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Abstract 

This thesis presents a comprehensive wind resource assessment for the expansion of the Fakken 

wind park in Norway, leveraging Light Detection and Ranging (LiDAR) technology. The study, 

conducted from December 2022 to June 2023, aims to detail LiDAR measurement 

methodologies, analyze collected data, and estimate wind energy production. 

Key findings reveal predominant wind directions and speeds, with January 2023 exhibiting 

peak speeds. While challenges include deviations between LiDAR and met mast data, 

promising correlations suggest LiDAR's potential as a wind resource assessment tool. Statistical 

evaluations and Weibull distribution analyses support the reliability of LiDAR data for wind 

energy estimation. 

Future research directions include validating LiDAR performance over longer periods and 

refining data processing techniques for enhanced accuracy. 

This thesis emphasizes the importance of comprehensive wind resource assessment for 

informed wind energy development decisions, with LiDAR technology offering promising 

opportunities for accuracy and efficiency. 
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1 Introduction 

1.1 Background 

The world energy demand is on the rise being driven by factors such as population increase, 

industrialization, and technological advancements. This increasing demand comes with 

significant environmental concerns, particularly in relation to the reliance on conventional 

energy sources like fossil fuels. This reliance imposes a burden on our environment, primarily 

through the emission of carbon dioxide (CO2) aggravating climate change and environmental 

degradation (Panwar et al., 2011). 

The transition to utilizing renewable energy sources and adopting ethical energy production 

practices offers a viable solution to address these pressing issues. Among renewable energy 

sources, wind power has emerged as a primary contender, with its energy capacity projected to 

steadily grow despite challenges with high material costs and supply chain constraint. 

According to (IEA, 2024), the renewable electricity capacity for wind power is estimated to 

rise from 498GW to 700GW within 2023 to 2028. This growth shows the pivotal role of wind 

energy in the global shift towards renewable energy, thereby aligning with efforts to reduce 

reliance on fossil fuels.  

To efficiently harness wind energy, precise and comprehensive wind measurements also known 

as wind resource assessment, are essential. Traditionally, these measurements have been 

conducted using a cup anemometer in conjunction with a wind vane, typically producing a 2D 

wind speed vector in the horizontal plane (van Dooren, 2022). This setup is commonly found 

on meteorological towers/meteorological masts also known as met masts in the wind energy 

sector (Neto & Castelao, 2023; Vasiljević et al., 2020). Nowadays, there is an increasing 

acceptance of using Light Detection and Ranging (LiDAR) technology as an alternative to the 

traditional mast-based sensors such as cup anemometers and ultrasonic anemometers (van 

Dooren, 2022). LiDAR offers several advantages over the traditional method. This remote 

sensing device can measure wind speeds at heights from few meters to multiple kilometers. 

Additionally, LiDAR is easily deployable, cost-effective, and does not require a setup permit 

(Menke et al., 2019). 

Norway, with its extensive coastlines and complex terrain, boasts of significant wind power 

potential that remains largely untapped. The country’s unique geography presents both 



 

 

Page 2 of 81 

 

challenges and opportunities for harnessing wind energy effectively. The wind parks located 

around complex terrain close to the coastline usually offer promising conditions for wind 

energy development but pose a challenge for accurate wind resource assessment (Berge et al., 

2006).  

As LiDAR becomes increasingly utilized for wind measurements in complex terrain, certain 

challenges persist due to the non-homogenous nature of wind flow, posing difficulties in data 

reconstruction. Moreover, the heterogeneity resulting from wind flow in complex terrain 

diminishes the representativeness of measurements obtained from traditional anemometers 

(Bradley et al., 2015; Clifton et al., 2018). Addressing these challenges, common approaches 

for wind resource assessment in complex terrain include integrating LiDAR and met-mast 

measurements with appropriate flow models. Additionally, deploying two or more LiDARs 

with scanning capabilities enables comprehensive assessment of wind conditions over a large 

area (Clifton et al., 2018; Vasiljević et al., 2020). 

 

1.2 Former research  

This subsection will provide an overview of the existing body of research related to wind 

measurements and LiDAR technology. The aim is to highlight the importance of reviewing 

former research to identify gaps, build upon existing knowledge and situate this study within 

the broader research landscape. 

The detailed knowledge of wind resources is essential in the developmental and operational 

stages of a wind park site. Numerous studies have investigated wind measurements using 

established instruments such as cup anemometers, sonic anemometers, and wind vanes. These 

instruments are commonly mounted on the nacelle wind turbines or on nearby masts at the hub 

height of the wind turbines (Allik et al., 2014; Lang & McKeogh, 2011). The rationale for 

positioning the cup anemometers at a height close to the wind turbine is to ensure an undistorted 

wind flow is  measured over the site and this is vital for the turbine micro-siting (Kim et al., 

2016; Lang & McKeogh, 2011).  

A study by (Allik et al., 2014) was conducted to investigate the influence of the wind turbine 

rotors on the wind data measurements obtained from the nacelle-mounted anemometers. The 
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study took place at wind park sites located in North Estonia and the Estonian island, where two 

10kW turbines were examined. These turbines had hub heights of 18 meters and 16 meters, 

with two different anemometers placed on each turbine’s nacelle. To compare and validate the 

data, reference measurement was obtained from two measurement masts positioned at 2-4 times 

of the wind turbine diameter. These masts were equipped with three anemometers at multiple 

heights (18 m, 26 m, 40 m) and a wind direction sensor at a height of 40 meters. The study 

concluded that the rotation of the rotor blades significantly impacts the wind data measurements 

from the nacelle-mounted anemometers during the wind turbine operation. As a result, the 

average wind speeds recorded from the nacelle-mounted anemometers were significantly lower 

than those from reference mast anemometers. Despite this difference, strong correlations were 

observed between nacelle-mounted anemometers readings and the reference data (Allik et al., 

2014). 

In another article published by (Schneemann et al., 2014), the performance of a 2D multi-

LiDAR was assessed through comparison with a met mast cup anemometer, focusing on 

average wind speed, wind direction, and turbulence intensity measurements. The measurement 

campaign took place in the north of Germany using two long-range Doppler LiDARs and 

anemometers, along with wind vanes, which were mounted on a 100 m high meteorological 

mast. The results showed a good correlation between both wind speeds and directions, as well 

as turbulence measurements in free sectors. However, some shortcomings remain in applying 

LiDAR in turbulence measurement, although there is significant potential for turbulence 

analysis (Sathe & Mann, 2013; van Dooren, 2022). 

In an article by (Kim et al., 2016), a measurement campaign was conducted to evaluate the 

reliability of ground-based LiDAR for wind measurements compared to met-masts across 

various terrain conditions, focusing on the impact of terrain complexity on measurement 

accuracy. Three measurement sites in Korea were evaluated using a Ruggedness Index (RIX), 

with computational fluid dynamics (CFD) analysis conducted at one of the sites with the highest 

RIX which is characterized as a complex terrain. Data filtering was implemented between 

LiDAR and met-mast measurements to ensure data comparability. The study concluded that 

while there is strong correlation between wind measurements from LiDAR and metrological 

masts, LiDARs have a high chance of wind speed errors over complex terrain. However, 
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techniques such as CFD analysis and LiDAR-based estimation of detailed wind profiles offer 

potential solutions to correct these measurement biases (Clifton et al., 2018; Kim et al., 2016). 

In conclusion, exploring existing research in wind measurement methodologies and LiDAR 

technology reveals a dynamic landscape marked by both traditional instruments used for wind 

measurement and cutting-edge innovations. From the studies examined on this subject it is seen 

that there is a complex interaction between wind dynamics, measurement techniques, and 

environmental factors.  

These investigations emphasize the importance of comprehensive wind resource assessment 

for effective wind park development and operation. While traditional instruments remain 

integral in the wind energy sector, the emergence of LiDAR technology presents promising 

opportunities for enhanced accuracy and efficiency. 

 

1.3 Aim of Thesis  

The aim of this thesis is to conduct a comprehensive assessment of wind resources for the 

expansion of the Fakken wind park, situated in Norway. Established in 2012, the Fakken wind 

park features 18 Vesta V90 3MW wind turbines with an average yearly production of 138GWh, 

owned by Troms Kraft Production (Troms, 06.11.2023). Considering the potential for 

expansion, a collaborative effort between UiT, UiB, and Troms Kraft in spring 2023 involved 

the installation of two pulsed long-range Doppler LiDARs within the park's terrain to measure 

wind phenomena. 

Wind resource assessment is crucial prior to wind power plant construction, often initiated by 

identifying potential sites and conducting measurement campaigns using meteorological masts. 

The measurement campaign done on the Fakken wind park spanned from December 2022 to 

June 2023. This thesis primary objectives are to detail the methodologies employed to: describe 

LiDAR measurement for wind, analyze data from the LiDAR at the Fakken wind park, analyze 

wind profiles and resources, and estimate wind energy production. 
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1.4 Outline of Thesis 

Including the introduction section, this thesis is structured to consist of six chapters: Theoretical 

Background, Data and Methods, Results and Discussion then followed by the section of 

Conclusion and Future Work 

Chapter 2: - This chapter offers a theoretical foundation for the research methodology, focusing 

on concepts such as wind generation, vertical wind distribution, wind energy principles, wind 

turbine operations, wake losses, micro-siting strategies, visualization methods for wind data, 

and the significance of LiDAR technology. 

Chapter 3: - This chapter provides a comprehensive overview of the data collection process 

involving LiDAR, along with an exploration of statistical signal processing techniques applied 

to wind measurements. It delves into the filtering methodology utilized for processing LiDAR-

measured data employed in the research. Additionally, it discusses the experimental setup 

deployed on-site and the various data analysis methods employed to extract insights from the 

collected data. 

Chapter 4: - In this chapter, the focus is on presenting and discussing the results obtained from 

the study. It begins with an analysis of wind measurements derived from LiDAR scans, 

providing insights into the spatial and temporal variations of wind patterns. Following this, the 

correlation between LiDAR measurements and those obtained from the met mast is examined, 

shedding light on the consistency and reliability of LiDAR data. Finally, the chapter explores 

the estimation of wind energy production based on LiDAR wind measurements, offering 

valuable insights into the potential energy yield of the studied site. 

Chapter 5: - This concluding chapter will include a comprehensive summary of the study’s 

findings and key insights. Also, the chapter will offer some reflections on the implications of 

the findings and their significance in a greater context. Furthermore, this chapter will outline 

potential avenues for future research and development in this field. 
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2 Theoretical Background 

2.1 Wind in the atmosphere 

Renewable energy harnessed from the Earth's wind primarily originates from the sun, which 

drives global wind patterns. The uneven heating of the Earth's surface by solar radiation creates 

pressure differences, resulting in the generation of winds (Manwell et al., 2010b; Wei, 2010). 

As the Earth orbits the sun, the equatorial regions receive solar radiation more directly, causing 

greater heating compared to the polar regions. This discrepancy in heating establishes a 

horizontal temperature gradient from the equator to the poles, thereby creating a horizontal 

pressure gradient that leads to a pressure gradient force (Ahrens, 2019; Wei, 2010).  

This pressure gradient force (PGF), which is vertically dominant, can be counteracted by the 

downward gravitational force. Additionally, other forces influencing the horizontal movement 

of air include the Coriolis force due to Earth’s rotation and frictional forces acting on the Earth’s 

surface (Ahrens, 2019; Manwell et al., 2010b). The pressure gradient force drives the movement 

of air, with the pressure force on air per unit mass denoted as 𝐹𝑝 is defined as:  

                                                       𝐹𝑝 =
−1

𝜌

𝜕𝜌

𝜕𝑛
                                                                (2.1) 

where ρ represents air density, and n represents the direction or distance normal to lines of 

constant pressure also known as isobars. The term 
𝜕𝜌

𝜕𝑛
 denotes the pressure gradient normal to 

the lines of constant pressure, indicating the rate of change of air density with respect to distance 

normal to the isobars (Manwell et al., 2010b). When the air is solely influenced by the pressure 

gradient force, wind flows from regions of higher pressure to low pressure. However, this 

phenomenon changes due to the Coriolis force, which deflects the path of the air (Ahrens, 

2019). 

2.1.1 Coriolis effect on wind 

The Coriolis force (𝐹𝑐) is a fictitious force resulting from the Earth's rotation, which deflects 

the direction of atmospheric movements (Wei, 2010). In the Northern Hemisphere, winds are 

deflected to the right, while in the Southern Hemisphere, they are deflected to the left  (Ahrens, 

2019; Persson, 1998; Wei, 2010). The magnitude of the Coriolis force varies with the Earth’s 

latitude, being zero at the equator and reaching its maximum at the poles. Additionally, the 
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Coriolis force is influenced by the Earth’s rotation and wind speed; slower winds experience 

minimal deflection, while stronger winds are deflected more (Ahrens, 2019; Wei, 2010).  

This Coriolis force can be expressed as: 

                                                       𝐹𝑐 = 𝑓𝑈                                                                (2.2) 

where U is the wind speed and f  is the Coriolis parameter given by 𝑓 = 2𝜔 𝑠𝑖𝑛(∅). Here, Φ 

represents the Earth’s latitude and ω represents the angular rotation of the Earth. It is apparent 

from the expression that the magnitude of the Coriolis force depends on both wind speed and 

latitude. Additionally, the direction of the Coriolis force is perpendicular to the direction of air 

motion.  

 

Figure 2-1: Resultant geostrophic wind from pressure gradient force (PGF) and Coriolis force (𝐹𝑐) (Manwell et 

al., 2010b). 

 

Figure 2-2: Atmospheric circulations with the convection cells (Wei, 2010). 
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In Figure 2-1, the combined influence of the pressure gradient force (PGF) and Coriolis force 

(𝐹𝑐) results in the geostrophic wind, which flows parallel to isobars (Manwell et al., 2010b). In 

the Northern Hemisphere, the geostrophic wind deflects to the left under lower pressure and to 

the right under higher pressure. When airflow becomes geostrophic, isobars ideally become 

straight and evenly spaced, with wind speed remaining relatively constant. However, in reality, 

isobars are rarely perfectly straight or uniformly spaced, and the geostrophic wind serves as an 

approximation of actual wind behavior, aiding in understanding wind patterns aloft (Ahrens, 

2019). 

