 
analysis within qualitative content analysis (Mayring, 2015). For each category of proof views, we 
counted the number of different proof comprehension dimensions and proof validation categories 
employed by this sub sample of participants. Possible patterns were considered based on numerical 
trends in occurrences of proof comprehension dimensions or validation justifications along indirect 
and direct proofs or individual proofs (Mayring, 2015). Once we had identified possible patterns, we 
then investigated more closely if participants’ utterances during the task-based interviews could be 
linked thematically or theoretically to the proof view category. The main purpose was to identify 
possible hypotheses that could explain how and why proof understanding and proof views might be 
related. A short example illustrates this process. 10 out of 18 participants professed views that we 
referred to as proofs are direct. To determine whether this particular proof view was associated with 
understanding of proofs, we then counted the occurrences of how these ten participants compre
hended and validated each of the six proofs. As we explain later, we noted a clear pattern in how these 
ten participants comprehended and validated the indirect proofs.

To ensure a consistent and reliable coding procedure and analysis, immediately after the initial run- 
through of the material, each of the authors of this paper analyzed and coded ca. 30% of the data 
material individually. The results of these coding procedures were then compared and disparities 
resolved.

Limitations

There are at least two important limitations in this study that need to be mentioned. First, this was 
a small exploratory study in a particular cultural context. Norwegian pre-service teachers’ educational, 
and otherwise, background will of course influence their beliefs and knowledge about proofs. It is 
therefore important to exercise caution when generalizing these findings across cultural contexts. 
Second, situation-specific beliefs and knowledge was investigated in pairwise interviews. The partici
pants may have influenced each other, and introduced some bias in our analyses. However, we wanted 
this setting to be as natural as possible, with minimal interference from the interviewers during the 
participants’ work on the proofs. We decided therefore it was better to let the participants work and 
talk among themselves, instead of replying to direct questions from the interviewers. Furthermore, we 
noted several instances where pairs of participants disagreed and employed different approaches. This 
indicates that although the participants influenced each other, we were still able to observe important 
individual variation.
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Results

Pre-Service Teachers’ Proof Understanding

As previously mentioned, proof understanding consists in this study of proof validation and proof 
comprehension. The participants justified their proof validation in four different ways. The first 
category, because of logical conditions, refers to justifications based on the logical status of statements 
in the proof. The second category, because of empirical verification, refers to justifications based on 
numerical examples. The third category, because of algebraic verification, refers to justifications based 
on algebraic manipulations and verifications. The fourth category, proof is incomprehensible, was 
different as it referred to occurrences where the participants indicated that they could not make sense 
of the proof. For each of the four categories of proof validation, we also considered whether the 
participants’ assessment of the proof was correct or incorrect. For example, only four participants 
concluded proof 1A was incorrect (see Table 2).

Using the theoretical framework related to proof comprehension (Mejia-Ramos et al., 2012), we 
were also able to identify how the participants attempted to comprehend each of the six proofs. This 
was done by determining whether or not each participant used a particular comprehension dimension 
for a particular proof. We then counted the number of participants who employed each proof 
comprehension dimension at least once for each of the six proofs.1 Table 2 displays how many 
participants used each proof comprehension dimension for each of the six proofs.

Each of the 18 participants worked on three direct and three indirect proofs. There were therefore 
54 proof validation attempts of direct and indirect proofs respectively (Table 2). Not considering the 
participants’ justifications, they were right about the validity of the indirect proofs 34 times and the 

Table 2. Number of participants employing each proof comprehension dimension by each proof validation category.

N L1 L2 L3 H1 H2 H3 H4

Direct proofs
Proof 1A
Incorrect – Logical 4 4 4 4 4 4
Correct – Empirical 8 8 4 4
Correct – Algebraic 6 6 6 2
Proof 2B
Correct – Algebraic 10 10 10 4 2
Correct – Empirical 8 8 6 8
Proof 1C
Correct – Logical 8 8 4 8 8 6
Incomprehensible 10 10 10
Total 54 54 44 12 30 12
Indirect proofs
Proof 1B
Correct – Logical 2 2 2 2 2
Incorrect – Algebraic 6 6 6
Incorrect – Logical 10 10
Proof 2A
Correct – Logical 2 2 2 2 2
Incorrect – Algebraic 6 6 6
Incorrect – Logical 10 10
Proof 2C
Correct – Logical 2 2 2 2 2 2
Incorrect – Logical 16 16 6
Total 54 54 18 6 6 6 2

Note: L1-L3 and H1-H4 refer to the three local and four holistic proof comprehension dimensions respectively.