In large-scale atmospheric movements, the combined effects of the pressure gradient force 

(PGF) and the Coriolis force (𝐹𝑐) lead to the division of the single meridional cell into three 

distinct convectional cells in each hemisphere. These convection cells, depicted in Figure 2-2, 

include the Hadley cell, the Ferrel cell, and the Polar cell. Each cell exhibits unique circulation 

patterns driven by differential heating and the Earth's rotation (Wei, 2010). 

2.1.2 Effect of pressure systems 

Pressure systems are regions that indicate variations in atmospheric pressure within an airflow.  

High- and low-pressure systems are the two forms of these pressure systems. They are formed 

by atmospheric processes such as temperature differences between the atmosphere, water and 

land, upper-level disturbances and differential solar heating (Spiridonov et al., 2021a). The 

distribution of these pressure systems defines the local weather within an area. According to 

(Holton, 2004; Martin, 2006; Thompson, 2002; Wallace & Hobbs, 2006a) low-pressure 

systems (also known as cyclone) and high-pressure systems (also known as anticyclone) are 

used to describe organized atmospheric systems characterized by circular flow areas with low 

and high atmospheric pressure, respectively. Cyclones are typically associated with unstable 

atmospheric conditions and can be identified on weather charts by tightly spaced isobars, while 

anticyclones occur where the weather is dominated by stable conditions, characterized by a 

large area of widely spaced isobars (Spiridonov et al., 2021b). 

Winds in the low-pressure system (LPS) within the Earth’s northern hemisphere blow in a 

counterclockwise direction, while they blow in a clockwise direction in the southern 

hemisphere. When air flows into a low-pressure area from all directions, the Coriolis force 

causes the cyclonic flow to deflect to the right, creating a counterclockwise rotation around the 
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center of the low-pressure system, as shown in Figure 2-4a. Convergence occurs at the bottom 

area of the LPS, where airflow from different directions collides near the center and is forced 

to rise (Spiridonov et al., 2021b). This rising air cools and condenses, leading to the formation 

of large clouds, strong winds and heavy rainfall, as illustrated in Figure 2-3. Near the Earth’s 

surface, friction is dominant and causes a redistribution of airflow within the atmosphere by 

changing its direction. The movement of air occurs at an angle normal to the low-pressure area, 

affirming the phenomenon of the resultant wind blowing in the counterclockwise direction in 

the northern hemisphere (Spiridonov et al., 2021b). 

In a high-pressure system (HPS), winds blow in a clockwise direction in the Earth’s northern 

hemisphere, and blow in a counterclockwise direction in the southern hemisphere. The 

anticyclonic air typically sinks, creating an area of higher pressure at the surface. As illustrated 

in Figure 2-3, cloud formation is constrained under these conditions, and winds are often quite 

light, resulting in stable and sunny weather. There is convergence in the upper layers, which 

causes air to descend to the surface of high-pressure areas. As seen in Figure 2-4b, the air 

diverges at the center of the high-pressure system, and the Coriolis force deflects the air to the 

right, creating a clockwise rotation around the center of the system (Spiridonov et al., 2021b). 

 

Figure 2-3: Concept of low- and high-pressure systems. 
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(a) Air flow in the cyclone (low-pressure system)                 (b) Air flow in an anticyclone (high-pressure 

system) 

Figure 2-4: Low- and high-pressure systems in Earth’s northern hemisphere (Spiridonov et al., 2021b). 

2.1.3 Vertical distribution of wind 

The vertical distribution of wind is an essential aspect of atmospheric dynamics. Wind velocity 

fluctuates across different locations and over time. As shown in Figure 2-5a, the actual wind 

speed and direction tends to deviate from their average values because of turbulence.  From 

Figure 2-5b, it is noticeable that the wind speed increases with height which is a phenomenon 

known as wind shear or vertical wind profile (Van Der Tempel, 2006). 

 

(a) 3D turbulent wind  profile                                            (b) Wind shear profile 

Figure 2-5: Changes of wind speed with height (Van Der Tempel, 2006). 
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The atmospheric boundary layer (ABL), estimated to be 0.3 to 3km thick and is placed in the 

lower part of the Earth’s atmosphere, extending up to 2km above the surface. The air flow in 

this layer is influenced by friction at the ground, topography and the vertical distribution of 

temperature and pressure (Gasch & Twele, 2011b; Stull, 2017; Van Der Tempel, 2006).  

As illustrated in Figure 2-6, the ABL consists of three vertical layers. The lowest layer is 

laminar in nature, only a few millimeters thick, which is not particularly relevant to the wind 

energy industry. Above it lies the Prandtl layer, or surface layer, which extends up to 100 

meters. This layer is dominated by turbulent forces, resulting in significant wind shear. The 

third layer is the Ekman layer, where the Coriolis force affects wind direction with increasing 

height (Bilal, 2016). Above the atmospheric boundary layer, the geostrophic winds are not 

influenced by the friction at the ground. The height of the ABL can vary widely depending on 

ground roughness, vertical temperature profile and wind speed. For instance, on a clear night 

with gentle winds, the ABL may be low as 100 meters, while strong solar irradiance on a warm 

summer day can extend it up to 2000 meters (Gasch & Twele, 2011b).   

The Prandtl layer is meteorologically defined as the layer where the turbulent vertical fluxes 

of momentum, heat, and moisture deviate less than 10% from their surface values, and where 

the effect of the Coriolis force is negligible (Stefan, 2018b). Typically, the layer accounts for 

only 10% of the atmospheric boundary layer’s height. The height of the Prandtl layer also varies 

with the vertical temperature profile. Most wind turbines operate within the Prandtl layer, and 

the extractable energy, as well as the loads on wind turbines, depend significantly on the 

properties and intensity of the air mass within this layer (Gasch & Twele, 2011b). 

 

Figure 2-6: Atmospheric boundary layer (ABL) schemes. 
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Wind shear typically influences wind resource assessment and the design of wind turbines. The 

representation of wind shear for wind resource assessment can be quite complex and dependent 

on  factors such as atmospheric stability, surface roughness, nature of terrain, wind speed, 

height above ground and the vertical temperature profile (Gasch & Twele, 2011b; Ray et al., 

2006). Understanding the impact of wind shear in the wind energy industry is essential, as it 

affects power availability at different wind turbine hub heights and influences the cyclic loading 

on turbine blades caused by variations in the wind field’s vertical direction (Manwell et al., 

2010b; Ray et al., 2006). Also, the knowledge of the wind shear’s shape is important for 

determining the energy yield of a wind turbine. 

The use of kite anemometers mounted on meteorological towers (met towers) is an established 

technique to accurately obtain wind shear profiles on a proposed site. Other techniques, such 

as remote sensing devices (LiDAR and SODAR) and radiosondes, have gained prominence in 

the industry. Their main purpose is to measure wind speeds at various turbine hub heights, 

typically ranging from 60m to 100m. When measurements from lower met tower heights are 

not close to turbine hub heights, wind shear models can be used to extrapolate wind speeds to 

desired/target hub height (Ray et al., 2006). 

The aforementioned wind shear models, the logarithmic profile (log law) and power law profile, 

are mathematically derived to describe the shear effect on the mean wind speed at a particular 

height (Van Der Tempel, 2006).   

The log law originates from the principles of boundary layer flow in fluid mechanics and 

atmospheric research. It is expressed below in Equation 2.3: 

                                                   
𝑈(𝑧)

𝑈(𝑧𝑟)
=

𝑙𝑛 (
𝑧 

𝑧𝑜
)

𝑙𝑛 (
𝑧𝑟𝑒𝑓

𝑧𝑜
)
                                                               (2.3) 

𝑈(𝑧) mean wind speed at target height z [m/s] 

  𝑈(𝑧𝑟𝑒𝑓) mean wind speed at reference height zref [m/s] 

     𝑧𝑟𝑒𝑓 reference height [m] 

    z target height [m] 

    𝑧𝑜  surface roughness length [m] 
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where z  and zref are the target and reference heights, respectively. 𝑈(𝑧) and 𝑈(𝑧𝑟𝑒𝑓) represent 

the mean wind speed at target height z  and the mean wind speed at reference height 𝑧𝑟𝑒𝑓, and 

𝑧𝑜 is the surface roughness length (Manwell et al., 2010b; Ray et al., 2006). 

Assuming a smooth surface, the log law can be expressed as shown in Equation 2.4: 

                                            𝑈(𝑧) =
𝑈∗

𝑘
𝑙𝑛 (

𝑧

𝑧𝑜
)                                                                (2.4) 

𝑈(𝑧) mean wind speed at target height z [m/s] 

     𝑈∗ friction velocity [m/s] 

     𝑘 Von Karman’s constant [-] 

    z target height [m] 

    zo surface roughness length [m] 

 

In this equation, 𝑈∗ represents the friction velocity, 𝑘 is Von Karman’s constant which equals 

0.4, and 𝑧𝑜 is the surface roughness length characterizing the roughness of the ground terrain 

(Manwell et al., 2010b). The surface roughness length 𝑧𝑜 is the parameter used to represent 

shear and the height above ground level where the wind speed is theoretically zero. The surface 

roughness length tends to vary according to the type of terrain. Table 2-1 shows some 

approximate surface roughness lengths for different terrain types. 

Table 2-1 – Approximate surface roughness length for different terrain types (Saheb et al., 2014). 

Terrain Description Surface Roughness Length  zo [m] 

Very smooth, ice or mud 0.00001 

Calm open sea 0.0002 

Blown sea 0.0005 

Snow surface 0.003 

Lawn grass 0.008 

Rough pasture 0.01 

Fallow field 0.03 

Crops 0.05 

Few Trees 0.10 

Many trees, few buildings 0.25 

Forest and woodlands 0.50 

Suburbs 1.50 

City center, tall buildings 3.00 
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The power law represents a simple model for the vertical wind speed profile. It can be 

empirically developed, and its basic form is in Equation 2.5: 

                                         
𝑈(𝑧)

𝑈(𝑧𝑟𝑒𝑓)
= (

𝑧

𝑧𝑟𝑒𝑓
)𝛼                                                               (2.5) 

The equation variables such as 𝑈(𝑧), 𝑈(𝑧𝑟𝑒𝑓), z, and 𝑧𝑟𝑒𝑓 remain the same as defined earlier, 

with 𝛼 representing the power law exponent. Based on empirical results, 𝛼 is commonly taken 

as 1 7⁄ , indicating agreement between wind profiles and flow over flat terrain (Manwell et al., 

2010b).  

Research has shown that empirical relationships for the power law exponent α depend on 

various parameters, including wind speed, surface roughness length, time of day, season, 

elevation, temperature, nature of terrain, location and numerous thermal and mechanical mixing 

parameters (Manwell et al., 2010b; Ray et al., 2006; Van Der Tempel, 2006; Wei, 2010). The 

power law exponent tends to be lower during the daytime and higher at night. Table 2-2 shows 

the different power law exponent values for various types of terrain (Bechrakis & Sparis, 2000). 

Table 2-2 – Power law exponent values for different types of terrain (Bechrakis & Sparis, 2000). 

Terrain description Power law exponent, α 

Smooth, hard ground, lake or ocean 0.10 

Short grass on untilled ground 0.14 

Level country with foot-high grass, occasional tree 0.16 

Tall row crops, hedges, a few trees 0.20 

Many trees and occasional buildings 0.22-0.24 

Wooded country – small towns and suburbs 0.28-0.30 

Urban areas with tall buildings 0.40 

 

The values 𝑈(𝑧), 𝑈(𝑧𝑟𝑒𝑓), z, and 𝑧𝑟𝑒𝑓 for the variables in the logarithmic law and power law 

wind shear models can be obtained from typical met tower data measurements. However, 

parameters 𝑧𝑜 and 𝛼 must be determined empirically. It’s important to note that while wind 

shear models provide valuable insights, they may not perfectly represent reality and thus many 

not yield accurate predictions of wind speeds at hub height (Manwell et al., 2010b; Ray et al., 

2006). 
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2.1.4 Atmospheric stability 

Atmospheric stability significantly influences the vertical wind profile, also known as wind 

shear. Understanding the behavior of an air mass as it moves upward and downward is crucial 

to grasping the concept of atmospheric stability. An air mass is defined as a body of air with a 

consistent number of molecules acting as a cohesive unit. The temperature within an air mass 

is generally uniform, as there is minimal or no heat exchange with the surrounding air (Bilal, 

2016).  While an air mass can expand and contract, it remains intact without breaking apart. 

The space occupied by the molecules within the air mass determines the density of air. The 

temperature and pressure within the air mass are directly related to the average speed of 

molecules and the rate at which they collide with the boundaries of  the air mass (Ahrens, 2019).   

The rate at which air temperature changes with altitude or height is known as the lapse rate. 

When an air parcel ascends to a lower-pressure environment, its volume increases, leading to a 

reduction in temperature because the heat is spread over a larger volume. This process, which 

involves no heat exchange with the surrounding environment, is termed an adiabatic process. 

The vertical displacement of air influences the adiabatic temperature change. Near the earth’s 

surface, most temperature changes are non-adiabatic due to energy transfer from the surface 

and the tendency of air mixing, which modifies its characteristics through lateral movement 

and turbulence (Barry & Chorley, 2009). 

The stability of air is determined by comparing the temperature of a rising air parcel to that of 

its surroundings. The Moist Adiabatic Lapse Rate (MALR) is the rate of temperature change 

when a saturated air parcel containing water droplets rises or sinks. The MALR varies based 

on the amount of cooling and warming, with a common value used in the scientific community 

being approximately 6°C per 1000 meters (Ahrens, 2019). The Dry Adiabatic Lapse Rate 

(DALR) applies to the upward movement of dry air where no condensation occurs. As the air 

mass expands, its temperature decreases at a constant rate of 9.8°C per kilometer (Barry & 

Chorley, 2009; Wallace & Hobbs, 2006b). The Environment Lapse Rate (ELR) results from 

complex meteorological factor and represents the actual temperature decrease with height. 

Unlike adiabatic lapse rates, ELR is not a fixed rate and can vary based on the local vertical 

profile of air temperature (Barry & Chorley, 2009).  
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Atmospheric stability can be characterized into three states which are: unstable, stable, and 

neutral. As illustrated in Figure 2-7, the solid, dotted, and dashed lines represent the vertical 

wind profiles under neutral, unstable, and stable atmospheric conditions, respectively.  

 

Figure 2-7: Wind profiles in neutral, unstable and stable conditions (Petersen et al., 1997). 

Under unstable atmospheric conditions, the air closer to the ground becomes warmer than both 

its surrounding environment and the air above it. This situation typically occurs during the 

summer when the sun consistently heats the ground. In such cases, the lapse rate of the 

surrounding environment is greater than that of the air mass, meaning the rising air mass will 

be warmer than its surroundings. This difference creates strong vertical mass transfer with 

increased turbulence. As vertical mixing intensifies under unstable conditions, it results in a 

smaller gradient of wind speed with increasing altitude (Gasch & Twele, 2011b).  

During the stable atmospheric conditions, the rising air mass is colder and denser than its 

surroundings, causing it to and sink back to its original level (Ahrens, 2019). This situation 

typically occurs during the winter season when the ground cools down, increasing the air 

density near the surface. Once the air mass is stable, there is minimal vertical mass transfer and 

suppressed turbulence. Stable atmospheric conditions usually result in high wind shear (Gasch 

& Twele, 2011b). 

In neutral atmospheric stability, the Prandtl layer (surface layer) is neither heated nor cooled. 

The lapse rate of the air mass is the same as that of the surrounding environment. Consequently, 



 

 

Page 17 of 81 

 

the vertical displacement of the air mass is neither encouraged nor discouraged. This condition 

typically occurs at high wind speeds and when there is sufficient cloud cover, preventing strong 

heating or cooling of the Earth's surface (Bilal, 2016). In such cases, the vertical wind profile 

depends solely on surface friction rather than thermal mixing in the atmosphere (Gasch & 

Twele, 2011b). 

2.1.5 Atmospheric motions 

Wind is a three-dimensional vector, represented as (u, v, w). The ‘u ’ component represents the 

zonal wind, which is the horizontal motion along the east-west axis. A positive value of ‘u ’  

indicates wind blowing from west to east, while a negative value indicates wind blowing from 

east to west. The ‘v ’  component represents the meridional wind, which is the horizontal motion 

along the north-south axis. A positive value of ‘v ’ indicates wind blowing northward, while a 

negative value indicates wind blowing southward. The ‘w ’ component represents the vertical 

wind, which is the motion along the vertical axis. A positive value of ‘w ’ indicates upward 

movement, while a negative value indicates downward movement. These wind components, u, 

v, and w, correspond to motion in the local Cartesian coordinates in the x, y, and z directions, 

respectively (Stull, 2017). 

The u and v  components of wind are often depicted in polar coordinates and used to calculate 

wind speed (𝑤𝑠 [𝑚𝑠−1]), and wind direction (𝑤𝑑 [°]). When averaging 𝑤𝑠  and 𝑤𝑑 , it is 

necessary to transform these values to vector coordinates first. After this transformation, you 

perform averaging on the vectors (𝑢, 𝑣), and then transform the averaged vector components 

back to 𝑤𝑠  and 𝑤𝑑  using the equations below (Christiane, 2024). In meteorology, wind 

direction, 𝑤𝑑 is defined as the angle where the wind is coming from, hence the use of  “−” in 

Equation 2.6a,b,d. The use of u and v  in equation 2.6d might need to be switched around, 

depending on the used software. 

                                                       𝑢 =  −𝑤𝑠 . 𝑠𝑖𝑛 (𝑤𝑑)                                                                (2.6a) 

                                                       𝑣 =  −𝑤𝑠 . 𝑐𝑜𝑠 (𝑤𝑑)                                                                (2.6b) 

                                                      𝑤𝑠 =  √𝑢2 + 𝑣2                                                                (2.6c) 

                                          𝑤𝑑 =  
180

𝜋
. 𝑎𝑡𝑎𝑛2(𝑢, 𝑣) + 180                                                                (2.6d) 
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2.2 Complex terrain 

A complex terrain can be referred to as landforms having varied elevations and features such 

as steep mountains, valleys, forests, fjords, and urban areas. The Earth’s rotation and land 

topography, including complex terrain, are key factors that influence wind direction. 

Consequently, more wind turbines are being sited away from flat regions to complex terrains. 

Elevated positions like hilltops close to the coasts are common locations for wind turbines in 

these areas, as they offer more consistent and stronger wind flows (Stefan, 2018c).   

Assessing wind resources in complex terrains is often challenging. Global datasets or wind 

atlases typically offer limited or no useful results. Instead, analytical or numerical weather 

prediction (NWP) mesoscale models have proven to be effective methods that offer an 

approximation of the actual wind resources within complex terrain (Solbakken & Birkelund, 

2018; Stefan, 2018c). However, it is important to note these models are only virtual 

approximations of the real atmosphere because of the simplification of terrain characteristics 

and physical processes (Carvalho et al., 2013).  

The illustrations in Figure 2-8 depict topographic features of complex terrain, as defined in 

articles by (Bitsuamlak et al., 2004) and (Abdi & Bitsuamlak, 2014). In the article by (Abdi & 

Bitsuamlak, 2014), these features were used as cases in the numerical evaluation of wind flow 

over various topographies. 

 

Figure 2-8: Cases of complex terrain features (Abdi & Bitsuamlak, 2014). 
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Figure 2-9: Complex terrains showing topography and elevation features. 

In an article by (Mann et al., 2017), a series of experiments were conducted in various locations 

across Europe characterized as complex terrains. These locations have been zoomed in on, as 

seen in Figure 2-9, to show distinct topography and elevation features. The focus of these 

experiments was on wind turbines, specifically examining mean flow and turbulence at heights 

between 40 and 300m. Table 2-3 lists the specific elements of the complex terrain and the 

corresponding names of the locations where the experiments were conducted. 

Table 2-3 – European locations where experiments were conducted and their corresponding complex terrain 

feature. 

S/N Location Feature of Complex Terrain 

1 RUNE Coast 

2 Østerild Heterogenies surface 

3 Perdigao Parallel ridges 

4 Kassel Gaussian hill (Forest) 

5 Hornamossen Gaussian hill (Forest) 

6 Alaiz Parallel ridges 

7 Askervein Gaussian hill 

8 Hundhammerfjellet Escarpment 

9 Fakken Small hill, high steep mountains and fjords 

10 Raggovidda Flat inland moutain, close to coast 
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2.3 Wind phenomena in complex terrain 

The land topography and elevation play a pivotal role in wind flow formation in complex 

terrains. Features of complex terrain such as mountain tops, valleys, fjords, and escarpments 

can accelerate, reduce, or deflect wind flows (Stefan, 2018c). These interactions create unique 

wind patterns that differ significantly from those over flat terrains.  

Various wind phenomena are formed by the interaction with specific complex terrain features. 

Mountain and valley breezes typically along mountain slopes. Horizontal differential heating 

or cooling causes a downslope horizontal pressure gradient along the mountain slopes, driving 

these winds (Anderson et al., 2005; Renfrew & Anderson, 2006). During the day, the valley 

floors heat up more intensely than the surrounding elevated areas, causing the air with low 

density to rise and form a gentle upslope wind known as a valley breeze. At night, this process 

reverses as the temperature drops around the mountain slopes. The surrounding air cools faster, 

and due to its higher density, gravity directs the air downhill, resulting in a  mountain breeze, 

also referred to as gravity winds. Katabatic (or fall) winds are another wind phenomenon 

present downslope on a mountain, which are much stronger than mountain breezes. These 

winds can move at hurricane-like speeds and can very be gusty (Ahrens, 2019; Stefan, 2018c).  

The topography around the area of study, “Fakken Wind park” is characterized by large fjords 

and high mountain ranges that can potentially create complex flow patterns under specific 

stability and wind circumstances. According to (National, 1992), gap winds and mountain 

waves are part of the complex flow patterns produced by coastal orography. Gap winds are 

particularly dominant in mountain ranges, valleys, and fjords. This phenomenon occurs when 

wind flows through a gap between two topographically confined channels, resulting in a 

balance between acceleration and the horizontal pressure gradient. Figure 2-10 illustrates this 

phenomenon. It is understood that the air is compressed at the gap’s entrance causing high 

pressure, and expands upon reaching the gap’s exit, causing low pressure (Scorer, 1952).  The 

pressure gradient created at the entrance and exit of the gap causes the air to accelerate through 

the gap. Consequently, the strength or weakness of the pressure gradient determines the 

acceleration or deceleration of the gap wind (Jackson & Steyn, 1994; Markowski & Richardson, 

2011).  
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The strongest gap winds occur during winter when a strong anticyclone from the Arctic region 

develops over the interior east of the Coast Mountains. The Arctic air tends to cool and becomes 

trapped at the surface between the mountain barriers, separated from the warmer air on the coast 

(Jackson & Steyn, 1994). The situation creates a large pressure gradient at the gap’s entrance, 

resulting in strong gap winds through the valleys. These winds can be extremely cold and are 

often accompanied by blizzard conditions, with blowing snow particles. 

 

(a) Top view of wind flow into the gap                     (b) Cold air flowing through the gap causing gap wind 

Figure 2-10: Formation of gap winds. 

 

2.4 Wind Energy 

Wind is atmospheric air in motion. It is dependent on three factors: volume of air, speed of air, 

and the mass of air. The velocity of the air in motion defines the magnitude of the wind and is 

directly proportional to the amount of energy present in the wind (Alexander, 2023). This 

energy is known as kinetic energy 𝐾𝐸 and is a function of mass and velocity determined by: 

                                                       𝐾𝐸 =  
1

2
 𝑚𝑉2                                                                 (2.7) 

where 𝑉 is the horizontal wind velocity and 𝑚 is the mass of the air parcel. 

2.4.1 Wind power 

Wind power can be defined as the flow rate of kinetic energy. As illustrated in Figure 2-11, 

wind power quantifies the amount of wind energy in an airflow with velocity 𝑉 flowing through 
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an area of interest 𝐴 per unit time. In other words, wind power is the flux of wind energy 

through this area. 

 

Figure 2-11: Stream tube depicting mass airflow through an area of interest (Gasch & Twele, 2011a). 

The volume of air flowing through the area per unit time 𝑑𝑡 is given by the volume of the 

cylindrical shape in Figure 2-11 with cross-section area 𝐴 and length 𝑉. 𝑑𝑡. Thus, the volume 

is 𝐴. 𝑉. 𝑑𝑡 . Therefore, the volume flow rate is 𝐴. 𝑉  and the mass flow rate is derived by 

multiplying the volume flow rate and flow density 𝜌, given by (Alexander, 2023; Manwell et 

al., 2010b): 

                                                          
𝑑𝑚

𝑑𝑡
=  𝜌. 𝐴. 𝑉                                                                        (2.8) 

Mathematically, wind power can be determined by finding the derivative of kinetic energy with 

respect to time. By substituting the mass flow rate from Eq. 2.8 into the equation for the mass 

of the air parcel in Eq. 2.7, we can determine the equation for wind power in Eq. 2.10. 

                                               𝑃𝑤 =  
𝑑𝐾𝐸

𝑑𝑡
=  

1

2
. 𝐴. 𝜌. 𝑉2 𝑑𝑥

𝑑𝑡
                                                                      (2.9) 

                                                           𝑃𝑤 =  
1

2
 . 𝜌. 𝐴. 𝑉3                                                                       (2.10) 

Eq. 2.10 shows a nonlinear relationship between wind speed and wind power, meaning that 

doubling the wind speed results in an eightfold increase in wind power. It is common practice 

to normalize ambient wind power by dividing it by the area of interest, leading to a term called 
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“wind power density (WPD),” which represents the kinetic wind energy flux. Wind energy flux 

is wind energy flow rate per unit area and is given by: 

                                                𝑊𝑃𝐷 =  
𝑃𝑤

𝐴
=  

1

2
 . 𝜌 . 𝑉3                                                                       (2.11) 

It is important to note that wind power density (WPD) provides a quantitative basis for 

classifying wind resources independent of wind turbine sizes. WPD is proportional to the air 

density (typically 1.225 𝑘𝑔/𝑚3 at sea level) and to the cube of the wind velocity (Manwell et 

al., 2010b). 

2.4.1.1 Power from wind turbines 

The actual power production potential of a wind turbine must consider the fluid mechanics of 

the flow passing through a power-producing rotor, as well as the aerodynamics and efficiency 

of the rotor/generator combination (Manwell et al., 2010b). A wind turbine converts kinetic 

energy in the wind into mechanical energy, that turns the generator producing electricity. Wind 

turbines can be utilized both for onshore and offshore purposes. Although wind turbines are 

available in a broad range of sizes, the main components of a wind turbine include two or three 

rotor blades, a nacelle, and a tower (Andrews et al., 2022).  

A typical modern wind turbine is placed within a wind park configuration and connected to a 

utility network (Manwell et al., 2010a). In modern turbines, the method of extracting wind 

energy uses the basic aerodynamics principle of lift, like the wings of an airplane. When a wind 

turbine encounters a wind flow, there is a low pressure on the upper side of the blade, causing 

the rotor to turn. This is called lift; the force of this lift is stronger than the force of the wind 

against the front side of the blade, which causes drag. Electricity is produced as the combination 

of the lift and drag causes the rotor to turn, leading to the rotation of the generator (Letcher, 

2023).  

A wind turbine extracts energy by reducing the speed of the passing wind. A theoretically 100% 

efficient wind turbine would stop the wind flow completely after contact. However, not all 

power from the wind can be captured and converted into electricity. The fraction of wind power 

that can be captured by the wind turbine is referred to as power coefficient 𝐶𝑝 (Alexander, 

2023). 
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The power coefficient 𝐶𝑝 is the ratio of power extracted by the turbine 𝑃𝑡  to the total wind 

power 𝑃𝑤 and is given by: 

                                                              𝐶𝑝 =  
𝑃𝑡

𝑃𝑤
                                                                       (2.12) 

The power extracted by the turbine 𝑃𝑡 will always be smaller than 𝑃𝑤 and can be rewritten as: 

                                          𝑃𝑡 =  
1

2
 . 𝜌. 𝐴. 𝑉3𝐶𝑝 =  𝑃𝑤𝐶𝑝                                                                       (2.13) 

(Betz, 1926) and (Lanchester, 1915) discovered that the original upstream wind velocity 𝑣1 is 

reduced by a cubic factor in the downstream wind velocity 𝑣3 . Therefore, the theoretical 

maximum power extractable can be given by: 

                                             𝑃𝐵𝑒𝑡𝑧 =  
1

2
 . 𝜌. 𝐴. 𝑉3𝐶𝑝.𝐵𝑒𝑡𝑧                                                                       (2.14) 

with the maximum power coefficient 𝐶𝑝.𝐵𝑒𝑡𝑧 = 16
27⁄ = 0.59 (59%) , known as the Betz 

Limit (Gasch & Twele, 2011a; Huleihil & Mazor, 2012). This means that even in the best case 

of power extraction, without aerodynamic and mechanical losses, only 59% of the wind power 

can be extracted. Wind power production will always be affected by turbine variables, the swept 

area of the turbine, the capacity coefficient, and atmospheric variables. 