1For a more detailed explanation of how the proof comprehension framework can be used in these proof tasks we refer to Haavold 
(2021).
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direct proofs 30 times.2 For example, proof 2B is a correct proof of theorem 2, and all 18 participants 
concluded the proof was correct. Proof 1A, on the other hand, is an incorrect proof and only 
4 participants concluded that the proof was incorrect.

However, there were several noticeable differences in terms of proof validation and proof compre
hension. While L2 was used a total of 44 times in the participants’ work on the direct proof, it was used 
only 18 times in the work on the indirect proofs. Similarly, H2 was used 30 times for the direct proofs 
and only 6 times for the indirect proofs. We can also see from Table 2 that L3 and H3 were rarely used, 
but somewhat more prevalent for direct proofs than indirect proofs.

As for the participants’ proof validation of indirect proofs, 42 justifications were based on the 
logical conditions and 12 justifications were based on algebraic verification. For the direct proofs, on 
the other hand, only 12 justifications were based logical conditions, while algebraic verification and 
empirical verification were referenced 26 and 16 times respectively.

These findings indicate some differences in how the participants proof understanding of direct and 
indirect proofs. For direct proofs, they mostly justified their validation based on algebraic or empirical 
verification. This is also seen in the widespread use of comprehension dimensions L1 and L2, which 
refers to understanding of individual terms and statements in the proof and how claims follow each 
other in the proof. For indirect proofs on the other hand, the participants justified their validation 
mostly on logical conditions of the proof. Although this is not clear from Table 2, this was also seen in 
how the participants attempted to comprehend the indirect proofs. The reason is that Table 2 only 
shows correct uses of comprehension dimensions. On all of the indirect proofs, at least ten of the 
participants attempted to use L3, but they failed to understand the logical relation between the 
assumptions and conclusions in the proofs. For example, on proof 1B, ten of the pre-service teachers 
explicitly said that the proof proved a different statement than what was given in theorem 1. Based on 
these observations, it seems logical structure of indirect proofs caused particular problems for the pre- 
service teachers. Regarding the direct proofs, on the other hand, the participants tended to verify them 
by going through the proofs line by line, either algebraically or empirically.

Pre-Service Teachers’ Proof Views

Our analysis resulted in three categories regarding the nature of proofs (What is a proof?), two 
categories regarding the role of proofs (What is the purpose and role of proofs?), and two categories 
regarding arguments in mathematics in more general (What is a good argument in mathematics?). 
The purpose of the last question was to allow the participants to profess their views about arguments in 
mathematics in more general terms and not limited to proofs.

What is a Proof
The participants professed mixed and somewhat uncertain views about what a proof actually is and its 
nature. Most of the participants hesitated to provide definitions or defining characteristics of proofs. 
Nevertheless, we were able to identify three recurring themes.

Proofs are Based on Foundations. Although only two participants mentioned axioms explicitly, 14 
participants said that a proof is based or built upon on some set of foundations. Furthermore, these 
foundations are agreed-upon truths, and statements we don’t need to prove. Participant 1 articulated 
this as: “Proofs are built on some basic foundation . . . some statements we think are true. And then we 
build other statements on top of that.” The excerpt indicates that proofs start out with some set of 
statements we assume to be true, or axioms, and then other statements are “used to show what we need 
to show” as Participant 4 explained. Although none of the participants delved further into the nature 

2Here we mean that the participants’ assessment of the proof was aligned with the actual truth value of the proof. In Table 2, on the 
other hand, we refer to correct and incorrect simply as the participants’ assessment of the truth value of each proof.
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of these foundations, the participants’ statements indicate proof views related to an axiomatic proof 
scheme (Harel & Sowder, 2007).