2.4.1.2 Power curve 

A power curve describes the relationship between wind speed and the power output of a wind 

turbine (Jing & Ergin, 2023). Figure 2-12 shows a typical power curve of a wind turbine, 

demonstrating the non-linear relationship between wind speed and generated wind power 

output.  

As illustrated in Figure 2-12, at low wind speeds (< 4 m/s) the wind doesn’t apply enough 

torque to generate electricity. The cut-in speed is the starting point of the curve and represents 

the minimum wind speed required for the rotor of the wind turbine to turn and start generating 

electricity. The generated wind power output increases with the cube of the wind speed, 

reaching a maximum value known as the rated power (Jing & Ergin, 2023). The rated power 

output is usually obtained when the rotor reaches the maximum speed allowed to turn. At this 

point, a brake mechanism brings the rotor to a standstill to prevent damage to the blades and 
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turbine.  The cut-out wind speed is the end of the curve, and from  Figure 2-12, this is around 

25 m/s. 

 

Figure 2-12: Power curve of a Vestas V90-3.0 turbine (Vestas, 2007). 

Wind turbine manufacturers determine the measured power curve from simultaneous 

measurements of the wind speed at hub height and the produced wind power output.                    

The power curve is essential for wind resource assessment and is used to estimate the energy 

production of a wind turbine over a range of wind speeds. Additionally, power curves are vital 

in the planning and erection process of wind turbines and are part of the services provided by 

the turbine manufacturer (Gasch & Twele, 2011b). 

The Vestas V90 3MW turbines are currently in use at the Fakken wind-park, and their power 

curve is shown in Figure 2-12. This turbine has a cut-in speed of 4 m/s, a rated power of 3MW 

achieved at a wind speed of 16 m/s, and a cut-off wind speed of 25 m/s. In the newly expanded 

area (Fakken 2), the Vestas V150 6MW turbine is planned for utilization. This turbine is 

expected to have a cut-in speed of 3m/s, a rated power of 6MW, and a cut-off speed of 25 m/s.  

2.4.2 Wind turbine and efficiency 

Efficiency is defined as the ratio between the amount of net work done 𝑤𝑛𝑒𝑡 and the input 

energy 𝑞𝑖𝑛 to a device. The efficiency of a wind turbine can defined as the ratio between the 

derived power 𝑃𝑜𝑢𝑡 and the rate of energy flowing into the wind turbine 𝑃𝑖𝑛 (Huleihil & Mazor, 

2012). The efficiency based on this definition aligns with the Betz limit. The efficiency of a 

power generating wind turbine is given by: 
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                                           𝜂 =  
𝑊𝑛𝑒𝑡

𝑞𝑖𝑛
=  

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
                                                                        (2.15) 

Another metric to consider in wind turbine power efficiency is the term known as the Capacity 

Factor (CF), which quantifies the fraction of the installed generating capacity that actually 

generates power (Alexander, 2023). In the terms of  a wind turbine, the capacity factor is the 

ratio of the actual generated energy from the turbine to the energy that could potentially be  

generated from the wind turbine under ideal environmental conditions . It is mathematically 

defined as: 

                          𝐶𝐹 =  
𝐸𝑎𝑐𝑡𝑢𝑎𝑙

𝐸𝑖𝑑𝑒𝑎𝑙
=  

𝑡𝑖𝑚𝑒 .  𝑃̅

𝑡𝑖𝑚𝑒 .  𝑃𝑁
=  

𝑃̅

𝑃𝑁
                                                                     (2.16) 

Considering that energy is the product of its time rate, the energy ratio 
𝐸𝑎𝑐𝑡𝑢𝑎𝑙

𝐸𝑖𝑑𝑒𝑎𝑙 
  equals the 

average power 𝑃̅ and the nominal power 𝑃𝑁 of the wind turbine. The nominal power of a single 

wind turbine is equal to the maximum power that can be generated under ideal wind conditions.  

When estimating the efficiency of a wind turbine, different parts of the turbine need to be 

highlighted. Most of the efficiency terms discussed so far center around the kinetic energy 

efficiency 𝜂𝐾𝐸 . However, other factors affecting wind turbine efficiency include: the 

mechanical efficiency 𝜂𝑀𝐸  due to mechanical friction, the electricity conversion efficiency 

𝜂𝐶𝑂𝑁, and the blockage efficiency 𝜂𝐵𝐿 which accounts for the amount of air blocked by turbine 

blades (Huleihil & Mazor, 2012). A net turbine efficiency can be further defined as: 

                                     𝜂𝑛𝑒𝑡 =  𝜂𝐵𝐿 . 𝜂𝐶𝑂𝑁 . 𝜂𝑀𝐸 . 𝜂𝐾𝐸                                                       (2.17) 

2.4.3 Wake losses 

The occurrence of wake losses in wind parks is a well-known phenomenon. A wake occurs 

when the first turbine or row of turbines extract energy from the wind upstream. As a result, 

the wind leaving the turbine will have lower energy content, reduced speed, and increased 

turbulence compared to the wind upstream of the turbine (González-Longatt et al., 2012; Koch 

et al., 2005).  There is always an inevitable loss of power output from each turbine affected by 

wakes from nearby and distant turbines. Despite being a well-documented, power losses due to 

turbine wakes can be difficult to predict accurately because of the temporal and spatial 
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variability of wind speed, wind direction, turbulence, and atmospheric stability (Barthelmie & 

Jensen, 2010). 

In Figure 2-13, there are three distinct descriptions of wind turbine wakes from different wind 

campaigns. The left image shows the condensation plumes from the Horns Rev 2 offshore wind 

park, visible to the human eye. The middle image shows wind speed deficits measured by radar, 

and the right image shows modeled wind speed deficits on an offshore wind park. As 

established, the two main wake effects are: wind speed reduction, leading to a reduction in 

energy production of the wind park, and an increase in the wind turbulence, potentially 

increasing the dynamic mechanical load on the downwind turbines (González-Longatt et al., 

2012). 

 

Figure 2-13: Three distinct descriptions of wind turbine wakes. Left: Condensation plumes produced by turbulence 

within turbine wakes in the Horns Rev 2 offshore wind park (Hasager et al., 2017). Middle: Wind speed deficits 

within turbine wakes from a complex wind field measured with a Doppler Ka-band radar (Texas, 2014).             

Right: Simulation of wind speed deficits for the Lillgrund offshore wind project using the Jensen model with a 

wake decay constant of 0.04 (Smith et al., 2012). 

It is essential to describe a wake accurately before considering its effects in the design of a wind 

park. Numerous numerical models with varying complexities have been developed to describe 

wake accurately. Some of these models include Ainslie’s model (Ainslie, 1988), Frandsen’s 

model (Frandsen et al., 2006), the Mosaic Tile model (Rathmann et al., 2007), and the Jensen 

model (Jensen, 1983). These wake models should be straightforward, dependent on relatively 

few measurements, and economically feasible in terms of computing power (Barthelmie et al., 

2009). In an article by (Ying & MD, 2005) it was suggested that to reduce wake losses in wind 

parks, wind turbines should be spaced 5-9 rotor diameters apart in the prevailing wind direction 

and 3-5 rotor diameters apart in the direction perpendicular to the prevailing wind. 
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2.4.4 Micro-siting 

Micro-siting is the process of utilizing wind resource assessment tools, CFD software, and 

Geographic Information Systems (GIS) to optimize the placement of wind turbines within a 

selected area. This optimization aims to maximize energy production and reduce turbine wake 

effects and turbulence (Manwell et al., 2010c).  Mirco-siting is a crucial step when planning a 

wind park. Other factors to consider include the wind resource, land availability, environmental 

conditions, the possibility of connection to the electrical transmission system, and proximity to 

access roads (González et al., 2014). One objective of micro-siting is to locate wind turbines in 

the wind park to maximize annual energy production (AEP) and potentially yield a significant 

return on investment (ROI) for the wind park owners.  

Several commercial software packages aid in micro-siting by assessing wind resources on a 

microscale level.  The most popular of these is “WAsP,” which is considered the industry 

standard for wind resource assessment using a microscale flow analysis (González et al., 2014). 

Other software includes “WindSim,” which assesses the wind resource using a CFD model 

based on a 3D Reynolds-averaged Naiver-Stokes (RANS) solver to pinpoint less turbulent 

locations with strong wind speed conditions, particularly in complex terrain (WindSim, 2024) 

and “Meteodyn,” which estimates wind resources over a plot using CFD simulations and 

integrate results from other mesoscale analysis data. Additional software such as 

“Windfarmer,” “WindPro,” and “OpenWind” optimize the wind turbine layout of wind parks 

to maximise ROI and minimize the cost of energy production (González et al., 2014).  

The Katic model is the widely accepted in the wind energy industry for micro-siting and is 

utilized across most software. It is a wake model proposed by (Katic et al., 1987) for the 

evaluating a wind park’s energy yield taking into account the wake effect.  

Effective micro-siting depends on a combination of detailed wind resource information from a 

specific site and typically involves using CFD models to predict the detailed flow field in the 

wind park (Manwell et al., 2010b). The output results are usually combined with another model 

that predicts the power production output of the wind park. 
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2.5 Wind data visualization 

It is crucial in the wind energy industry to interpret and analyze complex wind patterns and 

trends effectively. Visualization techniques play a key role in transforming raw wind data, often 

presented in numerical or otherwise incomprehensible forms, into actionable insights. These 

insights are essential for the planning and optimization of wind energy projects. An anemometer 

is a conventional tool for measuring the strength and speed of the wind (Hakstok & Mihajlović, 

2014).  In visualizing wind data, wind direction and wind speed are essential factors needed to 

evaluate wind resources and potential wind power production at a particular wind park site. 

These visualization techniques leverage direct (non-statistical) and statistical data analysis 

methods (Manwell et al., 2010b). Common wind data visualization methods include wind rose 

diagrams, histogram of wind speeds, and wind speed distribution functions such as Weibull and  

Rayleigh distributions. These visualizations help wind park stakeholders make informed 

decisions on turbine placement, performance assessment, and overall wind park efficiency. 

2.5.1 Wind roses 

A wind rose is an essential tool for evaluating wind resources in a wind park or a specified area, 

as it indicates the predominant wind direction at a given location. It is a convenient tool for 

displaying anemometer data (wind speed and direction) for turbine siting analysis. An example 

of a wind rose is shown in Figure 2-14. The wind rose in Figure 2-14 illustrates its most 

common form, which consists of different color bands showing the range of wind speeds 

(Chavan et al., 2017).  

 

Figure 2-14: Example of a wind rose diagram (Chavan et al., 2017). 
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The wind rose depicts the occurrence of winds within various directional sectors, with each 

sector featuring color-coded categories that indicate the frequency of different wind speeds in 

a particular direction. The frequency in a wind rose is represented by the concentric circles. 

There are usually calm conditions at the center circle of the wind rose, and the longest lines 

show the prevailing wind directions (Manwell et al., 2010b). Wind roses are specifically created 

for a particular area over a period (i.e. annually, seasonally, and monthly) and are divided into 

8-16 sectors, one for each direction. There are many variations considered in the construction 

of a wind rose, primarily including the wind speed ranges, and some indicate other 

meteorological parameters along with the wind direction (Varma et al., 2013).  

A wind rose shares useful information in planning the layout of wind turbines in a wind park, 

helping to optimize the energy output of wind turbines. It is known that one of the significant 

factors impacting turbine performance is wake losses. To mitigate substantial wake losses, wind 

roses offer information about long-term wind patterns that help to strategically position turbines 

to align with the direction of least wind occurrence.  

2.5.2 Histogram of wind speeds 

A histogram of wind speed is a crucial tool in wind energy analysis, representing the frequency 

distribution of wind speeds over a specific period. Figure 2-15 illustrates a typical histogram 

(bar graph), showing wind speed values plotted on the x-axis and the frequency of each wind 

speed occurrence on the y-axis. Histograms of wind speeds work with long-term wind data; for 

example, the histogram below was derived from one year of hourly data, with a mean wind 

speed of 5.91 m/s and a standard deviation of 2.95 m/s (Manwell et al., 2010b).   

 

Figure 2-15: Sample of a typical histogram showing wind speed frequencies. 
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This form of wind data visualization aids in understanding the variability and distribution of 

wind speeds at a particular location. It provides a concise way to summarize wind data and 

determine expected turbine productivity. Wind-park planners utilize histograms to identify 

wind speed ranges that are most likely to yield the highest energy output, ensuring the strategic 

placement of turbines.  

2.5.3 Weibull distribution function 

The number of occurrences of wind speeds can be described by the probability density function 

𝑝(𝑈) of wind speed. This function represents the likelihood that the wind speed has a particular 

value. From past studies, wind speeds are more likely to be close to the mean value or below it 

(Manwell et al., 2010b).  

A Weibull distribution function is one of the two most common probability distribution 

functions used for wind data analysis. The other common probability distribution function is 

the Rayleigh distribution function. The Weibull distribution function, named after the Swedish 

engineer and mathematician Ernst Hjalmar Waloddi Weibull, describes the frequency 

distribution of wind speed at the low-frequency end (< 0.01 – 0.001 Hz) of the spectrum (Stefan, 

2018a). It is governed by two parameters: a shape factor 𝑘 (dimensionless) and a scale factor 

𝑐 (𝑚
𝑠⁄ ). Both parameters are functions of the mean wind speed 𝑈̅ and the standard deviation 

of wind speed 𝜎𝑈. The Weibull distribution function is given by:  

                                         𝐹(𝑈) = 1 − 𝑒𝑥𝑝 [− (
𝑈

𝑐
)

𝑘

]                                                      (2.18) 

Figure 2-16 shows an example of a Weibull distribution function for different values of the 

shape factor 𝑘. As illustrated, an increase in the value of 𝑘 creates a curve with a sharper peak, 

indicating less wind speed variation. The Weibull distribution function is essential in describing 

the histogram of wind speeds, as the frequency distribution of wind speeds often aligns well 

with the Weibull distribution function. Overall, the Weibull distribution function, along with 

the wind turbine power curve, helps greatly in the planning phase of a wind park by estimating 

the annual energy production (Giorgos, 2022). 
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Figure 2-16: Example of a Weibull distribution function for mean wind speed 𝑈̅ of 6 m/s (Manwell et al., 

2010b). 

 

2.6 Evaluating models 

Statistical metrics can be used to evaluate the accuracy of models compared to the observed 

values. These metrics indicate the closeness of models to estimating the actual values. These 

evaluations utilize time series: the observed values 𝑦𝑖  and the simulated values 𝑦𝑖̂ , where 𝑖 

represents the data points (𝑖 = 1,2, … … . , 𝑁) 

There are numerous statistical measuring methodologies which compare the deviation between 

the model and observed values. These methodologies are: 

1. Root Mean Square Error (RMSE) is a standard statistical method frequently used for 

evaluating model performance in various studies. RMSE is particularly effective for 

estimating the variance and dispersion between predicted models and observed values 

(Solbakken & Birkelund, 2018). One key advantage of RMSE is its ability to penalize 

large errors more heavily, making it a suitable metric in scenarios where larger 

deviations are especially critical to minimize. 

                                     𝑅𝑀𝑆𝐸 =  √
1

𝑁
 ∑ (𝑦̂

𝑖
− 𝑦

𝑖
)

2𝑁
𝑖=1                                                        (2.19) 

 



 

 

Page 33 of 81 

 

2. Bias is the deviation between the observation mean and the estimated mean. It is given 

by: 

                                     𝐵𝑖𝑎𝑠 =  
1

𝑁
 ∑ (𝑦̂

𝑖
− 𝑦

𝑖
)𝑁

𝑖=1                                                          (2.20) 

3. Mean Absolute Error (MAE) is the deviation between a corresponding observation 

and estimation. It is given by: 

 

                                    𝑀𝐴𝐸 =  
1

𝑁
 ∑ |𝑦̂

𝑖
− 𝑦

𝑖
|𝑁

𝑖=1                                                            (2.21) 

4. Mean Absolute Percentage Error (MAPE) is a metric used to measure the average 

deviation of predicted values from actual values, expressed as a percentage (Khair et 

al., 2017). 

                             𝑀𝐴𝑃𝐸 =  
1

𝑁
 ∑ |

𝑦̂𝑖−𝑦𝑖

𝑦𝑖
|𝑁

𝑖=1 ∗ 100                                                         (2.22) 

According to (Solbakken & Birkelund, 2018), the RMSE, MAE, and Bias express the average 

model estimation error. They range from 0 to infinity while the RMSE and MAE are indifferent 

of the errors. 
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2.7 Light Detection and Ranging (LiDAR) 

The rapid development of LiDAR measurement techniques began with the invention of the 

laser in 1960 by Theodore Maiman (Maiman, 1960) and the giant-pulse or Q-switched laser in 

1962 (McClung & Hellwarth, 1962). According to (Ulla, 2005), the five established LiDAR 

techniques are elastic-backscatter LiDAR, Raman LiDAR, differential-absorption LiDAR, 

resonance fluorescence LiDAR, and Doppler LiDAR.  

The elastic-backscatter LiDAR is a classic form of LiDAR. In its simplest form, it uses a laser 

emitting a single wavelength and a detector measuring the radiation elastically backscattered 

from atmospheric molecules and particles. The Raman LiDAR measures water vapor and 

atmospheric temperature profiles (Behrendt et al., 2002). The differential-absorption LiDAR 

(DIAL) offers the ability to detect atmospheric gases with high sensitivity using single 

absorption lines (Ulla, 2005). The resonance fluorescence LiDAR  applies resonance scattering 

within the mesopause region (80 – 110km height) in the presence of layers containing metallic 

atoms and ions. The Doppler LiDAR is an emerging method for wind sampling (Reitebuch & 

Hardesty, 2021). 

 Doppler wind LiDAR, being a remote sensing technique, allows for the observation of wind 

speed without interrupting the atmospheric flow. Doppler wind LiDAR observations are used 

to study atmospheric flow on various temporal and spatial scales, covering a substantial vertical 

and spatial extent of the atmospheric boundary layer. The relevance of  the Doppler wind 

LiDAR in the wind energy industry has accelerated the development of small, commercially 

available wind LiDAR systems. Doppler wind LiDARs are typically operated from the ground 

and are commonly used for wind resource assessment, wind energy site assessment and, turbine 

wake visualization (Emeis et al., 2008; Hasager et al., 2017; Krutova et al., 2022; Mikkelsen, 

2014). They are also used for airport surveillance for low-level wind shear (Shun & Chan, 2008) 

and aircraft safety and control (Köpp et al., 2004). Additionally, Doppler wind LiDARs have 

been utilized in the research of atmospheric dynamics in complex terrains (Risan et al., 2018; 

Zhao et al., 2020) and for turbulence measurement using multiple wind LiDARs (Mann et al., 

2009; Sathe & Mann, 2013), with a notable example being the Perdigão campaign documented 

by (Fernando et al., 2019).  
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As the name suggests, the Doppler wind LiDAR utilizes the Doppler effect to measure 

atmospheric wind velocity (Reitebuch & Hardesty, 2021; van Dooren, 2022). The Doppler 

effect describes the change in frequency or wavelength when the source of a wave and an 

observer are in relative motion. The emitted light has a wavelength, 𝜆0, and the frequency is 

𝑓0 =  𝑐
𝜆0

⁄ , where 𝑐 is the speed of light. The relative speed along the line of sight (LOS) is 

denoted as 𝑣, and the observed frequency is given by (Christian, 2005): 

                                               𝑓 =  𝑓0(1 + 𝑣
𝑐⁄ )                                                      (2.19) 

Using a Doppler wind LiDAR, the Doppler effect occurs twice because the LiDAR both emits 

(source) and receives (observer) the laser beam. The light wave from the emitting laser source 

in the wind LiDAR has a frequency, 𝑓0, which interacts with a moving particle (e.g., aerosol or 

cloud particle). The moving particle (observer) senses this light wave and then re-emits (source) 

it with the frequency, 𝑓2, which is observed again by the wind LiDAR. The Doppler frequency 

shift, ∆𝑓, is given by: 

                                        ∆𝑓 =  𝑓2 −  𝑓0 = 2 . 𝑓0
𝑣𝑝

𝑐
                                                       (2.20) 

The frequency shift is determined by the speed of the moving particle, 𝑣𝑝, relative to the speed 

of light, 𝑐. Conventional Doppler wind LiDAR usually emit at infrared wavelengths between 

1.55 𝜇𝑚 (𝑓0 = 193THz) and 2.02 𝜇𝑚 (𝑓0 = 148THz), with corresponding frequency shifts 

of ∆𝑓 = 1.29 MHz, or ∆𝑓 = 0.99 MHz, for 𝑣 = 1 𝑚𝑠−1 (Reitebuch & Hardesty, 2021).  

As illustrated in the left image in Figure 2-17, the beam from the wind LiDAR interacts with 

multiple particles within a certain atmospheric volume, each possessing its own velocity. The 

collective velocities of the particles represent the wind velocity with added small-scale and 

random (or turbulent) motion.  
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Figure 2-17: Schematic of the Doppler wind LiDAR measurement principle. Left: LiDAR beam interacting with 

aerosol particles. Right: Idealised distribution of aerosol Doppler velocities over the LiDAR volume based on the 

frequency shift between emitted and returned laser signal (Christiane, 2024). 

The wind LiDAR receives a distribution of Doppler frequency shifts, also known as “Doppler 

broadening”, in the returning signals for the bulk of air particles. The signal peak, as seen in the 

right image in Figure 2-17, measures the wind velocity averaged over the measured volume. 

The width of the Doppler frequency shift distribution (or Doppler velocity distribution) 

measures the turbulent motion superimposed on the average wind velocity. The peak velocity 

observed by the LiDAR is the wind velocity projected onto the line-of-sight (LOS) of the 

LiDAR’s laser.   

 

Figure 2-18: Polar coordinates (Left): azimuth angle, 𝛼,  elevation angle, 𝛿, or zenith angle, 𝜃𝑧 and range, 𝑟. Right: 

Projection of radial velocity in a vertical plane along the horizontal x-axis (u and w). The combinations of u and 

w along the gray striped line perpendicular to the LiDAR’s beam orientation resulting in radial velocity 

(Christiane, 2024). 

Therefore, 𝑣𝐿𝑂𝑆  is the line-of-sight (LOS) wind speed measured by the LiDAR. If the air 

particles (aerosols) at the measurement point are moving towards the observer, 𝑣𝐿𝑂𝑆 will be 

positive; if moving away, 𝑣𝐿𝑂𝑆 will be negative (van Dooren, 2022). The increase and decrease 

of 𝑣𝐿𝑂𝑆 affect the frequency in the same manner. The direction of the LOS is usually defined 

in polar coordinates using the elevation angle, 𝛿 , or zenith angle, 𝜃𝑧 =  |90 −  𝛿|, azimuth 

angle, 𝛼,  and range, 𝑟, as defined in Figure 2-18. The velocity measured along the LOS of the 
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laser beam is called radial velocity, 𝑣𝑟 , and this is connected to the Cartesian wind speed 

components, 𝑢, 𝑣, and 𝑤 as follows: 

         𝑣𝑟(𝑟, 𝛼, 𝜃𝑧) = 𝑢(𝑟)  sin 𝛼 sin 𝜃𝑧 + 𝑣(𝑟)  cos 𝛼 sin 𝜃𝑧 + 𝑤(𝑟) cos 𝜃𝑧                        (2.21a)                                              

         𝑣𝑟(𝑟, 𝛼, 𝛿) = 𝑢(𝑟)  sin 𝛼 cos 𝛿 + 𝑣(𝑟)  cos 𝛼 cos 𝛿 + 𝑤(𝑟) sin 𝛿                           (2.21b)   

The variable “Signal-to-Noise Ratio”, (SNR) or “Carrier-to-Noise Ratio”, (CNR) is derivable 

from the wind LiDAR observations, based on the velocity peak intensity relative to the noise 

intensity of the relevant spectral bandwidth, as illustrated in Figure 2-17. The SNR/CNR  

measures the density of air particles (aerosol, cloud) in the boundary layer and cloud detection. 

By deploying different wind LiDAR scanning strategies, which will be focused on in the next 

chapters, all components of the wind vector can be derived, and they are listed in Table 2-4.  

 Table 2-4: Measured parameters of a Doppler wind LiDAR (Reitebuch & Hardesty, 2021).  

  

There are two main types of Doppler LiDAR technologies used in the industry today: the pulsed 

LiDAR and the continuous wave (CW) LiDAR. Most technological advancements have been 

linked to the long-range pulsed LiDAR systems, as seen in Figure 2-19. Pulsed wind LiDARs 

can observe radial velocity simultaneously at multiple ranges, maintaining a constant range 

resolution even with increasing range. However, pulsed wind LiDARs are limited in measuring 

short distances, typically starting at 50 – 100 meters from the wind LiDAR.  

Parameter Description Unit  Symbol 

LOS speed 
Wind speed in direction of the laser line-of-

sight (LOS) or radial wind speed 
[m/s] 

𝑣𝐿𝑂𝑆 

Wind speed Magnitude of horizontal wind speed [m/s] M 

Wind direction  

Angle for horizontal wind direction with 

respect to North, 

where wind is blowing from 

o 

ϴ 

Wind velocity 

components 

Components of the wind vector with zonal 

wind speed 

(East–West) u, meridional wind speed (North–

South) v, 

vertical wind speed w (up-down) 

[m/s] u ,v, w 

Signal intensity Signal intensity of the backscattered signal 

arb. u. 

or dB I 

Signal-to-noise ratio, 

Ratio of signal intensity (or carrier) to noise 

intensity for the 
arb. u. 

or dB 

SNR, 

CNR 
carrier-to-noise ratio relevant spectral bandwidth 
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On the other hand, the CW wind LiDAR systems focus on a single range, exhibiting high 

precision within the first tens of meters, with a range resolution in the order of centimeters. 

Nevertheless, their range resolution decreases considerably with increasing distance from the 

LiDAR, and their range is limited to approximately 100 meters. The application of CW wind 

LiDARs to obtain high precision wind measurements in the lowest range of the wind profile 

complements the inadequacy of pulsed wind LiDARs to measure short distances. 

 

Figure 2-19: External view and features of the Leosphere WindCube100s (WLS100s) scanning LiDAR 

(Leosphere, 2023). 
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3 Data and Methods 

3.1 Description of Fakken wind park  

The area of interest in this thesis is the Fakken wind park, located at coordinates of 70.10𝑜𝑁 

and 20.06𝑜𝐸 which around the eastern side of Vannøya in Karlsøy municipality placed in the 

Northern Norway. The wind park is characterized by its Arctic climate and coastal conditions. 

In the winter season, there is a contrast in temperatures between the frigid air over land and the 

warm air over the ocean due to the North Atlantic current.  This results in a pressure difference 

from east to west, with higher pressure over the land and lower pressure over the ocean. In the 

summer season, the temperature and pressure gradients are often inverted, causing the main 

wind direction to come from the northeast (NE), while the main wind direction during the 

winter is southeast (SE) (Svendsen, 1995) 

 

Figure 3-1: Map of the region with the Fakken wind park in red square. 

The surrounding terrain influencing the wind resources around Fakken wind park is seen in 

Figure 3-1. The wind park has relatively flat terrain and is located 40 to 200 meters above sea 

level. The region features a diverse topography, including multiple mountain ranges. It faces 

the open ocean to the north, while to the south it is surrounded by landmasses characterized by 

large fjords and high mountains.  As seen in Figure 3-1, Two significant fjords, Ullsfjorden and 

Lyngenfjorden, are directly south of this region.  
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This complex and diverse terrain has a substantial impact on the region’s wind resources, 

allowing for wind phenomena such as gap winds to occur (Solbakken et al., 2021).  Figure 3-2 

provides more insight into the height of the terrain of the topography surrounding the Fakken 

wind park. The figure depicts elevations exceeding 1300 meters as white spots, while areas 

with elevations between 500 and 1000 meters are shown as greenish-brown spots. This figure 

highlights the significance of elevation differences within Vannøya and its surrounding area, 

illustrating the complex and varied topography. 