Proofs are Formal and Abstract. Another common idea throughout the interviews, mentioned by 
12 participants, was that abstraction, rigor and correct use of mathematical language and notation are 
very important to mathematical proofs. As Participant 3 said: “mathematical proofs are formal and 
abstract . . . you have to use a very specific and correct type of language and symbols, and one 
statement comes after another and so on.” Similarly, Participant 7 commented that: “proofs are 
different from other things in mathematics. They are more general and they are very condensed, 
and they follow strict rule for what is allowed.” In both excerpts mentioned here, the participants 
explicitly highlight how proofs are distinctly characterized by abstraction and correct use of mathe
matical notation. Here, the participants’ proof views seem to related to the formalities of proofs 
(Hersh, 1993).

Proofs are Direct. A third recurring theme was that mathematical proofs are direct. Although none of 
the participants explicitly mentioned the term direct proof, 10 participants mentioned that proofs 
should take the assumption P and show that the conclusion Q is true through a sequence of 
deductions. Participant 6, for instance, said that: “When we prove we need to show that it works . . . 
that it is true. We have to prove that a claim is true. So we take the assumption and work step by step 
until we end up at the conclusion . . . and the conclusion is then true.” Here, the participant highlights 
how proofs are stepwise and straight-forward demonstrations of truth, from an assumption to 
a conclusion. Nine other participants made similar statements that are were in alignment with the 
structure of direct proofs. The fact that none of the participants mentioned other logical structures, 
such as indirect proofs, can indicate that the participants’ proof views are limited to proofs that are 
more straightforward. In the research literature, mathematics learners are often reported to not only 
dislike indirect proofs, but also experience a lack of conviction from them (S. A. Brown, 2018).

What is the Purpose and Role of Proofs
Although proofs have numerous functions – Hanna (2000) lists for example eight different functions – 
we identified only two recurring categories of the participants’ views about purpose or role of proofs.

Proofs as Verification. All 18 participants stated that the primary function of proofs was to demon
strate or verify the truth of a mathematical statement. Similar to what Knuth (2002) found, the pre- 
service teacher’s views could be further separated into two groups. Six participants suggested that 
proofs establish truth through deductive arguments, while 12 participants said that proofs established 
truth through more general convincing arguments. The former group can be exemplified by 
Participant 11 who said that: “Proofs show that something is true. They demonstrate it . . . by 
deduction. One statement follows logically from the previous statement.” For the latter group, 
a statement from Participant 1 exemplifies the verification aspect more generally: “Proofs are used 
to show that some things in math is correct or true . . . like, you have a hypothesis, and then a proof can 
verify it.”

Proofs as Explanation. Twelve participants mentioned explicitly the potential for proofs to provide 
an understanding of the underlying mathematical relationships, and not just an explanation of why 
a statement is true. Participant 11, for instance, said: “Proofs are important even in middle school. The 
formulas there have a background. A reason. They are not just there. Students need to understand why 
for instance two odd numbers equals an even number. They have to get the main idea behind it.” Here, 
Participant 11 explains that proofs can add to our understanding of important ideas in mathematics, 
and the relationship between them. The key word in the statement is “why,” which refers to a causal 
relationship that can explain the relationship between the sum of odd numbers and even numbers.
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What is a Good Argument in Mathematics
We identified two recurring themes of what is a good argument in mathematics

A Good Argument is Convincing. All 18 participants mentioned that a good argument is 
convincing. There were however two slight nuances of this idea. The first referred to the 
argument itself. Ten of the participants pointed to the argument as an object in itself, and said 
that a good argument is true. It is a statement, or sequence of statements, that are technically 
true as in the form of logical deduction. The other eight participants focused more on the 
recipient of the argument, and said that a good argument is persuasive and removes doubt 
about the truth of an assertion. Participant 12 for instance said that: “a good argument shows 
why something is true. It removes doubt . . . like if you have an assertion and you make 
a good argument, then it should convince you it’s correct.”