 

Figure 3-2: Terrain height of the topography around Fakken wind park (Norgeskart, 2023). 

The Fakken wind park is an established wind park with 18 turbines, each rated at 3 MW, giving 

a total rated power capacity of 54 MW. Each turbine has a hub height of 80 meters above ground 

level (a.g.l.) (Troms, 06.11.2023). As illustrated in Figure 3-3, the turbines are sited in two rows 

to minimize wake losses and maximize energy production from the wind park. The turbines are 

numbered from 1 to 18 from west to east, including the met mast. The proposed expansion to 

Fakken II wind park will site the new turbines northwest of the current Fakken I wind park. The 

highlighted blue area in the left image in Figure 3-4 indicates the new site for Fakken II, which 
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is expected to have a power output capacity of 66 MW with 11 turbines, each rated at 6 MW 

and a hub height of 112 meters a.g.l. 

The preliminary positions for each wind turbine at Fakken II are labelled with letters (A-K) as 

illustrated in the right image in Figure 3-4. Troms Kraft, the owners of Fakken I wind park, 

suggested coordinates for the new 11 turbines, which have been considered in this thesis. In the 

appendix B section of this thesis, the wind turbine coordinates for both Fakken I and II will be 

listed in a table for better understanding. 

 

Figure 3-3: Siting of wind turbines in Fakken I 

 

Figure 3-4: Planning for Fakken II. Left: New site location for Fakken II. Right: Proposed siting of new turbines 

in Fakken II 
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3.2 LiDAR Setup 

The Doppler wind LiDARs used for the measurement campaign at the Fakken wind park were 

two scanning (WindCube 100s) pulsed long-range Doppler wind LiDARs, manufactured by 

Leosphere, now owned by Vaisala. The data used in this thesis was obtained after the successful 

conclusion of the campaign. The two WindCube 100s Doppler wind LiDARs were operational 

from mid-December 2022 to June 2023, a period characterized by strong chill winds and a high 

probability of icing (Ahrens, 2019). The two pulsed long-range Doppler wind LiDARs, tagged 

LiDAR 34 and LiDAR 40, were positioned in Fakken I near two wind turbines tagged WTG10 

and WTG15. 

LiDAR 34 and LiDAR 40 were levelled and oriented towards the north using nearby hills as 

hard targets. The turbines were not considered as hard targets due to the movement of the 

blades. The scanning head for both LiDARs was positioned to face a “fixed” point in the 

northeast direction, where Fakken II is proposed to be sited. According to the plan shared by 

Troms Kraft, the fixed point will be the proposed location for setting up the meteorological 

mast for Fakken II. As shown in Figure 3-5, black pointers indicate the positions of LiDAR 34 

and LiDAR 40, while the green pointer marks the fixed point within Fakken II. 

 

Figure 3-5: Placement of LiDAR34, LiDAR40 and Fixed point in Fakken II. 

Additionally, the locations of the two LiDARs, the fixed point in Fakken II, and the closest 

turbines to both the LiDARs and the fixed point are listed in Table 3-1 using various coordinate 
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systems (Geographical degrees, UTM-zone 34W, and cartesian coordinates). Both LiDAR 34 

and LiDAR 40 were configured to operate only in the scanning mode while being governed by 

different scanning techniques. 

Table 3-1: Locations of LiDARs, fixed point in Fakken II, closest turbines to LiDARs and fixed point in various 

coordinate systems. 

 

3.2.1 Scanning LiDAR scan patterns 

3.2.1.1 Fixed scan 

The simplest scan technique used in the scanning mode of the Doppler wind LiDARs  is the 

“fixed LOS” (Line of Sight). Here, the scanning LiDAR obtains a time series of radial velocity, 

𝑣𝑟, while the scanner head is oriented towards a fixed azimuth angle, 𝛼, and elevation angle, 𝛿. 

Each wind LiDAR  scans in the fixed LOS mode for the first thirty minutes and last twelve 

minutes within an hour.  The values for the azimuth angle and elevation angle for LiDAR 34 

and LiDAR 40 respectively are: 𝛼34 =  324𝑂  , 𝛼40 =  280𝑂, 𝛿34 =  4.75𝑂, and 𝛿40 =  3.89𝑂. 

Using the elevation angle, the horizontal wind speed at the fixed point in Fakken II can be 

calculated for each LiDAR. The mathematical formula in Eq.3.1 is applied to calculate the 

horizontal component, 𝑣ℎ, at the selected range for each LiDAR closest to the fixed point.  

                                               𝑣ℎ =  
𝑣𝐿𝑂𝑆

cos (𝛿)
                                                            (3.1) 

The selected range for LiDAR 34 is 1210 meters while the selected range for LiDAR 40 is 2150 

meters. This indicates that the laser beam from LiDAR 40 covers more ground than LiDAR 34. 

In the calculation of the horizontal component, it is assumed that the vertical wind speed is 

negligible because the vertical component 𝑤 adds to the 𝑣𝐿𝑂𝑆 with the sine of the elevation 

angle. Therefore, for elevation angles less than 10𝑜 , there will be low fluctuations to be 

Objects 

Geographical degrees 

(Lat/Lon) 

UTM-zone 34W 

(northy/eastx) Northy(m) Eastx(m) 

LiDAR 34 70.09752/20.03064 7777041/463173 -516 -1415 

LiDAR 40 70.10234/20.06769 7777557/464588 516 1415 

Fixed point in Fakken 

II 70.10550/20.01150 7777943/462460 386 -2128 

WTG_10 70.09652/20.03219 7776929/463230 -606 -1358 

WTG_15 70.10214/20.06769 7777535/464588  606 1358 

Turbine F 70.1055/20.01247 7777942/462497 1013 -733 
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considered in the calculation of horizontal component. The next step is retrieving the horizontal 

wind speed components 𝑢 and 𝑣. The mathematical formula in Eq.3.2 is calculated from the 

horizontally projected radial speeds of both LiDARs using the linear system (Schneemann et 

al., 2014): 

                          (𝑣ℎ34
𝑣ℎ40

) =  (
sin (𝛼34) cos (𝛼34)

sin (𝛼40) cos (𝛼40)
) . (𝑢

𝑣
)                                                (3.2) 

Eq.3.3 yields mathematical formulas that calculate the 𝑢 and 𝑣 components 

         𝑢 =  
𝑣ℎ34cos (𝛼40)− 𝑣ℎ40cos (𝛼34)

sin(𝛿34 − 𝛿40 )
 𝑎𝑛𝑑 𝑣 =  

𝑣ℎ40sin (𝛼34)− 𝑣ℎ34sin (𝛼40)

sin(𝛿34 − 𝛿40 )
                   (3.3)     

To find the horizontal wind speed and direction, Eq. 2.6c and Eq.2.6d will be essential. Figure 

3-6 illustrates a sketch of the projection of the wind speed on the line-of -sight of a LiDAR laser 

beam.  

 

Figure 3-6: Schematic overview of the line-of -sight projection of the wind speed (van Dooren, 2022). 

3.2.1.2 Plan position indicator (PPI) scan 

Other scan technique capable of a Doppler wind LiDAR is the plan position indicator (PPI) 

scan. In this case, the scanner head is at a constant elevation angle while the azimuth angle 

changes continuously with a certain angular speed 𝑣𝑎  (°𝑠−1). Both LiDAR 34 and LiDAR 40 

operate within different minutes during the PPI scan mode; for LiDAR 34 the PPI scan mode 
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runs for 18 minutes within an hour while for LiDAR 40 the PPI scan mode runs for 26 minutes 

within an hour. For each range gate in the PPI scan, the observed radial velocity 𝑣𝑟 is derived 

from the bulk of particle velocities sampled during a selected integration time 𝜏𝑖  [𝑠]. Therefore, 

the result is a velocity composite over a certain angular range ∆𝛼 =  𝑣𝛼  . 𝜏𝑖 [°].   A full PPI scan 

usually corresponds to a complete  azimuth angle rotation from 𝛼 =  00  to 𝛼 =  3590 

(Yoshino, 2019), but also PPI scans with smaller azimuth sectors are commonly utilized 

(Alcayaga, 2020; Krutova et al., 2022). A typical example for PPI scan is the observation of 

horizontal velocities with a bird’s eye view using a small elevation angle to observe wind 

turbine wakes on a wind park. Figure 3-7 helps to show schematic view of the PPI scan with a 

fixed elevation angle and varying azimuth angles 

 

Figure 3-7: PPI scan with varying azimuth angles and a fixed elevation angle (Julia, 2022). 

The retrieval of the u, v and w components from a PPI scan can be challenging especially the 

reconstruction of the 3-D wind vector or a projection of interest. However, from the research 

done by (Christiane, 2024) it is found that by using the coplanar dual-Lidar retrieval technique, 

there is a possibility to estimate two of the three wind speed components at several points in 

space and time. 
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3.2.1.3 Doppler beam swinging (DBS) scan 

The wind scanning LiDAR can also apply a Doppler beam swinging scan pattern, which is a 

sequence of five single fixed LOS observations. In contrast to the profiling LiDAR, the 

scanning LiDAR physically rotates its scanner head, changing between different fixed LOS 

orientations. The scanning LiDAR uses less time during the DBS scan mode compared to the 

profiling LiDAR, which takes considerably longer to change the beam orientation. Therefore, 

the order of the sequential beam orientations is optimized for the scanning LiDAR to minimize 

the time taken. During the LiDAR measurement campaign, LiDAR 40 was the only scanning 

wind LiDAR configured to run a Doppler beam swinging (DBS) scan. A cycle of the DBS scan 

was approximately 9 seconds, resulting in 24 DBS scans for each hour that LiDAR 40 was in 

operation. 

The layout in Figure 3-8 illustrates a DBS scan from a scanning LiDAR represented in the x, 

y, and z directions. 

 

Figure 3-8: Layout of a Doppler beam swing (DBS) LiDAR scan (van Dooren, 2022) 
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3.3 Data 

The availability of rich and dependable data made working on this thesis very interesting. The 

in-situ measurements shared by Troms Kraft AS were averaged with a 10-minute temporal 

resolution. The data was collected at the measurement mast present in the Fakken wind park at 

a height of 80 meters above ground level (a.g.l). The LiDAR scan files were stored by the 

Doppler wind LiDARs in the form of NetCDF (Network Common Data Form) files, often 

abbreviated as nc files. The files available were from the 5th of December 2022 to 10th of June 

2023. The data files analysed in this thesis was primarily from January 2023 to June 2023. 

Notably, there were some missing files for some days within the selected months, but January, 

February, and March had almost complete files for each day. Additionally, a calendar 

specifically showing the operation days for each LiDAR 34 and LiDAR 40 is in appendix A. 

These were the three  main set of  data provided and used in this thesis. 

1. In-situ measurements from the two wind vanes and anemometers at Fakken wind park 

(Courtesy of Troms Kraft AS) 

2. In-situ measurements for each 18 reference wind turbines at Fakken wind park 

(Courtesy of Troms Kraft AS) 

3. Raw LiDAR scan files from two scanning pulsed long-range Doppler wind LiDARS. 

3.3.1 LiDAR data processing and cleaning 

The analysis and cleaning of LiDAR data are crucial steps in ensuring the accuracy and 

reliability of wind speed measurement, especially when used for applications such as wind 

energy assessment. The radial velocity, 𝑣𝑟,  data observed by LiDARs can be quite noisy in the 

case of a low signal-to-noise (SNR). This is usually caused by low airborne particle content. 

The PPI scan has the potential to feature numerous erroneous patterns, such as range-folded 

ambiguities resulting from an incorrect range and velocity allocation of the LiDAR beam 

interacting with distant objects, such as clouds (Bonin & Brewer, 2017). Additionally, obstacles  

can distort the line-of-sight (LOS) of a LiDAR beam creating erroneous patterns in the observed 

velocity field.  

Although, there are numerous methodologies in filtering noise from LiDAR data, the most 

common approach is to apply a filter that removes all radial velocity observations below a 
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certain SNR threshold (Beck & Kühn, 2017).  In this thesis, two methods were applied in the 

process of data filtering. The first step was to refer to the confidence index (%) variable, which 

is a stored variable of each LiDAR scan (fixed, PPI or DBS). The confidence index (CI) is a 

data quality indicator, with values of  0 indicating no data or noise and 100 indicating real data.  

The second step involved reading the CI variable (radial_wind_speed_ci) into a Pandas 

dataframe in Python and defining it as a variable (Q1). The third step ensured that after any 

LiDAR scan file is read for analysis, the radial velocity 𝑣𝑟 is passed through Q1 ensuring that 

every noise point in space and time is replaced with NaN (Not a Number) and each quality data 

point is replaced with 1. Therefore, a filtered radial velocity 𝑣𝑞𝑟  is then created.  

The second method applied was the static standard deviation filter, which functions to remove 

outliers of radial velocity values by choosing a specific standard deviation multiplier. This 

method ensures that extreme values, which are likely erroneous, area filtered out to maintain 

the integrity of the dataset. 

Figure 3-9 helps to show the effect of filtering noise by confidence index and static standard 

deviation. This is an example used for a fixed scan of a Doppler pulsed long range LiDAR. 

 

Figure 3-9: Filtering of granular noise from radial velocity 𝑣𝑟  observations. 
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4 Results and Discussion 

4.1 Wind rose from fixed LiDAR scans 

The wind rose illustrated in the left image of Figure 4-1 shows the potential wind resource at 

the fixed point in Fakken II for the month of January. The prevailing wind direction is 

predominantly from the south (S) and southeast (SSE) sectors, with a significant portion of the 

winds originating from the south-southwest (SSW) direction. 

 

 

Figure 4-1: Left: Wind rose showing wind resource at the Fakken II fixed point for January 2023. Right: Wind 

rose showing wind resource at the Fakken II at fixed point for February 2023. 