A Good Argument Can be Less Certain than a Proof. 16 of the participants said that a good 
argument is convincing. However, they also said that a good argument could be both 
convincing and, at the same time, less certain than a proof. Only a few participants provided 
an explanation for this. Participant 11 for instance said that: “A proof is a good argument, but 
a good argument is less certain than a proof. An argument is more individual and less formal 
and rigorous.” In other words, a majority of the participants made a distinction between 
proofs and good arguments, while at the same time expressing that convincing arguments do 
not have to be as certain as proofs – indicating a certain intuitionist inclination (Auslander,  
2008).

Patterns Between Pre-Service Teachers’ Proof Views and Proof Understanding

We identified two possible connections between the participants’ proof views and proof understand
ing. First, ten participants professed views we categorized as proofs are direct. These were the same ten 
participants who concluded that the indirect proofs 1B and 2A were incorrect based on logical 
conditions, and ten of the 16 participants who concluded that proof 2C was incorrect based on logical 
conditions. This subgroup of participants used proof comprehension dimension L1 for all three 
indirect proofs. We can see in Table 2 that this subgroup of participants also differs from the rest of 
the overall sample, as the other eight participants validated and/or comprehended the indirect proofs 
differently. This indicates a possible relationship between the participants’ proof views and their proof 
understanding. Statements made by the participants during their work on the indirect proofs might 
shed some light on this possible pattern. A majority of the ten participants stated that they did not 
understand how the indirect proofs could assume conditions that challenged the theorem statements. 
For example, working on proof 2C, Participant 14 said that “(it) assumes that the square root of two is 
rational, but here (points to statement in task 2) it says that it is irrational. . . how can we assume 
something that is incorrect?.”

Second, eight participants professed views we categorized as a good argument is convincing and 
removes doubt about the truth of an assertion. These were also the same, and only, eight participants 
who concluded that proof 1A and 2B were correct based on empirical verification. Although the data 
cannot demonstrate definitely that the eight participants hold what is known as an empirical proof 
scheme (Harel & Sowder, 2007), this structural pattern between proof views and proof understanding 
indicate that empirical verification is sufficient to convince them of the truth of an assertion. Some of 
the participants’ statements during work on proof 1A and 2B lend support to this hypothesis. For 
example, working on proof 1A, Participant 2 and Participant 3 both used proof comprehension 
dimensions L1, L2, and H2. Nevertheless, validating the proof, Participant 2 explicitly stated that 
“proof 1A is correct, because it worked for all numbers we tried.”
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Discussion

In this exploratory study, we posed three research questions. First, we investigated what characterizes 
Norwegian pre-service teachers’ situation-specific knowledge of and beliefs about direct and indirect 
proofs, which we throughout this paper has referred to as proof understanding. As much of the 
previous literature (e.g. Antonini & Mariotti, 2008), we found that indirect proofs seem to be more 
challenging than direct proofs. We also noted that the participants seemed to emphasize the logical 
structure of the indirect proofs, while the direct proofs were evaluated through algebraic and empirical 
verification.

Based on our analyses, it seems the meta-logical structure of indirect proofs caused particular 
problems for the pre-service teachers, while the direct proofs were evaluated fairly straight-forward 
by checking them line-by-line either empirically or algebraically. In the context of the proof 
comprehension framework used in this study (Mejia-Ramos et al., 2012, the participants focused 
almost exclusively on local dimensions of proofs, and less on the holistic dimensions related to big 
ideas of the proofs. Although it is difficult to point to one particular cause of this apparent trend, 
statements made by the participants during the interview may shed some light on this issue. 
During their work on the indirect proofs, most participants said at some point that the proofs 
were unclear and even puzzling, as the assumptions of the proofs contradicted the statements in 
the theorem. Although several explanations for this observation is found in the literature, 
Sierpinska’s (2007) consistency hypothesis offers a particularly pertinent explanation. The question 
of contradiction, as in the case of indirect proofs, depend on conceptual meaning. This means that 
if a particular statement is considered meaningless, then the issue of consistency and contradiction 
will be meaningless as well. In this study, it seemed several participants considered the assump
tions made by the indirect proofs to be unfounded and without cause. As such, the participants 
seemed to be unwilling to further consider both the big idea of the proof and the correctness of 
each line-by-line statement of the proof.