 

Figure 4-2:Wind rose showing wind resource at Fakken II fixed point for March 2023. 
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The wind speeds are categorized into bins ranging from 0.4 to over 30.9 m/s, with most wind 

speeds falling within the 6.5 to 18.7 m/s range, and substantial contributions from the 18.7 to 

24.8 m/s range. The wind rose on the right, which represents the wind resource at the fixed 

point for February, indicates that winds are coming from additional directions such as the 

northwest and northeast. However, the prevailing winds remain dominant from the south. The 

wind rose in Figure 4-2 offers a different perspective; it represents the wind resource at the 

fixed point for March but similarly shows that the prevailing wind is predominantly from the 

southeast direction, consistent with the other months. 

4.2 Wind rose for In-situ measurements from meteorological 
mast 

 

Figure 4-3: Left: Wind rose showing wind resource at Fakken I met-mast for January 2023. Right: Wind rose 

showing wind resource at Fakken II met-mast for February 2023. 

 

Figure 4-4: Wind rose showing wind resource at Fakken I met-mast for March 2023. 
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The wind roses in Figures 4-3 and 4-4 illustrate the wind resource at the meteorological mast 

in Fakken I for January 2023 (left), February (right), and March (center). At first glance, there 

appears to be consistency in the prevailing wind directions from the south (S), southeast (SSE), 

and southwest (SSW) when compared to the wind roses obtained from the scanning wind 

LiDAR. However, the wind speeds seem to be lower, falling within the range of 5 to 22 m/s. 

4.3 Wind rose for In-situ measurements from nearest turbine to 
LiDAR 34 

 

Figure 4-5: Left: Wind rose showing wind resource at WTG10 turbine for January 2023. Right: Wind rose 

showing wind resource at WTG10 turbine for February 2023. 

 

Figure 4-6: Wind rose showing wind resource at WTG10 turbine for March 2023. 
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The wind roses illustrated in Figures 4-5 and 4-6 are from the nearest turbine (WTG10) to 

LiDAR 34. Across the three months, the prevailing winds are primarily from the south (S), 

southeast (SSE), and southwest (SSW) directions. However, the wind rose for turbine WTG10 

in March 2023 shows more wind coming from the northwest (NW) to north-northwest (NNW). 

These winds appear strong but occur with less frequency. 

4.4 Wind rose for In-situ measurements from nearest turbine to 
LiDAR 40 

 

Figure 4-7: Left: Wind rose showing wind resource at WTG15 turbine for January 2023. Right: Wind rose 

showing wind resource at WTG15 turbine for February 2023. 

 

Figure 4-8: Wind rose showing wind resource at WTG15 turbine for March 2023. 
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The wind roses illustrated in Figures 4-7 and 4-8 provide valuable insights into the wind 

resource at the WTG15 turbine, which is closest to LiDAR 40. In January 2023, the highest 

frequency wind speed range is between 5.9 and 11.1 m/s. In February, more wind is observed 

coming not only from the dominant south (S), southwest (SW), and southeast (SSE) directions 

but also from the west (W) and northwest (NW) directions. The wind rose for March 2023 

shows an increase in higher wind speeds, although these occur with lower frequency. It is 

noteworthy that the wind roses in Figures 4-6 and 4-8 share a similar outlook, with the primary 

difference being the higher wind speed range (>18.5 m/s) observed in Figure 4-8. 

 

4.5 Correlation Test 

4.5.1 Wind speed time series correlation for LiDAR wind data and met-
mast (January 2023). 

To assess the accuracy of the extracted LiDAR wind data, it is required and advisable to find 

the degree of agreement between the reference wind speed data from the met-mast and wind 

speed data obtained from the LiDARs. A time series correlation plot can help give more 

understanding to the degree of agreement.  The period of comparison is January 2023. This 

comparison ought to give a valuable insight into the reliability of the LiDAR wind data. 

 

Figure 4-9: Time series correlation between wind speed from LiDAR and wind speed from met-mast. 
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Figure 4-9 visually represents the correlation between the wind speeds from the LiDAR data 

and those obtained from the anemometers on the met-mast. The blue line represents the LiDAR 

data, the orange line represents met-mast 1, and the green line represents met-mast 2. At first 

glance, the LiDAR wind speeds appear to have minimal deviation compared to the met-mast 

data. However, upon closer examination, significant deviations become apparent in the time 

series plot on January 13th, between January 21st and 25th, and on January 29th. The LiDAR 

wind speeds tend to overestimate those recorded by the met-masts. 

Additionally, Figure 4-10 presents a correlation matrix for the same wind speed data from the 

LiDAR and met-masts. In this matrix, a value of 1.0 indicates a strong correlation, while 0.5 

indicates a weak correlation between the data samples. However, upon closer examination of 

the correlation matrix, it is evident that the LiDAR data has a stronger correlation (0.61) with 

met-mast 1 data compared to a weaker correlation (0.43) with met-mast 2 data. 

 

Figure 4-10: Correlation matrix between LiDAR data sample and Met-Mast data sample. 

To understand the overestimation effect by the LiDAR data, refer to Figure 4-11, which shows 

a time series plot for a week (16th – 22nd) in January. The week-based time series plot provides 

a clearer insight into the overestimation effect. It is now evident that there is a discrepancy 

between the LiDAR data and the met-mast data. 
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Figure 4-11: Time series correlation plot for a week in January 2023  

4.5.2 Wind speed time series correlation for LiDAR wind data and met-
mast (February 2023). 

The time series plot in Figure 4-12 compares the wind speed data from the LiDAR against the 

data from the met-mast for the month of February. This comparison is one-to-one between the 

LiDAR and met-mast data. As expected, there are overlaps in the blue curve, similar to Figure 

4-9, which likely result from the overestimation of wind speed by the LiDAR. To further 

analyse this, a detailed examination of the time series representation for a week within February 

will be conducted to determine if the discrepancy between the LiDAR and met-mast data is 

consistent. 

 

Figure 4-12: Time series correlation between wind speed from LiDAR and wind speed from met-mast. 
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Figure 4-13 provides a closer look at this comparison for a specific week in February. From 

this plot, it is evident that the LiDAR wind data does not align well with the met-mast wind 

data, with the LiDAR data curve being overlapped by the met-mast data. At this point, it is 

premature to conclusively state that the LiDAR wind data consistently overestimates the met-

mast wind data. Accurate data estimates are crucial for planning new wind parks. 

 

Figure 4-13: Time series correlation plot for a week in February 2023. 

Studies have investigated the accuracy of wind data obtained by LiDARs. (Bingöl et al., 2009) 

found that LiDAR errors can reach up to 10%, especially in complex terrain where wind flow 

is inhomogeneous. (Harris et al., 2010) concluded that CFD models can better estimate LiDAR 

errors caused by atmospheric conditions affecting the LiDAR beam, particularly at higher 

altitudes. These cases underscore the importance of using meteorological masts as benchmarks 

for validating and trusting LiDAR wind data. 
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4.6 Histogram of wind speed and Weibull distribution plot for 
LiDAR wind speed data and met-mast speed data 

 

The histogram and Weibull distribution plots in Figures 4-14 and 4-15 are presented to compare 

the long-term distribution of wind speed at a fixed point in Fakken II with met-mast wind data. 

Both data samples are from January 2023. 

 Figure 4-14 displays a histogram plot representing observed wind speed frequencies on the 

right, while the red curve on the left indicates the fitted Weibull PDF. Key parameters (shape 

parameter in red, scale parameter in blue) are annotated on the Weibull distribution plot.  

 

Figure 4-14: Left: Weibull distribution for LiDAR wind speed data. Right: Histogram plot of LiDAR wind speed 

data 

 

For the LiDAR wind speed data, the Weibull distribution has a shape parameter of 2.31 and a 

scale parameter of 14.14. A shape parameter of  1 < k < 3 indicates a distribution that is 

moderately right skewed. This suggests that while there are occasionally high wind speeds, they 

are less frequent compared to lower and moderate wind speeds. The tail extending to the right 

further implies that high wind speeds are present but infrequent.  
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Figure 4-15: Left: Weibull distribution for met-mast wind speed data. Right: Histogram plot of met-mast wind 

speed data. 

In Figure 4-15, the Weibull distribution plot having a shape parameter k  slightly greater than 

2 indicates a moderately right skewed distribution. Most of the data is concentrated around 

lower to moderate values, with a tail extending towards higher wind speeds. The scale 

parameter c  of 12.07 stretches the distribution along on the x-axis, meaning that wind speed 

values are centred around this value, with the most frequent wind speed (mode) being slightly 

lower. 

Comparing the insights from the histogram and Weibull distribution plots in Figure 4-14 and 

4-15  both wind speed distributions are right skewed. The distribution with a scale parameter 

of 14.14 suggests higher wind speeds on average compared to the distribution with a scale 

parameter of 12.07, indicating that wind speeds are generally higher in the LiDAR data. The 

met-mast wind data shows greater variability, with a wider range of wind speed values, 

suggesting it is more spread out. 

Both the LiDAR and met-mast wind speed distributions indicate good potential for energy 

generation. However, the higher and more consistent wind speeds from the fixed point at 

Fakken II suggest more reliable energy production at that location. 
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4.7 Estimation of wind energy production from LiDAR wind 
data 

 

After obtaining and analyzing wind speed data from both LiDARs scanning over the fixed point 

designated to serve as the met-mast for Fakken II during the period from January to March 

2023, the next step is to estimate energy production, a crucial factor in wind turbine siting. The 

wind speed data were measured in meters per second (m/s). The observed energy production 

from each turbine at Fakken I during the specified period (January to March 2023) is illustrated 

in Figure 4-16. Turbine F, situated at coordinates 70.1055° latitude and 20.01247° longitude, 

emerges as the closest turbine to the fixed point in Fakken II. Given the proximity of Turbine 

F to the fixed point, it can be inferred that there will be little to no difference in the wind resource 

available at both locations. This inference is supported by previous studies on wind patterns in 

similar terrain. Consequently, we will continue to utilize the wind data acquired at the fixed 

point for estimating wind energy production at Turbine F. However, it is important to 

acknowledge potential limitations, such as variations in wind speed and direction across 

different heights and terrain features, which may affect the accuracy of the estimates. 

 

Figure 4-16: Energy production within January to March 2023 for each turbine at Fakken I. 
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Once the wind power production at Turbine F in Fakken II is determined, it will be compared 

with the observed power production of some turbines in Fakken I that closely aligns with the 

LiDAR wind data in terms of wind speed and direction. This comparison is crucial to ensure 

accuracy across the board, requiring a strong correlation between the data samples from the 

selected turbines and the LiDAR. 

 In estimating the wind power production at Turbine F, the two elements required are the power 

curve of the Vestas V90-3.0MW and the 10-minute averaged wind speed data from the fixed 

point in Fakken II. The power curve data was obtained from manufacturer specifications. An 

interpolation of the power output values for each wind speed from the power curve was applied 

on the wind speed data from the fixed point using linear interpolation, and the result was a 10-

minute averaged power production from January to March 2023. Figure 4-17 shows the 

estimated energy production at Turbine F in Fakken II. 

 

Figure 4-17: Estimated energy production within January to March 2023 for Turbine F at Fakken II. 

The above Figure 4-17 shows the variance of the estimated energy that will likely be produced 

at the location of Turbine F in the expanded region of the Fakken wind park. It can be deduced 

from the plot that the most consistent and high-value energy was produced in January, ranging 

from 1.6 MWh to 3 MWh. The energy produced in the later months of February and March 

exhibited some consistency but with occasional periods of energy drop. Wind energy 

production typically exhibits a linear correlation with wind speed. Therefore, under normal 
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operating conditions, a wind turbine should produce energy closest to its rated power when the 

available wind speed is consistent and high. 

The correlation analysis identified turbines WTG06, WTG09, WTG10, and WTG14 in Fakken 

I as consistently demonstrating good agreement with the LiDAR (Turbine F) wind data. As 

depicted in Figure 4-16, the estimated wind energy production from turbine WTG08 peaks at 

approximately 2.92 GWh, while turbine WTG13 is the lowest-producing turbine at 

approximately 1.99 GWh. 

The subsequent step involves performing a statistical evaluation between the estimated wind 

energy production from the four turbines (WTG06, WTG09, WTG10, and WTG14) in Fakken 

I and turbine F in Fakken II. An estimation error between both turbine productions will be 

assessed by analysing the deviation between the model's estimated value (Turbine F) and the 

observed values (WTG06, WTG09, WTG10, WTG14). The statistical metrics necessary for 

this evaluation are explained in Chapter 2.6 of this thesis. 

The table below presents the estimation error in energy production between Turbine F in 

Fakken II and turbines WTG06, WTG09, WTG10, and WTG14 in Fakken I. 

Table 4-1: Statistical evaluation of the estimated energy production from the model and observed data. 

  

RMSE 

evaluation 

MAE 

evaluation 

MAPE 

evaluation 

Bias 

evaluation 

WTG06 vs 

Turbine F 0.929 0.630 782.71% 0.089 

WTG09 vs 

Turbine F 0.933 0.635 724.04% 0.229 

WTG10 vs 

Turbine F 1.039 0.708 3586.44% 0.320 

WTG14 vs 

Turbine F 1.194 0.820 4197.61% 0.516 

 

The values in the above table show the results from using statistical metrics to evaluate the 

performance of predictive models, specifically the estimated energy production for Turbine F. 

Four metrics were employed: Root Mean Square Error (RMSE), Bias, Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE). 
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From the statistical evaluation results, the model's estimated values for Turbine F are closest to 

the observed values from turbine WTG06 when compared to the other three turbines. These 

statistical metrics are negatively oriented scores, meaning that lower values indicate better 

accuracy between the estimated value of the model (Turbine F) and the observed values from 

the outlined turbines. The results consistently show that the "WTG06 vs Turbine F" comparison 

achieves the lowest values across all statistical metrics except for the MAPE metric. MAPE, 

expressed as a percentage, measures the average of the absolute percentage errors between 

predicted and actual values. A lower MAPE indicates better accuracy. 

The high MAPE results in Table 4-1 suggest the presence of small or zero values in the observed 

energy production estimates from the outlined turbines in Fakken I. Further analysis of the 

dataset revealed a significant presence of zero and negative values, particularly concerning the 

negative values, which are unexpected for energy production data. 