In our second research question, we asked what characterizes pre-service teachers’ proof views, 
which we conceptualized as general professed knowledge of and beliefs about proofs. Our findings 
indicate that the participants view proofs as formal and abstract, that proofs are based on foundations, 
and all 18 participants mentioned that the purpose of proofs was to establish the truth of a statement. 
Furthermore, the analysis indicate that most of the participants view good arguments as less certain 
and formal than mathematical proofs. This suggests the participants’ general knowledge of and beliefs 
about mathematical proofs, or proof views, are somewhat narrow and rigid, as much of similar 
research indicate (Knuth, 2002; Szydlik et al., 2003). However, unlike many previous studies that 
have concluded that teachers do not value the explanatory role of proofs (e.g. Harel & Sowder, 2007), 
we found that a majority of the participants in this study explicitly mentioned the potential for proofs 
to provide an understanding of the underlying mathematical relationships. Similarly to what Mingus 
and Grassl (1999) and Ko (2010) concluded, the results of this study therefore show that teachers, 
including pre-service teachers, do not necessarily have homogenous proof views related to the 
explanatory role of proofs.

Our third research question asked how proof understanding is related to proof views. In other 
words, how situation-specific knowledge and beliefs about proofs are related to more general and out- 
of-context knowledge and beliefs about proofs. The analysis indicated two apparent patterns. First, we 
noticed that the participants who empirically validated proofs were the same who also professed views 
that a good argument is an argument that is convincing. We cannot conclusively say that the 
participants hold an empirical proof scheme (Harel & Sowder, 2007), and consider empirical valida
tion strictly correct. However, this pattern indicates that these participants were convinced by 
empirical arguments, and that an empirical argument is sufficient for removing doubt about the 
truth of an assertion. Second, more than half the participants professed views that proofs should be 
direct. These were the same participants who struggled with the logical conditions of the indirect 
proofs. As mentioned earlier, the research literature generally indicate that mathematics learners often 
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dislike indirect proofs and generally find them unconvincing. In this study, we found that many of the 
participants did not just struggle to understand indirect proofs, they also professed views that are 
contradictory to indirect proofs on a meta-logical level. These two apparent patterns indicate that 
some beliefs related to proofs and indirect proofs seem to be particularly central to some of the 
participants.

As we noted earlier, knowledge and beliefs are organized in clusters around specific situations and 
contexts (Green, 1971). According to Rokeach (1968), central and important clusters tend to be more 
consistent across settings and situations. These are the clusters for which the individual has complete 
consensus. Less central, and important, clusters tend be accompanied by more disagreement and 
inconsistencies. Based on this we can speculate that particular beliefs and knowledge that are 
consistent across situations and contexts tend to be more central and important to the individuals. 
In this study, we noted that there were two sets of beliefs and knowledge about proofs that were aligned 
across both a situation-specific context and a more general context. We suggest therefore that the 
beliefs and knowledge related to the direct nature of proofs and empirical proof scheme, respectively, 
might be particularly central and important to some pre-service teachers. If these clusters of knowl
edge and beliefs are central to the individual, they might be held more strongly than others and 
therefore also more difficult to challenge and modify (Op’t Eynde et al., 2002).

Somewhat surprisingly, the analysis did not reveal any other patterns between the participants’ 
situation-specific knowledge and beliefs about proofs (proof understanding) and out-of-context 
knowledge and beliefs about proofs (proof views). For example, 12 participants professed views that 
highlighted the explanatory purpose of proofs. It would not have been surprising if these 12 partici
pants had displayed a propensity for using the holistic comprehension dimensions in their situation- 
specific work on proofs. However, we were unable to identify any such or other pattern between this 
particular proof view and proof understanding. Although such a finding may seem unexpected at first, 
the literature does provide plausible explanations. Due to the complexity of beliefs and knowledge 
systems, such as clustering and centrality, research often reports a discrepancy between general out of 
context expressed beliefs and actual practice (Philipp, 2007). We may therefore speculate that the 
participants’ other professed proof views – i.e. their general and out-of-context beliefs and knowledge – 
were more peripheral and less important. Here, it may be possible to suggest that the participants were 
not able to recognize the big ideas (Mejia-Ramos et al., 2012) and the explanatory aspects of the proofs. 
However, although we did not investigate this issue further, none of the proofs in this study relied on 
methods or concepts outside the scope of the known contents of the participants’ previous mathema
tical training.