It's likely that these negative values resulted from data processing errors, invalid data recorded 

during turbine downtime, or faulty calibration of measurement instruments. To address this 

issue, appropriate data handling techniques were implemented: (i) checking and removing NaN 

values, (ii) filtering out negative values before running the statistical evaluation, and (iii) setting 

minimum and maximum thresholds (min_threshold = 0.01 MWh & max_threshold = 50 MWh) 

for observed energy production estimates to avoid evaluating statistical metrics with 

insignificant values that could skew the results. 

The aftermath of applying these data handling techniques is reflected in the results found below 

in Table 4-2. 

Table 4-2:  Results of statistical evaluation after applying data handling techniques. 

  

RMSE 

evaluation 

MAE 

evaluation 

MAPE 

evaluation 

Bias 

evaluation 

WTG06 vs 

Turbine F 0.864 0.604 109.40% 0.025 

WTG09 vs 

Turbine F 0.896 0.634 133.02% 0.192 

WTG10 vs 

Turbine F 0.891 0.636 158.34% 0.199 

WTG14 vs 

Turbine F 0.914 0.649 138.48% 0.270 
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The new results demonstrate a significant reduction in the Mean Absolute Percentage Error 

(MAPE) for all four statistical evaluations, indicating a marked improvement in accuracy. 

Additionally, there is a slight decrease in the Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and Bias results for all instances of statistical evaluation. The MAPE evaluation 

results still looking high despite using the data handling techniques show that a large percentage 

of the dataset from the observed energy production estimates have a high degree of variability. 

This variability could be due to intermittent wind conditions, operational issues with the 

turbines, or residual data quality issues that were not fully mitigated by the applied data 

handling techniques. 

The persistence of high MAPE values suggests that further refinement of data processing 

methods might be necessary. This could involve more advanced techniques for handling 

outliers, improving the accuracy of data during periods of turbine downtime, or employing more 

sophisticated statistical models that can better account for variability and uncertainty in the 

observed energy production data. Continuous monitoring and validation of the data collection 

process are essential to ensure the reliability and accuracy of the energy production estimates, 

thereby improving the predictive performance of the model. 

The evaluation results from "WTG06 vs Turbine F" remain the lowest, suggesting that the wind 

energy estimated to be produced at Turbine F closely aligns with the energy production at 

WTG06 in Fakken I. This consistency implies that the estimated energy production at WTG06 

falls within the same range as that of Turbine F located in Fakken II. The instances of "WTG09 

vs Turbine F" and "WTG10 vs Turbine F" yield similarly low evaluation results. This is likely 

due to the proximity of turbines WTG09 and WTG10 to Turbine F, where their close distance 

minimizes the impact of wind variability on energy production estimation. Therefore, the 

estimated energy production at Turbine F is expected to be comparable to that of WTG09 and 

WTG10, given their proximity and similar wind conditions. 
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4.7.1 Using WAsP for turbine siting at Fakken II 

WAsP is an excellent tool for wind resource assessment, optimized for microscale flow 

analysis, and it incorporates a resource grid feature beneficial for turbine siting in wind parks. 

While the WAsP software was not directly employed as a methodology in this thesis, it served 

as a significant reference point. Much of the relevant literature and methodologies were drawn 

from a previous thesis by (Bjugg, 2023), which provided motivation for the development of 

this thesis. 

As illustrated in Figure 4-17, the WAsP tool helps to define resource grids positioned over 

Fakken I and Fakken II. These grids correspond to the turbine hub height within each zone. 

Resource grids are crucial for providing information about average wind speeds. The zones 

highlighted in red indicate areas with the highest mean wind speeds, suggesting that turbines 

placed within these areas have high potential for significant energy production. 

The WAsP tool features high computational power, allowing for rapid estimation of energy 

production once the positions of each turbine are inputted into the tool. In contrast, other wind 

resource assessment tools would take longer to achieve the same results. 

 

Figure 4-18: Resource grid from WAsP over Fakken I and Fakken II (Bjugg, 2023).  
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Using the WAsP tool offers the advantage of readjusting turbine positions and recalculating 

energy production to check for improvements. As seen in Figure 4-18, the spacing between 

turbines can significantly impact wake losses on wind flow, potentially affecting overall annual 

energy production (AEP). The WAsP tool includes a feature for evaluating wake losses within 

selected areas, although it tends to underestimate these losses, a factor that should be considered 

when interpreting the results. 

 

Figure 4-19: Resource grid from WAsP showing wind roses indicating gross AEP and potential wake losses 

(Bjugg, 2023). 

Figure 4-18 shows that wake losses are present but not significantly pronounced. It can be 

inferred that Fakken II could be affected by Fakken I, as prevailing winds from the southeast 

direction, after flowing past Fakken I, will lose a significant amount of energy before reaching 

Fakken II. Contributing factors to these effects include different turbine heights at Fakken I and 

Fakken II, the complex terrain surrounding both wind parks, and the WAsP tool's tendency to 

underestimate wake losses. 

A better understanding of Figure 4-18 indicates that the front row turbines at Fakken II will not 

experience wake losses from Fakken I. However, there is a chance that the mid-row turbines in 

Fakken II will cause a wake effect on the front row turbines. Since the WAsP tool provides 

insights into the presence of wake losses in Fakken I, implementing Fakken II could introduce 

additional wake effects. 
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Wind direction can change throughout the year, as shown by the wind roses in Chapter 4, which 

illustrate wind direction changes from January to March. Even though winds from the north, as 

depicted in Figure 4-18, will initially pass through Fakken II and result in reduced wind speeds 

upon reaching Fakken I, this reduction is expected to be negligible in terms of energy 

production at Fakken I. 

Reassessing turbine positions at Fakken II can maximize energy production. The proposed 

turbine coordinates listed in Appendix B is the result of the minor adjustments made to account 

for wake losses. Although these adjustments are not massive, they contribute to an increase in 

the gross AEP from Fakken II. Figure 4-19, originally from(Bjugg, 2023), shows that 

repositioning turbines D and G, along with other minor adjustments, added an effect of 6.8 

GWh to the sampled 2017 data from Fakken II. 

 

Figure 4-20: Effect of repositioning turbines at Fakken II adding to the yearly energy production from a sampled 

2017 data (Bjugg, 2023). 
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5 Conclusion 

5.1 Summary and key findings 

The aim of this thesis was to study the wind conditions for the planned expansion of the Fakken 

wind park, known as "Fakken II." This investigation utilized two pulsed long-range Doppler 

LiDARs to scan the designated area and collect wind-related data. The raw LiDAR scan files 

contained the radial velocity parameter, which was essential for assessing and transforming the 

data into useful illustrations, such as wind roses and histograms. These visualizations were 

crucial for analysing the potential energy production from the expanded wind park. 

One of the initial observations during the LiDAR data processing was the substantial absence 

of files for several days within the LiDAR measurement campaign. This issue necessitated 

extensive file sorting to ensure the completeness of the dataset, ultimately focusing on the 

period from January 2023 to March 2023. The missing files were attributed to downtime due 

to maintenance activities on the LiDAR units at certain points during the measurement period. 

An intensive data cleaning technique was applied to the selected files to remove noise caused 

by airborne particles. 

Presented below are key findings from analysis of the wind data obtained from the fixed scans 

of the Doppler LiDARs:   

•  Wind Speed and Direction Analysis: 

• The analysis of the LiDAR data revealed that the predominant wind directions were 

from the northwest and southeast, consistent with the general wind patterns observed in 

the region. 

• The wind speed data indicated that the highest wind speeds were recorded in January 

2023, with a gradual decrease observed in February and March 2023, aligning with 

typical seasonal variations. 

•  Energy Production Estimation: 

• The estimated energy production for Turbine F in Fakken II was calculated using the 

power curve of the Vestas V90-3.0MW turbine and the 10-minute averaged wind speed 

data from the fixed point in Fakken II. The results indicated that January had the most 

consistent and highest energy production, ranging from 1.6 MWh to 3 MWh. 

• The comparison of estimated energy production between Turbine F and turbines in 

Fakken I (WTG06, WTG09, WTG10, and WTG14) showed that Turbine F's estimates 

closely align with WTG06, suggesting similar wind resource availability. 
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•  Accuracy of LiDAR Wind Data: 

• The time series correlation plot and correlation matrix for January 2023 revealed that 

the LiDAR wind speeds tend to overestimate those recorded by the met-masts, with 

significant deviations on specific dates. 

• The correlation matrix indicated a stronger correlation between the LiDAR data and 

met-mast 1 (0.61) compared to met-mast 2 (0.43). 

• Further detailed time series analysis for specific weeks in January and February 

confirmed the overestimation effect, highlighting discrepancies between the LiDAR and 

met-mast data. 

•  Statistical Evaluation: 

• Statistical evaluation metrics (RMSE, MAE, Bias, and MAPE) highlighted that 

"WTG06 vs Turbine F" consistently had the lowest error values across all metrics, 

indicating a strong correlation between the wind data at these locations. 

• The application of data handling techniques, including the removal of NaN values, 

filtering out negative values, and setting thresholds, significantly improved the accuracy 

of the statistical evaluations. However, high MAPE values persisted, suggesting the 

presence of high variability in the dataset. 

•  Data Quality and Limitations: 

• The analysis identified several limitations, including the presence of zero and negative 

values in the observed energy production data, likely due to data processing errors, 

downtime during turbine operations, or faulty calibration of measurement instruments. 

• Further refinement of data processing methods is necessary to address these issues and 

improve the reliability and accuracy of the energy production estimates. 

•  Weibull Distribution Analysis: 

• The Weibull distribution analysis for both LiDAR and met-mast wind speed data 

indicated moderately right-skewed distributions. The LiDAR data showed a higher 

average wind speed (shape parameter 2.31, scale parameter 14.14) compared to the met-

mast data (shape parameter slightly above 2, scale parameter 12.07). 

• The higher and more consistent wind speeds from the fixed point at Fakken II suggest 

more reliable energy production at that location. 

WAsP is a valuable tool for wind resource assessment, offering efficient microscale flow 

analysis and resource grid features crucial for turbine siting. While not directly used in this 

thesis, it served as an important reference. WAsP's ability to quickly estimate energy production 

and evaluate wake losses highlights its utility. Analysis showed that repositioning turbines 

based on WAsP’s insights can significantly increase energy production, as demonstrated by the 

6.8 GWh improvement in Fakken II with minor adjustments. 
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5.2 Future work 

The findings of this thesis have shed light on several key aspects of wind resource assessment 

in the context of the planned expansion of the Fakken wind park. However, there are still 

avenues for further exploration and refinement that could enhance the accuracy and reliability 

of wind data analysis in the future. 

Firstly, it is important to acknowledge that while this study has provided valuable insights into 

the potential of using LiDAR as a wind resource assessment tool, more comprehensive data 

collection is necessary to fully justify its efficacy as a substitute for meteorological masts. The 

focus period of three months, while informative, may not capture the full range of wind patterns 

and variations that occur over longer timeframes. Therefore, additional LiDAR data collection 

over an extended period would be beneficial to assess its long-term performance and reliability 

accurately. 

Despite the limited timeframe of the study, the results have demonstrated promising 

correlations between LiDAR data and data obtained from meteorological masts. This suggests 

that LiDAR has potential as a wind resource assessment tool, especially when supplemented 

with additional data and analysis techniques. Utilizing LiDAR data in conjunction with the 

WAsP tool could provide more comprehensive insights into wind resource availability and 

turbine siting. However, to fully leverage the capabilities of WAsP and ensure accurate 

assessments, a longer time series of wind data from LiDAR scans would be advantageous. 

In conclusion, while this study has provided valuable insights into wind resource assessment 

using LiDAR technology, there are still opportunities for further research and refinement. By 

continuing to explore and validate the capabilities of LiDAR in wind resource assessment, 

researchers can contribute to the advancement of wind energy technologies and facilitate more 

informed decision-making in wind farm development projects. 
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Appendix A 

LIDAR 34 & 40 OPERATION CALENDAR (FIXED SCAN) 
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LIDAR 34 & 40 OPERATION CALENDAR (PPI SCAN) 
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LIDAR 34 & 40 OPERATION CALENDAR (DBS SCAN) 
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Appendix B 

The table below shows the turbine positions for Fakken I wind park in UTM34 and 

Longitude/Latitude coordinates. 

 

Turbine Tag 

UTM-zone 34W 

(eastx/northy) 

Geographical degrees 

(Lat/Lon) 

WTG01 463525/7776388 70.09171/20.04019 

WTG02 463775/7776491 70.09267/20.04672 

WTG03 464032/7776626 70.09392/20.05343 

WTG04 464287/7776777 70.09531/20.06008 

WTG05 464522/7776925 70.09667/20.06619 

WTG06 464789/7776970 70.0971/20.07321 

WTG07 465112/7777044 70.09781/20.08167 

WTG08 465620/7777416 70.10122/20.09491 

WTG09 462956/7776846 70.09574/20.02501 

WTG10 463230/7776929 70.09652/20.03219 

WTG11 463426/7776724 70.09471/20.03744 

WTG12 463709/7777012 70.09733/20.04478 

WTG13 463924/7777186 70.09892/20.05036 

WTG14 464167/7777355 70.10047/20.05667 

WTG15 464588/7777535 70.10214/20.06769 

WTG16 464870/7777589 70.10267/20.0751 

WTG17 465146/7777715 70.10383/20.08231 

WTG18 465391/7777941 70.10589/20.08867 
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The table below shows the proposed turbine positions for Fakken II wind park in UTM34 and 

Longitude/Latitude coordinates. 

 

Turbine Tag 

UTM-zone 34W 

(eastx/northy) 

Geographical degrees 

(Lat/Lon) 

Turbine A 462658/7777193 70.09881/20.01702 

Turbine B 462958/7777549 70.10204/20.02479 

Turbine C 463574/7777494 70.10164/20.04101 

Turbine D 463654/7777923 70.10549/20.04294 

Turbine E 462042/7777367 70.10028/20.00075 

Turbine F 462497/7777942 70.1055/20.01247 

Turbine G 464082/7778204 70.10807/20.0541 

Turbine H 461852/7777807 70.10419/19.99555 

Turbine I 462169/7778350 70.10911/20.00367 

Turbine J 462524/7778585 70.11127/20.01291 

Turbine K 462858/7778251 70.10832/20.02186 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

 