These findings do not tell us why some clusters of belief and knowledge seem to be more central 
and important to the participants. However, according to much of the literature, there are two primary 
sources for knowledge and, in particular, beliefs: emotion packed experiences and cultural transmis
sion (Pajares, 1992). In both cases, they are a result of learners’ experiences. For pre-service teachers, 
and in-service teachers, it is particularly the second source, cultural transmission, that is relevant for 
teacher education practices. Cultural transmission contributes to the formation of beliefs and knowl
edge that may be held at a subconscious level and can be thought of as resulting from the “hidden 
curricula” of our everyday lives. People tend to be unaware of the culturally transmitted beliefs they 
hold and limitations of knowledge, taking them for granted because they have neither examined nor 
discussed them (Pajares, 1992). The lack of attention to deductive reasoning and the issue of learners’ 
empirical proof schemes has, in this context, received a lot of attention in the research literature 
(e.g. G. J. Stylianides et al., 2017). However, the issue of indirect proofs is less recognized. Given the 
importance of cultural transmission and hidden curricular, it may be the case that indirect proofs are 
not more complex or hard than direct proofs. Instead, learners’ difficulties related to indirect proofs 
may be a result of a lack of attention to indirect proofs in learners’ mathematical education. There is 
some evidence for this in the research literature. For example, in a somewhat recent well-designed 
survey study, S. A. Brown (2018) found that length, complexity and familiarity were more important 
for students’ successful proof validation than proof type – i.e. direct vs. indirect proof. In other words, 
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adjusting for the scope and depth of proofs, previous exposure to the different types of proofs was the 
primary factor that impacted whether students were able to validate and understand proofs. In this 
study, we used indirect and direct proofs of comparable length and complexity, meaning that a lack of 
familiarity with indirect proofs could be the main cause of the participants’ difficulties with indirect 
proofs.

Implications

Although the focus in this study was observational patterns in pre-service teachers’ proof views and 
proof understanding, it is possible to propose certain implications for the teaching and learning of 
indirect proofs. First, it seems exposure and familiarity are key factors for the development of learners’ 
beliefs about and knowledge of proofs. This was also seen in a somewhat recent teaching experiment. 
Amit and Portnov-Neeman (2017) observed that explicit attention to the meaning and structure of 
indirect proofs was highly effective even with young students. Therefore, explicit attention to indirect 
proofs is arguably needed in mathematics instruction if we want learners to become better at under
standing, using and appreciating indirect proofs. Second, as Sierpinska (2007) argues, sensitivity to 
contradictions requires meaning. This implies that if we want learners to develop consistent and 
productive beliefs and knowledge about indirect proofs, mathematics instruction must also focus 
explicitly on the purpose and meaning of contradictions in indirect proofs.
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Appendix A: Translated Interview Guide

General nature of mathematics

1. What is mathematics? How would you describe it?
2. Is mathematics the same today as it was 500 years ago? Does mathematics evolve?
3. Where can we find mathematics?
4. Do you have any thoughts on why humans started doing mathematics?
5. Is mathematics something humans invent or discover? Why do you think so?
6. Does mathematics exist independent of humans? Why?
7. Can you say something about your own experience of mathematics as a student in school?

Proofs and argumentation in mathematics 

1. What is a proof in mathematics?
2. How would you describe proofs in mathematics?
3. What is the purpose/role of proofs in mathematics?
4. What is a proof in school mathematics?
5. What is the purpose/role of proofs in school mathematics?
6. If you compare proofs in mathematics with proofs in other fields (such as law), is there a difference? If so, what is 

the difference?
7. How does one make/create proofs?
8. What does the word axiom mean?
9. What does logical validity mean?
10. What is a good argument in mathematics?
11. Is there any difference between a good argument and proofs in mathematics? If so, what?
12. What are the roles of intuition and logic in mathematics? In proofs?
13. Can you say something about your own experience of proofs as a student in school?
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